WorldWideScience

Sample records for high-resolution hydrodynamic simulations

  1. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  2. Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement

    Science.gov (United States)

    Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim

    2018-06-01

    We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.

  3. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    Science.gov (United States)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  4. STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS

    International Nuclear Information System (INIS)

    Christensen, Charlotte R.; Quinn, Thomas; Bellovary, Jillian; Stinson, Gregory; Wadsley, James

    2010-01-01

    We examine the effect of mass and force resolution on a specific star formation (SF) recipe using a set of N-body/smooth particle hydrodynamic simulations of isolated galaxies. Our simulations span halo masses from 10 9 to 10 13 M sun , more than 4 orders of magnitude in mass resolution, and 2 orders of magnitude in the gravitational softening length, ε, representing the force resolution. We examine the total global SF rate, the SF history, and the quantity of stellar feedback and compare the disk structure of the galaxies. Based on our analysis, we recommend using at least 10 4 particles each for the dark matter (DM) and gas component and a force resolution of ε ∼ 10 -3 R vir when studying global SF and feedback. When the spatial distribution of stars is important, the number of gas and DM particles must be increased to at least 10 5 of each. Low-mass resolution simulations with fixed softening lengths show particularly weak stellar disks due to two-body heating. While decreasing spatial resolution in low-mass resolution simulations limits two-body effects, density and potential gradients cannot be sustained. Regardless of the softening, low-mass resolution simulations contain fewer high density regions where SF may occur. Galaxies of approximately 10 10 M sun display unique sensitivity to both mass and force resolution. This mass of galaxy has a shallow potential and is on the verge of forming a disk. The combination of these factors gives this galaxy the potential for strong gas outflows driven by supernova feedback and makes it particularly sensitive to any changes to the simulation parameters.

  5. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    2003-01-01

    Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle. The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by internal dynamics, to be followed in

  6. A high resolution hydrodynamic 3-D model simulation of the malta shelf area

    Directory of Open Access Journals (Sweden)

    A. F. Drago

    Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle.

    The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by

  7. High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Ferrarin, Christian; Pizzeghello, Nicola Marco; Murri, Chiara; Rossi, Monica; Bajo, Marco; Bellafiore, Debora; Campiani, Elisabetta; Fogarin, Stefano; Grande, Valentina; Janowski, Lukasz; Keppel, Erica; Leidi, Elisa; Lorenzetti, Giuliano; Maicu, Francesco; Maselli, Vittorio; Mercorella, Alessandra; Montereale Gavazzi, Giacomo; Minuzzo, Tiziano; Pellegrini, Claudio; Petrizzo, Antonio; Prampolini, Mariacristina; Remia, Alessandro; Rizzetto, Federica; Rovere, Marzia; Sarretta, Alessandro; Sigovini, Marco; Sinapi, Luigi; Umgiesser, Georg; Trincardi, Fabio

    2017-09-01

    Tidal channels are crucial for the functioning of wetlands, though their morphological properties, which are relevant for seafloor habitats and flow, have been understudied so far. Here, we release a dataset composed of Digital Terrain Models (DTMs) extracted from a total of 2,500 linear kilometres of high-resolution multibeam echosounder (MBES) data collected in 2013 covering the entire network of tidal channels and inlets of the Venice Lagoon, Italy. The dataset comprises also the backscatter (BS) data, which reflect the acoustic properties of the seafloor, and the tidal current fields simulated by means of a high-resolution three-dimensional unstructured hydrodynamic model. The DTMs and the current fields help define how morphological and benthic properties of tidal channels are affected by the action of currents. These data are of potential broad interest not only to geomorphologists, oceanographers and ecologists studying the morphology, hydrodynamics, sediment transport and benthic habitats of tidal environments, but also to coastal engineers and stakeholders for cost-effective monitoring and sustainable management of this peculiar shallow coastal system.

  8. Kinetic Energy from Supernova Feedback in High-resolution Galaxy Simulations

    Science.gov (United States)

    Simpson, Christine M.; Bryan, Greg L.; Hummels, Cameron; Ostriker, Jeremiah P.

    2015-08-01

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (˜10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 109 M⊙ dwarf halo. We find that in high-density media (≳50 cm-3) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  9. The optimization of high resolution topographic data for 1D hydrodynamic models

    International Nuclear Information System (INIS)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-01-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  10. The optimization of high resolution topographic data for 1D hydrodynamic models

    Science.gov (United States)

    Ales, Ronovsky; Michal, Podhoranyi

    2016-06-01

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  11. The optimization of high resolution topographic data for 1D hydrodynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Ales, Ronovsky, E-mail: ales.ronovsky@vsb.cz; Michal, Podhoranyi [IT4Innovations National Supercomputing Center, VŠB-Technical University of Ostrava, Studentská 6231/1B, 708 33 Ostrava (Czech Republic)

    2016-06-08

    The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.

  12. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  13. The AGORA High-resolution Galaxy Simulations Comparison Project

    OpenAIRE

    Kim Ji-hoon; Abel Tom; Agertz Oscar; Bryan Greg L.; Ceverino Daniel; Christensen Charlotte; Conroy Charlie; Dekel Avishai; Gnedin Nickolay Y.; Goldbaum Nathan J.; Guedes Javiera; Hahn Oliver; Hobbs Alexander; Hopkins Philip F.; Hummels Cameron B.

    2014-01-01

    The Astrophysical Journal Supplement Series 210.1 (2014): 14 reproduced by permission of the AAS We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ∼100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle o...

  14. Flooding Simulation of Extreme Event on Barnegat Bay by High-Resolution Two Dimensional Hydrodynamic Model

    Science.gov (United States)

    Wang, Y.; Ramaswamy, V.; Saleh, F.

    2017-12-01

    Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.

  15. SIMULATIONS OF HIGH-VELOCITY CLOUDS. I. HYDRODYNAMICS AND HIGH-VELOCITY HIGH IONS

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Henley, David B.; Shelton, Robin L.

    2011-01-01

    We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sightlines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass ∼ 120 M sun ) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass ∼ 4 x 10 5 M sun ) remained largely intact, although deformed, during its simulation period (240 Myr).

  16. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  17. Detailed simulation of morphodynamics : 1. Hydrodynamic model

    NARCIS (Netherlands)

    Nabi, M.; De Vriend, H.J.; Mosselman, E.; Sloff, C.J.; Shimizu, Y.

    2012-01-01

    We present a three-dimensional high-resolution hydrodynamic model for unsteady incompressible flow over an evolving bed topography. This is achieved by using a multilevel Cartesian grid technique that allows the grid to be refined in high-gradient regions and in the vicinity of the river bed. The

  18. SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Beresnyak, Andrey

    2014-01-01

    Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096 3 , which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics

  19. Floodplain simulation for Musi River using integrated 1D/2D hydrodynamic model

    Directory of Open Access Journals (Sweden)

    Al Amin Muhammad B.

    2017-01-01

    Full Text Available This paper presents the simulation of floodplain at Musi River using integrated 1D and 2D hydrodynamic model. The 1D flow simulation was applied for the river channel with flow hydrograph as upstream boundary condition. The result of 1D flow simulation was integrated into 2D flow simulation in order to know the area and characteristics of flood inundation. The input data of digital terrain model which was used in this research had grid resolution of 10m×10m, but for 2D simulation the resolution was with grid resolution 50 m × 50 m so as to limit simulation time since the model size was big enough. The result of the simulation showed that the inundated area surrounding Musi River is about 107.44 km2 with maximum flood depth is 3.24 m, water surface velocity ranges from 0.00 to 0.83 m/s. Most of floodplain areas varied from middle to high flood hazard level, and only few areas had very high level of flood hazard especially on river side. The structural flood control measurement to be recommended to Palembang is to construct flood dike and flood gate. The non structural measurement one is to improve watershed management and socialization of flood awareness.

  20. 3D hydrodynamic simulations of carbon burning in massive stars

    Science.gov (United States)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.

    2017-10-01

    We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.

  1. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Conroy, Charlie; Goldbaum, Nathan J.; Krumholz, Mark R.; Abel, Tom; Agertz, Oscar; Gnedin, Nickolay Y.; Kravtsov, Andrey V.; Bryan, Greg L.; Ceverino, Daniel; Christensen, Charlotte; Hummels, Cameron B.; Dekel, Avishai; Guedes, Javiera; Hahn, Oliver; Hobbs, Alexander; Hopkins, Philip F.; Iannuzzi, Francesca; Keres, Dusan; Klypin, Anatoly

    2014-01-01

    We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ∼100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M vir ≅ 10 10 , 10 11 , 10 12 , and 10 13 M ☉ at z = 0 and two different ('violent' and 'quiescent') assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit and validated against observations to verify that the solutions are robust—i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy 'metabolism'. The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-of-concept dark-matter-only test of the formation of a galactic halo with a z = 0 mass of M

  2. Very high-resolution regional climate simulations over Scandinavia-present climate

    DEFF Research Database (Denmark)

    Christensen, Ole B.; Christensen, Jens H.; Machenhauer, Bennert

    1998-01-01

    realistically simulated. It is found in particular that in mountainous regions the high-resolution simulation shows improvements in the simulation of hydrologically relevant fields such as runoff and snow cover. Also, the distribution of precipitation on different intensity classes is most realistically...... on a high-density station network for the Scandinavian countries compiled for the present study. The simulated runoff is compared with observed data from Sweden extracted from a Swedish climatological atlas. These runoff data indicate that the precipitation analyses are underestimating the true...... simulated in the high-resolution simulation. It does, however, inherit certain large-scale systematic errors from the driving GCM. In many cases these errors increase with increasing resolution. Model verification of near-surface temperature and precipitation is made using a new gridded climatology based...

  3. Validation of High-resolution Climate Simulations over Northern Europe.

    Science.gov (United States)

    Muna, R. A.

    2005-12-01

    Two AMIP2-type (Gates 1992) experiments have been performed with climate versions of ARPEGE/IFS model examine for North Atlantic North Europe, and Norwegian region and analyzed the effect of increasing resolution on the simulated biases. The ECMWF reanalysis or ERA-15 has been used to validate the simulations. Each of the simulations is an integration of the period 1979 to 1996. The global simulations used observed monthly mean sea surface temperatures (SST) as lower boundary condition. All aspects but the horizontal resolutions are similar in the two simulations. The first simulation has a uniform horizontal resolution of T63L. The second one has a variable resolution (T106Lc3) with the highest resolution in the Norwegian Sea. Both simulations have 31 vertical layers in the same locations. For each simulation the results were divided into two seasons: winter (DJF) and summer (JJA). The parameters investigated were mean sea level pressure, geopotential and temperature at 850 hPa and 500 hPa. To find out the causes of temperature bias during summer, latent and sensible heat flux, total cloud cover and total precipitation were analyzed. The high-resolution simulation exhibits more or less realistic climate over Nordic, Artic and European region. The overall performance of the simulations shows improvements of generally all fields investigated with increasing resolution over the target area both in winter (DJF) and summer (JJA).

  4. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Agertz, Oscar [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Teyssier, Romain; Feldmann, Robert [Centre for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, 8057 (Switzerland); Butler, Michael J. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, D-69120 Heidelberg (Germany); Choi, Jun-Hwan [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Keller, Ben W. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Lupi, Alessandro [Institut d’Astrophysique de Paris, Sorbonne Universites, UPMC Univ Paris 6 et CNRS, F-75014 Paris (France); Quinn, Thomas; Wallace, Spencer [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Revaz, Yves [Institute of Physics, Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Leitner, Samuel N. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Shen, Sijing [Kavli Institute for Cosmology, University of Cambridge, Cambridge, CB3 0HA (United Kingdom); Smith, Britton D., E-mail: me@jihoonkim.org [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Collaboration: AGORA Collaboration; and others

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.

  5. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  6. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B. [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States); Grim, Gary P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-07-15

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  7. Hydrodynamic Simulations of Kepler's Supernova Remnant

    Science.gov (United States)

    Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen

    2018-01-01

    Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.

  8. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  9. A 30m resolution hydrodynamic model of the entire conterminous United States.

    Science.gov (United States)

    Bates, P. D.; Neal, J. C.; Smith, A.; Sampson, C.; Johnson, K.; Wing, O.

    2016-12-01

    In this paper we describe the development and validation of a 30m resolution hydrodynamic model covering the entire conterminous United States. The model can be used to simulate inundation and water depths resulting from either return period flows (so equivalent to FEMA Flood Insurance Rate Maps), hindcasts of historic events or forecasts of future river flow from a rainfall-runoff or land surface model. As topographic data the model uses the U.S. Geological Survey National Elevation Dataset or NED, and return period flows are generated using a regional flood frequency analysis methodology (Smith et al., 2015. Worldwide flood frequency estimation. Water Resources Research, 51, 539-553). Flood defences nationwide are represented using data from the US Army Corps of Engineers. Using these data flows are simulated using an explicit and highly efficient finite difference solution of the local inertial form of the Shallow Water equations identical to that implemented in the LISFLOOD-FP model. Even with this efficient numerical solution a simulation at this resolution over a whole continent is a huge undertaking, and a variety of High Performance Computing technologies therefore need to be employed to make these simulations possible. The size of the output datasets is also challenging, and to solve this we use the GIS and graphical display functions of Google Earth Engine to facilitate easy visualisation and interrogation of the results. The model is validated against the return period flood extents contained in FEMA Flood Insurance Rate Maps and real flood event data from the Texas 2015 flood event which was hindcast using the model. Finally, we present an application of the model to the Upper Mississippi river basin where simulations both with and without flood defences are used to determine floodplain areas benefitting from protection in order to quantify the benefits of flood defence spending.

  10. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  11. Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, Paul R [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Rockefeller, Gabriel M [Los Alamos National Laboratory; Fryer, Christopher L [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Dai, W [Los Alamos National Laboratory; Kares, R. J. [Los Alamos National Laboratory

    2011-01-05

    The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.

  12. Utilization of Short-Simulations for Tuning High-Resolution Climate Model

    Science.gov (United States)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.

    2016-12-01

    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in

  13. CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION

    International Nuclear Information System (INIS)

    Schneider, Evan E.; Robertson, Brant E.

    2015-01-01

    We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256 3 ) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density

  14. CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Evan E.; Robertson, Brant E. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2015-04-15

    We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256{sup 3}) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.

  15. Numerical simulations of radiation hydrodynamics and modeling of high temperature hohlraum cavities

    International Nuclear Information System (INIS)

    Gupta, N.K.; Godwal, B.K.

    2003-10-01

    A summary of our efforts towards the validation of radiation hydrodynamics and opacity models are presented. Effects of various parameters on the radiation temperature inside an inertial confinement fusion (ICF) hohlraum, the effects of non-local thermodynamic equilibrium conditions on emission and absorption, and the hydrodynamics of aluminium and gold foils driven by radiation are studied. LTE and non-LTE predictions for emitted radiation are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. It is shown that the mixing of two high Z materials can lead to an enhancement in the Rosseland mean. An experimental study of soft x-ray emission from laser-irradiated Au-Cu mix-Z targets confirmed these predictions. It is seen that only multi group non-LTE radiation transport is able to explain experimentally observed features in the conversion efficiency of laser light to x-rays. One group radiation transport under predicts the radiation temperature. It is shown that erroneous results can be obtained if the space mesh in the hohlraum wall is not fine enough. Hydrodynamics of a wedge shaped aluminium foil driven by the hohlraum radiation is also presented and results are compared with NOVA laser experiments. Laser driven shock wave EOS and gold hohlraum experiments carried out at CAT are analyzed and they confirmed our theoretical estimates. (author)

  16. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  17. High-order hydrodynamic algorithms for exascale computing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  18. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    Science.gov (United States)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  19. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  20. A web portal for hydrodynamical, cosmological simulations

    Science.gov (United States)

    Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.

    2017-07-01

    This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.

  1. Propagation Diagnostic Simulations Using High-Resolution Equatorial Plasma Bubble Simulations

    Science.gov (United States)

    Rino, C. L.; Carrano, C. S.; Yokoyama, T.

    2017-12-01

    In a recent paper, under review, equatorial-plasma-bubble (EPB) simulations were used to conduct a comparative analysis of the EPB spectra characteristics with high-resolution in-situ measurements from the C/NOFS satellite. EPB realizations sampled in planes perpendicular to magnetic field lines provided well-defined EPB structure at altitudes penetrating both high and low-density regions. The average C/NOFS structure in highly disturbed regions showed nearly identical two-component inverse-power-law spectral characteristics as the measured EPB structure. This paper describes the results of PWE simulations using the same two-dimensional cross-field EPB realizations. New Irregularity Parameter Estimation (IPE) diagnostics, which are based on two-dimensional equivalent-phase-screen theory [A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results, by Charles Carrano and Charles Rino, DOI: 10.1002/2015RS005903], have been successfully applied to extract two-component inverse-power-law parameters from measured intensity spectra. The EPB simulations [Low and Midlatitude Ionospheric Plasma DensityIrregularities and Their Effects on Geomagnetic Field, by Tatsuhiro Yokoyama and Claudia Stolle, DOI 10.1007/s11214-016-0295-7] have sufficient resolution to populate the structure scales (tens of km to hundreds of meters) that cause strong scintillation at GPS frequencies. The simulations provide an ideal geometry whereby the ramifications of varying structure along the propagation path can be investigated. It is well known path-integrated one-dimensional spectra increase the one-dimensional index by one. The relation requires decorrelation along the propagation path. Correlated structure would be interpreted as stochastic total-electron-content (TEC). The simulations are performed with unmodified structure. Because the EPB structure is confined to the central region of the sample planes, edge effects are minimized. Consequently

  2. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  3. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  4. A High Resolution Hydrodynamic Model of Puget Sound to Support Nearshore Restoration Feasibility Analysis and Design

    International Nuclear Information System (INIS)

    Khangaonkar, Tarang; Yang, Zhaoqing

    2011-01-01

    Estuarine and coastal hydrodynamic processes are sometimes neglected in the design and planning of nearshore restoration actions. Despite best intentions, efforts to restore nearshore habitats can result in poor outcomes if circulation and transport which also affect freshwater-saltwater interactions are not properly addressed. Limitations due to current land use can lead to selection of sub-optimal restoration alternatives that may result in undesirable consequences, such as flooding, deterioration of water quality, and erosion, requiring immediate remedies and costly repairs. Uncertainty with achieving restoration goals, such as recovery of tidal exchange, supply of sediment and nutrients, and establishment of fish migration pathways, may be minimized by using numerical models designed for application to the nearshore environment. A high resolution circulation and transport model of the Puget Sound, in the state of Washington, was developed to assist with nearshore habitat restoration design and analysis, and to answer the question 'can we achieve beneficial restoration outcomes at small local scale, as well as at a large estuary-wide scale?' The Puget Sound model is based on an unstructured grid framework to define the complex Puget Sound shoreline using a finite volume coastal ocean model (FVCOM). The capability of the model for simulating the important nearshore processes, such as circulation in complex multiple tidal channels, wetting and drying of tide flats, and water quality and sediment transport as part of restoration feasibility, are illustrated through examples of restoration projects in Puget Sound.

  5. The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment

    Directory of Open Access Journals (Sweden)

    Oleg Andrejev

    2011-05-01

    Full Text Available The paper addresses the sensitivity of a novel method for quantifying the environmental risks associated with the current-driven transport of adverse impacts released from offshore sources (e.g. ship traffic with respect to the spatial resolution of the underlying hydrodynamic model. The risk is evaluated as the probability of particles released in different sea areas hitting the coast and in terms of the time after which the hit occurs (particle age on the basis of a statistical analysis of large sets of 10-day long Lagrangian trajectories calculated for 1987-1991 for the Gulf of Finland, the Baltic Sea. The relevant 2D maps are calculated using the OAAS model with spatial resolutions of 2, 1 and 0.5 nautical miles (nm and with identical initial, boundary and forcing conditions from the Rossby Centre 3D hydrodynamic model (RCO, Swedish Meteorological and Hydrological Institute. The spatially averaged values of the probability and particle age display hardly any dependence on the resolution. They both reach almost identical stationary levels (0.67-0.69 and ca 5.3 days respectively after a few years of simulations. Also, the spatial distributions of the relevant fields are qualitatively similar for all resolutions. In contrast, the optimum locations for fairways depend substantially on the resolution, whereas the results for the 2 nm model differ considerably from those obtained using finer-resolution models. It is concluded that eddy-permitting models with a grid step exceeding half the local baroclinic Rossby radius are suitable for a quick check of whether or not any potential gain from this method is feasible, whereas higher-resolution simulations with eddy-resolving models are necessary for detailed planning. The asymptotic values of the average probability and particle age are suggested as an indicator of the potential gain from the method in question and also as a new measure of the vulnerability of the nearshore of water bodies to

  6. Hydrodynamic simulations of expanding shells

    Czech Academy of Sciences Publication Activity Database

    Wünsch, Richard; Palouš, Jan; Ehlerová, Soňa

    2004-01-01

    Roč. 289, 3-4 (2004), s. 35-36 ISSN 0004-640X. [From observation to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA AV ČR KSK1048102 Keywords : hydrodynamic simulations * ISM * star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  7. Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer

    International Nuclear Information System (INIS)

    Diaz, Luis A.; Botte, Gerardine G.

    2015-01-01

    Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.

  8. Final Report. Hydrodynamics by high-energy-density plasma flow and hydrodynamics and radiative hydrodynamics with astrophysical application

    International Nuclear Information System (INIS)

    R Paul Drake

    2004-01-01

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves

  9. Three-dimensional hydrodynamic simulations of OMEGA implosions

    Science.gov (United States)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.

    2017-05-01

    The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.

  10. Hydrologic Simulation in Mediterranean flood prone Watersheds using high-resolution quality data

    Science.gov (United States)

    Eirini Vozinaki, Anthi; Alexakis, Dimitrios; Pappa, Polixeni; Tsanis, Ioannis

    2015-04-01

    Flooding is a significant threat causing lots of inconveniencies in several societies, worldwide. The fact that the climatic change is already happening, increases the flooding risk, which is no longer a substantial menace to several societies and their economies. The improvement of spatial-resolution and accuracy of the topography and land use data due to remote sensing techniques could provide integrated flood inundation simulations. In this work hydrological analysis of several historic flood events in Mediterranean flood prone watersheds (island of Crete/Greece) takes place. Satellite images of high resolution are elaborated. A very high resolution (VHR) digital elevation model (DEM) is produced from a GeoEye-1 0.5-m-resolution satellite stereo pair and is used for floodplain management and mapping applications such as watershed delineation and river cross-section extraction. Sophisticated classification algorithms are implemented for improving Land Use/ Land Cover maps accuracy. In addition, soil maps are updated with means of Radar satellite images. The above high-resolution data are innovatively used to simulate and validate several historical flood events in Mediterranean watersheds, which have experienced severe flooding in the past. The hydrologic/hydraulic models used for flood inundation simulation in this work are HEC-HMS and HEC-RAS. The Natural Resource Conservation Service (NRCS) curve number (CN) approach is implemented to account for the effect of LULC and soil on the hydrologic response of the catchment. The use of high resolution data provides detailed validation results and results of high precision, accordingly. Furthermore, the meteorological forecasting data, which are also combined to the simulation model results, manage the development of an integrated flood forecasting and early warning system tool, which is capable of confronting or even preventing this imminent risk. The research reported in this paper was fully supported by the

  11. Tracing the Origin of Black Hole Accretion Through Numerical Hydrodynamic Simulations

    Science.gov (United States)

    Spicer, Sandy; Somerville, Rachel; Choi, Ena; Brennan, Ryan

    2018-01-01

    It is now widely accepted that supermassive black holes co-evolve with galaxies, and may play an important role in galaxy evolution. However, the origin of the gas that fuels black hole accretion, and the resulting observable radiation, is not well understood or quantified. We use high-resolution "zoom-in" cosmological numerical hydrodynamic simulations including modeling of black hole accretion and feedback to trace the inflow and outflow of gas within galaxies from the early formation period up to present day. We track gas particles that black holes interact with over time to trace the origin of the gas that feeds supermassive black holes. These gas particles can come from satellite galaxies, cosmological accretion, or be a result of stellar evolution. We aim to track the origin of the gas particles that accrete onto the central black hole as a function of halo mass and cosmic time. Answering these questions will help us understand the connection between galaxy and black hole evolution.

  12. A modified compressible smoothed particle hydrodynamics method and its application on the numerical simulation of low and high velocity impacts

    International Nuclear Information System (INIS)

    Amanifard, N.; Haghighat Namini, V.

    2012-01-01

    In this study a Modified Compressible Smoothed Particle Hydrodynamics method is introduced which is applicable in problems involving shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on the velocity field and displacement of particles. The most exclusive feature of the method is exactly removing artificial viscosity of the formulations and representing good compatibility with other reasonable numerical methods without any rigorous numerical fractures or tensile instabilities while Modified Compressible Smoothed Particle Hydrodynamics does not use any extra modifications. Two types of problems involving elastic-plastic deformations and shock waves are presented here to demonstrate the capability of Modified Compressible Smoothed Particle Hydrodynamics in simulation of such problems and its ability to capture shock. The problems that are proposed here are low and high velocity impacts between aluminum projectiles and semi infinite aluminum beams. Elastic-perfectly plastic model is chosen for constitutive model of the aluminum and the results of simulations are compared with other reasonable studies in these cases.

  13. High-resolution modeling assessment of tidal stream resource in Western Passage of Maine, USA

    Science.gov (United States)

    Yang, Zhaoqing; Wang, Taiping; Feng, Xi; Xue, Huijie; Kilcher, Levi

    2017-04-01

    Although significant efforts have been taken to assess the maximum potential of tidal stream energy at system-wide scale, accurate assessment of tidal stream energy resource at project design scale requires detailed hydrodynamic simulations using high-resolution three-dimensional (3-D) numerical models. Extended model validation against high quality measured data is essential to minimize the uncertainties of the resource assessment. Western Passage in the State of Maine in U.S. has been identified as one of the top ranking sites for tidal stream energy development in U.S. coastal waters, based on a number of criteria including tidal power density, market value and transmission distance. This study presents an on-going modeling effort for simulating the tidal hydrodynamics in Western Passage using the 3-D unstructured-grid Finite Volume Community Ocean Model (FVCOM). The model domain covers a large region including the entire the Bay of Fundy with grid resolution varies from 20 m in the Western Passage to approximately 1000 m along the open boundary near the mouth of Bay of Fundy. Preliminary model validation was conducted using existing NOAA measurements within the model domain. Spatial distributions of tidal power density were calculated and extractable tidal energy was estimated using a tidal turbine module embedded in FVCOM under different tidal farm scenarios. Additional field measurements to characterize resource and support model validation were discussed. This study provides an example of high resolution resource assessment based on the guidance recommended by the International Electrotechnical Commission Technical Specification.

  14. Development of high-resolution multi-scale modelling system for simulation of coastal-fluvial urban flooding

    Science.gov (United States)

    Comer, Joanne; Indiana Olbert, Agnieszka; Nash, Stephen; Hartnett, Michael

    2017-02-01

    Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2 m. Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.

  15. X-ray clusters in a cold dark matter + lambda universe: A direct, large-scale, high-resolution, hydrodynamic simulation

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1994-01-01

    A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.

  16. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  17. Montecarlo simulation for a new high resolution elemental analysis methodology

    International Nuclear Information System (INIS)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto

    1996-01-01

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2π solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  18. Achieving accurate simulations of urban impacts on ozone at high resolution

    International Nuclear Information System (INIS)

    Li, J; Georgescu, M; Mahalov, A; Moustaoui, M; Hyde, P

    2014-01-01

    The effects of urbanization on ozone levels have been widely investigated over cities primarily located in temperate and/or humid regions. In this study, nested WRF-Chem simulations with a finest grid resolution of 1 km are conducted to investigate ozone concentrations [O 3 ] due to urbanization within cities in arid/semi-arid environments. First, a method based on a shape preserving Monotonic Cubic Interpolation (MCI) is developed and used to downscale anthropogenic emissions from the 4 km resolution 2005 National Emissions Inventory (NEI05) to the finest model resolution of 1 km. Using the rapidly expanding Phoenix metropolitan region as the area of focus, we demonstrate the proposed MCI method achieves ozone simulation results with appreciably improved correspondence to observations relative to the default interpolation method of the WRF-Chem system. Next, two additional sets of experiments are conducted, with the recommended MCI approach, to examine impacts of urbanization on ozone production: (1) the urban land cover is included (i.e., urbanization experiments) and, (2) the urban land cover is replaced with the region’s native shrubland. Impacts due to the presence of the built environment on [O 3 ] are highly heterogeneous across the metropolitan area. Increased near surface [O 3 ] due to urbanization of 10–20 ppb is predominantly a nighttime phenomenon while simulated impacts during daytime are negligible. Urbanization narrows the daily [O 3 ] range (by virtue of increasing nighttime minima), an impact largely due to the region’s urban heat island. Our results demonstrate the importance of the MCI method for accurate representation of the diurnal profile of ozone, and highlight its utility for high-resolution air quality simulations for urban areas. (letter)

  19. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  20. MODELING AND SIMULATION OF HIGH RESOLUTION OPTICAL REMOTE SENSING SATELLITE GEOMETRIC CHAIN

    Directory of Open Access Journals (Sweden)

    Z. Xia

    2018-04-01

    Full Text Available The high resolution satellite with the longer focal length and the larger aperture has been widely used in georeferencing of the observed scene in recent years. The consistent end to end model of high resolution remote sensing satellite geometric chain is presented, which consists of the scene, the three line array camera, the platform including attitude and position information, the time system and the processing algorithm. The integrated design of the camera and the star tracker is considered and the simulation method of the geolocation accuracy is put forward by introduce the new index of the angle between the camera and the star tracker. The model is validated by the geolocation accuracy simulation according to the test method of the ZY-3 satellite imagery rigorously. The simulation results show that the geolocation accuracy is within 25m, which is highly consistent with the test results. The geolocation accuracy can be improved about 7 m by the integrated design. The model combined with the simulation method is applicable to the geolocation accuracy estimate before the satellite launching.

  1. Quantifying uncertainty due to internal variability using high-resolution regional climate model simulations

    Science.gov (United States)

    Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.

    2015-12-01

    The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.

  2. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    Science.gov (United States)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has

  3. Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation

    International Nuclear Information System (INIS)

    Clyne, John; Mininni, Pablo; Norton, Alan; Rast, Mark

    2007-01-01

    The ever increasing processing capabilities of the supercomputers available to computational scientists today, combined with the need for higher and higher resolution computational grids, has resulted in deluges of simulation data. Yet the computational resources and tools required to make sense of these vast numerical outputs through subsequent analysis are often far from adequate, making such analysis of the data a painstaking, if not a hopeless, task. In this paper, we describe a new tool for the scientific investigation of massive computational datasets. This tool (VAPOR) employs data reduction, advanced visualization, and quantitative analysis operations to permit the interactive exploration of vast datasets using only a desktop PC equipped with a commodity graphics card. We describe VAPORs use in the study of two problems. The first, motivated by stellar envelope convection, investigates the hydrodynamic stability of compressible thermal starting plumes as they descend through a stratified layer of increasing density with depth. The second looks at current sheet formation in an incompressible helical magnetohydrodynamic flow to understand the early spontaneous development of quasi two-dimensional (2D) structures embedded within the 3D solution. Both of the problems were studied at sufficiently high spatial resolution, a grid of 504 2 by 2048 points for the first and 1536 3 points for the second, to overwhelm the interactive capabilities of typically available analysis resources

  4. Hydrodynamic simulation of elliptic flow

    CERN Document Server

    Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W

    1999-01-01

    We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.

  5. A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bueley, Christopher; Wild, Peter M

    2013-01-01

    This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated. (paper)

  6. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    Science.gov (United States)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  7. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  8. Cosmological Simulations with Scale-Free Initial Conditions. I. Adiabatic Hydrodynamics

    International Nuclear Information System (INIS)

    Owen, J.M.; Weinberg, D.H.; Evrard, A.E.; Hernquist, L.; Katz, N.

    1998-01-01

    We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein endash de Sitter universe, including a baryonic component with Ω bary = 0.05. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed at two resolutions (32 3 and 64 3 dark matter and baryonic particles) and with two different SPH codes (TreeSPH and P3MSPH). Each simulation is based on identical initial conditions, which consist of Gaussian-distributed initial density fluctuations that have a power spectrum P(k) ∝ k -1 . The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling; radiative cooling and photoionization heating are not included. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass- and emission-weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of numerical resolution. As a result, mean gas densities and Bremsstrahlung luminosities obey the expected scalings only when calculated within a limited dynamic range in density contrast. The temperatures and luminosities of the groups show tight correlations with the baryon masses, which we find can be well represented by power laws. The Press-Schechter (PS) approximation predicts the distribution of group dark matter and baryon masses fairly well, though it tends to overestimate the baryon masses. Combining the PS mass distribution with the measured relations for T(M) and L(M) predicts the temperature and luminosity distributions fairly accurately, though there are some discrepancies at high temperatures/luminosities. In general the three simulations agree well for the properties of resolved groups, where a group

  9. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  10. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  11. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    Science.gov (United States)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  12. X-ray clusters from a high-resolution hydrodynamic PPM simulation of the cold dark matter universe

    Science.gov (United States)

    Bryan, Greg L.; Cen, Renyue; Norman, Michael L.; Ostriker, Jermemiah P.; Stone, James M.

    1994-01-01

    A new three-dimensional hydrodynamic code based on the piecewise parabolic method (PPM) is utilized to compute the distribution of hot gas in the standard Cosmic Background Explorer (COBE)-normalized cold dark matter (CDM) universe. Utilizing periodic boundary conditions, a box with size 85 h(exp-1) Mpc, having cell size 0.31 h(exp-1) Mpc, is followed in a simulation with 270(exp 3)=10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, Sigma(sub 8)=1.05, Omega(sub b)=0.06, we find the X-ray-emitting clusters, compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. The results, which are compared with those obtained in the preceding paper (Kang et al. 1994a), may be used in conjuction with ROSAT and other observational data sets. Overall, the results of the two computations are qualitatively very similar with regard to the trends of cluster properties, i.e., how the number density, radius, and temeprature depend on luminosity and redshift. The total luminosity from clusters is approximately a factor of 2 higher using the PPM code (as compared to the 'total variation diminishing' (TVD) code used in the previous paper) with the number of bright clusters higher by a similar factor. The primary conclusions of the prior paper, with regard to the power spectrum of the primeval density perturbations, are strengthened: the standard CDM model, normalized to the COBE microwave detection, predicts too many bright X-ray emitting clusters, by a factor probably in excess of 5. The comparison between observations and theoretical predictions for the evolution of cluster properties, luminosity functions, and size and temperature distributions should provide an important discriminator among competing scenarios for the development of structure in the universe.

  13. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  14. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  15. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  16. 3-D CFD simulations of hydrodynamics in the Sulejow dam reservoir

    Directory of Open Access Journals (Sweden)

    Ziemińska-Stolarska Aleksandra

    2015-12-01

    Full Text Available This paper reports the processes by which a single-phase 3-D CFD model of hydrodynamics in a 17-km-long dam reservoir was developed, verified and tested. A simplified VOF model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA. Excellent agreement (average error of less than 10% between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics in the lake, especially on the development of the water circulation pattern in the lacustrine zone.

  17. Mesoscale simulations of hydrodynamic squirmer interactions.

    Science.gov (United States)

    Götze, Ingo O; Gompper, Gerhard

    2010-10-01

    The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.

  18. Verification of high resolution simulation of precipitation and wind in Portugal

    Science.gov (United States)

    Menezes, Isilda; Pereira, Mário; Moreira, Demerval; Carvalheiro, Luís; Bugalho, Lourdes; Corte-Real, João

    2017-04-01

    Demand of energy and freshwater continues to grow as the global population and demands increase. Precipitation feed the freshwater ecosystems which provides a wealth of goods and services for society and river flow to sustain native species and natural ecosystem functions. The adoption of the wind and hydro-electric power supplies will sustain energy demands/services without restricting the economic growth and accelerated policies scenarios. However, the international meteorological observation network is not sufficiently dense to directly support high resolution climatic research. In this sense, coupled global and regional atmospheric models constitute the most appropriate physical and numerical tool for weather forecasting and downscaling in high resolution grids with the capacity to solve problems resulting from the lack of observed data and measuring errors. Thus, this study aims to calibrate and validate of the WRF regional model from precipitation and wind fields simulation, in high spatial resolution grid cover in Portugal. The simulations were performed in two-way nesting with three grids of increasing resolution (60 km, 20 km and 5 km) and the model performance assessed for the summer and winter months (January and July), using input variables from two different reanalyses and forecasted databases (ERA-Interim and NCEP-FNL) and different forcing schemes. The verification procedure included: (i) the use of several statistics error estimators, correlation based measures and relative errors descriptors; and, (ii) an observed dataset composed by time series of hourly precipitation, wind speed and direction provided by the Portuguese meteorological institute for a comprehensive set of weather stations. Main results suggested the good ability of the WRF to: (i) reproduce the spatial patterns of the mean and total observed fields; (ii) with relatively small values of bias and other errors; and, (iii) and good temporal correlation. These findings are in good

  19. Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer

    Science.gov (United States)

    Satoh, Masaki; Tomita, Hirofumi; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Miyamoto, Yoshiaki; Yamaura, Tsuyoshi; Miyakawa, Tomoki; Nakano, Masuo; Kodama, Chihiro; Noda, Akira T.; Nasuno, Tomoe; Yamada, Yohei; Fukutomi, Yoshiki

    2017-12-01

    This article reviews the major outcomes of a 5-year (2011-2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan's Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10-30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.

  20. Operational High Resolution Chemical Kinetics Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerical simulations of chemical kinetics are critical to addressing urgent issues in both the developed and developing world. Ongoing demand for higher resolution...

  1. Hydrodynamic simulations of microjetting from shock-loaded grooves

    Science.gov (United States)

    Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Soulard, L.; Loison, D.

    2017-01-01

    The interaction of a shock wave with a free surface which has geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s. This process can be involved in many applications, like pyrotechnics or industrial safety. Recent laser shock experiments reported elsewhere in this conference have provided some insight into jet formation as well as jet tip velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particle hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is illustrated. Finally, the possibility to simulate the late stage of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.

  2. Can High-resolution WRF Simulations Be Used for Short-term Forecasting of Lightning?

    Science.gov (United States)

    Goodman, S. J.; Lapenta, W.; McCaul, E. W., Jr.; LaCasse, K.; Petersen, W.

    2006-01-01

    A number of research teams have begun to make quasi-operational forecast simulations at high resolution with models such as the Weather Research and Forecast (WRF) model. These model runs have used horizontal meshes of 2-4 km grid spacing, and thus resolved convective storms explicitly. In the light of recent global satellite-based observational studies that reveal robust relationships between total lightning flash rates and integrated amounts of precipitation-size ice hydrometeors in storms, it is natural to inquire about the capabilities of these convection-resolving models in representing the ice hydrometeor fields faithfully. If they do, this might make operational short-term forecasts of lightning activity feasible. We examine high-resolution WRF simulations from several Southeastern cases for which either NLDN or LMA lightning data were available. All the WRF runs use a standard microphysics package that depicts only three ice species, cloud ice, snow and graupel. The realism of the WRF simulations is examined by comparisons with both lightning and radar observations and with additional even higher-resolution cloud-resolving model runs. Preliminary findings are encouraging in that they suggest that WRF often makes convective storms of the proper size in approximately the right location, but they also indicate that higher resolution and better hydrometeor microphysics would be helpful in improving the realism of the updraft strengths, reflectivity and ice hydrometeor fields.

  3. High-resolution simulations of galaxy formation in a cold dark matter scenario

    International Nuclear Information System (INIS)

    Kates, R.E.; Klypin, A.A.

    1990-01-01

    We present the results of our numerical simulations of galaxy clustering in a two-dimensional model. Our simulations allowed better resolution than could be obtained in three-dimensional simulations. We used a spectrum of initial perturbations corresponding to a cold dark matter (CDM) model and followed the history of each particle by modelling the shocking and subsequent cooling of matter. We took into account cooling processes in a hot plasma with primeval cosmic abundances of H and He as well as Compton cooling. (However, the influence of these processes on the trajectories of ordinary matter particles was not simulated in the present code.) As a result of the high resolution, we were able to observe a network of chains on all scales down to the limits of resolution. This network extends out from dense clusters and superclusters and penetrates into voids (with decreasing density). In addition to the dark matter network structure, a definite prediction of our simulations is the existence of a connected filamentary structure consisting of hot gas with a temperature of 10 6 K and extending over 100-150 Mpc. (Throughout this paper, we assume the Hubble constant H 0 =50 km/sec/Mpc.) These structures trace high-density filaments of the dark matter distribution and should be searched for in soft X-ray observations. In contrast to common assumptions, we found that peaks of the linearized density distribution were not reliable tracers of the eventual galaxy distribution. We were also able to demonstrate that the influence of small-scale fluctuations on the structure at larger scales is always small, even at the late nonlinear stage. (orig.)

  4. Estimating Hydraulic Resistance for Floodplain Mapping and Hydraulic Studies from High-Resolution Topography: Physical and Numerical Simulations

    Science.gov (United States)

    Minear, J. T.

    2017-12-01

    One of the primary unknown variables in hydraulic analyses is hydraulic resistance, values for which are typically set using broad assumptions or calibration, with very few methods available for independent and robust determination. A better understanding of hydraulic resistance would be highly useful for understanding floodplain processes, forecasting floods, advancing sediment transport and hydraulic coupling, and improving higher dimensional flood modeling (2D+), as well as correctly calculating flood discharges for floods that are not directly measured. The relationship of observed features to hydraulic resistance is difficult to objectively quantify in the field, partially because resistance occurs at a variety of scales (i.e. grain, unit and reach) and because individual resistance elements, such as trees, grass and sediment grains, are inherently difficult to measure. Similar to photogrammetric techniques, Terrestrial Laser Scanning (TLS, also known as Ground-based LiDAR) has shown great ability to rapidly collect high-resolution topographic datasets for geomorphic and hydrodynamic studies and could be used to objectively quantify the features that collectively create hydraulic resistance in the field. Because of its speed in data collection and remote sensing ability, TLS can be used both for pre-flood and post-flood studies that require relatively quick response in relatively dangerous settings. Using datasets collected from experimental flume runs and numerical simulations, as well as field studies of several rivers in California and post-flood rivers in Colorado, this study evaluates the use of high-resolution topography to estimate hydraulic resistance, particularly from grain-scale elements. Contrary to conventional practice, experimental laboratory runs with bed grain size held constant but with varying grain-scale protusion create a nearly twenty-fold variation in measured hydraulic resistance. The ideal application of this high-resolution topography

  5. The 2010 Pakistan floods: high-resolution simulations with the WRF model

    Science.gov (United States)

    Viterbo, Francesca; Parodi, Antonio; Molini, Luca; Provenzale, Antonello; von Hardenberg, Jost; Palazzi, Elisa

    2013-04-01

    Estimating current and future water resources in high mountain regions with complex orography is a difficult but crucial task. In particular, the French-Italian project PAPRIKA is focused on two specific regions in the Hindu-Kush -- Himalaya -- Karakorum (HKKH)region: the Shigar basin in Pakistan, at the feet of K2, and the Khumbu valley in Nepal, at the feet of Mount Everest. In this framework, we use the WRF model to simulate precipitation and meteorological conditions with high resolution in areas with extreme orographic slopes, comparing the model output with station and satellite data. Once validated the model, we shall run a set of three future time-slices at very high spatial resolution, in the periods 2046-2050, 2071-2075 and 2096-2100, nested in different climate change scenarios (EXtreme PREcipitation and Hydrological climate Scenario Simulations -EXPRESS-Hydro project). As a prelude to this study, here we discuss the simulation of specific, high-intensity rainfall events in this area. In this paper we focus on the 2010 Pakistan floods which began in late July 2010, producing heavy monsoon rains in the Khyber Pakhtunkhwa, Sindh, Punjab and Balochistan regions of Pakistan and affecting the Indus River basin. Approximately one-fifth of Pakistan's total land area was underwater, with a death toll of about 2000 people. This event has been simulated with the WRF model (version 3.3.) in cloud-permitting mode (d01 14 km and d02 3.5 km): different convective closures and microphysics parameterization have been used. A deeper understanding of the processes responsible for this event has been gained through comparison with rainfall depth observations, radiosounding data and geostationary/polar satellite images.

  6. A high-resolution hydrodynamic-biogeochemical coupled model of the Gulf of Cadiz – Alboran Sea region.

    Directory of Open Access Journals (Sweden)

    D. M. MACIAS

    2014-12-01

    Full Text Available The southern Iberia regional seas comprise the Gulf of Cadiz and the Alboran Sea sub-basins connected by the narrow Strait of Gibraltar. Both basins are very different in their hydrological and biological characteristics but are, also, tightly connected to each other. Integrative studies of the whole regional oceanic system are scarce and difficult to perform due to the relative large area to cover and the different relevant time-scales of the main forcings in each sub-basin. Here we propose, for the first time, a fully coupled, 3D, hydrodynamic-biogeochemical model that covers, in a single domain (~2km resolution both marine basins for a 20 years simulation (1989-2008. Model performance is assessed against available data in terms of spatial and temporal distributions of biological variables. In general, the proposed model is able to represent the climatological distributions of primary and secondary producers and also the main seasonality of primary production in the different sub-regions of the analyzed basins. Potential causes of the observed mismatches between model and data are identified and some solutions are proposed for future model development. We conclude that most of these mismatches could be attributed to the missing tidal forcing in the actual model configuration. This model is a first step to obtain a meaningful tool to study past and future oceanographic conditions in this important marine region constituting the unique connection of the Mediterranean Sea with the open world’s ocean.

  7. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    Science.gov (United States)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  8. Very high resolution regional climate model simulations over Greenland: Identifying added value

    DEFF Research Database (Denmark)

    Lucas-Picher, P.; Wulff-Nielsen, M.; Christensen, J.H.

    2012-01-01

    models. However, the bias between the simulations and the few available observations does not reduce with higher resolution. This is partly explained by the lack of observations in regions where the higher resolution is expected to improve the simulated climate. The RCM simulations show......This study presents two simulations of the climate over Greenland with the regional climate model (RCM) HIRHAM5 at 0.05° and 0.25° resolution driven at the lateral boundaries by the ERA-Interim reanalysis for the period 1989–2009. These simulations are validated against observations from...... that the temperature has increased the most in the northern part of Greenland and at lower elevations over the period 1989–2009. Higher resolution increases the relief variability in the model topography and causes the simulated precipitation to be larger on the coast and smaller over the main ice sheet compared...

  9. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  10. Linking benthic hydrodynamics and cold-water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic

    Science.gov (United States)

    Mohn, Christian; Rengstorf, Anna; White, Martin; Duineveld, Gerard; Mienis, Furu; Soetaert, Karline; Grehan, Anthony

    2014-03-01

    Observations from numerous cold-water coral locations in the NE Atlantic show energetic near-bottom flow dynamics along the European continental margin at individual coral mounds and mound clusters. Dynamics are largely controlled by tide-topography interaction generating and enhancing periodic motions such as trapped waves, freely propagating internal tides and internal hydraulic jumps. In this study, linkages between key abiotic parameters and cold water coral occurrences are explored across entire cold-water coral mound provinces using an integrated modelling and observational approach. The 3-D ocean circulation model ROMS-AGRIF was applied to simulate near-bottom hydrodynamic conditions at three provinces in the NE Atlantic (Logachev mounds, Arc mounds and Belgica mounds) adopting a nested model setup with a central grid resolution of 250 m. Simulations were carried out with a focus on accurate high-resolution topography and tidal forcing. The central model bathymetry was taken from high-resolution INSS (Irish National Seabed Survey) seafloor mapping data. The model was integrated over a full one-year reference period starting from the 1st January 2010. Interannual variability was not considered. Tidal forcing was obtained from a global solution of the Oregon State University (OSU) inverse tidal model. Modelled fields of benthic currents were validated against available independent in situ observations. Coral assemblage patterns (presence and absence locations) were obtained from benthic surveys of the EU FP7 CoralFISH programme and supplemented by data from additional field surveys. Modelled near-bottom currents, temperature and salinity were analysed for a 1-month subset (15th April to 15th May 2010) corresponding to the main CoralFISH survey period. The model results show intensified near-bottom currents in areas where living corals are observed by contrast with coral absence and random background locations. Instantaneous and time-mean current speeds at

  11. Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets

    International Nuclear Information System (INIS)

    Obenschain, S.P.; Colombant, D.G.; Karasik, M.; Pawley, C.J.; Serlin, V.; Schmitt, A.J.; Weaver, J.L.; Gardner, J.H.; Phillips, L.; Aglitskiy, Y.; Chan, Y.; Dahlburg, J.P.; Klapisch, M.

    2002-01-01

    Experimental results and simulations that study the effects of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of laser accelerated plastic targets are presented. These experiments employ a laser pulse with a low-intensity foot that rises into a high-intensity main pulse. This pulse shape simulates the generic shape needed for high-gain fusion implosions. Imprint of laser nonuniformity during start up of the low intensity foot is a well-known seed for hydrodynamic instability. Large reductions are observed in hydrodynamic instability seeded by laser imprint when certain minimum thickness gold or palladium layers are applied to the laser-illuminated surface of the targets. The experiment indicates that the reduction in imprint is at least as large as that obtained by a 6 times improvement in the laser uniformity. Simulations supported by experiments are presented showing that during the low intensity foot the laser light can be nearly completely absorbed by the high-Z layer. X rays originating from the high-Z layer heat the underlying lower-Z plastic target material and cause large buffering plasma to form between the layer and the accelerated target. This long-scale plasma apparently isolates the target from laser nonuniformity and accounts for the observed large reduction in laser imprint. With onset of the higher intensity main pulse, the high-Z layer expands and the laser light is transmitted. This technique will be useful in reducing laser imprint in pellet implosions and thereby allow the design of more robust targets for high-gain laser fusion

  12. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  13. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  14. Effects of Thin High-z Layers on the Hydrodynamics of Laser-Accelerated Plastic Targets

    National Research Council Canada - National Science Library

    Obenschain, S. P; Colombant, D; Karasik, M; Pawley, C. J; Serlin, V; Schmitt, A. J; Gardner, J. H; Phillips, L; Aglitskly, Y; Chan, Y

    2002-01-01

    .... This pulse shape simulates the generic shape needed for high-gain fusion implosions. Imprint of laser nonuniformity during start up of the low intensity foot is a well-known seed for hydrodynamic instability...

  15. Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability

    Science.gov (United States)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim

    2016-04-01

    The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).

  16. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  17. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  18. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    Science.gov (United States)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  19. Eulerian and Lagrangian statistics from high resolution numerical simulations of weakly compressible turbulence

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Fisher, R.T.; Lamb, D.Q.; Toschi, F.

    2009-01-01

    We report a detailed study of Eulerian and Lagrangian statistics from high resolution Direct Numerical Simulations of isotropic weakly compressible turbulence. Reynolds number at the Taylor microscale is estimated to be around 600. Eulerian and Lagrangian statistics is evaluated over a huge data

  20. Evaluation of high-resolution climate simulations for West Africa using COSMO-CLM

    Science.gov (United States)

    Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Laux, Patrick; Heinzeller, Dominikus; Kunstmann, Harald; Sarr, Abdoulaye; Thierno Gaye, Amadou

    2017-04-01

    The climate change modeling activities within the WASCAL program (West African Science Service Center on Climate Change and Adapted Land Use) concentrate on the provisioning of future climate change scenario data at high spatial and temporal resolution and quality in West Africa. Such information is highly required for impact studies in water resources and agriculture for the development of reliable climate change adaptation and mitigation strategies. In this study, we present a detailed evaluation of high simulation runs based on the regional climate model, COSMO model in CLimate Mode (COSMO-CLM). The model is applied over West Africa in a nested approach with two simulation domains at 0.44° and 0.11° resolution using reanalysis data from ERA-Interim (1979-2013). The models runs are compared to several state-of-the-art observational references (e.g., CRU, CHIRPS) including daily precipitation data provided by national meteorological services in West Africa. Special attention is paid to the reproduction of the dynamics of the West African Monsoon (WMA), its associated precipitation patterns and crucial agro-climatological indices such as the onset of the rainy season. In addition, first outcomes of the regional climate change simulations driven by MPI-ESM-LR are presented for a historical period (1980 to 2010) and two future periods (2020 to 2050, 2070 to 2100). The evaluation of the reanalysis runs shows that COSMO-CLM is able to reproduce the observed major climate characteristics including the West African Monsoon within the range of comparable RCM evaluations studies. However, substantial uncertainties remain, especially in the Sahel zone. The added value of the higher resolution of the nested run is reflected in a smaller bias in extreme precipitation statistics with respect to the reference data.

  1. COINCIDENCES BETWEEN O VI AND O VII LINES: INSIGHTS FROM HIGH-RESOLUTION SIMULATIONS OF THE WARM-HOT INTERGALACTIC MEDIUM

    International Nuclear Information System (INIS)

    Cen Renyue

    2012-01-01

    With high-resolution (0.46 h –1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ∼40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 10 6 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm 2 = (12.5-13, 13-14, > 14) have T 5 K. Cross correlations between galaxies and strong [N(O VI) > 10 14 cm –2 ] O VI absorbers on ∼100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  2. Building a High-Precision 2D Hydrodynamic Flood Model Using UAV Photogrammetry and Sensor Network Monitoring

    Directory of Open Access Journals (Sweden)

    Jakub Langhammer

    2017-11-01

    Full Text Available This paper explores the potential of the joint application of unmanned aerial vehicle (UAV-based photogrammetry and an automated sensor network for building a hydrodynamic flood model of a montane stream. UAV-based imagery was used for three-dimensional (3D photogrammetric reconstruction of the stream channel, achieving a resolution of 1.5 cm/pixel. Automated ultrasonic water level gauges, operating with a 10 min interval, were used as a source of hydrological data for the model calibration, and the MIKE 21 hydrodynamic model was used for building the flood model. Three different horizontal schematizations of the channel—an orthogonal grid, curvilinear grid, and flexible mesh—were used to evaluate the effect of spatial discretization on the results. The research was performed on Javori Brook, a montane stream in the Sumava (Bohemian Forest Mountains, Czech Republic, Central Europe, featuring a fast runoff response to precipitation events and that is located in a core zone of frequent flooding. The studied catchments have been, since 2007, equipped with automated water level gauges and, since 2013, under repeated UAV monitoring. The study revealed the high potential of these data sources for applications in hydrodynamic modeling. In addition to the ultra-high levels of spatial and temporal resolution, the major contribution is in the method’s high operability, enabling the building of highly detailed flood models even in remote areas lacking conventional monitoring. The testing of the data sources and model setup indicated the limitations of the UAV reconstruction of the stream bathymetry, which was completed by the geodetic-grade global navigation satellite system (GNSS measurements. The testing of the different model domain schematizations did not indicate the substantial differences that are typical for conventional low-resolution data, proving the high reliability of the tested modeling workflow.

  3. Geant4 simulation of a 3D high resolution gamma camera

    International Nuclear Information System (INIS)

    Akhdar, H.; Kezzar, K.; Aksouh, F.; Assemi, N.; AlGhamdi, S.; AlGarawi, M.; Gerl, J.

    2015-01-01

    The aim of this work is to develop a 3D gamma camera with high position resolution and sensitivity relying on both distance/absorption and Compton scattering techniques and without using any passive collimation. The proposed gamma camera is simulated in order to predict its performance using the full benefit of Geant4 features that allow the construction of the needed geometry of the detectors, have full control of the incident gamma particles and study the response of the detector in order to test the suggested geometries. Three different geometries are simulated and each configuration is tested with three different scintillation materials (LaBr3, LYSO and CeBr3)

  4. Relativistic hydrodynamics in the presence of puncture black holes

    International Nuclear Information System (INIS)

    Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke; Baumgarte, Thomas W.

    2007-01-01

    Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data

  5. The simulation of medicanes in a high-resolution regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Cavicchia, Leone [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht (Germany); Ca' Foscari University, Venice (Italy); Storch, Hans von [Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht (Germany); University of Hamburg, Meteorological Institute, Hamburg (Germany)

    2012-11-15

    Medicanes, strong mesoscale cyclones with tropical-like features, develop occasionally over the Mediterranean Sea. Due to the scarcity of observations over sea and the coarse resolution of the long-term reanalysis datasets, it is difficult to study systematically the multidecadal statistics of sub-synoptic medicanes. Our goal is to assess the long-term variability and trends of medicanes, obtaining a long-term climatology through dynamical downscaling of the NCEP/NCAR reanalysis data. In this paper, we examine the robustness of this method and investigate the value added for the study of medicanes. To do so, we performed several climate mode simulations with a high resolution regional atmospheric model (CCLM) for a number of test cases described in the literature. We find that the medicanes are formed in the simulations, with deeper pressures and stronger winds than in the driving global NCEP reanalysis. The tracks are adequately reproduced. We conclude that our methodology is suitable for constructing multi-decadal statistics and scenarios of current and possible future medicane activities. (orig.)

  6. MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-07-20

    We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high

  7. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    Science.gov (United States)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  8. North Atlantic Tropical Cyclones: historical simulations and future changes with the new high-resolution Arpege AGCM.

    Science.gov (United States)

    Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.

    2017-12-01

    A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.

  9. High resolution real time capable combustion chamber simulation; Zeitlich hochaufloesende echtzeitfaehige Brennraumsimulation

    Energy Technology Data Exchange (ETDEWEB)

    Piewek, J. [Volkswagen AG, Wolfsburg (Germany)

    2008-07-01

    The article describes a zero-dimensional model for the real time capable combustion chamber pressure calculation with analogue pressure sensor output. The closed-loop-operation of an Engine Control Unit is shown at the hardware-in-the-loop-simulator (HiL simulator) for a 4-cylinder common rail diesel engine. The presentation of the model focuses on the simulation of the load variation which does not depend on the injection system and thus the simulated heat release rate. Particular attention is paid to the simulation and the resulting test possibilities regarding to full-variable valve gears. It is shown that black box models consisting in the HiL mean value model for the aspirated gas mass, the exhaust gas temperature after the outlet valve and the mean indicated pressure can be replaced by calculations from the high-resolution combustion chamber model. (orig.)

  10. Air-Sea Interaction Processes in Low and High-Resolution Coupled Climate Model Simulations for the Southeast Pacific

    Science.gov (United States)

    Porto da Silveira, I.; Zuidema, P.; Kirtman, B. P.

    2017-12-01

    The rugged topography of the Andes Cordillera along with strong coastal upwelling, strong sea surface temperatures (SST) gradients and extensive but geometrically-thin stratocumulus decks turns the Southeast Pacific (SEP) into a challenge for numerical modeling. In this study, hindcast simulations using the Community Climate System Model (CCSM4) at two resolutions were analyzed to examine the importance of resolution alone, with the parameterizations otherwise left unchanged. The hindcasts were initialized on January 1 with the real-time oceanic and atmospheric reanalysis (CFSR) from 1982 to 2003, forming a 10-member ensemble. The two resolutions are (0.1o oceanic and 0.5o atmospheric) and (1.125o oceanic and 0.9o atmospheric). The SST error growth in the first six days of integration (fast errors) and those resulted from model drift (saturated errors) are assessed and compared towards evaluating the model processes responsible for the SST error growth. For the high-resolution simulation, SST fast errors are positive (+0.3oC) near the continental borders and negative offshore (-0.1oC). Both are associated with a decrease in cloud cover, a weakening of the prevailing southwesterly winds and a reduction of latent heat flux. The saturated errors possess a similar spatial pattern, but are larger and are more spatially concentrated. This suggests that the processes driving the errors already become established within the first week, in contrast to the low-resolution simulations. These, instead, manifest too-warm SSTs related to too-weak upwelling, driven by too-strong winds and Ekman pumping. Nevertheless, the ocean surface tends to be cooler in the low-resolution simulation than the high-resolution due to a higher cloud cover. Throughout the integration, saturated SST errors become positive and could reach values up to +4oC. These are accompanied by upwelling dumping and a decrease in cloud cover. High and low resolution models presented notable differences in how SST

  11. High resolution tsunami modelling for the evaluation of potential risk areas in Setúbal (Portugal

    Directory of Open Access Journals (Sweden)

    J. Ribeiro

    2011-08-01

    Full Text Available The use of high resolution hydrodynamic modelling to simulate the potential effects of tsunami events can provide relevant information about the most probable inundation areas. Moreover, the consideration of complementary data such as the type of buildings, location of priority equipment, type of roads, enables mapping of the most vulnerable zones, computing of the expected damage on man-made structures, constrain of the definition of rescue areas and escape routes, adaptation of emergency plans and proper evaluation of the vulnerability associated with different areas and/or equipment.

    Such an approach was used to evaluate the specific risks associated with a potential occurrence of a tsunami event in the region of Setúbal (Portugal, which was one of the areas most seriously affected by the 1755 tsunami.

    In order to perform an evaluation of the hazard associated with the occurrence of a similar event, high resolution wave propagation simulations were performed considering different potential earthquake sources with different magnitudes. Based on these simulations, detailed inundation maps associated with the different events were produced. These results were combined with the available information on the vulnerability of the local infrastructures (building types, roads and streets characteristics, priority buildings in order to impose restrictions in the production of high-scale potential damage maps, escape routes and emergency routes maps.

  12. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    Science.gov (United States)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  13. High resolution simulations of orographic flow over a complex terrain on the Southeast coast of Brazil

    Science.gov (United States)

    Chou, S. C.; Zolino, M. M.; Gomes, J. L.; Bustamante, J. F.; Lima-e-Silva, P. P.

    2012-04-01

    The Eta Model is used operationally by CPTEC to produce weather forecasts over South America since 1997. The model has gone through upgrades. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The Eta Model was configured, with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain and coastline. Mountains can rise up to about 700m. The region suffers frequent events of floods and landslides. The objective of this work is to evaluate high resolution simulations of wind and temperature in this complex area. Verification of model runs uses observations taken from the nuclear power plant. Accurate near-surface wind direction and magnitude are needed for the plant emergency plan and winds are highly sensitive to model spatial resolution and atmospheric stability. Verification of two cases during summer shows that model has clear diurnal cycle signal for wind in that region. The area is characterized by weak winds which makes the simulation more difficult. The simulated wind magnitude is about 1.5m/s, which is close to observations of about 2m/s; however, the observed change of wind direction of the sea breeze is fast whereas it is slow in the simulations. Nighttime katabatic flow is captured by the simulations. Comparison against Eta-5km runs show that the valley circulation is better described in the 2-km resolution run. Simulated temperatures follow closely the observed diurnal cycle. Experiments improving some surface conditions such as the surface temperature and land cover show simulation error reduction and improved diurnal cycle.

  14. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  15. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-01

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  16. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics.

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-24

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  17. Frequency-dependent hydrodynamic interaction between two solid spheres

    Science.gov (United States)

    Jung, Gerhard; Schmid, Friederike

    2017-12-01

    Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.

  18. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  19. Evaluating Galactic Habitability Using High Resolution Cosmological Simulations of Galaxy Formation

    OpenAIRE

    Forgan, Duncan; Dayal, Pratika; Cockell, Charles; Libeskind, Noam

    2015-01-01

    D. F. acknowledges support from STFC consolidated grant ST/J001422/1, and the ‘ECOGAL’ ERC Advanced Grant. P. D. acknowledges the support of the Addison Wheeler Fellowship awarded by the Institute of Advanced Study at Durham University. N. I. L. is supported by the Deutsche Forschungs Gemeinschaft (DFG). We present the first model that couples high-resolution simulations of the formation of local group galaxies with calculations of the galactic habitable zone (GHZ), a region of space which...

  20. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  1. Simulation studies for a high resolution time projection chamber at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Muennich, A.

    2007-03-26

    The International Linear Collider (ILC) is planned to be the next large accelerator. The ILC will be able to perform high precision measurements only possible at the clean environment of electron positron collisions. In order to reach this high accuracy, the requirements for the detector performance are challenging. Several detector concepts are currently under study. The understanding of the detector and its performance will be crucial to extract the desired physics results from the data. To optimise the detector design, simulation studies are needed. Simulation packages like GEANT4 allow to model the detector geometry and simulate the energy deposit in the different materials. However, the detector response taking into account the transportation of the produced charge to the readout devices and the effects ofthe readout electronics cannot be described in detail. These processes in the detector will change the measured position of the energy deposit relative to the point of origin. The determination of this detector response is the task of detailed simulation studies, which have to be carried out for each subdetector. A high resolution Time Projection Chamber (TPC) with gas amplification based on micro pattern gas detectors, is one of the options for the main tracking system at the ILC. In the present thesis a detailed simulation tool to study the performance of a TPC was developed. Its goal is to find the optimal settings to reach an excellent momentum and spatial resolution. After an introduction to the present status of particle physics and the ILC project with special focus on the TPC as central tracker, the simulation framework is presented. The basic simulation methods and implemented processes are introduced. Within this stand-alone simulation framework each electron produced by primary ionisation is transferred through the gas volume and amplified using Gas Electron Multipliers (GEMs). The output format of the simulation is identical to the raw data from a

  2. Statistics of Deep Convection in the Congo Basin Derived From High-Resolution Simulations.

    Science.gov (United States)

    White, B.; Stier, P.; Kipling, Z.; Gryspeerdt, E.; Taylor, S.

    2016-12-01

    Convection transports moisture, momentum, heat and aerosols through the troposphere, and so the temporal variability of convection is a major driver of global weather and climate. The Congo basin is home to some of the most intense convective activity on the planet and is under strong seasonal influence of biomass burning aerosol. However, deep convection in the Congo basin remains under studied compared to other regions of tropical storm systems, especially when compared to the neighbouring, relatively well-understood West African climate system. We use the WRF model to perform a high-resolution, cloud-system resolving simulation to investigate convective storm systems in the Congo. Our setup pushes the boundaries of current computational resources, using a 1 km grid length over a domain covering millions of square kilometres and for a time period of one month. This allows us to draw statistical conclusions on the nature of the simulated storm systems. Comparing data from satellite observations and the model enables us to quantify the diurnal variability of deep convection in the Congo basin. This approach allows us to evaluate our simulations despite the lack of in-situ observational data. This provides a more comprehensive analysis of the diurnal cycle than has previously been shown. Further, we show that high-resolution convection-permitting simulations performed over near-seasonal timescales can be used in conjunction with satellite observations as an effective tool to evaluate new convection parameterisations.

  3. Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids

    NARCIS (Netherlands)

    Ahuja, Vishal Raju

    2018-01-01

    This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion

  4. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Robles, A.; Drury, O.B.; Friedrich, S.

    2009-01-01

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm 3 Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  5. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  6. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  7. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Radice, David; Ott, Christian D. [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Abdikamalov, Ernazar [Department of Physics, School of Science and Technology, Nazarbayev University, Astana 010000 (Kazakhstan); Couch, Sean M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Haas, Roland [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14476 Golm (Germany); Schnetter, Erik, E-mail: dradice@caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2016-03-20

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased.

  8. NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE: HIGH-RESOLUTION SIMULATIONS

    International Nuclear Information System (INIS)

    Radice, David; Ott, Christian D.; Abdikamalov, Ernazar; Couch, Sean M.; Haas, Roland; Schnetter, Erik

    2016-01-01

    We present results from high-resolution semiglobal simulations of neutrino-driven convection in core-collapse supernovae. We employ an idealized setup with parameterized neutrino heating/cooling and nuclear dissociation at the shock front. We study the internal dynamics of neutrino-driven convection and its role in redistributing energy and momentum through the gain region. We find that even if buoyant plumes are able to locally transfer heat up to the shock, convection is not able to create a net positive energy flux and overcome the downward transport of energy from the accretion flow. Turbulent convection does, however, provide a significant effective pressure support to the accretion flow as it favors the accumulation of energy, mass, and momentum in the gain region. We derive an approximate equation that is able to explain and predict the shock evolution in terms of integrals of quantities such as the turbulent pressure in the gain region or the effects of nonradial motion of the fluid. We use this relation as a way to quantify the role of turbulence in the dynamics of the accretion shock. Finally, we investigate the effects of grid resolution, which we change by a factor of 20 between the lowest and highest resolution. Our results show that the shallow slopes of the turbulent kinetic energy spectra reported in previous studies are a numerical artifact. Kolmogorov scaling is progressively recovered as the resolution is increased

  9. Revisiting resolution in hydrodynamic countercurrent chromatography: tubing bore effect.

    Science.gov (United States)

    Berthod, A; Faure, K

    2015-04-17

    A major challenge in countercurrent chromatography (CCC), the technique that works with a support-free biphasic liquid system, is to retain the liquid stationary phase inside the CCC column (Sf parameter). Two solutions are commercially available: the hydrostatic CCC columns, also called centrifugal partition chromatographs (CPC), with disks of interconnected channels and rotary seals, and the hydrodynamic CCC columns with bobbins of coiled open tube and no rotary seals. It was demonstrated that the amount of liquid stationary phase retained by a coiled tube was higher with larger bore tubing than with small bore tubes. At constant column volume, small bore tubing will be longer producing more efficiency than larger bore tube that will better retain the liquid stationary phase. Since the resolution equation in CCC is depending on both column efficiency and stationary phase retention ratio, the influence of the tubing bore should be studied. This theoretical work showed that there is an optimum tubing bore size depending on solute partition coefficient and mobile phase flow rate. The interesting result of the theoretical study is that larger tubing bores allow for dramatically reduced experiment durations for all solutes: in reversed phase CCC (polar mobile phase), hydrophobic solutes are usually highly retained. These apolar solutes can be separated by the same coil at high flow rates and reduced Sf with similar retention times as polar solutes separated at smaller flow rates and much higher Sf. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Monte-Carlo simulation of a high-resolution inverse geometry spectrometer on the SNS. Long Wavelength Target Station

    International Nuclear Information System (INIS)

    Bordallo, H.N.; Herwig, K.W.

    2001-01-01

    Using the Monte-Carlo simulation program McStas, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the SNS-Long Wavelength Target Station (LWTS). The LWTS will provide the high flux of long wavelength neutrons at the requisite pulse rate required by the spectrometer design. The resolution of this spectrometer lies between that routinely achieved by spin echo techniques and the design goal of the high power target station backscattering spectrometer. Covering this niche in energy resolution will allow systematic studies over the large dynamic range required by many disciplines, such as protein dynamics. (author)

  11. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign

    Directory of Open Access Journals (Sweden)

    M. S. Mizielinski

    2014-08-01

    Full Text Available The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk project constructed and ran an ensemble of HadGEM3 (Hadley Centre Global Environment Model 3 atmosphere-only global climate simulations over the period 1985–2011, at resolutions of N512 (25 km, N216 (60 km and N96 (130 km as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe in 2012, with additional resources supplied by the Natural Environment Research Council (NERC and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the High Performance Computing Center Stuttgart (HLRS, and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE data set. This data set is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  12. Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows

    Science.gov (United States)

    De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert

    2018-06-01

    Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.

  13. Numerical simulation of viscous flow and hydrodynamic noise in surface ship

    Directory of Open Access Journals (Sweden)

    YU Han

    2017-12-01

    Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.

  14. Impact of ocean model resolution on CCSM climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Ben P.; Rousset, Clement; Siqueira, Leo [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Coral Gables, FL (United States); Bitz, Cecilia [University of Washington, Department of Atmospheric Science, Seattle, WA (United States); Bryan, Frank; Dennis, John; Hearn, Nathan; Loft, Richard; Tomas, Robert; Vertenstein, Mariana [National Center for Atmospheric Research, Boulder, CO (United States); Collins, William [University of California, Berkeley, Berkeley, CA (United States); Kinter, James L.; Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Fairfax, VA (United States)

    2012-09-15

    The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5) - the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5 atmosphere component (zonal resolution 0.625 meridional resolution 0.5 ; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2 and meridional resolution varying from 0.27 at the equator to 0.54 in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1 ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2 C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the

  15. High-resolution simulation and forecasting of Jeddah floods using WRF version 3.5

    KAUST Repository

    Deng, Liping

    2013-12-01

    Modeling flash flood events in arid environments is a difficult but important task that has impacts on both water resource related issues and also emergency management and response. The challenge is often related to adequately describing the precursor intense rainfall events that cause these flood responses, as they are generally poorly simulated and forecast. Jeddah, the second largest city in the Kingdom of Saudi Arabia, has suffered from a number of flash floods over the last decade, following short-intense rainfall events. The research presented here focuses on examining four historic Jeddah flash floods (Nov. 25-26 2009, Dec. 29-30 2010, Jan. 14-15 2011 and Jan. 25-26 2011) and investigates the feasibility of using numerical weather prediction models to achieve a more realistic simulation of these flood-producing rainfall events. The Weather Research and Forecasting (WRF) model (version 3.5) is used to simulate precipitation and meteorological conditions via a high-resolution inner domain (1-km) around Jeddah. A range of different convective closure and microphysics parameterization, together with high-resolution (4-km) sea surface temperature data are employed. Through examining comparisons between the WRF model output and in-situ, radar and satellite data, the characteristics and mechanism producing the extreme rainfall events are discussed and the capacity of the WRF model to accurately forecast these rainstorms is evaluated.

  16. High-resolution simulation and forecasting of Jeddah floods using WRF version 3.5

    KAUST Repository

    Deng, Liping; McCabe, Matthew; Stenchikov, Georgiy L.; Evans, Jason; Kucera, Paul

    2013-01-01

    Modeling flash flood events in arid environments is a difficult but important task that has impacts on both water resource related issues and also emergency management and response. The challenge is often related to adequately describing the precursor intense rainfall events that cause these flood responses, as they are generally poorly simulated and forecast. Jeddah, the second largest city in the Kingdom of Saudi Arabia, has suffered from a number of flash floods over the last decade, following short-intense rainfall events. The research presented here focuses on examining four historic Jeddah flash floods (Nov. 25-26 2009, Dec. 29-30 2010, Jan. 14-15 2011 and Jan. 25-26 2011) and investigates the feasibility of using numerical weather prediction models to achieve a more realistic simulation of these flood-producing rainfall events. The Weather Research and Forecasting (WRF) model (version 3.5) is used to simulate precipitation and meteorological conditions via a high-resolution inner domain (1-km) around Jeddah. A range of different convective closure and microphysics parameterization, together with high-resolution (4-km) sea surface temperature data are employed. Through examining comparisons between the WRF model output and in-situ, radar and satellite data, the characteristics and mechanism producing the extreme rainfall events are discussed and the capacity of the WRF model to accurately forecast these rainstorms is evaluated.

  17. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    Science.gov (United States)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  18. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    Science.gov (United States)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  19. Large-grazing-angle, multi-image Kirkpatrick-Baez microscope as the front end to a high-resolution streak camera for OMEGA

    International Nuclear Information System (INIS)

    Gotchev, O.V.; Hayes, L.J.; Jaanimagi, P.A.; Knauer, J.P.; Marshall, F.J.; Meyerhofer, D.D.

    2003-01-01

    A high-resolution x-ray microscope with a large grazing angle has been developed, characterized, and fielded at the Laboratory for Laser Energetics. It increases the sensitivity and spatial resolution in planar direct-drive hydrodynamic stability experiments, relevant to inertial confinement fusion research. It has been designed to work as the optical front end of the PJX - a high-current, high-dynamic-range x-ray streak camera. Optical design optimization, results from numerical ray tracing, mirror-coating choice, and characterization have been described previously [O. V. Gotchev, et al., Rev. Sci. Instrum. 74, 2178 (2003)]. This work highlights the optics' unique mechanical design and flexibility and considers certain applications that benefit from it. Characterization of the microscope's resolution in terms of its modulation transfer function over the field of view is shown. Recent results from hydrodynamic stability experiments, diagnosed with the optic and the PJX, are provided to confirm the microscope's advantages as a high-resolution, high-throughput x-ray optical front end for streaked imaging

  20. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  1. High Resolution Modelling of the Congo River's Multi-Threaded Main Stem Hydraulics

    Science.gov (United States)

    Carr, A. B.; Trigg, M.; Tshimanga, R.; Neal, J. C.; Borman, D.; Smith, M. W.; Bola, G.; Kabuya, P.; Mushie, C. A.; Tschumbu, C. L.

    2017-12-01

    We present the results of a summer 2017 field campaign by members of the Congo River users Hydraulics and Morphology (CRuHM) project, and a subsequent reach-scale hydraulic modelling study on the Congo's main stem. Sonar bathymetry, ADCP transects, and water surface elevation data have been collected along the Congo's heavily multi-threaded middle reach, which exhibits complex in-channel hydraulic processes that are not well understood. To model the entire basin's hydrodynamics, these in-channel hydraulic processes must be parameterised since it is not computationally feasible to represent them explicitly. Furthermore, recent research suggests that relative to other large global rivers, in-channel flows on the Congo represent a relatively large proportion of total flow through the river-floodplain system. We therefore regard sufficient representation of in-channel hydraulic processes as a Congo River hydrodynamic research priority. To enable explicit representation of in-channel hydraulics, we develop a reach-scale (70 km), high resolution hydraulic model. Simulation of flow through individual channel threads provides new information on flow depths and velocities, and will be used to inform the parameterisation of a broader basin-scale hydrodynamic model. The basin-scale model will ultimately be used to investigate floodplain fluxes, flood wave attenuation, and the impact of future hydrological change scenarios on basin hydrodynamics. This presentation will focus on the methodology we use to develop a reach-scale bathymetric DEM. The bathymetry of only a small proportion of channel threads can realistically be captured, necessitating some estimation of the bathymetry of channels not surveyed. We explore different approaches to this bathymetry estimation, and the extent to which it influences hydraulic model predictions. The CRuHM project is a consortium comprising the Universities of Kinshasa, Rhodes, Dar es Salaam, Bristol, and Leeds, and is funded by Royal

  2. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    Science.gov (United States)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  3. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.

    Science.gov (United States)

    Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2012-07-28

    This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.

  4. Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood

    Science.gov (United States)

    Ikeshima, D.; Yamazaki, D.; Kanae, S.

    2016-12-01

    CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also

  5. The simulation of a data acquisition system for a proposed high resolution PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rotolo, C.; Larwill, M.; Chappa, S. [Fermi National Accelerator Lab., Batavia, IL (United States); Ordonez, C. [Chicago Univ., IL (United States)

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs.

  6. The simulation of a data acquisition system for a proposed high resolution PET scanner

    International Nuclear Information System (INIS)

    Rotolo, C.; Larwill, M.; Chappa, S.; Ordonez, C.

    1993-10-01

    The simulation of a specific data acquisition (DAQ) system architecture for a proposed high resolution Positron Emission Tomography (PET) scanner is discussed. Stochastic processes are used extensively to model PET scanner signal timing and probable DAQ circuit limitations. Certain architectural parameters, along with stochastic parameters, are varied to quantatively study the resulting output under various conditions. The inclusion of the DAQ in the model represents a novel method of more complete simulations of tomograph designs, and could prove to be of pivotal importance in the optimization of such designs

  7. Validation of a Global Hydrodynamic Flood Inundation Model

    Science.gov (United States)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  8. Smooth Particle Hydrodynamics GPU-Acceleration Tool for Asteroid Fragmentation Simulation

    Science.gov (United States)

    Buruchenko, Sergey K.; Schäfer, Christoph M.; Maindl, Thomas I.

    2017-10-01

    The impact threat of near-Earth objects (NEOs) is a concern to the global community, as evidenced by the Chelyabinsk event (caused by a 17-m meteorite) in Russia on February 15, 2013 and a near miss by asteroid 2012 DA14 ( 30 m diameter), on the same day. The expected energy, from either a low-altitude air burst or direct impact, would have severe consequences, especially in populated regions. To mitigate this threat one of the methods is employment of large kinetic-energy impactors (KEIs). The simulation of asteroid target fragmentation is a challenging task which demands efficient and accurate numerical methods with large computational power. Modern graphics processing units (GPUs) lead to a major increase 10 times and more in the performance of the computation of astrophysical and high velocity impacts. The paper presents a new implementation of the numerical method smooth particle hydrodynamics (SPH) using NVIDIA-GPU and the first astrophysical and high velocity application of the new code. The code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations.

  9. Quality and sensitivity of high-resolution numerical simulation of urban heat islands

    Science.gov (United States)

    Li, Dan; Bou-Zeid, Elie

    2014-05-01

    High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).

  10. D Hydrodynamics Simulation of Amazonian Seasonally Flooded Wetlands

    Science.gov (United States)

    Pinel, S. S.; Bonnet, M. P.; Da Silva, J. S.; Cavalcanti, R., Sr.; Calmant, S.

    2016-12-01

    In the low Amazonian basin, interactions between floodplains and river channels are important in terms of water exchanges, sediments, or nutrients. These wetlands are considered as hotspot of biodiversity and are among the most productive in the world. However, they are threatened by climatic changes and anthropic activities. Hence, considering the implications for predicting inundation status of floodplain habitats, the strong interactions between water circulation, energy fluxes, biogeochemical and ecological processes, detailed analyses of flooding dynamics are useful and needed. Numerical inundation models offer means to study the interactions among different water sources. Modeling floods events in this area is challenging because flows respond to dynamic hydraulic controls coming from several water sources, complex geomorphology, and vegetation. In addition, due to the difficulty of access, there is a lack of existing hydrological data. In this context, the use of monitoring systems by remote sensing is a good option. In this study, we simulated filling and drainage processes of an Amazon floodplain (Janauacá Lake, AM, Brazil) over a 6 years period (2006-2012). Common approaches of flow modeling in the Amazon region consist of coupling a 1D simulation of the main channel flood wave to a 2D simulation of the inundation of the floodplain. Here, our approach differs as the floodplain is fully simulated. Model used is the 3D model IPH-ECO, which consists of a three-dimensional hydrodynamic module coupled with an ecosystem module. The IPH-ECO hydrodynamic module solves the Reynolds-Averaged Navier-Stokes equations using a semi-implicit discretization. After having calibrated the simulation against roughness coefficients, we validated the model in terms of vertical accuracy against water levels (daily in situ and altimetrics data), in terms of flood extent against inundation maps deduced from available remote-sensed product imagery (ALOS-1/PALSAR.), and in terms

  11. An Efficient, Semi-implicit Pressure-based Scheme Employing a High-resolution Finitie Element Method for Simulating Transient and Steady, Inviscid and Viscous, Compressible Flows on Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Richard C. Martineau; Ray A. Berry

    2003-04-01

    A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson

  12. Updated vegetation information in high resolution regional climate simulations using WRF

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    Climate studies show that the frequency of heat wave events and above-average high temperatures during the summer months over Europe will increase in the coming decades. Such climatic changes and long-term meteorological conditions will impact the seasonal development of vegetation and ultimately...... modify the energy distribution at the land surface. In weather and climate models it is important to represent the vegetation variability accurately to obtain reliable results. The weather research and forecasting (WRF) model uses a green vegetation fraction (GVF) climatology to represent the seasonal...... or changes in management practice since it is derived more than twenty years ago. In this study, a new high resolution, high quality GVF product is applied in a WRF climate simulation over Denmark during the 2006 heat wave year. The new GVF product reflects the year 2006 and it was previously tested...

  13. Use of High-Resolution WRF Simulations to Forecast Lightning Threat

    Science.gov (United States)

    McCaul, E. W., Jr.; LaCasse, K.; Goodman, S. J.; Cecil, D. J.

    2008-01-01

    Recent observational studies have confirmed the existence of a robust statistical relationship between lightning flash rates and the amount of large precipitating ice hydrometeors aloft in storms. This relationship is exploited, in conjunction with the capabilities of cloud-resolving forecast models such as WRF, to forecast explicitly the threat of lightning from convective storms using selected output fields from the model forecasts. The simulated vertical flux of graupel at -15C and the shape of the simulated reflectivity profile are tested in this study as proxies for charge separation processes and their associated lightning risk. Our lightning forecast method differs from others in that it is entirely based on high-resolution simulation output, without reliance on any climatological data. short [6-8 h) simulations are conducted for a number of case studies for which three-dmmensional lightning validation data from the North Alabama Lightning Mapping Array are available. Experiments indicate that initialization of the WRF model on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity fields, and METAR and ACARS data y&eld satisfactory simulations. __nalyses of the lightning threat fields suggests that both the graupel flux and reflectivity profile approaches, when properly calibrated, can yield reasonable lightning threat forecasts, although an ensemble approach is probably desirable in order to reduce the tendency for misplacement of modeled storms to hurt the accuracy of the forecasts. Our lightning threat forecasts are also compared to other more traditional means of forecasting thunderstorms, such as those based on inspection of the convective available potential energy field.

  14. Recent development of hydrodynamic modeling

    Science.gov (United States)

    Hirano, Tetsufumi

    2014-09-01

    In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions

  15. PDF added value of a high resolution climate simulation for precipitation

    Science.gov (United States)

    Soares, Pedro M. M.; Cardoso, Rita M.

    2015-04-01

    dynamical downscaling, based on simple PDF skill scores. The measure can assess the full quality of the PDFs and at the same time integrates a flexible manner to weight differently the PDF tails. In this study we apply the referred method to characaterize the PDF added value of a high resolution simulation with the WRF model. Results from a WRF climate simulation centred at the Iberian Penisnula with two nested grids, a larger one at 27km and a smaller one at 9km. This simulation is forced by ERA-Interim. The observational data used covers from rain gauges precipitation records to observational regular grids of daily precipitation. Two regular gridded precipitation datasets are used. A Portuguese grid precipitation dataset developed at 0.2°× 0.2°, from observed rain gauges daily precipitation. A second one corresponding to the ENSEMBLES observational gridded dataset for Europe, which includes daily precipitation values at 0.25°. The analisys shows an important PDF added value from the higher resolution simulation, regarding the full PDF and the extremes. This method shows higher potential to be applied to other simulation exercises and to evaluate other variables.

  16. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  17. Toolbox for Urban Mobility Simulation: High Resolution Population Dynamics for Global Cities

    Science.gov (United States)

    Bhaduri, B. L.; Lu, W.; Liu, C.; Thakur, G.; Karthik, R.

    2015-12-01

    In this rapidly urbanizing world, unprecedented rate of population growth is not only mirrored by increasing demand for energy, food, water, and other natural resources, but has detrimental impacts on environmental and human security. Transportation simulations are frequently used for mobility assessment in urban planning, traffic operation, and emergency management. Previous research, involving purely analytical techniques to simulations capturing behavior, has investigated questions and scenarios regarding the relationships among energy, emissions, air quality, and transportation. Primary limitations of past attempts have been availability of input data, useful "energy and behavior focused" models, validation data, and adequate computational capability that allows adequate understanding of the interdependencies of our transportation system. With increasing availability and quality of traditional and crowdsourced data, we have utilized the OpenStreetMap roads network, and has integrated high resolution population data with traffic simulation to create a Toolbox for Urban Mobility Simulations (TUMS) at global scale. TUMS consists of three major components: data processing, traffic simulation models, and Internet-based visualizations. It integrates OpenStreetMap, LandScanTM population, and other open data (Census Transportation Planning Products, National household Travel Survey, etc.) to generate both normal traffic operation and emergency evacuation scenarios. TUMS integrates TRANSIMS and MITSIM as traffic simulation engines, which are open-source and widely-accepted for scalable traffic simulations. Consistent data and simulation platform allows quick adaption to various geographic areas that has been demonstrated for multiple cities across the world. We are combining the strengths of geospatial data sciences, high performance simulations, transportation planning, and emissions, vehicle and energy technology development to design and develop a simulation

  18. Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations

    Science.gov (United States)

    O'Shea, Brian W.; Nagamine, Kentaro; Springel, Volker; Hernquist, Lars; Norman, Michael L.

    2005-09-01

    We compare two cosmological hydrodynamic simulation codes in the context of hierarchical galaxy formation: the Lagrangian smoothed particle hydrodynamics (SPH) code GADGET, and the Eulerian adaptive mesh refinement (AMR) code Enzo. Both codes represent dark matter with the N-body method but use different gravity solvers and fundamentally different approaches for baryonic hydrodynamics. The SPH method in GADGET uses a recently developed ``entropy conserving'' formulation of SPH, while for the mesh-based Enzo two different formulations of Eulerian hydrodynamics are employed: the piecewise parabolic method (PPM) extended with a dual energy formulation for cosmology, and the artificial viscosity-based scheme used in the magnetohydrodynamics code ZEUS. In this paper we focus on a comparison of cosmological simulations that follow either only dark matter, or also a nonradiative (``adiabatic'') hydrodynamic gaseous component. We perform multiple simulations using both codes with varying spatial and mass resolution with identical initial conditions. The dark matter-only runs agree generally quite well provided Enzo is run with a comparatively fine root grid and a low overdensity threshold for mesh refinement, otherwise the abundance of low-mass halos is suppressed. This can be readily understood as a consequence of the hierarchical particle-mesh algorithm used by Enzo to compute gravitational forces, which tends to deliver lower force resolution than the tree-algorithm of GADGET at early times before any adaptive mesh refinement takes place. At comparable force resolution we find that the latter offers substantially better performance and lower memory consumption than the present gravity solver in Enzo. In simulations that include adiabatic gasdynamics we find general agreement in the distribution functions of temperature, entropy, and density for gas of moderate to high overdensity, as found inside dark matter halos. However, there are also some significant differences in

  19. Experimental validation of a 2D overland flow model using high resolution water depth and velocity data

    Science.gov (United States)

    Cea, L.; Legout, C.; Darboux, F.; Esteves, M.; Nord, G.

    2014-05-01

    This paper presents a validation of a two-dimensional overland flow model using empirical laboratory data. Unlike previous publications in which model performance is evaluated as the ability to predict an outlet hydrograph, we use high resolution 2D water depth and velocity data to analyze to what degree the model is able to reproduce the spatial distribution of these variables. Several overland flow conditions over two impervious surfaces of the order of one square meter with different micro and macro-roughness characteristics are studied. The first surface is a simplified representation of a sinusoidal terrain with three crests and furrows, while the second one is a mould of a real agricultural seedbed terrain. We analyze four different bed friction parameterizations and we show that the performance of formulations which consider the transition between laminar, smooth turbulent and rough turbulent flow do not improve the results obtained with Manning or Keulegan formulas for rough turbulent flow. The simulations performed show that using Keulegan formula with a physically-based definition of the bed roughness coefficient, a two-dimensional shallow water model is able to reproduce satisfactorily the flow hydrodynamics. It is shown that, even if the resolution of the topography data and numerical mesh are high enough to include all the small scale features of the bed surface, the roughness coefficient must account for the macro-roughness characteristics of the terrain in order to correctly reproduce the flow hydrodynamics.

  20. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  1. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    Science.gov (United States)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  2. Large-Grazing-Angle, Multi-Image Kirkpatrick-Baez Microscope as the Front End to a High-Resolution Streak Camera for OMEGA

    International Nuclear Information System (INIS)

    Gotchev, O.V.; Hayes, L.J.; Jaanimagi, P.A.; Knauer, J.P.; Marshall, F.J.; Meyerhofer, D. D.

    2003-01-01

    (B204)A new, high-resolution x-ray microscope with a large grazing angle has been developed, characterized, and fielded at the Laboratory for Laser Energetics. It increases the sensitivity and spatial resolution in planar direct-drive hydrodynamic stability experiments, relevant to inertial confinement fusion (ICF) research. It has been designed to work as the optical front end of the PJX-a high-current, high-dynamic-range x-ray streak camera. Optical design optimization, results from numerical ray tracing, mirror-coating choice, and characterization have been described previously [O. V. Gotchev, et al./Rev. Sci. Instrum. 74, 2178 (2003)]. This work highlights the optics' unique mechanical design and flexibility and considers certain applications that benefit from it. Characterization of the microscope's resolution in terms of its modulation transfer function (MTF) over the field of view is shown. Recent results from hydrodynamic stability experiments, diagnosed with the optic and the PJX, are provided to confirm the microscope's advantages as a high-resolution, high-throughput x-ray optical front end for streaked imaging

  3. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  4. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    Science.gov (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  5. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    Science.gov (United States)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  6. High-Resolution Mesoscale Simulations of the 6-7 May 2000 Missouri Flash Flood: Impact of Model Initialization and Land Surface Treatment

    Science.gov (United States)

    Baker, R. David; Wang, Yansen; Tao, Wei-Kuo; Wetzel, Peter; Belcher, Larry R.

    2004-01-01

    High-resolution mesoscale model simulations of the 6-7 May 2000 Missouri flash flood event were performed to test the impact of model initialization and land surface treatment on timing, intensity, and location of extreme precipitation. In this flash flood event, a mesoscale convective system (MCS) produced over 340 mm of rain in roughly 9 hours in some locations. Two different types of model initialization were employed: 1) NCEP global reanalysis with 2.5-degree grid spacing and 12-hour temporal resolution, and 2) Eta reanalysis with 40- km grid spacing and $hour temporal resolution. In addition, two different land surface treatments were considered. A simple land scheme. (SLAB) keeps soil moisture fixed at initial values throughout the simulation, while a more sophisticated land model (PLACE) allows for r interactive feedback. Simulations with high-resolution Eta model initialization show considerable improvement in the intensity of precipitation due to the presence in the initialization of a residual mesoscale convective vortex (hlCV) from a previous MCS. Simulations with the PLACE land model show improved location of heavy precipitation. Since soil moisture can vary over time in the PLACE model, surface energy fluxes exhibit strong spatial gradients. These surface energy flux gradients help produce a strong low-level jet (LLJ) in the correct location. The LLJ then interacts with the cold outflow boundary of the MCS to produce new convective cells. The simulation with both high-resolution model initialization and time-varying soil moisture test reproduces the intensity and location of observed rainfall.

  7. Brownian dynamics with hydrodynamic interactions

    International Nuclear Information System (INIS)

    Ermak, D.L.; McCammon, J.A.

    1978-01-01

    A method for simulating the Brownian dynamics of N particles with the inclusion of hydrodynamic interactions is described. The particles may also be subject to the usual interparticle or external forces (e.g., electrostatic) which have been included in previous methods for simulating Brownian dynamics of particles in the absence of hydrodynamic interactions. The present method is derived from the Langevin equations for the N particle assembly, and the results are shown to be consistent with the corresponding Fokker--Planck results. Sample calculations on small systems illustrate the importance of including hydrodynamic interactions in Brownian dynamics simulations. The method should be useful for simulation studies of diffusion limited reactions, polymer dynamics, protein folding, particle coagulation, and other phenomena in solution

  8. High-resolution radon monitoring and hydrodynamics at Mount Vesuvius

    Science.gov (United States)

    Cigolini, Corrado; Salierno, Francesco; Gervino, Gianpiero; Bergese, Paolo; Marino, Ciro; Russo, Massimo; Prati, Paolo; Ariola, Vincenzo; Bonetti, Roberto; Begnini, Stefania

    A yearlong high-resolution radon survey has been carried on at Mount Vesuvius, starting in May 1998. Radon activities were acquired by exposing charcoal canisters and track-etch detectors. Sampling stations were deployed along two major summit faults and around the caldera bottom. Volcanically-related earthquakes, with MD ≥ 2.5, may be discriminated from regional seismic events since their cumulative radon anomalies are recorded from stations located along all the above structural features. On the contrary, radon anomalies correlated to regional earthquakes, with MD ≥ 4, are essentially recorded by the sampling sites located along the two summit faults (whose roots extend deeper into the Tertiary basement rocks that underlay the volcano). Radon migration to the surface is ruled by convection within a porous medium of relatively low porosity (ϕ ≈ 10-5), suggesting that fluid motion is strongly localised along fractures. It is suggested that fluid pressure build up, followed by fluid release and migration during incipient fracturing of the porous medium, precede the onset of volcanically-induced earthquakes.

  9. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-04-01

    Full Text Available Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2. We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5° to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 % than at coarser resolution (59 %. The cumulative probability distribution functions (CDFs of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy changing little across model resolutions. Model concentrations in the

  10. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  11. Rippled shock front solutions for testing hydrodynamic stability simulations

    International Nuclear Information System (INIS)

    Munro, D.H.

    1989-01-01

    The response of a shock front to arbitrary small perturbations can be calculated analytically. Such rippled shock front solutions are useful for determining the accuracy of hydrodynamic simulation codes such as LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1977)], which are used to compute perturbation growth in inertial fusion targets. The LASNEX fractional errors are of order κ 2 L 2 , where κ is the transverse wavenumber of the perturbation, and L is the largest zone dimension. Numerical errors are about 25% for a calculation using 26 zones per transverse wavelength

  12. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  13. Air quality high resolution simulations of Italian urban areas with WRF-CHIMERE

    Science.gov (United States)

    Falasca, Serena; Curci, Gabriele

    2017-04-01

    The new European Directive on ambient air quality and cleaner air for Europe (2008/50/EC) encourages the use of modeling techniques to support the observations in the assessment and forecasting of air quality. The modelling system based on the combination of the WRF meteorological model and the CHIMERE chemistry-transport model is used to perform simulations at high resolution over the main Italian cities (e.g. Milan, Rome). Three domains covering Europe, Italy and the urban areas are nested with a decreasing grid size up to 1 km. Numerical results are produced for a winter month and a summer month of the year 2010 and are validated using ground-based observations (e.g. from the European air quality database AirBase). A sensitivity study is performed using different physics options, domain resolution and grid ratio; different urban parameterization schemes are tested using also characteristic morphology parameters for the cities considered. A spatial reallocation of anthropogenic emissions derived from international (e.g. EMEP, TNO, HTAP) and national (e.g. CTN-ACE) emissions inventories and based on the land cover datasets (Global Land Cover Facility and GlobCover) and the OpenStreetMap tool is also included. Preliminary results indicate that the introduction of the spatial redistribution at high-resolution allows a more realistic reproduction of the distribution of the emission flows and thus the concentrations of the pollutants, with significant advantages especially for the urban environments.

  14. Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows

    Science.gov (United States)

    Mach, Patryk; Piróg, Michał; Font, José A.

    2018-05-01

    We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.

  15. Analysis of a high-resolution regional climate simulation for Alpine temperature. Validation and influence of the NAO

    Energy Technology Data Exchange (ETDEWEB)

    Proemmel, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    To determine whether the increase in resolution of climate models improves the representation of climate is a crucial topic in regional climate modelling. An improvement over coarser-scale models is expected especially in areas with complex orography or along coastlines. However, some studies have shown no clear added value for regional climate models. In this study a high-resolution regional climate model simulation performed with REMO over the period 1958-1998 is analysed for 2m temperature over the orographically complex European Alps and their surroundings called the Greater Alpine Region (GAR). The model setup is in hindcast mode meaning that the simulation is driven with perfect boundary conditions by the ERA40 reanalysis through prescribing the values at the lateral boundaries and spectral nudging of the large-scale wind field inside the model domain. The added value is analysed between the regional climate simulation with a resolution of 1/6 and the driving reanalysis with a resolution of 1.125 . Before analysing the added value both the REMO simulation and the ERA40 reanalysis are validated against different station datasets of monthly and daily mean 2m temperature. The largest dataset is the dense, homogenised and quality controlled HISTALP dataset covering the whole GAR, which gave the opportunity for the validation undertaken in this study. The temporal variability of temperature, as quantified by correlation, is well represented by both REMO and ERA40. However, both show considerable biases. The REMO bias reaches 3 K in summer in regions known to experience a problem with summer drying in a number of regional models. In winter the bias is strongly influenced by the choice of the temperature lapse rate, which is applied to compare grid box and station data at different altitudes, and has the strongest influence on inner Alpine subregions where the altitude differences are largest. By applying a constant lapse rate the REMO bias in winter in the high

  16. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  17. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  18. Quality and sensitivity of high-resolution numerical simulation of urban heat islands

    International Nuclear Information System (INIS)

    Li, Dan; Bou-Zeid, Elie

    2014-01-01

    High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014). (letter)

  19. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    Science.gov (United States)

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  20. IXO and the Missing Baryons: The Need High Resolution Spectroscopy

    Science.gov (United States)

    Nicastro, Fabrizio

    2009-01-01

    About half of the baryons in the Universe are currently eluding detection. Hydrodynamical simulations for the formation of Large Scale Structures (LSSs), predict that these baryons, at zmatter: the Warm-Hot Intergalactic Medium (WHIM). The WHIM has probably been progressively enriched with metals, during phases of intense starburst and AGN activity, up to possibly solar metallicity (Cen & Ostriker, 2006), and should therefore shine and/or absorb in in the soft X-ray band, via electronic transitions from the most abundant metals. The importance of detecting and studying the WHIM lies not only in the possibility of finally making a complete census of all baryons in the Universe, but also in the possibility of (a) directly measuring the metallicity history of the Universe, and so investigating on metal-transport in the Universe and galaxy-IGM, AGN-IGM feedback mechanisms, (b) directly measuring the heating history of the Universe, and so understanding the process of LSS formation and shocks, and (c) performing cosmological parameter measurements through a 3D 2-point angular correlation function analysis of the WHIM filaments. Detecting, and studying the WHIM with the current X-ray instrumentation however, is extremely challenging, because of the low sensitivity and resolution of the Chandra and XMM-Newton gratings, and the very low 'grasp' of all currently available imaging-spectrometers. IXO, instead, thanks to its large grating effective area (> 1000 cm2 at 0.5 keV) and high spectral resolution (R>2500 at 0.5 keV) will be perfectly suited to attack the problem in a systematic way. Here we demonstrate that high resolution gratings are crucial for these kind of studies and show that the IXO gratings will be able to detect more than 300-700 OVII WHIM filaments along about 70 lines of sight, in less than 0.7.

  1. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  2. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  3. Treatment of compounds and alloys in radiation hydrodynamics simulations of ablative laser loading

    International Nuclear Information System (INIS)

    Swift, Damian C.; Gammel, J. Tinka; Clegg, Samuel M.

    2004-01-01

    Different methods were compared for constructing models of the behavior of a prototype intermetallic compound, nickel aluminide, for use in radiation hydrodynamics simulations of shock wave generation by ablation induced by laser energy. The models included the equation of state, ionization, and radiation opacity. The methods of construction were evaluated by comparing the results of simulations of an ablatively generated shock wave in a sample of the alloy. The most accurate simulations were obtained using the 'constant number density' mixture model to calculate the equation of state and opacity, and Thomas-Fermi ionization. This model is consistent with that found to be most accurate for simulations of ablatively shocked elements

  4. The SELGIFS data challenge: generating synthetic observations of CALIFA galaxies from hydrodynamical simulations

    Science.gov (United States)

    Guidi, G.; Casado, J.; Ascasibar, Y.; García-Benito, R.; Galbany, L.; Sánchez-Blázquez, P.; Sánchez, S. F.; Rosales-Ortega, F. F.; Scannapieco, C.

    2018-06-01

    In this work we present a set of synthetic observations that mimic the properties of the Integral Field Spectroscopy (IFS) survey CALIFA, generated using radiative transfer techniques applied to hydrodynamical simulations of galaxies in a cosmological context. The simulated spatially-resolved spectra include stellar and nebular emission, kinematic broadening of the lines, and dust extinction and scattering. The results of the radiative transfer simulations have been post-processed to reproduce the main properties of the CALIFA V500 and V1200 observational setups. The data has been further formatted to mimic the CALIFA survey in terms of field of view size, spectral range and sampling. We have included the effect of the spatial and spectral Point Spread Functions affecting CALIFA observations, and added detector noise after characterizing it on a sample of 367 galaxies. The simulated datacubes are suited to be analysed by the same algorithms used on real IFS data. In order to provide a benchmark to compare the results obtained applying IFS observational techniques to our synthetic datacubes, and test the calibration and accuracy of the analysis tools, we have computed the spatially-resolved properties of the simulations. Hence, we provide maps derived directly from the hydrodynamical snapshots or the noiseless spectra, in a way that is consistent with the values recovered by the observational analysis algorithms. Both the synthetic observations and the product datacubes are public and can be found in the collaboration website http://astro.ft.uam.es/selgifs/data_challenge/.

  5. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  6. The implementation of sea ice model on a regional high-resolution scale

    Science.gov (United States)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  7. Simulation of the oxidation pathway on Si(100) using high-resolution EELS

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Conor [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia (CNR-ISM), Rome (Italy); Dipartimento di Fisica, Universita di Roma ' ' Tor Vergata' ' , Roma (Italy); European Theoretical Spectroscopy Facility (ETSF), Roma (Italy); Caramella, Lucia; Onida, Giovanni [Dipartimento di Fisica, Universita degli Studi di Milano (Italy); European Theoretical Spectroscopy Facility (ETSF), Milano (Italy)

    2012-06-15

    We compute high-resolution electron energy loss spectra (HREELS) of possible structural motifs that form during the dynamic oxidation process on Si(100), including the important metastable precursor silanone and an adjacent-dimer bridge (ADB) structure that may seed oxide formation. Spectroscopic fingerprints of single site, silanone, and ''seed'' structures are identified and related to changes in the surface bandstructure of the clean surface. Incorporation of oxygen into the silicon lattice through adsorption and dissociation of water is also examined. Results are compared to available HREELS spectra and surface optical data, which are closely related. Our simulations confirm that HREELS offers complementary evidence to surface optical spectroscopy, and show that its high sensitivity allows it to distinguish between energetically and structurally similar oxidation models. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Disruptive Innovation in Numerical Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Waltz, Jacob I. [Los Alamos National Laboratory

    2012-09-06

    We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.

  9. 2D RADIATION-HYDRODYNAMIC SIMULATIONS OF SUPERNOVA SHOCK BREAKOUT IN BIPOLAR EXPLOSIONS OF A BLUE SUPERGIANT PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Akihiro; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.

  10. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  11. Hydrodynamic interactions in active colloidal crystal microrheology.

    Science.gov (United States)

    Weeber, R; Harting, J

    2012-11-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts the development of defects, the crystal regeneration, as well as the jamming behavior.

  12. Hydrodynamic interactions in active colloidal crystal microrheology

    OpenAIRE

    Weeber, R; Harting, JDR Jens

    2012-01-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme signif...

  13. Entropy-limited hydrodynamics: a novel approach to relativistic hydrodynamics

    Science.gov (United States)

    Guercilena, Federico; Radice, David; Rezzolla, Luciano

    2017-07-01

    We present entropy-limited hydrodynamics (ELH): a new approach for the computation of numerical fluxes arising in the discretization of hyperbolic equations in conservation form. ELH is based on the hybridisation of an unfiltered high-order scheme with the first-order Lax-Friedrichs method. The activation of the low-order part of the scheme is driven by a measure of the locally generated entropy inspired by the artificial-viscosity method proposed by Guermond et al. (J. Comput. Phys. 230(11):4248-4267, 2011, doi: 10.1016/j.jcp.2010.11.043). Here, we present ELH in the context of high-order finite-differencing methods and of the equations of general-relativistic hydrodynamics. We study the performance of ELH in a series of classical astrophysical tests in general relativity involving isolated, rotating and nonrotating neutron stars, and including a case of gravitational collapse to black hole. We present a detailed comparison of ELH with the fifth-order monotonicity preserving method MP5 (Suresh and Huynh in J. Comput. Phys. 136(1):83-99, 1997, doi: 10.1006/jcph.1997.5745), one of the most common high-order schemes currently employed in numerical-relativity simulations. We find that ELH achieves comparable and, in many of the cases studied here, better accuracy than more traditional methods at a fraction of the computational cost (up to {˜}50% speedup). Given its accuracy and its simplicity of implementation, ELH is a promising framework for the development of new special- and general-relativistic hydrodynamics codes well adapted for massively parallel supercomputers.

  14. Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    Science.gov (United States)

    Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O'Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy; Vaudrey, Jamie M. P.

    2016-01-01

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

  15. Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission

    Science.gov (United States)

    Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.

    2018-01-01

    Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.

  16. Hydrodynamic aspects of thrust generation in gymnotiform swimming

    Science.gov (United States)

    Shirgaonkar, Anup A.; Curet, Oscar M.; Patankar, Neelesh A.; Maciver, Malcolm A.

    2008-11-01

    The primary propulsor in gymnotiform swimmers is a fin running along most of the ventral midline of the fish. The fish propagates traveling waves along this ribbon fin to generate thrust. This unique mode of thrust generation gives these weakly electric fish great maneuverability cluttered spaces. To understand the mechanical basis of gymnotiform propulsion, we investigated the hydrodynamics of a model ribbon-fin of an adult black ghost knifefish using high-resolution numerical experiments. We found that the principal mechanism of thrust generation is a central jet imparting momentum to the fluid with associated vortex rings near the free edge of the fin. The high-fidelity simulations also reveal secondary vortex rings potentially useful in rapid sideways maneuvers. We obtained the scaling of thrust with respect to the traveling wave kinematic parameters. Using a fin-plate model for a fish, we also discuss improvements to Lighthill's inviscid theory for gymnotiform and balistiform modes in terms of thrust magnitude, viscous drag on the body, and momentum enhancement.

  17. Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm

    Science.gov (United States)

    Xiao, Yu; Binglong, Chen; Min, Min; Xingying, Zhang; Lilin, Yao; Yiming, Zhao; Lidong, Wang; Fu, Wang; Xiaobo, Deng

    2018-06-01

    High spectral resolution lidar (HSRL) system employs a narrow spectral filter to separate the particulate (cloud/aerosol) and molecular scattering components in lidar return signals, which improves the quality of the retrieved cloud/aerosol optical properties. To better develop a future spaceborne HSRL system, a novel simulation technique was developed to simulate spaceborne HSRL return signals at 532 nm using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/aerosol extinction coefficients product and numerical weather prediction data. For validating simulated data, a mathematical particulate extinction coefficient retrieval method for spaceborne HSRL return signals is described here. We compare particulate extinction coefficient profiles from the CALIPSO operational product with simulated spaceborne HSRL data. Further uncertainty analysis shows that relative uncertainties are acceptable for retrieving the optical properties of cloud and aerosol. The final results demonstrate that they agree well with each other. It indicates that the return signals of the spaceborne HSRL molecular channel at 532 nm will be suitable for developing operational algorithms supporting a future spaceborne HSRL system.

  18. Hydrodynamic and Sensory Factors Governing Response of Copepods to Simulated Predation by Balaenid Whales

    Directory of Open Access Journals (Sweden)

    Alexander J. Werth

    2012-01-01

    Full Text Available Predator/prey interactions between copepods and balaenid (bowhead and right whales were studied with controlled lab experiments using moving baleen in still water and motionless baleen in flowing water to simulate zooplankton passage toward, into, and through the balaenid oral cavity. Copepods showed a lesser escape response to baleen and to a model head simulating balaenid oral hydrodynamics than to other objects. Copepod escape response increased as water flow and body size increased and was greatest at distances ≥10 cm from baleen and at copepod density = 10,000 m−3. Data from light/dark experiments suggest that escape is based on mechanoreception, not vision. The model head captured 88% of copepods. Results support previous research showing hydrodynamic effects within a whale’s oral cavity create slight suction pressures to draw in prey or at least preclude formation of an anterior compressive bow wave that could scatter or alert prey to the presence of the approaching whale.

  19. Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars

    Science.gov (United States)

    Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.

    2002-08-01

    We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.

  20. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    Science.gov (United States)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  1. A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation

    Science.gov (United States)

    Peng, X.; Li, X.

    2017-12-01

    A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and

  2. Hydrodynamic optical-field-ionized plasma channels

    Science.gov (United States)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  3. Quantifying uncertainty in Transcranial Magnetic Stimulation - A high resolution simulation study in ICBM space.

    Science.gov (United States)

    Toschi, Nicola; Keck, Martin E; Welt, Tobias; Guerrisi, Maria

    2012-01-01

    Transcranial Magnetic Stimulation offers enormous potential for noninvasive brain stimulation. While it is known that brain tissue significantly "reshapes" induced field and charge distributions, most modeling investigations to-date have focused on single-subject data with limited generality. Further, the effects of the significant uncertainties which exist in the simulation (i.e. brain conductivity distributions) and stimulation (e.g. coil positioning and orientations) setup have not been quantified. In this study, we construct a high-resolution anisotropic head model in standard ICBM space, which can be used as a population-representative standard for bioelectromagnetic simulations. Further, we employ Monte-Carlo simulations in order to quantify how uncertainties in conductivity values propagate all the way to induced field and currents, demonstrating significant, regionally dependent dispersions in values which are commonly assumed "ground truth". This framework can be leveraged in order to quantify the effect of any type of uncertainty in noninvasive brain stimulation and bears relevance in all applications of TMS, both investigative and therapeutic.

  4. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    Science.gov (United States)

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Experimental and numerical simulations of the hydrodynamic dispersion of a pollutant effluent in a estuarine coastal zone

    International Nuclear Information System (INIS)

    Gidas, N.K.; Koutitonsky, V.G.

    1996-01-01

    An experimental and numerical study was performed to measure and simulate the hydrodynamic dispersion of a pollutant effluent discharged by an outfall diffuser into an estuarine coastal zone near Rimouski, Canada. Field measurements of currents, tides, salinity, and winds were obtained in the vicinity of the injection site, and two tracer dispersion experiments were carried on in these coastal waters. The measurements were taken before and after the construction of the marine outfall diffuser. The similitude between the plume of a tracer (physical model) released into the coastal waters before construction and that of the real effluent (prototype) discharged at the same site was studied. A new coefficient of similitude was established, which allows to transpose the concentrations of the physical model tracer to the waste water concentrations of the prototype. The numerical simulation (2D) is performed with a hydrodynamic model and an advection-dispersion model of the MIKE21 system from the Danish Hydraulic Institute, using the so-called telescopic approach. The objective of these simulations was to predict, among other things, the pollutant effluent concentrations for critical hydrodynamic conditions relative to the aquatic ecosystem to be protected. The methodology elaborated was used for the management of the coastal environments subjected to pollution. (author). 28 refs., 2 tabs., 12 figs

  6. VAST PLANES OF SATELLITES IN A HIGH-RESOLUTION SIMULATION OF THE LOCAL GROUP: COMPARISON TO ANDROMEDA

    International Nuclear Information System (INIS)

    Gillet, N.; Ocvirk, P.; Aubert, D.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2015-01-01

    We search for vast planes of satellites (VPoS) in a high-resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of previous similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modeling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurrence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating, with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al. However, the latter is slightly richer in satellites, slightly thinner, and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we find are generally dominated by one real structure forming its backbone, they are also partly fortuitous and are thus not kinematically coherent structures as a whole. Provided that the simulated and observed planes of satellites are indeed of the same nature, our results suggest that the VPoS of M31 is not a coherent disk and that one-third to one-half of its satellites must have large proper motions perpendicular to the plane

  7. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  8. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gu Songxiang; Kyprianou, Iacovos [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD (United States); Gupta, Rajiv, E-mail: songxiang.gu@fda.hhs.gov, E-mail: rgupta1@partners.org, E-mail: iacovos.kyprianou@fda.hhs.gov [Massachusetts General Hospital, Boston, MA (United States)

    2011-09-21

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  9. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    International Nuclear Information System (INIS)

    Gu Songxiang; Kyprianou, Iacovos; Gupta, Rajiv

    2011-01-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  10. Adaptive resolution simulation of salt solutions

    International Nuclear Information System (INIS)

    Bevc, Staš; Praprotnik, Matej; Junghans, Christoph; Kremer, Kurt

    2013-01-01

    We present an adaptive resolution simulation of aqueous salt (NaCl) solutions at ambient conditions using the adaptive resolution scheme. Our multiscale approach concurrently couples the atomistic and coarse-grained models of the aqueous NaCl, where water molecules and ions change their resolution while moving from one resolution domain to the other. We employ standard extended simple point charge (SPC/E) and simple point charge (SPC) water models in combination with AMBER and GROMOS force fields for ion interactions in the atomistic domain. Electrostatics in our model are described by the generalized reaction field method. The effective interactions for water–water and water–ion interactions in the coarse-grained model are derived using structure-based coarse-graining approach while the Coulomb interactions between ions are appropriately screened. To ensure an even distribution of water molecules and ions across the simulation box we employ thermodynamic forces. We demonstrate that the equilibrium structural, e.g. radial distribution functions and density distributions of all the species, and dynamical properties are correctly reproduced by our adaptive resolution method. Our multiscale approach, which is general and can be used for any classical non-polarizable force-field and/or types of ions, will significantly speed up biomolecular simulation involving aqueous salt. (paper)

  11. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  12. The Impact of High-Resolution Sea Surface Temperatures on the Simulated Nocturnal Florida Marine Boundary Layer

    Science.gov (United States)

    LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.

    2008-01-01

    High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.

  13. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, Nicolas; El Tayeb El Obied, Khalid; Kalkman, Jeroen; Lammertink, Rob G.H.; van Leeuwen, Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the

  14. High-resolution WRF-LES simulations for real episodes: A case study for prealpine terrain

    Science.gov (United States)

    Hald, Cornelius; Mauder, Matthias; Laux, Patrick; Kunstmann, Harald

    2017-04-01

    While in most large or regional scale weather and climate models turbulence is parametrized, LES (Large Eddy Simulation) allows for the explicit modeling of turbulent structures in the atmosphere. With the exponential growth in available computing power the technique has become more and more applicable, yet it has mostly been used to model idealized scenarios. It is investigated how well WRF-LES can represent small scale weather patterns. The results are evaluated against different hydrometeorological measurements. We use WRF-LES to model the diurnal cycle for a 48 hour episode in summer over moderately complex terrain in southern Germany. The model setup uses a high resolution digital elevation model, land use and vegetation map. The atmospheric boundary conditions are set by reanalysis data. Schemes for radiation and microphysics and a land-surface model are employed. The biggest challenge in modeling arises from the high horizontal resolution of dx = 30m, since the subgrid-scale model then requires a vertical resolution dz ≈ 10m for optimal results. We observe model instabilities and present solutions like smoothing of the surface input data, careful positioning of the model domain and shortening of the model time step down to a twentieth of a second. Model results are compared to an array of various instruments including eddy covariance stations, LIDAR, RASS, SODAR, weather stations and unmanned aerial vehicles. All instruments are part of the TERENO pre-Alpine area and were employed in the orchestrated measurement campaign ScaleX in July 2015. Examination of the results show reasonable agreement between model and measurements in temperature- and moisture profiles. Modeled wind profiles are highly dependent on the vertical resolution and are in accordance with measurements only at higher wind speeds. A direct comparison of turbulence is made difficult by the purely statistical character of turbulent motions in the model.

  15. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    Science.gov (United States)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  16. Using Instrument Simulators and a Satellite Database to Evaluate Microphysical Assumptions in High-Resolution Simulations of Hurricane Rita

    Science.gov (United States)

    Hristova-Veleva, S. M.; Chao, Y.; Chau, A. H.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Martin, J. M.; Poulsen, W. L.; Rodriguez, E.; Stiles, B. W.; Turk, J.; Vu, Q.

    2009-12-01

    Improving forecasting of hurricane intensity remains a significant challenge for the research and operational communities. Many factors determine a tropical cyclone’s intensity. Ultimately, though, intensity is dependent on the magnitude and distribution of the latent heating that accompanies the hydrometeor production during the convective process. Hence, the microphysical processes and their representation in hurricane models are of crucial importance for accurately simulating hurricane intensity and evolution. The accurate modeling of the microphysical processes becomes increasingly important when running high-resolution models that should properly reflect the convective processes in the hurricane eyewall. There are many microphysical parameterizations available today. However, evaluating their performance and selecting the most representative ones remains a challenge. Several field campaigns were focused on collecting in situ microphysical observations to help distinguish between different modeling approaches and improve on the most promising ones. However, these point measurements cannot adequately reflect the space and time correlations characteristic of the convective processes. An alternative approach to evaluating microphysical assumptions is to use multi-parameter remote sensing observations of the 3D storm structure and evolution. In doing so, we could compare modeled to retrieved geophysical parameters. The satellite retrievals, however, carry their own uncertainty. To increase the fidelity of the microphysical evaluation results, we can use instrument simulators to produce satellite observables from the model fields and compare to the observed. This presentation will illustrate how instrument simulators can be used to discriminate between different microphysical assumptions. We will compare and contrast the members of high-resolution ensemble WRF model simulations of Hurricane Rita (2005), each member reflecting different microphysical assumptions

  17. CHASM Challenge Problem: Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Keasler, J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gokhale, M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-09-10

    Computer simulations of many science and engineering problems require modeling the equations of hydrodynamics which describe the motion of materials relative to each other induced by various forces. Many important DoD simulation problems involve complex multi-material systems that undergo large deformations. Examples include the analysis of armor defense, penetration mechanics, blast effects, structural integrity, and conventional munitions such as shaped charges and explosively formed projectiles. Indeed, the original motivation for developing codes that solve the equations of hydrodynamics, herein referred to as “hydrocodes”, was to solve problems with defense applications. The FY2010 Requirements Analysis Report issued by the DoD High Performance Computing Modernization Program (HPCMP) Office shows that a major portion of DoD HPC activities involves hydrocodes [HPCMP2010]. The report surveyed 496 projects across the Services and various Agencies, representing 4,050 HPCMP users at more than 125 locations, including government, contractors, and academia, and grouped each project into one of ten categories.

  18. Magneto-Hydrodynamic Simulations of a Magnetic Flux Compression Generator Using ALE3D

    Science.gov (United States)

    2017-07-01

    3 Fig. 3 Half- plane view of the geometry used in ALE3D simulation showing the materials...to LLNL’s SESAME data.8 Fig. 3 Half- plane view of the geometry used in ALE3D simulation showing the materials There are 2 broad approaches to...of mesh can be time- consuming . Since MFCGs have a cylindrical geometry, a high-resolution mesh is not required; one can use a conformal mesh and

  19. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  20. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  1. Simulating high spatial resolution high severity burned area in Sierra Nevada forests for California Spotted Owl habitat climate change risk assessment and management.

    Science.gov (United States)

    Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.

    2017-12-01

    Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.

  2. Hydrodynamic suppression of phase separation in active suspensions.

    Science.gov (United States)

    Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M

    2014-09-01

    We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.

  3. Comparing semi-analytic particle tagging and hydrodynamical simulations of the Milky Way's stellar halo

    Science.gov (United States)

    Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos S.; Le Bret, Theo; Pontzen, Andrew

    2017-08-01

    Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the technique developed by Cooper et al. (which we call stings here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by ≲10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases, this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.

  4. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Science.gov (United States)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  5. HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT

    International Nuclear Information System (INIS)

    Nonaka, A.; Aspden, A. J.; Almgren, A. S.; Bell, J. B.; Zingale, M.; Woosley, S. E.

    2012-01-01

    We extend our previous three-dimensional, full-star simulations of the final hours of convection preceding ignition in Type Ia supernovae to higher resolution using the adaptive mesh refinement capability of our low Mach number code, MAESTRO. We report the statistics of the ignition of the first flame at an effective 4.34 km resolution and general flow field properties at an effective 2.17 km resolution. We find that off-center ignition is likely, with radius of 50 km most favored and a likely range of 40-75 km. This is consistent with our previous coarser (8.68 km resolution) simulations, implying that we have achieved sufficient resolution in our determination of likely ignition radii. The dynamics of the last few hot spots preceding ignition suggest that a multiple ignition scenario is not likely. With improved resolution, we can more clearly see the general flow pattern in the convective region, characterized by a strong outward plume with a lower speed recirculation. We show that the convective core is turbulent with a Kolmogorov spectrum and has a lower turbulent intensity and larger integral length scale than previously thought (on the order of 16 km s –1 and 200 km, respectively), and we discuss the potential consequences for the first flames.

  6. Simulation of synoptic and sub-synoptic phenomena over East Africa and Arabian Peninsula for current and future climate using a high resolution AGCM

    KAUST Repository

    Raj, Jerry

    2015-04-01

    Climate regimes of East Africa and Arabia are complex and are poorly understood. East Africa has large-scale tropical controls like major convergence zones and air streams. The region is in the proximity of two monsoons, north-east and south-west, and the humid and thermally unstable Congo air stream. The domain comprises regions with one, two, and three rainfall maxima, and the rainfall pattern over this region has high spatial variability. To explore the synoptic and sub-synoptic phenomena that drive the climate of the region we conducted climate simulations using a high resolution Atmospheric General Circulation Model (AGCM), GFDL\\'s High Resolution Atmospheric Model (HiRAM). Historic simulations (1975-2004) and future projections (2007-2050), with both RCP 4.5 and RCP 8.5 pathways, were performed according to CORDEX standard. The sea surface temperature (SST) was prescribed from the 2°x2.5° latitude-longitude resolution GFDL Earth System Model runs of IPCC AR5, as bottom boundary condition over the ocean. Our simulations were conducted at a horizontal grid spacing of 25 km, which is an ample resolution for regional climate simulation. In comparison with the regional models, global HiRAM has the advantage of accounting for two-way interaction between regional and global scale processes. Our initial results show that HiRAM simulations for historic period well reproduce the regional climate in East Africa and the Arabian Peninsula with their complex interplay of regional and global processes. Our future projections indicate warming and increased precipitation over the Ethiopian highlands and the Greater Horn of Africa. We found significant regional differences between RCP 4.5 and RCP 8.5 projections, e.g., west coast of the Arabian Peninsula, show anomalies of opposite signs in these two simulations.

  7. Simulation of high-resolution MFM tip using exchange-spring magnet

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan)]. E-mail: hsaito@ipc.akita-u.ac.jp; Yatsuyanagi, D. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan); Ishio, S. [Faculty of Resource Science and Engineering, Akita University, Akita 010-8502 (Japan); Ito, A. [Nitto Optical Co. Ltd., Misato, Akita 019-1403 (Japan); Kawamura, H. [Nitto Optical Co. Ltd., Misato, Akita 019-1403 (Japan); Ise, K. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan); Taguchi, K. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan); Takahashi, S. [Research Institute of Advanced Technology Akita, Akita 010-1623 (Japan)

    2007-03-15

    The transfer function of magnetic force microscope (MFM) tips using an exchange-spring trilayer composed of a centered soft magnetic layer and two hard magnetic layers was calculated and the resolution was estimated by considering the thermodynamic noise limit of an MFM cantilever. It was found that reducing the thickness of the centered soft magnetic layer and the magnetization of hard magnetic layer are important to obtain high resolution. Tips using an exchange-spring trilayer with a very thin FeCo layer and isotropic hard magnetic layers, such as CoPt and FePt, are found to be suitable for obtaining a resolution less than 10 nm at room temperature.

  8. Uncertainty of global summer precipitation in the CMIP5 models: a comparison between high-resolution and low-resolution models

    Science.gov (United States)

    Huang, Danqing; Yan, Peiwen; Zhu, Jian; Zhang, Yaocun; Kuang, Xueyuan; Cheng, Jing

    2018-04-01

    The uncertainty of global summer precipitation simulated by the 23 CMIP5 CGCMs and the possible impacts of model resolutions are investigated in this study. Large uncertainties exist over the tropical and subtropical regions, which can be mainly attributed to convective precipitation simulation. High-resolution models (HRMs) and low-resolution models (LRMs) are further investigated to demonstrate their different contributions to the uncertainties of the ensemble mean. It shows that the high-resolution model ensemble means (HMME) and low-resolution model ensemble mean (LMME) mitigate the biases between the MME and observation over most continents and oceans, respectively. The HMME simulates more precipitation than the LMME over most oceans, but less precipitation over some continents. The dominant precipitation category in the HRMs (LRMs) is the heavy precipitation (moderate precipitation) over the tropic regions. The combinations of convective and stratiform precipitation are also quite different: the HMME has much higher ratio of stratiform precipitation while the LMME has more convective precipitation. Finally, differences in precipitation between the HMME and LMME can be traced to their differences in the SST simulations via the local and remote air-sea interaction.

  9. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  10. Concatenating algorithms for parallel numerical simulations coupling radiation hydrodynamics with neutron transport

    International Nuclear Information System (INIS)

    Mo Zeyao

    2004-11-01

    Multiphysics parallel numerical simulations are usually essential to simplify researches on complex physical phenomena in which several physics are tightly coupled. It is very important on how to concatenate those coupled physics for fully scalable parallel simulation. Meanwhile, three objectives should be balanced, the first is efficient data transfer among simulations, the second and the third are efficient parallel executions and simultaneously developments of those simulation codes. Two concatenating algorithms for multiphysics parallel numerical simulations coupling radiation hydrodynamics with neutron transport on unstructured grid are presented. The first algorithm, Fully Loosely Concatenation (FLC), focuses on the independence of code development and the independence running with optimal performance of code. The second algorithm. Two Level Tightly Concatenation (TLTC), focuses on the optimal tradeoffs among above three objectives. Theoretical analyses for communicational complexity and parallel numerical experiments on hundreds of processors on two parallel machines have showed that these two algorithms are efficient and can be generalized to other multiphysics parallel numerical simulations. In especial, algorithm TLTC is linearly scalable and has achieved the optimal parallel performance. (authors)

  11. Resolution of hydrodynamical equations for transverse expansions

    International Nuclear Information System (INIS)

    Hama, Y.; Pottag, F.W.

    1984-01-01

    The three-dimensional hydrodynamical expansion is treated with a method similar to that of Milekhin, but more explicit. Although in the final stage one have to appeal to numerical calculation, the partial differential equations governing the transverse expansions are treated without transforming them into ordinary equations with an introduction of averaged quantities. It is only concerned with the formalism and the numerical results will be given in the next paper. (Author) [pt

  12. Resolution of hydrodynamical equations for transverse expansions

    International Nuclear Information System (INIS)

    Hama, Y.; Pottag, F.W.

    1985-01-01

    The three-dimensional hydrodynamical expansion is treated with a method similar to that of Milekhin, but more explicit. Although in the final stage we have to appeal to numerical calculation, the partial differential equations governing the transverse expansions are treated without transforming them into ordinary equations with an introduction of averaged quantities. The present paper is concerned with the formalism and the numerical results will be reported in another paper. (Author) [pt

  13. Simulation of impact ballistic of Cu-10wt%Sn frangible bullet using smoothed particle hydrodynamics

    Science.gov (United States)

    Hidayat, Mas Irfan P.; Widyastuti, Simaremare, Peniel

    2018-04-01

    Frangible bullet is designed to disintegrate upon impact against a hard target. Understanding the impact response and performance of frangible bullet is therefore of highly interest. In this paper, simulation of impact ballistic of Cu-IOwt%Sn frangible bullet using smoothed particle hydrodynamics (SPH) method is presented. The frangible bullet is impacted against a hard, cylindrical stainless steel target. Effect of variability of the frangible bullet material properties due to the variation of sintering temperature in its manufacturing process to the bullet frangibility factor (FF) is investigated numerically. In addition, the bullet kinetic energy during impact as well as its ricochet and fragmentation are also examined and simulated. Failure criterion based upon maximum strain is employed in the simulation. It is shown that the SPH simulation can produce good estimation for kinetic energy of bullet after impact, thus giving the FF prediction with respect to the variation of frangible bullet material properties. In comparison to explicit finite element (FE) simulation, in which only material/element deletion is shown, convenience in showing frangible bullet fragmentation is shown using the SPH simulation. As a result, the effect of sintering temperature to the way of the frangible bullet fragmented can be also observed clearly.

  14. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    International Nuclear Information System (INIS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-01-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point

  15. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  16. High-resolution model for the simulation of the activity distribution and radiation field at the German FRJ-2 research reactor

    International Nuclear Information System (INIS)

    Winter, D.; Haeussler, A.; Abbasi, F.; Simons, F.; Nabbi, R.; Thomauske, B.

    2013-01-01

    F or the decommissioning of nuclear facilities in Germany, activity and dose rate atlases (ADAs) are required for the approval of the domestic regulatory authority. Thus, high detailed modeling efforts are demanded in order to optimize the quantification and the characterization of nuclear waste as well as to realize optimum radiation protection. For the generation of ADAs, computer codes based on the Monte-Carlo method are increasingly employed because of their potential for high resolution simulation of the neutron and gamma transport for activity and dose rate predictions, respectively. However, the demand on the modeling effort and the simulation time increases with the size and the complexity of the whole model that becomes a limiting factor. For instance, the German FRJ-2 research reactor consisting of a complex reactor core, the graphite reflector, and the adjacent thermal and biological shielding structures represents such a case. For the solving of this drawback, various techniques such as variance reduction methods are applied. A further simple but effective approach is the modeling of the regions of interest with appropriate boundary conditions e.g. surface source or reflective surfaces. In the framework of the existing research a high sophisticated simulation tool is developed which is characterized by: - CAD-based model generation for Monte-Carlo transport simulations; - Production and 3D visualization of high resolution activity and dose rate atlases; - Application of coupling routines and interface structures for optimum and automated simulations. The whole simulation system is based on the Monte-Carlo code MCNP5 and the depletion/activation code ORIGEN2. The numerical and computational efficiency of the proposed methods is discussed in this paper on the basis of the simulation and CAD-based model of the FRJ-2 research reactor with emphasis on the effect of variance reduction methods. (orig.)

  17. High-resolution model for the simulation of the activity distribution and radiation field at the German FRJ-2 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winter, D.; Haeussler, A.; Abbasi, F.; Simons, F.; Nabbi, R.; Thomauske, B. [RWTH Aachen Univ. (Germany). Inst. of Nuclear Fuel Cycle; Damm, G. [Research Center Juelich (Germany)

    2013-11-15

    F or the decommissioning of nuclear facilities in Germany, activity and dose rate atlases (ADAs) are required for the approval of the domestic regulatory authority. Thus, high detailed modeling efforts are demanded in order to optimize the quantification and the characterization of nuclear waste as well as to realize optimum radiation protection. For the generation of ADAs, computer codes based on the Monte-Carlo method are increasingly employed because of their potential for high resolution simulation of the neutron and gamma transport for activity and dose rate predictions, respectively. However, the demand on the modeling effort and the simulation time increases with the size and the complexity of the whole model that becomes a limiting factor. For instance, the German FRJ-2 research reactor consisting of a complex reactor core, the graphite reflector, and the adjacent thermal and biological shielding structures represents such a case. For the solving of this drawback, various techniques such as variance reduction methods are applied. A further simple but effective approach is the modeling of the regions of interest with appropriate boundary conditions e.g. surface source or reflective surfaces. In the framework of the existing research a high sophisticated simulation tool is developed which is characterized by: - CAD-based model generation for Monte-Carlo transport simulations; - Production and 3D visualization of high resolution activity and dose rate atlases; - Application of coupling routines and interface structures for optimum and automated simulations. The whole simulation system is based on the Monte-Carlo code MCNP5 and the depletion/activation code ORIGEN2. The numerical and computational efficiency of the proposed methods is discussed in this paper on the basis of the simulation and CAD-based model of the FRJ-2 research reactor with emphasis on the effect of variance reduction methods. (orig.)

  18. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations

    Energy Technology Data Exchange (ETDEWEB)

    Di Luca, Alejandro; Laprise, Rene [Universite du Quebec a Montreal (UQAM), Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Departement des Sciences de la Terre et de l' Atmosphere, PK-6530, Succ. Centre-ville, B.P. 8888, Montreal, QC (Canada); De Elia, Ramon [Universite du Quebec a Montreal, Ouranos Consortium, Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal (Canada)

    2012-03-15

    Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions. (orig.)

  19. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  20. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    Directory of Open Access Journals (Sweden)

    D. T. McCoy

    2018-04-01

    Full Text Available Aerosol–cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol–cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC. Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP. When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6–8.3 Wm−2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  1. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  2. Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations

    Science.gov (United States)

    Bordwell, B. R.; Brown, B. P.; Oishi, J.

    2016-12-01

    A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.

  3. Simulation of coupled geochemical reactions and hydrodynamical processes in porous media - application to CO2 storage and uranium exploitation

    International Nuclear Information System (INIS)

    Lagneau, Vincent

    2013-01-01

    This report is a snapshot after sixteen years of research in the field of reactive transport, since the beginning of my Ph.D. in 1997. The research revolves around two poles: on the one hand the development of the reactive transport code Hytec, on the other hand application of the code in different fields of the Earth Sciences. The first two parts of the report detail several key points from this research work, most of them published or being published, following the dual development/application logic. The last part opens towards interesting future work. Development of a reactive transport code: The first part, mostly numeric analysis, details the main features of the code Hytec, in which I have been heavily involved since I joined the laboratory. The underlying equations of the model are given. The resolution methods rely on a finite volume discretization over a Voronoi mesh for the whole hydrodynamic part (flow, transport, heat). Coupling between chemistry and transport is performed through a sequential iterative scheme. Specific developments are then presented. The feedback of chemistry on transport requires specific coupling treatment to ensure convergence to the correct solution: the effects need to be taken care of within the coupling iterations. Dual porosity simulation can be elegantly simulated by duplicating the chemical nodes. Integrating the simulation of gases have implications on the flow (simultaneous resolution of the pressure and saturation equations), and transport-solver (species in the gas phase independently of the water phase), and finally coupling with chemistry and gas-water equilibrium. Applications The Hytec code is used in various domains of the Earth Sciences, in and out our laboratory notably by the members of the consortium Pole Geochimie Transport (Reactive transport group). The document details two families of applications I have been particularly interested in over these years. The geologic storage of CO 2 is a potential technology

  4. Hydrodynamics of AHWR gravity driven water pool under simulated LOCA conditions

    International Nuclear Information System (INIS)

    Thangamani, I.; Verma, Vishnu; Ali, Seik Mansoor

    2015-01-01

    The Advanced Heavy Water Reactor (AHWR) employs a double containment concept with a large inventory of water within the Gravity Driven Water Pool (GDWP) located at a high elevation within the primary containment building. GDWP performs several important safety functions in a passive manner, and hence it is essential to understand the hydrodynamics that this pool will be subjected to in case of an accident such as LOCA. In this paper, a detailed thermal hydraulic analysis for AHWR containment transients is presented for postulated LOCA scenarios involving RIH break sizes ranging from 2% to 50%. The analysis is carried out using in-house containment thermal hydraulics code 'CONTRAN'. The blowdown mass and energy discharge data for each break size, along with the geometrical details of the AHWR containment forms the main input for the analysis. Apart from obtaining the pressure and temperature transients within the containment building, the focus of this work is on simulating the hydrodynamic phenomena of vent clearing and pool swell occurring in the GDWP. The variation of several key parameters such as primary containment V1 and V2 volume pressure, temperature and V1-V2 differential pressure with time, BOP rupture time, vent clearing velocity, effect of pool swell on the V2 air-space pressure, GDWP water level etc. are discussed in detail and important findings are highlighted. Further, the effect of neglecting the pool swell phenomenon on the containment transients is also clearly brought out by a comparative study. The numerical studies presented in this paper give insight into containment transients that would be useful to both the system designer as well as the regulator. (author)

  5. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution

    International Nuclear Information System (INIS)

    Ali, Muhammad; Pages, Emeline; Ducom, Alexandre; Fontaine, Aurelien; Guillemot, Fabien

    2014-01-01

    Laser-assisted bioprinting is a versatile, non-contact, nozzle-free printing technique which has demonstrated high potential for cell printing with high resolution. Improving cell viability requires determining printing conditions which minimize shear stress for cells within the jet and cell impact at droplet landing. In this context, this study deals with laser-induced jet dynamics to determine conditions from which jets arise with minimum kinetic energies. The transition from a sub-threshold regime to jetting regime has been associated with a geometrical parameter (vertex angle) which can be harnessed to print mesenchymal stem cells with high viability using slow jet conditions. Finally, hydrodynamic jet stability is also studied for higher laser pulse energies which give rise to supersonic but turbulent jets. (paper)

  6. Shadowfax: Moving mesh hydrodynamical integration code

    Science.gov (United States)

    Vandenbroucke, Bert

    2016-05-01

    Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

  7. Real-time haptic cutting of high-resolution soft tissues.

    Science.gov (United States)

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  8. Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms

    KAUST Repository

    Staal, Marc

    2017-08-15

    Biofilms develop in heterogeneous patterns at a µm scale up to a cm scale, and patterns become more pronounced when biofilms develop under complex hydrodynamic flow regimes. Spatially heterogeneous biofilms are especially known in spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane filtration systems used for desalination and wastewater reuse to produce high quality (drinking) water. These spiral wound membrane modules contain mesh-like spacer structures used to create an intermembrane space and improve water mixing. Spacers create inhomogeneous water flow patterns resulting in zones favouring biofilm growth, possibly leading to biofouling thus hampering water production. Oxygen sensing planar optodes were used to visualize variations in oxygen decrease rates (ODR). ODR is an indication of biofilm activity. In this study, ODR images of multiple repetitive spacer areas in a membrane fouling simulator were averaged to produce high resolution, low noise ODR images. Averaging 40 individual spacer areas improved the ODR distribution image significantly and allowed comparison of biofilm patterning over a spacer structure at different positions in an RO filter. This method clearly showed that most active biofilm accumulated on and in direct vicinity of the spacer. The averaging method was also used to calculate the deviation of ODR patterning from individual spacer areas to the average ODR pattern, proposing a new approach to determine biofilm spatial heterogeneity. This study showed that the averaging method can be applied and that the improved, averaged ODR images can be used as an analytical, in-situ, non-destructive method to assess and quantify the effect of membrane installation operational parameters or different spacer geometries on biofilm development in spiral wound membrane systems characterized by complex hydrodynamic conditions.

  9. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  10. Hydrodynamic relaxations in dissipative particle dynamics

    Science.gov (United States)

    Hansen, J. S.; Greenfield, Michael L.; Dyre, Jeppe C.

    2018-01-01

    This paper studies the dynamics of relaxation phenomena in the standard dissipative particle dynamics (DPD) model [R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997)]. Using fluctuating hydrodynamics as the framework of the investigation, we focus on the collective transverse and longitudinal dynamics. It is shown that classical hydrodynamic theory predicts the transverse dynamics at relatively low temperatures very well when compared to simulation data; however, the theory predictions are, on the same length scale, less accurate for higher temperatures. The agreement with hydrodynamics depends on the definition of the viscosity, and here we find that the transverse dynamics are independent of the dissipative and random shear force contributions to the stress. For high temperatures, the spectrum for the longitudinal dynamics is dominated by the Brillouin peak for large length scales and the relaxation is therefore governed by sound wave propagation and is athermal. This contrasts the results at lower temperatures and small length scale, where the thermal process is clearly present in the spectra. The DPD model, at least qualitatively, re-captures the underlying hydrodynamical mechanisms, and quantitative agreement is excellent at intermediate temperatures for the transverse dynamics.

  11. A new method to assess the added value of high-resolution regional climate simulations: application to the EURO-CORDEX dataset

    Science.gov (United States)

    Soares, P. M. M.; Cardoso, R. M.

    2017-12-01

    Regional climate models (RCM) are used with increasing resolutions pursuing to represent in an improved way regional to local scale atmospheric phenomena. The EURO-CORDEX simulations at 0.11° and simulations exploiting finer grid spacing approaching the convective-permitting regimes are representative examples. The climate runs are computationally very demanding and do not always show improvements. These depend on the region, variable and object of study. The gains or losses associated with the use of higher resolution in relation to the forcing model (global climate model or reanalysis), or to different resolution RCM simulations, is known as added value. Its characterization is a long-standing issue, and many different added-value measures have been proposed. In the current paper, a new method is proposed to assess the added value of finer resolution simulations, in comparison to its forcing data or coarser resolution counterparts. This approach builds on a probability density function (PDF) matching score, giving a normalised measure of the difference between diverse resolution PDFs, mediated by the observational ones. The distribution added value (DAV) is an objective added value measure that can be applied to any variable, region or temporal scale, from hindcast or historical (non-synchronous) simulations. The DAVs metric and an application to the EURO-CORDEX simulations, for daily temperatures and precipitation, are here presented. The EURO-CORDEX simulations at both resolutions (0.44o,0.11o) display a clear added value in relation to ERA-Interim, with values around 30% in summer and 20% in the intermediate seasons, for precipitation. When both RCM resolutions are directly compared the added value is limited. The regions with the larger precipitation DAVs are areas where convection is relevant, e.g. Alps and Iberia. When looking at the extreme precipitation PDF tail, the higher resolution improvement is generally greater than the low resolution for seasons

  12. High-resolution RCMs as pioneers for future GCMs

    Science.gov (United States)

    Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.

    2017-12-01

    Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data

  13. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Manisha Bal

    2017-12-01

    Full Text Available The filtered containment venting system (FCVS is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD has been used to predict the hydrodynamic behaviour of a newly designed venturi scrubber. Mesh was developed by gambit 2.4.6 and ansys fluent 15 has been used to predict the pressure drop profile inside the venturi scrubber under various flow conditions. The Reynolds Renormalization Group (RNG k-ε turbulence model and the volume of the fluid (VOF were employed for this simulation. The effect of throat gas velocity, liquid mass flow rate, and liquid loading on pressure drop was studied. Maximum pressure drop 2064.34 pa was achieved at the throat gas velocity of 60 m/s and liquid flow rate of 0.033 kg/s and minimum pressure drop 373.51 pa was achieved at the throat gas velocity of 24 m/s and liquid flow rate of 0.016 kg/s. The results of the present study will assist for proper functioning of venturi scrubber. Keywords: Venturi scrubber, Hydrodynamics, Pressure drop, Computational fluid dynamics, Nuclear power plant safety, Flow prediction

  14. Efficient adiabatic hydrodynamical simulations of the high-redshift intergalactic medium

    Science.gov (United States)

    Gaikwad, Prakash; Choudhury, Tirthankar Roy; Srianand, Raghunathan; Khaire, Vikram

    2018-02-01

    We present a post-processing tool for GADGET-2 adiabatic simulations to model various observed properties of the Ly α forest at 2.5 ≤ z ≤ 4 that enables an efficient parameter estimation. In particular, we model the thermal and ionization histories that are not computed self-consistently by default in GADGET-2. We capture the effect of pressure smoothing by running GADGET-2 at an elevated temperature floor and using an appropriate smoothing kernel. We validate our procedure by comparing different statistics derived from our method with those derived using self-consistent simulations with GADGET-3. These statistics are: line-of-sight density field power spectrum, flux probability distribution function, flux power spectrum, wavelet statistics, curvature statistics, H I column density (N_{H I}) distribution function, linewidth (b) distribution and b versus log N_{H I} scatter. For the temperature floor of 104 K and typical signal-to-noise ratio of 25, the results agree well within 20 per cent of the self-consistent GADGET-3 simulation. However, this difference is smaller than the expected 1σ sample variance for an absorption path length of ˜5.35 at z = 3. Moreover for a given cosmology, we gain a factor of ˜N in computing time for modelling the intergalactic medium under N ≫ 1 different thermal histories. In addition, our method allows us to simulate the non-equilibrium evolution of thermal and ionization state of the gas and include heating due to non-standard sources like cosmic rays and high-energy γ-rays from Blazars.

  15. High-resolution nested model simulations of the climatological circulation in the southeastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    S. Brenner

    2003-01-01

    Full Text Available As part of the Mediterranean Forecasting System Pilot Project (MFSPP we have implemented a high-resolution (2 km horizontal grid, 30 sigma levels version of the Princeton Ocean Model for the southeastern corner of the Mediterranean Sea. The domain extends 200 km offshore and includes the continental shelf and slope, and part of the open sea. The model is nested in an intermediate resolution (5.5 km grid model that covers the entire Levantine, Ionian, and Aegean Sea. The nesting is one way so that velocity, temperature, and salinity along the boundaries are interpolated from the relevant intermediate model variables. An integral constraint is applied so that the net mass flux across the open boundaries is identical to the net flux in the intermediate model. The model is integrated for three perpetual years with surface forcing specified from monthly mean climatological wind stress and heat fluxes. The model is stable and spins up within the first year to produce a repeating seasonal cycle throughout the three-year integration period. While there is some internal variability evident in the results, it is clear that, due to the relatively small domain, the results are strongly influenced by the imposed lateral boundary conditions. The results closely follow the simulation of the intermediate model. The main improvement is in the simulation over the narrow shelf region, which is not adequately resolved by the coarser grid model. Comparisons with direct current measurements over the shelf and slope show reasonable agreement despite the limitations of the climatological forcing. The model correctly simulates the direction and the typical speeds of the flow over the shelf and slope, but has difficulty properly re-producing the seasonal cycle in the speed.Key words. Oceanography: general (continental shelf processes; numerical modelling; ocean prediction

  16. Feasibility of High-Resolution Soil Erosion Measurements by Means of Rainfall Simulations and SfM Photogrammetry

    Directory of Open Access Journals (Sweden)

    Phoebe Hänsel

    2016-11-01

    Full Text Available The silty soils of the intensively used agricultural landscape of the Saxon loess province, eastern Germany, are very prone to soil erosion, mainly caused by water erosion. Rainfall simulations, and also increasingly structure-from-motion (SfM photogrammetry, are used as methods in soil erosion research not only to assess soil erosion by water, but also to quantify soil loss. This study aims to validate SfM photogrammetry determined soil loss estimations with rainfall simulations measurements. Rainfall simulations were performed at three agricultural sites in central Saxony. Besides the measured data runoff and soil loss by sampling (in mm, terrestrial images were taken from the plots with digital cameras before and after the rainfall simulation. Subsequently, SfM photogrammetry was used to reconstruct soil surface changes due to soil erosion in terms of high resolution digital elevation models (DEMs for the pre- and post-event (resolution 1 × 1 mm. By multi-temporal change detection, the digital elevation model of difference (DoD and an averaged soil loss (in mm is received, which was compared to the soil loss by sampling. Soil loss by DoD was higher than soil loss by sampling. The method of SfM photogrammetry-determined soil loss estimations also include a comparison of three different ground control point (GCP approaches, revealing that the most complex one delivers the most reliable soil loss by DoD. Additionally, soil bulk density changes and splash erosion beyond the plot were measured during the rainfall simulation experiments in order to separate these processes and associated surface changes from the soil loss by DoD. Furthermore, splash was negligibly small, whereas higher soil densities after the rainfall simulations indicated soil compaction. By means of calculated soil surface changes due to soil compaction, the soil loss by DoD achieved approximately the same value as the soil loss by rainfall simulation.

  17. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    Science.gov (United States)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  18. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  19. A hybrid model for coupling kinetic corrections of fusion reactivity to hydrodynamic implosion simulations

    Science.gov (United States)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-03-01

    Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.

  20. High efficiency hydrodynamic DNA fragmentation in a bubbling system

    NARCIS (Netherlands)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; Van Den Berg, Albert; Eijkel, Jan C.T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling

  1. Particle simulation of 3D galactic hydrodynamics on the ICL DAP

    International Nuclear Information System (INIS)

    Johns, T.C.; Nelson, A.H.

    1985-01-01

    A non-self-gravitating galactic hydrodynamics code based on a quasi-particle technique and making use of a mesh for force evaluation and sorting purposes is described. The short-range nature of the interparticle pressure forces, coupled with the use of a mesh allows a particularly fast algorithm. The 3D representation of the galaxy is mapped onto the ''3D'' main store of ICL DAP in a natural way, the 2 spatial dimensions in the plane of the galaxy becoming the 2 dimensions of the processor plane on the DAP and the third dimension varying within individual processor storage elements. This leads to a fairly straightforward implementation and a high degree of parallelism in the crucial parts of the code. The particle shuffling which is necessary after each timestep is facilitated by the use of a parallel variant of the bitonic sorting algorithm. Some results of simulations using a 63x63x16 mesh and about 50,000 particles to follow the evolution of a model disk galaxy are presented

  2. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    Science.gov (United States)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  3. High-resolution flood modeling of urban areas using MSN_Flood

    Directory of Open Access Journals (Sweden)

    Michael Hartnett

    2017-07-01

    Full Text Available Although existing hydraulic models have been used to simulate and predict urban flooding, most of these models are inadequate due to the high spatial resolution required to simulate flows in urban floodplains. Nesting high-resolution subdomains within coarser-resolution models is an efficient solution for enabling simultaneous calculation of flooding due to tides, surges, and high river flows. MSN_Flood has been developed to incorporate moving boundaries around nested domains, permitting alternate flooding and drying along the boundary and in the interior of the domain. Ghost cells adjacent to open boundary cells convert open boundaries, in effect, into internal boundaries. The moving boundary may be multi-segmented and non-continuous, with recirculating flow across the boundary. When combined with a bespoke adaptive interpolation scheme, this approach facilitates a dynamic internal boundary. Based on an alternating-direction semi-implicit finite difference scheme, MSN_Flood was used to hindcast a major flood event in Cork City resulting from the combined pressures of fluvial, tidal, and storm surge processes. The results show that the model is computationally efficient, as the 2-m high-resolution nest is used only in the urban flooded region. Elsewhere, lower-resolution nests are used. The results also show that the model is highly accurate when compared with measured data. The model is capable of incorporating nested sub-domains when the nested boundary is multi-segmented and highly complex with lateral gradients of elevation and velocities. This is a major benefit when modelling urban floodplains at very high resolution.

  4. Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements

    Science.gov (United States)

    Goto, Daisuke; Sato, Yousuke; Yashiro, Hisashi; Suzuki, Kentaroh; Nakajima, Teruyuki

    2017-02-01

    A high-performance computing resource allows us to conduct numerical simulations with a horizontal grid spacing that is sufficiently high to resolve cloud systems. The cutting-edge computational capability, which was provided by the K computer at RIKEN in Japan, enabled the authors to perform long-term, global simulations of air pollutions and clouds with unprecedentedly high horizontal resolutions. In this study, a next generation model capable of simulating global air pollutions with O(10 km) grid spacing by coupling an atmospheric chemistry model to the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) was performed. Using the newly developed model, month-long simulations for July were conducted with 14 km grid spacing on the K computer. Regarding the global distributions of aerosol optical thickness (AOT), it was found that the correlation coefficient (CC) between the simulation and AERONET measurements was approximately 0.7, and the normalized mean bias was -10%. The simulated AOT was also compared with satellite-retrieved values; the CC was approximately 0.6. The radiative effects due to each chemical species (dust, sea salt, organics, and sulfate) were also calculated and compared with multiple measurements. As a result, the simulated fluxes of upward shortwave radiation at the top of atmosphere and the surface compared well with the observed values, whereas those of downward shortwave radiation at the surface were underestimated, even if all aerosol components were considered. However, the aerosol radiative effects on the downward shortwave flux at the surface were found to be as high as 10 W/m2 in a global scale; thus, simulated aerosol distributions can strongly affect the simulated air temperature and dynamic circulation.

  5. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    Science.gov (United States)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate

  6. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  7. Variability of wet troposphere delays over inland reservoirs as simulated by a high-resolution regional climate model

    Science.gov (United States)

    Clark, E.; Lettenmaier, D. P.

    2014-12-01

    Satellite radar altimetry is widely used for measuring global sea level variations and, increasingly, water height variations of inland water bodies. Existing satellite radar altimeters measure water surfaces directly below the spacecraft (approximately at nadir). Over the ocean, most of these satellites use radiometry to measure the delay of radar signals caused by water vapor in the atmosphere (also known as the wet troposphere delay (WTD)). However, radiometry can only be used to estimate this delay over the largest inland water bodies, such as the Great Lakes, due to spatial resolution issues. As a result, atmospheric models are typically used to simulate and correct for the WTD at the time of observations. The resolutions of these models are quite coarse, at best about 5000 km2 at 30˚N. The upcoming NASA- and CNES-led Surface Water and Ocean Topography (SWOT) mission, on the other hand, will use interferometric synthetic aperture radar (InSAR) techniques to measure a 120-km-wide swath of the Earth's surface. SWOT is expected to make useful measurements of water surface elevation and extent (and storage change) for inland water bodies at spatial scales as small as 250 m, which is much smaller than current altimetry targets and several orders of magnitude smaller than the models used for wet troposphere corrections. Here, we calculate WTD from very high-resolution (4/3-km to 4-km) simulations of the Weather Research and Forecasting (WRF) regional climate model, and use the results to evaluate spatial variations in WTD. We focus on six U.S. reservoirs: Lake Elwell (MT), Lake Pend Oreille (ID), Upper Klamath Lake (OR), Elephant Butte (NM), Ray Hubbard (TX), and Sam Rayburn (TX). The reservoirs vary in climate, shape, use, and size. Because evaporation from open water impacts local water vapor content, we compare time series of WTD over land and water in the vicinity of each reservoir. To account for resolution effects, we examine the difference in WRF-simulated

  8. DEVELOPMENT OF A HYDRODYNAMIC MODEL OF A HYDROCYCLONE INCLUDING THE SIMULATION OF AIR-CORE EFFECT, USING THE FINITE VOLUME METHOD

    Directory of Open Access Journals (Sweden)

    Gabriel Felipe Aguilera

    2014-07-01

    Full Text Available The hydrocyclone is one of the most used classification equipment in industry, particularly in mineral processing. Maybe its main characteristic is to be a hydrodynamic separation equipment, whereby it has a high production capability and different levels of efficiency are depending on the geometrical configuration, operational parameters and the type of material to be processed. Nevertheless, there are a few successful studies regarding the modelling and simulation of its hydrodynamic principles, because the flow behavior inside is quite complex. Most of the current models are empirical and they are not applicable to all cases and types of minerals. One of the most important problems to be solved, besides the cut size and the effect of the physical properties of the particles, is the distribution of the flow inside the hydrocyclone, because if the work of the equipment is at low slurry densities, very clear for small hydrocyclones, its mechanic behavior is a consequence of the kind of liquid used as continuous phase, being water the most common liquid. This work shows the modelling and simulation of the hydrodynamic behavior of a suspension inside a hydrocyclone, including the air core effect, through the use of finite differences method. For the developing of the model, the Reynolds Stress Model (RSM for the evaluation of turbulence, and the Volume of Fluid (VOF to study the interaction between water and air were used. Finally, the model shows to be significant for experimental data, and for different conditions of an industrial plant.

  9. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    Science.gov (United States)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  10. Elasto-hydrodynamic lubrication

    CERN Document Server

    Dowson, D; Hopkins, D W

    1977-01-01

    Elasto-Hydrodynamic Lubrication deals with the mechanism of elasto-hydrodynamic lubrication, that is, the lubrication regime in operation over the small areas where machine components are in nominal point or line contact. The lubrication of rigid contacts is discussed, along with the effects of high pressure on the lubricant and bounding solids. The governing equations for the solution of elasto-hydrodynamic problems are presented.Comprised of 13 chapters, this volume begins with an overview of elasto-hydrodynamic lubrication and representation of contacts by cylinders, followed by a discussio

  11. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2016-08-01

    Full Text Available Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet – Macau, EMBEV–Macau, this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other

  12. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    Science.gov (United States)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  13. Hydrodynamic Assists Magnetophoreses Rare Cancer cells Separation in Microchannel Simulation and Experimental Verifications

    Science.gov (United States)

    Saeed, O.; Duru, L.; Yulin, D.

    2018-05-01

    A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.

  14. Pattern recognition issues on anisotropic smoothed particle hydrodynamics

    Science.gov (United States)

    Pereira Marinho, Eraldo

    2014-03-01

    This is a preliminary theoretical discussion on the computational requirements of the state of the art smoothed particle hydrodynamics (SPH) from the optics of pattern recognition and artificial intelligence. It is pointed out in the present paper that, when including anisotropy detection to improve resolution on shock layer, SPH is a very peculiar case of unsupervised machine learning. On the other hand, the free particle nature of SPH opens an opportunity for artificial intelligence to study particles as agents acting in a collaborative framework in which the timed outcomes of a fluid simulation forms a large knowledge base, which might be very attractive in computational astrophysics phenomenological problems like self-propagating star formation.

  15. Pattern recognition issues on anisotropic smoothed particle hydrodynamics

    International Nuclear Information System (INIS)

    Marinho, Eraldo Pereira

    2014-01-01

    This is a preliminary theoretical discussion on the computational requirements of the state of the art smoothed particle hydrodynamics (SPH) from the optics of pattern recognition and artificial intelligence. It is pointed out in the present paper that, when including anisotropy detection to improve resolution on shock layer, SPH is a very peculiar case of unsupervised machine learning. On the other hand, the free particle nature of SPH opens an opportunity for artificial intelligence to study particles as agents acting in a collaborative framework in which the timed outcomes of a fluid simulation forms a large knowledge base, which might be very attractive in computational astrophysics phenomenological problems like self-propagating star formation

  16. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    Science.gov (United States)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17 Simulations predict that, given currently achievable levels of asymmetry, their effects negate all advantages of increased CR.

  17. A High-Resolution Spatially Explicit Monte-Carlo Simulation Approach to Commercial and Residential Electricity and Water Demand Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M [ORNL; McManamay, Ryan A [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; Surendran Nair, Sujithkumar [ORNL

    2016-01-01

    Abstract As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for high resolution spatially explicit estimates for energy and water demand has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy and water consumption, many are provided at a course spatial resolution or rely on techniques which depend on detailed region-specific data sources that are not publicly available for many parts of the U.S. Furthermore, many existing methods do not account for errors in input data sources and may therefore not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more flexible Monte-Carlo simulation approach to high-resolution residential and commercial electricity and water consumption modeling that relies primarily on publicly available data sources. The method s flexible data requirement and statistical framework ensure that the model is both applicable to a wide range of regions and reflective of uncertainties in model results. Key words: Energy Modeling, Water Modeling, Monte-Carlo Simulation, Uncertainty Quantification Acknowledgment This manuscript has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  18. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J.

    2016-01-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  19. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-05-15

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  20. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  1. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  2. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

    KAUST Repository

    Qian, Tiezheng

    2009-10-29

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed. © 2009 IOP Publishing Ltd.

  3. Hydrodynamic Simulation of the Cosmological X-Ray Background

    Science.gov (United States)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with

  4. Simulation and Experimental Characterization of Microscopically Accessible Hydrodynamic Microvortices

    Directory of Open Access Journals (Sweden)

    Deirdre R. Meldrum

    2012-06-01

    Full Text Available Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1 their ability to rotate biological cells in a stable and precise manner; and (2 their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV was used to provide a detailed characterization of flows in the new design. Simulated and experimental results demonstrate that a trapezoidal side chamber represents a viable option for accomplishing controlled single cell rotation. Further, agreement between experimental and simulated results confirms that numerical simulation is an effective method for chamber design.

  5. Vibration of a rotating shaft on hydrodynamic bearings: multi-scales surface effects

    International Nuclear Information System (INIS)

    Rebufa, Jocelyn

    2016-01-01

    The hydrodynamic bearing provides good damping properties in rotating machineries. However, the performances of rotor-bearings systems are highly impacted by nonlinear effects that are difficult to analyze. The rotor dynamics prediction requires advanced models for the flow in the bearings. The surface of the bearings seems to have a strong impact on the lubricant flow, acting on the static and dynamic properties of the rotating parts. This study aims to enhance the simulation of the bearings' surface state effect on the motion of the rotating shaft. The flexible shaft interacts with textured hydrodynamic bearings. Multi-scales homogenization is used in a multi-physics algorithm in order to describe the fluid-structure interaction. Different models are used to account for the cavitation phenomenon in the bearings. Nonlinear harmonic methods allow efficient parametric studies of periodic solutions as well as their stability. Moreover, a test rig has been designed to compare predictions to real measurements. Several textured shaft samples modified with femto-seconds LASER surface texturing are tested. In most cases the experimental study showed similar results than the simulation. Enhancements of the vibration behaviors of the rotor-bearing system have been revealed for certain texturing patterns. The self-excited vibration, also known as 'oil whirl' phenomenon, is stabilized on a wide rotating frequency range. However, the simulation tool does not predict well the enhancements that are observed. Vortices in surface texturing patterns have been revealed numerically with Navier-Stokes equation resolution. These results are opposed to the classical lubrication hypothesis. It is also a possible explanation of the enhancements that are experimentally measured with textured bearings. (author) [fr

  6. Watershed sensitivity and hydrologic response to high-resolution climate model

    Science.gov (United States)

    Troin, M.; Caya, D.

    2012-12-01

    Global climate models (GCMs) are fundamental research tools to assess climate change impacts on water resources. Regional climate models (RCMs) are complementary to GCMs. The added benefit of RCMs for hydrological applications is still not well understood because watersheds respond differently to RCM experiments. It is expected that the new generation of RCMs improve the representation of climate processes making it more attractive for impact studies. Given the cost of RCMs, it is ascertain to identify whether high-resolution RCMs allow offering more details than what is simulated in GCMs or RCMs with coarser resolution to address impacts on water resources. This study aims to assess the added value of RCM with emphasis on using high-resolution climate models. More specifically is how the hydrological cycle is represented when the resolution in climate models is increased (45 vs 200km; 15 vs 45km). We used simulations from the Canadian RCM (CRCM) driven by reanalyses integrated on high-resolution domains (45 and 15km) and CRCM driven by multiple members of two GCMs (the Canadian CGCM3; the German ECHAM5) with a horizontal resolution of 45 km. CRCM data and data from their host GCMs are compared to observation over 1971-2000. Precipitation and temperature from CRCM and GCMs' simulations are inputted into the hydrological SWAT model to simulate streamflow in watersheds for the historical period. The selected watersheds are two basins in Quebec (QC) and one basin in British Columbia (BC), Canada. CRCM-45km driven by GCMs performs well in representing precipitation but shows a cold bias of 3.3°C. Such bias in temperature is more significant for the BC basin (4.5°C) due to the Rocky Mountains. For the CRCM-45km/GCM combination (CGCM3 or ECHAM5), comparable skills in reproducing the observed climate are identified even though CGCM3 analyzed alone provides more accurate indication of climatology in the basins than ECHAM5. When we compared to GCMs results, CRCM-45km

  7. Identifying added value in high-resolution climate simulations over Scandinavia

    DEFF Research Database (Denmark)

    Mayer, Stephania; Fox Maule, Cathrine; Sobolowski, Stefan

    2015-01-01

    High-resolution data are needed in order to assess potential impacts of extreme events on infrastructure in the mid-latitudes. Dynamical downscaling offers one way to obtain this information. However, prior to implementation in any impacts assessment scheme, model output must be validated and det...

  8. Numerical simulation of cerebrospinal fluid hydrodynamics in the healing process of hydrocephalus patients

    Science.gov (United States)

    Gholampour, S.; Fatouraee, N.; Seddighi, A. S.; Seddighi, A.

    2017-05-01

    Three-dimensional computational models of the cerebrospinal fluid (CSF) flow and brain tissue are presented for evaluation of their hydrodynamic conditions before and after shunting for seven patients with non-communicating hydrocephalus. One healthy subject is also modeled to compare deviated patients data to normal conditions. The fluid-solid interaction simulation shows the CSF mean pressure and pressure amplitude (the superior index for evaluation of non-communicating hydrocephalus) in patients at a greater point than those in the healthy subject by 5.3 and 2 times, respectively.

  9. Numerical simulation of Rayleigh-Taylor turbulent mixing layers

    International Nuclear Information System (INIS)

    Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.

    2009-01-01

    Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)

  10. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  11. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  12. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  13. Intramolecular diffusive motion in alkane monolayers studied by high-resolution quasielastic neutron scattering and molecular dynamics simulations

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Criswell, L.; Fuhrmann, D

    2004-01-01

    Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of similar to0.1-4 ns. We present evidence...... that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers....

  14. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  15. A Flood Risk Assessment of the LaHave River Watershed, Canada Using GIS Techniques and an Unstructured Grid Combined River-Coastal Hydrodynamic Model

    Directory of Open Access Journals (Sweden)

    Kevin McGuigan

    2015-09-01

    Full Text Available A flexible mesh hydrodynamic model was developed to simulate flooding of the LaHave River watershed in Nova Scotia, Canada, from the combined effects of fluvial discharge and ocean tide and surge conditions. The analysis incorporated high-resolution lidar elevation data, bathymetric river and coastal chart data, and river cross-section information. These data were merged to generate a seamless digital elevation model which was used, along with river discharge and tidal elevation data, to run a two-dimensional hydrodynamic model to produce flood risk predictions for the watershed. Fine resolution topography data were integrated seamlessly with coarse resolution bathymetry using a series of GIS tools. Model simulations were carried out using DHI Mike 21 Flexible Mesh under a variety of combinations of discharge events and storm surge levels. Discharge events were simulated for events that represent a typical annual maximum runoff and extreme events, while tide and storm surge events were simulated by using the predicted tidal time series and adding 2 and 3 m storm surge events to the ocean level seaward of the mouth of the river. Model output was examined and the maximum water level for the duration of each simulation was extracted and merged into one file that was used in a GIS to map the maximum flood extent and water depth. Upstream areas were most vulnerable to fluvial discharge events, the lower estuary was most vulnerable to the effect of storm surge and sea-level rise, and the Town of Bridgewater was influenced by the combined effects of discharge and storm surge. To facilitate the use of the results for planning officials, GIS flood risk layers were intersected with critical infrastructure, identifying the roads, buildings, and municipal sewage infrastructure at risk under each flood scenario. Roads were converted to points at 10 m spacing for inundated areas and appended with the flood depth calculated from the maximum water level

  16. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  17. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  18. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    International Nuclear Information System (INIS)

    Kajzer, A; Pozorski, J; Szewc, K

    2014-01-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  19. The relative entropy is fundamental to adaptive resolution simulations

    Science.gov (United States)

    Kreis, Karsten; Potestio, Raffaello

    2016-07-01

    Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy with respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.

  20. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  1. Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols

    Science.gov (United States)

    Lee, Seoung Soo; Li, Zhanqing; Zhang, Yuwei; Yoo, Hyelim; Kim, Seungbum; Kim, Byung-Gon; Choi, Yong-Sang; Mok, Jungbin; Um, Junshik; Ock Choi, Kyoung; Dong, Danhong

    2018-01-01

    This study investigates the roles played by model resolution and microphysics parameterizations in the well-known uncertainties or errors in simulations of clouds, precipitation, and their interactions with aerosols by the numerical weather prediction (NWP) models. For this investigation, we used cloud-system-resolving model (CSRM) simulations as benchmark simulations that adopt high-resolution and full-fledged microphysical processes. These simulations were evaluated against observations, and this evaluation demonstrated that the CSRM simulations can function as benchmark simulations. Comparisons between the CSRM simulations and the simulations at the coarse resolutions that are generally adopted by current NWP models indicate that the use of coarse resolutions as in the NWP models can lower not only updrafts and other cloud variables (e.g., cloud mass, condensation, deposition, and evaporation) but also their sensitivity to increasing aerosol concentration. The parameterization of the saturation process plays an important role in the sensitivity of cloud variables to aerosol concentrations. while the parameterization of the sedimentation process has a substantial impact on how cloud variables are distributed vertically. The variation in cloud variables with resolution is much greater than what happens with varying microphysics parameterizations, which suggests that the uncertainties in the NWP simulations are associated with resolution much more than microphysics parameterizations.

  2. Multidimensional simulations of core-collapse supernovae with CHIMERA

    Science.gov (United States)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  3. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation

    Directory of Open Access Journals (Sweden)

    G. Benassai

    2017-09-01

    Full Text Available The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including RPAS (remotely piloted aircraft systems observations, allowed us to detect the presence of rip currents and rip channels at the mouth of Sele River, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different bathymetric surveys, a detailed sediment analysis and a set of high-resolution wave numerical simulations, completed with Google EarthTM images and RPAS observations. The grain size trend analysis and the numerical simulations allowed us to identify the rip current occurrence, forced by topographically constrained channels incised on the seabed, which were compared with observations.

  4. From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays Three-Crystal Diffractometer Peaks Simulation

    Science.gov (United States)

    Jacques, Alain

    2016-12-01

    The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.

  5. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  6. Hydrodynamics in full general relativity with conservative adaptive mesh refinement

    Science.gov (United States)

    East, William E.; Pretorius, Frans; Stephens, Branson C.

    2012-06-01

    There is great interest in numerical relativity simulations involving matter due to the likelihood that binary compact objects involving neutron stars will be detected by gravitational wave observatories in the coming years, as well as to the possibility that binary compact object mergers could explain short-duration gamma-ray bursts. We present a code designed for simulations of hydrodynamics coupled to the Einstein field equations targeted toward such applications. This code has recently been used to study eccentric mergers of black hole-neutron star binaries. We evolve the fluid conservatively using high-resolution shock-capturing methods, while the field equations are solved in the generalized-harmonic formulation with finite differences. In order to resolve the various scales that may arise, we use adaptive mesh refinement (AMR) with grid hierarchies based on truncation error estimates. A noteworthy feature of this code is the implementation of the flux correction algorithm of Berger and Colella to ensure that the conservative nature of fluid advection is respected across AMR boundaries. We present various tests to compare the performance of different limiters and flux calculation methods, as well as to demonstrate the utility of AMR flux corrections.

  7. High-Throughput Particle Manipulation Based on Hydrodynamic Effects in Microchannels

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2017-03-01

    Full Text Available Microfluidic techniques are effective tools for precise manipulation of particles and cells, whose enrichment and separation is crucial for a wide range of applications in biology, medicine, and chemistry. Recently, lateral particle migration induced by the intrinsic hydrodynamic effects in microchannels, such as inertia and elasticity, has shown its promise for high-throughput and label-free particle manipulation. The particle migration can be engineered to realize the controllable focusing and separation of particles based on a difference in size. The widespread use of inertial and viscoelastic microfluidics depends on the understanding of hydrodynamic effects on particle motion. This review will summarize the progress in the fundamental mechanisms and key applications of inertial and viscoelastic particle manipulation.

  8. Hydrodynamic cavitation for sonochemical effects.

    Science.gov (United States)

    Moholkar, V S; Kumar, P S; Pandit, A B

    1999-03-01

    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.

  9. EGS4CYL a Montecarlo simulation method of a PET or spect equipment at high spatial resolution

    International Nuclear Information System (INIS)

    Ferriani, S.; Galli, M.

    1995-11-01

    This report describes a Montecarlo simulation method for the simulation of a Pet or Spect equipment. The method is based on the Egs4cyl code. This work has been done in the framework of the Hirespet collaboration, for the developing of an high spatial resolution tomograph, the method will be used for the project of the tomograph. The treated geometry consists of a set of coaxial cylinders, surrounded by a ring of detectors. The detectors have a box shape, a collimator in front of each of them can be included, by means of geometrical constraints to the incident particles. An isotropic source is in the middle of the system. For the particles transport the Egs4code is used, for storing and plotting results the Cern packages Higz and Hbook are used

  10. Simulations of Model Microswimmers with Fully Resolved Hydrodynamics

    Science.gov (United States)

    Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi

    2017-10-01

    Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that

  11. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction

    Science.gov (United States)

    Hoda, Nazish; Kumar, Satish

    2007-12-01

    The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N1/3Wi2/3 at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N-1/2κ-3(lB∣σq∣)3/2, where κ is the inverse screening length, lB is the Bjerrum length, σ is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.

  12. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    Science.gov (United States)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  13. Simulation of seismic signals from asymmetric LANL hydrodynamic calculations

    International Nuclear Information System (INIS)

    Stevens, J.L.; Rimer, N.; Halda, E.J.; Barker, T.G.; Davis, C.G.; Johnson, W.E.

    1993-01-01

    Hydrodynamic calculations of an asymmetric nuclear explosion source were propagated to teleseismic distances to investigate the effects of the asymmetric source on seismic signals. The source is an explosion in a 12 meter long canister with the device at one end of the canister and a metal plate adjacent to the explosion. This produces a strongly asymmetric two-lobed source in the hydrodynamic region. The hydrodynamic source is propagated to the far field using a three-step process. The Eulerian hydrodynamic code SOIL was used by LANL to calculate the material velocity, density, and internal energy up to a time of 8.9 milliseconds after the explosion. These quantities were then transferred to an initial grid for the Lagrangian elastic/plastic finite difference code CRAM, which was used by S-CUBED to propagate the signal through the region of nonlinear deformation into the external elastic region. The cavity size and shape at the time of the overlay were determined by searching for a rapid density change in the SOIL grid, and this interior region was then rezoned into a single zone. The CRAM calculation includes material strength and gravity, and includes the effect of the free surface above the explosion. Finally, far field body waves were calculated by integrating over a closed surface in the elastic region and using the representation theorem. A second calculation was performed using an initially spherical source for comparison with the asymmetric calculation

  14. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  15. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  16. Detonation of high explosives in Lagrangian hydrodynamic codes using the programmed burn technique

    International Nuclear Information System (INIS)

    Berger, M.E.

    1975-09-01

    Two initiation methods were developed for improving the programmed burn technique for detonation of high explosives in smeared-shock Lagrangian hydrodynamic codes. The methods are verified by comparing the improved programmed burn with existing solutions in one-dimensional plane, converging, and diverging geometries. Deficiencies in the standard programmed burn are described. One of the initiation methods has been determined to be better for inclusion in production hydrodynamic codes

  17. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    Science.gov (United States)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  18. Towards granular hydrodynamics in two dimensions

    International Nuclear Information System (INIS)

    Grossman, E.L.; Zhou, T.; Ben-Naim, E.; Ben-Naim, E.

    1997-01-01

    We study steady-state properties of inelastic gases in two dimensions in the presence of an energy source. We generalize previous hydrodynamic treatments to situations where high and low density regions coexist. The theoretical predictions compare well with numerical simulations in the nearly elastic limit. It is also seen that the system can achieve a nonequilibrium steady state with asymmetric velocity distributions, and we discuss the conditions under which such situations occur. copyright 1997 The American Physical Society

  19. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  20. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    Science.gov (United States)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  1. Hydrodynamic simulations of a combined hydrogen, helium thermonuclear runaway on a 10-km neutron star

    International Nuclear Information System (INIS)

    Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.

    1983-01-01

    We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10 5 L. A shock wave caused a precursor in the light curve which lasted 10 -5 sec

  2. A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences

    Science.gov (United States)

    Calmet, Isabelle; Mestayer, Patrice G.; van Eijk, Alexander M. J.; Herlédant, Olivier

    2018-04-01

    We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.

  3. Clustering and phase behaviour of attractive active particles with hydrodynamics.

    Science.gov (United States)

    Navarro, Ricard Matas; Fielding, Suzanne M

    2015-10-14

    We simulate clustering, phase separation and hexatic ordering in a monolayered suspension of active squirming disks subject to an attractive Lennard-Jones-like pairwise interaction potential, taking hydrodynamic interactions between the particles fully into account. By comparing the hydrodynamic case with counterpart simulations for passive and active Brownian particles, we elucidate the relative roles of self-propulsion, interparticle attraction, and hydrodynamic interactions in determining clustering and phase behaviour. Even in the presence of an attractive potential, we find that hydrodynamic interactions strongly suppress the motility induced phase separation that might a priori have been expected in a highly active suspension. Instead, we find only a weak tendency for the particles to form stringlike clusters in this regime. At lower activities we demonstrate phase behaviour that is broadly equivalent to that of the counterpart passive system at low temperatures, characterized by regimes of gas-liquid, gas-solid and liquid-solid phase coexistence. In this way, we suggest that a dimensionless quantity representing the level of activity relative to the strength of attraction plays the role of something like an effective non-equilibrium temperature, counterpart to the (dimensionless) true thermodynamic temperature in the passive system. However there are also some important differences from the equilibrium case, most notably with regards the degree of hexatic ordering, which we discuss carefully.

  4. High resolution geodynamo simulations with strongly-driven convection and low viscosity

    Science.gov (United States)

    Schaeffer, Nathanael; Fournier, Alexandre; Jault, Dominique; Aubert, Julien

    2015-04-01

    Numerical simulations have been successful at explaining the magnetic field of the Earth for 20 years. However, the regime in which these simulations operate is in many respect very far from what is expected in the Earth's core. By reviewing previous work, we find that it appears difficult to have both low viscosity (low magnetic Prandtl number) and strong magnetic fields in numerical models (large ratio of magnetic over kinetic energy, a.k.a inverse squared Alfvén number). In order to understand better the dynamics and turbulence of the core, we have run a series of 3 simulations, with increasingly demanding parameters. The last simulation is at the limit of what nowadays codes can do on current super computers, with a resolution of 2688 grid points in longitude, 1344 in latitude, and 1024 radial levels. We will show various features of these numerical simulations, including what appears as trends when pushing the parameters toward the one of the Earth. The dynamics is very rich. From short time scales to large time scales, we observe at large scales: Inertial Waves, Torsional Alfvén Waves, columnar convective overturn dynamics and long-term thermal winds. In addition, the dynamics inside and outside the tangent cylinder seem to follow different routes. We find that the ohmic dissipation largely dominates the viscous one and that the magnetic energy dominates the kinetic energy. The magnetic field seems to play an ambiguous role. Despite the large magnetic field, which has an important impact on the flow, we find that the force balance for the mean flow is a thermal wind balance, and that the scale of convective cells is still dominated by viscous effects.

  5. High energy density matter issues related to future circular collider. Simulations of full beam impact with a solid copper cylindrical target

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N.A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Burkart, F.; Schmidt, R.; Wollmann, D. [CERN-AB, Geneva (Switzerland); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A.R. [E.T.S.I. Industrials, University of Castilla-La Mancha, Ciudad Real (Spain)

    2017-11-15

    This paper presents numerical simulations of the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is subjected to the full impact of one future circular collider (FCC) ultra-relativistic proton beam. The target is facially irradiated so that the beam axis coincides with the cylinder axis. The simulations have been carried out employing an energy deposition code, FLUKA, and a 2D hydrodynamic code, BIG2, iteratively. The simulations show that, although the static range of a single FCC proton and its shower in solid copper is ∝1.5 m, the full beam may penetrate up to 350 m into the target as a result of hydrodynamic tunnelling. Moreover, simulations also show that a major part of the target is converted into high energy density (HED) matter, including warm dense matter (WDM) and strongly coupled plasma. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The Coupling of Radiation and Hydrodynamics

    International Nuclear Information System (INIS)

    Lowrie, R.B.; Morel, J.E.; Hittinger, J.A.

    1999-01-01

    The coupling of radiation transport and hydrodynamics is discussed for the Eulerian frame. The discussion is aimed at developing a suitable set of equations for nonrelativistic radiation hydrodynamics (RHD) that can be numerically integrated using high-resolution methods for conservation laws. We outline how numerical methods based on a wave decomposition may be developed, along with the importance of conservation, particularly in the equilibrium regime. The properties of the RHD equations are examined through asymptotic and dispersion analyses. The conditions required to obtain the classical equilibrium limit are rigorously studied. The results show that a simple coupling term developed recently by Morel, which retains a minimum of relativistic corrections, may be sufficient for nonrelativistic flows. We also give two constraints on the relativistic corrections that result in retaining terms on the order of the truncation. In addition, the dispersion results for the P 1 approximation are studied in detail and are compared with both the exact-transport results and a full relativistic treatment. We also examine some nonintuitive behavior in the dispersion results. copyright copyright 1999. The American Astronomical Society

  7. Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation

    NARCIS (Netherlands)

    Jiménez, P.A.; González-Rouco, J.F.; García-Bustamante, E.; Navarro, J.; Montávez, J.P.; Vilà-Guerau de Arellano, J.; Dudhia, J.; Muñoz-Roldan, A.

    2010-01-01

    This study analyzes the daily-mean surface wind variability over an area characterized by complex topography through comparing observations and a 2-km-spatial-resolution simulation performed with the Weather Research and Forecasting (WRF) model for the period 1992–2005. The evaluation focuses on the

  8. Rheology and hydrodynamic properties of Tolypocladium inflatum fermentation broth and its simulation.

    Science.gov (United States)

    Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M

    2005-07-01

    A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.

  9. The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment

    Science.gov (United States)

    Heinzeller, Dominikus; Dieng, Diarra; Smiatek, Gerhard; Olusegun, Christiana; Klein, Cornelia; Hamann, Ilse; Salack, Seyni; Bliefernicht, Jan; Kunstmann, Harald

    2018-04-01

    Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change scenarios for the greater West African region is provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations, as well as detailed information on the experimental design, and provides information on the format and dissemination of the available data. All data are made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ) with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.880512). A brief assessment of the data are presented to provide guidance for future users. Regional climate projections are generated at high (12 km) and intermediate (60 km) resolution using the Weather Research and Forecasting Model (WRF). The simulations cover the validation period 1980-2010 and the two future periods 2020-2050 and 2070-2100. A brief comparison to observations and two climate change scenarios from the Coordinated Regional Downscaling Experiment (CORDEX) initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, the results suggest an increase in temperature by 1.5 °C at the coast of Guinea and by up to 3 °C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the north and

  10. Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study.

    Science.gov (United States)

    Theers, Mario; Winkler, Roland G

    2014-08-28

    We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.

  11. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  12. Development of a high and low impedance diode testing facility at AWE Aldermaston

    International Nuclear Information System (INIS)

    Sinclair, M.; Aedy, Ch.; Cooper, G.

    2005-01-01

    To meet the future resolution targets for radiography of hydrodynamic experiments is creating a dedicated Diode Research Facility. To perform low impedance diode research, the X-ray simulator Eros has been acquired. To drive the high impedance diodes the EMU machine will be co-located with Eros. The co-located of machines will facilitate the sharing of plasma and X-ray diagnostics [ru

  13. Test Particle Simulations of Electron Injection by the Bursty Bulk Flows (BBFs) using High Resolution Lyon-Feddor-Mobarry (LFM) Code

    Science.gov (United States)

    Eshetu, W. W.; Lyon, J.; Wiltberger, M. J.; Hudson, M. K.

    2017-12-01

    Test particle simulations of electron injection by the bursty bulk flows (BBFs) have been done using a test particle tracer code [1], and the output fields of the Lyon-Feddor-Mobarry global magnetohydro- dynamics (MHD) code[2]. The MHD code was run with high resolu- tion (oct resolution), and with specified solar wind conditions so as to reproduce the observed qualitative picture of the BBFs [3]. Test par- ticles were injected so that they interact with earthward propagating BBFs. The result of the simulation shows that electrons are pushed ahead of the BBFs and accelerated into the inner magnetosphere. Once electrons are in the inner magnetosphere they are further energized by drift resonance with the azimuthal electric field. In addition pitch angle scattering of electrons resulting in the violation conservation of the first adiabatic invariant has been observed. The violation of the first adiabatic invariant occurs as electrons cross a weak magnetic field region with a strong gradient of the field perturbed by the BBFs. References 1. Kress, B. T., Hudson,M. K., Looper, M. D. , Albert, J., Lyon, J. G., and Goodrich, C. C. (2007), Global MHD test particle simulations of ¿ 10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218. Lyon,J. G., Fedder, J. A., and Mobarry, C.M., The Lyon- Fedder-Mobarry (LFM) Global MHD Magnetospheric Simulation Code (2004), J. Atm. And Solar-Terrestrial Phys., 66, Issue 15-16, 1333- 1350,doi:10.1016/j.jastp. Wiltberger, Merkin, M., Lyon, J. G., and Ohtani, S. (2015), High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res. Space Physics, 120, 45554566, doi:10.1002/2015JA021080.

  14. CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics

    Science.gov (United States)

    Owen, John Michael; Raskin, Cody; Frontiere, Nicholas

    2018-01-01

    The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied

  15. Adaptive Resolution Simulation of MARTINI Solvents

    NARCIS (Netherlands)

    Zavadlav, Julija; Melo, Manuel N.; Cunha, Ana V.; de Vries, Alex H.; Marrink, Siewert J.; Praprotnik, Matej

    We present adaptive resolution dynamics simulations of aqueous and apolar solvents coarse-grained molecular models that are compatible with the MARTINI force field. As representatives of both classes solvents we have chosen liquid water and butane, respectively, at ambient temperature. The solvent

  16. Spatial Variability in Column CO2 Inferred from High Resolution GEOS-5 Global Model Simulations: Implications for Remote Sensing and Inversions

    Science.gov (United States)

    Ott, L.; Putman, B.; Collatz, J.; Gregg, W.

    2012-01-01

    Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement

  17. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  18. Hydrodynamics in high-energy nuclear collisions. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Kataja, Markku.

    1989-05-01

    This thesis is a review of six publications in which we make use of relativistic hydrodynamics to solve the evolution of matter produced in extremely energetic nucleus-nucleus collisions. In the first one of these papers we study the thermodynamics, the hydrodynamics and the decoupling conditions of such matter. We discuss the initial conditions for the flow, the hydrodynamic equations for the transverse expansion of matter assuming cylindrical symmetry and longitudinal boost invariance and finally present a numeric algorithm, which we use to integrate these equations. In the subsequent three papers this framework is utilized to calculate the transverse momentum spectra of hadrons, the dilepon production and the abundance of strange particles in the final state. The bag model equation of state is used to simulate the first-order phase transition between baryonless hadronic matter and quark-gluon plasma. In the fifth paper we include the particle production from decaying color electric field according to the flux tube model for heavy ion collisions. The hadronization is incorporated by introducing an equilibrium 'mixed state' of hadrons gas, plasma and the color field in analogy to the mixed phase described by the ordinary bag model equation of state. In the last paper I apply a 1+2 dimensional numeric code to analyze a 1+3 dimensional cylindrically symmetric flow of matter assumed to be formed in a central O+Pb collision at 200 GeV/nucleon. The flow data is used to calculte the pseudorapidity distribution of transverse energy for the produced pions

  19. Monte Carlo simulation of the resolution volume for the SEQUOIA spectrometer

    Directory of Open Access Journals (Sweden)

    Granroth G.E.

    2015-01-01

    Full Text Available Monte Carlo ray tracing simulations, of direct geometry spectrometers, have been particularly useful in instrument design and characterization. However, these tools can also be useful for experiment planning and analysis. To this end, the McStas Monte Carlo ray tracing model of SEQUOIA, the fine resolution fermi chopper spectrometer at the Spallation Neutron Source (SNS of Oak Ridge National Laboratory (ORNL, has been modified to include the time of flight resolution sample and detector components. With these components, the resolution ellipsoid can be calculated for any detector pixel and energy bin of the instrument. The simulation is split in two pieces. First, the incident beamline up to the sample is simulated for 1 × 1011 neutron packets (4 days on 30 cores. This provides a virtual source for the backend that includes the resolution sample and monitor components. Next, a series of detector and energy pixels are computed in parallel. It takes on the order of 30 s to calculate a single resolution ellipsoid on a single core. Python scripts have been written to transform the ellipsoid into the space of an oriented single crystal, and to characterize the ellipsoid in various ways. Though this tool is under development as a planning tool, we have successfully used it to provide the resolution function for convolution with theoretical models. Specifically, theoretical calculations of the spin waves in YFeO3 were compared to measurements taken on SEQUOIA. Though the overall features of the spectra can be explained while neglecting resolution effects, the variation in intensity of the modes is well described once the resolution is included. As this was a single sharp mode, the simulated half intensity value of the resolution ellipsoid was used to provide the resolution width. A description of the simulation, its use, and paths forward for this technique will be discussed.

  20. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations

    Science.gov (United States)

    Foucart, Francois

    2018-04-01

    General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.

  1. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    International Nuclear Information System (INIS)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J.; Lubow, Stephen H.; Price, Daniel J.; Doğan, Suzan; King, Andrew

    2014-01-01

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes

  2. Numerical simulation of hydrodynamic performance of ship under oblique conditions

    Directory of Open Access Journals (Sweden)

    CHEN Zhiming

    2018-02-01

    Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.

  3. Three-dimensional hydrodynamical simulations of stellar collisions. II. White dwarfs

    International Nuclear Information System (INIS)

    Benz, W.; Thielemann, F.K.; Hills, J.G.

    1989-01-01

    Three-dimensional numerical simulations are presented for collisions between white dwarfs, using a smooth-particle hydrodynamics code with 5000 particles. The code allows for radiation and degenerate pressure and uses a reduced nuclear network which models the large release of nuclear energy. Two different collision models are considered over a range of impact parameters: between two 0.06 solar-mass C-O white dwarfs and between 0.9 solar-mass and 0.7 solar-mass C-O white dwarfs. In nearly head-on collisions, a very substantial fraction of the mass is lost as a result of a large release of nuclear energy. In grazing collisions, the fraction of mass lost is close to that produced in collisions between main-sequence stars. The quantity of processed elements ejected into the ISM by these collisions does not significantly affect the chemical evolution of the Galaxy. 24 refs

  4. High resolution crop growth simulation for identification of potential adaptation strategies under climate change

    Science.gov (United States)

    Kim, K. S.; Yoo, B. H.

    2016-12-01

    Impact assessment of climate change on crop production would facilitate planning of adaptation strategies. Because socio-environmental conditions would differ by local areas, it would be advantageous to assess potential adaptation measures at a specific area. The objectives of this study was to develop a crop growth simulation system at a very high spatial resolution, e.g., 30 m, and to assess different adaptation options including shift of planting date and use of different cultivars. The Decision Support System for Agrotechnology Transfer (DSSAT) model was used to predict yields of soybean and maize in Korea. Gridded data for climate and soil were used to prepare input data for the DSSAT model. Weather input data were prepared at the resolution of 30 m using bilinear interpolation from gridded climate scenario data. Those climate data were obtained from Korean Meteorology Administration. Spatial resolution of temperature and precipitation was 1 km whereas that of solar radiation was 12.5 km. Soil series data at the 30 m resolution were obtained from the soil database operated by Rural Development Administration, Korea. The SOL file, which is a soil input file for the DSSAT model was prepared using physical and chemical properties of a given soil series, which were available from the soil database. Crop yields were predicted by potential adaptation options based on planting date and cultivar. For example, 10 planting dates and three cultivars were used to identify ideal management options for climate change adaptation. In prediction of maize yield, combination of 20 planting dates and two cultivars was used as management options. Predicted crop yields differed by site even within a relatively small region. For example, the maximum of average yields for 2001-2010 seasons differed by sites In a county of which areas is 520 km2 (Fig. 1). There was also spatial variation in the ideal management option in the region (Fig. 2). These results suggested that local

  5. Refinement procedure for the image alignment in high-resolution electron tomography.

    Science.gov (United States)

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Oil spill model coupled to an ultra-high-resolution circulation model: implementation for the Adriatic Sea

    Science.gov (United States)

    Korotenko, K.

    2003-04-01

    An ultra-high-resolution version of DieCAST was adjusted for the Adriatic Sea and coupled with an oil spill model. Hydrodynamic module was developed on base of th low dissipative, four-order-accuracy version DieCAST with the resolution of ~2km. The oil spill model was developed on base of particle tracking technique The effect of evaporation is modeled with an original method developed on the base of the pseudo-component approach. A special dialog interface of this hybrid system allowing direct coupling to meteorlogical data collection systems or/and meteorological models. Experiments with hypothetic oil spill are analyzed for the Northern Adriatic Sea. Results (animations) of mesoscale circulation and oil slick modeling are presented at wabsite http://thayer.dartmouth.edu/~cushman/adriatic/movies/

  7. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    Science.gov (United States)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  8. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    Science.gov (United States)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  9. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  10. Properties of galaxies reproduced by a hydrodynamic simulation

    Science.gov (United States)

    Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L.

    2014-05-01

    Previous simulations of the growth of cosmic structures have broadly reproduced the `cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the `metal' and hydrogen content of galaxies on small scales.

  11. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3: turbulent flow and plume dispersion in building arrays

    Czech Academy of Sciences Publication Activity Database

    Nakayama, H.; Jurčáková, Klára; Nagai, H.

    2013-01-01

    Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013

  12. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  13. The coupling of high-speed high resolution experimental data and LES through data assimilation techniques

    Science.gov (United States)

    Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.

    2017-11-01

    Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.

  14. WRF high resolution dynamical downscaling of ERA-Interim for Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Pedro M.M. [University of Lisbon, Instituto Dom Luiz, Lisbon (Portugal); Faculdade de Ciencias da Universidade de Lisboa, Lisbon (Portugal); Cardoso, Rita M.; Miranda, Pedro M.A.; Medeiros, Joana de [University of Lisbon, Instituto Dom Luiz, Lisbon (Portugal); Belo-Pereira, Margarida; Espirito-Santo, Fatima [Instituto de Meteorologia, Lisbon (Portugal)

    2012-11-15

    This study proposes a dynamically downscaled climatology of Portugal, produced by a high resolution (9 km) WRF simulation, forced by 20 years of ERA-Interim reanalysis (1989-2008), nested in an intermediate domain with 27 km of resolution. The Portuguese mainland is characterized by large precipitation gradients, with observed mean annual precipitation ranging from about 400 to over 2,200 mm, with a very wet northwest and rather dry southeast, largely explained by orographic processes. Model results are compared with all available stations with continuous records, comprising daily information in 32 stations for temperature and 308 for precipitation, through the computation of mean climatologies, standard statistical errors on daily to seasonally timescales, and distributions of extreme events. Results show that WRF at 9 km outperforms ERA-Interim in all analyzed variables, with good results in the representation of the annual cycles in each region. The biases of minimum and maximum temperature are reduced, with improvement of the description of temperature variability at the extreme range of its distribution. The largest gain of the high resolution simulations is visible in the rainiest regions of Portugal, where orographic enhancement is crucial. These improvements are striking in the high ranking percentiles in all seasons, describing extreme precipitation events. WRF results at 9 km compare favorably with published results supporting its use as a high-resolution regional climate model. This higher resolution allows a better representation of extreme events that are of major importance to develop mitigation/adaptation strategies by policy makers and downstream users of regional climate models in applications such as flash floods or heat waves. (orig.)

  15. Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

    Science.gov (United States)

    Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.

    2018-03-01

    We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.

  16. How To Model Supernovae in Simulations of Star and Galaxy Formation

    Science.gov (United States)

    Hopkins, Philip F.; Wetzel, Andrew; Kereš, Dušan; Faucher-Giguére, Claude-André; Quataert, Eliot; Boylan-Kolchin, Michael; Murray, Norman; Hayward, Christopher C.; El-Badry, Kareem

    2018-03-01

    We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting "preferred directions" on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common "fully-thermal" (energy-dump) or "fully-kinetic" (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution ≳ 100 M⊙, they diverge by orders-of-magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution (simulations and cosmological galaxy-formation simulations, the FIRE-2 algorithm converges much faster than other sub-grid models without re-tuning parameters.

  17. Coupled hydrodynamic and ecological simulation for prognosticating land reclamation impacts in river estuaries

    Science.gov (United States)

    Xu, Yan; Cai, Yanpeng; Sun, Tao; Yang, Zhifeng; Hao, Yan

    2018-03-01

    A multiphase finite-element hydrodynamic model and a phytoplankton simulation approach are coupled into a general modeling framework. It can help quantify impacts of land reclamation. Compared with previous studies, it has the following improvements: a) reflection of physical currents and suitable growth areas for phytoplankton, (b) advancement of a simulation method to describe the suitability of phytoplankton in the sea water. As the results, water velocity is 16.7% higher than that of original state without human disturbances. The related filling engineering has shortened sediment settling paths, weakened the vortex flow and reduced the capacity of material exchange. Additionally, coastal reclamation lead to decrease of the growth suitability index (GSI), thus it cut down the stability of phytoplankton species approximately 4-12%. The proposed GSI can be applied to the management of coastal reclamation for minimizing ecological impacts. It will be helpful for facilitating identifying suitable phytoplankton growth areas.

  18. New Potentiometric Wireless Chloride Sensors Provide High Resolution Information on Chemical Transport Processes in Streams

    Directory of Open Access Journals (Sweden)

    Keith Smettem

    2017-07-01

    Full Text Available Quantifying the travel times, pathways, and dispersion of solutes moving through stream environments is critical for understanding the biogeochemical cycling processes that control ecosystem functioning. Validation of stream solute transport and exchange process models requires data obtained from in-stream measurement of chemical concentration changes through time. This can be expensive and time consuming, leading to a need for cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds. To meet this need we apply new, low-cost (in the order of a euro per sensor potentiometric chloride sensors used in a distributed array to obtain data with high spatial and temporal resolution. The application here is to monitoring in-stream hydrodynamic transport and dispersive mixing of an injected chemical, in this case NaCl. We present data obtained from the distributed sensor array under baseflow conditions for stream reaches in Luxembourg and Western Australia. The reaches were selected to provide a range of increasingly complex in-channel flow patterns. Mid-channel sensor results are comparable to data obtained from more expensive electrical conductivity meters, but simultaneous acquisition of tracer data at several positions across the channel allows far greater spatial resolution of hydrodynamic mixing processes and identification of chemical ‘dead zones’ in the study reaches.

  19. Refinement procedure for the image alignment in high-resolution electron tomography

    International Nuclear Information System (INIS)

    Houben, L.; Bar Sadan, M.

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. -- Highlights: → Alignment procedure for electron tomography based on iterative tomogram contrast optimisation. → Marker-free, independent of object, little user interaction. → Accuracy competitive with fiducial marker methods and suited for high-resolution tomography.

  20. Hydrodynamics of embedded planets' first atmospheres - III. The role of radiation transport for super-Earth planets

    Science.gov (United States)

    Cimerman, Nicolas P.; Kuiper, Rolf; Ormel, Chris W.

    2017-11-01

    The population of close-in super-Earths, with gas mass fractions of up to 10 per cent represents a challenge for planet formation theory: how did they avoid runaway gas accretion and collapsing to hot Jupiters despite their core masses being in the critical range of Mc ≃ 10 M⊕? Previous three-dimensional (3D) hydrodynamical simulations indicate that atmospheres of low-mass planets cannot be considered isolated from the protoplanetary disc, contrary to what is assumed in 1D-evolutionary calculations. This finding is referred to as the recycling hypothesis. In this paper, we investigate the recycling hypothesis for super-Earth planets, accounting for realistic 3D radiation hydrodynamics. Also, we conduct a direct comparison in terms of the evolution of the entropy between 1D and 3D geometries. We clearly see that 3D atmospheres maintain higher entropy: although gas in the atmosphere loses entropy through radiative cooling, the advection of high-entropy gas from the disc into the Bondi/Hill sphere slows down Kelvin-Helmholtz contraction, potentially arresting envelope growth at a sub-critical gas mass fraction. Recycling, therefore, operates vigorously, in line with results by previous studies. However, we also identify an `inner core' - in size ≈25 per cent of the Bondi radius - where streamlines are more circular and entropies are much lower than in the outer atmosphere. Future studies at higher resolutions are needed to assess whether this region can become hydrodynamically isolated on long time-scales.

  1. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  2. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  3. Effects of display resolution and size on primary diagnosis of chest images using a high-resolution electronic work station

    International Nuclear Information System (INIS)

    Fuhrman, C.R.; Cooperstein, L.A.; Herron, J.; Good, W.F.; Good, B.; Gur, D.; Maitz, G.; Tabor, E.; Hoy, R.J.

    1987-01-01

    To evaluate the acceptability of electronically displayed planar images, the authors have a high-resolution work station. This system utilizes a high-resolution film digitizer (100-micro resolution) interfaced to a mainframe computer and two high-resolution (2,048 X 2,048) display devices (Azuray). In a clinically simulated multiobserver blind study (19 cases and five observers) a prodetermined series of reading sessions is stored on magnetic disk and is transferred to the displays while the preceding set of images is being reviewed. Images can be linearly processed on the fly into 2,000 X 2,000 full resolution, 1,000 X 1,000 minified display, or 1,000 X 1,000 interpolated for full-size display. Results of the study indicate that radiologists accept but do not like significant minification (more than X2), and they rate 2,000 X 2,000 images as having better diagnostic quality than 1,000 X 1,000 images

  4. Hydrodynamic simulations of light ion beam-matter interactions: ablative acceleration of thin foils

    International Nuclear Information System (INIS)

    Devore, C.R.; Gardner, J.H.; Boris, J.P.; Mosher, D.

    1984-01-01

    A one-dimensional model is used to study the hydrodynamic response of thin foils to bombardment by an intense proton beam. The beam targets are single- and multilayer planar foils of gold and polystyrene. The main conclusion is that the efficiency of conversion of incident beam energy to directed kinetic energy of the target is maximized by using a multilayer design. For beam parameters associated with the Gamble II device at the Naval Research Laboratory, the simulations yield payload velocities of over 5 cm/μs and energy conversion efficiencies of over 30%. The implications of these results for inertial confinement fusion research are discussed. (author)

  5. Toward an ultra-high resolution community climate system model for the BlueGene platform

    International Nuclear Information System (INIS)

    Dennis, John M; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond

    2007-01-01

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10 0 resolution for CICE, POP, and CLM models and 1/4 0 resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science

  6. CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth

    2018-02-01

    CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.

  7. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  8. 3D detectors with high space and time resolution

    Science.gov (United States)

    Loi, A.

    2018-01-01

    For future high luminosity LHC experiments it will be important to develop new detector systems with increased space and time resolution and also better radiation hardness in order to operate in high luminosity environment. A possible technology which could give such performances is 3D silicon detectors. This work explores the possibility of a pixel geometry by designing and simulating different solutions, using Sentaurus Tecnology Computer Aided Design (TCAD) as design and simulation tool, and analysing their performances. A key factor during the selection was the generated electric field and the carrier velocity inside the active area of the pixel.

  9. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  10. The evolution of extreme precipitations in high resolution scenarios over France

    Science.gov (United States)

    Colin, J.; Déqué, M.; Somot, S.

    2009-09-01

    Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics

  11. Tests of high-resolution simulations over a region of complex terrain in Southeast coast of Brazil

    Science.gov (United States)

    Chou, Sin Chan; Luís Gomes, Jorge; Ristic, Ivan; Mesinger, Fedor; Sueiro, Gustavo; Andrade, Diego; Lima-e-Silva, Pedro Paulo

    2013-04-01

    The Eta Model is used operationally by INPE at the Centre for Weather Forecasts and Climate Studies (CPTEC) to produce weather forecasts over South America since 1997. The model has gone through upgrades along these years. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain where it can rise from sea level up to about 1000 m. Accurate near-surface wind direction and magnitude are needed for the power plant emergency plan. Besides, the region suffers from frequent events of floods and landslides, therefore accurate local forecasts are required for disaster warnings. The objective of this work is to carry out a series of numerical experiments to test and evaluate high resolution simulations in this complex area. Verification of model runs uses observations taken from the nuclear power plant and higher resolution reanalyses data. The runs were tested in a period when flow was predominately forced by local conditions and in a period forced by frontal passage. The Eta Model was configured initially with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The series of experiments consists of replacing surface layer stability function, adjusting cloud microphysics scheme parameters, further increasing vertical and horizontal resolutions. By replacing the stability function for the stable conditions substantially increased the katabatic winds and verified better against the tower wind data. Precipitation produced by the model was excessive in the region. Increasing vertical resolution to 60 layers caused a further increase in precipitation production. This excessive

  12. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel [Centro Nacional de Microelectronica, Barcelona (Spain)

    2017-01-15

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  13. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    International Nuclear Information System (INIS)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin; Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel

    2017-01-01

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  14. High-resolution projections of surface water availability for Tasmania, Australia

    Directory of Open Access Journals (Sweden)

    J. C. Bennett

    2012-05-01

    Full Text Available Changes to streamflows caused by climate change may have major impacts on the management of water for hydro-electricity generation and agriculture in Tasmania, Australia. We describe changes to Tasmanian surface water availability from 1961–1990 to 2070–2099 using high-resolution simulations. Six fine-scale (∼10 km2 simulations of daily rainfall and potential evapotranspiration are generated with the CSIRO Conformal Cubic Atmospheric Model (CCAM, a variable-resolution regional climate model (RCM. These variables are bias-corrected with quantile mapping and used as direct inputs to the hydrological models AWBM, IHACRES, Sacramento, SIMHYD and SMAR-G to project streamflows.

    The performance of the hydrological models is assessed against 86 streamflow gauges across Tasmania. The SIMHYD model is the least biased (median bias = −3% while IHACRES has the largest bias (median bias = −22%. We find the hydrological models that best simulate observed streamflows produce similar streamflow projections.

    There is much greater variation in projections between RCM simulations than between hydrological models. Marked decreases of up to 30% are projected for annual runoff in central Tasmania, while runoff is generally projected to increase in the east. Daily streamflow variability is projected to increase for most of Tasmania, consistent with increases in rainfall intensity. Inter-annual variability of streamflows is projected to increase across most of Tasmania.

    This is the first major Australian study to use high-resolution bias-corrected rainfall and potential evapotranspiration projections as direct inputs to hydrological models. Our study shows that these simulations are capable of producing realistic streamflows, allowing for increased confidence in assessing future changes to surface water variability.

  15. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    Science.gov (United States)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  16. The WASCAL high-resolution regional climate simulation ensemble for West Africa: concept, dissemination and assessment

    Directory of Open Access Journals (Sweden)

    D. Heinzeller

    2018-04-01

    Full Text Available Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL, an ensemble of high-resolution regional climate change scenarios for the greater West African region is provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations, as well as detailed information on the experimental design, and provides information on the format and dissemination of the available data. All data are made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512. A brief assessment of the data are presented to provide guidance for future users. Regional climate projections are generated at high (12 km and intermediate (60 km resolution using the Weather Research and Forecasting Model (WRF. The simulations cover the validation period 1980–2010 and the two future periods 2020–2050 and 2070–2100. A brief comparison to observations and two climate change scenarios from the Coordinated Regional Downscaling Experiment (CORDEX initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 (Representative Concentration Pathway 4.5 scenario, the results suggest an increase in temperature by 1.5 °C at the coast of Guinea and by up to 3 °C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the north and almost no change in

  17. Distributed Modeling with Parflow using High Resolution LIDAR Data

    Science.gov (United States)

    Barnes, M.; Welty, C.; Miller, A. J.

    2012-12-01

    Urban landscapes provide a challenging domain for the application of distributed surface-subsurface hydrologic models. Engineered water infrastructure and altered topography influence surface and subsurface flow paths, yet these effects are difficult to quantify. In this work, a parallel, distributed watershed model (ParFlow) is used to simulate urban watersheds using spatial data at the meter and sub-meter scale. An approach using GRASS GIS (Geographic Resources Analysis Support System) is presented that incorporates these data to construct inputs for the ParFlow simulation. LIDAR topography provides the basis for the fully coupled overland flow simulation. Methods to address real discontinuities in the urban land-surface for use with the grid-based kinematic wave approximation used in ParFlow are presented. The spatial distribution of impervious surface is delineated accurately from high-resolution land cover data; hydrogeological properties are specified from literature values. An application is presented for part of the Dead Run subwatershed of the Gwynns Falls in Baltimore County, MD. The domain is approximately 3 square kilometers, and includes a highly impacted urban stream, a major freeway, and heterogeneous urban development represented at a 10-m horizontal resolution and 1-m vertical resolution. This resolution captures urban features such as building footprints and highways at an appropriate scale. The Dead Run domain provides an effective test case for ParFlow application at the fine scale in an urban environment. Preliminary model runs employ a homogeneous subsurface domain with no-flow boundaries. Initial results reflect the highly articulated topography of the road network and the combined influence of surface runoff from impervious surfaces and subsurface flux toward the channel network. Subsequent model runs will include comparisons of the coupled surface-subsurface response of alternative versions of the Dead Run domain with and without impervious

  18. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  19. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  20. Hydrodynamic and Inundation Modeling of China’s Largest Freshwater Lake Aided by Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-04-01

    Full Text Available China’s largest freshwater lake, Poyang Lake, is characterized by rapid changes in its inundation area and hydrodynamics, so in this study, a hydrodynamic model of Poyang Lake was established to simulate these long-term changes. Inundation information was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS remote sensing data and used to calibrate the wetting and drying parameter by assessing the accuracy of the simulated inundation area and its boundary. The bottom friction parameter was calibrated using current velocity measurements from Acoustic Doppler Current Profilers (ADCP. The results show the model is capable of predicting the inundation area dynamic through cross-validation with remotely sensed inundation data, and can reproduce the seasonal dynamics of the water level, and water discharge through a comparison with hydrological data. Based on the model results, the characteristics of the current velocities of the lake in the wet season and the dry season of the lake were explored, and the potential effect of the current dynamic on water quality patterns was discussed. The model is a promising basic tool for prediction and management of the water resource and water quality of Poyang Lake.

  1. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  2. Idealized climate change simulations with a high-resolution physical model: HadGEM3-GC2

    Science.gov (United States)

    Senior, Catherine A.; Andrews, Timothy; Burton, Chantelle; Chadwick, Robin; Copsey, Dan; Graham, Tim; Hyder, Pat; Jackson, Laura; McDonald, Ruth; Ridley, Jeff; Ringer, Mark; Tsushima, Yoko

    2016-06-01

    Idealized climate change simulations with a new physical climate model, HadGEM3-GC2 from The Met Office Hadley Centre are presented and contrasted with the earlier MOHC model, HadGEM2-ES. The role of atmospheric resolution is also investigated. The Transient Climate Response (TCR) is 1.9 K/2.1 K at N216/N96 and Effective Climate Sensitivity (ECS) is 3.1 K/3.2 K at N216/N96. These are substantially lower than HadGEM2-ES (TCR: 2.5 K; ECS: 4.6 K) arising from a combination of changes in the size of climate feedbacks. While the change in the net cloud feedback between HadGEM3 and HadGEM2 is relatively small, there is a change in sign of its longwave and a strengthening of its shortwave components. At a global scale, there is little impact of the increase in atmospheric resolution on the future climate change signal and even at a broad regional scale, many features are robust including tropical rainfall changes, however, there are some significant exceptions. For the North Atlantic and western Europe, the tripolar pattern of winter storm changes found in most CMIP5 models is little impacted by resolution but for the most intense storms, there is a larger percentage increase in number at higher resolution than at lower resolution. Arctic sea-ice sensitivity shows a larger dependence on resolution than on atmospheric physics.

  3. Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target

    Science.gov (United States)

    Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.

    2016-10-01

    We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. S-World: A high resolution global soil database for simulation modelling (Invited)

    Science.gov (United States)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property

  5. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    Science.gov (United States)

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  6. Hydrodynamic modeling of tsunamis from the Currituck landslide

    Science.gov (United States)

    Geist, E.L.; Lynett, P.J.; Chaytor, J.D.

    2009-01-01

    Tsunami generation from the Currituck landslide offshore North Carolina and propagation of waves toward the U.S. coastline are modeled based on recent geotechnical analysis of slide movement. A long and intermediate wave modeling package (COULWAVE) based on the non-linear Boussinesq equations are used to simulate the tsunami. This model includes procedures to incorporate bottom friction, wave breaking, and overland flow during runup. Potential tsunamis generated from the Currituck landslide are analyzed using four approaches: (1) tsunami wave history is calculated from several different scenarios indicated by geotechnical stability and mobility analyses; (2) a sensitivity analysis is conducted to determine the effects of both landslide failure duration during generation and bottom friction along the continental shelf during propagation; (3) wave history is calculated over a regional area to determine the propagation of energy oblique to the slide axis; and (4) a high-resolution 1D model is developed to accurately model wave breaking and the combined influence of nonlinearity and dispersion during nearshore propagation and runup. The primary source parameter that affects tsunami severity for this case study is landslide volume, with failure duration having a secondary influence. Bottom friction during propagation across the continental shelf has a strong influence on the attenuation of the tsunami during propagation. The high-resolution 1D model also indicates that the tsunami undergoes nonlinear fission prior to wave breaking, generating independent, short-period waves. Wave breaking occurs approximately 40-50??km offshore where a tsunami bore is formed that persists during runup. These analyses illustrate the complex nature of landslide tsunamis, necessitating the use of detailed landslide stability/mobility models and higher-order hydrodynamic models to determine their hazard.

  7. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  8. Advances in radiation-hydrodynamics and atomic physics simulation for current and new neutron-less targets

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Bravo, E.

    2003-01-01

    We present advances in advanced fusion cycles, atomic physics and radiation hydrodynamics. With ARWEN code we analyze a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. Opacity calculations are obtained with ANALOP code, which uses parametric potentials fitting to self-consistent potentials. It includes temperature and density effects by linearized Debye-Hueckel and it treats excited configurations and H+He-like lines. Advanced fusion cycles, as the a neutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. (author)

  9. The frontal method in hydrodynamics simulations

    Science.gov (United States)

    Walters, R.A.

    1980-01-01

    The frontal solution method has proven to be an effective means of solving the matrix equations resulting from the application of the finite element method to a variety of problems. In this study, several versions of the frontal method were compared in efficiency for several hydrodynamics problems. Three basic modifications were shown to be of value: 1. Elimination of equations with boundary conditions beforehand, 2. Modification of the pivoting procedures to allow dynamic management of the equation size, and 3. Storage of the eliminated equations in a vector. These modifications are sufficiently general to be applied to other classes of problems. ?? 1980.

  10. Relativistic, Viscous, Radiation Hydrodynamic Simulations of Geometrically Thin Disks. I. Thermal and Other Instabilities

    Science.gov (United States)

    Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek

    2018-04-01

    We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.

  11. Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2016-12-15

    Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.

  12. Toward an ultra-high resolution community climate system model for the BlueGene platform

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, John M [Computer Science Section, National Center for Atmospheric Research, Boulder, CO (United States); Jacob, Robert [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (United States); Vertenstein, Mariana [Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO (United States); Craig, Tony [Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO (United States); Loy, Raymond [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2007-07-15

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10{sup 0} resolution for CICE, POP, and CLM models and 1/4{sup 0} resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science.

  13. Navigating Earthquake Physics with High-Resolution Array Back-Projection

    Science.gov (United States)

    Meng, Lingsen

    Understanding earthquake source dynamics is a fundamental goal of geophysics. Progress toward this goal has been slow due to the gap between state-of-art earthquake simulations and the limited source imaging techniques based on conventional low-frequency finite fault inversions. Seismic array processing is an alternative source imaging technique that employs the higher frequency content of the earthquakes and provides finer detail of the source process with few prior assumptions. While the back-projection provides key observations of previous large earthquakes, the standard beamforming back-projection suffers from low resolution and severe artifacts. This thesis introduces the MUSIC technique, a high-resolution array processing method that aims to narrow the gap between the seismic observations and earthquake simulations. The MUSIC is a high-resolution method taking advantage of the higher order signal statistics. The method has not been widely used in seismology yet because of the nonstationary and incoherent nature of the seismic signal. We adapt MUSIC to transient seismic signal by incorporating the Multitaper cross-spectrum estimates. We also adopt a "reference window" strategy that mitigates the "swimming artifact," a systematic drift effect in back projection. The improved MUSIC back projections allow the imaging of recent large earthquakes in finer details which give rise to new perspectives on dynamic simulations. In the 2011 Tohoku-Oki earthquake, we observe frequency-dependent rupture behaviors which relate to the material variation along the dip of the subduction interface. In the 2012 off-Sumatra earthquake, we image the complicated ruptures involving orthogonal fault system and an usual branching direction. This result along with our complementary dynamic simulations probes the pressure-insensitive strength of the deep oceanic lithosphere. In another example, back projection is applied to the 2010 M7 Haiti earthquake recorded at regional distance. The

  14. Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations

    Science.gov (United States)

    Vincenzo, Fiorenzo; Kobayashi, Chiaki

    2018-04-01

    We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual ISM regions within single spatially-resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter halos with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients which have settled in the galaxy interstellar medium, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy interstellar medium gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially-resolved galaxy.

  15. The gravitational interaction between N-body (star clusters) and hydrodynamic (ISM) codes in disk galaxy simulations

    International Nuclear Information System (INIS)

    Schroeder, M.C.; Comins, N.F.

    1986-01-01

    During the past twenty years, three approaches to numerical simulations of the evolution of galaxies have been developed. The first approach, N-body programs, models the motion of clusters of stars as point particles which interact via their gravitational potentials to determine the system dynamics. Some N-body codes model molecular clouds as colliding, inelastic particles. The second approach, hydrodynamic models of galactic dynamics, simulates the activity of the interstellar medium as a compressible gas. These models presently do not include stars, the effect of gravitational fields, or allow for stellar evolution and exchange of mass or angular momentum between stars and the interstellar medium. The third approach, stochastic star formation simulations of disk galaxies, allows for the interaction between stars and interstellar gas, but does not allow the star particles to move under the influence of gravity

  16. How to model supernovae in simulations of star and galaxy formation

    Science.gov (United States)

    Hopkins, Philip F.; Wetzel, Andrew; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot; Boylan-Kolchin, Michael; Murray, Norman; Hayward, Christopher C.; El-Badry, Kareem

    2018-06-01

    We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting `preferred directions' on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common `fully thermal' (energy-dump) or `fully kinetic' (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution ≳100 M⊙, they diverge by orders of magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution (models without re-tuning parameters.

  17. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    Science.gov (United States)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  18. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  19. Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics

    Science.gov (United States)

    Bellafiore, D.; Bucchignani, E.; Umgiesser, G.

    2010-09-01

    One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more

  20. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  1. High-Resolution Remotely Sensed Small Target Detection by Imitating Fly Visual Perception Mechanism

    Directory of Open Access Journals (Sweden)

    Fengchen Huang

    2012-01-01

    Full Text Available The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  2. High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.

    Science.gov (United States)

    Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min

    2012-01-01

    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  3. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  4. Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD

    KAUST Repository

    Gao, Song

    2013-05-01

    The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.

  5. Transforming SWAT for continental-scale high-resolution modeling of floodplain dynamics: opportunities and challenges

    Science.gov (United States)

    Rajib, A.; Merwade, V.; Liu, Z.; Lane, C.; Golden, H. E.; Tavakoly, A. A.; Follum, M. L.

    2017-12-01

    There have been many initiatives to develop frameworks for continental-scale modeling and mapping floodplain dynamics. The choice of a model for such needs should be governed by its suitability to be executed in high performance cyber platforms, ability to integrate supporting hydraulic/hydrodynamic tools, and ability to assimilate earth observations. Furthermore, disseminating large volume of outputs for public use and interoperability with similar frameworks should be considered. Considering these factors, we have conducted a series of modeling experiments and developed a suite of cyber-enabled platforms that have transformed Soil and Water Assessment Tool (SWAT) into an appropriate model for use in a continental-scale, high resolution, near real-time flood information framework. Our first experiment uses a medium size watershed in Indiana, USA and attempts burning-in a high resolution, National Hydrography Dataset Plus(NHDPlus) into the SWAT model. This is crucial with a view to make the outputs comparable with other global/national initiatives. The second experiment is built upon the first attempt to add a modified landscape representation in the model which differentiates between the upland and floodplain processes. Our third experiment involves two separate efforts: coupling SWAT with a hydrodynamic model LISFLOOD-FP and a new generation, low complexity hydraulic model AutoRoute. We have executed the prototype "loosely-coupled" models for the Upper Mississippi-Ohio River Basin in the USA, encompassing 1 million square km drainage area and nearly 0.2 million NHDPlus river reaches. The preliminary results suggest reasonable accuracy for both streamflow and flood inundation. In this presentation, we will also showcase three cyber-enabled platforms, including SWATShare to run and calibrate large scale SWAT models online using high performance computational resources, HydroGlobe to automatically extract and assimilate multiple remotely sensed earth observations in

  6. Surface drag effects on simulated wind fields in high-resolution atmospheric forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kyo Sun; Lim, Jong Myoung; Ji, Young Yong [Environmental Radioactivity Assessment Team,Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Hye Yum [NOAA/Geophysical Fluid Dynamics Laboratory, Princeton (United States); Hong, Jin Kyu [Yonsei University, Seoul (Korea, Republic of)

    2017-04-15

    It has been reported that the Weather Research and Forecasting (WRF) model generally shows a substantial over prediction bias at low to moderate wind speeds and winds are too geostrophic (Cheng and Steenburgh 2005), which limits the application of WRF model in the area that requires the accurate surface wind estimation such as wind-energy application, air-quality studies, and radioactive-pollutants dispersion studies. The surface drag generated by the subgrid-scale orography is represented by introducing a sink term in the momentum equation in their studies. The purpose of our study is to evaluate the simulated meteorological fields in the high-resolution WRF framework, that includes the parameterization of subgrid-scale orography developed by Mass and Ovens (2010), and enhance the forecast skill of low-level wind fields, which plays an important role in transport and dispersion of air pollutants including radioactive pollutants. The positive bias in 10-m wind speed is significantly alleviated by implementing the subgrid-scale orography parameterization, while other meteorological fields including 10-m wind direction are not changed. Increased variance of subgrid- scale orography enhances the sink of momentum and further reduces the bias in 10-m wind speed.

  7. High-resolution climate modelling of Antarctica and the Antarctic Peninsula

    NARCIS (Netherlands)

    van Wessem, J.M.|info:eu-repo/dai/nl/413533085

    2016-01-01

    In this thesis we have used a high-resolution regional atmospheric climate model (RACMO2.3) to simulate the present-day climate (1979-2014) of Antarctica and the Antarctic Peninsula. We have evaluated the model results with several observations, such as in situ surface energy balance (SEB)

  8. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  9. Calibration of HEC-Ras hydrodynamic model using gauged discharge data and flood inundation maps

    Science.gov (United States)

    Tong, Rui; Komma, Jürgen

    2017-04-01

    The estimation of flood is essential for disaster alleviation. Hydrodynamic models are implemented to predict the occurrence and variance of flood in different scales. In practice, the calibration of hydrodynamic models aims to search the best possible parameters for the representation the natural flow resistance. Recent years have seen the calibration of hydrodynamic models being more actual and faster following the advance of earth observation products and computer based optimization techniques. In this study, the Hydrologic Engineering River Analysis System (HEC-Ras) model was set up with high-resolution digital elevation model from Laser scanner for the river Inn in Tyrol, Austria. 10 largest flood events from 19 hourly discharge gauges and flood inundation maps were selected to calibrate the HEC-Ras model. Manning roughness values and lateral inflow factors as parameters were automatically optimized with the Shuffled complex with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complex Evolution (SCE-UA). Different objective functions (Nash-Sutcliffe model efficiency coefficient, the timing of peak, peak value and Root-mean-square deviation) were used in single or multiple way. It was found that the lateral inflow factor was the most sensitive parameter. SP-UCI algorithm could avoid the local optimal and achieve efficient and effective parameters in the calibration of HEC-Ras model using flood extension images. As results showed, calibration by means of gauged discharge data and flood inundation maps, together with objective function of Nash-Sutcliffe model efficiency coefficient, was very robust to obtain more reliable flood simulation, and also to catch up with the peak value and the timing of peak.

  10. Machine vision-based high-resolution weed mapping and patch-sprayer performance simulation

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    1999-01-01

    An experimental machine vision-based patch-sprayer was developed. This sprayer was primarily designed to do real-time weed density estimation and variable herbicide application rate control. However, the sprayer also had the capability to do high-resolution weed mapping if proper mapping techniques

  11. Heat capacity of liquids: A hydrodynamic approach

    Directory of Open Access Journals (Sweden)

    T. Bryk

    2015-03-01

    Full Text Available We study autocorrelation functions of energy, heat and entropy densities obtained by molecular dynamics simulations of supercritical Ar and compare them with the predictions of the hydrodynamic theory. It is shown that the predicted by the hydrodynamic theory single-exponential shape of the entropy density autocorrelation functions is perfectly reproduced for small wave numbers by the molecular dynamics simulations and permits the calculation of the wavenumber-dependent specific heat at constant pressure. The estimated wavenumber-dependent specific heats at constant volume and pressure, Cv(k and Cp(k, are shown to be in the long-wavelength limit in good agreement with the macroscopic experimental values of Cv and Cp for the studied thermodynamic points of supercritical Ar.

  12. Very high resolution regional climate simulations on the 4 km scale as a basis for carbon balance assessments in northeast European Russia

    Science.gov (United States)

    Stendel, Martin; Hesselbjerg Christensen, Jens; Adalgeirsdottir, Gudfinna; Rinke, Annette; Matthes, Heidrun; Marchenko, Sergej; Daanen, Ronald; Romanovsky, Vladimir

    2010-05-01

    Simulations with global circulation models (GCMs) clearly indicate that major climate changes in polar regions can be expected during the 21st century. Model studies have shown that the area of the Northern Hemisphere underlain by permafrost could be reduced substantially in a warmer climate. However, thawing of permafrost, in particular if it is ice-rich, is subject to a time lag due to the large latent heat of fusion. State-of-the-art GCMs are unable to adequately model these processes because (a) even the most advanced subsurface schemes rarely treat depths below 5 m explicitly, and (b) soil thawing and freezing processes cannot be dealt with directly due to the coarse resolution of present GCMs. Any attempt to model subsurface processes needs information about soil properties, vegetation and snow cover, which are hardly realistic on a typical GCM grid. Furthermore, simulated GCM precipitation is often underestimated and the proportion of rain and snow is incorrect. One possibility to overcome resolution-related problems is to use regional climate models (RCMs). Such an RCM, HIRHAM, has until now been the only one used for the entire circumpolar domain, and its most recent version, HIRHAM5, has also been used in the high resolution study described here. Instead of the traditional approach via a degree-day based frost index from observations or model data, we use the regional model to create boundary conditions for an advanced permafrost model. This approach offers the advantage that the permafrost model can be run on the grid of the regional model, i.e. in a considerably higher resolution than in previous approaches. We here present results from a new time-slice integration with an unprecedented horizontal resolution of only 4 km, covering northeast European Russia. This model simulation has served as basis for an assessment of the carbon balance for a region in northeast European Russia within the EU-funded Carbo-North project.

  13. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  14. Hydrodynamic Simulation of the Columbia River, Hanford Reach, 1940--2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Perkins, William A.; Richmond, Marshall C.

    2005-06-15

    Many hydrological and biological problems in the Columbia River corridor through the Hanford Site require estimates of river stage (water surface elevation) or river flow and velocity. Systematic collection of river stage data at locations in the Hanford Reach began in 1991, but many environmental projects need river stage information at unmeasured locations or over longer time periods. The Modular Aquatic Simulation System 1D (MASS1), a one-dimensional, unsteady hydrodynamic and water quality model, was used to simulate the Columbia River from Priest Rapids Dam to McNary Dam from 1940 to 2004, providing estimates of water surface elevation, volumetric flow rate, and flow velocity at 161 locations on the Hanford Reach. The primary input data were bathymetric/topographic cross sections of the Columbia River channel, flow rates at Priest Rapids Dam, and stage at McNary Dam. Other inputs included Yakima River and Snake River inflows. Available flow data at a gaging station just below Priest Rapids Dam was mean daily flow from 1940 to 1986 and hourly thereafter. McNary dam was completed in 1957, and hourly stage data are available beginning in 1975. MASS1 was run at an hourly timestep and calibrated and tested using 1991--2004 river stage data from six Hanford Reach locations (areas 100B, 100N, 100D, 100H, 100F, and 300). Manning's roughness coefficient in the Reach above each river recorder location was adjusted using an automated genetic algorithm and gradient search technique in three separate calibrations, corresponding to different data subsets, with minimization of mean absolute error as the objective. The primary calibration was based on 1999, a representative year, and included all locations. The first alternative calibration also used all locations but was limited in time to a high-flow period during spring and early summer of 1997. The second alternative calibration was based on 1999 and included only 300 Area stage data. Model goodness-of-fit for all

  15. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  16. Hydrodynamic Modeling of Nokoué Lake in Benin

    Directory of Open Access Journals (Sweden)

    Josué Zandagba

    2016-12-01

    Full Text Available Nokoué Lake is a complex ecosystem, the understanding of which requires control of physical processes that have occurred. For this, the Surface Water Modeling System (SMS hydrodynamic model was calibrated and validated on the water depth data. The results of these simulations show a good match between the simulated and observed data for bottom roughness and turbulent exchange coefficients, of 0.02 m−1/3·s and 20 m2/s respectively. Once the ability of the model to simulate the hydrodynamics of the lake is testified, the model is used to simulate water surface elevation, exchanged flows and velocities. The simulation shows that the tidal amplitude is maximum at the inlet of the channel and decreases gradually from the inlet towards the lagoon’s main body. The propagation of the tidal wave is characterized by the dephasing and the flattening of the amplitude tide, which increases as we move away from the channel. This dephasing is characterized by a high and low tides delay of about 1 or 4 h and also depends on the tide amplitude and location. The velocities inside the lake are very low and do not exceed 0.03 m/s. The highest are obtained at the entrance of the channel. In a flood period, in contrast with the low-water period, incoming flows are higher than outflows, reinforced by the amplitude of the tide. An average renewal time of the lake has been estimated and corresponds during a flood period to 30 days for an average amplitude tide and 26.3 days on a high amplitude tide. In a low water period it is 40.2 days for an average amplitude tide and 30 days for a high amplitude tide. From the results obtained, several measures must be taken into account for the rational management of the lake water resources. These include a dam construction at the lake upstream, to control the river flows, and the dredging of the channel to facilitate exchanges with the sea.

  17. An Investigation of Intracluster Light Evolution Using Cosmological Hydrodynamical Simulations

    Science.gov (United States)

    Tang, Lin; Lin, Weipeng; Cui, Weiguang; Kang, Xi; Wang, Yang; Contini, E.; Yu, Yu

    2018-06-01

    Intracluster light (ICL) in observations is usually identified through the surface brightness limit (SBL) method. In this paper, for the first time we produce mock images of galaxy groups and clusters, using a cosmological hydrodynamical simulation to investigate the ICL fraction and focus on its dependence on observational parameters, e.g., the SBL, the effects of cosmological redshift-dimming, point-spread function (PSF), and CCD pixel size. Detailed analyses suggest that the width of the PSF has a significant effect on the measured ICL fraction, while the relatively small pixel size shows almost no influence. It is found that the measured ICL fraction depends strongly on the SBL. At a fixed SBL and redshift, the measured ICL fraction decreases with increasing halo mass, while with a much fainter SBL, it does not depend on halo mass at low redshifts. In our work, the measured ICL fraction shows a clear dependence on the cosmological redshift-dimming effect. It is found that there is more mass locked in the ICL component than light, suggesting that the use of a constant mass-to-light ratio at high surface brightness levels will lead to an underestimate of ICL mass. Furthermore, it is found that the radial profile of ICL shows a characteristic radius that is almost independent of halo mass. The current measurement of ICL from observations has a large dispersion due to different methods, and we emphasize the importance of using the same definition when observational results are compared with theoretical predictions.

  18. Magneto-hydrodynamic simulations of Heavy Ion Collisions with ECHO-QGP

    Science.gov (United States)

    Inghirami, G.; Del Zanna, L.; Beraudo, A.; Haddadi Moghaddam, M.; Becattini, F.; Bleicher, M.

    2018-05-01

    It is believed that very strong magnetic fields may induce many interesting physical effects in the Quark Gluon Plasma, like the Chiral Magnetic Effect, the Chiral Separation Effect, a modification of the critical temperature or changes in the collective flow of the emitted particles. However, in the hydrodynamic numerical simulations of Heavy Ion Collisions the magnetic fields have been either neglected or considered as external fields which evolve independently from the dynamics of the fluid. To address this issue, we recently modified the ECHO-QGP code, including for the first time the effects of electromagnetic fields in a consistent way, although in the limit of an infinite electrical conductivity of the plasma (ideal magnetohydrodynamics). In this proceedings paper we illustrate the underlying 3+1 formalisms of the current version of the code and we present the results of its basic preliminary application in a simple case. We conclude with a brief discussion of the possible further developments and future uses of the code, from RHIC to FAIR collision energies.

  19. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    Science.gov (United States)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  20. Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves

    International Nuclear Information System (INIS)

    Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.

    2010-01-01

    Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.

  1. Improved Synthesis of Global Irradiance with One-Minute Resolution for PV System Simulations

    Directory of Open Access Journals (Sweden)

    Martin Hofmann

    2014-01-01

    Full Text Available High resolution global irradiance time series are needed for accurate simulations of photovoltaic (PV systems, since the typical volatile PV power output induced by fast irradiance changes cannot be simulated properly with commonly available hourly averages of global irradiance. We present a two-step algorithm that is capable of synthesizing one-minute global irradiance time series based on hourly averaged datasets. The algorithm is initialized by deriving characteristic transition probability matrices (TPM for different weather conditions (cloudless, broken clouds and overcast from a large number of high resolution measurements. Once initialized, the algorithm is location-independent and capable of synthesizing one-minute values based on hourly averaged global irradiance of any desired location. The one-minute time series are derived by discrete-time Markov chains based on a TPM that matches the weather condition of the input dataset. One-minute time series generated with the presented algorithm are compared with measured high resolution data and show a better agreement compared to two existing synthesizing algorithms in terms of temporal variability and characteristic frequency distributions of global irradiance and clearness index values. A comparison based on measurements performed in Lindenberg, Germany, and Carpentras, France, shows a reduction of the frequency distribution root mean square errors of more than 60% compared to the two existing synthesizing algorithms.

  2. High Resolution N-Body Simulations of Terrestrial Planet Growth

    Science.gov (United States)

    Clark Wallace, Spencer; Quinn, Thomas R.

    2018-04-01

    We investigate planetesimal accretion with a direct N-body simulation of an annulus at 1 AU around a 1 M_sun star. The planetesimal ring, which initially contains N = 106 bodies is evolved through the runaway growth stage into the phase of oligarchic growth. We find that the mass distribution of planetesimals develops a bump around 1022 g shortly after the oligarchs form. This feature is absent in previous lower resolution studies. We find that this bump marks a boundary between growth modes. Below the bump mass, planetesimals are packed tightly enough together to populate first order mean motion resonances with the oligarchs. These resonances act to heat the tightly packed, low mass planetesimals, inhibiting their growth. We examine the eccentricity evolution of a dynamically hot planetary embryo embedded in an annulus of planetesimals and find that dynamical friction acts more strongly on the embryo when the planetesimals are finely resolved. This effect disappears when the annulus is made narrow enough to exclude most of the mean motion resonances. Additionally, we find that the 1022 g bump is significantly less prominent when we follow planetesimal growth with a skinny annulus.This feature, which is reminiscent of the power law break seen in the size distribution of asteroid belt objects may be an important clue for constraining the initial size of planetesimals in planet formation models.

  3. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    Science.gov (United States)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  4. Assessment of summer rainfall forecast skill in the Intra-Americas in GFDL high and low-resolution models

    Science.gov (United States)

    Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong

    2018-05-01

    The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications

  5. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  6. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    Science.gov (United States)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  7. Changes in snow cover over China in the 21st century as simulated by a high resolution regional climate model

    International Nuclear Information System (INIS)

    Shi Ying; Gao Xuejie; Wu Jia; Giorgi, Filippo

    2011-01-01

    On the basis of the climate change simulations conducted using a high resolution regional climate model, the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model, RegCM3, at 25 km grid spacing, future changes in snow cover over China are analyzed. The simulations are carried out for the period of 1951–2100 following the IPCC SRES A1B emission scenario. The results suggest good performances of the model in simulating the number of snow cover days and the snow cover depth, as well as the starting and ending dates of snow cover to the present day (1981–2000). Their spatial distributions and amounts show fair consistency between the simulation and observation, although with some discrepancies. In general, decreases in the number of snow cover days and the snow cover depth, together with postponed snow starting dates and advanced snow ending dates, are simulated for the future, except in some places where the opposite appears. The most dramatic changes are found over the Tibetan Plateau among the three major snow cover areas of Northeast, Northwest and the Tibetan Plateau in China.

  8. SPIRAL DENSITY WAVES IN M81. II. HYDRODYNAMIC SIMULATIONS OF THE GAS RESPONSE TO STELLAR SPIRAL DENSITY WAVES

    International Nuclear Information System (INIS)

    Wang, Hsiang-Hsu; Lee, Wing-Kit; Taam, Ronald E.; Feng, Chien-Chang; Lin, Lien-Hsuan

    2015-01-01

    The gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of self-gravity and to cover the parameter space comprising three different sound speeds and three different arm strengths. The results are confronted with the data observed at wavelengths of 8 μm and 21 cm. In the outer disk, the ring-like structure observed in the 8 μm image is consistent with the response of cold neutral medium with an effective sound speed 7 km s –1 . For the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s –1 . Simulations with a single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. Instead this justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of the observed arm strength toward larger amplitudes

  9. SPIRAL DENSITY WAVES IN M81. II. HYDRODYNAMIC SIMULATIONS OF THE GAS RESPONSE TO STELLAR SPIRAL DENSITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hsiang-Hsu; Lee, Wing-Kit; Taam, Ronald E.; Feng, Chien-Chang; Lin, Lien-Hsuan, E-mail: hhwang@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan, ROC (China)

    2015-02-20

    The gas response to the underlying stellar spirals is explored for M81 using unmagnetized hydrodynamic simulations. Constrained within the uncertainty of observations, 18 simulations are carried out to study the effects of self-gravity and to cover the parameter space comprising three different sound speeds and three different arm strengths. The results are confronted with the data observed at wavelengths of 8 μm and 21 cm. In the outer disk, the ring-like structure observed in the 8 μm image is consistent with the response of cold neutral medium with an effective sound speed 7 km s{sup –1}. For the inner disk, the presence of spiral shocks can be understood as a result of 4:1 resonances associated with the warm neutral medium with an effective sound speed 19 km s{sup –1}. Simulations with a single effective sound speed alone cannot simultaneously explain the structures in the outer and inner disks. Instead this justifies the coexistence of cold and warm neutral media in M81. The anomalously high streaming motions observed in the northeast arm and the outward shifted turning points in the iso-velocity contours seen along the southwest arm are interpreted as signatures of interactions with companion galaxies. The level of simulated streaming motions narrows down the uncertainty of the observed arm strength toward larger amplitudes.

  10. Hydrodynamics of long-scale-length plasmas. Summary

    International Nuclear Information System (INIS)

    Craxton, R.S.

    1984-01-01

    A summary is given relating to the importance of long-scale-length plasmas to laser fusion. Some experiments are listed in which long-scale-length plasmas have been produced and studied. This talk presents SAGE simulations of most of these experiments with the emphasis being placed on understanding the hydrodynamic conditions rather than the parametric/plasma-physics processes themselves which are not modeled by SAGE. However, interpretation of the experiments can often depend on a good understanding of the hydrodynamics, including optical ray tracing

  11. Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems

    International Nuclear Information System (INIS)

    Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Meyerhofer, D. D.

    2005-01-01

    Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to 1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. (Author)

  12. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  13. High Resolution Modeling of Hurricanes in a Climate Context

    Science.gov (United States)

    Knutson, T. R.

    2007-12-01

    Modeling of tropical cyclone activity in a climate context initially focused on simulation of relatively weak tropical storm-like disturbances as resolved by coarse grid (200 km) global models. As computing power has increased, multi-year simulations with global models of grid spacing 20-30 km have become feasible. Increased resolution also allowed for simulation storms of increasing intensity, and some global models generate storms of hurricane strength, depending on their resolution and other factors, although detailed hurricane structure is not simulated realistically. Results from some recent high resolution global model studies are reviewed. An alternative for hurricane simulation is regional downscaling. An early approach was to embed an operational (GFDL) hurricane prediction model within a global model solution, either for 5-day case studies of particular model storm cases, or for "idealized experiments" where an initial vortex is inserted into an idealized environments derived from global model statistics. Using this approach, hurricanes up to category five intensity can be simulated, owing to the model's relatively high resolution (9 km grid) and refined physics. Variants on this approach have been used to provide modeling support for theoretical predictions that greenhouse warming will increase the maximum intensities of hurricanes. These modeling studies also simulate increased hurricane rainfall rates in a warmer climate. The studies do not address hurricane frequency issues, and vertical shear is neglected in the idealized studies. A recent development is the use of regional model dynamical downscaling for extended (e.g., season-length) integrations of hurricane activity. In a study for the Atlantic basin, a non-hydrostatic model with grid spacing of 18km is run without convective parameterization, but with internal spectral nudging toward observed large-scale (basin wavenumbers 0-2) atmospheric conditions from reanalyses. Using this approach, our

  14. Smoothed particle hydrodynamic simulations of expanding HII regions

    Science.gov (United States)

    Bisbas, Thomas G.

    2009-09-01

    This thesis deals with numerical simulations of expanding ionized regions, known as HII regions. We implement a new three dimensional algorithm in Smoothed Particle Hydrodynamics for including the dynamical effects of the interaction between ionizing radiation and the interstellar medium. This interaction plays a crucial role in star formation at all epochs. We study the influence of ionizing radiation in spherically symmetric clouds. In particular, we study the spherically symmetric expansion of an HII region inside a uniform-density, non-self-gravitating cloud. We examine the ability of our algorithm to reproduce the known theoretical solution and we find that the agreement is very good. We also study the spherically symmetric expansion inside a uniform-density, self-gravitating cloud. We propose a new differential equation of motion for the expanding shell that includes the effects of gravity. Comparing its numerical solution with the simulations, we find that the equation predicts the position of the shell accurately. We also study the expansion of an off-centre HII region inside a uniform-density, non- self-gravitating cloud. This results in an evolution known as the rocket effect, where the ionizing radiation pushes and accelerates the cloud away from the exciting star leading to its dispersal. During this evolution, cometary knots appear as a result of Rayleigh-Taylor and Vishniac instabilities. The knots are composed of a dense head with a conic tail behind them, a structure that points towards the ionizing source. Our simulations show that these knots are very reminiscent of the observed structures in planetary nebula, such as in the Helix nebula. The last part of this thesis is dedicated to the study of cores ionized by an exciting source which is placed outside and far away from them. The evolution of these cores is known as radiation driven compression (or implosion). We perform simulations and compare our findings with results of other workers and we

  15. Hydrodynamic Modeling Analysis to Support Nearshore Restoration Projects in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Zhaoqing Yang

    2014-01-01

    Full Text Available To re-establish the intertidal wetlands with full tidal exchange and improve salmonid rearing habitat in the Skagit River estuary, State of Washington, USA, a diked agriculture farm land along the Skagit Bay front is proposed to be restored to a fully functional tidal wetland. The complex and dynamic Skagit River estuarine system calls for the need of a multi-facet and multi-dimensional analysis using observed data, numerical and analytical methods. To assist the feasibility study of the restoration project, a hydrodynamic modeling analysis was conducted using a high-resolution unstructured-grid coastal ocean model to evaluate the hydrodynamic response to restoration alternatives and to provide guidance to the engineering design of a new levee in the restoration site. A set of parameters were defined to quantify the hydrodynamic response of the nearshore restoration project, such as inundation area, duration of inundation, water depth and salinity of the inundated area. To assist the design of the new levee in the restoration site, the maximum water level near the project site was estimated with consideration of extreme high tide, wind-induced storm surge, significant wave height and future sea-level rise based on numerical model results and coastal engineering calculation.

  16. Radiation Hydrodynamical Turbulence in Protoplanetary Disks: Numerical Models and Observational Constraints

    Science.gov (United States)

    Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard

    2017-12-01

    Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.

  17. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Directory of Open Access Journals (Sweden)

    C. M. R. Mateo

    2017-10-01

    Full Text Available Global-scale river models (GRMs are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  18. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Science.gov (United States)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  19. Introduction to hydrodynamics

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1979-01-01

    Various aspects of hydrodynamics and elastic--plastic flow are introduced for the purpose of defining hydrodynamic terms and explaining what some of the important hydrodynamic concepts are. The first part covers hydrodynamic theory; and discussed fundamental hydrodynamic equations, discontinuities, and shock, detonation, and elastic--plastic waves. The second part deals with applications of hydrodynamic theory to material equations of state, spall, Taylor instabilities, and detonation pressure measurements

  20. High-resolution 3D X-ray imaging of intracranial nitinol stents

    International Nuclear Information System (INIS)

    Snoeren, Rudolph M.; With, Peter H.N. de; Soederman, Michael; Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko

    2012-01-01

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  1. Method of Obtaining High Resolution Intrinsic Wire Boom Damping Parameters for Multi-Body Dynamics Simulations

    Science.gov (United States)

    Yew, Alvin G.; Chai, Dean J.; Olney, David J.

    2010-01-01

    The goal of NASA's Magnetospheric MultiScale (MMS) mission is to understand magnetic reconnection with sensor measurements from four spinning satellites flown in a tight tetrahedron formation. Four of the six electric field sensors on each satellite are located at the end of 60- meter wire booms to increase measurement sensitivity in the spin plane and to minimize motion coupling from perturbations on the main body. A propulsion burn however, might induce boom oscillations that could impact science measurements if oscillations do not damp to values on the order of 0.1 degree in a timely fashion. Large damping time constants could also adversely affect flight dynamics and attitude control performance. In this paper, we will discuss the implementation of a high resolution method for calculating the boom's intrinsic damping, which was used in multi-body dynamics simulations. In summary, experimental data was obtained with a scaled-down boom, which was suspended as a pendulum in vacuum. Optical techniques were designed to accurately measure the natural decay of angular position and subsequently, data processing algorithms resulted in excellent spatial and temporal resolutions. This method was repeated in a parametric study for various lengths, root tensions and vacuum levels. For all data sets, regression models for damping were applied, including: nonlinear viscous, frequency-independent hysteretic, coulomb and some combination of them. Our data analysis and dynamics models have shown that the intrinsic damping for the baseline boom is insufficient, thereby forcing project management to explore mitigation strategies.

  2. A feasibility study of PETiPIX: an ultra high resolution small animal PET scanner

    Science.gov (United States)

    Li, K.; Safavi-Naeini, M.; Franklin, D. R.; Petasecca, M.; Guatelli, S.; Rosenfeld, A. B.; Hutton, B. F.; Lerch, M. L. F.

    2013-12-01

    PETiPIX is an ultra high spatial resolution positron emission tomography (PET) scanner designed for imaging mice brains. Four Timepix pixellated silicon detector modules are placed in an edge-on configuration to form a scanner with a field of view (FoV) 15 mm in diameter. Each detector module consists of 256 × 256 pixels with dimensions of 55 × 55 × 300 μm3. Monte Carlo simulations using GEANT4 Application for Tomographic Emission (GATE) were performed to evaluate the feasibility of the PETiPIX design, including estimation of system sensitivity, angular dependence, spatial resolution (point source, hot and cold phantom studies) and evaluation of potential detector shield designs. Initial experimental work also established that scattered photons and recoil electrons could be detected using a single edge-on Timepix detector with a positron source. Simulation results estimate a spatial resolution of 0.26 mm full width at half maximum (FWHM) at the centre of FoV and 0.29 mm FWHM overall spatial resolution with sensitivity of 0.01%, and indicate that a 1.5 mm thick tungsten shield parallel to the detectors will absorb the majority of non-coplanar annihilation photons, significantly reducing the rates of randoms. Results from the simulated phantom studies demonstrate that PETiPIX is a promising design for studies demanding high resolution images of mice brains.

  3. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics

    International Nuclear Information System (INIS)

    Cang Yu; Lu Xin; Wu Huichun; Zhang Jie

    2005-01-01

    Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)

  4. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  5. Event simulation based on three-fluid hydrodynamics for collisions at energies available at the Dubna Nuclotron-based Ion Collider Facility and at the Facility for Antiproton and Ion Research in Darmstadt

    Science.gov (United States)

    Batyuk, P.; Blaschke, D.; Bleicher, M.; Ivanov, Yu. B.; Karpenko, Iu.; Merts, S.; Nahrgang, M.; Petersen, H.; Rogachevsky, O.

    2016-10-01

    We present an event generator based on the three-fluid hydrodynamics approach for the early stage of the collision, followed by a particlization at the hydrodynamic decoupling surface to join to a microscopic transport model, ultrarelativistic quantum molecular dynamics, to account for hadronic final-state interactions. We present first results for nuclear collisions of the Facility for Antiproton and Ion Research-Nuclotron-based Ion Collider Facility energy scan program (Au+Au collisions, √{sN N}=4 -11 GeV ). We address the directed flow of protons and pions as well as the proton rapidity distribution for two model equations of state, one with a first-order phase transition and the other with a crossover-type softening at high densities. The new simulation program has the unique feature that it can describe a hadron-to-quark matter transition which proceeds in the baryon stopping regime that is not accessible to previous simulation programs designed for higher energies.

  6. A theoretical study of hydrodynamic cavitation.

    Science.gov (United States)

    Arrojo, S; Benito, Y

    2008-03-01

    The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.

  7. Stochastic porous media modeling and high-resolution schemes for numerical simulation of subsurface immiscible fluid flow transport

    Science.gov (United States)

    Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah

    2018-04-01

    This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual

  8. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    Science.gov (United States)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation

  9. Defect testing of large aperture optics based on high resolution CCD camera

    International Nuclear Information System (INIS)

    Cheng Xiaofeng; Xu Xu; Zhang Lin; He Qun; Yuan Xiaodong; Jiang Xiaodong; Zheng Wanguo

    2009-01-01

    A fast testing method on inspecting defects of large aperture optics was introduced. With uniform illumination by LED source at grazing incidence, the image of defects on the surface of and inside the large aperture optics could be enlarged due to scattering. The images of defects were got by high resolution CCD camera and microscope, and the approximate mathematical relation between viewing dimension and real dimension of defects was simulated. Thus the approximate real dimension and location of all defects could be calculated through the high resolution pictures. (authors)

  10. Charge-dependent correlations from event-by-event anomalous hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Yuji [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Hirano, Tetsufumi [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Kharzeev, Dmitri E. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Department of Physics and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2016-12-15

    We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.

  11. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  12. Status report on high fidelity reactor simulation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere, M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-01-01

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool

  13. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  14. Hydrodynamic simulations of accretion disks in cataclysmic variables

    International Nuclear Information System (INIS)

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  15. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  16. Overview of Proposal on High Resolution Climate Model Simulations of Recent Hurricane and Typhoon Activity: The Impact of SSTs and the Madden Julian Oscillation

    Science.gov (United States)

    Schubert, Siegfried; Kang, In-Sik; Reale, Oreste

    2009-01-01

    This talk gives an update on the progress and further plans for a coordinated project to carry out and analyze high-resolution simulations of tropical storm activity with a number of state-of-the-art global climate models. Issues addressed include, the mechanisms by which SSTs control tropical storm. activity on inter-annual and longer time scales, the modulation of that activity by the Madden Julian Oscillation on sub-seasonal time scales, as well as the sensitivity of the results to model formulation. The project also encourages companion coarser resolution runs to help assess resolution dependence, and. the ability of the models to capture the large-scale and long-terra changes in the parameters important for hurricane development. Addressing the above science questions is critical to understanding the nature of the variability of the Asian-Australian monsoon and its regional impacts, and thus CLIVAR RAMP fully endorses the proposed tropical storm simulation activity. The project is open to all interested organizations and investigators, and the results from the runs will be shared among the participants, as well as made available to the broader scientific community for analysis.

  17. Playing With Conflict: Teaching Conflict Resolution through Simulations and Games

    Science.gov (United States)

    Powers, Richard B.; Kirkpatrick, Kat

    2013-01-01

    Playing With Conflict is a weekend course for graduate students in Portland State University's Conflict Resolution program and undergraduates in all majors. Students participate in simulations, games, and experiential exercises to learn and practice conflict resolution skills. Graduate students create a guided role-play of a conflict. In addition…

  18. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric light detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of

  19. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    Science.gov (United States)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  20. Modeling NIF Experimental Designs with Adaptive Mesh Refinement and Lagrangian Hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A E; Anderson, R W; Wang, P; Gunney, B N; Becker, R; Eder, D C; MacGowan, B J

    2005-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs

  1. Modeling Nif experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A.E.; Anderson, R.W.; Wang, P.; Gunney, B.T.N.; Becker, R.; Eder, D.C.; MacGowan, B.J.; Schneider, M.B.

    2006-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs. (authors)

  2. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  3. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    Science.gov (United States)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  4. Mass loss of evolved massive stars: the circumstellar environment at high angular resolution

    International Nuclear Information System (INIS)

    Montarges, Miguel

    2014-01-01

    Mass loss of evolved stars is still largely mysterious, despite its importance as the main evolution engine for the chemical composition of the interstellar medium. For red supergiants (RSG), the triggering of the outflow and the mechanism of dust condensation remain unknown. Concerning red giant stars, we still do not know how their mass loss is able to form a bipolar planetary nebula. During my PhD thesis, I observed evolved stars with high angular resolution techniques. They allowed us to study the surface and the close environment of these stars, from where mass loss originates. With near-infrared interferometric observations, I characterized the water vapor and carbon monoxide envelope of the nearby RSG Betelgeuse. I also monitored a hot spot on its surface and analyzed the structure of its convection, as well as that of Antares (another very nearby supergiant) thanks to radiative hydrodynamical simulations. Diffraction-limited imaging techniques (near-infrared adaptive optics, ultraviolet space telescope) allowed me to observe the evolution of inhomogeneities in the circumstellar envelope of Betelgeuse and to discover a circumstellar disk around L2 Puppis, an asymptotic giant branch star. These multi-scale and multi-wavelength observations obtained at several epochs allowed us to monitor the evolution of the structures and to derive information on the dynamics of the stellar environment. With a wider stellar sample expected in the next few years, this observing program will allow a better understanding of the mass loss of evolved stars. (author)

  5. High-resolution numerical simulation of summer wind field comparing WRF boundary-layer parametrizations over complex Arctic topography: case study from central Spitsbergen

    Czech Academy of Sciences Publication Activity Database

    Láska, K.; Chládová, Zuzana; Hošek, Jiří

    2017-01-01

    Roč. 26, č. 4 (2017), s. 391-408 ISSN 0941-2948 Institutional support: RVO:68378289 Keywords : surface wind field * model evaluation * topographic effect * circulation pattern * Svalbard Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.989, year: 2016 http://www.schweizerbart.de/papers/metz/detail/prepub/87659/High_resolution_numerical_simulation_of_summer_wind_field_comparing_WRF_boundary_layer_parametrizations_over_complex_Arctic_topography_case_study_from_central_Spitsbergen

  6. Study of drift tube resolution using numerical simulations

    International Nuclear Information System (INIS)

    Lundin, M.C.

    1990-01-01

    The results off a simulation of straw tube detector response are presented. These gas ionization detectors and the electronics which must presumably go along with them are characterized in a simple but meaningful manner. The physical processes which comprise the response of the individual straw tubes are broken down and examined in detail. Different parameters of the simulation are varied and resulting predictions of drift tube spatial resolution are shown. In addition, small aspects of the predictions are compared to recent laboratory results, which can be seen as a measure of the simulation's usefulness. 10 refs., 8 figs

  7. A free-surface hydrodynamic model for density-stratified flow in the weakly to strongly non-hydrostatic regime

    International Nuclear Information System (INIS)

    Shen, Colin Y.; Evans, Thomas E.

    2004-01-01

    A non-hydrostatic density-stratified hydrodynamic model with a free surface has been developed from the vorticity equations rather than the usual momentum equations. This approach has enabled the model to be obtained in two different forms, weakly non-hydrostatic and fully non-hydrostatic, with the computationally efficient weakly non-hydrostatic form applicable to motions having horizontal scales greater than the local water depth. The hydrodynamic model in both its weakly and fully non-hydrostatic forms is validated numerically using exact nonlinear non-hydrostatic solutions given by the Dubriel-Jacotin-Long equation for periodic internal gravity waves, internal solitary waves, and flow over a ridge. The numerical code is developed based on a semi-Lagrangian scheme and higher order finite-difference spatial differentiation and interpolation. To demonstrate the applicability of the model to coastal ocean situations, the problem of tidal generation of internal solitary waves at a shelf-break is considered. Simulations carried out with the model obtain the evolution of solitary wave generation and propagation consistent with past results. Moreover, the weakly non-hydrostatic simulation is shown to compare favorably with the fully non-hydrostatic simulation. The capability of the present model to simulate efficiently relatively large scale non-hydrostatic motions suggests that the weakly non-hydrostatic form of the model may be suitable for application in a large-area domain while the computationally intensive fully non-hydrostatic form of the model may be used in an embedded sub-domain where higher resolution is needed

  8. Many Drops Interactions I: Simulation of Coalescence, Flocculation and Fragmentation of Multiple Colliding Drops with Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2012-06-01

    Full Text Available Smoothed Particle Hydrodynamics (SPH is a Lagrangian mesh-free formalism and has been useful to model continuous fluid. This formalism is employed to solve the Navier-Stokes equations by replacing the fluid with a set of particles. These particles are interpolation points from which properties of the fluid can be determined. In this study, the SPH method is applied to simulate the hydrodynamics interaction of many drops, showing some settings for the coalescence, fragmentation and flocculation problem of equally sized liquid drops in three-dimensional spaces. For small velocities the drops interact only through their deformed surfaces and the flocculation of the droplets arises. This result is very different if the collision velocity is large enough for the fragmentation of droplets takes place. We observe that for velocities around 15 mm/ms the coalescence of droplets occurs. The velocity vector fields formed inside the drops during the collision process are shown.

  9. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    Science.gov (United States)

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  10. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    Science.gov (United States)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  11. Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation

    Directory of Open Access Journals (Sweden)

    A. Sanna

    2013-06-01

    Full Text Available In this study we investigate the importance of an eddy-permitting Mediterranean Sea circulation model on the simulation of atmospheric cyclones and precipitation in a climate model. This is done by analyzing results of two fully coupled GCM (general circulation models simulations, differing only for the presence/absence of an interactive marine module, at very high-resolution (~ 1/16°, for the simulation of the 3-D circulation of the Mediterranean Sea. Cyclones are tracked by applying an objective Lagrangian algorithm to the MSLP (mean sea level pressure field. On annual basis, we find a statistically significant difference in vast cyclogenesis regions (northern Adriatic, Sirte Gulf, Aegean Sea and southern Turkey and in lifetime, giving evidence of the effect of both land–sea contrast and surface heat flux intensity and spatial distribution on cyclone characteristics. Moreover, annual mean convective precipitation changes significantly in the two model climatologies as a consequence of differences in both air–sea interaction strength and frequency of cyclogenesis in the two analyzed simulations.

  12. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    OpenAIRE

    Manisha Bal; Bhim Charan Meikap

    2017-01-01

    The filtered containment venting system (FCVS) is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD) has been used to predict the hydrodynamic behaviour of a newly designed venturi sc...

  13. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    Science.gov (United States)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  14. Fish Pectoral Fin Hydrodynamics; Part III: Low Dimensional Models via POD Analysis

    Science.gov (United States)

    Bozkurttas, M.; Madden, P.

    2005-11-01

    The highly complex kinematics of the pectoral fin and the resulting hydrodynamics does not lend itself easily to analysis based on simple notions of pitching/heaving/paddling kinematics or lift/drag based propulsive mechanisms. A more inventive approach is needed to dissect the fin gait and gain insight into the hydrodynamic performance of the pectoral fin. The focus of the current work is on the hydrodynamics of the pectoral fin of a bluegill sunfish in steady forward motion. The 3D, time-dependent fin kinematics is obtained via a stereo-videographic technique. We employ proper orthogonal decomposition to extract the essential features of the fin gait and then use CFD to examine the hydrodynamics of simplified gaits synthesized from the POD modes. The POD spectrum shows that the first two, three and five POD modes capture 55%, 67%, and 80% of the motion respectively. The first three modes are in particular highly distinct: Mode-1 is a ``cupping'' motion where the fin cups forward as it is abducted; Mode-2 is an ``expansion'' motion where the fin expands to present a larger area during adduction and finally Mode-3 involves a ``spanwise flick'' of the dorsal edge of the fin. Numerical simulation of flow past fin gaits synthesized from these modes lead to insights into the mechanisms of thrust production; these are discussed in detail.

  15. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  16. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  17. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  18. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  19. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  20. Simulating storm surge inundation and damage potential within complex port facilities

    Science.gov (United States)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  1. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  2. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  3. In-beam measurement of the position resolution of a highly segmented coaxial germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Lee, I.Y.; Fallon, P.; Cromaz, M.; Macchiavelli, A.O.; Radford, D.C.; Vetter, K.; Clark, R.M.; Deleplanque, M.A.; Stephens, F.S.; Ward, D.

    2005-01-01

    The position resolution of a highly segmented coaxial germanium detector was determined by analyzing the 2055keV γ-ray transition of Zr90 excited in a fusion-evaporation reaction. The high velocity of the Zr90 nuclei imparted large Doppler shifts. Digital analysis of the detector signals recovered the energy and position of individual γ-ray interactions. The location of the first interaction in the crystal was used to correct the Doppler energy shift. Comparison of the measured energy resolution with simulations implied a position resolution (root mean square) of 2mm in three-dimensions

  4. Simulations of Cyclone Sidr in the Bay of Bengal with a High-Resolution Model: Sensitivity to Large-Scale Boundary Forcing

    Science.gov (United States)

    Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev

    2011-01-01

    The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west

  5. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  6. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  7. Recovering the colour-dependent albedo of exoplanets with high-resolution spectroscopy: from ESPRESSO to the ELT.

    Science.gov (United States)

    Martins, J. H. C.; Figueira, P.; Santos, N. C.; Melo, C.; Garcia Muñoz, A.; Faria, J.; Pepe, F.; Lovis, C.

    2018-05-01

    The characterization of planetary atmospheres is a daunting task, pushing current observing facilities to their limits. The next generation of high-resolution spectrographs mounted on large telescopes - such as ESPRESSO@VLT and HIRES@ELT - will allow us to probe and characterize exoplanetary atmospheres in greater detail than possible to this point. We present a method that permits the recovery of the colour-dependent reflectivity of exoplanets from high-resolution spectroscopic observations. Determining the wavelength-dependent albedo will provide insight into the chemical properties and weather of the exoplanet atmospheres. For this work, we simulated ESPRESSO@VLT and HIRES@ELT high-resolution observations of known planetary systems with several albedo configurations. We demonstrate how the cross correlation technique applied to theses simulated observations can be used to successfully recover the geometric albedo of exoplanets over a range of wavelengths. In all cases, we were able to recover the wavelength dependent albedo of the simulated exoplanets and distinguish between several atmospheric models representing different atmospheric configurations. In brief, we demonstrate that the cross correlation technique allows for the recovery of exoplanetary albedo functions from optical observations with the next generation of high-resolution spectrographs that will be mounted on large telescopes with reasonable exposure times. Its recovery will permit the characterization of exoplanetary atmospheres in terms of composition and dynamics and consolidates the cross correlation technique as a powerful tool for exoplanet characterization.

  8. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes

    Science.gov (United States)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey

    2018-01-01

    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  9. Large-watershed flood simulation and forecasting based on different-resolution distributed hydrological model

    Science.gov (United States)

    Li, J.

    2017-12-01

    Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.

  10. High-resolution urban flood modelling - a joint probability approach

    Science.gov (United States)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge

  11. Optimum aberration coefficients for recording high-resolution off-axis holograms in a Cs-corrected TEM

    Energy Technology Data Exchange (ETDEWEB)

    Linck, Martin, E-mail: linck@ceos-gmbh.de [CEOS GmbH, Englerstr. 28, D-69126 Heidelberg (Germany)

    2013-01-15

    Amongst the impressive improvements in high-resolution electron microscopy, the Cs-corrector also has significantly enhanced the capabilities of off-axis electron holography. Recently, it has been shown that the signal above noise in the reconstructable phase can be significantly improved by combining holography and hardware aberration correction. Additionally, with a spherical aberration close to zero, the traditional optimum focus for recording high-resolution holograms ('Lichte's defocus') has become less stringent and both, defocus and spherical aberration, can be selected freely within a certain range. This new degree of freedom can be used to improve the signal resolution in the holographically reconstructed object wave locally, e.g. at the atomic positions. A brute force simulation study for an aberration corrected 200 kV TEM is performed to determine optimum values for defocus and spherical aberration for best possible signal to noise in the reconstructed atomic phase signals. Compared to the optimum aberrations for conventional phase contrast imaging (NCSI), which produce 'bright atoms' in the image intensity, the resulting optimum values of defocus and spherical aberration for off-axis holography enable 'black atom contrast' in the hologram. However, they can significantly enhance the local signal resolution at the atomic positions. At the same time, the benefits of hardware aberration correction for high-resolution off-axis holography are preserved. It turns out that the optimum is depending on the object and its thickness and therefore not universal. -- Highlights: Black-Right-Pointing-Pointer Optimized aberration parameters for high-resolution off-axis holography. Black-Right-Pointing-Pointer Simulation and analysis of noise in high-resolution off-axis holograms. Black-Right-Pointing-Pointer Improving signal resolution in the holographically reconstructed phase shift. Black-Right-Pointing-Pointer Comparison of &apos

  12. Optimum aberration coefficients for recording high-resolution off-axis holograms in a Cs-corrected TEM

    International Nuclear Information System (INIS)

    Linck, Martin

    2013-01-01

    Amongst the impressive improvements in high-resolution electron microscopy, the Cs-corrector also has significantly enhanced the capabilities of off-axis electron holography. Recently, it has been shown that the signal above noise in the reconstructable phase can be significantly improved by combining holography and hardware aberration correction. Additionally, with a spherical aberration close to zero, the traditional optimum focus for recording high-resolution holograms (“Lichte's defocus”) has become less stringent and both, defocus and spherical aberration, can be selected freely within a certain range. This new degree of freedom can be used to improve the signal resolution in the holographically reconstructed object wave locally, e.g. at the atomic positions. A brute force simulation study for an aberration corrected 200 kV TEM is performed to determine optimum values for defocus and spherical aberration for best possible signal to noise in the reconstructed atomic phase signals. Compared to the optimum aberrations for conventional phase contrast imaging (NCSI), which produce “bright atoms” in the image intensity, the resulting optimum values of defocus and spherical aberration for off-axis holography enable “black atom contrast” in the hologram. However, they can significantly enhance the local signal resolution at the atomic positions. At the same time, the benefits of hardware aberration correction for high-resolution off-axis holography are preserved. It turns out that the optimum is depending on the object and its thickness and therefore not universal. -- Highlights: ► Optimized aberration parameters for high-resolution off-axis holography. ► Simulation and analysis of noise in high-resolution off-axis holograms. ► Improving signal resolution in the holographically reconstructed phase shift. ► Comparison of “black” and “white” atom contrast in off-axis holograms.

  13. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    Science.gov (United States)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  14. Adaptive resolution simulation of an atomistic protein in MARTINI water

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-01-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations

  15. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  16. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    Science.gov (United States)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  17. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    Science.gov (United States)

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  18. Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center

    Science.gov (United States)

    Frazer, Chris; Heitsch, Fabian

    2018-01-01

    Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.

  19. Boosting flood warning schemes with fast emulator of detailed hydrodynamic models

    Science.gov (United States)

    Bellos, V.; Carbajal, J. P.; Leitao, J. P.

    2017-12-01

    Floods are among the most destructive catastrophic events and their frequency has incremented over the last decades. To reduce flood impact and risks, flood warning schemes are installed in flood prone areas. Frequently, these schemes are based on numerical models which quickly provide predictions of water levels and other relevant observables. However, the high complexity of flood wave propagation in the real world and the need of accurate predictions in urban environments or in floodplains hinders the use of detailed simulators. This sets the difficulty, we need fast predictions that meet the accuracy requirements. Most physics based detailed simulators although accurate, will not fulfill the speed demand. Even if High Performance Computing techniques are used (the magnitude of required simulation time is minutes/hours). As a consequence, most flood warning schemes are based in coarse ad-hoc approximations that cannot take advantage a detailed hydrodynamic simulation. In this work, we present a methodology for developing a flood warning scheme using an Gaussian Processes based emulator of a detailed hydrodynamic model. The methodology consists of two main stages: 1) offline stage to build the emulator; 2) online stage using the emulator to predict and generate warnings. The offline stage consists of the following steps: a) definition of the critical sites of the area under study, and the specification of the observables to predict at those sites, e.g. water depth, flow velocity, etc.; b) generation of a detailed simulation dataset to train the emulator; c) calibration of the required parameters (if measurements are available). The online stage is carried on using the emulator to predict the relevant observables quickly, and the detailed simulator is used in parallel to verify key predictions of the emulator. The speed gain given by the emulator allows also to quantify uncertainty in predictions using ensemble methods. The above methodology is applied in real

  20. Three-Dimensional Hydrodynamic Simulations of the Effects of Laser Imprint in OMEGA Implosions

    Science.gov (United States)

    Igumenshchev, I. V.; Campbell, E. M.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.; Schmitt, A. J.

    2017-10-01

    Illumination of direct-drive implosion targets by the OMEGA laser introduces large-amplitude broadband modulations in the absorbed energy from the largest (target size 900- μm) to smallest (speckle size 2- μm) spatial scales. These modulations ``imprint'' perturbations into a target that are amplified because of the secular and Rayleigh-Taylor growths during acceleration and deceleration of the target. The degradation of performance of room-temperature and cryogenic OMEGA implosions caused by these perturbations were simulated in three dimensions using the code ASTER. The highest-resolution simulations resolve perturbation modes as high as l 200 . The high modes l 50to 100 dominate in the perturbation spectrum during the linear growth, while the late-time nonlinear evolution results in domination of modes with l 30to 50 . Smoothing by spectral dispersion reduces the linear-phase mode amplitudes by a factor of 4 and results in substantial improvements in implosion performance that is in good agreement with measurements. The effects of imprint on implosion performance are compared with the effects of other implosion asymmetries, such as those induced because of laser beam imbalance, mistiming and mispointing, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.