WorldWideScience

Sample records for high-resolution electron crystallography

  1. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  2. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  3. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  4. Zeolites - a high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Alfredsson, V.

    1994-10-01

    High resolution transmission electron microscopy (HRTEM) has been used to investigate a number of zeolites (EMT, FAU, LTL, MFI and MOR) and a member of the mesoporous M41S family. The electron optical artefact, manifested as a dark spot in the projected centre of the large zeolite channels, caused by insufficient transfer of certain reflections in the objective lens has been explained. The artefact severely hinders observation of materials confined in the zeolite channels and cavities. It is shown how to circumvent the artefact problem and how to image confined materials in spite of disturbance caused by the artefact. Image processing by means of a Wiener filter has been applied for removal of the artefact. The detailed surface structure of FAU has been investigated. Comparison of experimental micrographs with images simulated using different surface models indicates that the surface can be terminated in different ways depending on synthesis methods. The dealuminated form of FAU (USY) is covered by an amorphous region. Platinum incorporated in FAU has a preponderance to aggregate in the (111) twin planes, probably due to a local difference in cage structure with more spacious cages. It is shown that platinum is intra-zeolitic as opposed to being located on the external surface of the zeolite crystal. This could be deduced from tomography of ultra-thin sections among observations. HRTEM studies of the mesoporous MCM-41 show that the pores have a hexagonal shape and also supports the mechanistic model proposed which involves a cooperative formation of a mesophase including the silicate species as well as the surfactant. 66 refs, 24 figs

  5. Observations of silicon carbide by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, D.J.; Jepps, N.W.; Page, T.F.

    1978-01-01

    High resolution transmission electron microscopy techniques, principally involving direct lattice imaging, have been used as part of a study of the crystallography and phase transformation mechanics of silicon carbide polytypes. In particular, the 3C (cubic) and 6H (hexagonal) polytypes have been examined together with partially transformed structural mixtures. Although direct observation of two-dimensional atomic structures was not possible at an operating voltage of 100 kV, considerable microstructural information has been obtained by careful choice of the experimental conditions. In particular, tilted beam observations of the 0.25 nm lattice fringes have been made in the 3C polytype for two different brace 111 brace plane arrays in order to study the dimensions and coherency of finely-twinned regions together with brace 0006 brace and brace 1 0 bar1 2 brace lattice images in the 6H polytype which allow the detailed stacking operations to be resolved. Lower resolution lattice images formed with axial illumination have also been used to study the nature of the 3C → 6H transformation and results are presented showing that the transformation interface may originate with fine twinning of the 3C structure followed by growth of the resultant 6H regions. Observations have been made of the detailed stepped structure of this interface together with the stacking fault distribution in the resultant 6H material. (author)

  6. Electron crystallography of organic pigments

    International Nuclear Information System (INIS)

    Boyce, G.

    1997-10-01

    The principle aim of this thesis is the detailing of the development and subsequent use of electron crystallographic techniques which employ the maximum entropy approach. An account is given of the electron microscope as a crystallographic instrument, along with the necessary theory involved. Also, an overview of the development of electron crystallography, as a whole, is given. This progresses to a description of the maximum entropy methodology and how use can be made of electron diffraction data in ab initio phasing techniques. Details are also given of the utilisation of image derived phases in the determination of structural information. Extensive examples are given of the use of the maximum entropy program MICE, as applied to a variety of structural problems. A particular area of interest covered by this thesis is regarding the solid state structure of organic pigments. A detailed structure review of both β-naphthol and acetoacetanilide pigments was undertaken. Information gained from this review was used as a starting point for the attempted structural elucidation of a related pigment, Barium Lake Red C. Details are given of the synthesis, electron microscope studies and subsequent ab initio phasing procedures applied in the determination of structural information on Barium Lake Red C. The final sections of this thesis detail electron crystallographic analyses of three quite different structures. Common to all was the use of maximum entropy methods, both for ab initio phasing and use of image derived phases. Overall, it is shown that electron crystallographic structure analyses using maximum entropy methods are successful using electron diffraction data and do provide distinct structural information even when significant perturbations to the data exist. (author)

  7. NATO Advanced Study Institute on Electron Crystallography

    CERN Document Server

    Weirich, Thomas E; Zou, Xiaodong

    2006-01-01

    During the last decade we have been witness to several exciting achievements in electron crystallography. This includes structural and charge density studies on organic molecules complicated inorganic and metallic materials in the amorphous, nano-, meso- and quasi-crystalline state and also development of new software, tailor-made for the special needs of electron crystallography. Moreover, these developments have been accompanied by a now available new generation of computer controlled electron microscopes equipped with high-coherent field-emission sources, cryo-specimen holders, ultra-fast CCD cameras, imaging plates, energy filters and even correctors for electron optical distortions. Thus, a fast and semi-automatic data acquisition from small sample areas, similar to what we today know from imaging plates diffraction systems in X-ray crystallography, can be envisioned for the very near future. This progress clearly shows that the contribution of electron crystallography is quite unique, as it enables to r...

  8. High Resolution Electron Microscopy in Materials Science

    International Nuclear Information System (INIS)

    Amelinckx, S.

    1986-01-01

    This paper illustrates different operating modes of the electron microscope and shows the image formation in an ideal microscope. Diffraction contrast is used in the study of crystal defects, such as dislocations and planar interfaces. Methods are surveyed which give at least a rudimentary image of the lattice and therefore make use of at least two interfering beams. Special attention is given to images which also carry structural information and therefore imply the use of many beams. The underlying theory is discussed as are the theories of Van Dyck, Spence and Cowley. These are illustrated by means of a number of recent case studies

  9. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  10. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  11. High-resolution observation by double-biprism electron holography

    International Nuclear Information System (INIS)

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-01-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes

  12. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  13. Environmental high resolution electron microscopy and applications to chemical science

    OpenAIRE

    Boyes, Edward; Gai, Pratibha

    2017-01-01

    An environmental cell high resolution electron microscope (EHREM) has been developed for in situ studies of dynamic chemical reactions on the atomic scale. It allows access to metastable intermediate phases of catalysts and to sequences of reversible microstructural and chemical development associated with the activation, deactivation and poisoning of a catalyst. Materials transported through air can be restored or recreated and samples damaged, e.g. by dehydration, by the usual vacuum enviro...

  14. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  15. Electron crystallography with the EIGER detector

    Directory of Open Access Journals (Sweden)

    Gemma Tinti

    2018-03-01

    Full Text Available Electron crystallography is a discipline that currently attracts much attention as method for inorganic, organic and macromolecular structure solution. EIGER, a direct-detection hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland, has been tested for electron diffraction in a transmission electron microscope. EIGER features a pixel pitch of 75 × 75 µm2, frame rates up to 23 kHz and a dead time between frames as low as 3 µs. Cluster size and modulation transfer functions of the detector at 100, 200 and 300 keV electron energies are reported and the data quality is demonstrated by structure determination of a SAPO-34 zeotype from electron diffraction data.

  16. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-resolution electron microscopy and its applications.

    Science.gov (United States)

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  18. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi

    2011-01-01

    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  19. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  20. Choice and maintenance of equipment for electron crystallography.

    Science.gov (United States)

    Mills, Deryck J; Vonck, Janet

    2013-01-01

    The choice of equipment for an electron crystallography laboratory will ultimately be determined by the available budget; nevertheless, the ideal lab will have two electron microscopes: a dedicated 300 kV cryo-EM with a field emission gun and a smaller LaB(6) machine for screening. The high-end machine should be equipped with photographic film or a very large CCD or CMOS camera for 2D crystal data collection; the screening microscope needs a mid-size CCD for rapid evaluation of crystal samples. The microscope room installations should provide adequate space and a special environment that puts no restrictions on the collection of high-resolution data. Equipment for specimen preparation includes a carbon coater, glow discharge unit, light microscope, plunge freezer, and liquid nitrogen containers and storage dewars. When photographic film is to be used, additional requirements are a film desiccator, dark room, optical diffractometer, and a film scanner. Having the electron microscopes and ancillary equipment well maintained and always in optimum condition facilitates the production of high-quality data.

  1. Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography

    KAUST Repository

    Zhang, Daliang

    2011-12-01

    High resolution electron microscopy (HRTEM) has unique advantages for structural determination of nano-sized porous materials compared to X-ray diffraction, because it provides the important structure factor phase information which is lost in diffraction. Here we demonstrate the structure determination of the first tri-continuous mesoporous silica IBN-9 by electron crystallography. IBN-9 has a hexagonal unit cell with the space group P6 3/mcm and a = 88.4 , c = 84.3 . HRTEM images taken along three main directions, [0 0 1], [11̄0] and [1 0 0] were combined to reconstruct the 3D electrostatic potential map, from which the tri-continuous pore structure of IBN-9 was discovered. The different steps of structure determination of unknown mesoporous structures by electron crystallography are described in details. Similar procedures can also be applied for structure determination of other porous and nonporous crystalline materials. © 2011 Elsevier Inc. All rights reserved.

  2. Electron-optical design parameters for a high-resolution electron monochromator

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1976-01-01

    Detailed design parameters of a new, high-resolution electron monochromator are presented. The design utilizes a hemispherical filter as the energy-dispersing element and combines both cylindrical and aperture electrostatic lenses to accelerate, decelerate, transport, and focus the electron beam from the cathode to the interaction region

  3. Automation of data acquisition in electron crystallography.

    Science.gov (United States)

    Cheng, Anchi

    2013-01-01

    General considerations for using automation software for acquiring high-resolution images of 2D crystals under low-dose conditions are presented. Protocol modifications specific to this application in Leginon are provided.

  4. Dose-dependent high-resolution electron ptychography

    International Nuclear Information System (INIS)

    D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.

    2016-01-01

    Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed

  5. High resolution electron microscopy and electron diffraction of YBa2Cu3O(7-x)

    International Nuclear Information System (INIS)

    Krakow, W.; Shaw, T.M.

    1988-01-01

    Experimental high resolution electron micrographs and computer simulation experiments have been used to evaluate the visibility of the atomic constituents of YBa 2 Cu 3 O(7-x). In practice, the detection of oxygen has not been possible in contradiction to that predicted by modelling of perfect crystalline material. Preliminary computer experiments of the electron diffraction patterns when oxygen vacancies are introduced on the Cu-O sheets separating Ba layers show the diffuse streaks characteristic of short range ordering. 7 references

  6. High resolution electron attachment to molecules of atmospheric relevance

    International Nuclear Information System (INIS)

    Senn, G.

    2000-10-01

    This Ph.D. thesis is divided into three parts. The first is an introduction into the field of electron attachment. In the second part the experimental apparatus is described, and in the third part the results are presented. In the present thesis molecules were chosen for our investigations that are not only of academic interest but that also play an important role for applications or even the life on this planet. All the molecules studied in this work are of atmospheric relevance. NO, and OClO, are involved in the ozone depletion of the stratosphere. The D-layer of the ionosphere is an upper boundary of the ozone layer, therefore the interaction of the electrons from the D-layer with O 3 might play an important role for the chemistry in that part of the atmosphere. Especially the interaction of slow electrons (that will be present in the D-layer in large numbers) with ozone was emphasized in the present study. The production of O - and O 2 - by dissociative electron attachment to ozone was measured for incident electron energies between 0 and 10eV. A previously unobserved sharp structure was discovered in the formation of O - ions for electrons with zero kinetic energy. This additional cross section peak has important consequences for the role of ozone in the anion formation process in the ionosphere. Since OClO is a night time reservoir for chlorine atoms (Cl) and chlorine monoxide (ClO) both of which play a critical role in the depletion of the stratospheric ozone, we have studied negative ion formation following electron impact (0-10eV) to OClO. Despite its atmospheric relevance the mechanism of dissociative electron attachment (DEA) to NO is still a matter of controversy. DEA was studied at high energy resolution and with a kinetic-energy analysis of the O - fragment in two independent crossed electron-molecular-beam experiments. The DEA cross section exhibits a vertical onset near 7.45eV that corresponds to the energy threshold of the DEA channel O - ( 2 P

  7. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography.

    Science.gov (United States)

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P; Phillips, Nelson B; Weiss, Michael A; Kent, Stephen B H

    2013-02-27

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.

  8. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2001-03-09

    Mar 9, 2001 ... kinematics and local thermodynamic equilibrium (LTE) electron temperature (Te) of this region. H109α RRL observations by Wilsonet al.(1970) with a resolution of 4 and by Pankonin et al. (1979) with a resolution of 2.6 show that Te ∼ 6000 K in G49.5-0.4. Lower frequency observations for H137β and ...

  9. High-resolution electron microscopy of detonation nanodiamond

    International Nuclear Information System (INIS)

    Iakoubovskii, K; Mitsuishi, K; Furuya, K

    2008-01-01

    The structure of individual nanodiamond grains produced by the detonation of carbon-based explosives has been studied with a high-vacuum aberration-corrected electron microscope. Many grains show a well-resolved cubic diamond lattice with negligible contamination, thereby demonstrating that the non-diamond shell, universally observed on nanodiamond particles, could be intrinsic to the preparation process rather than to the nanosized diamond itself. The strength of the adhesion between the nanodiamond grains, and the possibility of their patterning with sub-nanometer precision, are also demonstrated

  10. High-resolution electron microscopy of detonation nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Iakoubovskii, K; Mitsuishi, K [Quantum Dot Research Center, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0005 (Japan); Furuya, K [High Voltage Microscopy Station, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0005 (Japan)], E-mail: Iakoubovskii.Konstantin@nims.go.jp

    2008-04-16

    The structure of individual nanodiamond grains produced by the detonation of carbon-based explosives has been studied with a high-vacuum aberration-corrected electron microscope. Many grains show a well-resolved cubic diamond lattice with negligible contamination, thereby demonstrating that the non-diamond shell, universally observed on nanodiamond particles, could be intrinsic to the preparation process rather than to the nanosized diamond itself. The strength of the adhesion between the nanodiamond grains, and the possibility of their patterning with sub-nanometer precision, are also demonstrated.

  11. Construction of a high resolution electron beam profile monitor

    International Nuclear Information System (INIS)

    Norem, J.; Dawson, J.; Haberichter, W.; Novak, W.; Reed, L.; Yang, X.F.

    1993-01-01

    Bremsstrahlung from an electron beam on a heavy target can be used to image the beam profile using collimators and slits. The limiting resolution using this system is determined by Fresnel diffraction, and is ∼ √(λd/2), where λ is the photon wavelength and d is determined by the linear dimensions of the system. For linear colliders this resolution could be a few nm. The highest resolution requires detectors which see only high energy, (small λ), photons, and this is accomplished by converting photons to pairs, and detecting Cherenkov light in a nearly forward angle with a CCD detector or streak camera. Tests are planned at the Argonne APS and SLAC FFTB

  12. High-resolution neutron protein crystallography with radically small crystal volumes: Application of perdeuteration to human aldose reductase

    International Nuclear Information System (INIS)

    Hazemann, I.; Dauvergne, M.T.; Blakeley, M.P.; Meilleur, Flora; Haertlein, M.; Van Dorsselaer, A.; Mitschler, A.; Myles, Dean A.A.; Podjarny, A.

    2005-01-01

    Neutron diffraction data have been collected to 2.2 (angstrom) resolution from a small (0.15 mm 3 ) crystal of perdeuterated human aldose reductase (h-AR; MW = 36 kDa) in order to help to determine the protonation state of the enzyme. h-AR belongs to the aldo-keto reductase family and is implicated in diabetic complications. Its ternary complexes (h-AR-coenzyme NADPH-selected inhibitor) provide a good model to study both the enzymatic mechanism and inhibition. Here, the successful production of fully deuterated human aldose reductase (h-AR(D)), subsequent crystallization of the ternary complex h-AR(D)-NADPH-IDD594 and neutron Laue data collection at the LADI instrument at ILL using a crystal volume of just 0.15 mm 3 are reported. Neutron data were recorded to 2 (angstrom) resolution, with subsequent data analysis using data to 2.2 (angstrom). This is the first fully deuterated enzyme of this size (36 kDa) to be solved by neutron diffraction and represents a milestone in the field, as the crystal volume is at least one order of magnitude smaller than those usually required for other high-resolution neutron structures determined to date. This illustrates the significant increase in the signal-to-noise ratio of data collected from perdeuterated crystals and demonstrates that good-quality neutron data can now be collected from more typical protein crystal volumes. Indeed, the signal-to-noise ratio is then dominated by other sources of instrument background, the nature of which is under investigation. This is important for the design of future instruments, which should take maximum advantage of the reduction in the intrinsic diffraction pattern background from fully deuterated samples.

  13. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  14. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  15. Application of electron crystallography to structure characterization of ZnS nanocrystals

    Directory of Open Access Journals (Sweden)

    Jin-Gyu Kim

    2011-07-01

    Full Text Available We chracterized the structure properties of two types of ZnS nanocrystals by electron crystallography. X-ray diffraction analysis for these ZnS nanocrystals was performed to determine their initial structures. Their crystallite sizes were about 5.9 nm and 8.1 nm and their crystal systems were hexagonal and cubic, respectively. Their atomic structures, however, could not be determined because of the weak diffraction intensities as well as the unexpected intensities from impurty. To overcome these problems, the structures of ZnS nanocrystals were resolved by electron crystallography using EF-EPD (energy-filtered electron powder diffraction and HRTEM (high resolution transmission electron microscopy methods. The structrues determined by Rietveld analysis are P63mc (a = 3.8452 Å, c = 18.5453 Å and F-43m (a = 5.4356 Å, respectively. Their crystallite shapes were nanorods and quasi-nanoparticles and the nanorod crystal were grown along the [001] direction. It was revealed that the phase transformation between the cubic sphalerite to the hexagonal wurtzite structure of ZnS nanocrytals was related to their shapes and growth mechanism. Electron cryststallogrpahy, employing EF-EPD and HRTEM methods together, has advantages for structure analysis and property chracterization of nano-sized materials.

  16. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  17. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.

    Science.gov (United States)

    Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A

    2010-05-01

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  18. High-resolution EELS investigation of the electronic structure of ilmenites

    NARCIS (Netherlands)

    Radtke, G.; Lazar, S.; Botton, G.A.

    2006-01-01

    The electronic structure of a series of compounds belonging to the ilmenite family is investigated using high resolution electron energy loss spectroscopy (EELS). The energy loss near edge structure (ELNES) of the O-K, Ti-L23 and transition metal L23 edges have been recorded in MnTiO3, FeTiO3,

  19. Uniting Electron Crystallography and Powder Diffraction

    CERN Document Server

    Shankland, Kenneth; Meshi, Louisa; Avilov, Anatoly; David, William

    2012-01-01

    The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination.  This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of discipl...

  20. Macromolecular crystallography using synchrotron radiation

    International Nuclear Information System (INIS)

    Bartunik, H.D.; Phillips, J.C.; Fourme, R.

    1982-01-01

    The use of synchrotron X-ray sources in macromolecular crystallography is described. The properties of synchrotron radiation relevant to macromolecular crystallography are examined. The applications discussed include anomalous dispersion techniques, the acquisition of normal and high resolution data, and kinetic studies of structural changes in macromolecules; protein data are presented illustrating these applications. The apparatus used is described including information on the electronic detectors, the monitoring of the incident beam and crystal cooling. (U.K.)

  1. Gas-phase synthesis of magnesium nanoparticles : A high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Kooi, B.J.; Palasantzas, G.; de Hosson, J.T.M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg{1010} facets. Oxidation of Mg yields a MgO shell (similar to 3 nm

  2. Refinement procedure for the image alignment in high-resolution electron tomography

    International Nuclear Information System (INIS)

    Houben, L.; Bar Sadan, M.

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. -- Highlights: → Alignment procedure for electron tomography based on iterative tomogram contrast optimisation. → Marker-free, independent of object, little user interaction. → Accuracy competitive with fiducial marker methods and suited for high-resolution tomography.

  3. From electron microscopy to X-ray crystallography: molecular-replacement case studies

    International Nuclear Information System (INIS)

    Xiong, Yong

    2008-01-01

    Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement using various standard MR packages such as AMoRe, MOLREP and Phaser. Multi-component molecular complexes are increasingly being tackled by structural biology, bringing X-ray crystallography into the purview of electron-microscopy (EM) studies. X-ray crystallography can utilize a low-resolution EM map for structure determination followed by phase extension to high resolution. Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement (MR) using various standard MR packages such as AMoRe, MOLREP and Phaser. The results demonstrate that EM maps are viable models for molecular replacement. Possible difficulties in data analysis, such as the effects of the EM magnification error, and the effect of MR positional/rotational errors on phase extension are discussed

  4. An ASIC implementation of digital front-end electronics for a high resolution PET scanner

    International Nuclear Information System (INIS)

    Newport, D.F.; Young, J.W.

    1993-01-01

    AN Application Specific Integrated Circuit (ASIC) has been designed and fabricated which implements many of the current functions found in the digital front-end electronics for a high resolution Positron Emission Tomography (PET) scanner. The ASIC performs crystal selection, energy qualification, time correction, and event counting functions for block technology high resolution PET scanners. Digitized x and y position, event energy, and time information are used by the ASIC to determine block crystal number, qualify the event based on energy, and correct the event time. In addition, event counting and block dead time calculations are performed for system dead time corrections. A loadable sequencer for controlling the analog front-end electronics is also implemented. The ASIC is implemented in a 37,000 gate, 1.0 micron CMOS gate-array and is capable of handling 4 million events/second while reducing parts count, cost, and power consumption over current board-level designs

  5. High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

    International Nuclear Information System (INIS)

    Abargues, R; Marques-Hueso, J; Canet-Ferrer, J; Pedrueza, E; Valdes, J L; Jimenez, E; MartInez-Pastor, J P

    2008-01-01

    Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry

  6. Refinement procedure for the image alignment in high-resolution electron tomography.

    Science.gov (United States)

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study

    International Nuclear Information System (INIS)

    Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg(1010) facets. Oxidation of Mg yields a MgO shell (∼3 nm thick), which has an orientation relation with the Mg. Inhomogeneous facet oxidation influences their growth kinetics resulting in a relatively broad size and shape distribution. Faceted voids between Mg and MgO shells indicate a fast outward diffusion of Mg and vacancy rearrangement into voids. The faceting of polar (220) planes is assisted by electron irradiation

  8. High resolution electron microscopy of a small crack at the superficial layer of enamel.

    Science.gov (United States)

    Hayashi, Y

    1994-12-01

    A small enamel crack was investigated using a high resolution electron microscope. The inside of the crack was filled with aggregates of irregularly oriented plate-like crystals. Amorphous mineral deposits were observed among these aggregates at a low magnification. Selected area electron diffractions indicated that the plate-like crystals consisted of hydroxyapatite (OH-AP), and that the amorphous mineral deposits were a mixture of OH-AP and whitlockite. These findings indicate that this crack may have been formed by occlusal and/or masticatory stress, and that a natural occlusion might occur through mineral deposition at the small crack such as in this case.

  9. Exploring semiconductor quantum dots and wires by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Molina, S I [Departamento de Ciencia de los Materiales e Ing Metalurgica y Q. Inorganica, F. de Ciencias, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Campus Rio San Pedro. 11510 Puerto Real (Cadiz) (Spain); Gonzalez, L; Ripalda, J M [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Varela, M; Pennycook, S J, E-mail: sergio.molina@uca.e [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States)

    2010-02-01

    We review in this communication our contribution to the structural characterisation of semiconductor quantum dots and wires by high resolution electron microscopy, both in phase-contrast and Z-contrast modes. We show how these techniques contribute to predict the preferential sites of nucleation of these nanostructures, and also determine the compositional distribution in 1D and 0D nanostructures. The results presented here were produced in the framework of the European Network of Excellence entitled {sup S}elf-Assembled semiconductor Nanostructures for new Devices in photonics and Electronics (SANDiE){sup .}

  10. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  11. Electron beam fabrication and characterization of high-resolution magnetic force microscopy tips

    Science.gov (United States)

    Rührig, M.; Porthun, S.; Lodder, J. C.; McVitie, S.; Heyderman, L. J.; Johnston, A. B.; Chapman, J. N.

    1996-03-01

    The stray field, magnetic microstructure, and switching behavior of high-resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a thermally evaporated magnetic thin film are transparent to the electron energies used in these TEMs it is possible to observe both the external stray field emanating from the tips as well as their internal domain structure. The experiments confirm the basic features of electron beam fabricated thin film tips concluded from various MFM observations using these tips. Only a weak but highly concentrated stray field is observed emanating from the immediate apex region of the tip, consistent with their capability for high resolution. It also supports the negligible perturbation of the magnetization sample due to the tip stray field observed in MFM experiments. Investigation of the magnetization distributions within the tips, as well as preliminary magnetizing experiments, confirm a preferred single domain state of the high aspect ratio tips. To exclude artefacts of the observation techniques both nonmagnetic tips and those supporting different magnetization states are used for comparison.

  12. Carbon K-shell excitation in small molecules by high-resolution electron impact

    International Nuclear Information System (INIS)

    Tronc, M.; King, G.C.; Read, F.H.

    1979-01-01

    The excitation of 1s carbon electrons has been observed in C0, CH 4 , CF4, C0 2 , COS, C 2 H 2 and C 2 H 4 by means of the electron energy-loss technique with high resolution (70 meV in the 300 eV excitation energy range) and at an incident electron energy of 1.5 keV. The energies, widths and vibrational structures of excited states corresponding to the promotion of 1s carbon electrons to unoccupied valence and Rydberg orbitals have been obtained. The validity of the equivalent-core model, and the role of resonances caused by potential barriers, are discussed. (author)

  13. High-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap

    International Nuclear Information System (INIS)

    Robbins, D.L.; Chen, H.; Beiersdorfer, P.; Faenov, A.Ya.; Pikuz, T.A.; May, M.J.; Dunn, J.; Smith, A.J.

    2004-01-01

    A compact high-resolution (λ/Δλ≅10 000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured

  14. A high resolution electron microscopy investigation of curvature in multilayer graphite sheets

    International Nuclear Information System (INIS)

    Wang Zhenxia; Hu Jun; Wang Wenmin; Yu Guoqing

    1998-01-01

    Here the authors report a carbon sample generated by ultrasonic wave high oriented pyrolytic graphite (HOPG) in ethanol, water or ethanol-water mixed solution. High resolution transmission electron microscopy (HRTEM) revealed many multilayer graphite sheets with a total curved angle that is multiples of θ 0 (= 30 degree C). Close examination of the micrographs showed that the curvature is accomplished by bending the lattice planes. A possible explanation for the curvature in multilayer graphite sheets is discussed based on the conformation of graphite symmetry axes and the formation of sp 3 -like line defects in the sp 2 graphitic network

  15. High resolution transmission electron microscopy and microdiffraction for radiation damage analysis

    International Nuclear Information System (INIS)

    Sinclair, R.

    1982-01-01

    High resolution TEM techniques have developed to quite a sophisticated level over the past few years. In addition TEM instruments with a scanning capability have become available commercially which permit in particular the formation of a small electron probe at the specimen. Thus direct resolution and microdiffraction investigations of thin specimens are now possible, neither of which have been employed to any great extent in the analysis of radiation damage. Some recent advances which are thought to be relevant to this specific area of research are highlighted

  16. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    Science.gov (United States)

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  17. High resolution and high voltage electron microscopy at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Thomas, G.; Westmacott, K.H.

    1978-01-01

    Recent applications of high-resolution and high-voltage techniques at Berkely are described, using 100-kV TEMs and a standard 650-keV HVEM: grain boundary precipitation in Al--Zn, lattice imaging of grain boundaries in ceramics, steels, phase transitions and magnetic properties of ferrites, lattice defects, precipitation in Al--Si and behavior of interstitial dislocations under electron irradiation, effect of oxide films on loop formation in Al--Mg, and polytypism in magnesium Sialon. 13 refs. 12 figs

  18. High-resolution transmission electron microscopy and energetics of flattened carbon nonoshells

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1998-01-01

    When examined under a high-resolution transmission electron microscope, carbon soot produced alongside buckytubes in an arc-discharge is found to contain a small percentage of flattened carbon shells. These objects are shown to be small graphite flakes which eliminated their dangling bonds by terminating their edges with highly curved junctions. Ideal models for these structures are presented, and their energy estimated. The calculations show that the establishment of highly curved junctions is energetically favourable for a graphite flake in an inert atmosphere. Flattened shells also appear more stable than their 'inflated' counterparts (fullerene 'onions' and buckytubes) when the shell dimensions obey specific criteria.(authors)

  19. Practical Approaches to Mitigation of Specimen Charging in High-Resolution Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Young-Min Kim

    2010-09-01

    Full Text Available Specimen charging that is associated with the electron bombardment on the sample is a practical hindrance to high-resolution transmission electron microscopy (HRTEM analysis because it causes a severe loss of resolution in either diffraction or image data. Conductive thin film deposition on an insulating specimen has been proposed as an effective approach to the mitigation of the specimen charging; however, this method is generally not useful in HRTEM imaging of materials because the deposited film induces another artifact in the HRTEM image contrast. In this study, we propose practical methods to mitigate the specimen charging that takes place during the HRTEM of materials. For bulk-type specimens prepared by either an ion-thinning or focused-ion beam (FIB process, a plasma cleaning treatment is significantly effective in eliminating the charging phenomenon. In the case of low-dimensional nanomaterials such as nanowires and nanoparticles, the plasma cleaning is not feasible; however, the charging effect can be effectively eliminated by adjusting the electron illumination condition. The proposed methods facilitate a decrease in the buildup of specimen charging, thereby enhancing the quality of high-resolution images significantly.

  20. On the optical stability of high-resolution transmission electron microscopes

    International Nuclear Information System (INIS)

    Barthel, J.; Thust, A.

    2013-01-01

    In the recent two decades the technique of high-resolution transmission electron microscopy experienced an unprecedented progress through the introduction of hardware aberration correctors and by the improvement of the achievable resolution to the sub-Ångström level. The important aspect that aberration correction at a given resolution requires also a well defined amount of optical stability has received little attention so far. Therefore we investigate the qualification of a variety of high-resolution electron microscopes to maintain an aberration corrected optical state in terms of an optical lifetime. We develop a comprehensive statistical framework for the estimation of the optical lifetime and find remarkably low values between tens of seconds and a couple of minutes. Probability curves are introduced, which inform the operator about the chance to work still in the fully aberration corrected state. - Highlights: • We investigate the temporal stability of optical aberrations in HRTEM. • We develop a statistical framework for the estimation of optical lifetimes. • We introduce plots showing the success probability for aberration-free work. • Optical lifetimes in sub-Ångström electron microscopy are surprisingly low. • The success of aberration correction depends strongly on the optical stability

  1. Applications of molecules as high-resolution, high-sensitivity threshold electron detectors

    International Nuclear Information System (INIS)

    Chutjian, A.

    1991-01-01

    The goal of the work under the contract entitled ''Applications of Molecules as High-Resolution, High-Sensitivity Threshold Electron Detectors'' (DoE IAA No. DE-AI01-83ER13093 Mod. A006) was to explore the electron attachment properties of a variety of molecules at electron energies not accessible by other experimental techniques. As a result of this work, not only was a large body of basic data measured on attachment cross sections and rate constants; but also extensive theoretical calculations were carried out to verify the underlying phenomenon of s-wave attachment. Important outgrowths of this week were also realized in other areas of research. The basic data have applications in fields such as combustion, soot reduction, rocket-exhaust modification, threshold photoelectron spectroscopy, and trace species detection

  2. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    Science.gov (United States)

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  3. Development of a high-resolution electron-beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Muto, Toshiya; Hayano, Hitoshi

    2004-01-01

    We present a high-resolution and real-time beam profile monitor using Fresnel zone plates (FZPs) developed in the KEK-ATF damping ring. The monitor system has an X-ray imaging optics with two FZPs. In this monitor, the synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is less than 1 μm. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. It is greatly expected that the beam profile monitor will be used in high-brilliance light sources and low-emittance accelerators. (author)

  4. A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials

    International Nuclear Information System (INIS)

    Zhang Lina; Zhang Haoxu; Zhou Ruifeng; Chen Zhuo; Li Qunqing; Fan Shoushan; Jiang Kaili; Ge Guanglu; Liu Renxiao

    2011-01-01

    A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.

  5. Ultrastable gold substrates: Properties of a support for high-resolution electron cryomicroscopy of biological specimens

    Science.gov (United States)

    Russo, Christopher J.; Passmore, Lori A.

    2016-01-01

    Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474

  6. An extended model of electrons: experimental evidence from high-resolution scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hofer, Werner A

    2012-01-01

    In a recent paper we introduced a model of extended electrons, which is fully compatible with quantum mechanics in the formulation of Schrödinger. However, it contradicts the current interpretation of electrons as point-particles. Here, we show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of electrons as point particles and, consequently, the interpretation of the density of electron charge as a statistical quantity will lead to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e. in principle precisely measurable quantity, as derived in a recent paper. Experimental evidence to the contrary, in particular high-energy scattering experiments, is briefly discussed. The finding is expected to have wide implications in condensed matter physics, chemistry, and biology, scientific disciplines which are based on the properties and interactions of electrons.

  7. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  8. Nano features of Al/Au ultrasonic bond interface observed by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Ji Hongjun; Li Mingyu; Kim, Jong-Myung; Kim, Dae-Won; Wang Chunqing

    2008-01-01

    Nano-scale interfacial details of ultrasonic AlSi1 wire wedge bonding to a Au/Ni/Cu pad were investigated using high resolution transmission electron microscopy (HRTEM). The intermetallic phase Au 8 Al 3 formed locally due to diffusion and reaction activated by ultrasound at the Al/Au bond interface. Multilayer sub-interfaces roughly parallel to the wire/pad interface were observed among this phase, and interdiffusional features near the Au pad resembled interference patterns, alternately dark and bright bars. Solid-state diffusion theory cannot be used to explain why such a thick compound formed within milliseconds at room temperature. The major formation of metallurgical bonds was attributed to ultrasonic cyclic vibration

  9. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  10. High Resolution Transmission Electron Microscope Observation of Zero-Strain Deformation Twinning Mechanisms in Ag

    Science.gov (United States)

    Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.

    2011-04-01

    We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.

  11. High resolution electron microscopy study of as-prepared and annealed tungsten-carbon multilayers

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Gronsky, R.; Kortright, J.B.

    1988-12-01

    A series of sputtered tungsten-carbon multilayer structures with periods ranging from 2 to 12 nm in the as-prepared state and after annealing at 500/degree/C for 4 hours has been studied with high resolution transmission electron microscopy. The evolution with annealing of the microstructure of these multilayers depends on their period. As-prepared structures appear predominantly amorphous from TEM imaging and diffraction. Annealing results in crystallization of the W-rich layers into WC in the larger period samples, and less complete or no crystallization in the smaller period samples. X-ray scattering reveals that annealing expands the period in a systematic way. The layers remain remarkably well-defined after annealing under these conditions. 12 refs., 4 figs., 1 tab

  12. High-resolution transmission electron microscopy of grain-refining particles in amorphous aluminum alloys

    International Nuclear Information System (INIS)

    Schumacher, P.; Greer, A.L.

    1996-01-01

    The nucleation mechanism of Al-Ti-B grain refiners is studied in an Al-based amorphous alloy. The ability to limit growth of α-Al in the amorphous alloy permits the microscopical observation of nucleation events on boride particles. Earlier studies of this kind are extended by using high-resolution electron microscopy. This shows that the efficient nucleation α-Al depends on the TiB 2 particles being coated with a thin layer of Al 3 Ti, which can form only when there is some excess titanium in the melt. The aluminide layer, stabilized by adsorption effects, can be as little as a few monolayers thick, and is coherent with the boride. The nature of this layer, and its importance for the nucleation mechanism are discussed. The fading of the grain refinement action is also considered

  13. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  14. Minimal exposure technique in the Cambridge University 600kV high resolution electron microscope

    International Nuclear Information System (INIS)

    Fryer, J.R.; Cleaver, J.R.A.; Smith, D.J.

    1980-01-01

    Radiation damage due to the incident electron beam imposes a fundamental limitation on the information obtainable by electron microscopy about organic materials; it is desirable therefore that exposure of the specimen to the electron beam should be restricted to the actual period during which the image is being recorded. A description is given of methods employed in the observation of the organic aromatic hydrocarbons quaterrylene, ovalene and coronene with the Cambridge University 600kV high resolution electron microscope (HREM). In particular, the condenser-objective mode of operation of this microscope lends itself to the use of an area-defining aperture below the second condenser lens conjugate with the specimen. Furthermore, operation at the higher accelerating voltage of this instrument could be anticipated to reduce the rate of damage, depending on the dominant beam-specimen interaction, whilst the increased width of the first broad band of the contrast transfer function of this microscope at the optimum defocus may overcome the reported resolution limitation of current 100kV microscopes for the observation of related materials. (author)

  15. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  17. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  18. High resolution electron microscope study of the omega transformation in Zr--Nb alloys

    International Nuclear Information System (INIS)

    Chang, A.L.J.; Sass, S.L.; Krakow, W.

    1976-01-01

    High resolution direct lattice imaging and dark field electron microscopy were used to examine the omega phase transformation in Zr--Nb alloys. Direct lattice imaging demonstrated the existence of subvariants within an omega variant. The existence of an ordered sequence of subvariants, which is the basic premise of recent diffuse intensity calculations which seek to explain diffuse diffraction observations in high Nb content alloys, could not be checked because of the small size of the omega regions. In the low Nb content alloys dark field electron microscopy was used to show that the ω phase consists of large domains (100 to 200 A dia) the interior of which contains features that are 3 to 6 A dia. As the Nb content is increased the omega domains decrease in size until only 3 to 5 A images are observed in alloys containing 15 wt. percent Nb or more. The isolated images are present over the range of composition from 8 to 30 wt. percent Nb. Time sequence dark field micrographs show that these small images change with time. The diffuse ω reflections are believed due in part to the existence of a (111) linear detect, consisting of groups of (111) rows of atoms which are displaced from bcc to ω positions for short periods of time

  19. Atom-counting in High Resolution Electron Microscopy:TEM or STEM - That's the question.

    Science.gov (United States)

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2017-03-01

    In this work, a recently developed quantitative approach based on the principles of detection theory is used in order to determine the possibilities and limitations of High Resolution Scanning Transmission Electron Microscopy (HR STEM) and HR TEM for atom-counting. So far, HR STEM has been shown to be an appropriate imaging mode to count the number of atoms in a projected atomic column. Recently, it has been demonstrated that HR TEM, when using negative spherical aberration imaging, is suitable for atom-counting as well. The capabilities of both imaging techniques are investigated and compared using the probability of error as a criterion. It is shown that for the same incoming electron dose, HR STEM outperforms HR TEM under common practice standards, i.e. when the decision is based on the probability function of the peak intensities in HR TEM and of the scattering cross-sections in HR STEM. If the atom-counting decision is based on the joint probability function of the image pixel values, the dependence of all image pixel intensities as a function of thickness should be known accurately. Under this assumption, the probability of error may decrease significantly for atom-counting in HR TEM and may, in theory, become lower as compared to HR STEM under the predicted optimal experimental settings. However, the commonly used standard for atom-counting in HR STEM leads to a high performance and has been shown to work in practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High resolution beam profiling of X-ray free electron laser radiation by polymer imprint development.

    Science.gov (United States)

    Rösner, Benedikt; Döring, Florian; Ribič, Primož R; Gauthier, David; Principi, Emiliano; Masciovecchio, Claudio; Zangrando, Marco; Vila-Comamala, Joan; De Ninno, Giovanni; David, Christian

    2017-11-27

    High resolution metrology of beam profiles is presently a major challenge at X-ray free electron lasers. We demonstrate a characterization method based on beam imprints in poly (methyl methacrylate). By immersing the imprints formed at 47.8 eV into organic solvents, the regions exposed to the beam are removed similar to resist development in grayscale lithography. This allows for extending the sensitivity of the method by more than an order of magnitude compared to the established analysis of imprints created solely by ablation. Applying the Beer-Lambert law for absorption, the intensity distribution in a micron-sized focus can be reconstructed from one single shot with a high dynamic range, exceeding 10 3 . The procedure described here allows for beam characterization at free electron lasers revealing even faint beam tails, which are not accessible when using ablation imprint methods. We demonstrate the greatly extended dynamic range on developed imprints taken in focus of conventional Fresnel zone plates and spiral zone plates producing beams with a topological charge.

  1. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1997-01-01

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm -3 ) and sp 3 /sp 2 +sp 2 bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense 'amorphous' carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp 3 /sp 2 +sp 3 bonding fractions

  2. Investigations and characterization of the microstructure of special ceramic materials using the high-resolution electron microscope

    International Nuclear Information System (INIS)

    Kirn, M.

    1979-01-01

    The possibilities to characterize phases and microstructures by direct lattice imaging are indicated in the following work. Ceramic materials are particularly suitable for this as these exhibit a high mechanical stability in the investigation in the transmission electron microscope. First of all the fundamentals of the high-resolution electron microscopy are introduced and the various resulting possibilities to characterize microstructures are presented. A report then follows on experimental observations on undisturbed crystals of special ceramics on a Si 3 N 4 basis. Furthermore, it is shown that the high-resolution electron microscope provides valuable contributions to the determination of structure, in particular of twin variants. Finally, revealing information on the structure of the interfaces was obtained with the help of high-resolution electron microscopy. (orig./IHOE) [de

  3. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  4. Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders

    International Nuclear Information System (INIS)

    Yandayan, Tanfer; Akgoz, S Asli; Asar, Muharrem

    2014-01-01

    Calibration of high-resolution electronic autocollimators is carried out in TUBITAK UME using an angle comparator to ensure direct traceability to the SI unit of plane angle, radian (rad). The device is a specially designed air-bearing rotary table fitted with a commercially available angular encoder utilizing a single reading head. It is shown that high-resolution electronic autocollimators in the large measurement range (e.g. ±1000 arcsec) can be calibrated with an expanded uncertainty of 0.035 arcsec (k = 2) in conventional dimensional laboratory conditions, applying good measurement strategy for single reading head angle encoders and taking simple but smart precautions. Description of the angle comparator is presented with various test results derived using different high-precision autocollimators, and a detailed uncertainty budget is given for the calibration of a high-resolution electronic autocollimator. (paper)

  5. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  6. An improved image alignment procedure for high-resolution transmission electron microscopy.

    Science.gov (United States)

    Lin, Fang; Liu, Yan; Zhong, Xiaoyan; Chen, Jianghua

    2010-06-01

    Image alignment is essential for image processing methods such as through-focus exit-wavefunction reconstruction and image averaging in high-resolution transmission electron microscopy. Relative image displacements exist in any experimentally recorded image series due to the specimen drifts and image shifts, hence image alignment for correcting the image displacements has to be done prior to any further image processing. The image displacement between two successive images is determined by the correlation function of the two relatively shifted images. Here it is shown that more accurate image alignment can be achieved by using an appropriate aperture to filter the high-frequency components of the images being aligned, especially for a crystalline specimen with little non-periodic information. For the image series of crystalline specimens with little amorphous, the radius of the filter aperture should be as small as possible, so long as it covers the innermost lattice reflections. Testing with an experimental through-focus series of Si[110] images, the accuracies of image alignment with different correlation functions are compared with respect to the error functions in through-focus exit-wavefunction reconstruction based on the maximum-likelihood method. Testing with image averaging over noisy experimental images from graphene and carbon-nanotube samples, clear and sharp crystal lattice fringes are recovered after applying optimal image alignment. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Micaceous occlusions in kaolinite observed by ultramicrotomy and high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S Y [Univ. of Wisconsin, Madison; Jackson, M L; Brown, J L

    1975-01-01

    The layer structure of kaolinite from Twiggs, Georgia, and fire-clay type kaolinite (Frantex B, from France, particle size separates 2 0.2 ..mu..m was studied by high resolution electron microscopy after embedment in Spurr low-viscosity Epoxy media and thin sectioning normal to the (001) planes by an ultramicrotome. Images of the (001) planes (viewed edge-on) of both kaolinites were spaced at 7 A and generally aligned in parallel, with occasional bending into more widely spaced images of about 10 A interval. Some of the 10 A images converged to 7 A at one or both ends, forming ellipse-shaped islands 80 to 130 A thick and 300 to 500 A long. The island areas and interleaved 10 A layers between 7 A layers may represent a residue of incomplete weathering of mica to kaolinite. The proportions of micaceous occlusions were too small and the layer sequences too irregular to be detected by X-ray diffraction. The lateral continuity of the layers through the 7-10-7 A sequence in a kaolinite particle would partially interrupt or prevent expansion in dimethyl sulfoxide (DMSO) and other kaolinite intercalating media. Discrete mica particles were also observed with parallel images at 10 A, as impurities in both kaolinites. The small K content of the chemical analyses of the kaolinite samples is accounted for as interlayer K, not only in discrete mica particles but also in the micaceous occlusions.

  8. Automation of specimen selection and data acquisition for protein electron crystallography

    NARCIS (Netherlands)

    Oostergetel, G.T.; Keegstra, W.; Brisson, A.D R

    A system is presented for semi-automatic specimen selection and data acquisition for protein electron crystallography, based on a slow-scan CCD camera connected to a transmission electron microscope and control from an external computer. Areas of interest on the specimen are localised at low

  9. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Chen, J.H.; Van Dyck, D.

    2010-01-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  10. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  11. Novel method of simultaneous multiple immunogold localization on resin sections in high resolution scanning electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Nebesářová, Jana; Wandrol, P.; Vancová, Marie

    2016-01-01

    Roč. 12, č. 1 (2016), s. 105-517 ISSN 1549-9634 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:60077344 Keywords : multiple immunolabeling * gold nanoparticles * high resolution SEM * STEM imaging * BSE imaging Subject RIV: EA - Cell Biology Impact factor: 5.720, year: 2016

  12. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  13. Structure study of the tri-continuous mesoporous silica IBN-9 by electron crystallography

    KAUST Repository

    Zhang, Daliang; Sun, Junliang; Han, Yu; Zou, Xiaodong

    2011-01-01

    High resolution electron microscopy (HRTEM) has unique advantages for structural determination of nano-sized porous materials compared to X-ray diffraction, because it provides the important structure factor phase information which is lost

  14. Native chemical ligation at Asx-Cys, Glx-Cys: chemical synthesis and high-resolution X-ray structure of ShK toxin by racemic protein crystallography.

    Science.gov (United States)

    Dang, Bobo; Kubota, Tomoya; Mandal, Kalyaneswar; Bezanilla, Francisco; Kent, Stephen B H

    2013-08-14

    We have re-examined the utility of native chemical ligation at -Gln/Glu-Cys- [Glx-Cys] and -Asn/Asp-Cys- [Asx-Cys] sites. Using the improved thioaryl catalyst 4-mercaptophenylacetic acid (MPAA), native chemical ligation could be performed at -Gln-Cys- and Asn-Cys- sites without side reactions. After optimization, ligation at a -Glu-Cys- site could also be used as a ligation site, with minimal levels of byproduct formation. However, -Asp-Cys- is not appropriate for use as a site for native chemical ligation because of formation of significant amounts of β-linked byproduct. The feasibility of native chemical ligation at -Gln-Cys- enabled a convergent total chemical synthesis of the enantiomeric forms of the ShK toxin protein molecule. The D-ShK protein molecule was ~50,000-fold less active in blocking the Kv1.3 channel than the L-ShK protein molecule. Racemic protein crystallography was used to obtain high-resolution X-ray diffraction data for ShK toxin. The structure was solved by direct methods and showed significant differences from the previously reported NMR structures in some regions of the ShK protein molecule.

  15. High-resolution electron microscope image analysis approach for superconductor YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Xu, J.; Lu, F.; Jia, C.; Hua, Z.

    1991-01-01

    In this paper, an HREM (High-resolution electron microscope) image analysis approach has been developed. The image filtering, segmentation and particles extraction based on gray-scale mathematical morphological operations, are performed on the original HREM image. The final image is a pseudocolor image, with the background removed, relatively uniform brightness, filtered slanting elongation, regular shape for every kind of particle, and particle boundaries that no longer touch each other so that the superconducting material structure can be shown clearly

  16. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.

    Science.gov (United States)

    Hyun, Woo Jin; Secor, Ethan B; Hersam, Mark C; Frisbie, C Daniel; Francis, Lorraine F

    2015-01-07

    High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates. Well-defined silicon stencils and viscosity-controlled inks facilitate the preparation of high-quality graphene patterns as narrow as 40 μm. This strategy provides an efficient method to produce highly flexible graphene electrodes for printed electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High resolution electron microscopy studies of interfaces between Al2O3 substrates and MBE grown Nb films

    International Nuclear Information System (INIS)

    Mayer, J.; Ruhle, M.; Dura, J.; Flynn, C.P.

    1991-01-01

    This paper reports on single crystal niobium films grown by Molecular Beam Epitaxy (MBE) on (001) S sapphire substrates. Cross-sectional specimens with thickness of 2 O 3 interface could be investigated by high resolution electron microscopy (HREM). The orientation relationship between the metal film and the ceramic substrate was verified by selected area diffraction: (111) Nb parallel (0001) S and [1 bar 10] Nb parallel [2 bar 1 bar 10] S . The atomistic structure of the interface was identified by HREM

  18. One- and two-phonon mixed-symmetry states in 94Mo in high-resolution electron and proton scattering

    International Nuclear Information System (INIS)

    Fujita, H.; Botha, N.T.; Burda, O.; Carter, J.; Fearick, R.W.; Foertsch, S.V.; Fransen, C.; Kuhar, M.; Lenhardt, A.; Neumann-Cosel, P. von; Neveling, R.; Pietralla, N.; Ponomarev, V.Yu.; Richter, A.; Scholten, O.; Sideras-Haddad, E.; Smit, F.D.; Wambach, J.

    2007-01-01

    High-resolution inelastic electron scattering experiments at the S-DALINAC and proton scattering experiments at iThemba LABS permit a thorough test of the nature of proposed one- and two-phonon symmetric and mixed-symmetric 2 + states of the nucleus 94 Mo. The combined analysis reveals the one-phonon content of the mixed-symmetry state and its isovector character suggested by microscopic calculations. The purity of two-phonon 2 + states is extracted

  19. Investigation of thin films, heterostructures and devices of ceramic superconductors by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia Chunlin.

    1993-08-01

    In this thesis a systematic study of the microstructure of YBa 2 Cu 3 O 7 thin films is presented by means of high-resolution electron microscopy (HREM). Most of the efforts are focused on the characterization of heterostructures of superconducting YBa 2 Cu 3 O 7 and non-superconducting PrBa 2 Cu 3 O 7 and on YBa 2 Cu 3 O 7 films deposited on step-edge substrates. These specially designed structures exhibit a great potential for the electronic application of high-Tc superconductors and for the investigation of the basic electric properties of the YBa 2 Cu 3 O 7 superconductor. (orig.) [de

  20. High-resolution, high-throughput imaging with a multibeam scanning electron microscope.

    Science.gov (United States)

    Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D

    2015-08-01

    Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. Effects of display resolution and size on primary diagnosis of chest images using a high-resolution electronic work station

    International Nuclear Information System (INIS)

    Fuhrman, C.R.; Cooperstein, L.A.; Herron, J.; Good, W.F.; Good, B.; Gur, D.; Maitz, G.; Tabor, E.; Hoy, R.J.

    1987-01-01

    To evaluate the acceptability of electronically displayed planar images, the authors have a high-resolution work station. This system utilizes a high-resolution film digitizer (100-micro resolution) interfaced to a mainframe computer and two high-resolution (2,048 X 2,048) display devices (Azuray). In a clinically simulated multiobserver blind study (19 cases and five observers) a prodetermined series of reading sessions is stored on magnetic disk and is transferred to the displays while the preceding set of images is being reviewed. Images can be linearly processed on the fly into 2,000 X 2,000 full resolution, 1,000 X 1,000 minified display, or 1,000 X 1,000 interpolated for full-size display. Results of the study indicate that radiologists accept but do not like significant minification (more than X2), and they rate 2,000 X 2,000 images as having better diagnostic quality than 1,000 X 1,000 images

  2. Crystal interface and high-resolution electron microscopy—the best partner

    Directory of Open Access Journals (Sweden)

    H Ichinose

    2000-01-01

    Full Text Available Several contributions of HRTEM on the interface science are reviewed in chronological order. The first contribution of HRTEM is the observation of gold (113Σ°11 boundary, giving experimental proof of the CSL model. An observation of the asymmetric (112Σ°3 boundary follows. A SiC grain boundary is effectively assessed not by the density of CSL point but the number of dangling bonds in the boundary. A ZnO/Pd interface provides an example that a misfit dislocation does not necessarily accommodate the lattice mismatch. Segregated interface shows characteristic HRTEM image contrast, suggesting change in atomic bonding. An atomic height step in the semiconductor hetero interface is observed by the Chemical Lattice Image technique. In the diamond grain boundary a dangling bond may not elevate the boundary energy, being contradictory of the least dangling bond rule. Super-high resolution of the HVHRTEM enable us to determine atomic species in the grain boundary. Combined use of HRTEM and EELSE allows us to discuss the correlation between atomic structure and nature of the corresponding interface. It is not exaggeration to say that modern interface science does not exist witout HRTEM. On the other hand, many complicated interfaces found by HRTEM remained as unaswered questions. An innovative structural model is requested to appear on the scene.

  3. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    Science.gov (United States)

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  4. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  5. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  6. Quantitative analysis of localized stresses in irradiated stainless steels using high resolution electron backscatter diffraction and molecular dynamics modeling

    International Nuclear Information System (INIS)

    Johnson, D.C.; Kuhr, B.; Farkas, D.; Was, G.S.

    2016-01-01

    Quantitative measurements of stress near dislocation channel–grain boundary (DC–GB) interaction sites were made using high resolution electron backscatter diffraction (HREBSD) and have been compared with molecular dynamics (MD) simulations. Tensile stress normal to the grain boundary was significantly elevated at discontinuous DC–GB intersections with peak magnitudes roughly an order of magnitude greater than at sites where slip transfer occurred. These results constitute the first measurement of stress amplification at DC–GB intersections and provide support to the theory that high normal stress at the grain boundary may be a key driver for the initiation of irradiation assisted stress corrosion cracks.

  7. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  8. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    Science.gov (United States)

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  9. Impact of measuring electron tracks in high-resolution scientific charge-coupled devices within Compton imaging systems

    International Nuclear Information System (INIS)

    Chivers, D.H.; Coffer, A.; Plimley, B.; Vetter, K.

    2011-01-01

    We have implemented benchmarked models to determine the gain in sensitivity of electron-tracking based Compton imaging relative to conventional Compton imaging by the use of high-resolution scientific charge-coupled devices (CCD). These models are based on the recently demonstrated ability of electron-tracking based Compton imaging by using fully depleted scientific CCDs. Here we evaluate the gain in sensitivity by employing Monte Carlo simulations in combination with advanced charge transport models to calculate two-dimensional charge distributions corresponding to experimentally obtained tracks. In order to reconstruct the angle of the incident γ-ray, a trajectory determination algorithm was used on each track and integrated into a back-projection routine utilizing a geodesic-vertex ray tracing technique. Analysis was performed for incident γ-ray energies of 662 keV and results show an increase in sensitivity consistent with tracking of the Compton electron to approximately ±30 o .

  10. High-Resolution of Electron Microscopy of Montmorillonite and Montmorillonite/Epoxy Nanocomposites

    National Research Council Canada - National Science Library

    Drummy, Lawrence F; Farmer, Karen; Tan, Ashley; Farmer, B. L; Vaia, Richard A; Koerner, Hilmar

    2005-01-01

    .... These procedures involve careful control of the microscope's objective lens defocus to maximize contrast from features of certain size, as well as limiting the total dose of electrons received by the sample...

  11. A low cost high resolution pattern generator for electron-beam lithography

    International Nuclear Information System (INIS)

    Pennelli, G.; D'Angelo, F.; Piotto, M.; Barillaro, G.; Pellegrini, B.

    2003-01-01

    A simple, very low cost pattern generator for electron-beam lithography is presented. When it is applied to a scanning electron microscope, the system allows a high precision positioning of the beam for lithography of very small structures. Patterns are generated by a suitable software implemented on a personal computer, by using very simple functions, allowing an easy development of new writing strategies for a great adaptability to different user necessities. Hardware solutions, as optocouplers and battery supply, have been implemented for reduction of noise and disturbs on the voltages controlling the positioning of the beam

  12. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  13. Inner shell excitation in atoms and molecules by high resolution electron impact

    International Nuclear Information System (INIS)

    King, G.C.

    1986-01-01

    In this work an inner-shell spin-forbidden transition in N 2 and a parity-forbidden transition in Ar were studied. These transitions were observed by using incident electron energies as low as 1.15 times the excitation energy of the inner-shell states. (Auth.)

  14. Efficient creation of electron vortex beams for high resolution STEM imaging.

    Science.gov (United States)

    Béché, A; Juchtmans, R; Verbeeck, J

    2017-07-01

    The recent discovery of electron vortex beams carrying quantised angular momentum in the TEM has led to an active field of research, exploring a variety of potential applications including the possibility of mapping magnetic states at the atomic scale. A prerequisite for this is the availability of atomic sized electron vortex beams at high beam current and mode purity. In this paper we present recent progress showing that by making use of the Aharonov-Bohm effect near the tip of a long single domain ferromagnetic Nickel needle, a very efficient aperture for the production of electron vortex beams can be realised. The aperture transmits more than 99% of all electrons and provides a vortex mode purity of up to 92%. Placing this aperture in the condenser plane of a state of the art Cs corrected microscope allows us to demonstrate atomic resolution HAADF STEM images with spatial resolution better than 1 Angström, in agreement with theoretical expectations and only slightly inferior to the performance of a non-vortex probe on the same instrument. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [A high resolution projection electron spectrometers]: Final report 1978-1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main emphasis of the work has been to study inner shell ionization processes. The signatures have been K x-rays or K Auger transitions. We have worked with semiconductor or Bragg x-ray spectrometers. Toward the end of the contract we concentrated on projectile electron spectroscopy. These topics and other atomic physics projects are described briefly in this progress report

  16. High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins

    Directory of Open Access Journals (Sweden)

    M. Salewski

    2017-08-01

    Full Text Available Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using microwaves and radio waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses still remains a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra, which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated steplike Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground-state doublet which can be retrieved only optically because of selective excitation of the same subensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon-echo measurements in an n-type CdTe/(Cd,MgTe quantum-well structure detected by a heterodyne technique. The difference in the sub-μeV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by 2 orders of magnitude.

  17. Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

    International Nuclear Information System (INIS)

    Francis, L D; Rivas, J; José-Yacamán, M

    2014-01-01

    Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic structure. A brief introduction to advanced electron microscopic techniques namely aberration corrected scanning transmission electron microscopy (Cs-STEM) is presented and subsequently two examples of nanocatalysts are considered in the present review. The first example will focus on the study of bimetallic/core-shell nanoalloys. In heterogeneous catalysis, catalysts containing two or more metals might show significantly different catalytic properties compared to the parent metals and thus are widely utilized in several catalytic reactions. Atom-by-atom insights of the nanoalloy based catalysts ex: Au-Pd will be described in the present review using a combination of advanced electron microscopic and spectroscopic techniques. A related example on the understanding of bimetallic clusters by HAADF-STEM will also be presented in addition to nanoparticles. In the second case understanding the structure of transition metal chalcogenide based nanocatalysts by HRTEM and aberration corrected STEM, for the case of MoS 2 will be discussed. MoS 2 -based catalysts serve as model catalysts and are employed in the hydrodesulphurisations (HDS) reactions in the removal of sulphur from gasoline and related petrochemical products. They have been studied in various forms including nanowires, nanotubes and nanoplates. Their structure, atomic insights and as a consequence elucidation of their corresponding catalytic activity are thus important

  18. In situ electrical probing and bias-mediated manipulation of dielectric nanotubes in a high-resolution transmission electron microscope

    International Nuclear Information System (INIS)

    Golberg, D.; Mitome, M.; Kurashima, K.; Zhi, C.Y.; Tang, C.C.; Bando, Y.; Lourie, O.

    2006-01-01

    Boron nitride nanotubes filled with magnesium oxides [MgO, MgO 2 ] and/or hydroxide [Mg(OH) 2 ] are electrically probed and delicately manipulated inside a 300 kV JEOL-3000F high-resolution transmission analytical electron microscope equipped with a side-entry 'Nanofactory Instruments' piezoholder. At a low bias the nanotubes demonstrate truly insulating behavior. At a high bias of ±30 V they show reversible breakdown current of several dozens of nA. Under 300 kV electron beam irradiation the nanotubes are positively charged that allows us to perform on-demand manipulation with them through tuning of polarity and/or value of a bias voltage on a gold counterelectrode from -140 to +140 V, owing to the prominent electrostatic nanotube-electrode interactions

  19. Core polarisation and configuration mixing in 58Ni studied by high resolution electron scattering

    International Nuclear Information System (INIS)

    Blok, H.

    1986-01-01

    The nucleus 58 Ni is studied by inelastic electron-scattering. This nucleus has two valence neutrons outside a closed 58 Ni core which implies that no valence protons contribute to the transitions and thus, besides configuration mixing of the valence neutrons, proton-core polarization can be studied in detail. From inelastic electron-scattering data one obtains the charge- and current-transition densities by determining the Fourier-Bessel transform of the cross sections measured over a wide range of linear momenta transferred to the nucleus. The results of an analysis of the excitation of two 0 ++ states at low-momentum transfer are presented. These transitions are particularly interesting for studying core-polarization contributions. (Auth.)

  20. Low-energy magnetic dipole response in 56Fe from high-resolution electron scattering

    International Nuclear Information System (INIS)

    Fearick, R.W.; Hartung, G.; Langanke, K.; Martinez-Pinedo, G.; Neumann-Cosel, P. von; Richter, A.

    2003-01-01

    The 56 Fe(e, e') reaction has been studied for excitation energies up to about 8 MeV and momentum transfers q≅0.4-0.55 fm -1 at the Darmstadt electron linear accelerator (DALINAC) with kinematics emphasizing M1 transitions. Additional data have been taken for q≅0.8-1.7 fm -1 at the electron accelerator NIKHEF, Amsterdam. A PWBA analysis allows spin and parity determination of the excited states. For M1 excitations, transition strengths are derived with a DWBA analysis using shell-model form factors. The resulting B(M1) strength distribution is compared to shell-model calculations employing different effective interactions. The form factor of the prominent low-lying M1 transition at 3.449 MeV demonstrates its dominant orbital nature. It represents a major part of the scissors mode in 56 Fe

  1. High resolution electron exit wave reconstruction from a diffraction pattern using Gaussian basis decomposition

    International Nuclear Information System (INIS)

    Borisenko, Konstantin B; Kirkland, Angus I

    2014-01-01

    We describe an algorithm to reconstruct the electron exit wave of a weak-phase object from single diffraction pattern. The algorithm uses analytic formulations describing the diffraction intensities through a representation of the object exit wave in a Gaussian basis. The reconstruction is achieved by solving an overdetermined system of non-linear equations using an easily parallelisable global multi-start search with Levenberg-Marquard optimisation and analytic derivatives

  2. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    Science.gov (United States)

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  3. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C 61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C 60 ). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan 3 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High resolution electron scattering facility at the Darmstadt Linear Accelerator (DALINAC). Pt. 4

    International Nuclear Information System (INIS)

    Foh, J.; Frey, R.; Schneider, R.; Schuell, D.; Schwierczinski, A.; Theissen, H.; Titze, O.

    1977-11-01

    The computer system installed for the electron scattering facility and its usage is described. For on-line control a dedicated system of two tightly coupled computers (PDP 11/20, H116) is used wheras a PDP 11/45 is provided for all other data processing work resulting from the experiments. Special interfaces, graphic terminals, system software and a complete set of application programs have been developed. (orig.) [de

  5. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    Science.gov (United States)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  6. A high resolution electron microscopy investigation of curvature in carbon nanotubes

    Science.gov (United States)

    Weldon, D. N.; Blau, W. J.; Zandbergen, H. W.

    1995-07-01

    Evidence for heptagon inclusion in multi-walled carbon nanotubes was sought in arc-produced carbon deposits. Transmission electron microscopy revealed many curved nanotubes although their relative abundance was low. Close examination of the micrographs in the regions of expected heptagon inclusion shows that the curvature is accomplished by folding or fracture of the lattice planes. This observed phenomenon contradicts the theoretical modelling studies which predict stable structures with negative curvature accomplished by heptagon/pentagon pairs. A possible explanation for curvature in single-walled tubes is presented based on a molecular mechanics geometry optimisation study of spa inclusion in a graphite sheet.

  7. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  8. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy.

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  9. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  10. High-Resolution Electron-Impact Study of the Far-Ultraviolet Emission Spectrum of Molecular Hydrogen

    Science.gov (United States)

    Liu, Xian-Ming; Ahmed, Syed M.; Multari, Rosalie A.; James, Geoffrey K.; Ajello, Joseph M.

    1995-01-01

    The emission spectrum of molecular hydrogen produced by electron-impact excitation at 100 eV has been measured in the wavelength range 1140-1690 A. High-resolution, optically thin spectra (delta(lambda) = 0.136 A) of the far-ultraviolet (FUV) Lyman and Werner band systems have been obtained with a newly constructed 3 m spectrometer. Synthetic spectral intensities based on the transition probabilities calculated by Abgrall et al. are in very good agreement with experimentally observed intensities. Previous modeling that utilized Allison & Daigarno band transition probabilities with Hoenl-London factors breaks down when the transition moment has significant J dependence or when ro-vibrational coupling is significant. Ro-vibrational perturbation between upsilon = 14 of the B(sup 1)Sigma(sup +, sub u) state and upsilon = 3 of the C(sup 1)Pi(sub u) state and the rotational dependence of the transition moment in the bands of the Lyman system are examined. Complete high-resolution experimental reference FUV spectra, together with the model synthetic spectra based on the Abgrall transition probabilities, are presented. An improved calibration standard is obtained, and an accurate calibration of the 3 m spectrometer has been achieved.

  11. Quantitative High Resolution Transmission Electron Microscopy (HRTEM): a novel approach towards application oriented basic research

    International Nuclear Information System (INIS)

    Kisielowski, Christian; Weber, Eicke R.; Liliental-Weber, Zuzanna

    1996-01-01

    This paper reviews recent developments of microscopic methods that base on a quantitative analysis of electron micrographs to access subsurface systems at the atomic scale. It focuses on non-equilibrium diffusion processes that are observed in nano structured MBE grown materials if a low growth temperature was used and on local deviations from a stoichiometric composition of materials. As examples we investigate Ga As/Al As and Si/Ge Si heterostructures and Ga N single crystals. The purpose of the research is twofold. On the one hand it helps understanding physical processes at the atomic scale. On the other hand we can use the results to link basic physical knowledge with the performance of semiconductor devices made from nano structured materials. (author). 28 refs., 15 figs

  12. Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms

    International Nuclear Information System (INIS)

    Zemlin, F.; Weiss, K.; Schiske, P.; Kunath, W.; Herrmann, K.-H.

    1978-01-01

    Alignment by means of current commutating and defocusing of the objective does not yield the desired rotational symmetry of the imaging pencils. This was found while aligning a transmission electron microscope with a single field condenser objective. A series of optical diffractograms of micrographs taken under the same tilted illumination yet under various azimuths have been arranged in a tableau, wherein strong asymmetry is exhibited. Quantitative evaluation yields the most important asymmetric aberration to be the axial coma, which becomes critical when a resolution better than 5 A 0 is obtained. The tableau also allows an assessment of the three-fold astigmatism. A procedure has been developed which aligns the microscope onto the coma-free and dispersion-free pencil axis and does not rely on current communication. The procedure demands equal appearance of astigmatic carbon film images produced under the same tilt yet diametrical azimuth. (Auth.)

  13. Preservation of high resolution protein structure by cryo-electron microscopy of vitreous sections

    International Nuclear Information System (INIS)

    Sader, Kasim; Studer, Daniel; Zuber, Benoit; Gnaegi, Helmut; Trinick, John

    2009-01-01

    We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1 A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9 A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.

  14. Bio-camouflage of anatase nanoparticles explored by in situ high-resolution electron microscopy.

    Science.gov (United States)

    Ribeiro, Ana R; Mukherjee, Arijita; Hu, Xuan; Shafien, Shayan; Ghodsi, Reza; He, Kun; Gemini-Piperni, Sara; Wang, Canhui; Klie, Robert F; Shokuhfar, Tolou; Shahbazian-Yassar, Reza; Borojevic, Radovan; Rocha, Luis A; Granjeiro, José M

    2017-08-03

    While titanium is the metal of choice for most prosthetics and inner body devices due to its superior biocompatibility, the discovery of Ti-containing species in the adjacent tissue as a result of wear and corrosion has been associated with autoimmune diseases and premature implant failures. Here, we utilize the in situ liquid cell transmission electron microscopy (TEM) in a liquid flow holder and graphene liquid cells (GLCs) to investigate, for the first time, the in situ nano-bio interactions between titanium dioxide nanoparticles and biological medium. This imaging and spectroscopy methodology showed the process of formation of an ionic and proteic bio-camouflage surrounding Ti dioxide (anatase) nanoparticles that facilitates their internalization by bone cells. The in situ understanding of the mechanisms of the formation of the bio-camouflage of anatase nanoparticles may contribute to the definition of strategies aimed at the manipulation of these NPs for bone regenerative purposes.

  15. Transformations of gold nanoparticles investigated using variable temperature high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Young, N.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Huis, M.A. van; Zandbergen, H.W. [Kavli Institute of Nanoscience, Delft University of Technolgy, Lorentzweg 1, NL-2628CJ, Delft, The Netherlands. (Netherlands); Xu, H. [Department of Geology and Geophysics, and Materials Science Program, University of Wisconsin-Madison, Madison, WI (United States); Kirkland, A.I., E-mail: angus.kirkland@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2010-04-15

    Recently designed advanced in-situ specimen holders for transmission electron microscopy (TEM) have been used in studies of gold nanoparticles. We report results of variable temperature TEM experiments in which structural transformations have been correlated with specimen temperature, allowing general trends to be identified. Transformation to a decahedral morphology for particles in the size range 5-12 nm was observed for the majority of particles regardless of their initial structure. Following in-situ annealing, decahedra were found to be stable at room temperature, confirming this as the equilibrium morphology, in agreement with recently calculated phase diagrams. Other transitions at low temperature in addition to surface roughening have also been observed and correlated with the same nanoscale phase diagram. Investigations of gold particles at high temperature have revealed evidence for co-existing solid and liquid phases. Overall, these results are important in a more precise understanding of the structure and action of catalytic gold nanoparticles and in the experimental verification of theoretical calculations.

  16. High resolution electron microscopy of the triply incommensurate phase of 2H-TaSe2

    Science.gov (United States)

    Onozuka, Takashi; Otsuka, Nobuo; Sato, Hiroshi

    1986-09-01

    The triply incommensurate phase of 2H-TaSe2 obtained by cooling from the normal phase was investigated by transmission electron microscopy between 87 and 113 K with the resolution of 3 Å, one order of magnitude better than earlier experiments. Moirélike patterns observed in this phase were confirmed to be interference fringes due to the first- and second-order diffraction beams (with small separation and possibly with higher-order diffraction beams) from the incommensurate structure and were not due to the dark-field diffraction contrast of domains of the commensurate structure as interpreted earlier. Lattice fringes (~9 Å) of this modulated phase do not show any discontinuity across the boundaries of regions of different contrasts of the moirélike fringes which is expected from domain boundaries. Instead, a periodic change in the spacing of the lattice fringes (phase-slip region) expected from the superposition of split superlattice spots in forming the lattice image is observed. This is what is believed to be the first direct observation of the existence of the phase-slip region which is also expected from the discommensuration theory. A series of observations presented here thus shows that the triply incommensurate phase is intrinsically incommensurate and suggests the need for a modification of interpretations of this phase in terms of the double honeycomb discommensuration model.

  17. The digital structural analysis of cadmium selenide crystals by a method of ion beam thinning for high resolution electron microscopy

    International Nuclear Information System (INIS)

    Kanaya, Koichi; Baba, Norio; Naka, Michiaki; Kitagawa, Yukihisa; Suzuki, Kunio

    1986-01-01

    A digital processing method using a scanning densitometer system for structural analysis of electron micrographs was successfully applied to a study of cadmium selenide crystals, which were prepared by an argon-ion beam thinning method. Based on Fourier techniques for structural analysis from a computer-generated diffractogram, it was demonstrated that when cadmium selenide crystals were sufficiently thin to display the higher order diffraction spots at a high resolution approaching the atomic level, they constitute an alternative hexagonal lattice of imperfect wurtzite phase from a superposition of individual harmonic images by the enhanced scattering amplitude and corrected phase. From the structural analysis data, a Fourier synthetic lattice image was reconstructed, representing the precise location and three-dimensional arrangement of each of the atoms in the unit cell. Extensively enhanced lattice defect images of dislocations and stacking faults were also derived and shown graphically. (author)

  18. Superstructure of the superconductor BI2Sr2CaCu2O8 by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Hewat, E.A.

    1988-01-01

    The superstructure of the high Tc superconducting oxide BI 2S r 2C aCu 2 0 8 has been studied by high resolution electron microscopy. Waves of distortion along the b-axis give an incommensurate superlattice slightly larger or smaller than 5√2a p (a p = perovskite unit cell). The building blocks along the b-axis are 4, 5 and 6 times √2a p /2. The incommensurate superlattice is composed of approximately periodic combinations of these building blocks. The symmetry of three major projections are P gm (or possibly P gg ), C mm and C mm for the ideal superlattice with b=5√ 2a p . These projections correspond to the space groups Pcnn and Pmnn respectively

  19. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    International Nuclear Information System (INIS)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M.

    1989-01-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a 0 -2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a 0 -2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a 0 -2H domain and the domain wall. (orig.)

  20. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research)

    1989-06-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a{sub 0}-2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a{sub 0}-2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a{sub 0}-2H domain and the domain wall. (orig.).

  1. High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy.

    Science.gov (United States)

    Hunter, Ryan C; Beveridge, Terry J

    2005-11-01

    High-pressure freeze-substitution and transmission electron microscopy have been used for high-resolution imaging of the natural structure of a gram-negative biofilm. Unlike more conventional embedding techniques, this method confirms many of the observations seen by confocal microscopy but with finer structural detail. It further reveals that there is a structural complexity to biofilms at both the cellular and extracellular matrix levels that has not been seen before. Different domains of healthy and lysed cells exist randomly dispersed within a single biofilm as well as different structural organizations of exopolymers. Particulate matter is suspended within this network of fibers and appears to be an integral part of the exopolymeric substance (EPS). O-side chains extending from the outer membrane are integrated into EPS polymers so as to form a continuum. Together, the results support the concept of physical microenvironments within biofilms and show a complexity that was hitherto unknown.

  2. Phonon spectrum of single-crystalline FeSe probed by high-resolution electron energy-loss spectroscopy

    Science.gov (United States)

    Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas

    2018-06-01

    Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).

  3. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvyd' ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  4. Electron crystallography applied to the structure determination of Nb(Cu,Al,X) Laves phases.

    Science.gov (United States)

    Gigla, M; Lelatko, J; Krzelowski, M; Morawiec, H

    2006-09-01

    The presence of primary precipitates of the Laves phases considerably improves the mechanical properties and the resistance to thermal degradation of the high-temperature shape memory Cu-Al-Nb alloys. The structure analysis of the Laves phases was carried out on particles contained in the ternary and quaternary alloys as well on synthesized compounds related to the composition of the Nb(Cu,Al,X)(2) phase, where X = Ni, Co, Cr, Ti and Zr. The precise structure determination of the Laves phases was carried out by the electron crystallography method using the CRISP software.

  5. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  6. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Robert, E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, Sang Chul, E-mail: sclee99@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Shi, Yezhou; Chueh, William C. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-05-15

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e{sup -}/Å{sup 2}s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e{sup -}/Å{sup 2}s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce{sup 3+} versus Ce{sup 4+} cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface. - Highlights: • The local structure and chemistry of ceria can be studied by TEM combined with EELS. • At lower electron, there are no observable changes in the ceria thin films. • At higher dose rates, an ordered phase is created due to oxygen vacancy ordering. • In situ HRTEM shows the oxygen vacancy ordering and the movement of surface atoms.

  7. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  8. Structural evolution of a deformed Σ=9 (122) grain boundary in silicon. A high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Putaux, Jean-Luc

    1991-01-01

    This research thesis addresses the study by high resolution electron microscopy of the evolution of a silicon bi-crystal under deformation at different temperatures. The author notably studied the structural evolution of the boundary as well as that of grains at the vicinity of the boundary. Two observation scales have been used: the evolution of sub-structures of dislocations induced by deformation in grains and in boundary, and the structure of all defects at an atomic scale. After a presentation of experimental tools (the necessary perfect quality of the electronic optics is outlined), the author recalls some descriptive aspects of grain boundaries (geometric network concepts to describe coinciding networks, concepts of delimiting boundaries and of structural unit to describe grain boundary atomic structure), recalls the characteristics of the studied bi-crystal, and the conditions under which it is deformed. He presents the structures of all perfectly coinciding boundaries, describes defects obtained by deformation at the vicinity of the boundary, describes the entry of dissociated dislocations into the boundaries, and discusses the characterization of boundary dislocations (the notion of Burgers vector is put into question again), and the atomic mechanism of displacement of dislocations in boundaries [fr

  9. High-resolution electron microscopic evidence for the filamentous structure of the cyst wall in Giardia muris and Giardia duodenalis.

    Science.gov (United States)

    Erlandsen, S L; Bemrick, W J; Pawley, J

    1989-10-01

    High-resolution morphological studies of the cyst wall of Giardia spp. were performed using low-voltage scanning electron microscopy (LVSEM) and transmission electron microscopy (TEM). The cyst wall was composed of membranous and filamentous layers. The membranous layer consisted of an inner and an outer cyst membrane separated by a thin layer of cytoplasm. The filamentous layer contained individual filaments that ranged from 7 to 20 nm in diameter when measured by LVSEM, formed a dense meshwork with branches or interconnections, and were occasionally arranged on the surface in whorled patterns. Cysts of Giardia muris from mice, Giardia duodenalis from dogs, pigs, voles, beavers, muskrats, and humans, and Giardia psittaci from a bird (parakeet), possessed an essentially identical wall composed of filaments. Inducement of excystation in viable Giardia cysts produced a dramatic increase in the interfilament spacing over an entire cyst, but none was observed in heat-killed or chemically fixed control cysts. These results demonstrated that the cyst wall of Giardia spp. was composed of a complex arrangement of filaments, presumably formed during the process of encystment.

  10. High-resolution electron-energy-loss spectroscopy studies of clean and hydrogen-covered tungsten (100) surfaces

    International Nuclear Information System (INIS)

    Woods, J.P.

    1986-01-01

    High-resolution (10-meV FWHM) low-energy (≤ 100eV) electrons are scattered from the tungsten (100) surface. Electron-energy-loss spectroscopy (EELS) selection rules are utilized to identify vibrational modes of the surface tungsten atoms. A 36-meV mode is measured on the c(2 X 2) thermally reconstructed surface and is modeled as an overtone of the 18-meV mode at M in the surface Brillouin zone. The superstructure of the reconstructed surface allows this mode to be observed in specular scattering. The surface tungsten atoms return to their bulk lateral positions with saturated hydrogen (β 1 phase) adsorption; and a 26-meV mode identified is due to the perpendicular vibration of the surface tungsten layers. The clean-room temperature surface does not display either low-energy vibrations and the surface is modeled as disordered. The three β 1 phase hydrogen vibrations are observed and a new vibration at 118 meV is identified. The 118-meV cross section displays characteristics of a parallel mode, but calculations show this assignment to be erroneous. There are two hydrogen atoms for each surface tungsten atom in the β 1 phase, and lattice-dynamical calculations show that the 118-meV mode is due to a hydrogen-zone edge vibration. The predicted breakdown of the parallel hydrogen vibration selection rule was not observed

  11. High resolution electron microscopy and electron diffraction of YBa/sub 2/Cu/sub 3/O/sub 7-x/

    International Nuclear Information System (INIS)

    Krakow, W.; Shaw, T.M.

    1988-01-01

    Experimental high resolution electron micrographs and computer simulation experiments have been used to evaluate the visibility of the atomic constituents of YBa/sub 2/Cu/sub 3/O/sub 7-x/. In practice, the detection of oxygen has not been possible in contradiction to that predicted by modelling of perfect crystalline material. Preliminary computer experiments of the electron diffraction patterns when oxygen vacancies are introduced on the Cu-O sheets separating Ba layers show the diffuse streaks characteristic of short range ordering

  12. High resolution inelastic electron scattering on 90Zr at low momentum transfer and strong fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Meuer, D.; Frey, R.; Hoffmann, D.H.H.; Richter, A.; Spamer, E.; Titze, O.; Knuepfer, W.

    1980-01-01

    High-resolution (FWHM approx. 30 keV) inelastic electron scattering on 90 Zr at low momentum transfer (0.20 -1 ) has been used to study magnetic transitions at excitation energies Esub(x) = 8-10 MeV. The experimental data were analyzed in the distorted-wave Born approximation (DWBA) with wave functions calculated in the random phase approximation (RPA). Three Jsup(π) = 1 + states have been identified Esub(x) = 8.233, 9.000 and 9.371 MeV. There is some indication of further very fragmented dipole strength and the upper limit for the total M1 strength in the investigated energy region is ΣB(M1)up 2 sub(K). It is much smaller than any theoretical prediction. Furthermore, a large number of 2 - states has been observed, with the center of gravity located at Esub(x) approx. 9 MeV. These states carry a total strength of ΣB(M2)up = 1000 μ 2 sub(K) x fm 2 . Their strong fragmentation is in qualitative agreement with theoretical calculations, but the deduced strength is much smaller than theoretically predicted. In addition the distributions of spacings and radiative widths of the 2 - states are consistent with a Wigner and a Porter-Thomas distribution, respectively. (orig.)

  13. High-resolution electron-microscopic studies of the polymorphs in Ag2±δSe films

    International Nuclear Information System (INIS)

    Okabe, Toshio; Ura, Katsuhiko

    1994-01-01

    The polymorphs that appear in the low-temperature phase of silver selenide have been studied by high-resolution electron microscopy. The specimen films are intentionally prepared with excess silver or selenium over stoichiometric composition by flash evaporation, as-depositing carbon films on both sides of the specimen films to protect them from selenium sublimation and to maintain the composition throughout the heat treatment. It is shown that four different types of low-temperature phase exist: tetragonal (a = 6.98, c = 4.96 A) for a metastable phase only formed with a small grain size of less than 50 nm; face-centred cubic (a = 10.9 A) for a non-stoichiometric phase with excess silver; monoclinic (a = 7.05, b = 8.17, c = 4.34 A, α = 101.0 ) for a non-stoichiometric phase with excess selenium; and orthorhombic (a = 7.05, b 7.82, c = 4.34 A) for the stoichiometric stable phase. The topotactic relations between the orthorhombic and monoclinic types are found to be fully coherent, having the same a and c lattice parameters. (orig.)

  14. Automated analysis of heterogeneous carbon nanostructures by high-resolution electron microscopy and on-line image processing

    International Nuclear Information System (INIS)

    Toth, P.; Farrer, J.K.; Palotas, A.B.; Lighty, J.S.; Eddings, E.G.

    2013-01-01

    High-resolution electron microscopy is an efficient tool for characterizing heterogeneous nanostructures; however, currently the analysis is a laborious and time-consuming manual process. In order to be able to accurately and robustly quantify heterostructures, one must obtain a statistically high number of micrographs showing images of the appropriate sub-structures. The second step of analysis is usually the application of digital image processing techniques in order to extract meaningful structural descriptors from the acquired images. In this paper it will be shown that by applying on-line image processing and basic machine vision algorithms, it is possible to fully automate the image acquisition step; therefore, the number of acquired images in a given time can be increased drastically without the need for additional human labor. The proposed automation technique works by computing fields of structural descriptors in situ and thus outputs sets of the desired structural descriptors in real-time. The merits of the method are demonstrated by using combustion-generated black carbon samples. - Highlights: ► The HRTEM analysis of heterogeneous nanostructures is a tedious manual process. ► Automatic HRTEM image acquisition and analysis can improve data quantity and quality. ► We propose a method based on on-line image analysis for the automation of HRTEM image acquisition. ► The proposed method is demonstrated using HRTEM images of soot particles

  15. High-resolution electron microscopy study of Ni81Fe19 film with Co33Cr67 buffer layer

    International Nuclear Information System (INIS)

    Xu, Q.Y.; Wang, Z.M.; Shen, F.; Du, Y.W.; Zhang, Z.

    2003-01-01

    The anisotropic magnetoresistance (AMR) in permalloy Ni 81 Fe 19 film deposited on a 1.2 nm Co 33 Cr 67 buffer layer was significantly enhanced. The high-resolution electron microscopy was used to study the microstructure of Ni 81 Fe 19 film with and without Co 33 Cr 67 buffer layer. It was found that Co 33 Cr 67 buffer layer can induce good (1 1 1) texture, while without Co 33 Cr 67 buffer layer, Ni 81 Fe 19 film show randomly oriented grain structure. The Δρ/ρ enhancement is attributed to the decrease in the resistivity ρ of the Ni 81 Fe 19 film due to the formation of the large (1 1 1) textured grains in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer. However, the surface roughness of substrate may limit the (1 1 1) textured grain size and induce additional grain boundaries in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer, limit the enhancement of the AMR effect

  16. High-resolution electron microscopy study of electron-irradiation-induced crystalline-to-amorphous transition in α-SiC single crystals

    International Nuclear Information System (INIS)

    Inui, H.; Mori, H.; Sakata, T.

    1992-01-01

    An electron-irradiation-induced crystalline-to-amorphous (CA) transition in α-SiC has been studied by high-resolution electron microscopy (HREM). The irradiation-produced damage structure was examined as a function of dose of electrons by taking high-resolution maps extending from the unirradiated crystalline region to the completely amorphized region. In the intermediate region between those two regions, that is in the CA transition region, the damage structure was essentially a mixture of crystalline and amorphous phases. The volume fraction of the amorphous phase was found to increase with increasing dose of electrons and no discrete crystalline-amorphous interface was observed in the CA transition region. These facts indicate the heterogeneous and gradual nature of the CA transition. In the transition region close to the unirradiated crystalline region, a sort of fragmentation of the crystal lattice was observed to occur, crystallites with slightly different orientations with respect to the parent crystal were formed owing to the strain around the dispersed local amorphous regions. In the transition region close to the amorphized region, these crystallites were reduced in size and were embedded in an amorphous matrix. This damage structure is the result of the increased volume fraction of the amorphous phase. In the completely amorphized region, no lattice fringes were recognized in the HREM images. The atomistic process of the CA transition is discussed on the basis of the present results and those from previous studies. (Author)

  17. In situ high-resolution transmission electron microscopy synthesis observation of nanostructured carbon coated LiFePO 4

    Science.gov (United States)

    Trudeau, M. L.; Laul, D.; Veillette, R.; Serventi, A. M.; Mauger, A.; Julien, C. M.; Zaghib, K.

    In situ high-resolution transmission electron microscopy (HRTEM) studies of the structural transformations that occur during the synthesis of carbon-coated LiFePO 4 (C-LiFePO 4) and heat treatment to elevated temperatures were conducted in two different electron microscopes. Both microscopes have sample holders that are capable of heating up to 1500 °C, with one working under high vacuum and the other capable of operating with the sample surrounded by a low gaseous environment. The C-LiFePO 4 samples were prepared using three different compositions of precursor materials with Fe(0), Fe(II) or Fe(III), a Li-containing salt and a polyethylene- block-poly(ethylene glycol)-50% ethylene oxide or lactose. The in situ TEM studies suggest that low-cost Fe(0) and a low-cost carbon-containing compound such as lactose are very attractive precursors for mass production of C-LiFePO 4, and that 700 °C is the optimum synthesis temperature. At temperatures higher than 800 °C, LiFePO 4 has a tendency to decompose. The same in situ measurements have been made on particles without carbon coat. The results show that the homogeneous deposit of the carbon deposit at 700 °C is the result of the annealing that cures the disorder of the surface layer of bare LiFePO 4. Electrochemical tests supported the conclusion that the C-LiFePO 4 derived from Fe(0) is the most attractive for mass production.

  18. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    Science.gov (United States)

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  19. 3D structure determination from electron-microscope images: Electron crystallography of staurolite. [HFe[sub 2]Al[sub 9]Si[sub 4]O[sub 24

    Energy Technology Data Exchange (ETDEWEB)

    Wenk, H.R.; Hu Meisheng (California Univ., Berkeley, CA (United States). Dept. of Geology and Geophysics); Downing, K.H. (Lawrence Berkeley Lab., CA (United States). Donner Lab.); O' Keefe, M.A. (Lawrence Berkeley Lab., CA (United States). National Center for Electron Microscopy)

    1992-09-01

    Resolution of better than 2 A has been obtained in many crystals by high-resolution electron microscopy. Although this resolution is sufficient to resolve interatomic spacings, structures are traditionally interpreted by comparing experimental images with contrast calculations. A drawback of this method is that images are 2D projections in which information is invariably obscured by overlap of atoms. 3D electron crystallography, developed by biophysicists to study proteins, has been used to investigate the crystal structure of staurolite. Amplitudes and phases of structure factors are obtained experimentally from high-resolution images (JEOL ARM 1000 at the National Center for Electron Microscopy at LBL), taken in different directions from thin regions where dynamic scattering is minimal. From images in five orientations (containing 59 independent reflections to a resolution of 1.38 A), a 3D electron potential map is constructed which resolves clearly all cations (Al, Si, Fe, including those with partial occupancy) and all O atoms. This method has great potential in crystal structure determinations of small domains in heterogeneous crystals which are inaccessible to X-ray analysis. It is estimated that 3D structure determinations should be possible on regions only about ten unit cells wide and should resolve not only atom positions but also site occupancies. The method is also applicable to space-group determination. (orig.).

  20. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Science.gov (United States)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  1. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    International Nuclear Information System (INIS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.

    2015-01-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range

  2. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  3. Inner-Shell Excitations of 2p Electrons of Argon Investigated by Fast Electron Impact with High Resolution

    International Nuclear Information System (INIS)

    Ren Lin-Mao; Wang You-Yan; Li Dong-Dong; Yuan Zhen-Sheng; Zhu Lin-Fan

    2011-01-01

    Electron energy loss spectra of inner-shell excitations of 2p electrons of argon are measured at an incident electron energy of 2500 eV and scattering angles of 0° and 4°. The dipole-forbidden transitions of 2p −1 3/2 4p and 2p −1 3/2 5p are observed in the measured spectra and assigned based on the calculations of the Cowan code. The positions and line widths for the excitations of 2p −1 3/2 nl and 2p −1 1/2 nl (n ≤ 5) of argon are determined. The present results show that the line widths of the electric quadrupole transitions of 2p −1 3/2 4p[5/2 + 3/2] 2 and the electric monopole one of 2p −1 3/2 4p[1/2] 0 are less than those of the dipole-allowed transitions. (atomic and molecular physics)

  4. High resolution transmission electron microscopy study on the development of nanostructured precipitates in Al-Cu obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Villalba, L.S., E-mail: luzgomez@geo.ucm.es [Materials Science and Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid (Spain); Instituto de Geociencias-(CSIC-UCM), Madrid (Spain); Delgado, M.L.; Ruiz-Navas, E.M. [Materials Science and Engineering Department, Universidad Carlos III de Madrid, Leganes, Madrid (Spain)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer Development of defect structures and nanoprecipitates after 10 h of mechanical alloying in Al-Cu system. Black-Right-Pointing-Pointer Defects act as nucleation sites of the {epsilon}Al{sub 2}Cu{sub 3} phase. Black-Right-Pointing-Pointer Incoherent and semicoherent precipitates are identified by TEM-HRTEM. Black-Right-Pointing-Pointer Moire patterns are associated to the {epsilon}Al{sub 2}Cu{sub 3} phase. - Abstract: Aluminum alloy 2014 is used to obtain nanostructured powders via mechanical alloying. The evolution of the diffusion processes is observed by the development of defect structures and nanoprecipitates after 10 h of milling. The characterization includes analytical and high resolution transmission electron microscopy. Dislocations associated with different Al/Cu ratio affect the material. These defects act as nucleation sites where precipitates of the {epsilon}Al{sub 2}Cu{sub 3} hexagonal phase have been identified. Moire fringes show the interference of {l_brace}1 1 1{r_brace}{sub Al} with {l_brace}10{sup -}10{r_brace}{sub {epsilon}Al{sub 2Cu{sub 3}}} glide planes and locally small shifts of 1/3{l_brace}1 1 1{r_brace}{sub Al} and 1/3{l_brace}10{sup -}10{r_brace}{sub {epsilon}Al{sub 2Cu{sub 3}}}. Changes in the Al/Cu ratio lead to the formation of other solid solutions identified in the Cu rich area and could correspond to transition phases.

  5. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  6. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  7. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  8. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    Directory of Open Access Journals (Sweden)

    E. I. Howard

    2016-03-01

    Full Text Available Crystal diffraction data of heart fatty acid binding protein (H-FABP in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively. These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  9. Serial Millisecond Crystallography of Membrane Proteins.

    Science.gov (United States)

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.

  10. Investigation of the martensitic phase transformations in CoFe single crystals using high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Waitz, T.

    1999-06-01

    In CoFe crystals containing 0.85, 1.5, 5.75 and 6.0at.% Fe the thermally induced martensitic phase transformations between the close packed lattices face centered cubic (fcc), double hexagonal close packed (dhcp) and hexagonal close packed (hcp) were studied. Transmission electron microscopy methods were applied including in-situ experiments; both high-resolution transmission electron microscopy (HRTEM) images and lattice fringe images were used to analyze the transformations at an atomic scale. Based on the results of both the transformations in the bulk and the in-situ transformations it is concluded that the phase transitions occur by the formation of lamellae on the close packed habit planes. The lamellae have a minimum thickness of 10 to 15 close packed planes; therefore transformation models that are based on random overlap of stacking faults can be excluded. The glissile transformation fronts of the lamellae contain transformation dislocations (partials) that are correlated on an atomic scale. In the HRTEM images partials that are only about 0.2 nm apart were resolved and analyzed in detail by circuits that are similar to Burgers circuits. Two attracting partials on adjacent close packed planes are the structural units of the transformation fronts; they are dipoles and paired partials (with a total Burgers vector of a single partial) in the case of the transformations hcp dhcp and fcc dhcp, respectively. Different arrangements of the partials at the transformation fronts lead to two different modes A and B of the phase transition. These two modes seem to be competitive processes that can be favored by different parameters of the material (as chemical composition and microstructure). Partials of mode A transformations have the same Burgers vectors; therefore the partials repel each other causing long range internal stresses and large transformation shear strains that can lead to a surface relief. Whereas, partials of mode B transformations have different

  11. Evaluation of gas chromatography – electron ionization – full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Hans G.J., E-mail: hans.mol@wur.nl; Tienstra, Marc; Zomer, Paul

    2016-09-07

    Gas chromatography with electron ionization and full scan high resolution mass spectrometry with an Orbitrap mass analyzer (GC-EI-full scan Orbitrap HRMS) was evaluated for residue analysis. Pesticides in fruit and vegetables were taken as an example application. The relevant aspects for GC-MS based residue analysis, including the resolving power (15,000 to 120,000 FWHM at m/z 200), scan rate, dynamic range, selectivity, sensitivity, analyte identification, and utility of existing EI-libraries, are assessed and discussed in detail. The optimum acquisition conditions in full scan mode (m/z 50–500) were a resolving power of 60,000 and an automatic-gain-control target value of 3E6. These conditions provided (i) an optimum mass accuracy: within 2 ppm over a wide concentration range, with/without matrix, enabling the use of ±5 ppm mass extraction windows (ii) adequate scan speed: minimum 12 scans/peak, (iii) an intra-scan dynamic range sufficient to achieve LOD/LOQs ≤0.5 pg in fruit/vegetable matrices (corresponding to ≤0.5 μg kg{sup −1}) for most pesticides. EI-Orbitrap spectra were consistent over a very wide concentration range (5 orders) with good match values against NIST (EI-quadrupole) spectra. The applicability for quantitative residue analysis was verified by validation of 54 pesticides in three matrices (tomato, leek, orange) at 10 and 50 μg/kg. The method involved a QuEChERS-based extraction with a solvent switch into iso-octane, and 1 μL hot splitless injection into the GC-HRMS system. A recovery between 70 and 120% and a repeatability RSD <10% was obtained in most cases. Linearity was demonstrated for the range ≤5–250 μg kg{sup −1}. The pesticides could be identified according to the applicable EU criteria for GC-HRMS (SANTE/11945/2015). GC-EI-full scan Orbitrap HRMS was found to be highly suited for quantitative pesticide residue analysis. The potential of qualitative screening to extend the scope makes it an attractive

  12. Evaluation of gas chromatography – electron ionization – full scan high resolution Orbitrap mass spectrometry for pesticide residue analysis

    International Nuclear Information System (INIS)

    Mol, Hans G.J.; Tienstra, Marc; Zomer, Paul

    2016-01-01

    Gas chromatography with electron ionization and full scan high resolution mass spectrometry with an Orbitrap mass analyzer (GC-EI-full scan Orbitrap HRMS) was evaluated for residue analysis. Pesticides in fruit and vegetables were taken as an example application. The relevant aspects for GC-MS based residue analysis, including the resolving power (15,000 to 120,000 FWHM at m/z 200), scan rate, dynamic range, selectivity, sensitivity, analyte identification, and utility of existing EI-libraries, are assessed and discussed in detail. The optimum acquisition conditions in full scan mode (m/z 50–500) were a resolving power of 60,000 and an automatic-gain-control target value of 3E6. These conditions provided (i) an optimum mass accuracy: within 2 ppm over a wide concentration range, with/without matrix, enabling the use of ±5 ppm mass extraction windows (ii) adequate scan speed: minimum 12 scans/peak, (iii) an intra-scan dynamic range sufficient to achieve LOD/LOQs ≤0.5 pg in fruit/vegetable matrices (corresponding to ≤0.5 μg kg"−"1) for most pesticides. EI-Orbitrap spectra were consistent over a very wide concentration range (5 orders) with good match values against NIST (EI-quadrupole) spectra. The applicability for quantitative residue analysis was verified by validation of 54 pesticides in three matrices (tomato, leek, orange) at 10 and 50 μg/kg. The method involved a QuEChERS-based extraction with a solvent switch into iso-octane, and 1 μL hot splitless injection into the GC-HRMS system. A recovery between 70 and 120% and a repeatability RSD <10% was obtained in most cases. Linearity was demonstrated for the range ≤5–250 μg kg"−"1. The pesticides could be identified according to the applicable EU criteria for GC-HRMS (SANTE/11945/2015). GC-EI-full scan Orbitrap HRMS was found to be highly suited for quantitative pesticide residue analysis. The potential of qualitative screening to extend the scope makes it an attractive alternative to

  13. Structural dynamics of surfaces by ultrafast electron crystallography: experimental and multiple scattering theory.

    Science.gov (United States)

    Schäfer, Sascha; Liang, Wenxi; Zewail, Ahmed H

    2011-12-07

    Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials. © 2011 American Institute of Physics

  14. Crystallography of waxes - an electron diffraction study of refined and natural products

    Science.gov (United States)

    Dorset, Douglas L.

    1997-02-01

    The crystal structure of four waxes has been investigated by electron crystallography. Two of these waxes, including a refined petroleum product (Gulfwax) and a material from lignite (montan wax), form well ordered crystals and their structure could be solved quantitatively from the observed 0022-3727/30/3/018/img1 diffraction patterns. As also found previously for simpler binary n-paraffin solid solutions, the average structure resembles that of a pure paraffin (e.g. n-0022-3727/30/3/018/img2) but with a Gaussian distribution of atomic occupancies near the chain ends to account for the statistical distribution of chain lengths within a lamella. Two other waxes from living organisms, South African bee honeycomb and the leaves of the Brazilian carnauba palm, are much less ordered, even though they share the same methylene subcell packing of the most crystalline parts of the previous materials. It appears that these waxes cannot fully separate into distinct lamellae, perhaps due to the presence of very long `tie' molecules, and are therefore `frustrated' crystal structures.

  15. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  16. Design and construction of a high-stability, low-noise power supply for use with high-resolution electron energy loss spectrometers

    International Nuclear Information System (INIS)

    Katz, J.E.; Davies, P.W.; Crowell, J.E.; Somorjai, G.A.

    1982-01-01

    The design and construction of a high-stability, low-noise power supply which provides potentials for the lens and analyzer elements of a 127 0 Ehrhardt-type high-resolution electron energy loss spectrometer (HREELS) is described. The supply incorporates a filament emission-control circuit and facilities for measuring electron beam current at each spectrometer element, thus facilitating optimal tuning of the spectrometer. Spectra obtained using this supply are shown to have a four-fold improvement in signal-to-noise ratio and a higher resolution of the vibrational loss features when compared with spectra taken using a previously existing supply based on passive potential divider networks

  17. High-resolution inelastic electron scattering on 208Pb at 50 and 63.5 MeV and fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Knuepfer, W.; Frey, R.; Richter, A.; Schwierczinski, A.; Spamer, E.; Titze, O.

    1977-12-01

    High-resolution inelastic electron scattering (FWHM approximately equal to 33 keV) with 50 MeV and 63.5 MeV electrons on 208 Pb has been used to study magnetic excitations between Esub(x) = 6 MeV and 8 MeV. Angular distributions were analyzed in terms of the DWBA with RPA wave functions. Eight Isup(π) = 2- states carrying a total strength ΣB(M2) = 8500 μ 2 sub(K) fm 2 have been found. The strong fragmentation is in qualitative agreement with theoretical predictions. (orig.) [de

  18. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Philip

    2017-07-15

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  19. A new fixed-target approach for serial crystallography at synchrotron light sources and X-ray free electron lasers

    International Nuclear Information System (INIS)

    Roedig, Philip

    2017-07-01

    In the framework of this thesis, a new method for high-speed fixed-target serial crystallography experiments and its applicability to biomacromolecular crystallography at both synchrotron light sources and X-ray free electron lasers (XFELs) is presented. The method is based on a sample holder, which can carry up to 20,000 microcrystals and which is made of single-crystalline silicon. Using synchrotron radiation, the structure of Operophtera brumata cytoplasmic polyhedrosis virus type 18 polyhedrin, lysozyme and cubic insulin was determined by collecting X-ray diffraction data from multiple microcrystals. Data collection was shown to be possible at both cryogenic and ambient conditions. For room-temperature measurements, both global and specific indications of radiation damage were investigated and characterized. Due to the sieve-like structure of the chip, the microcrystals tend to arrange themselves according to the micropore pattern, which allows for efficient sampling of the sample material. In combination with a high-speed scanning stage, the sample holder was furthermore shown to be highly suitable for serial femtosecond crystallography experiments. By fast raster scanning of the chip through the pulsed X-ray beam of an XFEL, structure determination of a virus, using the example of bovine enterovirus type 2, has been demonstrated at an XFEL for the first time. Hit rates of up to 100% were obtained by the presented method, which refers to a reduction in sample consumption by at least three orders of magnitude with respect to common liquid-jet injection methods used for sample delivery. In this way, the typical time needed for data collection in serial femtosecond crystallography is significantly decreased. The presented technique for sample loading of the chip is easy to learn and results in efficient removal of the surrounding mother liquor, thereby reducing the generated background signal. Since the chip is made of single-crystalline silicon, in principle no

  20. Neuroanatomy from Mesoscopic to Nanoscopic Scales: An Improved Method for the Observation of Semithin Sections by High-Resolution Scanning Electron Microscopy.

    Science.gov (United States)

    Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel

    2018-01-01

    Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).

  1. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x=1,2,3) phase change material

    NARCIS (Netherlands)

    Kooi, B.J.; de Hosson, J.T.M.

    2002-01-01

    The crystal structures of GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6 were determined using electron diffraction and high-resolution transmission electron microscopy. The structure determined for the former two crystals deviates from the ones proposed in the literature. These crystal structures were

  2. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Florian, E-mail: f.winkler@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, D-52425 Jülich (Germany); Tavabi, Amir H. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, D-52425 Jülich (Germany); Barthel, Juri [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Gemeinschaftslabor für Elektronenmikroskopie (GFE), RWTH Aachen University, D-52074 Aachen (Germany); Duchamp, Martial [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, D-52425 Jülich (Germany); Peter Grünberg Institute 5 (PGI-5), Forschungszentrum Jülich, D-52425 Jülich (Germany); Yucelen, Emrah [FEI Company, Achtseweg Noord 5, Eindhoven 5600 KA (Netherlands); Borghardt, Sven; Kardynal, Beata E. [Peter Grünberg Institute 9 (PGI-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); and others

    2017-07-15

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe{sub 2} is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe{sub 2} from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe{sub 2} of 18.9±0.8 V, which is 12% lower than the value calculated from neutral atom scattering factors. - Highlights: • Quantitative analysis of high resolution electron holograms of WSe{sub 2}. • Local specimen thickness determination and estimation of tilt angle. • Mean inner potential evaluation of WSe2 avoiding dynamical diffraction.

  3. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles

    International Nuclear Information System (INIS)

    Ko, Seung H; Pan Heng; Grigoropoulos, Costas P; Luscombe, Christine K; Frechet, Jean M J; Poulikakos, Dimos

    2007-01-01

    All-printed electronics is the key technology to ultra-low-cost, large-area electronics. As a critical step in this direction, we demonstrate that laser sintering of inkjet-printed metal nanoparticles enables low-temperature metal deposition as well as high-resolution patterning to overcome the resolution limitation of the current inkjet direct writing processes. To demonstrate this process combined with the implementation of air-stable carboxylate-functionalized polythiophenes, high-resolution organic transistors were fabricated in ambient pressure and room temperature without utilizing any photolithographic steps or requiring a vacuum deposition process. Local thermal control of the laser sintering process could minimize the heat-affected zone and the thermal damage to the substrate and further enhance the resolution of the process. This local nanoparticle deposition and energy coupling enable an environmentally friendly and cost-effective process as well as a low-temperature manufacturing sequence to realize large-area, flexible electronics on polymer substrates

  4. A silicon microstrip detector in a magnetic spectrometer for high-resolution electron scattering experiments at the S-DALINAC

    International Nuclear Information System (INIS)

    Lenhardt, A.W.; Bonnes, U.; Burda, O.; Neumann-Cosel, P. von; Platz, M.; Richter, A.; Watzlawik, S.

    2006-01-01

    A silicon microstrip detector was developed as focal plane detector of the 169.7 deg. magic angle double-focussing spectrometer at the superconducting Darmstadt electron linear accelerator (S-DALINAC). It allows experiments with minimum ionizing electrons at data rates up to 100 kHz, utilizing the maximum resolution of the spectrometer achievable in dispersion-matching mode

  5. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    Science.gov (United States)

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-01-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137

  6. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  7. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis.

    Science.gov (United States)

    Gadelha, Ana Paula Rocha; Benchimol, Marlene; de Souza, Wanderley

    2015-06-01

    Giardia intestinalis presents a complex microtubular cytoskeleton formed by specialized structures, such as the adhesive disk, four pairs of flagella, the funis and the median body. The ultrastructural organization of the Giardia cytoskeleton has been analyzed using different microscopic techniques, including high-resolution scanning electron microscopy. Recent advances in scanning microscopy technology have opened a new venue for the characterization of cellular structures and include scanning probe microscopy techniques such as ultra-high-resolution scanning electron microscopy (UHRSEM) and helium ion microscopy (HIM). Here, we studied the organization of the cytoskeleton of G. intestinalis trophozoites using UHRSEM and HIM in membrane-extracted cells. The results revealed a number of new cytoskeletal elements associated with the lateral crest and the dorsal surface of the parasite. The fine structure of the banded collar was also observed. The marginal plates were seen linked to a network of filaments, which were continuous with filaments parallel to the main cell axis. Cytoplasmic filaments that supported the internal structures were seen by the first time. Using anti-actin antibody, we observed a labeling in these filamentous structures. Taken together, these data revealed new surface characteristics of the cytoskeleton of G. intestinalis and may contribute to an improved understanding of the structural organization of trophozoites. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  9. Piezoelectric properties of PbTiO(3) thin films characterized with piezoresponse force and high resolution transmission electron microscopy

    NARCIS (Netherlands)

    Morelli, A.; Venkatesan, Sriram; Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2009-01-01

    In this paper we investigate the piezoelectric properties of PbTiO(3) thin films grown by pulsed laser deposition with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit an upward polarization, inhomogeneous distribution of piezoelectric characteristics

  10. Electron-impact-induced K plus M shell ionization in solid targets of medium-Z elements studied by means of high-resolution x-ray spectroscopy

    International Nuclear Information System (INIS)

    Ludziejewski, T.; Rymuza, P.; Sujkowski, Z.; Borchert, G.; Dousse, J.; Rheme, C.; Polasik, M.

    1996-01-01

    The Kβ 2 x-ray spectra of zirconium, niobium, molybdenum, and palladium bombarded by 150 and 300 keV electrons were measured with a high-resolution transmission curved crystal spectrometer. Multiconfiguration Dirac-Fock calculations were used for the decomposition of the experimental spectra into the Kβ 2 M 0 (diagram) and Kβ 2 M 1 (satellite) components. The probabilities of energy dependent (direct Coulomb and two-step) processes were estimated from the differences in the satellite line yields for electrons and photons. The satellite yields are found to be considerably enhanced in comparison with those for the proton-induced ionization recently measured and analyzed in the same way [T. Ludziejewski et al., Phys. Rev. A 52, 2791 (1995)]. This result indicates the importance of multielectron effects in the K plus M shell ionization by energetic projectiles. copyright 1996 The American Physical Society

  11. High resolution scanning electron microscopy of rabbit corneal endothelium to show effects of UV-visible irradiation in the presence of chlorpromazine

    International Nuclear Information System (INIS)

    Lea, P.J.; Hollenberg, M.J.; Menon, I.A.; Temkin, R.J.; Persad, S.D.; Basu, P.K.

    1989-01-01

    The ultrastructure of rabbit cornea endothelial cells was examined by scanning electron microscopy (SEM) in freeze-cleaved corneas using a Hitachi S-570 scanning electron microscope in the high resolution mode (HRSEM). In order to study phototoxic effects in vitro, rabbit corneas (experimental) were cultured as organ culture in the presence of 5 micrograms/ml chlorpromazine (CPZ) and irradiated. For comparison, control 1 corneas were not irradiated but incubated in the dark without CPZ in the medium; control 2 corneas were also kept in the dark but in the presence of CPZ; control 3 corneas were irradiated with no CPZ in the medium. Cellular damage was not seen in the three types of control corneas, but in the experimental corneas the endothelial cells showed extensive disruption of the cell membrane and some deterioration of the intracellular components. Our study confirmed that HRSEM is a satisfactory new technique for visualizing damage of the intracellular organelles of corneal endothelium

  12. High resolution scanning electron microscopy of rabbit corneal endothelium to show effects of UV-visible irradiation in the presence of chlorpromazine

    Energy Technology Data Exchange (ETDEWEB)

    Lea, P.J.; Hollenberg, M.J.; Menon, I.A.; Temkin, R.J.; Persad, S.D.; Basu, P.K. (Univ. of Toronto, Ontario (Canada))

    1989-01-01

    The ultrastructure of rabbit cornea endothelial cells was examined by scanning electron microscopy (SEM) in freeze-cleaved corneas using a Hitachi S-570 scanning electron microscope in the high resolution mode (HRSEM). In order to study phototoxic effects in vitro, rabbit corneas (experimental) were cultured as organ culture in the presence of 5 micrograms/ml chlorpromazine (CPZ) and irradiated. For comparison, control 1 corneas were not irradiated but incubated in the dark without CPZ in the medium; control 2 corneas were also kept in the dark but in the presence of CPZ; control 3 corneas were irradiated with no CPZ in the medium. Cellular damage was not seen in the three types of control corneas, but in the experimental corneas the endothelial cells showed extensive disruption of the cell membrane and some deterioration of the intracellular components. Our study confirmed that HRSEM is a satisfactory new technique for visualizing damage of the intracellular organelles of corneal endothelium.

  13. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy

    Science.gov (United States)

    Risco, Cristina; Sanmartín-Conesa, Eva; Tzeng, Wen-Pin; Frey, Teryl K.; Seybold, Volker; de Groot, Raoul J.

    2012-01-01

    Summary More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before. PMID:22579245

  14. High-resolution energetic particle measurements at 6.6 R/sub E/ 1. Electron micropulsations

    International Nuclear Information System (INIS)

    Higbie, P.R.; Belian, R.D.; Baker, D.N.

    1978-01-01

    The three papers dealing with data from satellites 1976--059A which we present in this issue represent the first publication of data from the new series of charged particle analyzer (CPA) instruments designed to measure energetic particle fluxes at geosynchronous altitudes. This first report presents new results on electron micropulsation phenomena and includes a concise description of the instrument. We often observe highly periodic modulations which persist for times as long as 2 hours in the spin-averaged counting rate data. These flux oscillations occur most frequently in the 30- to 300-keV electron data but are occasionally seen in higher-energy electron or low-energy proton data. The pitch angle distributions of the observed modulated fluxes may be either 'cigar-shaped' or 'pancake-shaped.' Oscillations at different energies are in phase, although the gross counting rate may be changing in an energy-time dispersive manner. The occurrence distribution of these modulations in local time suggests that they are related to Pc 5 geomagnetic micropulsations observed at ground stations

  15. Study of the structure of the particles of channel black of phase-contrasting electron microscopy of high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Varlakov, V.P.; Fialkov, A.S.; Smirnov, B.N.

    1981-01-01

    The structure of channel black, DG-100, in the initial and graphitized states has been studied by phase-contrasting electron microscopy with a direct resolution of the carbon layers. An individual carbon layer is the main structural element of carbon black. The structure of channel black in the graphitized state looks like a hollow closed polyhedron made up of bundles of continuous carbon layers which can bend and become deformed to a great extent, testifying to the polymeric nature of the structure of channel black. The authors give an interpretation of the roentgen values of the 'dimensions of crystallites' in channel black.

  16. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging

    International Nuclear Information System (INIS)

    Kolbun, N.; Lund, E.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogeneously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. (authors)

  17. Optimization of the detector and associated electronics used for high-resolution liquid-scintillation alpha spectroscopy

    International Nuclear Information System (INIS)

    Thorngate, J.H.; Christian, D.J.

    1977-01-01

    The performance of various reflector geometries, light coupling liquids, photomultiplier tubes, preamplifiers and linear amplifiers were compared and the configuration found that optimized the combination of pulse-height resolution and pulse-shape discrimination. The best combination used a hemispherical reflector, filled with distilled water, coupled to an 8575 photomultiplier tube, the output of which was conditioned by a special integrating preamplifier and a double-delay-line linear amplifier. Careful choice of the scintillator, sample preparation procedures, and electronic apparatus can produce liquid-scintillation alpha spectroscopy with a pulse-height resolution of 300 keV, or less, and, by using pulse-shape discrimination, background levels as low as 0.01 counts/min. (author)

  18. FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography

    Science.gov (United States)

    Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl

    2018-03-01

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  19. High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Karamched, Phani S., E-mail: phani.karamched@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-01-15

    Cross-correlation-based analysis of electron back-scatter diffraction (EBSD) patterns has been used to obtain high angular resolution maps of lattice rotations and elastic strains near carbides in a directionally solidified superalloy MAR-M-002. Lattice curvatures were determined from the EBSD measurements and used to estimate the distribution of geometrically necessary dislocations (GNDs) induced by the deformation. Significant strains were induced by thermal treatment due to the lower thermal expansion coefficient of the carbide inclusions compared to that of the matrix. In addition to elastic strains the mismatch was sufficient to have induced localized plastic deformation in the matrix leading to a GND density of 3 x 10{sup 13} m{sup -2} in regions around the carbide. Three-point bending was then used to impose strain levels within the range {+-}12% across the height of the bend bar. EBSD lattice curvature measurements were then made at both carbide-containing and carbide-free regions at different heights across the bar. The average GND density increases with the magnitude of the imposed strain (both in tension and compression), and is markedly higher near the carbides particles. The higher GND densities near the carbides (order of 10{sup 14} m{sup -2}) are generated by the large strain gradients produced around the plastically rigid inclusion during mechanical deformation with some minor contribution from the pre-existing residual deformation caused by the thermal mismatch between carbide and nickel matrix.

  20. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  1. Crystal structure and defects of Zr4Co4Si7( V-phase) investigated by high resolution transmission electron microscope

    International Nuclear Information System (INIS)

    Mao, J.F.; Ye, H.Q.; Ning, X.G.; He, L.L.; Yang, D.Z.

    1997-01-01

    The results of high resolution transmission electron microscope (HRTEM) observation and image simulation show that Zr 4 Co 4 Si 7 possesses the same structure type of Zr 4 Co 4 Ge 7 . Adding of Fe or Ni into the Zr 4 Co 4 Si 7 compound, except that the dimensions changed slightly, does not change the lattice type and coordination in the crystal structure, maintaining the V-phase structure. Also, twins with coherent boundaries and with partially coherent at interfaces are observed. The image conditions of Zr 4 Co 4 Si 7 and the structure differences between Zr 4 Co 4 Si 7 and tetrahedral close-packed phases are also discussed. copyright 1997 Materials Research Society

  2. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577 (Japan); Xu, Z., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kvashnin, D. G. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Tang, D.-M.; Xue, Y. M.; Bando, Y. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Sorokin, P. B. [National University of Science and Technology, MISIS, Leninskiy Prospect 4, Moscow 119049 (Russian Federation); Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny 141700 (Russian Federation)

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  3. Restoring defect structures in 3C-SiC/Si (001) from spherical aberration-corrected high-resolution transmission electron microscope images by means of deconvolution processing.

    Science.gov (United States)

    Wen, C; Wan, W; Li, F H; Tang, D

    2015-04-01

    The [110] cross-sectional samples of 3C-SiC/Si (001) were observed with a spherical aberration-corrected 300 kV high-resolution transmission electron microscope. Two images taken not close to the Scherzer focus condition and not representing the projected structures intuitively were utilized for performing the deconvolution. The principle and procedure of image deconvolution and atomic sort recognition are summarized. The defect structure restoration together with the recognition of Si and C atoms from the experimental images has been illustrated. The structure maps of an intrinsic stacking fault in the area of SiC, and of Lomer and 60° shuffle dislocations at the interface have been obtained at atomic level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-resolution electron spectroscopy of the 1s23lnl' Be-like series in oxygen and neon. Test of theoretical data: II. Experimental results

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2003-01-01

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n=3-5 terms of the 1s 2 3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high-resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this second paper we apply the fitting procedure described in the preceding companion paper (I) to the analysis of high-resolution electron spectra measured in O 6+ (1s 2 ) + He, H 2 and Ne 8+ (1s 2 ) + He collisional systems at 10 qkeV collision energy (q is the ion charge). Singlet states alone are found to be excited in oxygen; they also explain most of the neon lines; in the latter case a possible contribution of triplet states is discussed. Many 1s 2 3lnl' 1 L transitions are identified for the first time. A quantitative comparison between measured and calculated positions clearly points to the best theoretical data currently available. Finally, a first identification of some 4l4l' 1 L transitions observed in the neon spectrum is also proposed. From this huge spectroscopic work, we extract the first experimental partial branching ratios for autoionization into the 1s 2 2l ionization continua for a large number of 1s 2 3lnl' 1 L states, which are compared with the total ones calculated by other authors; we deduce that populations of |M L vertical bar = 0 and 1 magnetic sublevels are nearly identical. The double-capture process is also briefly characterized by comparing relative populations of many n=3-5 states; it is found that the same states are populated in O 6+ +H 2 and Ne 8+ +He collisional systems with the same relative populations

  5. Test Particle Simulations of Electron Injection by the Bursty Bulk Flows (BBFs) using High Resolution Lyon-Feddor-Mobarry (LFM) Code

    Science.gov (United States)

    Eshetu, W. W.; Lyon, J.; Wiltberger, M. J.; Hudson, M. K.

    2017-12-01

    Test particle simulations of electron injection by the bursty bulk flows (BBFs) have been done using a test particle tracer code [1], and the output fields of the Lyon-Feddor-Mobarry global magnetohydro- dynamics (MHD) code[2]. The MHD code was run with high resolu- tion (oct resolution), and with specified solar wind conditions so as to reproduce the observed qualitative picture of the BBFs [3]. Test par- ticles were injected so that they interact with earthward propagating BBFs. The result of the simulation shows that electrons are pushed ahead of the BBFs and accelerated into the inner magnetosphere. Once electrons are in the inner magnetosphere they are further energized by drift resonance with the azimuthal electric field. In addition pitch angle scattering of electrons resulting in the violation conservation of the first adiabatic invariant has been observed. The violation of the first adiabatic invariant occurs as electrons cross a weak magnetic field region with a strong gradient of the field perturbed by the BBFs. References 1. Kress, B. T., Hudson,M. K., Looper, M. D. , Albert, J., Lyon, J. G., and Goodrich, C. C. (2007), Global MHD test particle simulations of ¿ 10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218. Lyon,J. G., Fedder, J. A., and Mobarry, C.M., The Lyon- Fedder-Mobarry (LFM) Global MHD Magnetospheric Simulation Code (2004), J. Atm. And Solar-Terrestrial Phys., 66, Issue 15-16, 1333- 1350,doi:10.1016/j.jastp. Wiltberger, Merkin, M., Lyon, J. G., and Ohtani, S. (2015), High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res. Space Physics, 120, 45554566, doi:10.1002/2015JA021080.

  6. High-resolution energetic particle measurements at 6.6R/sub E/ 3. Low-energy electron anisotropies and short-term substorm predictions

    International Nuclear Information System (INIS)

    Baker, D.N.; Higbie, P.R.; Hones, E.W. Jr.; Belian, R.D.

    1978-01-01

    Multiple detectors giving nearly complete 4π coverage of particle pitch angle distributions have provided high resolution measurements (in energy and time) of 30- to 300-keV electrons. Data from a spacecraft (1976-059A) in geostationary orbit show a remarkably consistent sequence of variations of the electron anisotropy before and during magnetospheric substorms. For periods typically 1--2 hours prior to the onset of substorms, electron distributions, peaked along the direction of the local magnetic field, are observed in the premidnight sector. These cigarlike anisotropies are accompanied by a local taillike magnetic field which may develop further during the event. At substorm onset an abrupt transition usually occurs from the cigar-shaped distributions to pancake-shaped distributions. This anisotropy sequence may be due to the buildup and subsequent release of stresses in the magnetotail; the cigar phase may also be due to associated processes at the dayside magnetopause causing a loss of 90 0 pitch angle particles. The present observations, based on approx.100 events, appear to provide a predictive tool for assessing the probability of occurrence of a substorm

  7. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  8. Multigrain crystallography

    DEFF Research Database (Denmark)

    Sørensen, Henning Osholm; Schmidt, Søren; Wright, Jonathan P.

    2012-01-01

    We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing, integra......We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing...... of the methodology in terms of number of grains, size of unit cell and direct space resolution. First experimental results in the fields of chemistry, structural biology and time-resolved studies in photochemistry are presented. As an outlook, the concept of TotalCrystallography is introduced, defined...

  9. Probing the electronic structure and Au–C chemical bonding in AuC2− and AuC2 using high-resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    León, Iker; Yang, Zheng; Wang, Lai-Sheng

    2014-01-01

    We report photoelectron spectroscopy (PES) and high-resolution PE imaging of AuC 2 − at a wide range of photon energies. The ground state of AuC 2 − is found to be linear (C ∞v , 1 Σ + ) with a …8π 4 4δ 4 17σ 2 9π 4 18σ 2 valence configuration. Detachments from all the five valence orbitals of the ground state of AuC 2 − are observed at 193 nm. High-resolution PE images are obtained in the energy range from 830 to 330 nm, revealing complicated vibronic structures from electron detachment of the 18σ, 9π, and 17σ orbitals. Detachment from the 18σ orbital results in the 2 Σ + ground state of neutral AuC 2 , which, however, is bent due to strong vibronic coupling with the nearby 2 Π state from detachment of a 9π electron. The 2 Σ + – 2 Π vibronic and spin-orbit coupling results in complicated vibronic structures for the 2 Σ + and 2 Π 3/2 states with extensive bending excitations. The electron affinity of AuC 2 is measured accurately to be 3.2192(7) eV with a ground state bending frequency of 195(6) cm −1 . The first excited state ( 2 A′) of AuC 2 , corresponding to the 2 Π 3/2 state at the linear geometry, is only 0.0021 eV above the ground state ( 2 A′) and has a bending frequency of 207(6) cm −1 . The 2 Π 1/2 state, 0.2291 eV above the ground state, is linear with little geometry change relative to the anion ground state. The detachment of the 17σ orbital also results in complicated vibronic structures, suggesting again a bent state due to possible vibronic coupling with the lower 2 Π state. The spectrum at 193 nm shows the presence of a minor species with less than 2% intensity relative to the ground state of AuC 2 − . High-resolution data of the minor species reveal several vibrational progressions in the Au–C stretching mode, which are assigned to be from the metastable 3 Π 2,1,0 spin-orbit excited states of AuC 2 − to the 2 Π 3/2,1/2 spin-orbit states of neutral AuC 2 . The spin-orbit splittings of the 3 Π and 2

  10. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  11. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  12. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  13. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  14. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-01-01

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  15. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity

    KAUST Repository

    Orlando, Marta

    2017-10-17

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABAA Receptors (GABAARs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABAAR clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABAAR clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  16. The neural elements in the lining of the ventricular-subventricular zone: making an old story new by high-resolution scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Dos Santos Haemmerle

    2015-10-01

    Full Text Available The classical description of the neural elements that compose the lining of brain ventricles introduces us to the single layer of ependymal cells. However, new findings, especially in the lateral ventricle - the major niche for the generation of new neurons in the adult brain - have provided information about additional cell elements that influence the organization of this part of the ventricular system and produce important contributions to neurogenesis. To complement the cell neurochemistry findings, we present a three-dimensional in situ description that demonstrates the anatomical details of the different types of ciliated cells and the innervation of these elements. After processing adult rat brains for ultrastructural analysis by high-resolution scanning electron microscopy and transmission electron microscopy, we observed a heterogeneous pattern of cilia distribution at the different poles of the lateral ventricle surface. Furthermore, we describe the particular three-dimensional aspects of the ciliated cells of the lateral ventricle, in addition the fiber bundles and varicose axons surrounding these cells. Therefore, we provide a unique ultrastructural description of the three-dimensional in situ organization of the lateral ventricle surface, highlighting its innervation, to corroborate the available neurochemical and functional findings regarding the factors that regulate this neurogenic niche.

  17. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2.

    Science.gov (United States)

    Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E

    2017-07-01

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Optimal thickness of a monocrystal line object in atomic plane visualization on its image in a high-resolution electron microscope

    International Nuclear Information System (INIS)

    Grishina, T.A.; Sviridova, V.Yu.

    1983-01-01

    Theoretical and experimental investigation of the influence of the FCC-lattice crystal (gold, nickel) thickness on conditions of visulization of atomic plane projections (APP) on the crystal image in a transmission high-resolution electron microscope (THREM) is reported. Results of electron diffraction theory are used for theoretical investigation. Calculation analysis of the influence of the monocrystal thickness and orientation on conitions of visualization of APP and atomic columns in monocrystal images formed in THREM in multibeam regimes with inclined and axial illumination is conducted. It is shown that, to visualize the atomic column projections in a crystal image formed in the multibeam regime with axial illumination, optimal are the thicknesses from 0.1 xisub(min) to 0.25 xisub(min) and at some object orientations also the thicknesses from 0.8 xisub(min) to 0.9 xisub(min), where xisub(min) is the extinction length minimum for the given orientation. It is shown that, to realize the ultimate resolutions in multibeam regimes both with inclined and axial illumination the optimal thickness of the object is 0.63 xisub(min). Satisfactory coincidence of theoretical and experimental data is obtained

  19. Correlating Fluorescence and High-Resolution Scanning Electron Microscopy (HRSEM) for the study of GABAA receptor clustering induced by inhibitory synaptic plasticity.

    Science.gov (United States)

    Orlando, Marta; Ravasenga, Tiziana; Petrini, Enrica Maria; Falqui, Andrea; Marotta, Roberto; Barberis, Andrea

    2017-10-23

    Both excitatory and inhibitory synaptic contacts display activity dependent dynamic changes in their efficacy that are globally termed synaptic plasticity. Although the molecular mechanisms underlying glutamatergic synaptic plasticity have been extensively investigated and described, those responsible for inhibitory synaptic plasticity are only beginning to be unveiled. In this framework, the ultrastructural changes of the inhibitory synapses during plasticity have been poorly investigated. Here we combined confocal fluorescence microscopy (CFM) with high resolution scanning electron microscopy (HRSEM) to characterize the fine structural rearrangements of post-synaptic GABA A Receptors (GABA A Rs) at the nanometric scale during the induction of inhibitory long-term potentiation (iLTP). Additional electron tomography (ET) experiments on immunolabelled hippocampal neurons allowed the visualization of synaptic contacts and confirmed the reorganization of post-synaptic GABA A R clusters in response to chemical iLTP inducing protocol. Altogether, these approaches revealed that, following the induction of inhibitory synaptic potentiation, GABA A R clusters increase in size and number at the post-synaptic membrane with no other major structural changes of the pre- and post-synaptic elements.

  20. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    International Nuclear Information System (INIS)

    Westraadt, J.E.; Olivier, E.J.; Neethling, J.H.; Hedström, P.; Odqvist, J.; Xu, X.; Steuwer, A.

    2015-01-01

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we here demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.

  1. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    Energy Technology Data Exchange (ETDEWEB)

    Westraadt, J.E., E-mail: johan.westraadt@nmmu.ac.za [Centre for High Resolution TEM, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031 (South Africa); Olivier, E.J.; Neethling, J.H. [Centre for High Resolution TEM, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031 (South Africa); Hedström, P.; Odqvist, J.; Xu, X. [Dept. Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 10044 Stockholm (Sweden); Steuwer, A. [Nelson Mandela Metropolitan University, Gardham Av., Port Elizabeth 6031 (South Africa)

    2015-11-15

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we here demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.

  2. Present needs and future trends in neutron crystallography and spectroscopy

    International Nuclear Information System (INIS)

    Williams, J.M.

    1978-11-01

    Topics covered include: structural investigation by neutron and x-ray diffraction; sources and characteristics of neutron radiation; time-of-flight techniques; overview of neutron crystallography and structural chemistry; hydrogen bonds; transition-metal hydride complexes; actinide and lanthanide complexes; carbon-hydrogen-metal interactions in organometallic chemistry and catalysis; metal clusters and catalysis; materials with unusual solid-state properties; biochemical molecules and biological systems; electron and spin density distributions in crystalline solids; incoherent neutron-scattering spectroscopy; and quasielastic neutron scattering and high resolution spectroscopy

  3. High-resolution electron microscopy studies of the precipitation of copper under neutron irradiation in an Fe-1.3WT% Cu alloy

    International Nuclear Information System (INIS)

    Nicol, A. C.

    1998-01-01

    We have studied by electron microscopy the copper-rich precipitates in an Fe-1.3wt%Cu model alloy irradiated with neutrons to doses of 8.61 x 10 -3 dpa and 6.3 x 10 -2 dpa at a temperature of ∼270 C. In the lower dose material a majority (ca. 60%)of the precipitates visible in high-resolution electron microscopy were timed 9R precipitates of size ∼2-4 nm, while ca. 40% were untwinned. In the higher dose material, a majority (ca. 75%) of visible precipitates were untwinned although many still seemed to have a 9R structure. The average angle α between the herring-bone fringes in the twin variants was measured as 125 degree, not the 129 degree characteristic of precipitates in thermally-aged and electron-irradiated material immediately after the bcc->9R martensitic transformation. We argue that these results imply that the bcc->9R transformation of small (<4 nm) precipitates under neutron irradiation takes place at the irradiation temperature of 270 C rather than after subsequent cooling. Preliminary measurements showed that precipitate sizes did not depend strongly on dose, with a mean diameter of 3.4 ± 0.7 nm for the lower dose material, and 3.0 ± 0.5 nm for the higher dose material. This result agrees with the previous assumption that the lack of coarsening in precipitates formed under neutron irradiation is a consequence of the partial dissolution of larger precipitates by high-energy cascades

  4. In situ investigation of ion-induced dewetting of a thin iron-oxide film on silicon by high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Amirthapandian, S. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany); Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Schuchart, F.; Garmatter, D.; Bolse, W. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2012-11-15

    Using our new in situ high resolution scanning electron microscope, which is integrated into the UNILAC ion beamline at the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt, Germany, we investigated the swift heavy ion induced dewetting of a thin iron oxide layer on Si. Besides heterogeneous hole nucleation at defects and spontaneous (homogeneous) hole nucleation, we could clearly identify a dewetting mechanism, which is similar to the spinodal dewetting observed for liquid films. Instead of being due to capillary waves, it is based on a stress induced surface instability. The latter results in the formation of a wavy surface with constant dominant wave-length and increasing amplitude during ion irradiation. Dewetting sets in as soon as the wave-troughs reach the film-substrate interface. Inspection of the hole radii and rim shapes indicates that removal of the material from the hole area occurs mainly by plastic deformation at the inner boundary and ion induced viscous flow in the peripheral zone due to surface tension.

  5. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  6. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  7. Structural characterization of epitaxial YBa2Cu3O7 thin films on step-edge substrates by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia, C.L.; Kabius, B.; Urban, K.

    1993-01-01

    The microstructure of YBa 2 Cu 3 O 7 films epitaxially grown on step-edge (0 0 1) SrTiO 3 and LaAlO 3 substrates has been characterized by means of high-resolution electron microscopy. The results indicate a relationship between the microstructure of the film across a step and the angle the step makes with the substrate plane. On a steep, high-angle step, the film grows with its c-axis perpendicular to that of the film on substrate surface so that two grain boundaries are formed. In the upper grain boundary, on the average, a (0 1 3) habit plane alternates with a (1 0 3) habit plane. This alternating structure is caused by twinning in the orthorhombic structure. The lower boundaries consist of a chain of (0 1 3)(0 1 3) and (0 1 0)(0 0 1) type segments exhibiting a tendency to tilt the whole habit plane toward the a-b plane of the flank film. Dislocations, stacking faults and misfit strains were also observed in or close to the boundaries. (orig.)

  8. Fermi surface of a disordered Cu-Al -alloy single crystal studied by high-resolution Compton scattering and electron diffraction

    Science.gov (United States)

    Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.

    2004-08-01

    We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.

  9. Hydration Effects on Skin Microstructure as Probed by High-Resolution Cryo-Scanning Electron Microscopy and Mechanistic Implications to Enhanced Transcutaneous Delivery of Biomacromolecules

    Science.gov (United States)

    Tan, Grace; Xu, Peng; Lawson, Louise B.; He, Jibao; Freytag, Lucia C.; Clements, John D.; John, Vijay T.

    2010-01-01

    Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4–10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4–10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2–3 h. These results demonstrate the effectiveness of a 4–10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin. PMID:19582754

  10. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy.

    Science.gov (United States)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R; Murshudov, Garib N; Short, Judith M; Scheres, Sjors H W; Henderson, Richard

    2013-12-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  11. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy

    International Nuclear Information System (INIS)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard

    2013-01-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  12. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard, E-mail: rh15@mrc-lmb.cam.ac.uk

    2013-12-15

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  13. High-Resolution Faraday Rotation and Electron-Phonon Coupling in Surface States of the Bulk-Insulating Topological Insulator Cu_{0.02}Bi_{2}Se_{3}.

    Science.gov (United States)

    Wu, Liang; Tse, Wang-Kong; Brahlek, M; Morris, C M; Aguilar, R Valdés; Koirala, N; Oh, S; Armitage, N P

    2015-11-20

    We have utilized time-domain magnetoterahertz spectroscopy to investigate the low-frequency optical response of the topological insulator Cu_{0.02}Bi_{2}Se_{3} and Bi_{2}Se_{3} films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu_{0.02}Bi_{2}Se_{3} induces a true bulk insulator with only a single type of conduction with a total sheet carrier density of ~4.9×10^{12}/cm^{2} and mobility as high as 4000 cm^{2}/V·s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on the top and bottom of the film with a chemical potential ~145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero-field Drude conductance. In contrast, in normal Bi_{2}Se_{3} films, two conduction channels were observed, and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk or two-dimensional electron gas states. Our high-resolution Faraday rotation spectroscopy on Cu_{0.02}Bi_{2}Se_{3} paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push the chemical potential in the lowest Landau level.

  14. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio

  15. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    Science.gov (United States)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This

  16. High resolution low dose transmission electron microscopy real-time imaging and manipulation of nano-scale objects in the electron beam

    Science.gov (United States)

    Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP

    2008-02-26

    The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.

  17. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  18. The structure of denisovite, a fibrous nanocrystalline polytypic disordered `very complex' silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction

    Directory of Open Access Journals (Sweden)

    Ira V. Rozhdestvenskaya

    2017-05-01

    Full Text Available Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD, electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM, selected-area electron diffraction (SAED, high-angle annular dark-field imaging (HAADF, high-resolution transmission electron microscopy (HRTEM, precession electron diffraction (PED and electron diffraction tomography (EDT. A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1, b = 19.554 (1 and c = 7.1441 (5 Å, β = 95.99 (3°, V = 4310.1 (5 Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100. Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being

  19. Medical high-resolution image sharing and electronic whiteboard system: A pure-web-based system for accessing and discussing lossless original images in telemedicine.

    Science.gov (United States)

    Qiao, Liang; Li, Ying; Chen, Xin; Yang, Sheng; Gao, Peng; Liu, Hongjun; Feng, Zhengquan; Nian, Yongjian; Qiu, Mingguo

    2015-09-01

    There are various medical image sharing and electronic whiteboard systems available for diagnosis and discussion purposes. However, most of these systems ask clients to install special software tools or web plug-ins to support whiteboard discussion, special medical image format, and customized decoding algorithm of data transmission of HRIs (high-resolution images). This limits the accessibility of the software running on different devices and operating systems. In this paper, we propose a solution based on pure web pages for medical HRIs lossless sharing and e-whiteboard discussion, and have set up a medical HRI sharing and e-whiteboard system, which has four-layered design: (1) HRIs access layer: we improved an tile-pyramid model named unbalanced ratio pyramid structure (URPS), to rapidly share lossless HRIs and to adapt to the reading habits of users; (2) format conversion layer: we designed a format conversion engine (FCE) on server side to real time convert and cache DICOM tiles which clients requesting with window-level parameters, to make browsers compatible and keep response efficiency to server-client; (3) business logic layer: we built a XML behavior relationship storage structure to store and share users' behavior, to keep real time co-browsing and discussion between clients; (4) web-user-interface layer: AJAX technology and Raphael toolkit were used to combine HTML and JavaScript to build client RIA (rich Internet application), to meet clients' desktop-like interaction on any pure webpage. This system can be used to quickly browse lossless HRIs, and support discussing and co-browsing smoothly on any web browser in a diversified network environment. The proposal methods can provide a way to share HRIs safely, and may be used in the field of regional health, telemedicine and remote education at a low cost. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Quantum crystallography: A perspective.

    Science.gov (United States)

    Massa, Lou; Matta, Chérif F

    2018-06-30

    Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.

    Directory of Open Access Journals (Sweden)

    Simon Meyer

    2009-10-01

    Full Text Available MnmE, which is involved in the modification of the wobble position of certain tRNAs, belongs to the expanding class of G proteins activated by nucleotide-dependent dimerization (GADs. Previous models suggested the protein to be a multidomain protein whose G domains contact each other in a nucleotide dependent manner. Here we employ a combined approach of X-ray crystallography and pulse electron paramagnetic resonance (EPR spectroscopy to show that large domain movements are coupled to the G protein cycle of MnmE. The X-ray structures show MnmE to be a constitutive homodimer where the highly mobile G domains face each other in various orientations but are not in close contact as suggested by the GDP-AlF(x structure of the isolated domains. Distance measurements by pulse double electron-electron resonance (DEER spectroscopy show that the G domains adopt an open conformation in the nucleotide free/GDP-bound and an open/closed two-state equilibrium in the GTP-bound state, with maximal distance variations of 18 A. With GDP and AlF(x, which mimic the transition state of the phosphoryl transfer reaction, only the closed conformation is observed. Dimerization of the active sites with GDP-AlF(x requires the presence of specific monovalent cations, thus reflecting the requirements for the GTPase reaction of MnmE. Our results directly demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle. They show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein, and they are of crucial importance for understanding the mechanistic principles of this GAD.

  2. Serial Femtosecond Crystallography

    OpenAIRE

    Chapman, Henry N.

    2015-01-01

    X-ray free-electron lasers produce brief flashes of X-rays that are of about a billion times higher peak brightness than achievable from storage ring sources. Such a tremendous jump in X-ray source capabilities, which came in 2009 when the Linac Coherent Light Source began operations, was unprecedented in the history of X-ray science. Protein structure determination through the method of macromolecular crystallography has consistently benefited from the many increases in source performance fr...

  3. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    Science.gov (United States)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  4. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We

  5. Structural Characterization and Gas Reactions of Small Metal Particles by High Resolution In-situ TEM and TED. [Transmission Electron Microscopy and Transmission Electron Diffraction

    Science.gov (United States)

    Heinemann, K.

    1985-01-01

    A commercial electron microscope with flat-plate upper pole piece configuration of the objective lens and top entry specimen introduction was modified to obtain 5 x 10 to the minus 10th power mbar pressure at the site of the specimen while maintaining the convenience of a specimen airlock system that allows operation in the 10 to the 10th power mbar range within 15 minutes after specimen change. The specimen chamber contains three wire evaporation sources, a specimen heater, and facilities for oxygen or hydrogen plasma treatment to clean as-introduced specimens. Evacuation is achieved by dural differential pumping, with fine entrance and exit apertures for the electron beam. With the microscope operating at .000001 mbar, the first differential pumping stage features a high-speed cryopump operating in a stainless steel chamber that can be mildly baked and reaches 1 x 10 to the minus 8th power mbar. The second stage, containing the evaporation sources and a custom ionization gauge within 10 cm from the specimen, is a rigorously uncompromised all-metal uhv-system that is bakable to above 200 C throughout and is pumped with an 80-liter ion pump. Design operating pressures and image quality (resolution of metal particles smaller than 1 nm in size) was achieved.

  6. Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide

    Directory of Open Access Journals (Sweden)

    Ding-Shyue Yang

    2016-05-01

    Full Text Available Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions.

  7. Structural changes of Bi1.8Sr2(Ca1-xYx)Cu2.2Oz ceramics with yttrium content studied by electron diffraction and high-resolution electron microscopy

    Science.gov (United States)

    Onozuka, Takashi; Iwabuchi, Yoshihiro; Fukase, Tetsuo; Sato, Hiroshi; Mitchell, Terence E.

    1991-06-01

    The mode of the incommensurate modulation in the b direction of the Bi1.8Sr2(Ca1-xYx)Cu2.2Oz (0.05electron diffraction and high-resolution lattice imaging. The change of period of the long-period structure with x is found to be basically due to the mixing ratio of domains of two modulation periods with b=4.5b0 and 5b0 or 4.5b0 and 4b0, thus creating periods of b=4.75b0-4.0b0. The fundamental orthorhombic lattice has dimensions of a~=b~=b0 (0.54 nm) and c~=c0 (3.1 nm). The change of the mixing mode from one to the other mentioned above occurs just in the yttrium concentration range, 0.45high-resolution lattice images. These images are reproduced well by a multislice computer-simulation technique.

  8. Experimental positions and lifetimes of Be-like 1s23lnl'(n=3 to 5) states of O4+ and Ne6+ ions investigated by high resolution electron spectroscopy: test of calculations

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.

    1999-01-01

    Using high resolution electron spectroscopy, positions and lifetimes of many Be-like singlet states of the 1s 2 3lnl' Rydberg series (n = 3 to 5) of oxygen and neon have been measured for the first time. This was achieved by a fitting procedure which takes into account an accurate definition of the post-collisional electron lineshapes. These states are produced after a double electron capture by multicharged ions has occurred in O 6+ (1s 2 )+He, H 2 and Ne 8+ (1s 2 )+He collisions at about 4 keV/amu collision energy. (orig.)

  9. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  10. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  11. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    Science.gov (United States)

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron

  12. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    Directory of Open Access Journals (Sweden)

    Matthew P. Blakeley

    2015-07-01

    Full Text Available The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden and Sirius (Brazil under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å, for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59% were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+ remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place

  13. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  14. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    Energy Technology Data Exchange (ETDEWEB)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferreira da Silva, F.; Almeida, D. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Mogi, D. [Development and Marketing Department, New Products Development Division, Kanto Denka, Kogyo Co., Ltd., Chiyoda-ku, Tokyo 101-0063 (Japan); Tanioka, T. [Shibukawa Development Research Laboratory, New Products Development Division, Kanto Denka Kogyo Co., Ltd., Shibukawa City, Gunma 377-8513 (Japan); Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, allée de la Chimie 3, B-4000 Liège 1 (Belgium)

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  15. Structural changes of Bi sub 1. 8 Sr sub 2 (Ca sub 1 minus x Y sub x )Cu sub 2. 2 O sub z ceramics with yttrium content studied by electron diffraction and high-resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Iwabuchi, Y.; Fukase, T. (Institute for Materials Research, Tohoku University, Sendai 980, Japan (JP)); Sato, H. (School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (USA)); Mitchell, T.E. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA))

    1991-06-01

    The mode of the incommensurate modulation in the {ital b} direction of the Bi{sub 1.8}Sr{sub 2}(Ca{sub 1{minus}{ital x}}Y{sub {ital x}})Cu{sub 2.2}O{sub {ital z}} (0.05{lt}{ital x}{lt}0.75) system is investigated by means of electron diffraction and high-resolution lattice imaging. The change of period of the long-period structure with {ital x} is found to be basically due to the mixing ratio of domains of two modulation periods with {ital b}=4.5{ital b}{sub 0} and 5{ital b}{sub 0} or 4.5{ital b}{sub 0} and 4{ital b}{sub 0}, thus creating periods of {ital b}=4.75{ital b}{sub 0--}4.0{ital b}{sub 0}. The fundamental orthorhombic lattice has dimensions of {ital a}{congruent}{ital b}{congruent}{ital b}{sub 0} (0.54 nm) and {ital c}{congruent}{ital c}{sub 0} (3.1 nm). The change of the mixing mode from one to the other mentioned above occurs just in the yttrium concentration range, 0.45{lt}{ital x}{lt}0.65, which also corresponds to the superconductor (metallic)-to-semiconductor transition boundary. The mixing modes of the domains are directly recorded as a contrast modulation with half periods, 4.5{ital b}{sub 0}/2 and 5{ital b}{sub 0}/2 or 4.5{ital b}{sub 0}/2 and 4{ital b}{sub 0}/2 in high-resolution lattice images. These images are reproduced well by a multislice computer-simulation technique.

  16. Investigation by high resolution electron spectroscopy of the helium-like 3lnl' Rydberg series in double capture processes at low collision velocity: auto transfer to Rydberg states and electron stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Gonzalez, A.; Benhenni, M. (Toulouse-3 Univ., 31 (France)); Bachau, H.; Sanchez, I. (Bordeaux-1 Univ., 33 - Talence (France). Lab. des Collisions Atomiques)

    1994-09-28

    A high resolution electron spectrometry of the (3lnl') Ryberg series populated in N[sup 7+] + He and Ne[sup 10+] + He collisions at 10 q keV, 10[sup o] allows us to observe, for the first time by this method, two post-collisional effects. First, it is found with nitrogen ions that, when n increases from n = 4 to 9, the L-distribution peaks more and more on the high angular momentum states. This is qualitatively understood as a Stark deformation of the Rydberg orbit by the Coulomb field of the receding ion. Also, in the n range where the double capture process populates symmetrical 4l4l' states (n>9), an enhancement of the intensities of the 3lnl' Rydberg lines is observed for both collisonal systems. This is thought to be a signature of the so-called auto transfer to Rydberg states effect. The transfer of population from the 3l4l' to the 3lnl' states is found to be favoured against a direct autoionization of these 4l4l' states into the n = 2 continuum. These experimental findings together with preliminary spectroscopic calculations concerning the configuration interaction of the Ne[sup 8+] (4l4l') states with the Ne[sup 8+](3lnl') Rydberg series are also discussed within the context of the electron stabilization which follows a double capture. (Author).

  17. Investigation by high resolution electron spectroscopy of the helium-like 3lnl' Rydberg series in double capture processes at low collision velocity: auto transfer to Rydberg states and electron stabilization

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Gonzalez, A.; Benhenni, M.; Bachau, H.; Sanchez, I.

    1994-01-01

    A high resolution electron spectrometry of the (3lnl') Ryberg series populated in N 7+ + He and Ne 10+ + He collisions at 10 q keV, 10 o allows us to observe, for the first time by this method, two post-collisional effects. First, it is found with nitrogen ions that, when n increases from n = 4 to 9, the L-distribution peaks more and more on the high angular momentum states. This is qualitatively understood as a Stark deformation of the Rydberg orbit by the Coulomb field of the receding ion. Also, in the n range where the double capture process populates symmetrical 4l4l' states (n>9), an enhancement of the intensities of the 3lnl' Rydberg lines is observed for both collisonal systems. This is thought to be a signature of the so-called auto transfer to Rydberg states effect. The transfer of population from the 3l4l' to the 3lnl' states is found to be favoured against a direct autoionization of these 4l4l' states into the n = 2 continuum. These experimental findings together with preliminary spectroscopic calculations concerning the configuration interaction of the Ne 8+ (4l4l') states with the Ne 8+ (3lnl') Rydberg series are also discussed within the context of the electron stabilization which follows a double capture. (Author)

  18. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  19. Direct band gap measurement of Cu(In,Ga)(Se,S)2 thin films using high-resolution reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho; Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-01-01

    To investigate the band gap profile of Cu(In 1−x ,Ga x )(Se 1−y S y ) 2 of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth

  20. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Sung [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su [Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Song, Taewon [Energy lab, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-803 (Korea, Republic of); Lee, Dongho, E-mail: dhlee0333@gmail.com; Nam, Junggyu [PV Development Team, Energy Solution Business Division, Samsung SDI, 467 Beonyeong-ro, Cheonan-si, Chungcheongnam-do 331-330 (Korea, Republic of); Kang, Hee Jae [Department of Physics, Chungbuk National University, Gaesin-dong, Heungdeok-gu, Cheongju, 361-763 (Korea, Republic of); Choi, Pyung-Ho; Choi, Byoung-Deog, E-mail: bdchoi@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  1. Disclosure of domain structure in cubic CaxZr1-xO2-x, 0x15 ≤ x ≤ 0x20, by Talbot image enhancement of high-resolution electron micrographs

    International Nuclear Information System (INIS)

    Rossell, H.J.; Wilson, I.J.; Sellar, J.R.

    1991-01-01

    High-resolution electron microscope images have been recorded of several cystalline samples of calcia-stabilized zirconia (Ca-CSZ) and of the fluorite-related superstructure phase φ 1 (CaZr 4 O 9 ). The contrast of the CSZ images has been enhanced markedly by the light-optical Talbot self-imaging technique. Is is demonstrated that the CSZ crystals contain a coherent dispersion of microdomains approximately 30 A in diameter, and that the structure of the microdomains is that of φ 1 . (orig.)

  2. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy.

    Science.gov (United States)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L

    2009-03-11

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  3. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy

    International Nuclear Information System (INIS)

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L; Jose-Yacaman, Miguel

    2009-01-01

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  4. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  5. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  6. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  7. High-resolution electron spectroscopy of the 1s23lnl' Be-like series in oxygen and neon. Test of theoretical data: I. Experimental method and theoretical background

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2003-01-01

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n = 3-5 terms of the 1s 2 3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this paper the method which has been developed for this fitting procedure is explained. In addition, as a first test, a comparison of all the available calculated spectroscopic data is presented and discussed. Strong deviations of transition energies and decay lifetimes are observed in many cases. Best data are selected in the following companion paper through a quantitative comparison with our experimental electron spectra

  8. High-resolution electron spectroscopy of the 1s{sup 2}3lnl' Be-like series in oxygen and neon. Test of theoretical data: I. Experimental method and theoretical background

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [Laboratoire CAR-IRSAMC, UMR 5589 CNRS - Universite Paul Sabatier, 31062 Toulouse (France)

    2003-01-14

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n = 3-5 terms of the 1s{sup 2}3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this paper the method which has been developed for this fitting procedure is explained. In addition, as a first test, a comparison of all the available calculated spectroscopic data is presented and discussed. Strong deviations of transition energies and decay lifetimes are observed in many cases. Best data are selected in the following companion paper through a quantitative comparison with our experimental electron spectra.

  9. High-resolution parallel electron energy-loss spectroscopy of MnL2,3-edges in inorganic manganese compounds

    International Nuclear Information System (INIS)

    Garvie, L.A.J.; Craven, A.J.

    1994-01-01

    Parallel electron energy-loss spectroscopy (PEELS) in a scanning transmission electron microscope (STEM) was used to record the Mn L 2,3 -edges from a range of natural and synthetic manganese containing materials, covering valences 0, II, III, IV and VII, with an energy resolution of ca. 0.5 eV. The Mn L 2,3 electron-loss near-edge structure (ELNES) of these edges provided a sensitive fingerprint of its valence. The Mn 2+ L 2,3 -edges show little sensitivity to the local site symmetry of the ligands surrounding the manganese. This is illustrated by comparing the Mn L 2,3 -edges from 4-, 6-and 8-fold coordinated Mn 2+ . In contrast, the Mn L 3 -edges from Mn 3+ and Mn 4+ containing minerals exhibited ELNES that are interpreted in terms of a crystals-field splitting of the 3d electrons, governed by the symmetry of the surrounding ligands. The Mn L 3 -edges for octahedrally coordinated Mn 2+ , Mn 3+ and Mn 4+ showed variations in their ELNES that were sensitive to the crystal-field strength. The crystal-field strength (10Q) was measured from these edges and compared very well with published optically determinted values. The magnitude of 10Dq measured from the Mn L 3 -edges and their O K-edge prepeaks of the manganese oxides were almost identical. This further confirms that the value of 10Dq measured at the Mn L 3 -edge is correct. Selected spectra are compared with theoretical 2p atomic multiplet spectra and the differences and similarities are explained in terms of the covalency and site symmetry of the manganese. The Mn L 3 -edges allow the valence of the manganese to be ascertained, even in multivalent state materials, and can also be used to dtermin 10Dq. (orig.)

  10. Crystallography: past and present

    Science.gov (United States)

    Hodeau, J.-L.; Guinebretiere, R.

    2007-12-01

    In the 19th century, crystallography referred to the study of crystal shapes. Such studies by Haüy and Bravais allowed the establishment of important hypotheses such as (i) “les molécules intégrantes qui sont censées être les plus petits solides que l’on puisse extraire d’un minéral” [1], (ii) the definition of the crystal lattice and (iii) “le cristal est clivable parallèlement à deux ou trois formes cristallines” [2]. This morphological crystallography defined a crystal like “a chemically homogeneous solid, wholly or partly bounded by natural planes that intersect at predetermined angles” [3]. It described the main symmetry elements and operations, nomenclatures of different crystal forms and also the theory of twinning. A breakthrough appeared in 1912 with the use of X-rays by M. von Laue and W.H. and W.L. Bragg. This experimental development allowed the determination of the atomic content of each unit cell constituting the crystal and defined a crystal as “any solid in which an atomic pattern is repeated periodically in three dimensions, that is, any solid that “diffracts” an incident X-ray beam” [3]. Mathematical tools like the Patterson methods, the direct methods, were developed. The way for solving crystalline structure was opened first for simple compounds and at that time crystallography was associated mainly with perfect crystals. In the fifties, crystallographers already had most apparatus and fundamental methods at their disposal; however, we had to wait for the development of computers to see the full use of these tools. Furthermore the development of new sources of neutrons, electrons and synchrotron X-rays allowed the studies of complex compounds like large macromolecules in biology. Nowadays, one of the new frontiers for crystallographers is to relate the crystal structure to its physical-chemical-biological properties, this means that an accurate structural determination is needed to focus on a selective part of the

  11. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Chang, C.F.

    1983-07-01

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A 2 in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure

  12. Racemic DNA Crystallography

    OpenAIRE

    Mandal , Pradeep K.; Collie , Gavin W.; Kauffmann , Brice; Huc , Ivan

    2014-01-01

    International audience; Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of Land D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propens...

  13. In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation.

    Science.gov (United States)

    Cheong, Jun Young; Chang, Joon Ha; Kim, Sung Joo; Kim, Chanhoon; Seo, Hyeon Kook; Shin, Jae Won; Yuk, Jong Min; Lee, Jeong Yong; Kim, Il-Doo

    2017-12-01

    We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.

  14. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    Science.gov (United States)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  15. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    Science.gov (United States)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  16. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    Science.gov (United States)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  17. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-03-22

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  18. High-resolution spectroscopy in superfluid helium droplets. Investigation of vibrational fine structures in electronic spectra of phthalocyanine and porphyrin derivatives

    International Nuclear Information System (INIS)

    Riechers, Ricarda Eva Friederike Elisabeth

    2011-01-01

    Since a considerably large variety of substituted compounds is commercially available and the electronic excitation spectra fit well into the spectral range covered by the continuous wave dye laser used for this study several porphyrin and phthalocyanine derivatives substituted with different types and numbers of alkyl and aryl groups were chosen as molecular probes. Recording fluorescence excitation and dispersed emission spectra revealed exclusively sharp transitions for all species. A change of the molecule's electrostatic moments, primarily and most effectively, a change of the molecular dipole moment regarding both magnitude and orientation, was identified as the main contribution for line broadening effects. Apart from the sharp lines presented in their fluorescence excitation spectra, the phthalocyanine derivatives investigated for this study, namely chloro-aluminium-phthalocyanine (AlClPc) and tetra-tertbutyl-phthalocyanine (TTBPc), exhibited more than one emission spectrum.

  19. New light on the Kr-(4p55s2) Feshbach resonances: high-resolution electron scattering experiments and B-spline R-matrix calculations

    International Nuclear Information System (INIS)

    Hoffmann, T H; Ruf, M-W; Hotop, H; Zatsarinny, O; Bartschat, K; Allan, M

    2010-01-01

    In a joint experimental and theoretical effort, we carried out a detailed study of electron scattering from Kr atoms in the energy range of the low-lying Kr - (4p 5 5s 2 ) Feshbach resonances. Absolute angle-differential cross sections for elastic electron scattering were measured over the energy range 9.3-10.3 eV with an energy width of about 13 meV at scattering angles between 10 deg. and 180 deg. Using several sets of elastic scattering phase shifts, a detailed analysis of the sharp Kr - (4p 5 5s 2 2 P 3/2 ) resonance was carried out, resulting in a resonance width of Γ 3/2 3.6(2) meV. By direct comparison with the position of the Ar - (3p 5 4s 2 2 P 3/2 ) resonance, the energy for the Kr - (4p 5 5s 2 2 P 3/2 ) resonance was determined as E 3/2 = 9.489(3) eV. A Fano-type fit of the higher lying Kr - (4p 5 5s 2 2 P 1/2 ) resonance yielded the resonance parameters Γ 1/2 = 33(5) meV and E 1/2 = 10.126(4) eV. In order to obtain additional insights, B-spline R-matrix calculations were performed for both the elastic and the inelastic cross sections above the threshold for 4p 5 5s excitation. They provide the total and angle-differential cross sections for excitation of long-lived and short-lived levels of the 4p 5 5s configuration in Kr and branching ratios for the decay of the Kr - (4p 5 5s 2 2 P 1/2 ) resonance into the three available exit channels. The results are compared with selected experimental data.

  20. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Directory of Open Access Journals (Sweden)

    Shunsuke Asahina

    2014-11-01

    Full Text Available Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in york-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the york-shell materials: (i resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii sample preparation for observing internal structures; and (iii X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  1. Direct observation and analysis of yolk-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki [JEOL Ltd., SM Business Unit, Tokyo (Japan); Young Jeong, Hu [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Galeano, Carolina; Schüth, Ferdi [Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Mülheim (Germany); Terasaki, Osamu, E-mail: terasaki@mmk.su.se, E-mail: terasaki@kaist.ac.kr [Graduate School of EEWS, WCU/BK21+, KAIST, Daejeon 305-701 (Korea, Republic of); Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on Porous Materials, Stockholm University, SE-10691 Stockholm (Sweden)

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO{sub 2}, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  2. High-resolution studies of tropolone in the S0 and S1 electronic states: isotope driven dynamics in the zero-point energy levels.

    Science.gov (United States)

    Keske, John C; Lin, Wei; Pringle, Wallace C; Novick, Stewart E; Blake, Thomas A; Plusquellic, David F

    2006-02-21

    Rotationally resolved microwave (MW) and ultraviolet (UV) spectra of jet-cooled tropolone have been obtained in S(0) and S(1) electronic states using Fourier-transform microwave and UV-laser/molecular-beam spectrometers. In the ground electronic state, the MW spectra of all heavy-atom isotopomers including one (18)O and four (13)C isotopomers were observed in natural abundance. The OD isotopomer was obtained from isotopically enriched samples. The two lowest tunneling states of each isotopomer except (18)O have been assigned. The observed inversion splitting for the OD isotopomer is 1523.227(5) MHz. For the asymmetric (13)C structures, the magnitudes of tunneling-rotation interactions are found to diminish with decreasing distance between the heavy atom and the tunneling proton. In the limit of closest approach, the 0(+) state of (18)O was well fitted to an asymmetric rotor Hamiltonian, reflecting significant changes in the tautomerization dynamics. Comparisons of the substituted atom coordinates with theoretical predictions at the MP2/aug-cc-pVTZ level of theory suggest the localized 0(+) and 0(-) wave functions of the heavier isotopes favor the C-OH and C=O forms of tropolone, respectively. The only exception occurs for the (13)C-OH and (13)C[Double Bond]O structures which correlate to the 0(-) and 0(+) states, respectively. These preferences reflect kinetic isotope effects as quantitatively verified by the calculated zero-point energy differences between members of the asymmetric atom pairs. From rotationally resolved data of the 0(+) <--0(+) and 0(-) <--0(-) bands in S(1), line-shape fits have yielded Lorentzian linewidths that differ by 12.2(16) MHz over the 19.88(4) cm(-1) interval in S(1). The fluorescence decay rates together with previously reported quantum yield data give nonradiative decay rates of 7.7(5) x 10(8) and 8.5(5) x 10(8) s(-1) for the 0(+) and 0(-) levels of the S(1) state of tropolone.

  3. A high-resolution detector based on liquid-core scintillating fibres with readout via an electron-bombarded charge-coupled device

    International Nuclear Information System (INIS)

    Cianfarani, C.; Duane, A.; Fabre, J.P.; Frenkel, A.; Golovkin, S.V.; Gorin, A.M.; Harrison, K.; Kozarenko, E.N.; Kushnirenko, A.E.; Ladygin, E.A.; Martellotti, G.; Medvedkov, A.M.; Nass, P.A.; Obudovski, V.P.; Penso, G.; Petukhov, Yu.P.; Siegmund, W.P.; Tyukov, V.E.; Vasilchenko, V.G.

    1994-01-01

    This paper is a presentation of results from tests in a 5 GeV/c hadron beam of detectors based on liquid-core scintillating fibres, each fibre consisting of a glass capillary filled with organic liquid scintillator. Fibre readout was performed via an Electron-Bombarded Charge-Coupled Device (EBCCD) image tube, a novel instrument that combines the functions of a high-gain, gated image intensifier and a Charge-Coupled Device. Using 1-methylnaphthalene doped with 3 g/l of R45 as liquid scintillator, the attenuation lengths obtained for light propagation over distances greater than 16 cm were 1.5 m in fibres of 20 μm core and 1.0 m in fibres of 16 μm core. For particles that crossed the fibres of 20 μm core at distances of ∼1.8 cm and ∼95 cm from the fibres' readout ends, the recorded hit densities were 5.3 mm -1 and 2.5 mm -1 respectively. Using 1-methylnaphthalene doped with 3.6 g/l of R39 as liquid scintillator and fibres of 75 μm core, the hit density obtained for particles that crossed the fibres at a distance of ∼1.8 cm from their readout ends was 8.5 mm -1 . With a specially designed bundle of tapered fibres, having core diameters that smoothly increase from 16 μm to 75 μm, a spatial precision of 6 μm was measured. (orig.)

  4. Study of electric monopole transitions between the ground state and the first excited O+-state in 40,42,44,48Ca with high resolution inelastic electron scattering

    International Nuclear Information System (INIS)

    Strottman, D.; Graef, H.D.; Feldmeier, H.; Manakos, P.; Richter, A.; Spamer, E.

    1977-11-01

    Monopole transitions from the O + 1 ground states to O + 2 excited states at 3.353 MeV ( 40 Ca), 1.837 MeV ( 42 Ca), 1.884 MeV ( 44 Ca) and 4.272 Mev ( 48 Ca) have been investigated with high resolution inelastic electron scattering (FWHM approximately equal to 30 keV) at low momentum transfer (0.29 fm -1 -1 ). The respective monopole matrix elements are (2.53 +- 0.41) fm 2 , (5.24 +- 0.39) fm 2 , (5.45 +- 0.41) fm 2 and (2.28 +- 0.49) fm 2 . These results are used together with known ground state charge radii and the average number of holes in the sd-shell in the ground state to estimate the number of particle-hole excitations in the wavefunctions of th excited O + states. (orig.) [de

  5. An accurate test of calculated positions and lifetimes for Ne{sup 6+}(1s{sup 2}3lnl{sup '}) {sup 1}L states (n=3 and 4) using a high-resolution electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A. E-mail: abm@irsamc.ups-tlse.fr; Moretto-Capelle, P.; Bordenave-Montesquieu, D

    2003-05-01

    An accurate test of available calculations for the autoionizing doubly excited states belonging to the Be-like 1s{sup 2}3lnl{sup '} Rydberg series of neon (positions and lifetimes) is presented in this short communication. These theoretical data are used to calculate electron line shapes which are compared, through a fitting procedure, with a high-resolution electron spectrum measured in Ne{sup 8+}(1s{sup 2}) + He collisional system, at 80 keV collision energy and 13.1 deg. observation angle. Present tests concern the n=3 and n=4 singlet states. It is found that some of these calculations suffer from large discrepancies with experiment and do not allow a description of the electron spectrum. A quantitative comparison of measured and calculated post-collisional Coulomb interaction-shifted line positions is also given and briefly discussed; for one theoretical data set, the agreement with experiment is found to be generally within {+-}50 meV; in contrast agreement with other data often considerably scatters within {+-}500 meV and sometimes more.

  6. An accurate test of calculated positions and lifetimes for Ne6+(1s23lnl') 1L states (n=3 and 4) using a high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.

    2003-01-01

    An accurate test of available calculations for the autoionizing doubly excited states belonging to the Be-like 1s 2 3lnl ' Rydberg series of neon (positions and lifetimes) is presented in this short communication. These theoretical data are used to calculate electron line shapes which are compared, through a fitting procedure, with a high-resolution electron spectrum measured in Ne 8+ (1s 2 ) + He collisional system, at 80 keV collision energy and 13.1 deg. observation angle. Present tests concern the n=3 and n=4 singlet states. It is found that some of these calculations suffer from large discrepancies with experiment and do not allow a description of the electron spectrum. A quantitative comparison of measured and calculated post-collisional Coulomb interaction-shifted line positions is also given and briefly discussed; for one theoretical data set, the agreement with experiment is found to be generally within ±50 meV; in contrast agreement with other data often considerably scatters within ±500 meV and sometimes more

  7. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  8. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  9. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  10. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  11. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  12. Amorphous-like interfacial layer between a high-Tc superconducting Tl-1223 film and a Ag substrate examined by high-voltage high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Kim, Bongjun; Kim, Hyuntak; Nagai, Takuro; Matsui, Yoshio; Horiuchi, Shigeo; Jeong, Daeyeong; Deinhofer, Christian; Gritzner, Gerhard; Kim, Youngmin; Kim, Younjoong

    2006-01-01

    The thin amorphous-like layer, formed at the interface between a high-T c superconducting (Tl 0.5 , Pb 0.5 )(Sr 0.8 , Ba 0.2 )Ca 2 Cu 3 O y (Tl-1223) film and a Ag substrate during heating at 910 .deg. C, has been examined by using high-voltage high-resolution transmission electron microscopy. The interfacial layer is less than 10 nm in thickness. It contacts the (001) plane of Tl-1223 and the (113) or (133) planes of Ag in most cases. Its composition is similar to that of Tl-1223, except for the inclusion of a substantial amount of Ag. Its formation proceeds by diffusion of Ag into Tl-1223, during which a structure change first occurs at the layer of CuO 2 + Ca planes. The Tl(Pb)O + the Sr(Ba)O layers are then destroyed to cause the total structure to become amorphous-like. Furthermore, we have found that it is formed under an irradiation of highly energetic electrons.

  13. Amorphous-like interfacial layer between a high-T{sub c} superconducting Tl-1223 film and a Ag substrate examined by high-voltage high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bongjun; Kim, Hyuntak [Electronics and Tele-Communications Research Institute, Daejeon (Korea, Republic of); Nagai, Takuro; Matsui, Yoshio [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Horiuchi, Shigeo; Jeong, Daeyeong [Electrotechnology Research Institute, Changwon (Korea, Republic of); Deinhofer, Christian; Gritzner, Gerhard [Johannes Kepler University, Linz (Austria); Kim, Youngmin; Kim, Younjoong [Electron Microscopy Team, Korea Basic Science Institute, Daejeon (Korea, Republic of)

    2006-05-15

    The thin amorphous-like layer, formed at the interface between a high-T{sub c} superconducting (Tl{sub 0.5}, Pb{sub 0.5})(Sr{sub 0.8}, Ba{sub 0.2})Ca{sub 2}Cu{sub 3}O{sub y} (Tl-1223) film and a Ag substrate during heating at 910 .deg. C, has been examined by using high-voltage high-resolution transmission electron microscopy. The interfacial layer is less than 10 nm in thickness. It contacts the (001) plane of Tl-1223 and the (113) or (133) planes of Ag in most cases. Its composition is similar to that of Tl-1223, except for the inclusion of a substantial amount of Ag. Its formation proceeds by diffusion of Ag into Tl-1223, during which a structure change first occurs at the layer of CuO{sub 2} + Ca planes. The Tl(Pb)O + the Sr(Ba)O layers are then destroyed to cause the total structure to become amorphous-like. Furthermore, we have found that it is formed under an irradiation of highly energetic electrons.

  14. A method for extraction of crystallography-related information from a data cube of very-low-energy electron micrographs

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Pokorná, Zuzana

    2015-01-01

    Roč. 148, JAN 2015 (2015), s. 52-56 ISSN 0304-3991 R&D Projects: GA MŠk(CZ) LO1212 Keywords : Very low energy * Scanning electron microscopy * SLEEM * Data cube * Image processing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.874, year: 2015

  15. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation

    International Nuclear Information System (INIS)

    Ounjai, Puey; Unger, Vinzenz M.; Sigworth, Fred J.; Angsuthanasombat, Chanan

    2007-01-01

    The insecticidal nature of Cry δ-endotoxins produced by Bacillus thuringiensis is generally believed to be caused by their ability to form lytic pores in the midgut cell membrane of susceptible insect larvae. Here we have analyzed membrane-associated structures of the 65-kDa dipteran-active Cry4Ba toxin by electron crystallography. The membrane-associated toxin complex was crystallized in the presence of DMPC via detergent dialysis. Depending upon the charge of the adsorbed surface, 2D crystals of the oligomeric toxin complex have been captured in two distinct conformations. The projection maps of those crystals have been generated at 17 A resolution. Both complexes appeared to be trimeric; as in one crystal form, its projection structure revealed a symmetrical pinwheel-like shape with virtually no depression in the middle of the complex. The other form revealed a propeller-like conformation displaying an obvious hole in the center region, presumably representing the toxin-induced pore. These crystallographic data thus demonstrate for the first time that the 65-kDa activated Cry4Ba toxin in association with lipid membranes could exist in at least two different trimeric conformations, conceivably implying the closed and open states of the pore

  17. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    Eliel, E.R.

    1982-01-01

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1 S 0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  18. High-resolution electron spectroscopy of the 1s{sup 2}3lnl' Be-like series in oxygen and neon. Test of theoretical data: II. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D [Laboratoire CAR-IRSAMC, UMR 5589 CNRS - Universite Paul Sabatier, 31062 Toulouse (France)

    2003-01-14

    A complete and accurate experimental test of theoretical spectroscopic data sets (state positions, lifetimes) available for the n=3-5 terms of the 1s{sup 2}3lnl' Rydberg series of oxygen and neon ions is presented in a series of two papers. This result was achieved by fitting our high-resolution electron spectra with post-collisional lineshapes calculated with the help of these spectroscopic data. In this second paper we apply the fitting procedure described in the preceding companion paper (I) to the analysis of high-resolution electron spectra measured in O{sup 6+} (1s{sup 2}) + He, H{sub 2} and Ne{sup 8+} (1s{sup 2}) + He collisional systems at 10 qkeV collision energy (q is the ion charge). Singlet states alone are found to be excited in oxygen; they also explain most of the neon lines; in the latter case a possible contribution of triplet states is discussed. Many 1s{sup 2}3lnl' {sup 1}L transitions are identified for the first time. A quantitative comparison between measured and calculated positions clearly points to the best theoretical data currently available. Finally, a first identification of some 4l4l' {sup 1}L transitions observed in the neon spectrum is also proposed. From this huge spectroscopic work, we extract the first experimental partial branching ratios for autoionization into the 1s{sup 2}2l ionization continua for a large number of 1s{sup 2}3lnl' {sup 1}L states, which are compared with the total ones calculated by other authors; we deduce that populations of |M{sub L} vertical bar = 0 and 1 magnetic sublevels are nearly identical. The double-capture process is also briefly characterized by comparing relative populations of many n=3-5 states; it is found that the same states are populated in O{sup 6+} +H{sub 2} and Ne{sup 8+} +He collisional systems with the same relative populations.

  19. Probing the electronic structure and Au—C chemical bonding in AuCn− and AuCnH− (n = 2, 4, and 6) using high-resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    León, Iker; Ruipérez, Fernando; Ugalde, Jesus M.; Wang, Lai-Sheng

    2016-01-01

    We report a joint photoelectron spectroscopy and theoretical study on AuC 4 − , AuC 6 − , and AuC n H − (n = 2, 4, and 6) using high-resolution photoelectron imaging and ab initio calculations. The ground state of AuC 2 H − , AuC 4 H − , and AuC 6 H − is found to be linear, while that of AuC 4 − and AuC 6 − is bent. All the species are found to be linear in their neutral ground states. The electron affinities (EAs) are measured to be 3.366(1) and 3.593(1) eV for AuC 4 and AuC 6 , respectively. Both bending and stretching frequencies are resolved in the spectra of AuC 4 − and AuC 6 − . High-resolution data of AuC n H − reveal major vibrational progressions in the Au—C stretching and bending modes. AuC 2 H − has a ground state stretching frequency of 445(10) cm −1 and a bending frequency of 260(10) cm −1 ; AuC 4 H − has a ground state stretching frequency of 340(10) cm −1 ; AuC 6 H − has a ground state stretching frequency of 260(10) cm −1 and a bending frequency of 55(10) cm −1 . The EAs are measured to be 1.475(1), 1.778(1), and 1.962(1) eV for AuC 2 H, AuC 4 H, and AuC 6 H, respectively. The strength of the Au—C bond decreases as the number of carbon atoms increases. The current study provides a wealth of electronic structure information about AuC 4 − , AuC 6 − , and AuC n H − (n = 2, 4, and 6) and their corresponding neutrals.

  20. Crystallography: past and present

    International Nuclear Information System (INIS)

    Hodeau, J.L.; Guinebretiere, R.

    2007-01-01

    In the 19th century, crystallography referred to the study of crystal shapes. A breakthrough appeared in 1912 with the use of X-rays by M. von Laue and W.H. and W.L. Bragg. This experimental development allowed the determination of the atomic content of each unit cell constituting the crystal and defined a crystal as ''any solid in which an atomic pattern is repeated periodically in three dimensions, that is, any solid that ''diffracts'' an incident X-ray beam''. Mathematical tools like the Patterson methods, the direct methods, were developed. Furthermore the development of new sources of neutrons, electrons and synchrotron X-rays allowed the studies of complex compounds like large macromolecules in biology. In our contribution we show by selected examples that these improvements were allowed (i) by the use of powerful sources, apparatus and detectors which allow micro-diffraction, in-situ diffraction, spectroscopy, resonant scattering, inelastic scattering, coherent scattering, (ii) by the development of methods like diffraction anomalous fine structure (DAFS), pair distribution function (PDF), simulated annealing, single object reconstruction, (iii) by combination of scattering and spectroscopy and by combination of scattering and microscopy. (orig.)

  1. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  2. High resolution VUV facility at INDUS-1

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Saraswathy, P.; Rao, P.M.R.; Mishra, A.P.; Kartha, V.B.

    1993-01-01

    Synchrotron radiation (SR) generated in the electron storage rings is an unique source for the study of atomic and molecular spectroscopy especially in the vacuum ultra violet region. Realizing the potential of this light source, efforts are in progress to develop a beamline facility at INDUS-1 to carry out high resolution atomic and molecular spectroscopy. This beam line consists of a fore-optic which is a combination of three cylindrical mirrors. The mirrors are so chosen that SR beam having a 60 mrad (horizontal) x 6 mrad (vertical) divergence is focussed onto a slit of a 6.65 metre off-plane spectrometer in Eagle Mount equipped with horizontal slit and vertical dispersion. The design of the various components of the beam line is completed. It is decided to build the spectrometer as per the requirements of the user community. Details of the various aspects of the beam line will be presented. (author). 3 figs

  3. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  4. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    International Nuclear Information System (INIS)

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D.K.; Skinner, J.M.; Skinner, M.J.; Stoner-Ma, D.; Sweet, R.M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  5. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  6. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  7. Super-resolution biomolecular crystallography with low-resolution data.

    Science.gov (United States)

    Schröder, Gunnar F; Levitt, Michael; Brunger, Axel T

    2010-04-22

    X-ray diffraction plays a pivotal role in the understanding of biological systems by revealing atomic structures of proteins, nucleic acids and their complexes, with much recent interest in very large assemblies like the ribosome. As crystals of such large assemblies often diffract weakly (resolution worse than 4 A), we need methods that work at such low resolution. In macromolecular assemblies, some of the components may be known at high resolution, whereas others are unknown: current refinement methods fail as they require a high-resolution starting structure for the entire complex. Determining the structure of such complexes, which are often of key biological importance, should be possible in principle as the number of independent diffraction intensities at a resolution better than 5 A generally exceeds the number of degrees of freedom. Here we introduce a method that adds specific information from known homologous structures but allows global and local deformations of these homology models. Our approach uses the observation that local protein structure tends to be conserved as sequence and function evolve. Cross-validation with R(free) (the free R-factor) determines the optimum deformation and influence of the homology model. For test cases at 3.5-5 A resolution with known structures at high resolution, our method gives significant improvements over conventional refinement in the model as monitored by coordinate accuracy, the definition of secondary structure and the quality of electron density maps. For re-refinements of a representative set of 19 low-resolution crystal structures from the Protein Data Bank, we find similar improvements. Thus, a structure derived from low-resolution diffraction data can have quality similar to a high-resolution structure. Our method is applicable to the study of weakly diffracting crystals using X-ray micro-diffraction as well as data from new X-ray light sources. Use of homology information is not restricted to X

  8. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  9. Optimizing the Recognition of Surface Crystallography

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mika, Filip; Müllerová, Ilona

    2015-01-01

    Roč. 21, S4 (2015), s. 124-129 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : surface crystallography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  10. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  11. Structure of restacked MoS{sub 2} and WS{sub 2} elucidated by electron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Heising, J; Kanatzidis, M G

    1999-02-03

    There has been a lot of confusion about the nature of restacked MoS{sub 2} and WS{sub 2}. The structure has been proposed to be trigonal TiS{sub 2} type with octahedral M{sup 4} and called 1T-MoS{sub 2}. The presence of a distortion in the metal plane that gives rise to a superstructure has been suggested. Electron crystallographic studies on small (submicron) single crystal domains of restacked WS{sub 2} and MoS{sub 2} have been performed to solve their superstructure. It was shown that what initially seems to be a trigonal crystal is actually a triplet of three individual orthorhombic crystals. Using two-dimensional hk0 data from films for both triple and single crystals the authors calculated corresponding Patterson projections, which reveal a severe distortion in the Mo/W plane, forming infinite zigzag chains. The projection of the structure suggests M-M distances of 2.92 and 2.74 {angstrom} for MoS{sub 2} and Ws{sub 2}, respectively. Least-squares refinement from the single-crystal data gives R{sub 1} = 13.3% for WS{sub 2} and R{sub 1} = 15.3% for MoS{sub 2}. Therefore, it is proposed that restacked MoS{sub 2} and WS{sub 2} are not 1T form but rather WTe{sub 2} type.

  12. High-resolution CCD imaging alternatives

    Science.gov (United States)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  13. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  14. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  15. Crystallography and Drug Design

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Crystallography and Drug Design. K Suguna. General Article Volume 19 Issue 12 December 2014 pp 1093-1103. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/12/1093-1103. Keywords.

  16. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  17. The success story of crystallography.

    Science.gov (United States)

    Schwarzenbach, Dieter

    2012-01-01

    Diffractionists usually place the birth of crystallography in 1912 with the first X-ray diffraction experiment of Friedrich, Knipping and Laue. This discovery propelled the mathematical branch of mineralogy to global importance and enabled crystal structure determination. Knowledge of the geometrical structure of matter at atomic resolution had revolutionary consequences for all branches of the natural sciences: physics, chemistry, biology, earth sciences and material science. It is scarcely possible for a single person in a single article to trace and appropriately value all of these developments. This article presents the limited, subjective view of its author and a limited selection of references. The bulk of the article covers the history of X-ray structure determination from the NaCl structure to aperiodic structures and macromolecular structures. The theoretical foundations were available by 1920. The subsequent success of crystallography was then due to the development of diffraction equipment, the theory of the solution of the phase problem, symmetry theory and computers. The many structures becoming known called for the development of crystal chemistry and of data banks. Diffuse scattering from disordered structures without and with partial long-range order allows determination of short-range order. Neutron and electron scattering and diffraction are also mentioned.

  18. Optimized cleanup method for the determination of short chain polychlorinated n-alkanes in sediments by high resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry

    International Nuclear Information System (INIS)

    Gao Yuan; Zhang Haijun; Chen Jiping; Zhang Qing; Tian Yuzeng; Qi Peipei; Yu Zhengkun

    2011-01-01

    Graphical abstract: The sediment sample could be purified by the optimized cleanup method, and satisfying cleanup efficiency was obtained. Highlights: → The elution characters of sPCAs and interfering substances were evaluated on three adsorbents. → An optimized cleanup method was developed for sPCAs with satisfying cleanup efficiency. → The cleanup method combined with HRGC/ECNI-LRMS was applied for sPCAs analysis. → The sPCAs levels range from 53.6 ng g -1 to 289.3 ng g -1 in tested sediment samples. - Abstract: The performances of three adsorbents, i.e. silica gel, neutral and basic alumina, in the separation of short chain polychlorinated n-alkanes (sPCAs) from potential interfering substances such as polychlorinated biphenyls (PCBs) and organochlorine pesticides were evaluated. To increase the cleanup efficiency, a two-step cleanup method using silica gel column and subsequent basic alumina column was developed. All the PCB and organochlorine pesticides could be removed by this cleanup method. The very satisfying cleanup efficiency of sPCAs has been achieved and the recovery in the cleanup method reached 92.7%. The method detection limit (MDL) for sPCAs in sediments was determined to be 14 ng g -1 . Relative standard deviation (R.S.D.) of 5.3% was obtained for the mass fraction of sPCAs by analyzing four replicates of a spiked sediment sample. High resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry (HRGC/ECNI-LRMS) was used for sPCAs quantification by monitoring [M-HCl]· - ions. When applied to the sediment samples from the mouth of the Daliao River, the optimized cleanup method in conjunction with HRGC/ECNI-LRMS allowed for highly selective identifications for sPCAs. The sPCAs levels in sediment samples are reported to range from 53.6 ng g -1 to 289.3 ng g -1 . C 10 - and C 11 -PCAs are the dominant residue in most of investigated sediment samples.

  19. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  20. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  1. Crystallography and environment development

    International Nuclear Information System (INIS)

    Radwan, M.M.

    1992-01-01

    Crystallography, the study of atomic and molecular structure, has given detailed information about the fine-structure of the inorganic and living world-i.e. about the environment (in the widest sense of the world)-. It has contributed to geology (at the atomic level), crystal chemistry, the structure of minerals, soils and clays. In the case of the living world it has contributed to structural studies of biological molecules; proteins, nucleic acids (DNA and RNA), and polysaccharides. knowing how the atoms in a material are arranged allows to understand the relationship between atomic structure and properties of these materials. Today we are entering a new age in crystallography-the age of genetic engineering in the living world, and inorganic crystallographic engineering, where we use crystallographic information from the structures nature has given us, to begin to design and build structure of our own, of specified properties, aiming at the welfare of man and the development of his environment

  2. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  3. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  4. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  5. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  6. Nature of mixed symmetry 2+ states in 94Mo from high resolution electron and proton scattering and line shape of the first excited 1/2+ state in 9Be

    International Nuclear Information System (INIS)

    Burda, Oleksiy

    2007-07-01

    The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in 94 Mo and the second one to the astrophysical relevant line shape of the first excited 1/2 + state in 9 Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2 + states in 94 Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles Θ e =93 -165 . In dispersion-matching mode an energy resolution Δ E =30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles Θ p =4.5 -26 . Typical energy resolutions were Δ E ≅35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2 + states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2 + state in 9 Be is studied. Spectra of the 9 Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E x =8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant 9 Be(γ,n) cross sections have been extracted from the (e,e') data. The resonance parameters of the first excited 1/2 + state in 9 Be are derived in a one-level R-matrix approximation. The deduced

  7. Nature of mixed symmetry 2{sup +} states in {sup 94}Mo from high resolution electron and proton scattering and line shape of the first excited 1/2{sup +} state in {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Oleksiy

    2007-07-15

    The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in {sup 94}Mo and the second one to the astrophysical relevant line shape of the first excited 1/2{sup +} state in {sup 9}Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2{sup +} states in {sup 94}Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles {theta}{sub e}=93 -165 . In dispersion-matching mode an energy resolution {delta}{sub E}=30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles {theta}{sub p}=4.5 -26 . Typical energy resolutions were {delta}{sub E}{approx_equal}35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2{sup +} states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2{sup +} state in {sup 9}Be is studied. Spectra of the {sup 9}Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E{sub x}=8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant {sup 9}Be({gamma},n) cross sections have been extracted from the (e,e') data. The

  8. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Ye Weiguo; Han Hui; Li Pengyu

    2003-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronic is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  9. A high resolution large dynamic range TDC circuit implementation

    International Nuclear Information System (INIS)

    Lei Wuhu; Liu Songqiu; Li Pengyu; Han Hui; Ye Yanlin

    2005-01-01

    Time measurement technology is usually used in nuclear experimentation. There are many methods of time measurement. The implementation method of Time to Digital Conversion (TDC) by means of electronics is a classical technology. The range and resolution of TDC is different according with different usage. A wide range and high resolution TDC circuit, including its theory and implementation way, is introduced in this paper. The test result is also given. (authors)

  10. High resolution atomic spectra of rare earths : progress report

    International Nuclear Information System (INIS)

    Saksena, G.D.; Ahmad, S.A.

    1976-01-01

    High resolution studies of atomic spectra of neodymium and gadolinium are being carried out on a recording Fabry-Perot spectrometer. The present progress report concerns work done on new assignments as well as confirmation of recently assigned electronic configurations and evaluation of isotope shifts of energy levels which have been possible from the isotope shift data obtained for several transitions of NdI, NdII and GdI, GdII respectively. (author)

  11. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  12. The story of crystallography

    International Nuclear Information System (INIS)

    Nigam, G.D.

    1976-01-01

    The historical development of the very important field of crystallography has been narrated. The important land marks such as the first determination of the crystal structure of NaCl by Sir Poragy and that of DNA by Watson et al., etc. are mentioned. The important role played by this field and its role in bringing broad fields such as physics, chemistry and biology very close to each other are emphasised. Some of the outstanding contributions made by eminent crystallographers in India and abroad are mentioned. (K.B.)

  13. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  14. High resolution CT in diffuse lung disease

    International Nuclear Information System (INIS)

    Webb, W.R.

    1995-01-01

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.)

  15. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  16. High resolution CT in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.).

  17. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  18. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  19. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  20. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  1. Missed opportunities in crystallography.

    Science.gov (United States)

    Dauter, Zbigniew; Jaskolski, Mariusz

    2014-09-01

    Scrutinized from the perspective of time, the giants in the history of crystallography more than once missed a nearly obvious chance to make another great discovery, or went in the wrong direction. This review analyzes such missed opportunities focusing on macromolecular crystallographers (using Perutz, Pauling, Franklin as examples), although cases of particular historical (Kepler), methodological (Laue, Patterson) or structural (Pauling, Ramachandran) relevance are also described. Linus Pauling, in particular, is presented several times in different circumstances, as a man of vision, oversight, or even blindness. His example underscores the simple truth that also in science incessant creativity is inevitably connected with some probability of fault. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  3. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  4. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  5. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  6. Watching proteins function with time-resolved x-ray crystallography

    International Nuclear Information System (INIS)

    Šrajer, Vukica; Schmidt, Marius

    2017-01-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol . 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol . 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  7. Watching proteins function with time-resolved x-ray crystallography

    Science.gov (United States)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  8. Watching proteins function with time-resolved x-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Šrajer, Vukica; Schmidt, Marius

    2017-08-22

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We

  9. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  10. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  11. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  12. High Resolution Spectrometer (HRS) particle-identification system

    International Nuclear Information System (INIS)

    Pratt, J.C.; Spencer, J.E.; Whitten, C.A.

    1977-08-01

    The functions of the particle-identification system (PIDS) designed for the High Resolution Spectrometer facility (HRS) at LAMPF are described, together with the mechanical layout, counter hardware, and associated electronics. The system was designed for easy use and to be applicable to currently proposed experiments at HRS. The several strobe signals that can be generated correspond to different event types or characteristics, and logic configuration and timing can be remotely controlled by computer. Concepts of discrete pattern recognition and multidimensional, analog pulse discrimination are used to distinguish between different event types

  13. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  14. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  15. High resolution Moessbauer spectroscopy with 67Zn in metallic systems

    International Nuclear Information System (INIS)

    Potzel, W.

    1985-01-01

    Moessbauer experiments on metallic systems are described where the high resolution 93.3 keV resonance in 67 Zn is used. In the first part, the Cu-Zn alloy system is investigated and the high energy resolution of this Moessbauer transition is employed to determine small changes of the s-electron density at the 67 Zn nucleus when the Zn concentration is changed. In the second part, Zn metal is taken as an example to demonstrate that the 93.3 keV transition is also extremely sensitive to small changes of lattice dynamical effects. 7 refs., 18 figs. (author)

  16. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...... successfully in terms of the many-body theory of Mahan, Nozières, and De Dominicis. The 4d spectrum agrees well with predictions based on a relativistic-augmented-plane-wave band-structure calculation....

  17. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  18. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  19. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  20. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  1. High-resolution computer-aided moire

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  2. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  3. Laboratory of High resolution gamma spectrometry

    International Nuclear Information System (INIS)

    Mendez G, A.; Giber F, J.; Rivas C, I.; Reyes A, B.

    1992-01-01

    The Department of Nuclear Experimentation of the Nuclear Systems Management requests the collaboration of the Engineering unit for the supervision of the execution of the work of the High resolution Gamma spectrometry and low bottom laboratory, using the hut of the sub critic reactor of the Nuclear Center of Mexico. This laboratory has the purpose of determining the activity of special materials irradiated in nuclear power plants. In this report the architecture development, concepts, materials and diagrams for the realization of this type of work are presented. (Author)

  4. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  5. Experimental positions and lifetimes of Be-like 1s{sup 2}3lnl'(n=3 to 5) states of O{sup 4+} and Ne{sup 6+} ions investigated by high resolution electron spectroscopy: test of calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D. [Univ. Paul Sabatier, Toulouse (France). Lab. Collisions - Agregats - Reactivite

    1999-07-01

    Using high resolution electron spectroscopy, positions and lifetimes of many Be-like singlet states of the 1s{sup 2}3lnl' Rydberg series (n = 3 to 5) of oxygen and neon have been measured for the first time. This was achieved by a fitting procedure which takes into account an accurate definition of the post-collisional electron lineshapes. These states are produced after a double electron capture by multicharged ions has occurred in O{sup 6+}(1s{sup 2})+He, H{sub 2} and Ne{sup 8+}(1s{sup 2})+He collisions at about 4 keV/amu collision energy. (orig.)

  6. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    Science.gov (United States)

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  7. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  8. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  9. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  10. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  11. High resolution measurements supported by electronic structure calculations of two naphthalene derivatives: [1,5]- and [1,6]-naphthyridine—Estimation of the zero point inertial defect for planar polycyclic aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gruet, S., E-mail: sebastien.gruet@synchrotron-soleil.fr, E-mail: manuel.goubet@univ-lille1.fr; Pirali, O. [AILES Beamline, Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette (France); Institut des Sciences Moléculaires d’Orsay, UMR 8214 CNRS – Université Paris Sud, 91405 Orsay Cedex (France); Goubet, M., E-mail: sebastien.gruet@synchrotron-soleil.fr, E-mail: manuel.goubet@univ-lille1.fr [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR 8523 CNRS – Université Lille 1, 59655 Villeneuve d’Ascq Cedex (France)

    2014-06-21

    Polycyclic aromatic hydrocarbons (PAHs) molecules are suspected to be present in the interstellar medium and to participate to the broad and unresolved emissions features, the so-called unidentified infrared bands. In the laboratory, very few studies report the rotationally resolved structure of such important class of molecules. In the present work, both experimental and theoretical approaches provide the first accurate determination of the rotational energy levels of two diazanaphthalene: [1,5]- and [1,6]-naphthyridine. [1,6]-naphthyridine has been studied at high resolution, in the microwave (MW) region using a Fourier transform microwave spectrometer and in the far-infrared (FIR) region using synchrotron-based Fourier transform spectroscopy. The very accurate set of ground state (GS) constants deduced from the analysis of the MW spectrum allowed the analysis of the most intense modes in the FIR (ν{sub 38}-GS centered at about 483 cm{sup −1} and ν{sub 34}-GS centered at about 842 cm{sup −1}). In contrast with [1,6]-naphthyridine, pure rotation spectroscopy of [1,5]-naphthyridine cannot be performed for symmetry reasons so the combined study of the two intense FIR modes (ν{sub 22}-GS centered at about 166 cm{sup −1} and ν{sub 18}-GS centered at about 818 cm{sup −1}) provided the GS and the excited states constants. Although the analysis of the very dense rotational patterns for such large molecules remains very challenging, relatively accurate anharmonic density functional theory calculations appeared as a highly relevant supporting tool to the analysis for both molecules. In addition, the good agreement between the experimental and calculated infrared spectrum shows that the present theoretical approach should provide useful data for the astrophysical models. Moreover, inertial defects calculated in the GS (Δ{sub GS}) of both molecules exhibit slightly negative values as previously observed for planar species of this molecular family. We adjusted

  12. The basics of crystallography and diffraction

    CERN Document Server

    Hammond, C

    2015-01-01

    This title provides a clear and very broadly based introduction to crystallography, light, X-ray, and electron diffraction; a knowledge of which is essential to students in a wide range of scientific disciplines but which is otherwise generally covered in subject-specific and more mathematically detailed texts. The book is also designed to appeal to the more general reader since it shows, by historical and biographical references, how the subject has developed from the work and insights of successive generations of crystallographers and scientists.

  13. Study of a new magnetic dipole mode in the heavy deformed nuclei 154Sm, 156Gd, 158Gd, 164Dy, 168Er, and 174Yb by high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bohle, D.

    1985-01-01

    By inelastic electron scattering with high energy resolution a new magnetic dipole mode in heavy, deformed nuclei could be detected. For this the nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb were studied at the Darmstadt electron linear accelerator (DALINAC) at small momentum transfer q ≤ 0.6 fm -1 and low excitation energies. A collective magnetic dipole excitation could be discovered in all nuclei at an excitation energy of E x ≅ 66 δA -1/3 MeV whereby δ means the mass deformation. The transition strength extends in the mean to B(M1)↑ ≅ 1.3 μ N 2 . A systematic study of the nucleus 156 Gd yielded hints to a strong fragmentation of the magnetic dipole strength. A comparison of electron scattering, proton scattering, and nuclear resonance fluorescence experiments shows that the new mode is a pure orbital mode. (orig./HSI) [de

  14. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions.

    Science.gov (United States)

    Roberts, N A; Noh, J H; Lassiter, M G; Guo, S; Kalinin, S V; Rack, P D

    2012-04-13

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by depositing a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex.

  15. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  16. High resolution CT of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Harumi (Kyoto Univ. (Japan). Faculty of Medicine)

    1991-02-01

    The emergence of computed tomography (CT) in the early 1970s has greatly contributed to diagnostic radiology. The brain was the first organ examined with CT, followed by the abdomen. For the chest, CT has also come into use shortly after the introduction in the examination of the thoracic cavity and mediastinum. CT techniques were, however, of limited significance in the evaluation of pulmonary diseases, especially diffuse pulmonary diseases. High-resolution CT (HRCT) has been introduced in clinical investigations of the lung field. This article is designed to present chest radiographic and conventional tomographic interpretations and to introduce findings of HRCT corresponding to the same shadows, with a summation of the significance of HRCT and issues of diagnostic imaging. Materials outlined are tuberculosis, pneumoconiosis, bronchopneumonia, mycoplasma pneumonia, lymphangitic carcinomatosis, sarcoidosis, diffuse panbronchiolitis, interstitial pneumonia, and pulmonary emphysema. Finally, an overview of basic investigations evolved from HRCT is given. (N.K.) 140 refs.

  17. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  18. A high resolution jet analysis for LEP

    International Nuclear Information System (INIS)

    Hariri, S.

    1992-11-01

    A high resolution multijet analysis of hadronic events produced in e + e - annihilation at a C.M.S. energy of 91.2 GeV is described. Hadronic events produced in e + e - annihilations are generated using the Monte Carlo program JETSET7.3 with its two options: Matrix Element (M.E.) and Parton Showers (P.S.). The shower option is used with its default parameter values while the M.E. option is used with an invariant mass cut Y CUT =0.01 instead of 0.02. This choice ensures a better continuity in the evolution of the event shape variables. (K.A.) 3 refs.; 26 figs.; 1 tab

  19. High Resolution Displays Using NCAP Liquid Crystals

    Science.gov (United States)

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  20. High-resolution CT of airway reactivity

    International Nuclear Information System (INIS)

    Herold, C.J.; Brown, R.H.; Hirshman, C.A.; Mitzner, W.; Zerhouni, E.A.

    1990-01-01

    Assessment of airway reactivity has generally been limited to experimental nonimaging models. This authors of this paper used high-resolution CT (HRCT) to evaluate airway reactivity and to calculate airway resistance (Raw) compared with lung resistance (RL). Ten anesthetized and ventilated dogs were investigated with HRCT (10 contiguous 2-mm sections through the lower lung lobes) during control state, following aerosol histamine challenge, and following posthistamine hyperinflation. The HRCT scans were digitized, and areas of 10 airways per dog (diameter, 1-10 mm) were measured with a computer edging process. Changes in airway area and Raw (calculated by 1/[area] 2 ) were measured. RL was assessed separately, following the same protocol. Data were analyzed by use of a paired t-test with significance at p < .05

  1. High resolution crystal calorimetry at LHC

    International Nuclear Information System (INIS)

    Schneegans, M.; Ferrere, D.; Lebeau, M.; Vivargent, M.

    1991-01-01

    The search for Higgs bosons above Lep200 reach could be one of the main tasks of the future pp and ee colliders. In the intermediate mass region, and in particular in the range 80-140 GeV/c 2 , only the 2-photon decay mode of a Higgs produced inclusively or in association with a W, gives a good chance of observation. A 'dedicated' very high resolution calorimeter with photon angle reconstruction and pion identification capability should detect a Higgs signal with high probability. A crystal calorimeter can be considered as a conservative approach to such a detector, since a large design and operation experience already exists. The extensive R and D needed for finding a dense, fast and radiation hard crystal, is under way. Guide-lines for designing an optimum calorimeter for LHC are discussed and preliminary configurations are given. (author) 7 refs., 3 figs., 2 tabs

  2. High resolution tomography using analog coding

    International Nuclear Information System (INIS)

    Brownell, G.L.; Burnham, C.A.; Chesler, D.A.

    1985-01-01

    As part of a 30-year program in the development of positron instrumentation, the authors have developed a high resolution bismuth germanate (BGO) ring tomography (PCR) employing 360 detectors and 90 photomultiplier tubes for one plane. The detectors are shaped as trapezoid and are 4 mm wide at the front end. When assembled, they form an essentially continuous cylindrical detector. Light from a scintillation in the detector is viewed through a cylindrical light pipe by the photomultiplier tubes. By use of an analog coding scheme, the detector emitting light is identified from the phototube signals. In effect, each phototube can identify four crystals. PCR is designed as a static device and does not use interpolative motion. This results in considerable advantage when performing dynamic studies. PCR is the positron tomography analog of the γ-camera widely used in nuclear medicine

  3. High-resolution CT of otosclerosis

    International Nuclear Information System (INIS)

    Dewen, Yang; Kodama, Takao; Tono, Tetsuya; Ochiai, Reiji; Kiyomizu, Kensuke; Suzuki, Yukiko; Yano, Takanori; Watanabe, Katsushi

    1997-01-01

    High-resolution CT (HRCT) scans of thirty-two patients (60 ears) with the clinical diagnosis of fenestral otosclerosis were evaluated retrospectively. HRCT was performed with 1-mm-thick targeted sections and 1-mm (36 ears) or 0.5-mm (10 ears) intervals in the semiaxial projection. Seven patients (14 ears) underwent helical scanning with a 1-mm slice thickness and 1-mm/sec table speed. Forty-five ears (75%) were found to have one or more otospongiotic or otosclerotic foci on HRCT. In most instances (30 ears), the otospongiotic foci were found in the region of the fissula ante fenestram. No significant correlations between CT findings and air conduction threshold were observed. We found a significant relationship between lesions of the labyrinthine capsule and sensorineural hearing loss. We conclude that HRCT is a valuable modality for diagnosing otosclerosis, especially when otospongiotic focus is detected. (author)

  4. High resolution CT in pulmonary sarcoidosis

    International Nuclear Information System (INIS)

    Spina, Juan C.; Curros, Marisela L.; Gomez, M.; Gonzalez, A.; Chacon, Carolina; Guerendiain, G.

    2000-01-01

    Objectives: To establish the particular advantages of High Resolution CT (HRCT) for the diagnosis of pulmonary sarcoidosis. Material and Methods: A series of fourteen patients, (4 men and 10 women; mean age 44,5 years) with thoracic sarcoidosis. All patients were studied using HRCT and diagnosis was confirmed for each case. Confidence intervals were obtained for different disease manifestations. Results: The most common findings were: lymph node enlargement (n=14 patients), pulmonary nodules (n=13), thickening of septa (n=6), peribronquial vascular thickening (n=5) pulmonary pseudo mass (n=5) and signs of fibrosis (n=4). The stage most commonly observed was stage II. It is worth noting that no cases of pleural effusion or cavitations of pulmonary lesions were observed. Conclusions: In this series, confidence interval overlapping for lymph node enlargement, single pulmonary nodules and septum thickening, allows to infer that their presence in a young adult, with few clinical symptoms, forces to rule out first the possibility of sarcoidosis. (author)

  5. High resolution infrared spectroscopy of symbiotic stars

    International Nuclear Information System (INIS)

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  6. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  7. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    International Nuclear Information System (INIS)

    Snigireva, I; Snigirev, A

    2013-01-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals

  8. Crystallography taken to the extreme

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid

    2018-06-01

    This article is a brief autobiographical account of our life in science and the path that we took in performing the research for which we were awarded the Gregori Aminoff Prize in Crystallography 2017 by the Royal Swedish Academy of Sciences. We were invited to write it by the editor-in-chief of Physica Scripta, Suzy Lidström, who charged us with the task of contributing to a series of autobiographical articles published since 2014, the International Year of Crystallography, on the lives of the Aminoff Prize winners. As this series is intended to be of particular interest to young scientists, teachers and lecturers and those researching the history of science, we tried to adhere to this purpose while writing our story. It does not pretend to be a comprehensive review either of our own scientific results or, especially, of covering the complete history of the research field of high-pressure crystallography in which we are active.

  9. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Nakane, Takanori; Song, Changyong; Suzuki, Mamoru; Nango, Eriko; Kobayashi, Jun; Masuda, Tetsuya; Inoue, Shigeyuki; Mizohata, Eiichi; Nakatsu, Toru; Tanaka, Tomoyuki; Tanaka, Rie; Shimamura, Tatsuro; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Iwata, So; Sugahara, Michihiro

    2015-01-01

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures

  10. Chromatic Modulator for High Resolution CCD or APS Devices

    Science.gov (United States)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  11. The inelastic contribution to high resolution images of defects

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Ahn, C.C.; Wood, G.J.

    1990-01-01

    The importance of the contribution due to inelastically scattered electrons to unfiltered HREM images is examined, with emphasis on imaging of defects in semiconductors. Whenever the low energy loss spectrum contains sharp peaks, the contribution is not featureless. At specimen thickness of a few tens of nm, it may change the image appearance in a major way. The strongest effect occurs in high resolution, medium voltage (200 to 500 kV) electron microscope images of defects at focus values minimizing the contrast of the elastic image in low Z materials such as Al and Si. In higher Z materials or those with no sharp 'plasmons', the contribution is small. 23 refs., 8 figs

  12. Wide-range high-resolution transmission electron microscopy reveals morphological and distributional changes of endomembrane compartments during log to stationary transition of growth phase in tobacco BY-2 cells.

    Science.gov (United States)

    Toyooka, Kiminori; Sato, Mayuko; Kutsuna, Natsumaro; Higaki, Takumi; Sawaki, Fumie; Wakazaki, Mayumi; Goto, Yumi; Hasezawa, Seiichiro; Nagata, Noriko; Matsuoka, Ken

    2014-09-01

    Rapid growth of plant cells by cell division and expansion requires an endomembrane trafficking system. The endomembrane compartments, such as the Golgi stacks, endosome and vesicles, are important in the synthesis and trafficking of cell wall materials during cell elongation. However, changes in the morphology, distribution and number of these compartments during the different stages of cell proliferation and differentiation have not yet been clarified. In this study, we examined these changes at the ultrastructural level in tobacco Bright yellow 2 (BY-2) cells during the log and stationary phases of growth. We analyzed images of the BY-2 cells prepared by the high-pressure freezing/freeze substitution technique with the aid of an auto-acquisition transmission electron microscope system. We quantified the distribution of secretory and endosomal compartments in longitudinal sections of whole cells by using wide-range gigapixel-class images obtained by merging thousands of transmission electron micrographs. During the log phase, all Golgi stacks were composed of several thick cisternae. Approximately 20 vesicle clusters (VCs), including the trans-Golgi network and secretory vesicle cluster, were observed throughout the cell. In the stationary-phase cells, Golgi stacks were thin with small cisternae, and only a few VCs were observed. Nearly the same number of multivesicular body and small high-density vesicles were observed in both the stationary and log phases. Results from electron microscopy and live fluorescence imaging indicate that the morphology and distribution of secretory-related compartments dramatically change when cells transition from log to stationary phases of growth. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Macromolecular neutron crystallography at the Protein Crystallography Station (PCS)

    OpenAIRE

    Kovalevsky, Andrey; Fisher, Zoe; Johnson, Hannah; Mustyakimov, Marat; Waltman, Mary Jo; Langan, Paul

    2010-01-01

    The Protein Crystallography Station user facility at Los Alamos National Laboratory not only offers open access to a high-performance neutron beamline, but also actively supports and develops new methods in protein expression, deuteration, purification, robotic crystallization and the synthesis of substrates with stable isotopes and provides assistance with data-reduction and structure-refinement software and comprehensive neutron structure analysis.

  14. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  15. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  16. A high resolution pneumatic stepping actuator for harsh reactor environments

    Science.gov (United States)

    Tippetts, Thomas B.; Evans, Paul S.; Riffle, George K.

    1993-01-01

    A reactivity control actuator for a high-power density nuclear propulsion reactor must be installed in close proximity to the reactor core. The energy input from radiation to the actuator structure could exceed hundreds of W/cc unless low-cross section, low-absorptivity materials are chosen. Also, for post-test handling and subsequent storage, materials should not be used that are activated into long half-life isotopes. Pneumatic actuators can be constructed from various reactor-compatible materials, but conventional pneumatic piston actuators generally lack the stiffness required for high resolution reactivity control unless electrical position sensors and compensated electronic control systems are used. To overcome these limitations, a pneumatic actuator is under development that positions an output shaft in response to a series of pneumatic pulses, comprising a pneumatic analog of an electrical stepping motor. The pneumatic pulses are generated remotely, beyond the strong radiation environment, and transmitted to the actuator through tubing. The mechanically simple actuator uses a nutating gear harmonic drive to convert motion of small pistons directly to high-resolution angular motion of the output shaft. The digital nature of this actuator is suitable for various reactor control algorithms but is especially compatible with the three bean salad algorithm discussed by Ball et al. (1991).

  17. Proton and electron impact on molecular and atomic oxygen: I. High resolution fluorescence spectra in the visible and VUV spectral range and emission cross-sections for dissociative ionisation and excitation of O2

    International Nuclear Information System (INIS)

    Wilhelmi, O.; Schartner, K.H.

    2000-01-01

    For pt.II see ibid., vol.11, p.45-58, 2000. Molecular oxygen O 2 was dissociated in collisions with protons and electrons in the intermediate velocity range (p + -energies: 17-800 keV, e - -energies: 0.2-2 keV). Fluorescence from excited atomic and singly ionised fragments and from singly ionised molecules was detected in the VUV and in the visible and near UV spectral range. Highly resolved spectra are presented for the VUV (46-131 nm) and the near UV/visible (340-605 nm) spectral range. Absolute emission cross-sections have been determined for dissociative ionisation and excitation leading to fluorescence in the VUV. Results are compared with published data. (orig.)

  18. Evidence of sharp and diffuse domain walls in BiFeO3 by means of unit-cell-wise strain and polarization maps obtained with high resolution scanning transmission electron microscopy.

    Science.gov (United States)

    Lubk, A; Rossell, M D; Seidel, J; He, Q; Yang, S Y; Chu, Y H; Ramesh, R; Hÿtch, M J; Snoeck, E

    2012-07-27

    Domain walls (DWs) substantially influence a large number of applications involving ferroelectric materials due to their limited mobility when shifted during polarization switching. The discovery of greatly enhanced conduction at BiFeO(3) DWs has highlighted yet another role of DWs as a local material state with unique properties. However, the lack of precise information on the local atomic structure is still hampering microscopical understanding of DW properties. Here, we examine the atomic structure of BiFeO(3) 109° DWs with pm precision by a combination of high-angle annular dark-field scanning transmission electron microscopy and a dedicated structural analysis. By measuring simultaneously local polarization and strain, we provide direct experimental proof for the straight DW structure predicted by ab initio calculations as well as the recently proposed theory of diffuse DWs, thus resolving a long-standing discrepancy between experimentally measured and theoretically predicted DW mobilities.

  19. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules.

    Science.gov (United States)

    Miyaguchi, Katsuyuki

    2014-10-01

    Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  20. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  1. High resolution computed tomography of positron emitters

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Cahoon, J.L.; Huesman, R.H.; Jackson, H.G.

    1976-10-01

    High resolution computed transaxial radionuclide tomography has been performed on phantoms containing positron-emitting isotopes. The imaging system consisted of two opposing groups of eight NaI(Tl) crystals 8 mm x 30 mm x 50 mm deep and the phantoms were rotated to measure coincident events along 8960 projection integrals as they would be measured by a 280-crystal ring system now under construction. The spatial resolution in the reconstructed images is 7.5 mm FWHM at the center of the ring and approximately 11 mm FWHM at a radius of 10 cm. We present measurements of imaging and background rates under various operating conditions. Based on these measurements, the full 280-crystal system will image 10,000 events per sec with 400 μCi in a section 1 cm thick and 20 cm in diameter. We show that 1.5 million events are sufficient to reliably image 3.5-mm hot spots with 14-mm center-to-center spacing and isolated 9-mm diameter cold spots in phantoms 15 to 20 cm in diameter

  2. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  3. High resolution CT of temporal bone trauma

    International Nuclear Information System (INIS)

    Youn, Eun Kyung

    1986-01-01

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  4. High resolution SETI: Experiences and prospects

    Science.gov (United States)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  5. High resolution simultaneous measurements of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Tanaka, K.; Komura, K.

    2006-01-01

    High resolution (2-3 hrs) simultaneous measurements of airborne radionuclides, 212 Pb, 210 Pb and 7 Be, have been performed by using extremely low background Ge detectors at Ogoya Underground Laboratory. We have measured above radionuclides at three monitoring points viz, 1) Low Level Radioactivity Laboratory (LLRL) Kanazawa University, 2) Shishiku Plateau (640 m MSL) located about 8 km from LLRL to investigate vertical difference of activity levels, and 3) Hegura Island (10 m MSL) located about 50 km from Noto Peninsula in the Sea of Japan to evaluate the influences of Asian continent or mainland of Japan on the variation to the activity levels. Variations of short-lived 212 Pb concentration showed noticeable time lags between at LLRL and at Shishiku Plateau. These time lags might be caused by change of height of a planetary boundary layer. On the contrary, variations of long-lived 210 Pb and 7 Be showed simultaneity at three locations because of homogeneity of these concentrations all over the area. (author)

  6. Crystallography across the Sciences 2

    NARCIS (Netherlands)

    Schenk, H.

    2008-01-01

    This second commemorative compilation from the IUCr contains 24 invited articles, all refereed, from some of today's most eminent crystallographers. The articles describe state-of-the-art research in which crystallography has played a major role, and are intended to be attractive for a broad

  7. The Cambridge crystallography subroutine library

    International Nuclear Information System (INIS)

    Brown, P.J.; Matthewman, J.C.

    1981-06-01

    This manual is an amalgamation of the original Cambridge Crystallography Subroutine Library Mark II manual and its supplement No I. The original Mark II system, a set of FORTRAN Subroutines which can be used for standard crystallographic calculations, has been extended to include facilities for conventional least squares refinement. Several new routines have also been added. (U.K.)

  8. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    KAUST Repository

    Yu, Zhengbao; Han, Yu; Zhao, Lan; Huang, Shiliang; Zheng, Qiyu; Lin, Shuangzheng; Cõ rdova, Armando C.; Zou, Xiaodong; Sun, Junliang

    2012-01-01

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single

  9. SPring-8 Structural Biology Beamlines / Current Status of Public Beamlines for Protein Crystallography at SPring-8

    International Nuclear Information System (INIS)

    Kawamoto, Masahide; Hasegawa, Kazuya; Shimizu, Nobutaka; Sakai, Hisanobu; Shimizu, Tetsuya; Nisawa, Atsushi; Yamamoto, Masaki

    2007-01-01

    SPring-8 has 2 protein crystallography beamlines for public use, BL38B1 (Structural Biology III) and BL41XU (Structural Biology I). The BL38B1 is a bending magnet beamline for routine data collection, and the BL41XU is an undulator beamline specially customized for micro beam and ultra-high resolutional experiment. The designs and the performances of each beamline are presented

  10. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  11. Metalloprotein Crystallography: More than a Structure.

    Science.gov (United States)

    Bowman, Sarah E J; Bridwell-Rabb, Jennifer; Drennan, Catherine L

    2016-04-19

    Metal ions and metallocofactors play important roles in a broad range of biochemical reactions. Accordingly, it has been estimated that as much as 25-50% of the proteome uses transition metal ions to carry out a variety of essential functions. The metal ions incorporated within metalloproteins fulfill functional roles based on chemical properties, the diversity of which arises as transition metals can adopt different redox states and geometries, dictated by the identity of the metal and the protein environment. The coupling of a metal ion with an organic framework in metallocofactors, such as heme and cobalamin, further expands the chemical functionality of metals in biology. The three-dimensional visualization of metal ions and complex metallocofactors within a protein scaffold is often a starting point for enzymology, highlighting the importance of structural characterization of metalloproteins. Metalloprotein crystallography, however, presents a number of implicit challenges including correctly incorporating the relevant metal or metallocofactor, maintaining the proper environment for the protein to be purified and crystallized (including providing anaerobic, cold, or aphotic environments), and being mindful of the possibility of X-ray induced damage to the proteins or incorporated metal ions. Nevertheless, the incorporated metals or metallocofactors also present unique advantages in metalloprotein crystallography. The significant resonance that metals undergo with X-ray photons at wavelengths used for protein crystallography and the rich electronic properties of metals, which provide intense and spectroscopically unique signatures, allow a metalloprotein crystallographer to use anomalous dispersion to determine phases for structure solution and to use simultaneous or parallel spectroscopic techniques on single crystals. These properties, coupled with the improved brightness of beamlines, the ability to tune the wavelength of the X-ray beam, the availability of

  12. Processing method for high resolution monochromator

    International Nuclear Information System (INIS)

    Kiriyama, Koji; Mitsui, Takaya

    2006-12-01

    A processing method for high resolution monochromator (HRM) has been developed at Japanese Atomic Energy Agency/Quantum Beam Science Directorate/Synchrotron Radiation Research unit at SPring-8. For manufacturing a HRM, a sophisticated slicing machine and X-ray diffractometer have been installed for shaping a crystal ingot and orienting precisely the surface of a crystal ingot, respectively. The specification of the slicing machine is following; Maximum size of a diamond blade is φ 350mm in diameter, φ 38.1mm in the spindle diameter, and 2mm in thickness. A large crystal such as an ingot with 100mm in diameter, 200mm in length can be cut. Thin crystal samples such as a wafer can be also cut using by another sample holder. Working distance of a main shaft with the direction perpendicular to working table in the machine is 350mm at maximum. Smallest resolution of the main shaft with directions of front-and-back and top-and-bottom are 0.001mm read by a digital encoder. 2mm/min can set for cutting samples in the forward direction. For orienting crystal faces relative to the blade direction adjustment, a one-circle goniometer and 2-circle segment are equipped on the working table in the machine. A rotation and a tilt of the stage can be done by manual operation. Digital encoder in a turn stage is furnished and has angle resolution of less than 0.01 degrees. In addition, a hand drill as a supporting device for detailed processing of crystal is prepared. Then, an ideal crystal face can be cut from crystal samples within an accuracy of about 0.01 degrees. By installation of these devices, a high energy resolution monochromator crystal for inelastic x-ray scattering and a beam collimator are got in hand and are expected to be used for nanotechnology studies. (author)

  13. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  14. Toward high-resolution optoelectronic retinal prosthesis

    Science.gov (United States)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  15. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  16. High-Resolution Characterization of UMo Alloy Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools that can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.

  17. Feasibility tests of a high resolution sampling radial drift chamber

    International Nuclear Information System (INIS)

    Huth, J.

    1985-01-01

    The design concept and results of feasibility tests for a vertex detector intended for use in the TPC-PEP4/9 experiment are presented. The detector is based on a slow radial drift in dimethyl ether. High resolution localization of the avalanches at the sense wire is accomplished with nearby pickup wires and the utilization of waveform sampling electronics. The avalanche angular coordinate measurements, combined with knowledge of the electric field distribution and drift velocity permit reconstruction of the trajectory using essentially all track information. Measurements with a test chamber constructed to study characteristics of avalanche localization indicate that the recoverable track information in one centimeter of dimethyl ether at 1.5 atm is equivalent to 30 measurements of 40 μm accuracy. (orig.)

  18. High resolution ultrastructure imaging of fractures in human dental tissues

    Directory of Open Access Journals (Sweden)

    Tan Sui

    2014-01-01

    Full Text Available Human dental hard tissues are dentine, cementum, and enamel. These are hydrated mineralised composite tissues with a hierarchical structure and versatile thermo-mechanical properties. The hierarchical structure of dentine and enamel was imaged by transmission electron microscopy (TEM of samples prepared by focused ion beam (FIB milling. High resolution TEM was carried out in the vicinity of a crack tip in dentine. An intricate “random weave” pattern of hydroxyapatile crystallites was observed and this provided a possible explanation for toughening of the mineralized dentine tissue at the nano-scale. The results reported here provide the basis for improved understanding of the relationship between the multi-scale nature and the mechanical properties of hierarchically structured biomaterials, and will also be useful for the development of better prosthetic and dental restorative materials.

  19. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  20. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  1. High resolution interface nanochemistry and structure

    International Nuclear Information System (INIS)

    1993-01-01

    A summary is given of results on nanospectroscopy etc. during the previous three years, divided into the following subsections: development of methods and instrumentation for interface/boundary chemical analysis, interface and boundary structure in ceramic matrix composites, quantitative composition measurements of thin films and inclusions, theoretical calculations for electron energy loss near edge fine structure and grain boundary structure, and small probe radiation effects in ceramics. Materials studied include SiC whisker-reinforced Si3N4, SiC, Si oxides, Si, Si oxynitride, other ceramics. Methods mentioned include field emission, EELS (electron energy loss spectroscopy), nanospectroscopy, electron nanoprobe, etc

  2. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  3. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  4. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  5. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  6. Cationic and Anionic Disorder in CZTSSe Kesterite Compounds: A Chemical Crystallography Study.

    Science.gov (United States)

    Bais, Pierre; Caldes, Maria Teresa; Paris, Michaël; Guillot-Deudon, Catherine; Fertey, Pierre; Domengès, Bernadette; Lafond, Alain

    2017-10-02

    The cationic and anionic disorder in the Cu 2 ZnSnSe 4 -Cu 2 ZnSnS 4 (CZTSe-CZTS) system has been investigated through a chemical crystallography approach including X-ray diffraction (in conventional and resonant setup), 119 Sn and 77 Se NMR spectroscopy, and high-resolution transmission electron microscopy (HRTEM) techniques. Single-crystal XRD analysis demonstrates that the studied compounds behave as a solid solution with the kesterite crystal structure in the whole S/(S + Se) composition range. As previously reported for pure sulfide and pure selenide compounds, the 119 Sn NMR spectroscopy study gives clear evidence that the level of Cu/Zn disorder in mixed S/Se compounds depends on the thermal history of the samples (slow cooled or quenched). This conclusion is also supported by the investigation of the 77 Se NMR spectra. The resonant single-crystal XRD technique shows that regardless of the duration of annealing step below the order-disorder critical temperature the ordering is not a long-range phenomenon. Finally, for the very first time, HREM images of pure selenide and mixed S/Se crystals clearly show that these compounds have different microstructures. Indeed, only the mixed S/Se compound exhibits a mosaic-type contrast which could be the sign of short-range anionic order. Calculated images corroborate that HRTEM contrast is highly dependent on the nature of the anion as well as on the local anionic order.

  7. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  8. Nanoflow electrospinning serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Laksmono, Hartawan [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kern, Jan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Tran, Rosalie; Hattne, Johan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Alonso-Mori, Roberto [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Lassalle-Kaiser, Benedikt [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glöckner, Carina; Hellmich, Julia [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Schafer, Donald W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sellberg, Jonas [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stockholm University, S-106 91 Stockholm (Sweden); McQueen, Trevor A. [Stanford University, Stanford, CA 94025 (United States); Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zwart, Petrus H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glatzel, Pieter [European Synchrotron Radiation Facility, Grenoble (France); Milathianaki, Despina; White, William E. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Williams, Garth J.; Boutet, Sébastien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zouni, Athina [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Messinger, Johannes [Umeå Universitet, Umeå (Sweden); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bergmann, Uwe [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Yano, Junko; Yachandra, Vittal K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bogan, Michael J., E-mail: mbogan@slac.stanford.edu [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  9. Nanoflow electrospinning serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min −1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min −1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption

  10. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  11. Towards high resolution operando electron microscopy of a working catalyst

    NARCIS (Netherlands)

    Puspitasari, I.

    2016-01-01

    The objectives of this PhD project are to address the challenges of in-situ TEM and introduce a new generation of in-situ TEM equipment. In Chapter 2 the in-situ TEM facilities are introduced, focusing on the nanoreactor that has gone through quite some development stages during this project.

  12. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20'' × 15'') at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission ...

  13. Transmission Electron Microscopy of the Textured Silver Back Reflector of a Thin Film Silicon Solar Cell: From Crystallography to Optical Absorption

    DEFF Research Database (Denmark)

    Duchamp, Martial; Söderström, K.; Jeangros, Q.

    2011-01-01

    The study of light trapping in amorphous, microcrystalline and micromorph thin-film Si solar cells is an important and active field of investigation. It has been demonstrated that the use of a rough Ag back-reflector lead to an increase of short circuit current but also to losses through...... the creation of surface plasmon polaritons. Here, we use transmission electron microscopy (TEM) techniques to study the grain structure of a Ag thin-film that was sputtered on top of 2-μm-thick rough ZnO layer - defects, such as twin-boundaries have been observed. A smoothing of the top Ag surface was also...... observed after ex-situ annealing. Electron energy-loss spectroscopy with a monochromatic beam was used to measure the surface plasmon resonance with nm spatial resolution. 1 eV and 3 eV Ag surface plasmon resonances have been observed on as-grown layers. Such measurements provide valuable information about...

  14. High Resolution Reconstruction of the Ionosphere for SAR Applications

    Science.gov (United States)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  15. Direct methods in protein crystallography.

    Science.gov (United States)

    Karle, J

    1989-11-01

    It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power.

  16. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  17. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  18. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    KAUST Repository

    Yu, Zhengbao

    2012-10-09

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single-crystal X-ray diffraction. SU-78 is an intergrowth of SU-78A and SU-78B and contains interconnected 12-ring channels in three directions. The two polymorphs are built from the same building layer, similar to that for the zeolite beta family. The layer stacking in SU-78, however, is different from those in zeolite beta polymorph A, B, and C, showing new zeolite framework topologies. SU-78 is thermally stable up to 600 °C. © 2012 American Chemical Society.

  19. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  20. Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Kristin N. Parent

    2018-02-01

    Full Text Available The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.

  1. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  2. Coded aperture subreflector array for high resolution radar imaging

    Science.gov (United States)

    Lynch, Jonathan J.; Herrault, Florian; Kona, Keerti; Virbila, Gabriel; McGuire, Chuck; Wetzel, Mike; Fung, Helen; Prophet, Eric

    2017-05-01

    HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL's Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.

  3. High resolution synchrotron light analysis at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Switka, Michael; Zander, Sven; Hillert, Wolfgang [Bonn Univ. (Germany). Elektronen-Stretcher Anlage ELSA-Facility (ELSA)

    2013-07-01

    The pulse stretcher ring ELSA provides polarized electrons with energies up to 3.5 GeV for external hadron experiments. In order to suffice the need of stored beam intensities towards 200 mA, advanced beam instability studies need to be carried out. An external diagnostic beamline for synchrotron light analysis has been set up and provides the space for multiple diagnostic tools including a streak camera with time resolution of <1 ps. Beam profile measurements are expected to identify instabilities and reveal their thresholds. The effect of adequate countermeasures is subject to analysis. The current status of the beamline development is presented.

  4. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... with specialized data acquisition electronics that acquire 500 frames per second provides rich information regarding contact force, shape and angle for bio- inspired robotic fingertips. Furthermore, a model of estimating the force of contact based on values of the cells is proposed....

  5. High resolution transmission imaging without lenses

    International Nuclear Information System (INIS)

    Rodenburg, J M; Hurst, A C; Maiden, A

    2010-01-01

    The whole history of transmission imaging has been dominated by the lens, whether used in visible-light optics, electron optics or X-ray optics. Lenses can be thought of as a very efficient method of processing a wave front scattered from an object into an image of that object. An alternative approach is to undertake this image-formation process using a computational technique. The crudest scattering experiment is to simply record the intensity of a diffraction pattern. Recent progress in so-called diffractive imaging has shown that it is possible to recover the phase of a scattered wavefield from its diffraction pattern alone, as long as the object (or the illumination on the object) is of finite extent. In this paper we present results from a very efficient phase retrieval method which can image infinitely large fields of view. It may have important applications in improving resolution in electron microscopy, or at least allowing low specification microscopes to achieve resolution comparable to state-of-the-art machines.

  6. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  7. Liquid Scintillation High Resolution Spectral Analysis

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.

    2010-01-01

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  8. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  9. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  10. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  11. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  12. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  13. Development of High-Resolution Scintillator Systems

    International Nuclear Information System (INIS)

    Larry A. Franks; Warnick J. Kernan

    2007-01-01

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma-rays; however, the largest volume achievable is limited by the thickness of the detector which needs to be a small fraction of the average trapping length for electrons. We report results of using HgI2 crystals to fabricate photocells used in the readout of scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Nuclear response from an HgI2 photocell that was optically matched to a cerium-activated scintillator is presented and discussed. Further improvements can be expected by optimizing the transparent contact technology

  14. Capillary detectors for high resolution tracking

    International Nuclear Information System (INIS)

    Annis, P.; Bay, A.; Bonekaemper, D.; Buontempo, S.; Ereditato, A.; Fabre, J.P.; Fiorillo, G.; Frekers, D.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Goldberg, J.; Golovkin, S.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Liberti, B.; Martellotti, G.; Medvedkov, A.; Mommaert, C.; Panman, J.; Penso, G.; Petukhov, Yu.; Rondeshagen, D.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Vischers, J.L.; Wilquet, G.; Winter, K.; Wolff, T.; Wong, H.

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 x 10 5 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on electron bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented. (orig.)

  15. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  16. A history of experimental phasing in macromolecular crystallography

    OpenAIRE

    Isaacs, Neil

    2016-01-01

    It was just over a century ago that W. L. Bragg published a paper describing the first crystal structures to be determined using X-ray diffraction data. These structures were obtained from considerations of X-ray diffraction (Bragg equation), crystallography (crystal lattices and symmetry) and the scattering power of different atoms. Although W. H. Bragg proposed soon afterwards, in 1915, that the periodic electron density in crystals could be analysed using Fourier transforms, it took some d...

  17. A high resolution 16 k multi-channel analyzer PC add-on card

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Paulson, Molly; Vaidya, P.P.

    2001-01-01

    This paper describes the system details of a 16 K channel resolution Multi-Channel Analyzer (MCA) developed at Electronics Division, BARC, which is used in high resolution nuclear spectroscopy systems for pulse height analysis. The high resolution data acquisition PC add-on card is architectured using a state of the art digital circuit design technology which makes use of a Field Programmable Gate Array (FPGA), and some of the most modern and advanced analog counterparts like low power, high speed and high precision comparators, Op-amps, ADCs and DACs etc. The 16 K MCA card gives an economic, compact, and low power alternative for nuclear pulse spectroscopy use. (author)

  18. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  19. Nanoflow electrospinning serial femtosecond crystallography

    Science.gov (United States)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min−1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min−1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption. PMID:23090408

  20. Viscous hydrophilic injection matrices for serial crystallography

    Directory of Open Access Journals (Sweden)

    Gabriela Kovácsová

    2017-07-01

    Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new

  1. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  2. High resolution analysis of three bands of the electronic transition A{sup 2}Σ{sup +}-X{sup 2}Π of N{sub 2}O{sup +} radical: 100-000, 000-001, and 001-001

    Energy Technology Data Exchange (ETDEWEB)

    Lessa, L. L.; Cândido, S. D. de; Fellows, C. E., E-mail: fellows@if.uff.br [Departamento de Física, Instituto de Ciências Exatas – ICEx, Universidade Federal Fluminense, Campus do Aterrado, Volta Redonda, RJ 27213-415 (Brazil)

    2014-06-07

    In this article three vibrational bands of the electronic transition A{sup 2}Σ{sup +}-X{sup 2}Π of the N{sub 2}O{sup +} radical (100-000, 000-001, and 001-001) are analysed through high resolution Fourier transform spectroscopy. The N{sub 2}O{sup +} radical was produced by Penning ionization of N{sub 2}O by colliding with metastable atoms of He(2{sup 3}S) in a reaction chamber. The spectra was recorded in a spectral range of 24 500–30 000 cm{sup −1} and obtained from 200 coadded interferograms recorded at an apodized resolution of 0.08 cm{sup −1}. Through a recursive way, the wavenumbers of the correspondent rotational transitions were reduced into molecular constants, improving the values previously reported. New values for the first vibrational energies ν{sub 1}{sup ′}, ν{sub 3}{sup ″}, and ν{sub 3}{sup ′} are also obtained and compared with previous values reported in the literature.

  3. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    International Nuclear Information System (INIS)

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-01-01

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  4. Advances in High-Resolution Microscale Impedance Sensors

    Directory of Open Access Journals (Sweden)

    Marco Carminati

    2017-01-01

    Full Text Available Sensors based on impedance transduction have been well consolidated in the industry for decades. Today, the downscaling of the size of sensing elements to micrometric and submicrometric dimensions is enabled by the diffusion of lithographic processes and fostered by the convergence of complementary disciplines such as microelectronics, photonics, biology, electrochemistry, and material science, all focusing on energy and information manipulation at the micro- and nanoscale. Although such a miniaturization trend is pivotal in supporting the pervasiveness of sensors (in the context of mass deployment paradigms such as smart city, home and body monitoring networks, and Internet of Things, it also presents new challenges for the detection electronics, reaching the zeptoFarad domain. In this tutorial review, a selection of examples is illustrated with the purpose of distilling key indications and guidelines for the design of high-resolution impedance readout circuits and sensors. The applications span from biological cells to inertial and ultrasonic MEMS sensors, environmental monitoring, and integrated photonics.

  5. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  6. Montecarlo simulation for a new high resolution elemental analysis methodology

    International Nuclear Information System (INIS)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto

    1996-01-01

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2π solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  7. Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography

    Directory of Open Access Journals (Sweden)

    C. Mueller

    2015-09-01

    Full Text Available We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA. The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.

  8. Recent advances in racemic protein crystallography.

    Science.gov (United States)

    Yan, Bingjia; Ye, Linzhi; Xu, Weiliang; Liu, Lei

    2017-09-15

    Solution of the three-dimensional structures of proteins is a critical step in deciphering the molecular mechanisms of their bioactivities. Among the many approaches for obtaining protein crystals, racemic protein crystallography has been developed as a unique method to solve the structures of an increasing number of proteins. Exploiting unnatural protein enantiomers in crystallization and resolution, racemic protein crystallography manifests two major advantages that are 1) to increase the success rate of protein crystallization, and 2) to obviate the phase problem in X-ray diffraction. The requirement of unnatural protein enantiomers in racemic protein crystallography necessitates chemical protein synthesis, which is hitherto accomplished through solid phase peptide synthesis and chemical ligation reactions. This review highlights the fundamental ideas of racemic protein crystallography and surveys the harvests in the field of racemic protein crystallography over the last five years from early 2012 to late 2016. Copyright © 2017. Published by Elsevier Ltd.

  9. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  10. A readout system for X-ray powder crystallography

    CERN Document Server

    Loukas, D; Pavlidis, A; Karvelas, E; Psycharis, K; Misiakos, V; Mousa, J; Dre, C

    2000-01-01

    A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 mu m pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.

  11. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  12. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  13. Impact of high resolution land surface initialization in Indian summer ...

    Indian Academy of Sciences (India)

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years ... surface initialization using a regional climate model. ...... ization of the snow field in a cloud model; J. Clim. Appl.

  14. Textural Segmentation of High-Resolution Sidescan Sonar Images

    National Research Council Canada - National Science Library

    Kalcic, Maria; Bibee, Dale

    1995-01-01

    .... The high resolution of the 455 kHz sonar imagery also provides much information about the surficial bottom sediments, however their acoustic scattering properties are not well understood at high frequencies...

  15. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  16. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  17. NanoComposite Polymers for High Resolution Near Infrared Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop nanocomposite materials with tuned refractive index in the near infra red spectral range as an index-matched immersion lens for high resolution infra-red...

  18. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  19. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  20. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  1. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  2. High-resolution esophageal pressure topography for esophageal motility disorders

    OpenAIRE

    Hashem Fakhre Yaseri; Gholamreza Hamsi; Tayeb Ramim

    2016-01-01

    Background: High-resolution manometer (HRM) of the esophagus has become the main diagnostic test in the evaluation of esophageal motility disorders. The development of high-resolution manometry catheters and software displays of manometry recordings in color-coded pressure plots have changed the diagnostic assessment of esophageal disease. The first step of the Chicago classification described abnormal esophagogastric junction deglutitive relaxation. The latest classification system, proposed...

  3. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  4. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  5. Operational experience of a large area x-ray camera for protein crystallography

    International Nuclear Information System (INIS)

    Joachimiak, A.; Jorden, A. R.; Loeffen, P. W.; Naday, I.; Sanishvili, R.; Westbrook, E. M.

    1999-01-01

    After 3 years experience of operating very large area (210mm x 210mm) CCD-based detectors at the Advanced Photon Source, operational experience is reported. Four such detectors have been built, two for Structural Biology Center (APS-1 and SBC-2), one for Basic Energy Sciences Synchrotrons Radiation Center (Gold-2) at Argonne National Laboratory's Advanced Photon Source and one for Osaka University by Oxford Instruments, for use at Spring 8 (PX-21O). The detector is specifically designed as a high resolution and fast readout camera for macromolecular crystallography. Design trade-offs for speed and size are reviewed in light of operational experience and future requirements are considered. Operational data and examples of crystallography data are presented, together with plans for more development

  6. Advances in powder diffraction crystallography

    International Nuclear Information System (INIS)

    Magneli, A.

    1986-01-01

    This is the first conference to be arranged within the framework of an agreement on scientific exchange and co-operation between l Academie des Sciences de l Institut de France and the Royal Swedish Academy of Sciences. The responsibility for the scientific program of the conference has been shared between members of the two Academies. The contributions include glimpses of the historical background and broad reviews of the present status of development and of recent work in powder crystallography. Reports are given on a number of studies, basic as well as applied in character, currently conducted in the two countries in a large variety of fields. Prospects of further developments in the area are also presented

  7. Macromolecular crystallography research at Trombay

    International Nuclear Information System (INIS)

    Kannan, K.K.; Chidamrabam, R.

    1983-01-01

    Neutron diffraction studies of hydrogen positions in small molecules of biological interest at Trombay have provided valuable information that has been used in protein and enzyme structure model-building and in developing hydrogen bond potential functions. The new R-5 reactor is expected to provide higher neutron fluxes and also make possible small-angle neutron scattering studies of large biomolecules and bio-aggregates. In the last few years infrastructure facilities have also been established for macromolecular x-ray crystallography research. Meanwhile, the refinement of carbonic hydrases and lyysozyme structures have been carried out and interesting results obtained on protein dynamics and structure-function relationships. Some interesting presynaptic toxin phospholipases have also taken up for study. (author)

  8. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  9. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  10. IXO and the Missing Baryons: The Need High Resolution Spectroscopy

    Science.gov (United States)

    Nicastro, Fabrizio

    2009-01-01

    About half of the baryons in the Universe are currently eluding detection. Hydrodynamical simulations for the formation of Large Scale Structures (LSSs), predict that these baryons, at zmatter: the Warm-Hot Intergalactic Medium (WHIM). The WHIM has probably been progressively enriched with metals, during phases of intense starburst and AGN activity, up to possibly solar metallicity (Cen & Ostriker, 2006), and should therefore shine and/or absorb in in the soft X-ray band, via electronic transitions from the most abundant metals. The importance of detecting and studying the WHIM lies not only in the possibility of finally making a complete census of all baryons in the Universe, but also in the possibility of (a) directly measuring the metallicity history of the Universe, and so investigating on metal-transport in the Universe and galaxy-IGM, AGN-IGM feedback mechanisms, (b) directly measuring the heating history of the Universe, and so understanding the process of LSS formation and shocks, and (c) performing cosmological parameter measurements through a 3D 2-point angular correlation function analysis of the WHIM filaments. Detecting, and studying the WHIM with the current X-ray instrumentation however, is extremely challenging, because of the low sensitivity and resolution of the Chandra and XMM-Newton gratings, and the very low 'grasp' of all currently available imaging-spectrometers. IXO, instead, thanks to its large grating effective area (> 1000 cm2 at 0.5 keV) and high spectral resolution (R>2500 at 0.5 keV) will be perfectly suited to attack the problem in a systematic way. Here we demonstrate that high resolution gratings are crucial for these kind of studies and show that the IXO gratings will be able to detect more than 300-700 OVII WHIM filaments along about 70 lines of sight, in less than 0.7.

  11. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  12. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    Science.gov (United States)

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  13. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  14. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    Science.gov (United States)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  15. Status and prospects of macromolecular crystallography

    Indian Academy of Sciences (India)

    technique that could be completely automated in most cases. ... major challenge in macromolecular crystallography today is ... tial characterization of crystals in the home source and make a ... opportunities for a generation of structural biolo-.

  16. History of protein crystallography in China.

    Science.gov (United States)

    Rao, Zihe

    2007-06-29

    China has a strong background in X-ray crystallography dating back to the 1920s. Protein crystallography research in China was first developed following the successful synthesis of insulin in China in 1966. The subsequent determination of the three-dimensional structure of porcine insulin made China one of the few countries which could determine macromolecular structures by X-ray diffraction methods in the late 1960s and early 1970s. After a slow period during the 1970s and 1980s, protein crystallography in China has reached a new climax with a number of outstanding accomplishments. Here, I review the history and progress of protein crystallography in China and detail some of the recent research highlights, including the crystal structures of two membrane proteins as well as the structural genomics initiative in China.

  17. Using environmental transmission electron microscope to study the in-situ reduction of Co3O4 supported on α-Al2O3

    DEFF Research Database (Denmark)

    Dehghan-Niri, R.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    in specialized Transmission Electron Microscope (TEM) instruments with differentially pumped columns at pressures in the range up to 20 mbar. 1-3 The objective of this work is to study the reduction of Co3O4 nanoparticles directly and observe their morphology and crystallography. The catalysts were produced...... by dispersion of crushed powder directly on steel grids and gold grids. TEM analysis was performed with an FEI TITAN E-cell electron microscope operating at 300 kV. Reduction was done at 360°C and 3.4 mbar H2 flow. The samples were studied before and after reduction by High Resolution TEM (HRTEM) imaging, high...

  18. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  19. High voltage/high resolution studies of metal and semiconductor interfaces

    International Nuclear Information System (INIS)

    Westmacott, K.H.; Dahmen, U.

    1989-11-01

    The application of high resolution transmission electron microscopy to the study of homo- or hetero-phase interface structures requires specimens that meet stringent criteria. In some systems the necessary geometric imaging conditions are established naturally, thus greatly simplifying the analysis. This is illustrated for a diamond-hexagonal/diamond-cubic interface in deformed silicon, a Σ99 tilt boundary in a pure aluminum bicrystal, and a germanium precipitate in an aluminum matrix. 13 refs., 5 figs

  20. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.