WorldWideScience

Sample records for high-resolution high-sensitivity nmr

  1. High-resolution, high-sensitivity NMR of nano-litre anisotropic samples by coil spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D [CEA Saclay, DSM, DRECAM, SCM, Lab Struct and Dynam Resonance Magnet, CNRS URA 331, F-91191 Gif Sur Yvette, (France); Le Goff, G; Jacquinot, J F [CEA Saclay, DSM, DRECAM, SPEC: Serv Phys Etat Condense, CNRS URA 2464, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Nuclear magnetic resonance (NMR) can probe the local structure and dynamic properties of liquids and solids, making it one of the most powerful and versatile analytical methods available today. However, its intrinsically low sensitivity precludes NMR analysis of very small samples - as frequently used when studying isotopically labelled biological molecules or advanced materials, or as preferred when conducting high-throughput screening of biological samples or 'lab-on-a-chip' studies. The sensitivity of NMR has been improved by using static micro-coils, alternative detection schemes and pre-polarization approaches. But these strategies cannot be easily used in NMR experiments involving the fast sample spinning essential for obtaining well-resolved spectra from non-liquid samples. Here we demonstrate that inductive coupling allows wireless transmission of radio-frequency pulses and the reception of NMR signals under fast spinning of both detector coil and sample. This enables NMR measurements characterized by an optimal filling factor, very high radio-frequency field amplitudes and enhanced sensitivity that increases with decreasing sample volume. Signals obtained for nano-litre-sized samples of organic powders and biological tissue increase by almost one order of magnitude (or, equivalently, are acquired two orders of magnitude faster), compared to standard NMR measurements. Our approach also offers optimal sensitivity when studying samples that need to be confined inside multiple safety barriers, such as radioactive materials. In principle, the co-rotation of a micrometer-sized detector coil with the sample and the use of inductive coupling (techniques that are at the heart of our method) should enable highly sensitive NMR measurements on any mass-limited sample that requires fast mechanical rotation to obtain well-resolved spectra. The method is easy to implement on a commercial NMR set-up and exhibits improved performance with miniaturization, and we

  2. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  3. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  4. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  5. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  6. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  7. Toward high-resolution NMR spectroscopy of microscopic liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying; Reardon, Patrick N.; Renslow, Ryan S.; Khbeis, Michael; Irish, Duane; Mueller, Karl T.

    2017-01-01

    A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed, as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.

  8. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  9. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  10. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Arthanari, Haribabu; Shimada, Ichio; Wagner, Gerhard

    2015-01-01

    Detection of 15 N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached 15 N nuclei (TROSY 15 N H ) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow 15 N transverse relaxation and compensating for the inherently low 15 N sensitivity. The 15 N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY 15 N H component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a 15 N-detected 2D 1 H– 15 N TROSY-HSQC ( 15 N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ c  ∼ 40 ns). Unlike for 1 H detected TROSY, deuteration is not mandatory to benefit 15 N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording 15 N TROSY of proteins expressed in H 2 O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D 2 O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of 15 N H -detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz

  11. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  12. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  13. High-resolution proton and carbon-13 NMR of membranes: why sonicate?

    International Nuclear Information System (INIS)

    Oldfield, E.; Bowers, J.L.; Forbes, J.

    1987-01-01

    The authors have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-chloresterol (1:1) multibilayers, using magic-angle sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol system, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while the 13 C NMR, the authors demonstrate that most 13 C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13 C MASS NMR spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultransonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra

  14. Automated high-resolution NMR with a sample changer

    International Nuclear Information System (INIS)

    Wade, C.G.; Johnson, R.D.; Philson, S.B.; Strouse, J.; McEnroe, F.J.

    1989-01-01

    Within the past two years, it has become possible to obtain high-resolution NMR spectra using automated commercial instrumentation. Software control of all spectrometer functions has reduced most of the tedious manual operations to typing a few computer commands or even making selections from a menu. Addition of an automatic sample changer is the next natural step in improving efficiency and sample throughput; it has a significant (and even unexpected) impact on how NMR laboratories are run and how it is taught. Such an instrument makes even sophisticated experiments routine, so that people with no previous exposure to NMR can run these experiments after a training session of an hour or less. This A/C Interface examines the impact of such instrumentation on both the academic and the industrial laboratory

  15. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  16. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  17. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  18. High-resolution solution-state NMR of unfractionated plant cell walls

    Science.gov (United States)

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  19. High resolution NMR spectroscopy of physiological fluids: from metabolism to physiology

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Nicoli, F.; Torri, G.; Torri, J.; Kriat, M.; Sciaky, M.; Davin, A.; Viout, P.; Confort-Gouny, S.; Cozzone, P.J.

    1992-01-01

    High resolution NMR spectroscopy of physiological fluids provides quantitative, qualitative and dynamic information on the metabolic status of the interstitial and plasma compartments under a variety of pathophysiological conditions. The simultaneous detection and quantitation by NMR spectroscopy of numerous compounds of the intermediary metabolism offers a new insight in the understanding of the 'milieu interieur'.NMR spectroscopy of physiological fluids offers a unique way to define and monitor the global metabolic homeostasis in humans. The development of this analytical approach is still limited by the scarcity of pluridisciplinary teams able to fully exploit the wealth of information present on the NMR spectrum of a fluid. While application in pharmacology and toxicology is already established, the main areas of current development are cancer, hereditary metabolic disorders, organ transplantation and neurological diseases

  20. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2008-01-01

    A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...

  1. Exploring high-resolution magic angle spinning (HR-MAS) NMR spectroscopy for metabonomic analysis of apples.

    Science.gov (United States)

    Vermathen, Martina; Marzorati, Mattia; Vermathen, Peter

    2012-01-01

    Classical liquid-state high-resolution (HR) NMR spectroscopy has proved a powerful tool in the metabonomic analysis of liquid food samples like fruit juices. In this paper the application of (1)H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy to apple tissue is presented probing its potential for metabonomic studies. The (1)H HR-MAS NMR spectra are discussed in terms of the chemical composition of apple tissue and compared to liquid-state NMR spectra of apple juice. Differences indicate that specific metabolic changes are induced by juice preparation. The feasibility of HR-MAS NMR-based multivariate analysis is demonstrated by a study distinguishing three different apple cultivars by principal component analysis (PCA). Preliminary results are shown from subsequent studies comparing three different cultivation methods by means of PCA and partial least squares discriminant analysis (PLS-DA) of the HR-MAS NMR data. The compounds responsible for discriminating organically grown apples are discussed. Finally, an outlook of our ongoing work is given including a longitudinal study on apples.

  2. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    Science.gov (United States)

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  3. 'In vivo' and high resolution spectroscopy in solids by NMR: an instrument for transgenic plants study

    International Nuclear Information System (INIS)

    Colnago, L.A.; Herrmann, P.S.P.; Bernardes Filho, R.

    1995-01-01

    This work has developed a study on transgenic plants using two different techniques of nuclear magnetic resonance, in vivo NMR and high resolution NMR. In order to understand the gene mutations and characterize the plants constituents, NMR spectral data were analysed and discussed, then the results were presented

  4. Electronic characterization of lithographically patterned microcoils for high sensitivity NMR detection.

    Science.gov (United States)

    Demas, Vasiliki; Bernhardt, Anthony; Malba, Vince; Adams, Kristl L; Evans, Lee; Harvey, Christopher; Maxwell, Robert S; Herberg, Julie L

    2009-09-01

    Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass-limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [D.L. Olson, T.L. Peck, A.G. Webb, R.L. Magin, J.V. Sweedler, High-resolution microcoil H-1-NMR for mass-limited, nanoliter-volume samples, Science 270 (5244) (1995) 1967-1970]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100mum lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.

  5. High resolution NMR in zeolites

    International Nuclear Information System (INIS)

    Diaz, Anix

    1991-01-01

    In this work 29 Si and 27 Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author)

  6. High resolution NMR in zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Anix [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela). Dept. de Analisis y Evalucion

    1992-12-31

    In this work {sup 29} Si and {sup 27} Al NMR spectroscopy was used to study various types of zeolites. The corresponding spectra were used to measure the Si/Al ratios, to follow chemical modifications induced by acid and hydrothermal treatments, to determine non-equivalent crystallographic sites in highly dealuminated mordenites, and to detect modifications of faujasites due to the insertion of titanium atoms in the lattice. (author) 7 refs., 7 figs., 2 tabs.

  7. High resolution NMR study of cellulose in solid state and in solution

    International Nuclear Information System (INIS)

    Saint-Germain, Jean

    1983-01-01

    This research thesis reports the study of native cellulose (cotton) and wood by nuclear magnetic resonance (NMR). As far as the cotton spectrum is concerned, the author assigned resonances which more specifically corresponded to amorphous or crystalline areas. Wood was studied in its bulk condition, and resonances have been determined for the different wood components. The behaviour of cellulose in solution in a solvent has been studied by liquid high resolution NMR. The solvation mechanism has been determined and a study of model components of the macromolecule allowed a conformational study of cellulose in this solvent to be performed. Bi-dimensional NMR and longitudinal relaxation time measurements highlighted the existence of an intramolecular hydrogen bond in the cellulose in solution [fr

  8. Methylation-Sensitive High Resolution Melting (MS-HRM).

    Science.gov (United States)

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  9. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  10. High-field EPR on membrane proteins - crossing the gap to NMR.

    Science.gov (United States)

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar

  11. High-resolution proton NMR spectroscopy of cerebrospinal fluid: methodological issues and potential clinical applications

    International Nuclear Information System (INIS)

    Kriat, M.; Nicoli, F.; Vion-Dury, J.; Confort-Gouny, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.; Dano, P.; Grisoli, F.

    1991-01-01

    High resolution proton nuclear magnetic resonance (NMR) spectroscopy is a new analytical technique which allows to readily identify and quantitate a variety of key metabolites in cerebrospinal fluid (CSF) in relation to normal and pathological brain activity. Proton NMR spectroscopy can be performed on native CSF, with or without addition of exchange reagent (NH 4 Cl). The analysis of native CSF provides qualitative information (identification) of metabolites or xenobiotics present in the fluid. Alternately, CSF can be lyophilized and dissolved in deuterated water. This concentration offers 2 advantages: additional compounds are detected and a precise quantification of all CSF metabolites can be obtained. Both protocols require a very small volume of CFS (1-2 ml). The high informational content available on the NMR spectra of CSF, the ease-of-use of NMR spectroscopy and its cost effectiveness concur to predict that this analytical approach will keep developing to completement the array of existing tests which are already routinely performed on CSF. 6 figs [fr

  12. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor

    Science.gov (United States)

    Glenn, David R.; Bucher, Dominik B.; Lee, Junghyun; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.

    2018-03-01

    Quantum systems that consist of solid-state electronic spins can be sensitive detectors of nuclear magnetic resonance (NMR) signals, particularly from very small samples. For example, nitrogen–vacancy centres in diamond have been used to record NMR signals from nanometre-scale samples, with sensitivity sufficient to detect the magnetic field produced by a single protein. However, the best reported spectral resolution for NMR of molecules using nitrogen–vacancy centres is about 100 hertz. This is insufficient to resolve the key spectral identifiers of molecular structure that are critical to NMR applications in chemistry, structural biology and materials research, such as scalar couplings (which require a resolution of less than ten hertz) and small chemical shifts (which require a resolution of around one part per million of the nuclear Larmor frequency). Conventional, inductively detected NMR can provide the necessary high spectral resolution, but its limited sensitivity typically requires millimetre-scale samples, precluding applications that involve smaller samples, such as picolitre-volume chemical analysis or correlated optical and NMR microscopy. Here we demonstrate a measurement technique that uses a solid-state spin sensor (a magnetometer) consisting of an ensemble of nitrogen–vacancy centres in combination with a narrowband synchronized readout protocol to obtain NMR spectral resolution of about one hertz. We use this technique to observe NMR scalar couplings in a micrometre-scale sample volume of approximately ten picolitres. We also use the ensemble of nitrogen–vacancy centres to apply NMR to thermally polarized nuclear spins and resolve chemical-shift spectra from small molecules. Our technique enables analytical NMR spectroscopy at the scale of single cells.

  13. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence.

    Directory of Open Access Journals (Sweden)

    Honghao Cai

    Full Text Available BACKGROUND AND PURPOSE: Nuclear magnetic resonance (NMR spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS: Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS: When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION: Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.

  14. NMR spectrometers. Current status and assessment of demand for high-resolution NMR spectrometers and for high-performance, solid NMR spectrometers at the scientific colleges and other research institutes in the Federal Republic of Germany. Pt. 1

    International Nuclear Information System (INIS)

    Schmidt, K.

    1989-01-01

    The survey includes high-resolution NMR spectrometers for liquids and solutions with magnetic field intensities of 11.7 Tesla and more (proton frequencies from 500 to 600 MHz) as well as high-performance solid-state NMR spectrometers with field intensities of, at least, 6.3 Tesla (proton frequencies of 270 MHz and more). The given results which had been obtained from documents of the manufacturers try to meet the manufacturers' need for safety. Market shares and sites are not listed. (DG) [de

  15. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  16. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  17. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    Science.gov (United States)

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  18. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS µNMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    Directory of Open Access Journals (Sweden)

    Alan eWong

    2014-06-01

    Full Text Available The low sensitivity of Nuclear Magnetic Resonance (NMR is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30–50 µl for HR-MAS for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS. As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  19. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and "hidden" dimensions.

    Science.gov (United States)

    Meng, Xi; Nguyen, Bao D; Ridge, Clark; Shaka, A J

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to "reduced-dimensionality" strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the filter diagonalization method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra-dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths.

  20. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Andrew N., E-mail: anlane01@louisville.edu [JG Brown Cancer Center, 529 S. Jackson Street, Louisville, KY 40202 (United States); Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Fan, Teresa W.-M. [JG Brown Cancer Center, 529 S. Jackson Street, Louisville, KY 40202 (United States); Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Department of Chemistry, University of Louisville, Louisville, KY 40292 (United States); Xie, Zhengzhi; Moseley, Hunter N.B.; Higashi, Richard M. [Center for Regulatory and Environmental Analytical Metabolomics (CREAM), University of Louisville, Louisville, KY (United States); Department of Chemistry, University of Louisville, Louisville, KY 40292 (United States)

    2009-10-05

    We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile {sup 13}C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U-{sup 13}C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to {approx}1% or better based on natural abundance background, and depended on the signal-to-nose ratio. The time course of incorporation of {sup 13}C from [U-{sup 13}C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional {sup 13}C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.

  1. Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR

    International Nuclear Information System (INIS)

    Lane, Andrew N.; Fan, Teresa W.-M.; Xie, Zhengzhi; Moseley, Hunter N.B.; Higashi, Richard M.

    2009-01-01

    We have coupled 2D-NMR and infusion FT-ICR-MS with computer-assisted assignment to profile 13 C-isotopologues of glycerophospholipids (GPL) directly in crude cell extracts, resulting in very high information throughput of >3000 isobaric molecules in a few minutes. A mass accuracy of better than 1 ppm combined with a resolution of 100,000 at the measured m/z was required to distinguish isotopomers from other GPL structures. Isotopologue analysis of GPLs extracted from LCC2 breast cancer cells grown on [U- 13 C]-glucose provided a rich trove of information about the biosynthesis and turnover of the GPLs. The isotopologue intensity ratios from the FT-ICR-MS were accurate to ∼1% or better based on natural abundance background, and depended on the signal-to-nose ratio. The time course of incorporation of 13 C from [U- 13 C]-glucose into a particular phosphatidylcholine was analyzed in detail, to provide a quantitative measure of the sizes of glycerol, acetyl CoA and total GPL pools in growing LCC2 cells. Independent and complementary analysis of the positional 13 C enrichment in the glycerol and fatty acyl chains obtained from high resolution 2D NMR was used to verify key aspects of the model. This technology enables simple and rapid sample preparation, has rapid analysis, and is generally applicable to unfractionated GPLs of almost any head group, and to mixtures of other classes of metabolites.

  2. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  3. Enhanced spectral resolution by high-dimensional NMR using the filter diagonalization method and “hidden” dimensions

    Science.gov (United States)

    Meng, Xi; Nguyen, Bao D.; Ridge, Clark; Shaka, A. J.

    2009-01-01

    High-dimensional (HD) NMR spectra have poorer digital resolution than low-dimensional (LD) spectra, for a fixed amount of experiment time. This has led to “reduced-dimensionality” strategies, in which several LD projections of the HD NMR spectrum are acquired, each with higher digital resolution; an approximate HD spectrum is then inferred by some means. We propose a strategy that moves in the opposite direction, by adding more time dimensions to increase the information content of the data set, even if only a very sparse time grid is used in each dimension. The full HD time-domain data can be analyzed by the Filter Diagonalization Method (FDM), yielding very narrow resonances along all of the frequency axes, even those with sparse sampling. Integrating over the added dimensions of HD FDM NMR spectra reconstitutes LD spectra with enhanced resolution, often more quickly than direct acquisition of the LD spectrum with a larger number of grid points in each of the fewer dimensions. If the extra dimensions do not appear in the final spectrum, and are used solely to boost information content, we propose the moniker hidden-dimension NMR. This work shows that HD peaks have unmistakable frequency signatures that can be detected as single HD objects by an appropriate algorithm, even though their patterns would be tricky for a human operator to visualize or recognize, and even if digital resolution in an HD FT spectrum is very coarse compared with natural line widths. PMID:18926747

  4. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  5. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  6. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    CERN Document Server

    Rissi, M; Bolle, E; Dorholt, O; Hines, K E; Rohne, O; Skretting, A; Stapnes, S; Volgyes, D

    2012-01-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the gamma-rays. To determine the point of interaction (P01) between gamma-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The P01 and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered gamma-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the...

  7. Targeting high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance analysis with high-resolution radical scavenging profiles - bioactive secondary metabolites from the endophytic fungus Penicillium namyslowskii

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Nyberg, Nils; Tejesvi, Mysore V.

    2013-01-01

    The high-resolution radical scavenging profile of an extract of the endophytic fungus Penicillium namyslowskii was used to target analysis by high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC...... NMR probe designed for 1.7-mm NMR tubes. To further explore the potential of the above HPLC-HRMS-SPE-NMR platform for analysis of endophytic extracts, six peaks displaying no radical scavenging activity were also analyzed. This allowed unambiguous identification of six metabolites, i...... and griseofulvin, directly from crude extract via HPLC-HRMS-SPE-NMR. Dechlorodehydrogriseofulvin was reported for the first time from nature....

  8. Feasibility of high-resolution one-dimensional relaxation imaging at low magnetic field using a single-sided NMR scanner applied to articular cartilage

    Science.gov (United States)

    Rössler, Erik; Mattea, Carlos; Stapf, Siegfried

    2015-02-01

    Low field Nuclear Magnetic Resonance increases the contrast of the longitudinal relaxation rate in many biological tissues; one prominent example is hyaline articular cartilage. In order to take advantage of this increased contrast and to profile the depth-dependent variations, high resolution parameter measurements are carried out which can be of critical importance in an early diagnosis of cartilage diseases such as osteoarthritis. However, the maximum achievable spatial resolution of parameter profiles is limited by factors such as sensor geometry, sample curvature, and diffusion limitation. In this work, we report on high-resolution single-sided NMR scanner measurements with a commercial device, and quantify these limitations. The highest achievable spatial resolution on the used profiler, and the lateral dimension of the sensitive volume were determined. Since articular cartilage samples are usually bent, we also focus on averaging effects inside the horizontally aligned sensitive volume and their impact on the relaxation profiles. Taking these critical parameters into consideration, depth-dependent relaxation time profiles with the maximum achievable vertical resolution of 20 μm are discussed, and are correlated with diffusion coefficient profiles in hyaline articular cartilage in order to reconstruct T2 maps from the diffusion-weighted CPMG decays of apparent relaxation rates.

  9. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  10. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.

    2012-01-01

    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...

  11. Evidence for radiation induced crosslinking in polytetrafluoroethylene by means of high-resolution solid-state 19F high-speed MAS NMR

    International Nuclear Information System (INIS)

    Katoh, Etsuko; Sugisawa, Hisashi; Oshima, Akihiro; Tabata, Yoneho; Seguchi, Tadao; Yamazaki, Toshimasa

    1999-01-01

    Radiation effects on molecular structure of polytetrafluoroethylene (PTFE) were studied by high-resolution solid-state 19 F high speed magic angle spinning (HS MAS) NMR spectroscopy. Samples used for the NMR studies were prepared by electron beam irradiation of PTFE with a wide range of irradiation doses from 0.5-10 MGy in the molten state at 340 deg. C under oxygen-free atmosphere. While the non-irradiated PTFE displayed only an intense peak of the internal CF 2 , several new signals corresponding to CF 3 , CF 2 and CF groups were observed for the PTFE which was high temperature irradiated at 340 deg. C in oxygen-free atmosphere (hti-PTFE). Intensities of these new signals increased with an increase of irradiation dose. The present solid-state 19 F HS MAS NMR studies provide not only the first experimental evidence regarding the existence of crosslinking structure in hti-PTFE, directly detected as the CF signal, but also the crosslinking density which can be estimated from a proportion of the CF versus total fluorine signal intensities. The higher the irradiation dose, the higher the crosslinking density; hti-PTFE with 10 MGy contains one crosslinking site per approximately 24 CF 2 groups, while the hti-PTFE with 5 MGy contains one crosslinking site per approximately 36 CF 2 groups. Further, G value of crosslinking (G(x)) was estimated from the signal intensities of 19 F HS MAS NMR spectra. The highest G(x)-value, 1.85, was observed for the 2MGy hti-PTFE sample, suggesting that crosslinking of PTFE is formed most efficaciously with 2 MGy irradiation in the molten state at 340 deg. C under oxygen-free atmosphere

  12. Quantification of aluminium-27 NMR spectra of high-surface-area oxides

    International Nuclear Information System (INIS)

    Pearson, R.M.; Schramm, C.M.

    1990-01-01

    This paper discusses the quantitation of 27 Al NMR spectra. It is showns that the so called 'invisible' aluminium atoms seen by recent workers are completely consistent with known continuous wave NMR studies of the 27 Al NMR spectra of high surface area aluminium oxides. The use of pulsed NMR techniques further complicate the quantitative measurement of 27 Al NMR spectra, especially when high resolution NMR spectrometers are used for this purpose. Methods are described which allow both the estimation of aluminium not seen by continuous wave techniques and the amounts of the NMR spectra lost in pulsed work. (author). 24 refs.; 6 figs.; 1 tab

  13. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra

    International Nuclear Information System (INIS)

    Mercier, Pascal; Lewis, Michael J.; Chang, David; Baker, David; Wishart, David S.

    2011-01-01

    Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or “quantitative” metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis. Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values.

  14. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, Pascal; Lewis, Michael J.; Chang, David, E-mail: dchang@chenomx.com [Chenomx Inc (Canada); Baker, David [Pfizer Inc (United States); Wishart, David S. [University of Alberta, Department of Computing Science and Biological Sciences (Canada)

    2011-04-15

    Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or 'quantitative' metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis. Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values.

  15. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.

    2013-01-01

    Highlights: • Position-sensitive detectors were developed for storage-ring decay spectroscopy. • Fiber scintillation and silicon strip detectors were tested with heavy ion beams. • A new fiber scintillation detector showed an excellent position resolution. • Position and energy detection by silicon strip detectors enable full identification. -- Abstract: As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments

  16. An introduction to the Omega 500 High Resolution FT-NMR and its application to biochemical analyses

    International Nuclear Information System (INIS)

    Oyabu, Matashige; Ohno, Yasushi; Fujita, Shin; Koide, Junichi; Iwata, Yosuke; Terashita, Eisaku; Masuda, Junichi

    1991-01-01

    The Omega 500 High Resolution FT-NMR was designed using the latest radio frequency (RF) and computer technologies resulting in an instrument which is capable of executing many of the most advanced NMR methods. In this article, quadrature phase detection and Fourier transformation signal processing, which are basic principles in FT-NMR, are explained. Special emphasis is given to the unique NMR shell which serves as the user interface to the system and which takes advantage of the tools provided in the UNIX C environment. Each specific application program-called a 'panel'-provides for simple operation of the instrument and ready execution of the powerful data processing functions contained in the system. An overview is given of these software panels and their convenience in the execution of analyses. NMR spectroscopy has been applied to structural determinations of complex biochemicals such as proteins, nucleic acids and peptides. As an example Omega 500 application, the cyclic peptide Gramicidin S -an antibiotic produced by a strain of Bacillus brevis- was analyzed by the DQF-COSY, HOHAHA and NOESY methods which are typical for structural determination sequences for materials of biological origin. The algorithm used for spectral interpretation is discussed. (author)

  17. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    Science.gov (United States)

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  18. Applications of molecules as high-resolution, high-sensitivity threshold electron detectors

    International Nuclear Information System (INIS)

    Chutjian, A.

    1991-01-01

    The goal of the work under the contract entitled ''Applications of Molecules as High-Resolution, High-Sensitivity Threshold Electron Detectors'' (DoE IAA No. DE-AI01-83ER13093 Mod. A006) was to explore the electron attachment properties of a variety of molecules at electron energies not accessible by other experimental techniques. As a result of this work, not only was a large body of basic data measured on attachment cross sections and rate constants; but also extensive theoretical calculations were carried out to verify the underlying phenomenon of s-wave attachment. Important outgrowths of this week were also realized in other areas of research. The basic data have applications in fields such as combustion, soot reduction, rocket-exhaust modification, threshold photoelectron spectroscopy, and trace species detection

  19. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  20. Development of a micro flow-through cell for high field NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  1. Effects of NMR spectral resolution on protein structure calculation.

    Directory of Open Access Journals (Sweden)

    Suhas Tikole

    Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.

  2. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  3. High sensitivity high-resolution full range relaxometry using a fast mechanical sample shuttling device and a cryo-probe

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Ching-Yu [Université Paris-Saclay, NIMBE, CEA, CNRS (France); Chu, Minglee [Academia Sinica, Institute of Physics (China); Chang, Chi-Fon [Academia Sinica, Genomics Research Center (China); Yu, Tsunai; Huang, Tai-huang, E-mail: bmthh@gate.sinica.edu.tw [Academia Sinica, Institute of Biomedical Science (China); Sakellariou, Dimitris, E-mail: dimitrios.sakellariou@cea.fr [Université Paris-Saclay, NIMBE, CEA, CNRS (France)

    2016-11-15

    Field-dependent NMR studies of bio-molecular systems using a sample shuttling hardware operating on a high-field NMR apparatus have provided valuable structural and dynamic information. We have recently published a design of a compact sample transportation device, called “field-cycler”, which was installed in a commercial spectrometer and which provided highly precise positioning and stability during high speed shuttling. In this communication, we demonstrate the first use of a sample shuttling device on a commercial high field standard bore NMR spectrometer, equipped with a commercial triple resonance cryogenically cooled NMR probe. The performance and robustness of the hardware operating in 1D and 2D field cycling experiments, as well as the impact of the sample shuttling time on the signal intensity are discussed.

  4. Mixed-time parallel evolution in multiple quantum NMR experiments: sensitivity and resolution enhancement in heteronuclear NMR

    International Nuclear Information System (INIS)

    Ying Jinfa; Chill, Jordan H.; Louis, John M.; Bax, Ad

    2007-01-01

    A new strategy is demonstrated that simultaneously enhances sensitivity and resolution in three- or higher-dimensional heteronuclear multiple quantum NMR experiments. The approach, referred to as mixed-time parallel evolution (MT-PARE), utilizes evolution of chemical shifts of the spins participating in the multiple quantum coherence in parallel, thereby reducing signal losses relative to sequential evolution. The signal in a given PARE dimension, t 1 , is of a non-decaying constant-time nature for a duration that depends on the length of t 2 , and vice versa, prior to the onset of conventional exponential decay. Line shape simulations for the 1 H- 15 N PARE indicate that this strategy significantly enhances both sensitivity and resolution in the indirect 1 H dimension, and that the unusual signal decay profile results in acceptable line shapes. Incorporation of the MT-PARE approach into a 3D HMQC-NOESY experiment for measurement of H N -H N NOEs in KcsA in SDS micelles at 50 o C was found to increase the experimental sensitivity by a factor of 1.7±0.3 with a concomitant resolution increase in the indirectly detected 1 H dimension. The method is also demonstrated for a situation in which homonuclear 13 C- 13 C decoupling is required while measuring weak H3'-2'OH NOEs in an RNA oligomer

  5. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    International Nuclear Information System (INIS)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by 29 Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of 29 Si spectra. A high-temperature (to 1300 0 C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T 1 and T 2 ) measurements as a function of composition and temperature for 23 Na and 29 Si

  6. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  7. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  8. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    Science.gov (United States)

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  9. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar; Nishiyama, Yusuke; Ishii, Yoshitaka

    2013-01-01

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments

  10. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  11. Studies of interactions of porphyrins with transfer RNA by high-resolution NMR

    International Nuclear Information System (INIS)

    Birdsall, W.J.; Lehigh Univ., Bethlehem, PA; Anderson, W.R. Jr; Foster, N.

    1989-01-01

    The interactions of tetra-4N-methulpyridyl porphyrin and its zinc (II), copper (II) and manganese (III) complexes with brewer's yeast type V phenylalanine specific tRNA have been evaluated by high-resolution NMR. Differences in chemical shifts have been noted for thre proton resonances in response to the presence of small quantities of the fre base and the zinc and copper complexes. The protons giving rise to these signals are located on bases T54 and psi55, both of which are involved in the primary intraloop and interloop hydroen bonds that hold the D and TpsiC loops together in the tertiary structure. In addition, broadening of specific resonances due to hydrogen bonding protons in the D stem at low ratios of porphyrin to tRNA indicates that the association of porphyrins increases the rate of imino proton exchange. The titration of the tRNA with the manganese (III) complex did not eveal shifts or spcific broadening comparable to the other porpyrins at low ratios. The changes induced in the NMR spectrum of tNA by porphyrins define their site of interaction with the polynucleotide. This site, at the outside of the elbow-bend in the tRNA 'L', is different from the locus of binding in tRNA for other classical DNA intercalators. Furthermore, a new mode of binding may be involved that is neither intercalative nor simply electrostatic. (author). 36 refs.; 4 figs

  12. High-resolution bacterial growth inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antibacterial constituents in Chinese plants used to treat snakebites

    DEFF Research Database (Denmark)

    Liu, Yueqiu; Nielsen, Mia; Stærk, Dan

    2014-01-01

    Bacillus subtilis, Staphylococcus aureus, Escherichia coli or Pseudomonas aeruginosa. The biochromatograms demonstrated that tannins play a main role for the bacterial growth inhibition observed for all above-mentioned plants except for Polygonum cuspidatum. Furthermore, the high-resolution bacterial...... growth inhibition profiling combined with HPLC–HRMS–SPE–NMR allowed fast identification of three non-tannin active compounds, i.e., piceid, resveratrol and emodin from ethanol extract of Polygonum cuspidatum. Conclusion The high-resolution bacterial growth inhibition profiling allowed fast pinpointing...... of constituents responsible for the bioactivity, e.g., either showing tannins being the main bacterial growth inhibitors as observed for the majority of the active plants, or combined with HPLC–HRMS–SPE–NMR for fast structural identification of non-tannin constituents correlated with antibacterial activity....

  13. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  14. Assessment of constituents in Allium by multivariate data analysis, high-resolution α-glucosidase inhibition assay and HPLC-SPE-NMR

    DEFF Research Database (Denmark)

    Schmidt, Jeppe Secher; Nyberg, Nils; Stærk, Dan

    2014-01-01

    Bulbs and leaves of 35 Allium species and cultivars bought or collected in 2010–2012 were investigated with multivariate data analysis, high-resolution α-glucosidase inhibition assays and HPLC-HRMS-SPE-NMR with the aim of exploring the potential of Allium as a future functional food for management...... of type 2 diabetes. It was found that 30 out of 106 crude extracts showed more than 80% inhibition of the α-glucosidase enzyme at a concentration of 40 mg/mL (dry sample) or 0.4 g/mL (fresh sample). High-resolution α-glucosidase biochromatograms of these extracts allowed fast identification of three...

  15. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes

    International Nuclear Information System (INIS)

    Yao, Yong; Dutta, Samit Kumar; Park, Sang Ho; Rai, Ratan; Fujimoto, L. Miya; Bobkov, Andrey A.; Opella, Stanley J.; Marassi, Francesca M.

    2017-01-01

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13 C or 1 H detection, have very narrow line widths (0.40–0.60 ppm for 13 C, 0.11–0.15 ppm for 1 H, and 0.46–0.64 ppm for 15 N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1 H-detected solid-state NMR 1 H/ 15 N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1 H/ 15 N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  16. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae)

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Moresco, Henrique H.; Tahtah, Yousof

    2015-01-01

    , and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC–HRMS–SPE–NMR. This led to identification...

  17. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints

    International Nuclear Information System (INIS)

    Furuita, Kyoko; Kataoka, Saori; Sugiki, Toshihiko; Hattori, Yoshikazu; Kobayashi, Naohiro; Ikegami, Takahisa; Shiozaki, Kazuhiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2015-01-01

    NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based procedures due to an insufficient number of NOE restraints. By using the 867 PRE-derived distance restraints obtained from the NOE-based structure determination procedure, a high-resolution structure of Sin1 could be successfully determined. The convergence and accuracy of the determined structure were improved by increasing the number of PRE-derived distance restraints. This study demonstrates that PRE-derived distance restraints are useful in the determination of a high-resolution structure of a soluble protein when the number of NOE constraints is insufficient

  18. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yong; Dutta, Samit Kumar [Sanford Burnham Prebys Medical Discovery Institute (United States); Park, Sang Ho; Rai, Ratan [University of California San Diego, Department of Chemistry and Biochemistry (United States); Fujimoto, L. Miya; Bobkov, Andrey A. [Sanford Burnham Prebys Medical Discovery Institute (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbp.edu [Sanford Burnham Prebys Medical Discovery Institute (United States)

    2017-03-15

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with {sup 13}C or {sup 1}H detection, have very narrow line widths (0.40–0.60 ppm for {sup 13}C, 0.11–0.15 ppm for {sup 1}H, and 0.46–0.64 ppm for {sup 15}N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The {sup 1}H-detected solid-state NMR {sup 1}H/{sup 15}N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR {sup 1}H/{sup 15}N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  19. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators.

    Science.gov (United States)

    Bullen, A; Patel, S S; Saggau, P

    1997-07-01

    The design and implementation of a high-speed, random-access, laser-scanning fluorescence microscope configured to record fast physiological signals from small neuronal structures with high spatiotemporal resolution is presented. The laser-scanning capability of this nonimaging microscope is provided by two orthogonal acousto-optic deflectors under computer control. Each scanning point can be randomly accessed and has a positioning time of 3-5 microseconds. Sampling time is also computer-controlled and can be varied to maximize the signal-to-noise ratio. Acquisition rates up to 200k samples/s at 16-bit digitizing resolution are possible. The spatial resolution of this instrument is determined by the minimal spot size at the level of the preparation (i.e., 2-7 microns). Scanning points are selected interactively from a reference image collected with differential interference contrast optics and a video camera. Frame rates up to 5 kHz are easily attainable. Intrinsic variations in laser light intensity and scanning spot brightness are overcome by an on-line signal-processing scheme. Representative records obtained with this instrument by using voltage-sensitive dyes and calcium indicators demonstrate the ability to make fast, high-fidelity measurements of membrane potential and intracellular calcium at high spatial resolution (2 microns) without any temporal averaging.

  20. High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water

    Science.gov (United States)

    Anick, David J

    2004-01-01

    Background The efficacy of homeopathy is controversial. Homeopathic remedies are made via iterated shaking and dilution, in ethanol or in water, from a starting substance. Remedies of potency 12 C or higher are ultra-dilute (UD), i.e. contain zero molecules of the starting material. Various hypotheses have been advanced to explain how a UD remedy might be different from unprepared solvent. One such hypothesis posits that a remedy contains stable clusters, i.e. localized regions where one or more hydrogen bonds remain fixed on a long time scale. High sensitivity proton nuclear magnetic resonance spectroscopy has not previously been used to look for evidence of differences between UD remedies and controls. Methods Homeopathic remedies made in water were studied via high sensitivity proton nuclear magnetic resonance spectroscopy. A total of 57 remedy samples representing six starting materials and spanning a variety of potencies from 6 C to 10 M were tested along with 46 controls. Results By presaturating on the water peak, signals could be reliably detected that represented H-containing species at concentrations as low as 5 μM. There were 35 positions where a discrete signal was seen in one or more of the 103 spectra, which should theoretically have been absent from the spectrum of pure water. Of these 35, fifteen were identified as machine-generated artifacts, eight were identified as trace levels of organic contaminants, and twelve were unexplained. Of the unexplained signals, six were seen in just one spectrum each. None of the artifacts or unexplained signals occurred more frequently in remedies than in controls, using a p < .05 cutoff. Some commercially prepared samples were found to contain traces of one or more of these small organic molecules: ethanol, acetate, formate, methanol, and acetone. Conclusion No discrete signals suggesting a difference between remedies and controls were seen, via high sensitivity 1H-NMR spectroscopy. The results failed to support

  1. The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.

    Science.gov (United States)

    Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick

    2018-02-06

    The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.

  2. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  3. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    International Nuclear Information System (INIS)

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-01-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). (paper)

  4. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    Energy Technology Data Exchange (ETDEWEB)

    Motackova, Veronika; Novacek, Jiri [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof [University of Warsaw, Faculty of Chemistry (Poland); Zidek, Lukas, E-mail: lzidek@chemi.muni.c [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Sanderova, Hana; Krasny, Libor [Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria and Department of Bacteriology, Institute of Microbiology (Czech Republic); Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Sklenar, Vladimir [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic)

    2010-11-15

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, {delta} subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  5. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  6. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    Science.gov (United States)

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment

    International Nuclear Information System (INIS)

    Fan Ying; Shi Lichi; Ladizhansky, Vladimir; Brown, Leonid S.

    2011-01-01

    Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly 13 C, 15 N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution 13 C and 15 N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

  8. sup 3 sup 1 P high resolution solid state NMR studies of phosphoorganic compounds of biological interest

    CERN Document Server

    Potrzebowski, M J; Kazmierski, S

    2001-01-01

    In this review several applications of sup 3 sup 1 P high resolution solid state NMR spectroscopy in structural studies of bioorganic samples is recorded. The problem of pseudopolymorphism of bis[6-O,6'-O-(1,2:3,4diisopropylidene-alpha-D-galactopyranosyl) phosphothionyl] disulfide (1) and application of sup 3 sup 1 P C/MAS experiment to investigate of this phenomenon is discussed. The influence of weak C-H--S intermolecular contacts on molecular packing of 1,6-anhydro-2-O-tosyl-4-S- (5,5-dimethyl-2-thioxa-1,3,2-dioxaphosphophorinan-2-= yl)-beta-D-glucopyranose (2) and S sub P , R sub P diastereomers of deoxyxylothymidyl-3'-O-acetylthymidyl (3',5')-O-(2-cyanoethyl) phosphorothioate (3) and their implication on sup 3 sup 1 P NMR spectra is shown. The final part of review describes the recent progress in structural studies of O-phosphorylated amino acids (serine, threonine, tyrosine), relationship between molecular structure and sup 3 sup 1 P chemical shift parameters delta sub i sub i and influence of hydrogen ...

  9. Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements

    Science.gov (United States)

    Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.

    2001-03-01

    We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.

  10. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.

    Science.gov (United States)

    Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele

    2015-09-30

    Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.

  11. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy L.

    2016-01-01

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  12. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-06-13

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  13. Stripline-based microfluidic devices for high-resolution NMR spectroscopy

    NARCIS (Netherlands)

    Bart, J.

    2009-01-01

    A novel route towards microchip integrated NMR analysis was studied. For NMR analysis of mass-limited samples, research has focussed for decennia on microsolenoidal or planar helical detection coils on microfluidic substrates. Since these approaches suffer from static field distortion resulting in

  14. Ultra-high field NMR and MRI - the role of magnet technology to increase sensitivity and specificity

    Science.gov (United States)

    Moser, Ewald; Laistler, Elmar; Schmitt, Franz; Kontaxis, Georg

    2017-08-01

    "History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors." - P. J. Keating (former Australian Prime Minister) Starting with post-war developments in nuclear magnetic resonance (NMR) a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency) were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (NbTi based) superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T) based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T) at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600 - 800 MHz (14.1 - 18.8 T) up to 900 MHz (21 T) at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development towards higher and higher field strength is a consequence of the inherently low and, thus

  15. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR.

    Science.gov (United States)

    Liu, Bingrui; Kongstad, Kenneth T; Wiese, Stefanie; Jäger, Anna K; Staerk, Dan

    2016-07-15

    Crude chloroform, ethanol and acetone extracts of nineteen seaweed species were screened for their antioxidant and α-glucosidase inhibitory activity. Samples showing more than 60% α-glucosidase inhibitory activity, at a concentration of 1 mg/ml, were furthermore investigated using high-resolution α-glucosidase inhibition profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC-HRMS-SPE-NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling a Trolox equivalent antioxidant capacity of 135 and 108 mM Troloxmg(-1) extract, respectively. HR-bioassay/HPLC-HRMS-SPE-NMR showed the α-glucosidase inhibitory activity of A. nodosum, F. vesoculosus, Laminaria digitata, Laminaria japonica and Undaria pinnatifida to be caused by phlorotannins as well as fatty acids - with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Curing reactions of bismaleimide resins catalyzed by triphenylphosphine. High resolution solid-state 13C NMR study

    International Nuclear Information System (INIS)

    Shibahara, Sumio; Enoki, Takashi; Yamamoto, Takahisa; Motoyoshiya, Jiro; Hayashi, Sadao.

    1996-01-01

    The curing reactions of bismaleimide resins consisted of N,N'-4,4'-diphenylmethanebismaleimide (BMI) and o,o'-diallylbisphenol-A (DABA) in the presence of triphenylphosphine (TPP) as a catalyst were investigated. DSC measurements showed that the catalytic effect of TPP on the curing reaction of BMI was more in the presence of DABA than in its absence. In order to explore this curing reaction, N-phenylmaleimide (PMI) and o-allylphenol (AP) were selected as model compounds. The products of the PMI/TPP system were oligomers and polymers of PMI, whereas the main product of the PMI/AP/TPP system was the PMI trimer which had the five-membered ring formed via the phosphonium ylide intermediate. In these model reactions, 13 C NMR was found to be useful to distinguish between trimerization and polymerization of PMI. On the basis of the results of the model reactions, the curing reactions of bismaleimide resins were investigated by high resolution solid state 13 C NMR techniques. In the BMI/TPP system, maleimides polymerize above 175degC, but the polymerization does not proceed at 120degC. On the other hand, maleimides trimerize above 120degC in the presence of DABA and TPP. The mechanism of the trimerization is briefly discussed. (author)

  17. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    International Nuclear Information System (INIS)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-01-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm 3 . For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  18. Sensitivity encoded silicon photomultiplier—a new sensor for high-resolution PET-MRI

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-01

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm3. For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  19. Sensitivity encoded silicon photomultiplier--a new sensor for high-resolution PET-MRI.

    Science.gov (United States)

    Schulz, Volkmar; Berker, Yannick; Berneking, Arne; Omidvari, Negar; Kiessling, Fabian; Gola, Alberto; Piemonte, Claudio

    2013-07-21

    Detectors for simultaneous positron emission tomography and magnetic resonance imaging in particular with sub-mm spatial resolution are commonly composed of scintillator crystal arrays, readout via arrays of solid state sensors, such as avalanche photo diodes (APDs) or silicon photomultipliers (SiPMs). Usually a light guide between the crystals and the sensor is used to enable the identification of crystals which are smaller than the sensor elements. However, this complicates crystal identification at the gaps and edges of the sensor arrays. A solution is to use as many sensors as crystals with a direct coupling, which unfortunately increases the complexity and power consumption of the readout electronics. Since 1997, position-sensitive APDs have been successfully used to identify sub-mm crystals. Unfortunately, these devices show a limitation in their time resolution and a degradation of spatial resolution when placed in higher magnetic fields. To overcome these limitations, this paper presents a new sensor concept that extends conventional SiPMs by adding position information via the spatial encoding of the channel sensitivity. The concept allows a direct coupling of high-resolution crystal arrays to the sensor with a reduced amount of readout channels. The theory of sensitivity encoding is detailed and linked to compressed sensing to compute unique sparse solutions. Two devices have been designed using one- and two-dimensional linear sensitivity encoding with eight and four readout channels, respectively. Flood histograms of both devices show the capability to precisely identify all 4 × 4 LYSO crystals with dimensions of 0.93 × 0.93 × 10 mm(3). For these crystals, the energy and time resolution (MV ± SD) of the devices with one (two)-dimensional encoding have been measured to be 12.3 · (1 ± 0.047)% (13.7 · (1 ± 0.047)%) around 511 keV with a paired coincidence time resolution (full width at half maximum) of 462 · (1 ± 0.054) ps (452 · (1 ± 0

  20. TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka-Kazimierczuk, Anna; Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Billeter, Martin, E-mail: martin.billeter@chem.gu.se [University of Gothenburg, Biophysics Group, Department of Chemistry and Molecular Biology (Sweden)

    2012-09-15

    While NMR studies of proteins typically aim at structure, dynamics or interactions, resonance assignments represent in almost all cases the initial step of the analysis. With increasing complexity of the NMR spectra, for example due to decreasing extent of ordered structure, this task often becomes both difficult and time-consuming, and the recording of high-dimensional data with high-resolution may be essential. Random sampling of the evolution time space, combined with sparse multidimensional Fourier transform (SMFT), allows for efficient recording of very high dimensional spectra ({>=}4 dimensions) while maintaining high resolution. However, the nature of this data demands for automation of the assignment process. Here we present the program TSAR (Tool for SMFT-based Assignment of Resonances), which exploits all advantages of SMFT input. Moreover, its flexibility allows to process data from any type of experiments that provide sequential connectivities. The algorithm was tested on several protein samples, including a disordered 81-residue fragment of the {delta} subunit of RNA polymerase from Bacillus subtilis containing various repetitive sequences. For our test examples, TSAR achieves a high percentage of assigned residues without any erroneous assignments.

  1. An application of impediography to the high sensitivity and high resolution identification of structural damage

    International Nuclear Information System (INIS)

    Zhao, L; Yang, J; Semperlotti, F; Wang, K W

    2015-01-01

    In this study we explore the use of impediographic techniques to perform damage detection in plate-like metal structures. Impediography relies on the piezo-resistive coupling of the host structure to reconstruct high sensitivity and high resolution maps of the internal electrical conductivity. By exploiting localized strain perturbations generated via focused acoustic waves, the piezo-resistive coupling allows extracting a set of linearly independent boundary voltage data that drastically reduces the ill-conditioning of the inverse problem, therefore increasing the performance. The localized perturbation is achieved by leveraging the concept of frequency selective structure (FSS), that is a dynamically tailored structural element enabling the required acoustic focusing via vibration localization. Based on the FSS approach, the impediographic technique is numerically tested to investigate the performance of the combined approach for structural damage detection. The effects of practical implementation issues, such as limited perturbations and limited boundary data, are also explored. (paper)

  2. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  3. Introduction to quantum calculation methods in high resolution NMR

    International Nuclear Information System (INIS)

    Goldman, M.

    1996-01-01

    New techniques as for instance the polarization transfer, the coherence with several quanta and the double Fourier transformation have appeared fifteen years ago. These techniques constitute a considerable advance in NMR. Indeed, they allow to study more complex molecules than it was before possible. But with these advances, the classical description of the NMR is not enough to understand precisely the physical phenomena induced by these methods. It is then necessary to resort to quantum calculation methods. The aim of this work is to present these calculation methods. After some recalls of quantum mechanics, the author describes the NMR with the density matrix, reviews the main methods of double Fourier transformation and then gives the principle of the relaxation times calculation. (O.M.)

  4. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  5. Ultra-High Field NMR and MRI—The Role of Magnet Technology to Increase Sensitivity and Specificity

    Directory of Open Access Journals (Sweden)

    Ewald Moser

    2017-08-01

    Full Text Available “History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors.” – P. J. Keating (former Australian Prime MinisterStarting with post-war developments in nuclear magnetic resonance (NMR a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (Nb-Ti based superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600–800 MHz (14.1–18.8 T up to 900 MHz (21 T at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development toward higher and higher field strength is a consequence of the inherently low

  6. Applications of high resolution 3H NMR spectroscopy

    International Nuclear Information System (INIS)

    Williams, P.G.

    1987-10-01

    The advantages of tritium as an NMR nucleus are pointed out. Examples of its use are given, including labelled toluene, hydrogenation of β-methylstyrene, and maltose and its binding proteins. 7 refs., 2 figs

  7. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  8. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  9. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  10. High-resolution hyaluronidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-necrosis constituents in Chinese plants used to treat snakebite

    DEFF Research Database (Denmark)

    Liu, Yueqiu; Stærk, Dan; Nielsen, Mia N.

    2015-01-01

    for the 22 plants showing highest hyaluronidase inhibition, and the results were used to guide subsequent structural analysis towards specific hyaluronidase inhibitors. Structural analysis was performed by high-performance liquid chromatography, high-resolution mass spectrometry, solid-phase extraction...... and nuclear magnetic resonance spectroscopy, i.e., HPLC–HRMS–SPE–NMR. This allowed identification of four non-tannin inhibitors, i.e., lansiumamide B (6) from Clausena excavata Burm.f., myricetin 3-O-β-d-glucopyranoside (7) from Androsace umbellata (Lour.) Merr., and vitexin (8) and 4′,7-dihydroxy-5...

  11. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  12. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes

    International Nuclear Information System (INIS)

    Yang Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-01-01

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is ∼2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach

  13. LabVIEW Graphical User Interface for a New High Sensitivity, High Resolution Micro-Angio-Fluoroscopic and ROI-CBCT System.

    Science.gov (United States)

    Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S

    2008-01-01

    A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).

  14. Edible seaweed as future functional food: Identification of α-glucosidase inhibitors by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-HRMS-SPE-NMR

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Wiese, Stefanie

    2016-01-01

    -glucosidase inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy (HR-bioassay/HPLC–HRMS–SPE–NMR). The results showed Ascophyllum nodosum and Fucus vesicolosus to be rich in antioxidants, equaling...... as fatty acids – with oleic acid, linoleic acid and eicosapentaenoic acid being the most potent with IC50 values of 0.069, 0.075 and 0.10 mM, respectively, and showing a mixed-type inhibition mode....

  15. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  16. Transistor reset preamplifier for high-rate high-resolution spectroscopy

    International Nuclear Information System (INIS)

    Landis, D.A.; Cork, C.P.; Madden, N.W.; Goulding, F.S.

    1981-10-01

    Pulsed transistor reset of high resolution charge sensitive preamplifiers used in cooled semiconductor spectrometers can sometimes have an advantage over pulsed light reset systems. Several versions of transistor reset spectrometers using both silicon and germanium detectors have been built. This paper discusses the advantages of the transistor reset system and illustrates several configurations of the packages used for the FET and reset transistor. It also describes the preamplifer circuit and shows the performance of the spectrometer at high rates

  17. Development of Charge Sensitive Preamplifier and Readout Integrate Circuit Board for High Resolution Detector using ASIC Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J. Y.; Kim, J. H.; Park, J. M.; Yang, J. Y.; Kim, K. Y.; Kim, Y. S. [RadTek Co., Daejeon (Korea, Republic of)

    2010-06-15

    - Design of discrete type charge sensitive amplifier for high resolution semi-conductor sensor - Design and develop the test board for the performance of charge sensitive amplifier with sensor - Performance of electrical test for the sensor and charge sensitive amplifier - Development of prototype 8 x 8 array type detector module - Noise equivalent charge test for the charge sensitive amplifier - Design and development of Micro SMD discrete type amplifier applying ASIC procedure - Development of Hybrid type charge sensitive amplifier including shape

  18. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    Science.gov (United States)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  19. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA by an Immobilized Polysaccharide-Based Chiral Phase.

    Directory of Open Access Journals (Sweden)

    Juliana C Barreiro

    Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.

  20. Quality and sensitivity of high-resolution numerical simulation of urban heat islands

    Science.gov (United States)

    Li, Dan; Bou-Zeid, Elie

    2014-05-01

    High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).

  1. Coupling HPLC-SPE-NMR with a microplate-based high-resolution antioxidant assay for efficient analysis of antioxidants in food--validation and proof-of-concept study with caper buds.

    Science.gov (United States)

    Wiese, Stefanie; Wubshet, Sileshi G; Nielsen, John; Staerk, Dan

    2013-12-15

    This work describes the coupling of a microplate-based antioxidant assay with a hyphenated system consisting of high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC-SPE-NMR/high-resolution antioxidant assay, for the analysis of complex food extracts. The applicability of the microplate-based antioxidant assay for high-resolution screening of common food phenolics as well as parameters related to their trapping efficiency, elution behavior, and recovery on/from SPE cartridges are described. It was found that the microplate-based high-resolution antioxidant assay is an attractive and easy implementable alternative to direct on-line screening methods. Furthermore, it was shown that Resin SH and Resin GP SPE material are superior to RP C18HD for trapping of phenolic compounds. Proof-of-concept study was performed with caper bud extract, revealing the most important antioxidants to be quercetin, kaempferol, rutin, kaempferol-3-O-β-rutinoside and N(1),N(5),N(10)-triphenylpropenoyl spermidine amides. Targeted isolation of the latter, and comprehensive NMR experiments showed them to be N(1),N(10)-di-(E)-caffeoyl-N(5)-p-(E)-coumaroyl spermidine, N(1)-(E)-caffeoyl-N(5),N(10)-di-p-(E)-coumaroyl spermidine, N(10)-(E)-caffeoyl-N(1),N(5)-di-p-(E)-coumaroyl spermidine, and N(1),N(5),N(10)-tri-p-(E)-coumaroyl spermidine amides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-01-01

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  3. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  4. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  5. High-field 1H NMR microscopy for fundamental biophysical research

    International Nuclear Information System (INIS)

    Haddad, D.

    2003-01-01

    This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz

  6. High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-diabetic compounds in Eremanthus crotonoides (Asteraceae)

    DEFF Research Database (Denmark)

    Lana e Silva, Eder; Felipe Revoredo Lobo, Jonathas; Vinther, Joachim Møllesøe

    2016-01-01

    with an inhibitory concentration (IC50) of 34.5 μg/mL towards α-glucosidase was investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of six α-glucosidase inhibitors, namely quercetin (16), trans-tiliroside (17), luteolin (19), quercetin-3.......93 and 5.20 μM, respectively. This is the first report of the α-glucosidase inhibitory activity of compounds 20, 26, and 29, and the findings support the important role of Eremanthus species as novel sources of new drugs and/or herbal remedies for treatment of type 2 diabetes....

  7. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  8. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    Science.gov (United States)

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods

  9. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    Science.gov (United States)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  10. Dual High-Resolution α-Glucosidase and Radical Scavenging Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Minor and Major Constituents Directly from the Crude Extract of Pueraria lobata

    DEFF Research Database (Denmark)

    Liu, Bingrui; Kongstad, Kenneth Thermann; Qinglei, Sun

    2015-01-01

    The crude methanol extract of Pueraria lobata was investigated by dual high-resolution α-glucosidase inhibition and radical scavenging profiling combined with hyphenated HPLC-HRMS-SPE-NMR. Direct analysis of the crude extract without preceding purification was facilitated by combining chromatograms...... from two analytical-scale HPLC separations of 120 and 600 μg on-column, respectively. High-resolution α-glucosidase and radical scavenging profiles were obtained after microfractionation of the eluate in 96-well microplates. This allowed full bioactivity profiling of individual peaks in the HPLC...... chromatogram of the crude methanol extract. Subsequent HPLC-HRMS-SPE-NMR analysis allowed identification of 21 known compounds in addition to two new compounds, i.e., 3′-methoxydaidzein 8-C-[α-d-apiofuranosyl-(1→6)]-β-d-glucopyranoside and 6″-O-malonyl-3′-methoxydaidzin, as well as an unstable compound...

  11. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  12. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  13. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  14. Development of a high-resolution cavity-beam position monitor

    Directory of Open Access Journals (Sweden)

    Yoichi Inoue

    2008-06-01

    Full Text Available We have developed a high-resolution cavity-beam position monitor (BPM to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ∼nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5  μm.

  15. Development of a high-resolution cavity-beam position monitor

    Science.gov (United States)

    Inoue, Yoichi; Hayano, Hitoshi; Honda, Yosuke; Takatomi, Toshikazu; Tauchi, Toshiaki; Urakawa, Junji; Komamiya, Sachio; Nakamura, Tomoya; Sanuki, Tomoyuki; Kim, Eun-San; Shin, Seung-Hwan; Vogel, Vladimir

    2008-06-01

    We have developed a high-resolution cavity-beam position monitor (BPM) to be used at the focal point of the ATF2, which is a test beam line that is now being built to demonstrate stable orbit control at ˜nanometer resolution. The design of the cavity structure was optimized for the Accelerator Test Facility (ATF) beam in various ways. For example, the cavity has a rectangular shape in order to isolate two dipole modes in orthogonal directions, and a relatively thin gap that is less sensitive to trajectory inclination. A two stage homodyne mixer with highly sensitive electronics and phase-sensitive detection was also developed. Two BPM blocks, each containing two cavity BPMs, were installed in the existing ATF beam line using a rigid support frame. After testing the basic characteristics, we measured the resolution using three BPMs. The system demonstrated 8.7 nm position resolution over a dynamic range of 5μm.

  16. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S.

    2013-01-01

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ( 13 C/ 15 N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  17. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  18. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  19. Exploring the limits to spatially resolved NMR

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim; Nestle, Nikolaus [TU Darmstadt, Institute of Condensed Matter Physics (Germany)

    2010-07-01

    Recent advances in MRI have demonstrated resolutions down to 1 {mu}m. Magnetic resonance force microscopy has the potential to reach sensitivity for single nuclear spins. Given these numbers, in vivo imaging of single cells or even biomacromolecules may seem possible. However, for in vivo applications, there are fundamental differences in the contrast mechanisms compared to MRI at macroscopic scales as the length scale of of molecular self-diffusion exceeds that of the spatial resolution on the NMR time scale. Those effects - which are fundamentally different from the echo attenuation in field gradient NMR - even may lead to general limitations on the spatial resolution achievable in aqueous systems with high water content. In our contribution, we explore those effects on a model system in a high-resolution stray-field imaging setup. In addition to experimental results, simulations based on the Bloch-Torrey equation are presented.

  20. A time resolving data acquisition system for multiple high-resolution position sensitive detectors

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1988-01-01

    An advanced time resolving data collection system for use in neutron and x-ray spectrometry has been implemented and put into routine operation. The system collects data from high-resolution position-sensitive area detectors with a maximum cumulative rate of 10/sup 6/ events per second. The events are sorted, in real-time, into many time-slice arrays. A programmable timing control unit allows for a wide choice of time sequences and time-slice array sizes. The shortest dwell time on a slice may be below 1 ms and the delay to switch between slices is zero

  1. High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka-Kazimierczuk, Anna; Kozminski, Wiktor, E-mail: kozmin@chem.uw.edu.pl [University of Warsaw, Faculty of Chemistry (Poland); Sanderova, Hana; Krasny, Libor [Institute of Microbiology, Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria, Department of Bacteriology (Czech Republic)

    2012-04-15

    Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using {delta} subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences.

  2. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  3. High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1

    International Nuclear Information System (INIS)

    Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.; Bycroft, Mark

    2016-01-01

    In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1, which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined

  4. High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.; Bycroft, Mark, E-mail: mxb@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom)

    2016-05-23

    In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1, which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined.

  5. High Resolution PET with 250 micrometer LSO Detectors and Adaptive Zoom

    International Nuclear Information System (INIS)

    Cherry, Simon R.; Qi, Jinyi

    2012-01-01

    There have been impressive improvements in the performance of small-animal positron emission tomography (PET) systems since their first development in the mid 1990s, both in terms of spatial resolution and sensitivity, which have directly contributed to the increasing adoption of this technology for a wide range of biomedical applications. Nonetheless, current systems still are largely dominated by the size of the scintillator elements used in the detector. Our research predicts that developing scintillator arrays with an element size of 250 (micro)m or smaller will lead to an image resolution of 500 (micro)m when using 18F- or 64Cu-labeled radiotracers, giving a factor of 4-8 improvement in volumetric resolution over the highest resolution research systems currently in existence. This proposal had two main objectives: (i) To develop and evaluate much higher resolution and efficiency scintillator arrays that can be used in the future as the basis for detectors in a small-animal PET scanner where the spatial resolution is dominated by decay and interaction physics rather than detector size. (ii) To optimize one such high resolution, high sensitivity detector and adaptively integrate it into the existing microPET II small animal PET scanner as a 'zoom-in' detector that provides higher spatial resolution and sensitivity in a limited region close to the detector face. The knowledge gained from this project will provide valuable information for building future PET systems with a complete ring of very high-resolution detector arrays and also lay the foundations for utilizing high-resolution detectors in combination with existing PET systems for localized high-resolution imaging.

  6. Quality and sensitivity of high-resolution numerical simulation of urban heat islands

    International Nuclear Information System (INIS)

    Li, Dan; Bou-Zeid, Elie

    2014-01-01

    High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014). (letter)

  7. High-resolution imaging of redox signaling in live cells through an oxidation-sensitive yellow fluorescent protein

    DEFF Research Database (Denmark)

    Maulucci, Giuseppe; Labate, Valentina; Mele, Marina

    2008-01-01

    We present the application of a redox-sensitive mutant of the yellow fluorescent protein (rxYFP) to image, with elevated sensitivity and high temporal and spatial resolution, oxidative responses of eukaryotic cells to pathophysiological stimuli. The method presented, based on the ratiometric...... quantitation of the distribution of fluorescence by confocal microscopy, allows us to draw real-time "redox maps" of adherent cells and to score subtle changes in the intracellular redox state, such as those induced by overexpression of redox-active proteins. This strategy for in vivo imaging of redox...

  8. A chronometric exploration of high-resolution 'sensitive TMS masking' effects on subjective and objective measures of vision.

    Science.gov (United States)

    de Graaf, Tom A; Herring, Jim; Sack, Alexander T

    2011-03-01

    Transcranial magnetic stimulation (TMS) can induce masking by interfering with ongoing neural activity in early visual cortex. Previous work has explored the chronometry of occipital involvement in vision by using single pulses of TMS with high temporal resolution. However, conventionally TMS intensities have been high and the only measure used to evaluate masking was objective in nature. Recent studies have begun to incorporate subjective measures of vision, alongside objective ones. The current study goes beyond previous work in two regards. First, we explored both objective vision (an orientation discrimination task) and subjective vision (a stimulus visibility rating on a four-point scale), across a wide range of time windows with high temporal resolution. Second, we used a very sensitive TMS-masking paradigm: stimulation was at relatively low TMS intensities, with a figure-8 coil, and the small stimulus was difficult to discriminate already at baseline level. We hypothesized that this should increase the effective temporal resolution of our paradigm. Perhaps for this reason, we are able to report a rather interesting masking curve. Within the classical-masking time window, previously reported to encompass broad SOAs anywhere between 60 and 120 ms, we report not one, but at least two dips in objective performance, with no masking in-between. The subjective measure of vision did not mirror this pattern. These preliminary data from our exploratory design suggest that, with sensitive TMS masking, we might be able to reveal visual processes in early visual cortex previously unreported.

  9. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  10. Use of a YAP:Ce matrix coupled to a position-sensitive photomultiplier for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Del Guerra, A.; Zavattini, G.; Notaristefani, F. de; Giganti, M.; Piffanelli, A.; Pani, R.; Turra, A.

    1996-01-01

    A new scintillation detector system has been designed for application in high resolution Positron Emission Tomography (PET). The detector is a bundle of small YAlO 3 :Ce (YAP) crystals closely packed (0.2 x 0.2 x 3.0 cm 3 ), coupled to a position sensitive photomultiplier tube (PSPMT). The preliminary results obtained for spatial resolution, time resolution, energy resolution and efficiency of two such detectors working in coincidence are presented. These are 1.2 mm for the FWHM spatial resolution, 2.0 ns for the FWHM time resolution and 20% for the FWHM energy resolution at 511 keV. The measured efficiency is (44 ± 3)% with a 150 keV threshold and (20 ± 2)% with a 300 keV threshold

  11. Direct comparison of high-temporal-resolution CINE MRI with Doppler ultrasound for assessment of diastolic dysfunction in mice.

    Science.gov (United States)

    Roberts, Thomas A; Price, Anthony N; Jackson, Laurence H; Taylor, Valerie; David, Anna L; Lythgoe, Mark F; Stuckey, Daniel J

    2017-10-01

    Diastolic dysfunction is a sensitive early indicator of heart failure and can provide additional data to conventional measures of systolic function. Transmitral Doppler ultrasound, which measures the one-dimensional flow of blood through the mitral valve, is currently the preferred method for the measurement of diastolic function, but the measurement of the left ventricular volume changes using high-temporal-resolution cinematic magnetic resonance imaging (CINE MRI) is an alternative approach which is emerging as a potentially more robust and user-independent technique. Here, we investigated the performance of high-temporal-resolution CINE MRI and compared it with ultrasound for the detection of diastolic dysfunction in a mouse model of myocardial infarction. An in-house, high-temporal-resolution, retrospectively gated CINE sequence was developed with a temporal resolution of 1 ms. Diastolic function in mice was assessed using a custom-made, open-source reconstruction package. Early (E) and late (A) left ventricular filling phases were easily identifiable, and these measurements were compared directly with high-frequency, pulsed-wave, Doppler ultrasound measurements of mitral valve inflow. A repeatability study established that high-temporal-resolution CINE MRI and Doppler ultrasound showed comparable accuracy when measuring E/A in normal control mice. However, when applied in a mouse model of myocardial infarction, high-temporal-resolution CINE MRI indicated diastolic heart failure (E/A = 0.94 ± 0.11), whereas ultrasound falsely detected normal cardiac function (E/A = 1.21 ± 0.11). The addition of high-temporal-resolution CINE MRI to preclinical imaging studies enhances the library of sequences available to cardiac researchers and potentially identifies diastolic heart failure early in disease progression. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  12. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  13. Sensitivity enhancement by chromatographic peak concentration with ultra-high performance liquid chromatography-nuclear magnetic resonance spectroscopy for minor impurity analysis.

    Science.gov (United States)

    Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko

    2017-07-28

    High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Christos Tzitzilonis

    Full Text Available Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [(15N,(1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [(15N,(1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR.

  15. High-resolution polypeptide structure and dynamics in anisotropic environments: The gramicidin channel

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Lee, K.C.; Ketchem, R.R.; Hu, W.; Lazo, N.D.; Huo, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-12-01

    To understand the details of macromolecular function, high-resolution structural and dynamic detail is essential. The polypeptide fold of the gramicidin channel has been effectively modeled for the past 20 years, yet the functional changes in conductance and channel lifetime associated with amino acid substitutions cannot be predicted. To accomplish this goal, high-resolution electrostatic modeling and the precise orientation of all dipoles are required. Furthermore, an enhanced knowledge of the complex molecular environment of this membrane-bound peptide is needed. An aqueous environment is relatively uniform and achiral. The membrane environment is very heterogenous and chiral. A knowledge of the interactions, specific and nonspecific, between peptide and lipid will aid in developing a better understanding of this environment. To accomplish this goal, it is necessary to study the peptide in an extended lipid bilayer, rather than in a vesicular or micellar form. These latter environments are likely to possess increased dynamics, increased water penetration, and distorted interactions between the polypeptide and membrane surface. To perform NMR studies on bilayer bound peptides, solid state NMR methods are required, and for specific site information, isotopic labels are incorporated using solid phase peptide synthesis.

  16. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  17. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  18. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  19. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  20. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  1. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  2. Analysis strategies for high-resolution UHF-fMRI data.

    Science.gov (United States)

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Identification and quantification of the main organic components of vinegars by high resolution 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Caligiani, A.; Acquotti, D.; Palla, G.; Bocchi, V.

    2007-01-01

    A detailed analysis of the proton high-field NMR spectra of vinegars (in particular of Italian balsamic vinegars) is reported. A large number of organic substances belonging to different classes, such as carbohydrates, alcohols, organic acids, volatile compounds and amino acids, were assigned. The possibility of quantification of the substances identified in the whole vinegar sample, without extraction or pre-concentration steps, was also tested. The data validity was demonstrated in terms of precision, accuracy, repeatability and inter-day reproducibility. The effects of the most critical experimental parameters (sample concentration, water suppression and relaxation time) on the analysis response were also discussed. 1 H NMR results were compared with those obtained by traditional techniques (GC-MS, titrations), and good correlations were obtained. The results showed that 1 H NMR with water suppression allows a rapid, simultaneous determination of carbohydrates (glucose and fructose), organic acids (acetic, formic, lactic, malic, citric, succinic and tartaric acids), alcohols and polyols (ethanol, acetoin, 2,3-butanediol, hydroxymethylfurfural), and volatile substances (ethyl acetate) in vinegar samples. On the contrary, the amino acid determination without sample pre-concentration was critical. The 1 H NMR method proposed was applied to different samples of vinegars, allowing, in particular, the discrimination of vinegars and balsamic vinegars

  4. High resolution eddy current microscopy

    Science.gov (United States)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  5. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Hess, H.; Lewandowski, L. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Gernhaeuser, R.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-02-15

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8 {sup circle} and 19.1 {sup circle}, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6 {sup circle} was determined for the same γ-ray energy. (orig.)

  6. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  7. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    Science.gov (United States)

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

  8. High-resolution pyrimidine- and ribose-specific 4D HCCH-COSY spectra of RNA using the filter diagonalization method

    International Nuclear Information System (INIS)

    Douglas, Justin T.; Latham, Michael P.; Armstrong, Geoffrey S.; Bendiak, Brad; Pardi, Arthur

    2008-01-01

    The NMR spectra of nucleic acids suffer from severe peak overlap, which complicates resonance assignments. 4D NMR experiments can overcome much of the degeneracy in 2D and 3D spectra; however, the linear increase in acquisition time with each new dimension makes it impractical to acquire high-resolution 4D spectra using standard Fourier transform (FT) techniques. The filter diagonalization method (FDM) is a numerically efficient algorithm that fits the entire multi-dimensional time-domain data to a set of multi-dimensional oscillators. Selective 4D constant-time HCCH-COSY experiments that correlate the H5-C5-C6-H6 base spin systems of pyrimidines or the H1'-C1'-C2'-H2' spin systems of ribose sugars were acquired on the 13 C-labeled iron responsive element (IRE) RNA. FDM-processing of these 4D experiments recorded with only 8 complex points in the indirect dimensions showed superior spectral resolution than FT-processed spectra. Practical aspects of obtaining optimal FDM-processed spectra are discussed. The results here demonstrate that FDM-processing can be used to obtain high-resolution 4D spectra on a medium sized RNA in a fraction of the acquisition time normally required for high-resolution, high-dimensional spectra

  9. The NMR Probe of High-T$_{c}$ Materials

    CERN Document Server

    Walstedt, Russell E

    2008-01-01

    The NMR probe has yielded a vast array of data for the high-Tc materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. Over the twenty years, since the discovery of superconducting cuprates, ongoing analysis and discussion of cuprate NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are threefold. First, it reviews NMR methodology as it has been applied to the cuprate studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of cuprate NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data. Parts two and three are presented in parallel, as there are many aspects to both topics, each with its own interesting history. There is, even twenty years on, a...

  10. Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers

    International Nuclear Information System (INIS)

    Chou, S.H.; Flynn, P.; Reid, B.

    1989-01-01

    Ten-micromole solid-phase RNA synthesis has been successfully performed on an automated nucleic acid synthesizer with coupling efficiencies up to 99%, using the tert-butyldimethylsilyl group to protect the 2'-hydroxyl. The tert-butyldimethylsilyl group was easily removed by tetrabutylammonium fluoride under conditions in which virtually no 2'- to 3'-isomerization was found to occur. By use of this approach, the self-complementary RNA dodecamers r(CGCGAAUUCGCG) and r(CGCGUAUACGCG) were synthesized on an automated nucleic acid synthesizer, purified by TLC, and studied by high-resolution NMR. Imino protons were assigned from one-dimensional nuclear Overhauser effects. The nonexchangeable base, H1', and H2' protons were assigned by the sequential NOESY connectivity method. The NOE data from these two oligomers were analyzed qualitatively and compared to the ideal A- and B-type helix models of Arnott et al. (1972a,b). The internucleotide H6/H8 NOEs to the preceding H1' in r(CGCGUAUACGCG) were found to be sequence-dependent and probably reflect the roll angles between adjacent bases. The internucleotide H6/H8 to H2' NOEs of these oligomers correspond very well to an A-type conformation, but the interstrand adenine H2 NOEs to the following H1' were much stronger than those predicted from the fiber model. These strong interstrand NOEs can be rationalized by base pair slide to favor more interstrand base overlap

  11. Watershed sensitivity and hydrologic response to high-resolution climate model

    Science.gov (United States)

    Troin, M.; Caya, D.

    2012-12-01

    Global climate models (GCMs) are fundamental research tools to assess climate change impacts on water resources. Regional climate models (RCMs) are complementary to GCMs. The added benefit of RCMs for hydrological applications is still not well understood because watersheds respond differently to RCM experiments. It is expected that the new generation of RCMs improve the representation of climate processes making it more attractive for impact studies. Given the cost of RCMs, it is ascertain to identify whether high-resolution RCMs allow offering more details than what is simulated in GCMs or RCMs with coarser resolution to address impacts on water resources. This study aims to assess the added value of RCM with emphasis on using high-resolution climate models. More specifically is how the hydrological cycle is represented when the resolution in climate models is increased (45 vs 200km; 15 vs 45km). We used simulations from the Canadian RCM (CRCM) driven by reanalyses integrated on high-resolution domains (45 and 15km) and CRCM driven by multiple members of two GCMs (the Canadian CGCM3; the German ECHAM5) with a horizontal resolution of 45 km. CRCM data and data from their host GCMs are compared to observation over 1971-2000. Precipitation and temperature from CRCM and GCMs' simulations are inputted into the hydrological SWAT model to simulate streamflow in watersheds for the historical period. The selected watersheds are two basins in Quebec (QC) and one basin in British Columbia (BC), Canada. CRCM-45km driven by GCMs performs well in representing precipitation but shows a cold bias of 3.3°C. Such bias in temperature is more significant for the BC basin (4.5°C) due to the Rocky Mountains. For the CRCM-45km/GCM combination (CGCM3 or ECHAM5), comparable skills in reproducing the observed climate are identified even though CGCM3 analyzed alone provides more accurate indication of climatology in the basins than ECHAM5. When we compared to GCMs results, CRCM-45km

  12. A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings

    International Nuclear Information System (INIS)

    Bueley, Christopher; Wild, Peter M

    2013-01-01

    This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated. (paper)

  13. High-resolution and high sensitivity mesoscopic fluorescence tomography based on de-scanning EMCCD: System design and thick tissue imaging applications

    Science.gov (United States)

    Ozturk, Mehmet Saadeddin

    Optical microscopy has been one of the essential tools for biological studies for decades, however, its application areas was limited to superficial investigation due to strong scattering in live tissues. Even though advanced techniques such as confocal or multiphoton methods have been recently developed to penetrate beyond a few hundreds of microns deep in tissues, they still cannot perform in the mesoscopic regime (millimeter scale) without using destructive sample preparation protocols such as clearing techniques. They provide rich cellular information; however, they cannot be readily employed to investigate the biological processes at larger scales. Herein, we will present our effort to establish a novel imaging approach that can quantify molecular expression in intact tissues, well beyond the current microscopy depth limits. Mesoscopic Fluorescence Molecular Tomography (MFMT) is an emerging imaging modality that offers unique potential for the non-invasive molecular assessment of thick in-vitro and in-vivo live tissues. This novel imaging modality is based on an optical inverse problem that allows for retrieval of the quantitative spatial distribution of fluorescent tagged bio-markers at millimeter depth. MFMT is well-suited for in-vivo subsurface tissue imaging and thick bio-printed specimens due to its high sensitivity and fast acquisition times, as well as relatively large fields of view. Herein, we will first demonstrate the potential of this technique using our first generation MFMT system applied to multiplexed reporter gene imaging (in-vitro) and determination of Photodynamic Therapy (PDT) agent bio-distribution in a mouse model (in-vivo). Second, we will present the design rationale, in silico benchmarking, and experimental validation of a second generation MFMT (2GMFMT) system. We will demonstrate the gain in resolution and sensitivity achieved due to the de-scanned dense detector configuration implemented. The potential of this novel platform will be

  14. Structural Masquerade of Plesiomonas shigelloides Strain CNCTC 78/89 O-Antigen-High-Resolution Magic Angle Spinning NMR Reveals the Modified d-galactan I of Klebsiella pneumoniae.

    Science.gov (United States)

    Ucieklak, Karolina; Koj, Sabina; Pawelczyk, Damian; Niedziela, Tomasz

    2017-11-29

    The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O -acetylated polysaccharide in the NMR spectra. The O -antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H, 13 C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae . The isolated O- specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13 C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O- PS is composed of →3)-α-d-Gal p -(1→3)-β-d-Gal f 2OAc-(1→ disaccharide repeating units. The O- acetylation was incomplete and resulted in a microheterogeneity of the O- antigen. This O- acetylation generates additional antigenic determinants within the O- antigen, forms a new chemotype, and contributes to the epitopes recognized by the O- serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O- antigens.

  15. Design of a high-resolution high-stability positioning mechanism for crystal optics

    International Nuclear Information System (INIS)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    1999-01-01

    The authors present a novel miniature multi-axis driving structure that will allow positioning of two crystals with better than 50-nrad angular resolution and nanometer linear driving sensitivity.The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so they call it an artificial channel-cut crystal. In this paper, the particular designs and specifications, as well as the test results,for a two-axis driving structure for a high-energy-resolution artificial channel-cut crystal monochromator are presented

  16. Antimicrobial peptide protegrin-3 adopt an antiparallel dimer in the presence of DPC micelles: a high-resolution NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Usachev, K. S., E-mail: k.usachev@kpfu.ru; Efimov, S. V.; Kolosova, O. A.; Klochkova, E. A.; Aganov, A. V.; Klochkov, V. V. [Kazan Federal University, NMR Laboratory, Institute of Physics (Russian Federation)

    2015-05-15

    A tendency to dimerize in the presence of lipids was found for the protegrin. The dimer formation by the protegrin-1 (PG-1) is the first step for further oligomeric membrane pore formation. Generally there are two distinct model of PG-1 dimerization in either a parallel or antiparallel β-sheet. But despite the wealth of data available today, protegrin dimer structure and pore formation is still not completely understood. In order to investigate a more detailed dimerization process of PG-1 and if it will be the same for another type of protegrins, in this work we used a high-resolution NMR spectroscopy for structure determination of protegrin-3 (RGGGL-CYCRR-RFCVC-VGR) in the presence of perdeuterated DPC micelles and demonstrate that PG-3 forms an antiparallel NCCN dimer with a possible association of these dimers. This structural study complements previously published solution, solid state and computational studies of PG-1 in various environments and validate the potential of mean force simulations of PG-1 dimers and association of dimers to form octameric or decameric β-barrels.

  17. High-field {sup 1}H NMR microscopy for fundamental biophysical research; Hochfeld {sup 1}H-NMR-Mikroskopie zur biophysikalischen Grundlagenforschung

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, D.

    2003-08-08

    This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz.

  18. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  19. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  20. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  1. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  2. Achieving High Accuracy in Calculations of NMR Parameters

    DEFF Research Database (Denmark)

    Faber, Rasmus

    quantum chemical methods have been developed, the calculation of NMR parameters with quantitative accuracy is far from trivial. In this thesis I address some of the issues that makes accurate calculation of NMR parameters so challenging, with the main focus on SSCCs. High accuracy quantum chemical......, but no programs were available to perform such calculations. As part of this thesis the CFOUR program has therefore been extended to allow the calculation of SSCCs using the CC3 method. CC3 calculations of SSCCs have then been performed for several molecules, including some difficult cases. These results show...... vibrations must be included. The calculation of vibrational corrections to NMR parameters has been reviewed as part of this thesis. A study of the basis set convergence of vibrational corrections to nuclear shielding constants has also been performed. The basis set error in vibrational correction...

  3. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  4. Towards highly sensitive strain sensing based on nanostructured materials

    International Nuclear Information System (INIS)

    Dao, Dzung Viet; Nakamura, Koichi; Sugiyama, Susumu; Bui, Tung Thanh; Dau, Van Thanh; Yamada, Takeo; Hata, Kenji

    2010-01-01

    This paper presents our recent theoretical and experimental study of piezo-effects in nanostructured materials for highly sensitive, high resolution mechanical sensors. The piezo-effects presented here include the piezoresistive effect in a silicon nanowire (SiNW) and single wall carbon nanotube (SWCNT) thin film, as well as the piezo-optic effect in a Si photonic crystal (PhC) nanocavity. Firstly, the electronic energy band structure of the silicon nanostructure is discussed and simulated by using the First-Principles Calculations method. The result showed a remarkably different energy band structure compared with that of bulk silicon. This difference in the electronic state will result in different physical, chemical, and therefore, sensing properties of silicon nanostructures. The piezoresistive effects of SiNW and SWCNT thin film were investigated experimentally. We found that, when the width of ( 110 ) p-type SiNW decreases from 500 to 35 nm, the piezoresistive effect increases by more than 60%. The longitudinal piezoresistive coefficient of SWCNT thin film was measured to be twice that of bulk p-type silicon. Finally, theoretical investigations of the piezo-optic effect in a PhC nanocavity based on Finite Difference Time Domain (FDTD) showed extremely high resolution strain sensing. These nanostructures were fabricated based on top-down nanofabrication technology. The achievements of this work are significant for highly sensitive, high resolution and miniaturized mechanical sensors

  5. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  6. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography

    Science.gov (United States)

    Habte, F.; Foudray, A. M. K.; Olcott, P. D.; Levin, C. S.

    2007-07-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon sensitivity to 8% photon sensitivity for the LSO-PSAPD box configuration and >15% for CZT box geometry, using a 350-650 keV energy window setting. These simulation results compare well with analytical estimations. The trend is different for a clinical whole-body PET system that uses conventional LSO-PMT block detectors with larger crystal elements. Simulations predict roughly the same sensitivity for both box and cylindrical detector configurations. This results from the fact that a large system diameter (>80 cm) results in relatively small inter-module gaps in clinical whole-body PET. In addition, the relatively large block

  7. A quartz-based micro catalytic methane sensor by high resolution screen printing

    Science.gov (United States)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  8. A quartz-based micro catalytic methane sensor by high resolution screen printing

    International Nuclear Information System (INIS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-01-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH 4 . A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH 4 , 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection. (paper)

  9. The NMR probe of high-Tc materials and correlated electron systems

    CERN Document Server

    Walstedt, Russell E

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-Tc materials, heavy fermion systems and actinide oxides are presented.  The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-Tc materials, especially the advances in the area of pseudogap studies are reviewed.  An in depth overview of heavy fermion systems is presented in the second part,  notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth o...

  10. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  11. The impact of high-resolution ultrasound in the differential diagnosis of non-hemolytic jaundice.

    Science.gov (United States)

    Rauh, Peter; Neye, Holger; Mönkemüller, Klaus; Malfertheiner, Peter; Rickes, Steffen

    2010-12-01

    Because jaundice is a common reason for hospital admission. A fast and correct differential diagnosis is very important to increase treatment efficacy. The aim of our study was to evaluate the impact of the high-resolution ultrasound in this kind of clinical setting. In a prospective study we included 30 patients and we divided them in patients with extrahepatic jaundice and patients with intrahepatic jaundice. We observed a high accuracy of the high-resolution sonography, with a sensitivity of 95% and a specificity of 100% for extrahepatic jaundice, and a sensitivity of 100% and a specificity of 95% for intrahepatic jaundice. We conclude that the high-resolution ultrasound should be used in the very beginning of the diagnostic algorithm for the evaluation of patients with unclear jaundice.

  12. Selective sensitivity enhancement in FT-NMR

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    In this article the basic two-spin nuclear magnetic resonance (NMR) experiment and the new sensitivity enhancement experiments are reviewed. In part two of this two-part series an overview of two-dimensional NMR experiments will be presented. Part two will appear in the June 1 issue of Analytical Chemistry

  13. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  14. Investigation of Sc(3) state in nonaqueous solutions by the 45Sc NMR method of high permission

    International Nuclear Information System (INIS)

    Buslaev, Yu.A.; Kirakosyan, G.A.; Tarasov, V.P.

    1980-01-01

    The ScCl 3 + CH 3 CN and ScCl 3 + KNCS + CH 3 CN solutions have been studied by a high-resolution NMR 45 Sc method. It has been estimated that in acetonitrile solutions, with competing ligands of Cl - and NCS - being available, hexacoordination Sc(3) complexes of various compositions are formed, and solvent molecules also take part in formation of the coordination sphere of scandium. Chemical shifts in NMR 45 Sc signals depend linearly on the number of chlor- or NCS - ions bound to scandium(3). This made it possible to determine the value of chemical shifts in signals of all 28 potential complexes formed in a system with three competing ligands

  15. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    Science.gov (United States)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  16. High resolution, high sensitivity imaging and analysis of minerals and inclusions (fluid and melt) using the new CSIRO-GEMOC nuclear microprobe

    International Nuclear Information System (INIS)

    Ryan, C.G.; McInnes, B.M.; Van Achterbergh, E.; Williams, P.J.; Dong, G.; Zaw, K.

    1999-01-01

    Full text: The new CSIRO-GEMOC Nuclear Microprobe (NMP) The instrument was designed specifically for minerals analysis and imaging and to achieve ppm to sub-ppm sensitivity at a spatial resolution of 1-2 μm using X-rays and y-rays induced by MeV energy ion beams. The key feature of the design is a unique magnetic quadrupole quintuplet ion focussing system that combines high current with high spatial resolution (Ryan et al., 1999). These design goals have been achieved or exceeded. On the first day of operation, a spot-size of 1.3 μm was obtained at a beam current of 0.5 nA, suitable for fluid inclusion analysis and imaging. The spot-size grows to just 1.8 μm at 10 nA (3 MeV protons), ideal for mineralogical samples with detection limits down to 0.2 ppm achieved in quantitative, high resolution, trace element images. Applications of the NMP include: research into ore deposit processes through trace element geochemistry, mineralogy and fluid inclusion analysis of ancient deposits and active sea-floor environments, ore characterization, and fundamental studies of mantle processes and extraterrestrial material. Quantitative True Elemental Imaging Dynamic Analysis is a method for projecting quantitative major and trace element images from proton-induced X-ray emission (PIXE) data obtained using the NMP (Ryan et al., 1995). The method un-mixes full elemental spectral signatures to produce quantitative images that can be directly interrogated for the concentrations of all elements in selected areas or line projections, etc. Fluid Inclusion Analysis and Imaging The analysis of fluids trapped as fluid inclusions in minerals holds the key to understanding ore metal pathways and ore formation processes. PIXE analysis using the NMP provides a direct non-destructive method to determine the composition of these trapped fluids with detection limits down to 20 ppm. However, some PIXE results have been controversial, such as the strong partitioning of Cu into the vapour phase (e

  17. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  18. Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D 1 H NMR/ESI MS 1 approach: Hybrid 1D 1 H NMR/ESI MS 1 metabolomics method

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lawrence R. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Walker, S. Michael [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Ward, Joy K. [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Nicora, Carrie D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Bingol, Kerem [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2016-09-16

    We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.

  19. Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry.

    Science.gov (United States)

    Kind, Tobias; Fiehn, Oliver

    2017-09-01

    Complete structural elucidation of natural products is commonly performed by nuclear magnetic resonance spectroscopy (NMR), but annotating compounds to most likely structures using high-resolution tandem mass spectrometry is a faster and feasible first step. The CASMI contest 2016 (Critical Assessment of Small Molecule Identification) provided spectra of eighteen compounds for the best manual structure identification in the natural products category. High resolution precursor and tandem mass spectra (MS/MS) were available to characterize the compounds. We used the Seven Golden Rules, Sirius2 and MS-FINDER software for determination of molecular formulas, and then we queried the formulas in different natural product databases including DNP, UNPD, ChemSpider and REAXYS to obtain molecular structures. We used different in-silico fragmentation tools including CFM-ID, CSI:FingerID and MS-FINDER to rank these compounds. Additional neutral losses and product ion peaks were manually investigated. This manual and time consuming approach allowed for the correct dereplication of thirteen of the eighteen natural products.

  20. Correlation of findings in clinical and high resolution ultrasonography examinations of the painful shoulder

    Directory of Open Access Journals (Sweden)

    Raphael Micheroli

    2015-03-01

    Full Text Available Objective: High resolution ultrasonography is a non-painful and non-invasive imaging technique which is useful for the assessment of shoulder pain causes, as clinical examination often does not allow an exact diagnosis. The aim of this study was to compare the fi ndings of clinical examination and high resolution ultrasonography in patients presenting with painful shoulder. Methods: Non-interventional observational study of 100 adult patients suffering from unilateral shoulder pain. Exclusion criteria were shoulder fractures, prior shoulder joint surgery and shoulder injections in the past month. The physicians performing the most common clinical shoulder examinations were blinded to the results of the high resolution ultrasonography and vice versa. Results: In order to detect pathology of the m. supraspinatus tendon, the Hawkins and Kennedy impingement test showed the highest sensitivity (0.86 whereas the Jobe supraspinatus test showed the highest specifi city (0.55. To identify m. subscapularis tendon pathology the Gerber lift off test showed a sensitivity of 1, whereas the belly press test showed the higher specifi city (0.72. The infraspinatus test showed a high sensitivity (0.90 and specifi city (0.74. All AC tests (painful arc IIa, AC joint tendernessb, cross body adduction stress testc showed high specifi cities (a0.96, b0.99, c 0.96. Evaluating the long biceps tendon, the palm up test showed the highest sensitivity (0.47 and the Yergason test the highest specifi city (0.88. Conclusion: Knowledge of sensitivity and specifi city of various clinical tests is important for the interpretation of clinical examination test results. High resolution ultrasonography is needed in most cases to establish a clear diagnosis.

  1. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  2. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-04-01

    Full Text Available Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2. We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5° to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 % than at coarser resolution (59 %. The cumulative probability distribution functions (CDFs of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy changing little across model resolutions. Model concentrations in the

  3. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    Science.gov (United States)

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  4. High resolution Moessbauer spectroscopy with 67Zn in metallic systems

    International Nuclear Information System (INIS)

    Potzel, W.

    1985-01-01

    Moessbauer experiments on metallic systems are described where the high resolution 93.3 keV resonance in 67 Zn is used. In the first part, the Cu-Zn alloy system is investigated and the high energy resolution of this Moessbauer transition is employed to determine small changes of the s-electron density at the 67 Zn nucleus when the Zn concentration is changed. In the second part, Zn metal is taken as an example to demonstrate that the 93.3 keV transition is also extremely sensitive to small changes of lattice dynamical effects. 7 refs., 18 figs. (author)

  5. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Donghua H.; Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.; Rienstra, Chad M.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

  6. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    International Nuclear Information System (INIS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-01-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R and D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion

  7. High resolution SETI: Experiences and prospects

    Science.gov (United States)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  8. KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Iwahara, Junji; Koshiba, Seizo; Tomizawa, Tadashi; Tochio, Naoya; Guentert, Peter; Kigawa, Takanori; Yokoyama, Shigeyuki

    2007-01-01

    The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure

  9. Development of a superconducting bulk magnet for NMR and MRI.

    Science.gov (United States)

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Real-time pure shift {sup 15}N HSQC of proteins: a real improvement in resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, Peter; Adams, Ralph W.; Paudel, Liladhar; Foroozandeh, Mohammadali [University of Manchester, School of Chemistry (United Kingdom); Aguilar, Juan A. [Durham University, Department of Chemistry (United Kingdom); Timári, István [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Cliff, Matthew J. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Nilsson, Mathias [University of Manchester, School of Chemistry (United Kingdom); Sándor, Péter [Agilent Technologies R& D and Marketing GmbH & Co. KG (Germany); Batta, Gyula [University of Debrecen, Department of Organic Chemistry (Hungary); Waltho, Jonathan P. [University of Manchester, Manchester Institute of Biotechnology (United Kingdom); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Morris, Gareth A., E-mail: g.a.morris@manchester.ac.uk [University of Manchester, School of Chemistry (United Kingdom)

    2015-05-15

    Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t{sub 2}) broadband homodecoupling, suppressing the multiplet structure caused by proton–proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to {sup 15}N, while the former selects a region of the {sup 1}H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.

  11. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  12. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  13. Synopsis Session-I 'Chemical information under high spatial resolution'

    International Nuclear Information System (INIS)

    2013-01-01

    High spatial resolution in this research field is a prerequisite for a better understanding of governing processes, as individual clay particles are very small in dimension (clay size fraction typically defined as < 2μm). The phenomena that have been looked at under this resolution are narrow alteration zones either due to relatively short term laboratory experiments compared to the repository evolution time scale and/or due to the low reaction rates observed for clay minerals at ambient temperature. Another challenge in the field of chemical information to be extracted from compacted clay systems is that mostly the research is focused on the potential contaminants released from the repository near-field, which will be in the trace element concentration and analytical systems have to be tuned to increase the sensitivity under this high spatial resolution. Therefore, chemical information in form of element maps or correlation maps were shown on the initial clay material composition and its heterogeneities (e.g. phase assemblages), the water composition, sorption and migration effects of trace elements, reaction products of geochemical perturbation/alteration and the surface speciation/binding environment of the radionuclides or their chemical homologues. Overall, six invited presentation were given in this session plus additional poster presentations. Beside this, a number of presentations in the other sessions showed a great overlap presenting also chemical data under high spatial resolution. All these oral contributions have shown the progress in this field focusing on the current resolution limits set by the physics and instrumentation available (C. Jacobsen, APS), the micro-focusing instrumentation available at the Karlsruhe Institute of Technology (KIT) synchrotron light source ANKA (J. Goettlicher, KIT-ISS), the application of nano-SIMS to retrieve elemental/isotope maps on complex organo-mineral structures (C. Hoeschen, TU Muenchen), the application of a

  14. Development and features of an X-ray detector with high spatial resolution

    International Nuclear Information System (INIS)

    Hartmann, H.

    1979-09-01

    A laboratory model of an X-ray detector with high spatial resolution was developed and constructed. It has no spectral resolution, but a local resolution of 20 μm which is about ten times as high as that of position-sensitive proportional counters and satisfies the requirements of the very best Wolter telescopes with regard to spatial resolution. The detector will be used for laboratory tests of the 80 cm Wolter telescope which is being developed for Spacelab flights. The theory of the wire grid detector and the physics of the photoelectric effect has been developed, and model calculations and numerical calculations have been carried out. (orig./WB) [de

  15. Determining the optimal size of small molecule mixtures for high throughput NMR screening

    International Nuclear Information System (INIS)

    Mercier, Kelly A.; Powers, Robert

    2005-01-01

    High-throughput screening (HTS) using NMR spectroscopy has become a common component of the drug discovery effort and is widely used throughout the pharmaceutical industry. NMR provides additional information about the nature of small molecule-protein interactions compared to traditional HTS methods. In order to achieve comparable efficiency, small molecules are often screened as mixtures in NMR-based assays. Nevertheless, an analysis of the efficiency of mixtures and a corresponding determination of the optimum mixture size (OMS) that minimizes the amount of material and instrumentation time required for an NMR screen has been lacking. A model for calculating OMS based on the application of the hypergeometric distribution function to determine the probability of a 'hit' for various mixture sizes and hit rates is presented. An alternative method for the deconvolution of large screening mixtures is also discussed. These methods have been applied in a high-throughput NMR screening assay using a small, directed library

  16. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla.

    Directory of Open Access Journals (Sweden)

    Brian Null

    Full Text Available High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

  17. High-resolution ultrasonography in assessing temporomandibular joint disc position.

    Science.gov (United States)

    Talmaceanu, Daniel; Lenghel, Lavinia Manuela; Bolog, Nicolae; Popa Stanila, Roxana; Buduru, Smaranda; Leucuta, Daniel Corneliu; Rotar, Horatiu; Baciut, Mihaela; Baciut, Grigore

    2018-02-04

    The purpose of this study was to determine the diagnostic value of high-resolution ultrasonography (US) in temporomandibular joint (TMJ) disc displacements. A number of 74 patients (148 TMJs) with signs and symptoms of TMJ disorders, according to the Research Diagnostic Criteria for Temporomandibular Disorders, were included in this study. All patients received US and magnetic resonance imaging (MRI) of both TMJs 1 to 5 days after the clinical examination. MRI examinations were performed using 1.5 T MRI equipment (Siemens Avanto, Siemens, Erlangen). Ultrasonographic examination was performed on a Hitachi EUB 8500 (Hitachi Medical Corp., Tokyo, Japan) scanner with L 54 M6.5-13 MHz linear transducer. MRI depicted 68 (45.95%) normal joints, 47 (31.76%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 34 (22.97%) with degenerative changes. US detected 78 (52.7%) normal joints, 37 (25%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 21 (14.19%) with degenerative changes. Compared to MRI, US showed a sensitivity of 93.1%, specificity of 87.88%, accuracy of 90.32%, a positive predictive value of 87.1% and a negative predictive value of 93.55% for overall diagnosis of disc displacement. The Youden index was 0.81. Based on our results, high-resolution ultrasonography showed high sensitivity, specificity and accuracy in the diagnosis of TMJ disc displacement. It could be a valuable imaging technique in assessing TMJ disc position. The diagnostic value of high-resolution ultrasonography depends strictly on the examiner's skills and on the equipment used.

  18. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy

    Science.gov (United States)

    Risco, Cristina; Sanmartín-Conesa, Eva; Tzeng, Wen-Pin; Frey, Teryl K.; Seybold, Volker; de Groot, Raoul J.

    2012-01-01

    Summary More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before. PMID:22579245

  19. Kinetic Energy from Supernova Feedback in High-resolution Galaxy Simulations

    Science.gov (United States)

    Simpson, Christine M.; Bryan, Greg L.; Hummels, Cameron; Ostriker, Jeremiah P.

    2015-08-01

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells’ mass and velocity in a distributed fashion. The method is explored in the context of supernova (SN) feedback in high-resolution (˜10 pc) hydrodynamic simulations of galaxy formation. Resolution dependence is a primary consideration in our application of the method, and simulations of isolated explosions (performed at different resolutions) motivate a resolution-dependent scaling for the injected fraction of kinetic energy that we apply in cosmological simulations of a 109 M⊙ dwarf halo. We find that in high-density media (≳50 cm-3) with coarse resolution (≳4 pc per cell), results are sensitive to the initial kinetic energy fraction due to early and rapid cooling. In our galaxy simulations, the deposition of small amounts of SN energy in kinetic form (as little as 1%) has a dramatic impact on the evolution of the system, resulting in an order-of-magnitude suppression of stellar mass. The overall behavior of the galaxy in the two highest resolution simulations we perform appears to converge. We discuss the resulting distribution of stellar metallicities, an observable sensitive to galactic wind properties, and find that while the new method demonstrates increased agreement with observed systems, significant discrepancies remain, likely due to simplistic assumptions that neglect contributions from SNe Ia and stellar winds.

  20. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  1. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  2. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  3. The optimization of the time resolution and the sensitivity in the pulsed nuclear resonance

    International Nuclear Information System (INIS)

    Umathum, R.

    1987-01-01

    The time resolution of pulsed NMR spectrometer and its spectral sensitivity are closely connected together. An important obstacle in the attempt to increase the resolution represents the dead time of the spectrometer. In the present thesis therefore the different contributions to the system dead time and their causes are analyzed and ways to the reduction respectively complete removement of a part of these contributions are indicated. So a duplexer was developed and constructed on the base of a principle novel for the NMR under application of quadrature hybrids which reduces the residual voltage of the sender pulse to less than 1/10 of the hitherto reached value. In this thesis a concept is extensively discussed which allows to generate at constant quality respectively damping constant of the sample circuit and given sender power a larger high frequency field strength than it is possible in the state of the power fitting. It could be shown than also concerning the noise behaviour by the application of the principle of the defined misfit no compromise must be made but it is even facilitated to approach the ideal of the noise fit of the first receiver stage to the sample circuit. (orig./HSI) [de

  4. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy L.

    2015-01-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL's High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  5. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  6. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  7. Development of high sensitivity and high speed large size blank inspection system LBIS

    Science.gov (United States)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  8. New high-sensitivity, milliarcsecond resolution results from routine observations of lunar occultations at the ESO VLT

    Science.gov (United States)

    Richichi, A.; Fors, O.; Chen, W.-P.; Mason, E.

    2010-11-01

    Context. Lunar occultations (LO) are a very efficient and powerful technique that achieves the best combination of high angular resolution and sensitivity possible today at near-infrared wavelengths. Given that the events are fixed in time, that the sources are occulted randomly, and that the telescope use is minimal, the technique is very well suited for service mode observations. Aims: We have established a program of routine LO observations at the VLT observatory, especially designed to take advantage of short breaks available in-between other programs. We have used the ISAAC instrument in burst mode, capable of producing continuous read-outs at millisecond rates on a suitable subwindow. Given the random nature of the source selection, our aim has been primarily the investigation of a large number of stellar sources at the highest angular resolution in order to detect new binaries. Serendipitous results such as resolved sources and detection of circumstellar components were also anticipated. Methods: We have recorded the signal from background stars for a few seconds, around the predicted time of occultation by the Moon's dark limb. At millisecond time resolution, a characteristic diffraction pattern can be observed. Patterns for two or more sources superimpose linearly, and this property is used for the detection of binary stars. The detailed analysis of the diffraction fringes can be used to measure specific properties such as the stellar angular size and the presence of extended light sources such as a circumstellar shell. Results: We present a list of 191 stars for which LO data could be recorded and analyzed. Results include the detection of 16 binary and 2 triple stars, all but one of which were previously unknown. The projected angular separations are as small as 4 milliarcsec and magnitude differences as high as Δ K = 5.8 mag. Additionally we derive accurate angular diameters for 2 stars and resolve circumstellar emission around another one, also all

  9. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  10. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L.

    Science.gov (United States)

    Zhao, Yong; Kongstad, Kenneth Thermann; Jäger, Anna Katharina; Nielsen, John; Staerk, Dan

    2018-06-29

    In this paper, quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR were used for studying the polypharmacological properties of crude root bark extract of Morus alba L. This species is used as an anti-diabetic principle in many traditional treatment systems around the world, and the crude ethyl acetate extract of M. alba root bark was found to inhibit α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B (PTP1B) with IC 50 values of 1.70 ± 0.72, 5.16 ± 0.69, and 5.07 ± 0.68 μg/mL as well as showing radical scavenging activity equaling a TEAC value of (3.82 ± 0.14) × 10 4  mM per gram extract. Subsequent investigation of the crude extract using quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling provided a quadruple biochromatogram that allowed direct correlation of the HPLC peaks with one or more of the tested bioactivities. This was used to target subsequent HPLC-HRMS-SPE-NMR analysis towards peaks representing bioactive analytes, and led to identification of a new Diels-Alder adduct named Moracenin E as well as a series of Diels-Alder adducts and isoprenylated flavonoids as potent α-glucosidase and α-amylase inhibitors with IC 50 values in the range of 0.60-27.15 μM and 1.22-69.38 μM, respectively. In addition, these compounds and two 2-arylbenzofurans were found to be potent PTP1B inhibitors with IC 50 values ranging from 4.04 to 21.67 μM. The high-resolution radical scavenging profile also revealed that almost all of the compounds possess radical scavenging activity. In conclusion the quadruple high-resolution profiling method presented here allowed a detailed profiling of individual constituents in crude root bark extract of M. alba, and the method provides a general tool for detailed mapping of bioactive constituents in polypharmacological herbal remedies. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. High-resolution mapping and ablation of recurrent left lateral accessory pathway conduction

    Directory of Open Access Journals (Sweden)

    Francesco Solimene, MD

    2017-08-01

    Full Text Available Proper localization of the anatomical target during ablation of the accessory pathways (AP and the ability to detect clear AP potentials on the ablation catheter are crucial for successful AP ablation. We report a case of recurring AP conduction that was finally eliminated using a novel ablation catheter equipped with high-resolution mini-electrodes. Smaller and closer electrodes result in high mapping resolution with less signal averaging and cancellation effects. Owing to improved sensitivity, the new catheter seems effective in detecting fragmented and high frequency signals, thus allowing more effective radiofrequency application and improving ablation success.

  12. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  13. The implementation of sea ice model on a regional high-resolution scale

    Science.gov (United States)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  14. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  15. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Bardet, Michel; De Paepe, Gael; Hediger, Sabine; Ayala, Isabel; Simorre, Jean-Pierre

    2013-01-01

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  16. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    Science.gov (United States)

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  17. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  18. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    Science.gov (United States)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high

  19. Investigation of sea microorganisms of the genus Alteromonas by 31P-NMR of high resolution

    International Nuclear Information System (INIS)

    Ivanova, E.P.; Isakov, V.V.; Mikhajlov, V.V.; Sokolova, S.V.; Gorshkova, N.M.; Fedosov, Yu.V.; Kiprianova, E.A.

    1993-01-01

    Comparative analysis of the 31 P-NMR spectra of intact cells of bacteria belonging to the genus Alteromonas, the producers of alkaline phosphatase was carried out. Differences in the content of phosphate-containing compounds were detected in individual species of the genus Alteromonas. By comparing the data on 31 P-NMR spectra, the electron micrographs and phosphatase activities, the possibility of revealing the presence of capsules was shown. Peculiar features of the 31 P-NMR spectra of alteromonades, as compared with other taxonomic groups of microorganisms, have been discussed

  20. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    Science.gov (United States)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  1. Novel high-resolution temperature probe for radiofrequency dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Schuderer, Juergen [Foundation for Research on Information Technologies in Society (IT' IS), Integrated Systems Laboratory IIS, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich (Switzerland); Schmid, Thomas [Schmid and Partner Engineering AG, 8004 Zurich (Switzerland); Urban, Gerald [IMTEK, Albert-Ludwigs University Freiburg, 79110 Freiburg (Germany); Samaras, Theodoros [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Integrated Systems Laboratory IIS, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich (Switzerland)

    2004-03-21

    A novel integrated thermistor probe for temperature evaluations in radiofrequency-heated environments was realized. The probe's sensitive area is based on a highly resistive 50 {mu}m x 100 {mu}m layer of amorphous germanium processed on a glass tip. The small dimensions allow measurements with a distance as close as 150 {mu}m from solid boundaries. Due to its high temperature resolution of 4 mK and its short response time of the order of 10 ms, the sensor is very well suited for dosimetric measurements in strong absorption gradients. The influence of radiofrequency (RF) electric fields on the signal is minimized due to the high resistance of the sensor and the leads. The probe was successfully used to determine the highly nonuniform absorption distribution resulting from the RF exposure of cell cultures placed in Petri dishes. (note)

  2. Novel high-resolution temperature probe for radiofrequency dosimetry

    International Nuclear Information System (INIS)

    Schuderer, Juergen; Schmid, Thomas; Urban, Gerald; Samaras, Theodoros; Kuster, Niels

    2004-01-01

    A novel integrated thermistor probe for temperature evaluations in radiofrequency-heated environments was realized. The probe's sensitive area is based on a highly resistive 50 μm x 100 μm layer of amorphous germanium processed on a glass tip. The small dimensions allow measurements with a distance as close as 150 μm from solid boundaries. Due to its high temperature resolution of 4 mK and its short response time of the order of 10 ms, the sensor is very well suited for dosimetric measurements in strong absorption gradients. The influence of radiofrequency (RF) electric fields on the signal is minimized due to the high resistance of the sensor and the leads. The probe was successfully used to determine the highly nonuniform absorption distribution resulting from the RF exposure of cell cultures placed in Petri dishes. (note)

  3. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  4. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  5. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  6. High-Resolution Powder Diffractometer HRPT for Thermal Neutrons at SINQ

    International Nuclear Information System (INIS)

    Fischer, P.; Koch, M.; Koennecke, M.; Pomjakushin, V.; Schefer, J.; Schlumpf, N.

    1999-01-01

    The new neutron powder diffractometer at the Swiss continuous spallation neutron source SINQ is designed as a flexible instrument for high resolution [best values δd/d: ( -3 with d = lattice spacing in the high resolution or high intensity modes, respectively]. It uses large scattering angles 2Θ M = 120 deg or 90 deg of the monochromator, a 28 cm high, vertically focusing wafer type Ge(hkk) monochromator and a position-sensitive 3 He detector(3.6 bar) produced by Cerca at Romans, France. It has 1600 (25x64) detectors with an angular separation of 0.1 deg and includes modern electronics developed by E. Berruyer, Cerca and PSI. The SICS software of PSI controls the instrument with a server running on an unix workstation and clients written in Java through the TCP/IP network. The design principles and first experiences are presented. The interdisciplinary applications of HRPT will permit high-resolution refinement of chemical and magnetic structures as well as phase analysis including the detection of defects and internal microstrain. In particular real-time investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. (author)

  7. Trans and surface membrane bound zervamicin IIB: 13C-MAOSS-NMR at high spinning speed

    International Nuclear Information System (INIS)

    Raap, J.; Hollander, J.; Ovchinnikova, T. V.; Swischeva, N. V.; Skladnev, D.; Kiihne, S.

    2006-01-01

    Interactions between 15 N-labelled peptides or proteins and lipids can be investigated using membranes aligned on a thin polymer film, which is rolled into a cylinder and inserted into the MAS-NMR rotor. This can be spun at high speed, which is often useful at high field strengths. Unfortunately, substrate films like commercially available polycarbonate or PEEK produce severe overlap with peptide and protein signals in 13 C-MAOSS NMR spectra. We show that a simple house hold foil support allows clear observation of the carbonyl, aromatic and C α signals of peptides and proteins as well as the ester carbonyl and choline signals of phosphocholine lipids. The utility of the new substrate is validated in applications to the membrane active peptide zervamicin IIB. The stability and macroscopic ordering of thin PC10 bilayers was compared with that of thicker POPC bilayers, both supported on the household foil. Sidebands in the 31 P-spectra showed a high degree of alignment of both the supported POPC and PC10 lipid molecules. Compared with POPC, the PC10 lipids are slightly more disordered, most likely due to the increased mobilities of the shorter lipid molecules. This mobility prevents PC10 from forming stable vesicles for MAS studies. The 13 C-peptide peaks were selectively detected in a 13 C-detected 1 H-spin diffusion experiment. Qualitative analysis of build-up curves obtained for different mixing times allowed the transmembrane peptide in PC10 to be distinguished from the surface bound topology in POPC. The 13 C-MAOSS results thus independently confirms previous findings from 15 N spectroscopy [Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O'Neil, J.D.J. and Raap, J. (2001) Biochemistry, 40, 9428-9437]. In summary, application of house hold foil opens the possibility of measuring high resolution 13 C-NMR spectra of peptides and proteins in well ordered membranes, which are required to determine the secondary and

  8. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  9. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  10. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  11. Probing molecular dynamics of metal borohydrides on the surface of mesoporous scaffolds by multinuclear high resolution solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Son-Jong, E-mail: Sonjong@cheme.caltech.edu [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Hyun-Sook [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); To, Magnus [Division of Chemistry and Chemical Eng., California Institute of Technology, Pasadena, CA 91125 (United States); Lee, Young-Su; Cho, Young Whan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, Hyungkeun; Kim, Chul [Department of Chemistry, Hannam University, Daejeon 305-811 (Korea, Republic of)

    2015-10-05

    Graphical abstract: In situ variable temperature multinuclear solid state NMR allows to probe surface wetting, diffusivity, and confinement of metal borohydrides into nanopores. - Abstract: Understanding of surface interactions between borohydride molecules and the surfaces of porous supports have gained growing attention for successful development of nano-confinement engineering. By use of in situ variable temperature (VT) magic angle spinning (MAS) NMR, molecular mobility changes of LiBH{sub 4} crystalline solid has been investigated in the presence of silica based and carbonaceous surfaces. Spin–spin J-coupling of {sup 1}H–{sup 11}B in LiBH{sub 4} was monitored in series of VT NMR spectra to probe translational mobility of LiBH{sub 4} that appeared to be greatly enhanced upon surface contact. Such enhanced diffusivity was found to be effective in the formation of solid solution and co-confinement with other metal borohydrides. Co-confinement of LiBH{sub 4}–Ca(BH{sub 4}){sub 2} mixture was demonstrated at temperature as low as 100 °C, much lower than the reported bulk eutectic melting temperature. The discovery adds a novel property of LiBH{sub 4} that has been proven to be highly versatile in many energy related applications.

  12. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  13. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu

    2015-04-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL\\'s High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  14. High-Resolution Magic-Angle-Spinning NMR and Magnetic Resonance Imaging Spectroscopies Distinguish Metabolome and Structural Properties of Maize Seeds from Plants Treated with Different Fertilizers and Arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Mazzei, Pierluigi; Cozzolino, Vincenza; Piccolo, Alessandro

    2018-03-21

    Both high-resolution magic-angle-spinning (HRMAS) and magnetic resonance imaging (MRI) NMR spectroscopies were applied here to identify the changes of metabolome, morphology, and structural properties induced in seeds (caryopses) of maize plants grown at field level under either mineral or compost fertilization in combination with the inoculation by arbuscular mycorrhizal fungi (AMF). The metabolome of intact caryopses was examined by HRMAS-NMR, while the morphological aspects, endosperm properties and seed water distribution were investigated by MRI. Principal component analysis (PCA) was applied to evaluate 1 H CPMG (Carr-Purcel-Meiboom-Gill) HRMAS spectra as well as several MRI-derived parameters ( T 1 , T 2 , and self-diffusion coefficients) of intact maize caryopses. PCA score-plots from spectral results indicated that both seeds metabolome and structural properties depended on the specific field treatment undergone by maize plants. Our findings show that a combination of multivariate statistical analyses with advanced and nondestructive NMR techniques, such as HRMAS and MRI, enables the evaluation of the effects induced on maize caryopses by different fertilization and management practices at field level. The spectroscopic approach adopted here may become useful for the objective appraisal of the quality of seeds produced under a sustainable agriculture.

  15. Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene

    DEFF Research Database (Denmark)

    Candiloro, Ida Lm; Mikeska, Thomas; Hokland, Peter

    2008-01-01

    ABSTRACT: BACKGROUND: Methylation-sensitive high resolution melting (MS-HRM) methodology is able to recognise heterogeneously methylated sequences by their characteristic melting profiles. To further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM (dMS-HRM) t......ABSTRACT: BACKGROUND: Methylation-sensitive high resolution melting (MS-HRM) methodology is able to recognise heterogeneously methylated sequences by their characteristic melting profiles. To further analyse heterogeneously methylated sequences, we adopted a digital approach to MS-HRM (d......MS-HRM) that involves the amplification of single templates after limiting dilution to quantify and to determine the degree of methylation. We used this approach to study methylation of the CDKN2B (p15) cell cycle progression inhibitor gene which is inactivated by DNA methylation in haematological malignancies...... the methylated alleles and assess the degree of methylation. Direct sequencing of selected dMS-HRM products was used to determine the exact DNA methylation pattern and confirmed the degree of methylation estimated by dMS-HRM. CONCLUSION: dMS-HRM is a powerful technique for the analysis of methylation in CDKN2B...

  16. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  17. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  18. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  19. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  20. High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions

    International Nuclear Information System (INIS)

    Chou, Shanho; Flynn, P.; Wang, A.; Reid, B.

    1991-01-01

    Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(AACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3'-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3' end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1'-H2' J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2'-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but these results differ somewhat from previous theoretical model studies

  1. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  2. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    Science.gov (United States)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  3. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    KAUST Repository

    Zhang, Daliang

    2018-01-18

    High-resolution imaging of electron beam-sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  4. The NMR probe of high-Tc materials and correlated electron systems. 2. ed.

    International Nuclear Information System (INIS)

    Walstedt, Russell E.

    2018-01-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-T c materials, heavy fermion systems and actinide oxides are presented. The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-T c materials, especially the advances in the area of pseudogap studies are reviewed. An in depth overview of heavy fermion systems is presented in the second part, notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are manifold. First, it reviews NMR methodology as it has been applied to the different studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data.

  5. High-Resolution Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from Vietnamese Plants.

    Science.gov (United States)

    Trinh, Binh Thi Dieu; Jäger, Anna K; Staerk, Dan

    2017-07-20

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator in insulin signal transduction by deactivating the insulin receptor. Thus, PTP1B inhibition has emerged as a potential therapeutic strategy for curing insulin resistance. In this study, 40 extracts from 18 different plant species were investigated for PTP1B inhibitory activity in vitro. The most promising one, the EtOAc extract of Ficus racemosa , was investigated by high-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR analysis. This led to the identification of isoderrone ( 1 ), derrone ( 2 ), alpinumisoflavone ( 3 ) and mucusisoflavone B ( 4 ) as PTP1B inhibitors. IC 50 of these compounds were 22.7 ± 1.7, 12.6 ± 1.6, 21.2 ± 3.8 and 2.5 ± 0.2 µM, respectively. Kinetics analysis revealed that these compounds inhibited PTP1B non-competitively with K i values of 21.3 ± 2.8, 7.9 ± 1.9, 14.3 ± 2.0, and 3.0 ± 0.5 µM, respectively. These findings support the important role of F. racemosa as a novel source of new drugs and/or as a herbal remedy for treatment of type 2 diabetes.

  6. High-Resolution Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of PTP1B Inhibitors from Vietnamese Plants

    Directory of Open Access Journals (Sweden)

    Binh Thi Dieu Trinh

    2017-07-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B plays a key role as a negative regulator in insulin signal transduction by deactivating the insulin receptor. Thus, PTP1B inhibition has emerged as a potential therapeutic strategy for curing insulin resistance. In this study, 40 extracts from 18 different plant species were investigated for PTP1B inhibitory activity in vitro. The most promising one, the EtOAc extract of Ficus racemosa, was investigated by high-resolution PTP1B inhibition profiling combined with HPLC-HRMS-SPE-NMR analysis. This led to the identification of isoderrone (1, derrone (2, alpinumisoflavone (3 and mucusisoflavone B (4 as PTP1B inhibitors. IC50 of these compounds were 22.7 ± 1.7, 12.6 ± 1.6, 21.2 ± 3.8 and 2.5 ± 0.2 µM, respectively. Kinetics analysis revealed that these compounds inhibited PTP1B non-competitively with Ki values of 21.3 ± 2.8, 7.9 ± 1.9, 14.3 ± 2.0, and 3.0 ± 0.5 µM, respectively. These findings support the important role of F. racemosa as a novel source of new drugs and/or as a herbal remedy for treatment of type 2 diabetes.

  7. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D; Longstaff, D [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  8. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  9. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  10. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance

    Science.gov (United States)

    Wilson, M.A.; Hatcher, P.G.

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.

  11. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  12. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  13. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  14. A 3D CZT high resolution detector for x- and gamma-ray astronomy

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Zappettini, A.

    2014-01-01

    At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using...

  15. High resolution X-ray detector for synchrotron-based microtomography

    CERN Document Server

    Stampanoni, M; Wyss, P; Abela, R; Patterson, B; Hunt, S; Vermeulen, D; Rueegsegger, P

    2002-01-01

    Synchrotron-based microtomographic devices are powerful, non-destructive, high-resolution research tools. Highly brilliant and coherent X-rays extend the traditional absorption imaging techniques and enable edge-enhanced and phase-sensitive measurements. At the Materials Science Beamline MS of the Swiss Light Source (SLS), the X-ray microtomographic device is now operative. A high performance detector based on a scintillating screen optically coupled to a CCD camera has been developed and tested. Different configurations are available, covering a field of view ranging from 715x715 mu m sup 2 to 7.15x7.15 mm sup 2 with magnifications from 4x to 40x. With the highest magnification 480 lp/mm had been achieved at 10% modulation transfer function which corresponds to a spatial resolution of 1.04 mu m. A low-noise fast-readout CCD camera transfers 2048x2048 pixels within 100-250 ms at a dynamic range of 12-14 bit to the file server. A user-friendly graphical interface gives access to the main parameters needed for ...

  16. Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel

    International Nuclear Information System (INIS)

    Ishii, Yoshitaka; Markus, Michelle A.; Tycko, Robert

    2001-01-01

    Water-soluble biological macromolecules can be weakly aligned by dissolution in a strained, hydrated gel such as cross-linked polyacrylamide, an effect termed 'strain-induced alignment in a gel' (SAG). SAG induces nonzero nuclear magnetic dipole-dipole couplings that can be measured in high-resolution NMR spectra and used as structural constraints. The dependence of experimental 15 N- 1 H dipolar couplings extracted from two-dimensional heteronuclear single quantum coherence (HSQC) spectra on several properties of compressed polyacrylamide, including the extent of compression, the polyacrylamide concentration, and the cross-link density, is reported for the B1 immunoglobulin binding domain of streptococcal protein G (protein G/B1, 57 residues). It is shown that the magnitude of macromolecular alignment can be widely varied by adjusting these properties, although the orientation and asymmetry of the alignment tensor are not affected significantly. The dependence of the 15 N relaxation times T 1 and T 2 of protein G/B1 on polyacrylamide concentration are also reported. In addition, the results of 15 N relaxation and HSQC experiments on the RNA binding domain of prokaryotic protein S4 from Bacillus stearothermophilus (S4 Δ41, residues 43-200) in a compressed polyacrylamide gel are presented. These results demonstrate the applicability of SAG to proteins of higher molecular weight and greater complexity. A modified in-phase/anti-phase (IPAP) HSQC technique is described that suppresses natural-abundance 15 N background signals from amide groups in polyacrylamide, resulting in cleaner HSQC spectra in SAG experiments. The mechanism of protein alignment in strained polyacrylamide gels is contrasted with that in liquid crystalline media

  17. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  18. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  19. High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument

    International Nuclear Information System (INIS)

    Redfield, Alfred G.

    2012-01-01

    Improvements are described in a shuttling field-cycling device (Redfield in Magn Reson Chem 41:753–768, 2003), designed to allow widespread access to this useful technique by configuring it as a removable module to a commercial 500 MHz NMR instrument. The main improvements described here, leading to greater versatility, high reliability and simple construction, include: shuttling provided by a linear motor driven by an integrated-control servomotor; provision of automated bucking magnets to allow fast two-stage cycling to nearly zero field; and overall control by a microprocessor. A brief review of history and publications that have used the system is followed by a discussion of topics related to such a device including discussion of some future applications. A description of new aspects of the shuttling device follows. The minimum round trip time to 1T and above is less than 0.25 s and to 0.002 T is 0.36 s. Commercial probes are used and sensitivity is that of the host spectrometer reduced only by relaxation during travel. A key element is development of a linkage that prevents vibration of the linear motor from reaching the probe.

  20. Developmental approach towards high resolution optical coherence tomography for glaucoma diagnostics

    Science.gov (United States)

    Kemper, Björn; Ketelhut, Steffi; Heiduschka, Peter; Thorn, Marie; Larsen, Michael; Schnekenburger, Jürgen

    2018-02-01

    Glaucoma is caused by a pathological rise in the intraocular pressure, which results in a progressive loss of vision by a damage to retinal cells and the optical nerve head. Early detection of pressure-induced damage is thus essential for the reduction of eye pressure and to prevent severe incapacity or blindness. Within the new European Project GALAHAD (Glaucoma Advanced, Label free High Resolution Automated OCT Diagnostics), we will develop a new low-cost and high-resolution OCT system for the early detection of glaucoma. The device is designed to improve diagnosis based on a new system of optical coherence tomography. Although OCT systems are at present available in ophthalmology centres, high-resolution devices are extremely expensive. The novelty of the new Galahad system is its super wideband light source to achieve high image resolution at a reasonable cost. Proof of concept experiments with cell and tissue Glaucoma test standards and animal models are planned for the test of the new optical components and new algorithms performance for the identification of Glaucoma associated cell and tissue structures. The intense training of the software systems with various samples should result in a increased sensitivity and specificity of the OCT software system.

  1. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    Energy Technology Data Exchange (ETDEWEB)

    Azhar, Mueed; Greiner, Andreas [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Department of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Kauzlarić, David, E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de [Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, 79104 Freiburg (Germany)

    2016-06-28

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

  2. Development of a high resolution, high sensitivity cylindrical crystal spectrometer for line shape diagnostics of x-rays emitted from hot plasmas. Progress report, August 1, 1977--July 31, 1978

    International Nuclear Information System (INIS)

    Taylor, P.O.; Schnopper, H.

    1978-05-01

    This report oulines progress towards development of a high resolution, high throughput, curved crystal spectrometer suitable for line shape diagnostics of x-rays emitted from hot plasmas. The instrument is designed to interface with the MIT Tokamak (Alcator) with the initial aim of studying the prominent MoL lines which occur in the x-ray spectrum. However, it will have the versatility to function over an energy range of at least 1.5 keV to 7 keV allowing determination of temperature, charge state and density distributions for important impurity ions. The spectrometer employs a large, cylindrically bent crystal which focuses the dispersed x-rays along the cylinder axis where they are recorded by a position sensitive proportional counter. Thus, a wide energy range of the spectrum can be recorded simultaneously and sensitively from a short duration plasma. Computer control of data acquisition and analysis will allow real-time diagnostics

  3. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    Science.gov (United States)

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  4. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  5. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  6. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms.

    Science.gov (United States)

    Xiao, Zhujun; Li, Bingsheng; Wang, Guozhen; Zhu, Weisi; Wang, Zhongqiu; Lin, Jinfeng; Xu, Angao; Wang, Xinying

    2014-04-20

    Methylation-sensitive high-resolution melting (MS-HRM) is a new technique for assaying DNA methylation, but its feasibility for assaying stool in patients with colorectal cancer (CRC) is unknown. First, the MS-HRM and methylation-specific PCR (MSP) detection limits were tested. Second, the methylation statuses of SFRP2 and VIM were analyzed in stool samples by MS-HRM, and in matching tumor and normal colon tissues via bisulfite sequencing PCR (BSP). Third, a case-control study evaluated the diagnostic sensitivity and specificity of MS-HRM relative to results obtained with MSP and the fecal immunochemical test (FIT). Finally, the linearity and reproducibility of MS-HRM were assessed. The detection limits of MS-HRM and MSP were 1% and 5%, respectively. The diagnostic sensitivities of MS-HRM (87.3%, 55/63) in stool and BSP in matching tumor tissue (92.1%, 58/63) were highly consistent (κ=0.744). The MS-HRM assay detected 92.5% (37/40) methylation in CRCs, 94.4% (34/36) in advanced adenomas, and 8.8% (5/57) in normal controls. The results of MS-HRM analysis were stable and reliable and showed fairly good linearity for both SFRP2 (PHRM shows potential for CRC screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  8. High-resolution NMR structure of the antimicrobial peptide protegrin-2 in the presence of DPC micelles

    Energy Technology Data Exchange (ETDEWEB)

    Usachev, K. S., E-mail: k.usachev@kpfu.ru; Efimov, S. V.; Kolosova, O. A.; Filippov, A. V.; Klochkov, V. V. [Kazan Federal University (Russian Federation)

    2015-04-15

    PG-1 adopts a dimeric structure in dodecylphosphocholine (DPC) micelles, and a channel is formed by the association of several dimers but the molecular mechanisms of the membrane damage by non-α-helical peptides are still unknown. The formation of the PG-1 dimer is important for pore formation in the lipid bilayer, since the dimer can be regarded as the primary unit for assembly into the ordered aggregates. It was supposed that only 12 residues (RGGRL-CYCRR-RFCVC-V) are needed to endow protegrin molecules with strong antibacterial activity and that at least four additional residues are needed to add potent antifungal properties. Thus, the 16-residue protegrin (PG-2) represents the minimal structure needed for broad-spectrum antimicrobial activity encompassing bacteria and fungi. As the peptide conformation and peptide-to-membrane binding properties are very sensitive to single amino acid substitutions, the solution structure of PG-2 in solution and in a membrane mimicking environment are crucial. In order to find evidence if the oligomerization state of PG-1 in a lipid environment will be the same or not for another protegrins, we investigate in the present work the PG-2 NMR solution structure in the presence of perdeuterated DPC micelles. The NMR study reported in the present work indicates that PG-2 form a well-defined structure (PDB: 2MUH) composed of a two-stranded antiparallel β-sheet when it binds to DPC micelles.

  9. MULTIVARIATE CURVE RESOLUTION OF NMR SPECTROSCOPY METABONOMIC DATA

    Science.gov (United States)

    Sandia National Laboratories is working with the EPA to evaluate and develop mathematical tools for analysis of the collected NMR spectroscopy data. Initially, we have focused on the use of Multivariate Curve Resolution (MCR) also known as molecular factor analysis (MFA), a tech...

  10. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  11. Optimized high energy resolution in γ-ray spectroscopy with AGATA triple cluster detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Andreas

    2011-06-20

    The AGATA demonstrator consists of five AGATA Triple Cluster (ATC) detectors. Each triple cluster detector contains three asymmetric, 36-fold segmented, encapsulated high purity germanium detectors. The purpose of the demonstrator is to show the feasibility of position-dependent γ-ray detection by means of γ-ray tracking, which is based on pulse shape analysis. The thesis describes the first optimization procedure of the first triple cluster detectors. Here, a high signal quality is mandatory for the energy resolution and the pulse shape analysis. The signal quality was optimized and the energy resolution was improved through the modification of the electronic properties, of the grounding scheme of the detector in particular. The first part of the work was the successful installation of the first four triple cluster detectors at INFN (National Institute of Nuclear Physics) in Legnaro, Italy, in the demonstrator frame prior to the AGATA commissioning experiments and the first physics campaign. The four ATC detectors combine 444 high resolution spectroscopy channels. This number combined with a high density were achieved for the first time for in-beam γ-ray spectroscopy experiments. The high quality of the ATC detectors is characterized by the average energy resolutions achieved for the segments of each crystal in the range of 1.943 and 2.131 keV at a γ-ray energy of 1.33 MeV for the first 12 crystals. The crosstalk level between individual detectors in the ATC is negligible. The crosstalk within one crystal is at a level of 10{sup -3}. In the second part of the work new methods for enhanced energy resolution in highly segmented and position sensitive detectors were developed. The signal-to-noise ratio was improved through averaging of the core and the segment signals, which led to an improvement of the energy resolution of 21% for γ-energies of 60 keV to a FWHM of 870 eV. In combination with crosstalk correction, a clearly improved energy resolution was

  12. Detection and quantification of phenolic compounds in olive oil by high resolution 1H nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Christophoridou, Stella; Dais, Photis

    2009-01-01

    High resolution 1 H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The 1 H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard

  13. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    High performance demand for several engineering alloys and components, and miniaturization of electronics and development of MEMS requires better understanding of local corrosion characteristics frequently down to µm scale. This is because in metallic materials corrosion is a sensitive function...... in conjunction with microstructural analysis, using advanced microscopic tools, becomes very important. Corrosion of microelectronics circuits and MEMs is also a recent problem, which demands measurement resolution down to few microns as the components are extremely small, and measurement needs to be carried out...

  14. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill

    2018-01-17

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.

  15. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill

    2018-01-01

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102

  16. Advances in biomagnetic research using high- T{sub c} superconducting quantum interference devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-Chang [Department of Physics/Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Horng, Herng-Er; Yang, S Y [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Liao, Shu-Hsien, E-mail: hcyang@phys.ntu.edu.t [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2009-09-15

    This review reports the advances of biomagnetic research using high- T{sub c} superconducting quantum interference devices (SQUIDs). It especially focuses on SQUID-detected magnetocardiography (MCG), magnetically labeled immunoassays (MLIs) as well as nuclear magnetic resonance and imaging (NMR/MRI). The progress in MCG that scientists have made and the encountered challenges are discussed here. This study includes the early detection of the electromagnetic change in cardiac activity in animal studies of hypercholesterolemic rabbits, which suggests the possibility of early diagnosis of cardiac disease in clinical applications. The progress on MLIs using measurements of remanence, magnetic relaxation and magnetic susceptibility reduction is presented. The wash-free immunomagnetic reduction shows both high sensitivity and high specificity. NMR/MRI of high spectral resolution and of high signal-to-noise ratio are addressed and discussed. The proton-phosphate J-coupling of trimethyl phosphate ((CH{sub 3}){sub 3}PO{sub 4}) in one shot in microtesla fields is demonstrated. The prospects of biomagnetic applications are addressed. (topical review)

  17. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  18. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  19. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  20. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  1. Use of ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry for fast screening in high throughput doping control.

    Science.gov (United States)

    Musenga, Alessandro; Cowan, David A

    2013-05-03

    We describe a sensitive, comprehensive and fast screening method based on liquid chromatography-high resolution mass spectrometry for the detection of a large number of analytes in sports samples. UHPLC coupled to high resolution mass spectrometry with polarity switching capability is applied for the rapid screening of a large number of analytes in human urine samples. Full scan data are acquired alternating both positive and negative ionisation. Collision-induced dissociation with positive ionisation is also performed to produce fragment ions to improve selectivity for some analytes. Data are reviewed as extracted ion chromatograms based on narrow mass/charge windows (±5ppm). A simple sample preparation method was developed, using direct enzymatic hydrolysis of glucuronide conjugates, followed by solid phase extraction with mixed mode ion-exchange cartridges. Within a 10min run time (including re-equilibration) the method presented allows for the analysis of a large number of analytes from most of the classes in the World Anti-Doping Agency (WADA) Prohibited List, including anabolic agents, β2-agonists, hormone antagonists and modulators, diuretics, stimulants, narcotics, glucocorticoids and β-blockers, and does so while meeting the WADA sensitivity requirements. The high throughput of the method and the fast sample pre-treatment reduces analysis cost and increases productivity. The method presented has been used for the analysis of over 5000 samples in about one month and proved to be reliable. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  3. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    International Nuclear Information System (INIS)

    TROYER, G.L.

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency

  4. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    International Nuclear Information System (INIS)

    Ali, S; Terracol, S F; Drury, O B; Friedrich, S

    2005-01-01

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm 3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  5. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  6. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  7. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  8. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    Science.gov (United States)

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  9. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  10. High resolution spectroscopy in solids by nuclear magnetic resonance; Espectroscopia de alta resolucao em solidos por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Bonagamba, T J

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120{sup 0} C to +160{sup 0} C, and is fully controlled by a Macintosh IIci microcomputer. (author).

  11. TU-H-CAMPUS-TeP2-03: High Sensitivity and High Resolution Fiber Based Micro-Detector for Sub-Millimeter Preclinical Dosimetry

    International Nuclear Information System (INIS)

    Izaguirre, E; Pokhrel, S; Knewtson, T; Hedrick, S

    2016-01-01

    Purpose: Current precision of small animal and cell micro-irradiators has continuously increased during the past years. Currently, preclinical irradiators can deliver sub-millimeter fields with micrometric precision but there are no water equivalent dosimeters to determine small field profiles and dose in the orthovoltage range of energies with micrometric resolution and precision. We have developed a fiber based micro-dosimeter with the resolution and dosimetric accuracy required for radiobiological research. Methods: We constructed two prototypes of micro-dosimeters based on different compositions of fiber scintillators to study the spatial resolution and dosimetric precision of small animal and cell micro-irradiators. The first has green output and the second has blue output. The blue output dosimeter has the highest sensitivity because it matches the spectral sensitivity of silicon photomultipliers. A blue detector with 500um cross section was built and tested respect to a CC01 ion chamber, film, and the 1500um green output detector. Orthovoltage fields from 1×1mm2 to 5×5mm2 were used for detector characteristics comparison. Results: The blue fiber dosimeter shows great agreement with films and matches dose measurements with the gold-standard ion chamber for 5×5mm2 fields. The detector has the appropriate sensitivity to measure fields from 1×1mm2 to larger sizes with a 1% dosimetric accuracy. The spatial resolution is in the sub-millimeter range and the spectral matching with the photomultiplier allows reducing the sensor cross section even further than the presented prototype. These results suggest that scintillating fibers combined with silicon photomultipliers is the appropriate technology to pursue micro-dosimetry for small animals and disperse cell samples. Conclusion: The constructed detectors establish a new landmark for the resolution and sensitivity of fiber based microdetectors. The validation of the detector in our small animal and cell

  12. {sup 15}N and {sup 13}C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [{sup 1}H,{sup 13}C]-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: rossip@umn.edu; Xia, Youlin; Khanra, Nandish; Veglia, Gianluigi, E-mail: vegli001@umn.edu; Kalodimos, Charalampos G., E-mail: ckalodim@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States)

    2016-12-15

    The ongoing NMR method development effort strives for high quality multidimensional data with reduced collection time. Here, we apply ‘SOFAST-HMQC’ to frequency editing in 3D NOESY experiments and demonstrate the sensitivity benefits using highly deuterated and {sup 15}N, methyl labeled samples in H{sub 2}O. The experiments benefit from a combination of selective T{sub 1} relaxation (or L-optimized effect), from Ernst angle optimization and, in certain types of experiments, from using the mixing time for both NOE buildup and magnetization recovery. This effect enhances sensitivity by up to 2.4× at fast pulsing versus reference HMQC sequences of same overall length and water suppression characteristics. Representative experiments designed to address interesting protein NMR challenges are detailed. Editing capabilities are exploited with heteronuclear {sup 15}N,{sup 13}C-edited, or with diagonal-free {sup 13}C aromatic/methyl-resolved 3D-SOFAST-HMQC–NOESY–HMQC. The latter experiment is used here to elucidate the methyl-aromatic NOE network in the hydrophobic core of the 19 kDa FliT-FliJ flagellar protein complex. Incorporation of fast pulsing to reference experiments such as 3D-NOESY–HMQC boosts digital resolution, simplifies the process of NOE assignment and helps to automate protein structure determination.

  13. Improved scintimammography using a high-resolution camera mounted on an upright mammography gantry

    International Nuclear Information System (INIS)

    Itti, Emmanuel; Patt, Bradley E.; Diggles, Linda E.; MacDonald, Lawrence; Iwanczyk, Jan S.; Mishkin, Fred S.; Khalkhali, Iraj

    2003-01-01

    99m Tc-sestamibi scintimammography (SMM) is a useful adjunct to conventional X-ray mammography (XMM) for the assessment of breast cancer. An increasing number of studies has emphasized fair sensitivity values for the detection of tumors >1 cm, compared to XMM, particularly in situations where high glandular breast densities make mammographic interpretation difficult. In addition, SMM has demonstrated high specificity for cancer, compared to various functional and anatomic imaging modalities. However, large field-of-view (FOV) gamma cameras are difficult to position close to the breasts, which decreases spatial resolution and subsequently, the sensitivity of detection for tumors 2 FOV and an array of 2x2x6 mm 3 discrete crystals coupled to a photon-sensitive photomultiplier tube readout. This camera is mounted on a mammography gantry allowing upright imaging, medial positioning and use of breast compression. Preliminary data indicates significant enhancement of spatial resolution by comparison with standard imaging in the first 10 patients. Larger series will be needed to conclude on sensitivity/specificity issues

  14. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  15. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  16. High resolution multiple sampling ionization chamber (MUSIC) sensitive to position coordinates

    International Nuclear Information System (INIS)

    Petrascu, H.; Kumagai, H.; Tanihata, I.; Petrascu, M.

    1999-01-01

    A new type of MUSIC sensitive to position coordinates is reported. The development of the first version of this type of chamber is based on the principles presented by Badhwar in 1973. The present detector will be used in experiments on fusion by using radioactive beams. This chamber due to the high resolution is suitable to identification and tracking of low Z particles. One of our goals, when we started this work, was to reduce as much as possible the Z value of particles that can be 'seen' by an ionization chamber. The resolution of the chamber was significantly improved by connecting the preamplifiers directly to the MUSIC's pads. These preamplifiers are able to work in vacuum and very low gas pressure. In this way the value of signal to noise ratio was increased by a factor of ∼10. The detector is of Frisch grid type, with the anode split into 10 active pads. It is the first model of a MUSIC with the field shared between the position grid and the anode pads. The Frisch grid was necessary because the detector is originally designed for very accurate energy measurements and particle identification. A drawing of this detector is shown. The detector itself consists of four main parts. The first one is the constant field-gradient cage, sandwiched in between the cathode and the Frisch grid. The second is the Frisch grid. The third is the position grid located under the Frisch grid. The last one is the plate with the anode pads. The cage is made of 100 μm Cu-Be wires. Every wire was tensioned with a weight representing half of its breaking limit. The Frisch grid was done on an aluminium frame, on which 20 μm W wires spaced 0.3 mm, were wound. For the position grid, 10 groups of 20 μm gold plated W wires have been used. Each group consisted of 5 wires spaced 0.9 mm and connected in parallel. The anode pads 7.8 x 60 mm 2 were perpendicular to the beam direction. Each pad and each of the position wire groups were connected to a preamplifier. The energy resolution

  17. Thermodesorption studies of ammonium nitrate prills by high-resolution thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Q.S.M.; Jones, D.E.G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2003-07-01

    Ammonium nitrate prills with fuel oil (ANFO) are commonly used in commercial explosives. The wettability of AN is influenced by porosity and surface area. To date, scanning electron microscopy (SEM), mercury porosimetry, and nuclear magnetic resonance (NMR) microscopy have been used to characterize prill porosities. This study used high-resolution thermogravimetry (TG) to investigate the thermodesorption of octane from ammonium nitrate (AN) prills of different porosities. Samples were immersed in octane. Samples of AN prills were monitored over a temperature range between 25 to 120 degrees C. Mass-loss curves were measured to determine the evaporation of excess liquids as well as the rate of octane thermodesorption from the pores and surfaces of the AN prills. An analysis of the curves suggested that the initial mass loss was caused by evaporation of the bulk liquid. The following step represented the thermodesorption of adsorbed octane on the surface of the AN remote from the monolayer. Properties of the surface liquid differed significantly from the bulk liquid as the adsorbate materials interacted with the solid surface. The study demonstrated that the quantity of octane desorbed in the steps correlated with the volume observed in the pores and the amount adsorbed on the surface. Results of the study were then compared with data obtained using SEM. It was concluded that high resolution TG can be used to characterize AN porosity and adsorption capacity. 16 refs., 1 tab., 5 figs.

  18. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  19. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  20. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  1. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  2. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  3. Using synchrotron radiation angiography with a highly sensitive detector to identify impaired peripheral perfusion in rat pulmonary emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiromichi [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Matsushita, Shonosuke, E-mail: shomatsu@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Tsukuba University of Technology, Tsukuba, Ibaraki 305-8521 (Japan); Hyodo, Kazuyuki [High Energy Accelerator Research Organization, KEK, Tsukuba, Ibaraki 305-0801 (Japan); Sato, Yukio; Sakakibara, Yuzuru [University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan)

    2013-03-01

    Synchrotron radiation angiography with a HARP detector made it possible to evaluate impaired pulmonary microcirculation in pulmonary emphysema by means of high sensitivity. Owing to limitations in spatial resolution and sensitivity, it is difficult for conventional angiography to detect minute changes of perfusion in diffuse lung diseases, including pulmonary emphysema (PE). However, a high-gain avalanche rushing amorphous photoconductor (HARP) detector can give high sensitivity to synchrotron radiation (SR) angiography. SR angiography with a HARP detector provides high spatial resolution and sensitivity in addition to time resolution owing to its angiographic nature. The purpose of this study was to investigate whether this SR angiography with a HARP detector could evaluate altered microcirculation in PE. Two groups of rats were used: group PE and group C (control). Transvenous SR angiography with a HARP detector was performed and histopathological findings were compared. Peak density of contrast material in peripheral lung was lower in group PE than group C (p < 0.01). The slope of the linear regression line in scattering diagrams was also lower in group PE than C (p < 0.05). The correlation between the slope and extent of PE in histopathology showed significant negative correlation (p < 0.05, r = 0.61). SR angiography with a HARP detector made it possible to identify impaired microcirculation in PE by means of its high spatial resolution and sensitivity.

  4. Using synchrotron radiation angiography with a highly sensitive detector to identify impaired peripheral perfusion in rat pulmonary emphysema

    International Nuclear Information System (INIS)

    Ito, Hiromichi; Matsushita, Shonosuke; Hyodo, Kazuyuki; Sato, Yukio; Sakakibara, Yuzuru

    2013-01-01

    Synchrotron radiation angiography with a HARP detector made it possible to evaluate impaired pulmonary microcirculation in pulmonary emphysema by means of high sensitivity. Owing to limitations in spatial resolution and sensitivity, it is difficult for conventional angiography to detect minute changes of perfusion in diffuse lung diseases, including pulmonary emphysema (PE). However, a high-gain avalanche rushing amorphous photoconductor (HARP) detector can give high sensitivity to synchrotron radiation (SR) angiography. SR angiography with a HARP detector provides high spatial resolution and sensitivity in addition to time resolution owing to its angiographic nature. The purpose of this study was to investigate whether this SR angiography with a HARP detector could evaluate altered microcirculation in PE. Two groups of rats were used: group PE and group C (control). Transvenous SR angiography with a HARP detector was performed and histopathological findings were compared. Peak density of contrast material in peripheral lung was lower in group PE than group C (p < 0.01). The slope of the linear regression line in scattering diagrams was also lower in group PE than C (p < 0.05). The correlation between the slope and extent of PE in histopathology showed significant negative correlation (p < 0.05, r = 0.61). SR angiography with a HARP detector made it possible to identify impaired microcirculation in PE by means of its high spatial resolution and sensitivity

  5. Detection and quantification of phenolic compounds in olive oil by high resolution {sup 1}H nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Christophoridou, Stella [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece); Dais, Photis [NMR Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes, 71003 Heraklion, Crete (Greece)], E-mail: dais@chemistry.uoc.gr

    2009-02-09

    High resolution {sup 1}H NMR spectroscopy has been employed as a versatile and rapid method to analyze the polar fraction of extra virgin olive oils containing various classes of phenolic compounds. The strategy for identification of phenolic compounds is based on the NMR chemical shifts of a large number of model compounds assigned by using two-dimensional (2D) NMR spectroscopy. Furthermore, 2D NMR was applied to phenolic extracts in an attempt to discover additional phenolic compounds. The {sup 1}H NMR methodology was successful in detecting simple phenols, such as p-coumaric acid, vanillic acid, homovanillyl alcohol, vanillin, free tyrosol, and free hydroxytyrosol, the flavonols apigenin and luteolin, the lignans (+) pinoresinol, (+) 1-acetoxypinoresinol and syringaresinol, two isomers of the aldehydic form of oleuropein and ligstroside, the dialdehydic form of oleuropein and ligstroside lacking a carboxymethyl group, and finally total hydroxytyrosol and total tyrosol reflecting the total amounts of free and esterified hydroxytyrol and tyrosol, respectively. The absolute amount of each phenolic constituent was determined in the polar fraction by using anhydrous 1,3,5-triazine as an internal standard.

  6. Evaluation and optimization of the High Resolution Research Tomograph (HRRT)

    International Nuclear Information System (INIS)

    Knoess, C.

    2004-01-01

    Positron Emission Tomography (PET) is an imaging technique used in medicine to determine qualitative and quantitative metabolic parameters in vivo. The High Resolution Research Tomograph (HRRT) is a new high resolution tomograph that was designed for brain studies (312 mm transaxial field-of-view (FOV), 252 mm axial FOV). The detector blocks are arranged in a quadrant sharing design and consist of two crystal layers with dimensions of 2.1 mm x 2.1 mm x 7.5 mm. The main detector material is the newly developed scintillator lutetium oxyorthosilicate (LSO). Events from the different crystal layers are distinguished by Pulse Shape Discrimination (PSD) to gain Depth of Interaction (DOI) information. This will improve the spatial resolution, especially at the edges of the FOV. A prototype of the tomograph was installed at the Max-Planck Institute for Neurological Research in Cologne, Germany in 1999 and was evaluated with respect to spatial resolution, sensitivity, scatter fraction, and count rate behavior. These performance measurements showed that this prototype provided a spatial resolution of around 2.5 mm in a volume big enough to contain the human brain. A comparison with a single layer HRRT prototype showed a 10% worsening of the resolution, despite the fact that DOI was used. Without DOI, the resolution decreased considerably. The sensitivity, as measured with a 22 Na point source, was 46.5 cps/kBq for an energy window of 350-650 keV and 37.9 cps/kBq for an energy window of 400-650 keV, while the scatter fractions were 56% for 350-650 keV and 51% for 400-650 keV, respectively. A daily quality check was developed and implemented that uses the uniform, natural radioactive background of the scintillator material LSO. In 2001, the manufacturer decided to build a series of additional HRRT scanners to try to improve the design (detector electronics, transmission source design, and shielding against out-of-FOV activity) and to eliminate problems (difficult detector

  7. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  8. Efficient DNP NMR of Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location

    Science.gov (United States)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei

    2016-01-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  9. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo [Massachusetts Institute of Technology, Department of Chemistry (United States); Sergeyev, Ivan V. [Bruker Biospin (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2016-03-15

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~fourfold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes.

  10. CALDER: High-sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Casali, N.; Bellini, F.; Cardani, L.

    2017-01-01

    The current bolometric experiments searching for rare processes such as neutrinoless double-beta decay or dark matter interaction demand for cryogenic light detectors with high sensitivity, large active area and excellent scalability and radio-purity in order to reduce their background budget. The CALDER project aims to develop such kind of light detectors implementing phonon-mediated Kinetic Inductance Detectors (KIDs). The goal for this project is the realization of a 5 × 5 cm"2 light detector working between 10 and 100mK with a baseline resolution RMS below 20 eV. In this work the characteristics and the performances of the prototype detectors developed in the first project phase will be shown.

  11. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  12. Improved scintimammography using a high-resolution camera mounted on an upright mammography gantry

    Energy Technology Data Exchange (ETDEWEB)

    Itti, Emmanuel; Patt, Bradley E.; Diggles, Linda E.; MacDonald, Lawrence; Iwanczyk, Jan S.; Mishkin, Fred S.; Khalkhali, Iraj E-mail: nephrad@aol.com

    2003-01-21

    {sup 99m}Tc-sestamibi scintimammography (SMM) is a useful adjunct to conventional X-ray mammography (XMM) for the assessment of breast cancer. An increasing number of studies has emphasized fair sensitivity values for the detection of tumors >1 cm, compared to XMM, particularly in situations where high glandular breast densities make mammographic interpretation difficult. In addition, SMM has demonstrated high specificity for cancer, compared to various functional and anatomic imaging modalities. However, large field-of-view (FOV) gamma cameras are difficult to position close to the breasts, which decreases spatial resolution and subsequently, the sensitivity of detection for tumors <1 cm. New dedicated detectors featuring small FOV and increased spatial resolution have recently been developed. In this setting, improvement in tumor detection sensitivity, particularly with regard to small cancers is expected. At Division of Nuclear Medicine, Harbor-UCLA Medical Center, we have performed over 2000 SMM within the last 9 years. We have recently used a dedicated breast camera (LumaGEM) featuring a 12.8x12.8 cm{sup 2} FOV and an array of 2x2x6 mm{sup 3} discrete crystals coupled to a photon-sensitive photomultiplier tube readout. This camera is mounted on a mammography gantry allowing upright imaging, medial positioning and use of breast compression. Preliminary data indicates significant enhancement of spatial resolution by comparison with standard imaging in the first 10 patients. Larger series will be needed to conclude on sensitivity/specificity issues.

  13. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  14. Partially slotted crystals for a high-resolution γ-camera based on a position sensitive photomultiplier

    International Nuclear Information System (INIS)

    Giokaris, N.; Loudos, G.; Maintas, D.; Karabarbounis, A.; Lembesi, M.; Spanoudaki, V.; Stiliaris, E.; Boukis, S.; Gektin, A.; Pedash, V.; Gayshan, V.

    2005-01-01

    Partially slotted crystals have been designed and constructed and have been used to evaluate the performance with respect to the spatial resolution of a γ-camera based on a position-sensitive photomultiplier. It is shown that the resolution obtained with such a crystal is only slightly worse than the one obtained with a fully pixelized one whose cost, however, is much higher

  15. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  16. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  17. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  18. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  19. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  20. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state /sup 13/C nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M A; Hatcher, P G

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studied by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing /sup 13/C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. 28 refs., 9 figs., 1 tab.

  1. An ultra-sensitive instrument for collision activated dissociation mass spectrometry with high mass resolution

    International Nuclear Information System (INIS)

    Louter, G.J.

    1982-01-01

    During the last decade Collision Activated Dissociation Mass Spectrometry (CAD-MS) has developed into an important and sometimes unique technique for the structure elucidation of ions. An extensive description of the double stage MS is given, which has been especially devloped for CAD-MS. A high mass resolution and a very high sensitivity are obtained by application of special techniques like post-acceleration of fragment ions, quadrupole (Q-pole) lenses and an electro-optical, simultaneous ion detection system. The operation of the rather complex ion-optics is demonstrated by application of a computer simulation of the tandem MS. Special attention is given to the action of the four Q-pole lenses and the second sector magnet upon curvature and position of the mass focal plane. Two mass calibration methods are described for the fragment spectra. The so-called polynomial-method applies a fifth-order polynomial approximation of the functional relation between position on the detector and corresponding relative momentum of fragment ions. The second method uses the matrix model of the instrument. The detector consists of two channelplates (CEMA), a fibre optics slab, coated with a phosphor layer, a camera objective and a 1024-channels photodiode-array. A bio-chemical and an organic-chemical application of the instrument are given. As bio-chemical application the peak m/z 59 in the pyrolysis mass spectrum of complete mycobacteria is identified. As an example of organic-chemical application the fragmentation process of 2,3-butadienoic acid has been investigated. (Auth.)

  2. Differentiation of Acute Perforated from Non-Perforated Appendicitis: Usefulness of High-Resolution Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gyu Chang [Dept. of Radiology, Gumi Hospital, Soonchunhyang University College of Medicine, Gumi (Korea, Republic of)

    2011-07-15

    To evaluate the usefulness of high-resolution ultrasonography (US) for the differentiation of acute perforated appendicitis from non-perforated appendicitis. The high-resolution US features in 96 patients (49 males, 47 females; mean age, 33.8 years; age range, 4-80 years) with pathologically proven acute appendicitis were evaluated. The following US findings were evaluated for differentiation of acute perforated appendicitis from non-perforated appendicitis: circumferential loss of the echogenic submucosal layer, periappendiceal fluid collection, disruption of the serosal layer, asymmetrical wall thickening, maximum overall diameter > 10.5 mm, and the presence of appendicoliths. The sensitivity and specificity of the US features in the diagnosis of acute perforated appendicitis were calculated. All of the US findings, except for appendicoliths, were significantly more common in the acute perforated appendicitis group (p < 0.001). The sensitivity of circumferential loss of the echogenic submucosal layer, periappendiceal fluid collection, disruption of the serosal layer, asymmetrical wall thickening, maximum overall diameter > 10.5 mm, and the presence of appendicoliths was 85.4, 73.2, 68.3, 70.7, 80.5, and 36.6%, respectively, while the specificity was 65.5, 89.1, 96.4, 98.2, 81.8, and 80.0%, respectively. High-resolution US was found to be useful for differentiating acute perforated appendicitis from non-perforated appendicitis.

  3. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  4. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  5. Statistical removal of background signals from high-throughput 1H NMR line-broadening ligand-affinity screens

    International Nuclear Information System (INIS)

    Worley, Bradley; Sisco, Nicholas J.; Powers, Robert

    2015-01-01

    NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein–ligand interaction at their binding interfaces. While simple one-dimensional 1 H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein 1 H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction

  6. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    Science.gov (United States)

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  7. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    Directory of Open Access Journals (Sweden)

    Tianzhu Yi

    2017-11-01

    Full Text Available This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR data processing. Several nonlinear chirp scaling (NLCS algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC. However, the azimuth depth of focusing (ADOF is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS algorithm that is proposed in this paper uses the method of series reverse (MSR to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  8. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  9. Utilization of Short-Simulations for Tuning High-Resolution Climate Model

    Science.gov (United States)

    Lin, W.; Xie, S.; Ma, P. L.; Rasch, P. J.; Qian, Y.; Wan, H.; Ma, H. Y.; Klein, S. A.

    2016-12-01

    Many physical parameterizations in atmospheric models are sensitive to resolution. Tuning the models that involve a multitude of parameters at high resolution is computationally expensive, particularly when relying primarily on multi-year simulations. This work describes a complementary set of strategies for tuning high-resolution atmospheric models, using ensembles of short simulations to reduce the computational cost and elapsed time. Specifically, we utilize the hindcast approach developed through the DOE Cloud Associated Parameterization Testbed (CAPT) project for high-resolution model tuning, which is guided by a combination of short (tests have been found to be effective in numerous previous studies in identifying model biases due to parameterized fast physics, and we demonstrate that it is also useful for tuning. After the most egregious errors are addressed through an initial "rough" tuning phase, longer simulations are performed to "hone in" on model features that evolve over longer timescales. We explore these strategies to tune the DOE ACME (Accelerated Climate Modeling for Energy) model. For the ACME model at 0.25° resolution, it is confirmed that, given the same parameters, major biases in global mean statistics and many spatial features are consistent between Atmospheric Model Intercomparison Project (AMIP)-type simulations and CAPT-type hindcasts, with just a small number of short-term simulations for the latter over the corresponding season. The use of CAPT hindcasts to find parameter choice for the reduction of large model biases dramatically improves the turnaround time for the tuning at high resolution. Improvement seen in CAPT hindcasts generally translates to improved AMIP-type simulations. An iterative CAPT-AMIP tuning approach is therefore adopted during each major tuning cycle, with the former to survey the likely responses and narrow the parameter space, and the latter to verify the results in climate context along with assessment in

  10. High resolution X radiography imaging detector-micro gap chamber

    International Nuclear Information System (INIS)

    Long Huqiang; Wang Yun; Xu Dong; Xie Kuanzhong; Bian Jianjiang

    2007-01-01

    Micro gap chamber (MGC) is a new type of Two-Dimensional position sensitive detector having excellent properties on the space and time resolution, counting rate, 2D compact structure and the flexible of application. It will become a candidate of a new tracking detector for high energy physics experiment. The basic structure and properties of MGC as well as its main research subjects are presented in this paper. Furthermore, the feasibility and validity of utilizing diamond films as the MGC gap material were also discussed in detail. So, a potential radiography imaging detector is provided in order to realize X image and X ray diffraction experiment having very good spatial and time resolution in the 3rd Generation of Synchrotron Radiation Facility. (authors)

  11. A highly versatile automatized setup for quantitative measurements of PHIP enhancements

    Science.gov (United States)

    Kiryutin, Alexey S.; Sauer, Grit; Hadjiali, Sara; Yurkovskaya, Alexandra V.; Breitzke, Hergen; Buntkowsky, Gerd

    2017-12-01

    The design and application of a versatile and inexpensive experimental extension to NMR spectrometers is described that allows to carry out highly reproducible PHIP experiments directly in the NMR sample tube, i.e. under PASADENA condition, followed by the detection of the NMR spectra of hyperpolarized products with high spectral resolution. Employing this high resolution it is feasible to study kinetic processes in the solution with high accuracy. As a practical example the dissolution of hydrogen gas in the liquid and the PHIP kinetics during the hydrogenation reaction of Fmoc-O-propargyl-L-tyrosine in acetone-d6 are monitored. The timing of the setup is fully controlled by the pulse-programmer of the NMR spectrometer. By flushing with an inert gas it is possible to efficiently quench the hydrogenation reaction in a controlled fashion and to detect the relaxation of hyperpolarization without a background reaction. The proposed design makes it possible to carry out PHIP experiments in an automatic mode and reliably determine the enhancement of polarized signals.

  12. High-resolution 3D laser imaging based on tunable fiber array link

    Science.gov (United States)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  13. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Science.gov (United States)

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  14. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  15. High-resolution bioactivity profiling combined with HPLC-HRMS-SPE-NMR: α-Glucosidase inhibitors and acetylated ellagic acid rhamnosides from Myrcia palustris DC. (Myrtaceae).

    Science.gov (United States)

    Wubshet, Sileshi G; Moresco, Henrique H; Tahtah, Yousof; Brighente, Inês M C; Staerk, Dan

    2015-08-01

    Type 2 diabetes (T2D) is an endocrine metabolic disease with a worldwide prevalence of more than 8%, and an expected increase close to 50% in the next 15-20years. T2D is associated with severe and life-threatening complications like retinopathy, neuropathy, nephropathy, and cardiovascular diseases, and therefore improved drug leads or functional foods containing α-glucosidase inhibitors are needed for management of blood glucose. In this study, leaves of Myrcia palustris were investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of casuarinin, myricetin 3-O-β-d-(6″-galloyl)galactopyranoside, kaempferol 3-O-β-d-galactopyranoside, myricetin, and quercetin as α-glucosidase inhibitors. In addition, four acetylated ellagic acid rhamnosides, i.e., 4-O-(2″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(2″,3″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, 4-O-(3″,4″-O-diacetyl-α-l-rhamnopyranosyl)ellagic acid, and 4-O-(2″,3″,4″-O-triacetyl-α-l-rhamnopyranosyl)ellagic acid were identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Solid state NMR of materials

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sharon A; Ferguson, David B; Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    In situ NMR experiments are studied, including probe of several structures such as the structures of the organic adsorbates, Broensted acid sites, other nuclei associated with active sites, and other framework sites. The authors report that in the absence of high concentrations of paramagnetic sites or metal particles, high resolution MAS spectra are relatively easy to obtain and interpret. It is also concluded that NMR can measure spatial distributions and rates of diffusion; and are able to characterize equilibrium structures and the frequencies and amplitudes of molecular motion

  17. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  18. 13CHD2–CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins

    International Nuclear Information System (INIS)

    Rennella, Enrico; Huang, Rui; Velyvis, Algirdas; Kay, Lewis E.

    2015-01-01

    An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited state conformers is presented. The approach exploits chemical exchange saturation transfer (CEST) and makes use of 13 CHD 2 methyl group probes that can be readily incorporated into otherwise highly deuterated proteins. The methodology is validated with an application to a G48A Fyn SH3 domain that exchanges between a folded conformation and a sparsely populated and transiently formed unfolded ensemble. Experiments on a number of different protein systems, including a 360 kDa half-proteasome, establish that the sensitivity of this 13 CHD 2 13 C–CEST technique can be upwards of a factor of 5 times higher than for a previously published 13 CH 3 13 C–CEST approach (Bouvignies and Kay in J Biomol NMR 53:303–310, 2012), suggesting that the methodology will be powerful for studies of conformational exchange in high molecular weight proteins

  19. Maximum likelihood positioning algorithm for high-resolution PET scanners

    International Nuclear Information System (INIS)

    Gross-Weege, Nicolas; Schug, David; Hallen, Patrick; Schulz, Volkmar

    2016-01-01

    Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution. The COG algorithm is limited in spatial resolution by noise and intercrystal Compton scatter. The purpose of this work is to develop a positioning algorithm which overcomes this limitation. Methods: The authors present a maximum likelihood (ML) algorithm which compares a set of expected light distributions given by probability density functions (PDFs) with the measured light distribution. Instead of modeling the PDFs by using an analytical model, the PDFs of the proposed ML algorithm are generated assuming a single-gamma-interaction model from measured data. The algorithm was evaluated with a hot-rod phantom measurement acquired with the preclinical HYPERION II D PET scanner. In order to assess the performance with respect to sensitivity, energy resolution, and image quality, the ML algorithm was compared to a COG algorithm which calculates the COG from a restricted set of channels. The authors studied the energy resolution of the ML and the COG algorithm regarding incomplete light distributions (missing channel information caused by detector dead time). Furthermore, the authors investigated the effects of using a filter based on the likelihood values on sensitivity, energy resolution, and image quality. Results: A sensitivity gain of up to 19% was demonstrated in comparison to the COG algorithm for the selected operation parameters. Energy resolution and image quality were on a similar level for both algorithms. Additionally, the authors demonstrated that the performance of the ML

  20. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  1. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  2. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  3. High resolution gas volume change sensor

    International Nuclear Information System (INIS)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  4. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  5. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  6. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    International Nuclear Information System (INIS)

    Goodwill, Patrick; Konkle, Justin; Lu, Kuan; Zheng, Bo; Conolly, Steven

    2014-01-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  7. High sensitivity tracer imaging of iron oxides using magnetic particle imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodwill, Patrick [University of California, Dept. of Bioengineering, Berkeley, CA (United States); Konkle, Justin; Lu, Kuan; Zheng, Bo [UC Berkeley (UCSF), Joint Graduate Group in Bioengineering, CA (United States); Conolly, Steven [University of California, Berkeley Bioengineering, Electrical Engineering, and Computer Science, CA (United States)

    2014-07-01

    Full text: Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the 'black blood' contrast generated by SPIOs in MRI due to increased T2 dephasing, SPIOs in MPI generate positive, 'bright blood' contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. (author)

  8. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  9. The NMR probe of high-T{sub c} materials and correlated electron systems. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Walstedt, Russell E. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

    2018-03-01

    This new edition updates readers in three areas of NMR studies, namely, recent developments in high-T{sub c} materials, heavy fermion systems and actinide oxides are presented. The NMR probe has yielded a vast array of data for solid state materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. The last two parts of the book are completely new in this edition, while the first part has seen major updates. This edition features the latest developments for high-T{sub c} materials, especially the advances in the area of pseudogap studies are reviewed. An in depth overview of heavy fermion systems is presented in the second part, notably Kondo lattices, quantum critical points and unconventional superconductivity are areas of intense research recently and are covered extensively. Finally, valuable information from NMR studies with actinide oxides will be provided. Ongoing analysis and discussion of NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are manifold. First, it reviews NMR methodology as it has been applied to the different studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data.

  10. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  11. High-resolution RCMs as pioneers for future GCMs

    Science.gov (United States)

    Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.

    2017-12-01

    Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data

  12. Identification of PTP1B and α-Glucosidase Inhibitory Serrulatanes from Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α-Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR.

    Science.gov (United States)

    Wubshet, Sileshi G; Tahtah, Yousof; Heskes, Allison M; Kongstad, Kenneth T; Pateraki, Irini; Hamberger, Björn; Møller, Birger L; Staerk, Dan

    2016-04-22

    According to the International Diabetes Federation, type 2 diabetes (T2D) has reached epidemic proportions, affecting more than 382 million people worldwide. Inhibition of protein tyrosine phosphatase-1B (PTP1B) and α-glucosidase is a recognized therapeutic approach for management of T2D and its associated complications. The lack of clinical drugs targeting PTP1B and side effects of the existing α-glucosidase drugs, emphasize the need for new drug leads for these T2D targets. In the present work, dual high-resolution PTP1B and α-glucosidase inhibition profiles of Eremophila gibbosa, E. glabra, and E. aff. drummondii "Kalgoorlie" were used for pinpointing α-glucosidase and/or PTP1B inhibitory constituents directly from the crude extracts. A subsequent targeted high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy (HPLC-HRMS-SPE-NMR) analysis and preparative-scale HPLC isolation led to identification of 21 metabolites from the three species, of which 16 were serrulatane-type diterpenoids (12 new) associated with either α-glucosidase and/or PTP1B inhibition. This is the first report of serrulatane-type diterpenoids as potential α-glucosidase and/or PTP1B inhibitors.

  13. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  15. High-resolution magic angle spinning 1H-NMR spectroscopy studies on the renal biochemistry in the bank vole (Clethrionomys glareolus) and the effects of arsenic (As3+) toxicity.

    Science.gov (United States)

    Griffin, J L; Walker, L; Shore, R F; Nicholson, J K

    2001-06-01

    1. High-resolution magic angle spinning (MAS) 1H-NMR spectroscopy was used to study renal metabolism and the toxicity of As3+, a common environmental contaminant, in the bank vole (Clethrionomys glareolus), a wild species of rodent. 2. Following a 14-day exposure to an environmentally relevant dose of As2O3 (28 mg kg(-1) feed), voles displayed tissue damage at autopsy. MAS 1H spectra indicated abnormal lipid profiles in these samples. 3. Tissue necrosis was also evident from measurements of the apparent diffusion coefficient of water in the intact tissue using MAS 1H diffusion-weighted spectroscopy, its first application to toxicology. 4. Comparison of renal tissue from the wood mouse (Apodemus sylvaticus) exposed to identical exposure levels of As3+ suggested that the bank vole is particularly vulnerable to As3+ toxicity.

  16. Velocity-space observation regions of high-resolution two-step reaction gamma-ray spectroscopy

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nocente, M.; Gorini, G.

    2015-01-01

    High-resolution γ-ray spectroscopy (GRS) measurements resolve spectral shapes of Dopplerbroadened γ-rays. We calculate weight functions describing velocity-space sensitivities of any two-step reaction GRS measurements in magnetized plasmas using the resonant nuclear reaction 9Be(α, nγ)12C...

  17. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  18. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    International Nuclear Information System (INIS)

    Dekorsy, T; Taubert, R; Hudert, F; Schrenk, G; Bartels, A; Cerna, R; Kotaidis, V; Plech, A; Koehler, K; Schmitz, J; Wagner, J

    2007-01-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 10 7 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles

  19. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  20. Calorimetric low - temperature detectors for high resolution X-ray spectroscopy on stored highly stripped heavy ions

    International Nuclear Information System (INIS)

    Bleile, A.; Egelhof, P.; Kraft, S.; Meier, H.J.; Shrivastava, A.; Weber, M.; McCammon, D.; Stahle, C.K.

    2001-09-01

    The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208 Pb 81+ or 238 U 91+ with sufficient accuracy, a high resolution calorimetric detector for hard X-rays (E ≤ 100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3 He/ 4 He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm 2 x 47 μm Pb absorber an energy resolution of ΔE FWHM = 65 eV is obtained for 60 keV X-rays. (orig.)

  1. High resolution multi-scalar drought indices for Iberia

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia; Trigo, Ricardo; Jerez, Sonia

    2014-05-01

    The Iberian Peninsula has been recurrently affected by drought episodes and by adverse associated effects (Gouveia et al., 2009), ranging from severe water shortages to losses of hydroelectricity production, increasing risk of forest fires, forest decline and triggering processes of land degradation and desertification. Moreover, Iberia corresponds to one of the most sensitive areas to current and future climate change and is nowadays considered a hot spot of climate change with high probability for the increase of extreme events (Giorgi and Lionello, 2008). The spatial and temporal behavior of climatic droughts at different time scales was analyzed using spatially distributed time series of multi-scalar drought indicators, such as the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). This new climatic drought index is based on the simultaneous use of precipitation and temperature fields with the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment. Moreover, reanalysis data and the higher resolution hindcasted databases obtained from them are valuable surrogates of the sparse observations and widely used for in-depth characterizations of the present-day climate. Accordingly, this work aims to enhance the knowledge on high resolution drought patterns in Iberian Peninsula, taking advantage of high-resolution (10km) regional MM5 simulations of the recent past (1959-2007) over Iberia. It should be stressed that these high resolution meteorological fields (e.g. temperature, precipitation) have been validated for various purposes (Jerez et al., 2013). A detailed characterization of droughts since the 1960s using the 10 km resolution hidncasted simulation was performed with the aim to explore the conditions favoring drought onset, duration and ending, as well as the subsequent short, medium and long-term impacts affecting the environment and the

  2. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  3. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  4. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  5. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  6. International school on high field NMR spectroscopy for solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Marion, D.; Meier, B.; Keeler, J.; Berthault, P.; Vedrine, P.; Grandinetti, P.; Delsuc, M.A.; Spiess, H

    2006-07-01

    The aim of the school is to offer high-level pedagogical courses on a wide range of liquid- and solid-state NMR concepts and techniques: theory, instrumentation (magnets and probes), data acquisition, processing and analysis, measurement of dipolar and quadrupolar couplings, spin relaxation and hyper-polarization. This document gathers only the slides of most presentations.

  7. International school on high field NMR spectroscopy for solids and liquids

    International Nuclear Information System (INIS)

    Marion, D.; Meier, B.; Keeler, J.; Berthault, P.; Vedrine, P.; Grandinetti, P.; Delsuc, M.A.; Spiess, H.

    2006-01-01

    The aim of the school is to offer high-level pedagogical courses on a wide range of liquid- and solid-state NMR concepts and techniques: theory, instrumentation (magnets and probes), data acquisition, processing and analysis, measurement of dipolar and quadrupolar couplings, spin relaxation and hyper-polarization. This document gathers only the slides of most presentations

  8. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    Science.gov (United States)

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  9. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  10. Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures

    International Nuclear Information System (INIS)

    Berjanskii, Mark; Zhou Jianjun; Liang Yongjie; Lin Guohui; Wishart, David S.

    2012-01-01

    In protein X-ray crystallography, resolution is often used as a good indicator of structural quality. Diffraction resolution of protein crystals correlates well with the number of X-ray observables that are used in structure generation and, therefore, with protein coordinate errors. In protein NMR, there is no parameter identical to X-ray resolution. Instead, resolution is often used as a synonym of NMR model quality. Resolution of NMR structures is often deduced from ensemble precision, torsion angle normality and number of distance restraints per residue. The lack of common techniques to assess the resolution of X-ray and NMR structures complicates the comparison of structures solved by these two methods. This problem is sometimes approached by calculating “equivalent resolution” from structure quality metrics. However, existing protocols do not offer a comprehensive assessment of protein structure as they calculate equivalent resolution from a relatively small number (<5) of protein parameters. Here, we report a development of a protocol that calculates equivalent resolution from 25 measurable protein features. This new method offers better performance (correlation coefficient of 0.92, mean absolute error of 0.28 Å) than existing predictors of equivalent resolution. Because the method uses coordinate data as a proxy for X-ray diffraction data, we call this measure “Resolution-by-Proxy” or ResProx. We demonstrate that ResProx can be used to identify under-restrained, poorly refined or inaccurate NMR structures, and can discover structural defects that the other equivalent resolution methods cannot detect. The ResProx web server is available at http://www.resprox.cahttp://www.resprox.ca.

  11. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  12. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  13. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  14. Scanning Auger microscopy for high lateral and depth elemental sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E., E-mail: eugenie.martinez@cea.fr [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yadav, P. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouttemy, M. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Renault, O.; Borowik, Ł.; Bertin, F. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Etcheberry, A. [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chabli, A. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •SAM performances and limitations are illustrated on real practical cases such as the analysis of nanowires and nanodots. •High spatial elemental resolution is shown with the analysis of reference semiconducting Al{sub 0.7}Ga{sub 0.3}As/GaAs multilayers. •High in-depth elemental resolution is also illustrated. Auger depth profiling with low energy ion beams allows revealing ultra-thin layers (∼1 nm). •Analysis of cross-sectional samples is another effective approach to obtain in-depth elemental information. -- Abstract: Scanning Auger microscopy is currently gaining interest for investigating nanostructures or thin multilayers stacks developed for nanotechnologies. New generation Auger nanoprobes combine high lateral (∼10 nm), energy (0.1%) and depth (∼2 nm) resolutions thus offering the possibility to analyze the elemental composition as well as the chemical state, at the nanometre scale. We report here on the performances and limitations on practical examples from nanotechnology research. The spatial elemental sensitivity is illustrated with the analysis of Al{sub 0.7}Ga{sub 0.3}As/GaAs heterostructures, Si nanowires and SiC nanodots. Regarding the elemental in-depth composition, two effective approaches are presented: low energy depth profiling to reveal ultra-thin layers (∼1 nm) and analysis of cross-sectional samples.

  15. High-performance liquid chromatography on-line coupled to high-field NMR and mass spectrometry for structure elucidation of constituents of Hypericum perforatum L

    DEFF Research Database (Denmark)

    Hansen, S. H.; Jensen, A. G.; Cornett, Claus

    1999-01-01

    The on-line separation and structure elucidation of naphthodianthrones, flavonoids, and other constituents of an extract from Hypericum perforatum L, using high performance liquid chromatography (HPLC) coupled on-line with ultraviolet-visible, nuclear magnetic resonance (NMR), and mass spectrometry...... (MS) is described. A conventional reversed-phase HPLC system using ammonium acetate as the buffer substance in the eluent tvas used, and proton NMR spectra were obtained on a 500 MHz NMR instrument. The MS and MS/MS analyses were performed using negative electrospray ionization, In the present study...

  16. Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants

    NARCIS (Netherlands)

    Cuijpers, V.M.J.I.; Jaroszewicz, J.; Anil, S.; Al Farraj Aldosari, A.; Walboomers, X.F.; Jansen, J.A.

    2014-01-01

    OBJECTIVES: The aims of this study were (i) to determine the spatial resolution and sensitivity of micro- versus nano-computed tomography (CT) techniques and (ii) to validate micro- versus nano-CT in a dog dental implant model, comparative to histological analysis. MATERIAL AND METHODS: To determine

  17. High-Resolution Imaging System (HiRIS) based on H9500 PSPMT

    International Nuclear Information System (INIS)

    Trotta, C.; Massari, R.; Trinci, G.; Palermo, N.; Boccalini, S.; Scopinaro, F.; Soluri, A.

    2008-01-01

    The H8500 PhotoMultiplier Tube (PMT) from Hamamatsu has been used in the last years to assemble several scintigraphic devices in order to achieve high-resolution gamma cameras. If the detector is coupled to discrete scintillator with millimetric pixel size, the resulting charge distribution that emerges is not properly sampled by its anodes (6x6 mm 2 ). The new position sensitive PMT H9500, with its 3x3 mm 2 anodes, allows a better charge distribution sampling, improving both spatial resolution and linearity of the system. In this paper, we investigate the imaging performances of the H9500 PMT coupled with a CsI(Tl) array having 1 mm pixel size and compare the results with the same scintillator coupled with H8500 PMT. A portable imaging system named HiRIS (High-Resolution Imaging System) was then realized using a miniaturized readout electronic. Thanks to its lightness, it can be easily used in Medical Imaging. We used HiRIS, together with a rotating system, to carry out a tomographic reconstruction of the biodistribution of a radiopharmaceutical in rats

  18. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  19. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  20. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    Directory of Open Access Journals (Sweden)

    Jennifer M Tsuruda

    Full Text Available Varroa mites (V. destructor are a major threat to honey bees (Apis melilfera and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL. Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21 and a suggestive QTL on chromosome 1 (LOD = 1.95. The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  1. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  2. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  3. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  4. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  5. High-resolution CCD imaging alternatives

    Science.gov (United States)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  6. High-contrast resolution of film-screen systems in oral and maxillofacial radiology

    International Nuclear Information System (INIS)

    Kaeppler, G.; Reinert, S.

    2007-01-01

    Purpose: The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same X-ray units as those used for patient radiographs. Materials and methods: The MTF was determined using a lead grid and according to DIN 6867 - 2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. Results: With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). (orig.)

  7. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  8. Catalyst surface characterized by high magnetic field NMR; Kojiba NMR ni yoru shokubai hyomen no kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S. [Chiba University, Chiba (Japan). Faculty of Engineering

    1997-08-01

    This paper introduces studies performed by the authors on observation of surface of solid catalysts by means of solid NMR measurement using the high-speed MAS technology which uses a high magnetic field device. In the studies, a device with 14.1T (resonant frequency of proton at 600 MHz) was used to conduct CP-MAS NMR measurement on {sup 29}Si to identify bonding of silica carrier in a fixed aluminum chloride catalyst. As a result, it was verified that the surface structure of aluminum chloride species deposited on the silica carrier turns to a structure in which AlCl2 species of a monomeric substance is bonded with a surface hydroxyl group and fixed in four- or five-orientation. When adjusted at low temperatures, an Al2Cl5 structure is formed, which is fixed as a dimeric substance with AlCl3 oriented in the AlCl2 species. It is conceived that the Al2Cl5 species has higher electrophilicity than the AlCl2 species as a result of AlCl3 oriented in AlCl2, whereas the hydroxyl group on the silica surface oriented with the Al2Cl5 species dissociates, discharging protons, thus showing strong acidity. 18 refs., 8 figs., 2 tabs.

  9. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  10. APSY-NMR for protein backbone assignment in high-throughput structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Herrmann, Torsten [Université de Lyon, Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1 (France); Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

  11. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. A high-sensitivity neutron counter and waste-drum counting with the high-sensitivity neutron instrument

    International Nuclear Information System (INIS)

    Hankins, D.E.; Thorngate, J.H.

    1993-04-01

    At Lawrence Livermore National Laboratory (LLNL), a highly sensitive neutron counter was developed that can detect and accurately measure the neutrons from small quantities of plutonium or from other low-level neutron sources. This neutron counter was originally designed to survey waste containers leaving the Plutonium Facility. However, it has proven to be useful in other research applications requiring a high-sensitivity neutron instrument

  13. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  14. High-resolution TEM characterization of ZnO core-shell nanowires for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Divitini, G; Ducati, C [Department of Materials Science, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Plank, N O V; Welland, M E [Nanoscience Centre, Department of Engineering, University of Cambridge, CB3 0FF (United Kingdom); Snaith, H J, E-mail: gd322@cam.ac.u [Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU (United Kingdom)

    2010-07-01

    Recently ZnO nanowire films have been used in very promising and inexpensive dye-sensitized solar cells (DSSC). It was found that the performance of the devices can be enhanced by functionalising the nanowires with a thin metal oxide coating. This nm-scale shell is believed to tailor the electronic structure of the nanowire, and help the absorption of the dye. Core-shell ZnO nanowire structures are synthesised at low temperature (below 120{sup 0}C) by consecutive hydrothermal growth steps. Different materials are investigated for the coating, including Mg, Al, Cs and Zr oxides. High resolution TEM is used to characterise the quality of both the nanowire core and the shell, and to monitor the thickness and the degree of crystallisation of the oxide coating. The interface between the nanowire core and the outer shell is investigated in order to understand the adhesion of the coating, and give valuable feedback for the synthesis process. Nanowire films are packaged into dye-sensitised solar cell prototypes; samples coated with ZrO{sub 2} and MgO show the largest enhancement in the photocurrent and open-circuit voltage and look very promising for further improvement.

  15. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  16. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks

    Science.gov (United States)

    Audebert, Nicolas; Le Saux, Bertrand; Lefèvre, Sébastien

    2018-06-01

    In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.

  17. High-Sensitivity Spectrophotometry.

    Science.gov (United States)

    Harris, T. D.

    1982-01-01

    Selected high-sensitivity spectrophotometric methods are examined, and comparisons are made of their relative strengths and weaknesses and the circumstances for which each can best be applied. Methods include long path cells, noise reduction, laser intracavity absorption, thermocouple calorimetry, photoacoustic methods, and thermo-optical methods.…

  18. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  19. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi

    2011-01-01

    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  20. Workshop on High-Field NMR and Biological Applications

    Science.gov (United States)

    Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.

  1. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  2. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  3. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    International Nuclear Information System (INIS)

    Shokouhi, S; Peterson, T E; Metzler, S D; Wilson, D W

    2009-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.

  4. Novel NMR tools to study structure and dynamics of biomembranes.

    Science.gov (United States)

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  5. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  6. A feasibility study of PETiPIX: an ultra high resolution small animal PET scanner

    Science.gov (United States)

    Li, K.; Safavi-Naeini, M.; Franklin, D. R.; Petasecca, M.; Guatelli, S.; Rosenfeld, A. B.; Hutton, B. F.; Lerch, M. L. F.

    2013-12-01

    PETiPIX is an ultra high spatial resolution positron emission tomography (PET) scanner designed for imaging mice brains. Four Timepix pixellated silicon detector modules are placed in an edge-on configuration to form a scanner with a field of view (FoV) 15 mm in diameter. Each detector module consists of 256 × 256 pixels with dimensions of 55 × 55 × 300 μm3. Monte Carlo simulations using GEANT4 Application for Tomographic Emission (GATE) were performed to evaluate the feasibility of the PETiPIX design, including estimation of system sensitivity, angular dependence, spatial resolution (point source, hot and cold phantom studies) and evaluation of potential detector shield designs. Initial experimental work also established that scattered photons and recoil electrons could be detected using a single edge-on Timepix detector with a positron source. Simulation results estimate a spatial resolution of 0.26 mm full width at half maximum (FWHM) at the centre of FoV and 0.29 mm FWHM overall spatial resolution with sensitivity of 0.01%, and indicate that a 1.5 mm thick tungsten shield parallel to the detectors will absorb the majority of non-coplanar annihilation photons, significantly reducing the rates of randoms. Results from the simulated phantom studies demonstrate that PETiPIX is a promising design for studies demanding high resolution images of mice brains.

  7. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  8. Automatic maximum entropy spectral reconstruction in NMR

    International Nuclear Information System (INIS)

    Mobli, Mehdi; Maciejewski, Mark W.; Gryk, Michael R.; Hoch, Jeffrey C.

    2007-01-01

    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system

  9. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  10. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    Science.gov (United States)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  11. High-resolution functional MRI of the human amygdala at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Sladky, Ronald, E-mail: ronald.sladky@meduniwien.ac.at [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Baldinger, Pia; Kranz, Georg S. [Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Tröstl, Jasmin [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Höflich, Anna; Lanzenberger, Rupert [Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Moser, Ewald [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria); Windischberger, Christian, E-mail: christian.windischberger@meduniwien.ac.at [MR Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna (Austria)

    2013-05-15

    Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3 T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas.

  12. High-resolution functional MRI of the human amygdala at 7 T

    International Nuclear Information System (INIS)

    Sladky, Ronald; Baldinger, Pia; Kranz, Georg S.; Tröstl, Jasmin; Höflich, Anna; Lanzenberger, Rupert; Moser, Ewald; Windischberger, Christian

    2013-01-01

    Functional magnetic resonance imaging (fMRI) has become the primary non-invasive method for investigating the human brain function. With an increasing number of ultra-high field MR systems worldwide possibilities of higher spatial and temporal resolution in combination with increased sensitivity and specificity are expected to advance detailed imaging of distinct cortical brain areas and subcortical structures. One target region of particular importance to applications in psychiatry and psychology is the amygdala. However, ultra-high field magnetic resonance imaging of these ventral brain regions is a challenging endeavor that requires particular methodological considerations. Ventral brain areas are particularly prone to signal losses arising from strong magnetic field inhomogeneities along susceptibility borders. In addition, physiological artifacts from respiration and cardiac action cause considerable fluctuations in the MR signal. Here we show that, despite these challenges, fMRI data from the amygdala may be obtained with high temporal and spatial resolution combined with increased signal-to-noise ratio. Maps of neural activation during a facial emotion discrimination paradigm at 7 T are presented and clearly show the gain in percental signal change compared to 3 T results, demonstrating the potential benefits of ultra-high field functional MR imaging also in ventral brain areas

  13. High resolution study of high mass pairs and high transverse momentum particles

    International Nuclear Information System (INIS)

    Smith, S.R.

    1983-01-01

    Preliminary experiments involving the high resolution spectrometer (experiment 605) at Fermilab are described. The spectrometer is designed for the study of pairs of particles at large invariant masses and single particles at large transverse momenta. A number of applications of the apparatus in the study of Drell-Yan processes, e.g. transverse momentum measurement, are discussed

  14. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  15. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  16. High order depletion sensitivity analysis

    International Nuclear Information System (INIS)

    Naguib, K.; Adib, M.; Morcos, H.N.

    2002-01-01

    A high order depletion sensitivity method was applied to calculate the sensitivities of build-up of actinides in the irradiated fuel due to cross-section uncertainties. An iteration method based on Taylor series expansion was applied to construct stationary principle, from which all orders of perturbations were calculated. The irradiated EK-10 and MTR-20 fuels at their maximum burn-up of 25% and 65% respectively were considered for sensitivity analysis. The results of calculation show that, in case of EK-10 fuel (low burn-up), the first order sensitivity was found to be enough to perform an accuracy of 1%. While in case of MTR-20 (high burn-up) the fifth order was found to provide 3% accuracy. A computer code SENS was developed to provide the required calculations

  17. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  19. Meniscus tears of the knee: Postarthrogram high resolution CT

    International Nuclear Information System (INIS)

    Kim, Jae Hyoung; Do, Young Soo; You, Jin Jong; Gong, Jae Chul; Kim, Hyung Jin; Chung, Sung Hoon

    1990-01-01

    Thirty-eight knees with clinically suspected meniscal tears were examined with high resolution computed tomography(HRCT) immediately following double contrast arthrography. All subsequently underwent arthroscopy. The findings of postarthrogram HRCT and arthroscopy were compared to evaluated the usefulness of postarthrogram HRCT in diagnosis of the meniscal tears. The sensitivity, specificity and accuracy of HRCT were 96.2%. 83.3% and 92.1% respectively. The anatomic details of the meniscal tears were clearly visible on the HRCT scans. Sagittal and coronal reformation views well visualized the horizontal tears and the relationship of torn meniscal fragments, and well differential the peripheral tears from the synovial recess. Our result indicate that postarthrogram HRCT not only is a sensitive and effective method for the detection and characterization of the meniscal tears, but also provides arthroscopists with the appropriate surgical plans

  20. Sensitivity and Resolution Improvement in RGBW Color Filter Array Sensor

    Directory of Open Access Journals (Sweden)

    Seunghoon Jee

    2018-05-01

    Full Text Available Recently, several red-green-blue-white (RGBW color filter arrays (CFAs, which include highly sensitive W pixels, have been proposed. However, RGBW CFA patterns suffer from spatial resolution degradation owing to the sensor composition having more color components than the Bayer CFA pattern. RGBW CFA demosaicing methods reconstruct resolution using the correlation between white (W pixels and pixels of other colors, which does not improve the red-green-blue (RGB channel sensitivity to the W channel level. In this paper, we thus propose a demosaiced image post-processing method to improve the RGBW CFA sensitivity and resolution. The proposed method decomposes texture components containing image noise and resolution information. The RGB channel sensitivity and resolution are improved through updating the W channel texture component with those of RGB channels. For this process, a cross multilateral filter (CMF is proposed. It decomposes the smoothness component from the texture component using color difference information and distinguishes color components through that information. Moreover, it decomposes texture components, luminance noise, color noise, and color aliasing artifacts from the demosaiced images. Finally, by updating the texture of the RGB channels with the W channel texture components, the proposed algorithm improves the sensitivity and resolution. Results show that the proposed method is effective, while maintaining W pixel resolution characteristics and improving sensitivity from the signal-to-noise ratio value by approximately 4.5 dB.

  1. HIGH-RESOLUTION ULTRASONOGRAPHY OF SHOULDER FOR ROTATOR CUFF TEAR: CORRELATION WITH ARTHROSCOPIC FINDINGS

    Directory of Open Access Journals (Sweden)

    Vishnumurthy H. Y

    2016-09-01

    Full Text Available INTRODUCTION Rotator cuff disease is the most common cause of shoulder pain. Ultrasonography being non-invasive, widely available, more cost-effective method and is the first choice in imaging of rotator cuff tears. Arthroscopy of shoulder is considered as the gold standard for diagnosis of rotator cuff tears. Objective of this study was to compare the diagnostic accuracy of high-resolution ultrasonography of shoulder for rotator cuff tears with arthroscopy of shoulder. METHODS Thirty patients clinically suspected to have rotator cuff tear who underwent ultrasonography and arthroscopy of shoulder were included in the study. Duration of study was for two years. All ultrasonography examinations were conducted in ultrasound machine using GE Voluson 730 PRO high frequency (10-12 MHz linear array transducer done by two experienced radiologists. Arthroscopies were done by two experienced shoulder arthroscopic surgeons. RESULTS Age of the patients with rotator cuff tears ranged from 40 to 80 years. 57% were females and 43% were males among the patients who had rotator cuff tears. 71.43% of the rotator cuff tears were found in the dominant arm. 64.28% of patients with rotator cuff tear had given history of fall or trauma to the corresponding shoulder within 6 months prior to presentation. 39.28% of patients who had rotator cuff tears were known diabetics. Supraspinatus tendon was the most commonly affected tendon, followed by infraspinatus and subscapularis tendons. For overall detection of rotator cuff tears, ultrasonography in comparison with the arthroscopy has sensitivity and specificity of 92.85% and 100%. For detection of full thickness rotator cuff tear, its sensitivity and specificity was 94.73% and 100% and for partial thickness rotator cuff tears 76.92% and 100%. Ultrasonography has 100% sensitivity and specificity for detection of supraspinatus full thickness tear. For supraspinatus partial thickness tear, sensitivity and specificity was 88

  2. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of

  3. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  4. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  5. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide

    International Nuclear Information System (INIS)

    Oktaviani, Nur Alia; Risør, Michael W.; Lee, Young-Ho; Megens, Rik P.; Jong, Djurre H. de; Otten, Renee; Scheek, Ruud M.; Enghild, Jan J.; Nielsen, Niels Chr.; Ikegami, Takahisa; Mulder, Frans A. A.

    2015-01-01

    Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in ‘proton-less’ NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α 1 -antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h

  7. Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Oktaviani, Nur Alia [University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (Netherlands); Risør, Michael W. [University of Aarhus, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry (Denmark); Lee, Young-Ho [Osaka University, Institute for Protein Research (Japan); Megens, Rik P. [University of Groningen, Stratingh Institute for Chemistry (Netherlands); Jong, Djurre H. de; Otten, Renee; Scheek, Ruud M. [University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (Netherlands); Enghild, Jan J. [University of Aarhus, Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics (Denmark); Nielsen, Niels Chr. [University of Aarhus, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry (Denmark); Ikegami, Takahisa [Yokohama City University, Graduate School of Medical Life Science (Japan); Mulder, Frans A. A., E-mail: fmulder@chem.au.dk [University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (Netherlands)

    2015-06-15

    Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T{sub 1} relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T{sub 1} values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in ‘proton-less’ NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α{sub 1}-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3 h.

  8. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  9. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  10. Two high-frequency mutual inductance bridges with high resolution

    NARCIS (Netherlands)

    Flokstra, Jakob; Gerritsma, G.J.; Kreuwel, H.J.M.; van der Marel, L.C.

    1980-01-01

    Two mutual inductance bridges are described for operation up to about 100 kHz. Special attention is paid to the sensitivity and resolution of the bridges. Both bridges can be used to measure variations of about 10 pH in the mutual inductance. The first bridge consists of passive elements only

  11. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  12. Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator with a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.

  13. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    Science.gov (United States)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  14. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  15. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  16. Two-dimensional NMR spectroscopy. Applications for chemists and biochemists

    International Nuclear Information System (INIS)

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear

  17. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  18. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  19. NMR initiatives on understanding high-temperature superconductivity

    International Nuclear Information System (INIS)

    Kitaoka, Y.; Mukuda, H.; Shimizu, S.; Abe, M.; Iyo, A.; Tanaka, Y.; Kito, H.; Tokiwa, K.; Watanabe, T.

    2007-01-01

    We review a recent progress of NMR studies [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.] on multi-layered cuprates. This work has shed new light to a generic phase diagram of high-temperature superconductivity (HTSC) which suggests a competition between antiferromagnetism (AFM) and superconductivity (SC). The multi-layered cuprates include two types of CuO 2 planes, an outer CuO 2 plane (OP) in a pyramidal coordination and an inner CuO 2 plane (IP) in a square one with no apical oxygen. Remarkable feature of the multi-layered systems is the presence of ideally flat CuO 2 planes that are homogeneously doped. Systematic Cu-NMR studies on the optimally-doped five-layered HgBa 2 Ca 4 Cu 5 O 12+δ (Hg-1245(OPT)) and slightly overdoped Tl-1245(OVD) have revealed the coexistent phase of SC and AFM in a unit cell [H. Kotegawa, et al., Phys. Rev. B 64 (2001) 064515; H. Kotegawa, et al., Phys. Rev. B 69 (2004) 014501.]. The optimally doped two OPs are predominantly superconducting with T c =108 and 100K, whereas the under-doped three IPs show the AFM order below T N =60 and 45K for Hg-1245(OPT) and Tl-1245(OVD), respectively. Recently exciting is the finding of the uniform mixing of AFM and HTSC in a single CuO 2 layer in the under-doped Hg-1245(UD) and the heavily underdoped four-layered Ba 2 Ca 3 Cu 4 O 8 F 2 (0234F(2.0)) that has fluorine ions (F 1- ) as apical ions [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001; S. Shimizu, et al., submitted for publication.]. In Hg-1245(UD) with T c =72K and T N =290K, the OPs exhibit the uniform mixing of AFM and HTSC with AFM moment of M AFM (OP)=0.1μ B , whereas the IPs are possibly AFM insulators with a small doping [H. Mukuda, et al., Phys. Rev. Lett 96 (2006) 087001.]. In 0234F(2.0) with T c =55K and T N =100K, the uniform mixing of AFM and HTSC is demonstrated to take place in electron (n)-doped IPs [S. Shimizu, et al., submitted for publication.], thanks to insight

  20. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    Science.gov (United States)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  1. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  2. A high resolution TOF-PET concept with axial geometry and digital SiPM readout

    CERN Document Server

    Casella, C; Joram, C; Schneider, T

    2014-01-01

    The axial arrangement of long scintillation crystals is a promising concept in PET instrumentation to address the need for optimized resolution and sensitivity. Individual crystal readout and arrays of wavelength shifter strips placed orthogonally to the crystals lead to a 3D-detection of the annihilations photons. A fully operational demonstrator scanner, developed by the AX-PET collaboration, proved the potential of this concept in terms of energy and spatial resolution as well as sensitivity. This paper describes a feasibility study, performed on axial prototype detector modules with 100 mm long LYSO crystals, read out by the novel digital Silicon Photomultipliers (dSiPM) from Philips. With their highly integrated readout electronics and excellent intrinsic time resolution, dSiPMs allow for compact, axial detector modules which may extend the potential of the axial PET concept by time of fl ight capabilities (TOF-PET). A coincidence time resolution of 211 ps (FWHM) was achieved in the coincidence of two ax...

  3. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  4. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  5. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  6. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  7. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  8. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Science.gov (United States)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  9. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Directory of Open Access Journals (Sweden)

    Zu-Rong Ni

    2017-08-01

    Full Text Available In situ electrochemical nuclear magnetic resonance (EC-NMR has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  10. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  11. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    Science.gov (United States)

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  12. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  13. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  14. High Resolution Melting (HRM for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies

    Directory of Open Access Journals (Sweden)

    Marcin Słomka

    2017-11-01

    Full Text Available High resolution melting (HRM is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs. This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.

  15. High Resolution Melting (HRM) for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies

    Science.gov (United States)

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz

    2017-01-01

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791

  16. High Resolution Melting (HRM) for High-Throughput Genotyping-Limitations and Caveats in Practical Case Studies.

    Science.gov (United States)

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik

    2017-11-03

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.

  17. Towards high resolution ^1H NMR spectra of tannin colloidal aggregates

    Science.gov (United States)

    Mirabel, M.; Glories, Y.; Pianet, I.; Dufourc, E. J.

    1999-10-01

    The time dependent colloidal formation of tannins in hydro-alcoholic medium has been studied by 1H-NMR. Line broadening observed with time can be cancelled by making use of magic angle sample spinning (MASS) thus yielding sharp lines that allow structural studies. We used as an example catechin, a constitutive monomer of Bordeaux young red wine tannins. Chemical shift variations of polyphenol protons allow monitoring the time course of aggregation. La formation de tanins colloïdaux au cours du temps, en milieu hydroalcoolique, a été suivie par RMN-^1H. Un élargissement marqué des résonances est observé et peut être supprimé par la rotation de l'échantillon à l'angle magique ce qui ouvre tout un champ d'études structurales sur ces composés colloïdaux. L'exemple proposé est celui de la catéchine, monomère constitutif de tannins présents en grande quantité dans les vins rouges jeunes de Bordeaux. Des variations du déplacement chimique de certains protons polyphénoliques permettent de suivre l'évolution temporelle de l'agrégation.

  18. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  19. Electrochemistry-High Resolution Mass Spectrometry to Study Oxidation Products of Trimethoprim

    Directory of Open Access Journals (Sweden)

    Marc-André Lecours

    2018-01-01

    Full Text Available The study of the fate of emerging organic contaminants (EOCs, especially the identification of transformation products, after water treatment or in the aquatic environment, is a topic of growing interest. In recent years, electrochemistry coupled to mass spectrometry has attracted a lot of attention as an alternative technique to investigate oxidation metabolites of organic compounds. The present study used different electrochemical approaches, such as cyclic voltammetry, electrolysis, electro-assisted Fenton reaction coupled offline to high resolution mass spectrometry and thin-layer flow cell coupled online to high resolution mass spectrometry, to study oxidation products of the anti-infective trimethoprim, a contaminant of emerging concern frequently reported in wastewaters and surface waters. Results showed that mono- and di-hydroxylated derivatives of trimethoprim were generated in electrochemically and possibly tri-hydroxylated derivatives as well. Those compounds have been previously reported as mammalian and bacterial metabolites as well as transformation products of advance oxidation processes applied to waters containing trimethoprim. Therefore, this study confirmed that electrochemical techniques are relevant not only to mimic specific biotransformation reactions of organic contaminants, as it has been suggested previously, but also to study the oxidation reactions of organic contaminants of interest in water treatment. The key role that redox reactions play in the environment make electrochemistry-high resolution mass spectrometry a sensitive and simple technique to improve our understanding of the fate of organic contaminants in the environment.

  20. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  1. NMR spectroscopy of coal pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Shevchenko, G.G.

    1985-12-01

    The authors consider the scope for using H 1 and C 13 NMR spectroscopy to describe the products from coal pyrolysis and hydrogenization. The accuracy of the structural information provided by the best NMR methods is also considered. The stuctural parameters derived from H 1 and C 13 NMR spectra are presented. Results demonstrate the high accuracy and sensitivity of the structural information provided by H 1 AND C 13 NMR spectra for coal products. There are substantial structural differences between the soluble products from medium-temperature coking of Cheremkhov coal and high-speed pyrolysis of Kan-Acha coal, and also differences in behavior during hydrogenation. These differences are related to the structure of the organic matter in the initial coal and to differences in the pyrolysis mechanisms.

  2. Resolution enhancement of low-quality videos using a high-resolution frame

    Science.gov (United States)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  3. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  4. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  5. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression.

    Science.gov (United States)

    Xu, Ou; Zhang, Jiejun; Yao, Jianping

    2016-11-01

    High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.

  6. High-resolution ion pulse ionization chamber with air filling for the {sup 222}Rn decays detection

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilyuk, Yu.M.; Gangapshev, A.M.; Gezhaev, A.M.; Etezov, R.A.; Kazalov, V.V.; Kuzminov, V.V. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation); Panasenko, S.I. [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Ratkevich, S.S., E-mail: ssratk@gmail.com [V.N.Karazin Kharkiv National University, 61022 Kharkiv (Ukraine); Tekueva, D.A.; Yakimenko, S.P. [Baksan Neutrino Observatory,Institute for Nuclear Research RAS, 361609 Neutrino (Russian Federation)

    2015-11-21

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the {sup 222}Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented. - Highlights: • The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. • The chamber is intended to register alpha-particles from {sup 222}Rn and its daughter's decays in the filled air sample. • The detector is less sensitive to electromagnetic pick-ups and mechanical noises. • An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure have been investigated and the results are presented.

  7. A high resolution animal PET scanner using compact PS-PMT detectors

    International Nuclear Information System (INIS)

    Watanabe, M.; Okada, H.; Shimizu, K.; Omura, T.

    1996-01-01

    A new high resolution PET scanner dedicated to animal studies has been designed, built and tested. The system utilizes 240 block detectors, each of which consists of a new compact position-sensitive photomultiplier tube (PS-PMT) and an 8 x 4 BGO array. A total number of 7,680 crystals (480 per ring) are positioned to form a 508 mm diameter of 16 detector rings with 7.2 mm pitch and 114 mm axial field of view (FOV). The system is designed to perform activation studies using a monkey in a sitting position. The data can be acquired in either 2D or 3D mode, where the slice collimators are retracted in 3D mode. The transaxial resolution is 2.6 mm FWHM at the center of the FOV, and the average axial resolution on the axis of the ring is 3.3 mm FWHM in the direct slice and 3.2 mm FWHM in the cross slice. The scatter fraction, sensitivity and count rate performance were evaluated for a 10 cm diameter cylindrical phantom. The total system sensitivity is 2.3 kcps/kBq/ml in 2D mode and 22.8 kcps/kBq/ml in 3D mode. The noise equivalent count rate with 3D mode is equivalent to that with 2D mode at five times higher radioactivity level. The applicable imaging capabilities of the scanner was demonstrated by animal studies with a monkey

  8. High-Sensitivity GaN Microchemical Sensors

    Science.gov (United States)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  9. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  10. High-emulation mask recognition with high-resolution hyperspectral video capture system

    Science.gov (United States)

    Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin

    2014-11-01

    We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.

  11. A high-resolution ocean circulation model of the Gulf of Naples and adjacent areas

    International Nuclear Information System (INIS)

    De Ruggero, P.

    2013-01-01

    The implementation of a high-resolution circulation model of a southern Tyrrhenian coastal area is discussed. The sigma-coordinate Princeton Ocean Model (POM) is implemented with a 1/144° resolution in a domain that includes highly urbanized coastal areas, such as the Gulf of Naples and the nearby gulfs of Gaeta and Salerno, that are particularly relevant from oceanographic, ecological and social viewpoints. The model takes initial and boundary conditions from a 1/48° resolution POM model of the whole Tyrrhenian Sea. The main forcing is provided by ECMWF wind data, but an alternative wind field obtained from the Italian Space Agency COSMO-SkyMed X-band Synthetic Aperture Radar data is also tested. Fundamental aspects of coastal modeling, such as the relative importance of local and remote forcing in semi-enclosed seas, and the sensitivity to different wind products are discussed.

  12. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, L; Tang, S [University of Oklahoma, Norman, OK (United States); Ahmad, M [Stanford University, Palo Alto, CA (United States); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.

  13. Textural Segmentation of High-Resolution Sidescan Sonar Images

    National Research Council Canada - National Science Library

    Kalcic, Maria; Bibee, Dale

    1995-01-01

    .... The high resolution of the 455 kHz sonar imagery also provides much information about the surficial bottom sediments, however their acoustic scattering properties are not well understood at high frequencies...

  14. High resolution ultrasonography in ankle joint pain: Where does it stand?

    Directory of Open Access Journals (Sweden)

    Mennatallah Hatem Shalaby

    2017-09-01

    Full Text Available Background: The ankle is frequently injured in trauma, overuse syndrome and inflammatory processes. Different imaging modalities assess the ankle, including plain radiography, computed tomography (CT, magnetic resonance imaging (MRI, and ultrasonography (US. Purpose: Our objective is to assess the role of high resolution US as a valuable tool in the depiction of causes of ankle joint pain. Patients and methods: The study included 28 patients presented with ankle pain ranging in age from 17 to 60 years. They were examined by US and findings were correlated with MRI. Results: US was capable to detect various lesions (synovitis, arthritis, plantar fasciitis, tendon and ligamentous lesions. It had a sensitivity of 95.4%, a specificity of 83.3% and an overall accuracy of 92.8%. US had a limited value in detection of avascular necrosis (AVN, bone marrow oedema and fractures. Conclusion: US can be used as a first step diagnostic tool in cases of ankle pain. MRI should be spared to cases with negative or equivocal US findings. Keywords: High resolution ultrasound, Ankle joint pain, Tendons, Ligaments, Synovitis, Arthritis

  15. Single photon imaging at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R. [INFN sez. Pisa, Pisa (Italy); Spandre, G. [INFN sez. Pisa, Pisa (Italy)], E-mail: Gloria.Spandre@pi.infn.it; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgro, C.; Bregeon, J.; Razzano, M.; Pinchera, M. [INFN sez. Pisa, Pisa (Italy); Tremsin, A.; McPhate, J.; Vallerga, J.V.; Siegmund, O. [SSL, Berkeley (United States)

    2008-06-11

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 {mu}m for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 {mu}m in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of <100 electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by {approx}0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is {approx}3 {mu}m FWHM enabling detection resolution better than 6 {mu}m for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of {approx}130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  16. Sparse Representation Denoising for Radar High Resolution Range Profiling

    Directory of Open Access Journals (Sweden)

    Min Li

    2014-01-01

    Full Text Available Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise ratio of the return, leading to a high-quality profile.

  17. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  18. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  19. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  20. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)