WorldWideScience

Sample records for high-resolution crystal structure

  1. Water polygons in high-resolution protein crystal structures

    Science.gov (United States)

    Lee, Jonas; Kim, Sung-Hou

    2009-01-01

    We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 Å resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time- and space-averaged structures of “stable” water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state. PMID:19551896

  2. Revisit of alpha-chitin crystal structure using high resolution X-ray diffraction data.

    Science.gov (United States)

    Sikorski, Pawel; Hori, Ritsuko; Wada, Masahisa

    2009-05-11

    High resolution synchrotron X-ray fiber diffraction data recorded from crab tendon chitin have been used to describe the crystal structure of alpha-chitin. Crystal structures at 100 and 300 K have been solved using restrained crystallographic refinement against diffraction intensities measured from the fiber diffraction patterns. The unit cell contains two polymer chains in a 2(1) helix conformation and in the antiparallel orientation. The best agreement between predicated and observed X-ray diffraction intensities is obtained for a model that includes two distinctive conformations of C6-O6 hydroxymethl group. Those conformations are different from what is proposed in the generally accepted alpha-chitin crystal structure (J. Mol. Biol. 1978, 120, 167-181). Based on refined positions of the O6 atoms, a network of hydrogen bonds involving O6 is proposed. This network of hydrogen bonds can explain the main features of the polarized FTIR spectra of alpha-chitin and sheds some light on the origin of splitting of the amide I band observed on alpha-chitin IR spectra.

  3. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein.

    Science.gov (United States)

    Duan, Ming-Rui; Nan, Jie; Liang, Yu-He; Mao, Peng; Lu, Lu; Li, Lanfen; Wei, Chunhong; Lai, Luhua; Li, Yi; Su, Xiao-Dong

    2007-01-01

    WRKY proteins, defined by the conserved WRKYGQK sequence, are comprised of a large superfamily of transcription factors identified specifically from the plant kingdom. This superfamily plays important roles in plant disease resistance, abiotic stress, senescence as well as in some developmental processes. In this study, the Arabidopsis WRKY1 was shown to be involved in the salicylic acid signaling pathway and partially dependent on NPR1; a C-terminal domain of WRKY1, AtWRKY1-C, was constructed for structural studies. Previous investigations showed that DNA binding of the WRKY proteins was localized at the WRKY domains and these domains may define novel zinc-binding motifs. The crystal structure of the AtWRKY1-C determined at 1.6 A resolution has revealed that this domain is composed of a globular structure with five beta strands, forming an antiparallel beta-sheet. A novel zinc-binding site is situated at one end of the beta-sheet, between strands beta4 and beta5. Based on this high-resolution crystal structure and site-directed mutagenesis, we have defined and confirmed that the DNA-binding residues of AtWRKY1-C are located at beta2 and beta3 strands. These results provided us with structural information to understand the mechanism of transcriptional control and signal transduction events of the WRKY proteins.

  4. High-resolution crystal structure of the human CB1 cannabinoid receptor.

    Science.gov (United States)

    Shao, Zhenhua; Yin, Jie; Chapman, Karen; Grzemska, Magdalena; Clark, Lindsay; Wang, Junmei; Rosenbaum, Daniel M

    2016-11-16

    The human cannabinoid G-protein-coupled receptors (GPCRs) CB1 and CB2 mediate the functional responses to the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG), as well as the widely consumed plant (phyto)cannabinoid Δ(9)-tetrahydrocannabinol (THC)(1). The cannabinoid receptors have been the targets of intensive drug discovery efforts owing to the therapeutic potential of modulators for controlling pain(2), epilepsy(3), obesity(4), and other maladies. Although much progress has recently been made in understanding the biophysical properties of GPCRs, investigations of the molecular mechanisms of the cannabinoids and their receptors have lacked high-resolution structural data. We used GPCR engineering and lipidic cubic phase (LCP) crystallization to determine the structure of the human CB1 receptor bound to the inhibitor taranabant at 2.6 Å resolution. The extracellular surface of CB1, including the highly conserved membrane-proximal amino-terminal (N-terminal) region, is distinct from other lipid-activated GPCRs and forms a critical part of the ligand binding pocket. Docking studies further demonstrate how this same pocket may accommodate the cannabinoid agonist THC. Our CB1 structure provides an atomic framework for studying cannabinoid receptor function, and will aid the design and optimization of cannabinoid system modulators for therapeutic ends.

  5. Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE.

    Science.gov (United States)

    Takeda, Hironori; Hattori, Motoyuki; Nishizawa, Tomohiro; Yamashita, Keitaro; Shah, Syed T A; Caffrey, Martin; Maturana, Andrés D; Ishitani, Ryuichiro; Nureki, Osamu

    2014-11-04

    Magnesium is the most abundant divalent cation in living cells and is crucial to several biological processes. MgtE is a Mg(2+) channel distributed in all domains of life that contributes to the maintenance of cellular Mg(2+) homeostasis. Here we report the high-resolution crystal structures of the transmembrane domain of MgtE, bound to Mg(2+), Mn(2+) and Ca(2+). The high-resolution Mg(2+)-bound crystal structure clearly visualized the hydrated Mg(2+) ion within its selectivity filter. Based on those structures and biochemical analyses, we propose a cation selectivity mechanism for MgtE in which the geometry of the hydration shell of the fully hydrated Mg(2+) ion is recognized by the side-chain carboxylate groups in the selectivity filter. This is in contrast to the K(+)-selective filter of KcsA, which recognizes a dehydrated K(+) ion. Our results further revealed a cation-binding site on the periplasmic side, which regulate channel opening and prevents conduction of near-cognate cations.

  6. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound...... to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair...

  7. High-resolution Crystal Structure of Dimeric VP40 From Sudan ebolavirus.

    Science.gov (United States)

    Clifton, Matthew C; Bruhn, Jessica F; Atkins, Kateri; Webb, Terry L; Baydo, Ruth O; Raymond, Amy; Lorimer, Donald D; Edwards, Thomas E; Myler, Peter J; Saphire, Erica Ollmann

    2015-10-01

    Ebolaviruses cause severe hemorrhagic fever. Central to the Ebola life cycle is the matrix protein VP40, which oligomerizes and drives viral budding. Here we present the crystal structure of the Sudan virus (SUDV) matrix protein. This structure is higher resolution (1.6 Å) than previously achievable. Despite differences in the protein purification, we find that it still forms a stable dimer in solution, as was noted for other Ebola VP40s. Although the N-terminal domain interface by which VP40 dimerizes is conserved between Ebola virus and SUDV, the C-terminal domain interface by which VP40 dimers may further assemble is significantly smaller in this SUDV assembly. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Probing the Active Site of Candida Glabrata Dihydrofolate Reductase with High Resolution Crystal Structures and the Synthesis of New Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Smith, A; Priestley, N; Wright, D; Anderson, A

    2009-01-01

    Candida glabrata, a fungal strain resistant to many commonly administered antifungal agents, has become an emerging threat to human health. In previous work, we validated that the essential enzyme, dihydrofolate reductase, is a drug target in C. glabrata. Using a crystal structure of dihydrofolate reductase from C. glabrata bound to an initial lead compound, we designed a class of biphenyl antifolates that potently and selectively inhibit both the enzyme and the growth of the fungal culture. In this work, we explore the structure-activity relationships of this class of antifolates with four new high resolution crystal structures of enzyme:inhibitor complexes and the synthesis of four new inhibitors. The designed inhibitors are intended to probe key hydrophobic pockets visible in the crystal structure. The crystal structures and an evaluation of the new compounds reveal that methyl groups at the meta and para positions of the distal phenyl ring achieve the greatest number of interactions with the pathogenic enzyme and the greatest degree of selectivity over the human enzyme. Additionally, antifungal activity can be tuned with substitution patterns at the propargyl and para-phenyl positions.

  9. High-resolution crystal structure of human Mapkap kinase 3 in complex with a high affinity ligand.

    Science.gov (United States)

    Cheng, Robert; Felicetti, Brunella; Palan, Shilpa; Toogood-Johnson, Ian; Scheich, Christoph; Barker, John; Whittaker, Mark; Hesterkamp, Thomas

    2010-01-01

    The Mapkap kinases 2 and 3 (MK2 and MK3) have been implicated in intracellular signaling pathways leading to the production of the pro-inflammatory cytokine tumor necrosis factor alpha. MK2 has been pursued by the biopharmaceutical industry for many years for the development of a small molecule anti-inflammatory treatment and drug-like inhibitors have been described. The development of some of these compounds, however, has been slowed by the absence of a high-resolution crystal structure of MK2. Herein we present a high-resolution (1.9 A) crystal structure of the highly homologous MK3 in complex with a pharmaceutical lead compound. While all of the canonical features of Ser/Thr kinases in general and MK2 in particular are recapitulated in MK3, the detailed analysis of the binding interaction of the drug-like ligand within the adenine binding pocket allows relevant conclusions to be drawn for the further design of potent and selective drug candidates.

  10. High resolution crystal structure of a fluoride-inhibited organophosphate-degrading metallohydrolase.

    Science.gov (United States)

    Selleck, Christopher; Guddat, Luke W; Ollis, David L; Schenk, Gerhard; Pedroso, Marcelo Monteiro

    2017-12-01

    Metal ion-dependent, organophosphate-degrading enzymes (OP hydrolases) have received increasing attention due to their ability to degrade and thus detoxify commonly used pesticides and nerve agents such as sarin and VX. These enzymes thus garner strong potential as bioremediators. The OP hydrolase from Agrobacterium radiobacter (OpdA) is one of the most efficient members of this group of enzymes. Previous studies have indicated that the choice of the hydrolysis-initiating nucleophile may depend on the pH of the reaction, with a metal ion-bridging hydroxide being preferred at lower pH (i.e. pH≤8.5), and a terminally coordinated hydroxide at higher pH (i.e. pH>9.0). Furthermore, fluoride was shown to be a potent inhibitor of the reaction, but only at low pH. Here, the crystal structure (1.3Å, pH6) of OpdA in presence of fluoride is described. While the first coordination sphere in the active site displays minimal changes in the presence of fluoride, the hydrogen bonding network that connects the dimetallic metal center to the substrate binding pocket is disrupted. Thus, the structure of fluoride-inhibited OpdA demonstrates the significance of this hydrogen bond network in controlling the mechanism and function of this enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

    Science.gov (United States)

    Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole

  12. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    Science.gov (United States)

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  13. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand

    DEFF Research Database (Denmark)

    Taskinen, Jukka P; van Aalten, Daan M; Knudsen, Jens

    2007-01-01

    The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described...

  14. Conformational flexibility in the catalytic triad revealed by the high-resolution crystal structure of Streptomyces erythraeus trypsin in an unliganded state

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Elise; Vukoti, Krishna [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Miyagi, Masaru, E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Lodowski, David T., E-mail: mxm356@cwru.edu [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States)

    2014-03-01

    This work reports the first sub-angstrom resolution structure of S. erythraeus trypsin. The detailed model of a prototypical serine protease at a catalytically relevant pH with an unoccupied active site is presented and is compared with other high-resolution serine protease structures. With more than 500 crystal structures determined, serine proteases make up greater than one-third of all proteases structurally examined to date, making them among the best biochemically and structurally characterized enzymes. Despite the numerous crystallographic and biochemical studies of trypsin and related serine proteases, there are still considerable shortcomings in the understanding of their catalytic mechanism. Streptomyces erythraeus trypsin (SET) does not exhibit autolysis and crystallizes readily at physiological pH; hence, it is well suited for structural studies aimed at extending the understanding of the catalytic mechanism of serine proteases. While X-ray crystallographic structures of this enzyme have been reported, no coordinates have ever been made available in the Protein Data Bank. Based on this, and observations on the extreme stability and unique properties of this particular trypsin, it was decided to crystallize it and determine its structure. Here, the first sub-angstrom resolution structure of an unmodified, unliganded trypsin crystallized at physiological pH is reported. Detailed structural analysis reveals the geometry and structural rigidity of the catalytic triad in the unoccupied active site and comparison to related serine proteases provides a context for interpretation of biochemical studies of catalytic mechanism and activity.

  15. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x=1,2,3) phase change material

    NARCIS (Netherlands)

    Kooi, B.J.; de Hosson, J.T.M.

    2002-01-01

    The crystal structures of GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6 were determined using electron diffraction and high-resolution transmission electron microscopy. The structure determined for the former two crystals deviates from the ones proposed in the literature. These crystal structures were

  16. The molecular structure of the IsiA-Photosystem I supercomplex, modelled from high-resolution, crystal structures of Photosystem I and the CP43 protein.

    Science.gov (United States)

    Zhang, Yinan; Chen, Min; Church, W Bret; Lau, Kwok Wai; Larkum, Anthony W D; Jermiin, Lars S

    2010-04-01

    We present the molecular structure of the IsiA-Photosystem I (PSI) supercomplex, inferred from high-resolution, crystal structures of PSI and the CP43 protein. The structure of iron-stress-induced A protein (IsiA) is similar to that of CP43, albeit with the difference that IsiA is associated with 15 chlorophylls (Chls), one more than previously assumed. The membrane-spanning helices of IsiA contain hydrophilic residues many of which bind Chl. The optimal structure of the IsiA-PSI supercomplex was inferred by systematically rearranging the IsiA monomers and PSI trimer in relation to each other. For each of the 6,969,600 structural configurations considered, we counted the number of optimal Chl-Chl connections (i.e., cases where Chl-bound Mg atoms are 228% the energy-transfer potential. In conclusion, our model allows us to explain how the IsiA-PSI supercomplex may act as an efficient light-harvesting structure under low-light conditions and as an efficient dissipater of excess energy under high-light conditions.

  17. High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-l-arabinofuranosidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Noor [KTH Royal Institute of Technology, Stockholm (Sweden); Karolinska Institutet, Stockholm (Sweden); Kori, Lokesh D. [Griffith University, Brisbane, QLD 4111 (Australia); Baylor College of Medicine, Houston, TX 77030 (United States); Gandini, Rosaria [KTH Royal Institute of Technology, Stockholm (Sweden); Karolinska Institutet, Stockholm (Sweden); Patel, Bharat K. C. [Griffith University, Brisbane, QLD 4111 (Australia); Divne, Christina; Tan, Tien Chye, E-mail: tantc@kth.se [KTH Royal Institute of Technology, Stockholm (Sweden); Karolinska Institutet, Stockholm (Sweden)

    2015-02-19

    The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. As for other GH43 members, the enzyme folds as a five-bladed β-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn{sup 2+} at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-l-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-l-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn{sup 2+} at pH 6.5, giving a specific activity of 20–36 µmol min{sup −1} mg{sup −1}. The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues.

  18. Raman spectroscopy adds complementary detail to the high-resolution x-ray crystal structure of photosynthetic PsbP from Spinacia oleracea.

    Science.gov (United States)

    Kopecky, Vladimir; Kohoutova, Jaroslava; Lapkouski, Mikalai; Hofbauerova, Katerina; Sovova, Zofie; Ettrichova, Olga; González-Pérez, Sergio; Dulebo, Alexander; Kaftan, David; Smatanova, Ivana Kuta; Revuelta, Jose L; Arellano, Juan B; Carey, Jannette; Ettrich, Rüdiger

    2012-01-01

    Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR) exploits an intermediate phase that, although nominally "dry," has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å) x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein.

  19. Raman spectroscopy adds complementary detail to the high-resolution x-ray crystal structure of photosynthetic PsbP from Spinacia oleracea.

    Directory of Open Access Journals (Sweden)

    Vladimir Kopecky

    Full Text Available Raman microscopy permits structural analysis of protein crystals in situ in hanging drops, allowing for comparison with Raman measurements in solution. Nevertheless, the two methods sometimes reveal subtle differences in structure that are often ascribed to the water layer surrounding the protein. The novel method of drop-coating deposition Raman spectropscopy (DCDR exploits an intermediate phase that, although nominally "dry," has been shown to preserve protein structural features present in solution. The potential of this new approach to bridge the structural gap between proteins in solution and in crystals is explored here with extrinsic protein PsbP of photosystem II from Spinacia oleracea. In the high-resolution (1.98 Å x-ray crystal structure of PsbP reported here, several segments of the protein chain are present but unresolved. Analysis of the three kinds of Raman spectra of PsbP suggests that most of the subtle differences can indeed be attributed to the water envelope, which is shown here to have a similar Raman intensity in glassy and crystal states. Using molecular dynamics simulations cross-validated by Raman solution data, two unresolved segments of the PsbP crystal structure were modeled as loops, and the amino terminus was inferred to contain an additional beta segment. The complete PsbP structure was compared with that of the PsbP-like protein CyanoP, which plays a more peripheral role in photosystem II function. The comparison suggests possible interaction surfaces of PsbP with higher-plant photosystem II. This work provides the first complete structural picture of this key protein, and it represents the first systematic comparison of Raman data from solution, glassy, and crystalline states of a protein.

  20. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  1. High-resolution crystal structure of a polyextreme GH43 glycosidase from Halothermothrix orenii with α-L-arabinofuranosidase activity.

    Science.gov (United States)

    Hassan, Noor; Kori, Lokesh D; Gandini, Rosaria; Patel, Bharat K C; Divne, Christina; Tan, Tien Chye

    2015-03-01

    A gene from the heterotrophic, halothermophilic marine bacterium Halothermothrix orenii has been cloned and overexpressed in Escherichia coli. This gene encodes the only glycoside hydrolase of family 43 (GH43) produced by H. orenii. The crystal structure of the H. orenii glycosidase was determined by molecular replacement and refined at 1.10 Å resolution. As for other GH43 members, the enzyme folds as a five-bladed β-propeller. The structure features a metal-binding site on the propeller axis, near the active site. Based on thermal denaturation data, the H. orenii glycosidase depends on divalent cations in combination with high salt for optimal thermal stability against unfolding. A maximum melting temperature of 76°C was observed in the presence of 4 M NaCl and Mn(2+) at pH 6.5. The gene encoding the H. orenii GH43 enzyme has previously been annotated as a putative α-L-arabinofuranosidase. Activity was detected with p-nitrophenyl-α-L-arabinofuranoside as a substrate, and therefore the name HoAraf43 was suggested for the enzyme. In agreement with the conditions for optimal thermal stability against unfolding, the highest arabinofuranosidase activity was obtained in the presence of 4 M NaCl and Mn(2+) at pH 6.5, giving a specific activity of 20-36 µmol min(-1) mg(-1). The active site is structurally distinct from those of other GH43 members, including arabinanases, arabinofuranosidases and xylanases. This probably reflects the special requirements for degrading the unique biomass available in highly saline aqueous ecosystems, such as halophilic algae and halophytes. The amino-acid distribution of HoAraf43 has similarities to those of mesophiles, thermophiles and halophiles, but also has unique features, for example more hydrophobic amino acids on the surface and fewer buried charged residues.

  2. The first crystal structure of a gramicidin complex with sodium: high-resolution study of a nonstoichiometric gramicidin D-NaI complex

    Energy Technology Data Exchange (ETDEWEB)

    Olczak, A.; Glówka, M.L.; Szczesio, M.; Bojarska, J.; Wawrzak, Z.; Duax, W.L. (Poland); (NWU); (HWMRI)

    2010-11-15

    The crystal structure of the nonstoichiometric complex of gramicidin D with NaI has been studied using synchrotron radiation at 100 K. The limiting resolution was 1.25 {angstrom} and the R factor was 16% for 19,883 observed reflections. The general architecture of the antiparallel two-stranded gramicidin dimers in the studied crystal was a right-handed antiparallel double-stranded form that closely resembles the structures of other right-handed species published to date. However, there were several surprising observations. In addition to the significantly different composition of linear gramicidins identified in the crystal structure, including the absence of the gramicidin C form, only two cationic sites were found in each of the two independent dimers (channels), which were partially occupied by sodium, compared with the seven sites found in the RbCl complex of gramicidin. The sum of the partial occupancies of Na{sup +} was only 1.26 per two dimers and was confirmed by the similar content of iodine ions (1.21 ions distributed over seven sites), which was easily visible from their anomalous signal. Another surprising observation was the significant asymmetry of the distributions and occupancies of cations in the gramicidin dimers, which was in contrast to those observed in the high-resolution structures of the complexes of heavier alkali metals with gramicidin D, especially that of rubidium.

  3. Exploiting the high-resolution crystal structure of Staphylococcus aureus MenH to gain insight into enzyme activity

    Directory of Open Access Journals (Sweden)

    Gillet Florian

    2011-04-01

    Full Text Available Abstract Background MenH (2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase is a key enzyme in the biosynthesis of menaquinone, catalyzing an unusual 2,5-elimination of pyruvate from 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate. Results The crystal structure of Staphylococcus aureus MenH has been determined at 2 Å resolution. In the absence of a complex to inform on aspects of specificity a model of the enzyme-substrate complex has been used in conjunction with previously published kinetic analyses, site-directed mutagenesis studies and comparisons with orthologues to investigate the structure and reactivity of MenH. Conclusions The overall basic active site displays pronounced hydrophobic character on one side and these properties complement those of the substrate. A complex network of hydrogen bonds involving well-ordered water molecules serves to position key residues participating in the recognition of substrate and subsequent catalysis. We propose a proton shuttle mechanism, reliant on a catalytic triad consisting of Ser89, Asp216 and His243. The reaction is initiated by proton abstraction from the substrate by an activated Ser89. The propensity to form a conjugated system provides the driving force for pyruvate elimination. During the elimination, a methylene group is converted to a methyl and we judge it likely that His243 provides a proton, previously acquired from Ser89 for that reduction. A conformational change of the protonated His243 may be encouraged by the presence of an anionic intermediate in the active site.

  4. High-resolution crystal structure of Streptococcus pyogenes β-NAD{sup +} glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Young; An, Doo Ri; Yoon, Hye-Jin [Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Hyoun Sook [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Sang Jae [Seoul National University, Seoul 151-742 (Korea, Republic of); Im, Ha Na; Jang, Jun Young [Seoul National University, Seoul 151-747 (Korea, Republic of); Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-747 (Korea, Republic of)

    2013-11-01

    The crystal structure of the complex between the C-terminal domain of Streptococcus pyogenes β-NAD{sup +} glycohydrolase and an endogenous inhibitor for SPN was determined at 1.70 Å. It reveals that the interface between the two proteins is highly rich in water molecules. One of the virulence factors produced by Streptococcus pyogenes is β-NAD{sup +} glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38–451) and the full-length IFS (residues 1–161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPN{sub ct}–IFS complex, which consists of the SPN C-terminal domain (SPN{sub ct}; residues 193–451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPN{sub ct} and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.

  5. High-Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into the Catalytic Mechanism and Inhibition by Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E. (Cornell); (Weill-Med)

    2010-11-11

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  6. Structural characterization of K sub 3 Li sub 2 Nb sub 5 O sub 1 sub 5 single crystals by combining high-resolution X-ray diffractometry and topography

    CERN Document Server

    Kaigawa, K; Honda, A; Imaeda, M; Sakai, H; Tsurumi, T

    2002-01-01

    High-resolution multiple-crystal multiple-reflection X-ray diffractometry is used for the structural characterization of nonlinear optical single crystals of K sub 3 Li sub 2 Nb sub 5 O sub 1 sub 5 (KLN) grown by the micro-pulling-down (mu-PD) method. The combination of high-resolution X-ray diffractometry and topography shows that the lattice parameters along the c-axis (c-parameters) decrease towards the seed crystals, because of the decrease in the K content and increase in the Nb content. However, the KLN single crystals exhibit multi domain structures in which discontinuous changes in the c-parameters are periodically observed along the growth direction, despite the compositional change being continuous. Large mosaic structures due to discontinuous tilt in the lattice planes are also observed at the boundaries between the domains.

  7. Crystal-structure analysis of four mineral samples of anhydrite, CaSO[subscript 4], using synchrotron high-resolution powder X-ray diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Antao, Sytle M. (Calgary)

    2014-05-28

    The crystal structures of four samples of anhydrite, CaSO{sub 4}, were obtained by Rietveld refinements using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and space group Amma. As an example, for one sample of anhydrite from Hants County, Nova Scotia, the unit-cell parameters are a = 7.00032(2), b = 6.99234(1), c = 6.24097(1) {angstrom}, and V = 305.487(1) {angstrom}{sup 3} with a > b. The eight-coordinated Ca atom has an average distance of 2.4667(4) {angstrom}. The tetrahedral SO{sub 4} group has two independent S-O distances of 1.484(1) to O1 and 1.478(1) {angstrom} to O2 and an average distance of 1.4810(5) {angstrom}. The three independent O-S-O angles [108.99(8) x 1, 110.38(3) x 4, 106.34(9){sup o} x 1; average [6] = 109.47(2){sup o}] and S-O distances indicate that the geometry of the SO{sub 4} group is quite distorted in anhydrite. The four anhydrite samples have structural trends where the a, b, and c unit-cell parameters increase linearly with increasing unit-cell volume, V, and their average and distances are nearly constant. The grand mean = 2.4660(2) {angstrom}, and grand mean = 1.4848(3) {angstrom}, the latter is longer than 1.480(1) {angstrom} in celestite, SrSO{sub 4}, as expected.

  8. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes.

    Science.gov (United States)

    Mahalingam, B; Louis, J M; Hung, J; Harrison, R W; Weber, I T

    2001-06-01

    Emergence of drug-resistant mutants of HIV-1 protease is an ongoing problem in the fight against AIDS. The mechanisms governing resistance are both complex and varied. We have determined crystal structures of HIV-1 protease mutants, D30N, K45I, N88D, and L90M complexed with peptide inhibitor analogues of CA-p2 and p2-NC cleavage sites in the Gag-pol precursor in order to study the structural mechanisms underlying resistance. The structures were determined at 1.55-1.9-A resolution and compared with the wild-type structure. The conformational disorder seen for most of the hydrophobic side-chains around the inhibitor binding site indicates flexibility of binding. Eight water molecules are conserved in all 9 structures; their location suggests that they are important for catalysis as well as structural stability. Structural differences among the mutants were analyzed in relation to the observed changes in protease activity and stability. Mutant L90M shows steric contacts with the catalytic Asp25 that could destabilize the catalytic loop at the dimer interface, leading to its observed decreased dimer stability and activity. Mutant K45I reduces the mobility of the flap and the inhibitor and contributes to an enhancement in structural stability and activity. The side-chain variations at residue 30 relative to wild-type are the largest in D30N and the changes are consistent with the altered activity observed with peptide substrates. Polar interactions in D30N are maintained, in agreement with the observed urea sensitivity. The side-chains of D30N and N88D are linked through a water molecule suggesting correlated changes at the two sites, as seen with clinical inhibitors. Structural changes seen in N88D are small; however, water molecules that mediate interactions between Asn88 and Thr74/Thr31/Asp30 in other complexes are missing in N88D. Copyright 2001 Wiley-Liss, Inc.

  9. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  10. STEM Electron Diffraction and High Resolution Images Used in the Determination of the Crystal Structure of Au144(SR)60Cluster.

    Science.gov (United States)

    Bahena, Daniel; Bhattarai, Nabraj; Santiago, Ulises; Tlahuice, Alfredo; Ponce, Arturo; Bach, Stephan B H; Yoon, Bokwon; Whetten, Robert L; Landman, Uzi; Jose-Yacaman, Miguel

    2013-03-07

    Determination of the total structure of molecular nanocrystals is an outstanding experimental challenge that has been met, in only a few cases, by single-crystal X-ray diffraction. Described here is an alternative approach that is of most general applicability and does not require the fabrication of a single crystal. The method is based on rapid, time-resolved nanobeam electron diffraction (NBD) combined with high-angle annular dark field scanning/transmission electron microscopy (HAADF-STEM) images in a probe corrected STEM microscope, operated at reduced voltages. The results are compared with theoretical simulations of images and diffraction patterns obtained from atomistic structural models derived through first-principles density functional theory (DFT) calculations. The method is demonstrated by application to determination of the structure of the Au 144 (SCH 2 CH 2 Ph) 60 cluster.

  11. High-resolution crystal structure reveals a HEPN domain at the C-terminal region of S. cerevisiae RNA endonuclease Swt1

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shuxia, E-mail: pengsx@ihep.ac.cn; Zhou, Ke; Wang, Wenjia; Gao, Zengqiang; Dong, Yuhui; Liu, Quansheng

    2014-10-31

    Highlights: • Crystal structure of the C-terminal (CT) domain of Swt1 was determined at 2.3 Å. • Structure of the CT domain was identified as HEPN domain superfamily member. • Low-resolution envelope of Swt1 full-length in solution was analyzed by SAXS. • The middle and CT domains gave good fit to SAXS structural model. - Abstract: Swt1 is an RNA endonuclease that plays an important role in quality control of nuclear messenger ribonucleoprotein particles (mRNPs) in eukaryotes; however, its structural details remain to be elucidated. Here, we report the crystal structure of the C-terminal (CT) domain of Swt1 from Saccharomyces cerevisiae, which shares common characteristics of higher eukaryotes and prokaryotes nucleotide binding (HEPN) domain superfamily. To study in detail the full-length protein structure, we analyzed the low-resolution architecture of Swt1 in solution using small angle X-ray scattering (SAXS) method. Both the CT domain and middle domain exhibited a good fit upon superimposing onto the molecular envelope of Swt1. Our study provides the necessary structural information for detailed analysis of the functional role of Swt1, and its importance in the process of nuclear mRNP surveillance.

  12. A High-Resolution Crystal Structure of a Psychrohalophilic α–Carbonic Anhydrase from Photobacterium profundum Reveals a Unique Dimer Interface

    Energy Technology Data Exchange (ETDEWEB)

    Somalinga, Vijayakumar; Buhrman, Greg; Arun, Ashikha; Rose, Robert B.; Grunden, Amy M. (NCSU)

    2016-12-09

    Bacterial α–carbonic anhydrases (α-CA) are zinc containing metalloenzymes that catalyze the rapid interconversion of CO2 to bicarbonate and a proton. We report the first crystal structure of a pyschrohalophilic α–CA from a deep-sea bacterium, Photobacterium profundum. Size exclusion chromatography of the purified P. profundum α–CA (PprCA) reveals that the protein is a heterogeneous mix of monomers and dimers. Furthermore, an “in-gel” carbonic anhydrase activity assay, also known as protonography, revealed two distinct bands corresponding to monomeric and dimeric forms of PprCA that are catalytically active. The crystal structure of PprCA was determined in its native form and reveals a highly conserved “knot-topology” that is characteristic of α–CA’s. Similar to other bacterial α–CA’s, PprCA also crystallized as a dimer. Furthermore, dimer interface analysis revealed the presence of a chloride ion (Cl-) in the interface which is unique to PprCA and has not been observed in any other α–CA’s characterized so far. Molecular dynamics simulation and chloride ion occupancy analysis shows 100% occupancy for the Cl- ion in the dimer interface. Zinc coordinating triple histidine residues, substrate binding hydrophobic patch residues, and the hydrophilic proton wire residues are highly conserved in PprCA and are identical to other well-studied α–CA’s.

  13. High-resolution transmission electron microscopy of hexagonal and rhombohedral molybdenum disulfide crystals.

    Science.gov (United States)

    Isshiki, T; Nishio, K; Saijo, H; Shiojiri, M; Yabuuchi, Y; Takahashi, N

    1993-07-01

    Natural (molybdenite) and synthesized molybdenum disulfide crystals have been studied by high-resolution transmission electron microscopy. The image simulation demonstrates that the [0001] and [0110] HRTEM images of hexagonal and rhombohedral MoS2 crystals hardly disclose their stacking sequences, and that the [2110] images can distinguish the Mo and S columns along the incident electron beam and enable one to determine not only the crystal structure but also the fault structure. Observed [0001] images of cleaved molybdenite and synthesized MoS2 crystals, however, reveal the strain field around partial dislocations limiting an extended dislocation. A cross-sectional image of a single molecular (S-Mo-S) layer cleaved from molybdenite has been observed. Synthesized MoS2 flakes which were prepared by grinding have been found to be rhombohedral crystals containing many stacking faults caused by glides between S/S layers.

  14. High resolution crystal structure of the endo-N-Acetyl-β-D-glucosaminidase responsible for the deglycosylation of Hypocrea jecorina cellulases.

    Directory of Open Access Journals (Sweden)

    Ingeborg Stals

    Full Text Available Endo-N-acetyl-β-D-glucosaminidases (ENGases hydrolyze the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. The endo-N-acetyl-β-D-glucosaminidases classified into glycoside hydrolase family 18 are small, bacterial proteins with different substrate specificities. Recently two eukaryotic family 18 deglycosylating enzymes have been identified. Here, the expression, purification and the 1.3Å resolution structure of the ENGase (Endo T from the mesophilic fungus Hypocrea jecorina (anamorph Trichoderma reesei are reported. Although the mature protein is C-terminally processed with removal of a 46 amino acid peptide, the protein has a complete (β/α8 TIM-barrel topology. In the active site, the proton donor (E131 and the residue stabilizing the transition state (D129 in the substrate assisted catalysis mechanism are found in almost identical positions as in the bacterial GH18 ENGases: Endo H, Endo F1, Endo F3, and Endo BT. However, the loops defining the substrate-binding cleft vary greatly from the previously known ENGase structures, and the structures also differ in some of the α-helices forming the barrel. This could reflect the variation in substrate specificity between the five enzymes. This is the first three-dimensional structure of a eukaryotic endo-N-acetyl-β-D-glucosaminidase from glycoside hydrolase family 18. A glycosylation analysis of the cellulases secreted by a Hypocrea jecorina Endo T knock-out strain shows the in vivo function of the protein. A homology search and phylogenetic analysis show that the two known enzymes and their homologues form a large but separate cluster in subgroup B of the fungal chitinases. Therefore the future use of a uniform nomenclature is proposed.

  15. Structure determination of two metal-organic complexes from high-resolution synchotron powder diffraction dztz

    NARCIS (Netherlands)

    Dova, E.; Goubitz, K.; van Langevelde, A.; Driessen, R.; Mahabiersing, T.; Blaauw, R.; Peschar, R.; Schenk, H.

    2001-01-01

    The crystal structures of [1,2-bis(2,6-diisopropylphenylimino)acenaphthene-N,N′] carbonylchlororhodium(I) (1) and [N,N′-ethylene-nis(3-methylsalicylideneiminato)-O, N, N′, O′](tetrahydrofurfuryl)-cobalt(II) (2) have been determined from high-resolution synchrotron X-ray powder diffraction data.

  16. High-Resolution Fluorescence Microscope Imaging of Erythroblast Structure.

    Science.gov (United States)

    Smith, Alyson S; Nowak, Roberta B; Fowler, Velia M

    2018-01-01

    During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.

  17. High-resolution electron microscope and computed images of human tooth enamel crystals.

    Science.gov (United States)

    Brés, E F; Barry, J C; Hutchison, J L

    1985-03-01

    The structure of human enamel crystallites has been studied at a near atomic level by high-resolution electron microscopy. Electron micrographs have been obtained from crystallites present in human enamel with a structure resolution of 0.2 nm in the [0001], [1210], [1213], [1100] and [4510] zone axes directions. In most cases it was possible to match the experimental images with images calculated using the atomic positions of mineral hydroxyapatite. However, in some cases a discrepancy between calculated and experimental image detail was observed in the c direction of the [1210] and the [1100] images. This shows: (i) a structural heterogeneity of the crystals, and (ii) a loss of hexagonal symmetry of the structure. The resolution required to distinguish individual atomic sites in the different zones has been determined, and this will provide a useful basis for future work. As the determination of the "real structure" of biological crystals is of prime importance for the study of calcification mechanisms (crystal growth), biological properties and destructive phenomena of calcified tissues (i.e., dental caries and bone resorption).

  18. High-resolution XAS/XES analyzing electronic structures of catalysts

    CERN Document Server

    Sa, Jacinto

    2014-01-01

    Photon-in-photon-out core level spectroscopy is an emerging approach to characterize the electronic structure of catalysts and enzymes, and it is either installed or planned for intense synchrotron beam lines and X-ray free electron lasers. This type of spectroscopy requires high-energy resolution spectroscopy not only for the incoming X-ray beam but also, in most applications, for the detection of the outgoing photons. Thus, the use of high-resolution X-ray crystal spectrometers whose resolving power ?E/E is typically about 10-4, is mandatory.High-Resolution XAS/XES: Analyzing Electronic Stru

  19. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    Science.gov (United States)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  20. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  1. Segmentation of Striatal Brain Structures from High Resolution PET Images

    Directory of Open Access Journals (Sweden)

    Ricardo J. P. C. Farinha

    2009-01-01

    Full Text Available We propose and evaluate an automatic segmentation method for extracting striatal brain structures (caudate, putamen, and ventral striatum from parametric C11-raclopride positron emission tomography (PET brain images. We focus on the images acquired using a novel brain dedicated high-resolution (HRRT PET scanner. The segmentation method first extracts the striatum using a deformable surface model and then divides the striatum into its substructures based on a graph partitioning algorithm. The weighted kernel k-means algorithm is used to partition the graph describing the voxel affinities within the striatum into the desired number of clusters. The method was experimentally validated with synthetic and real image data. The experiments showed that our method was able to automatically extract caudate, ventral striatum, and putamen from the images. Moreover, the putamen could be subdivided into anterior and posterior parts. An automatic method for the extraction of striatal structures from high-resolution PET images allows for inexpensive and reproducible extraction of the quantitative information from these images necessary in brain research and drug development.

  2. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  3. A high resolution X-ray crystal spectrometer to study electron and ...

    Indian Academy of Sciences (India)

    We have studied fast ion–atom and electron–atom collision processes using a reconditioned high resolution X-ray spectrometer. The X-rays, generated by the collisions, are dispersed by a curved ADP crystal (Johansson geometry) and detected by a gas proportional counter. A self-written LabVIEW based program has ...

  4. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  5. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, Lyubov; Descloux, Adrien; Petschulat, Joerg; Frosz, Michael H.; Ahmed, Goran; Babic, Fehim; Mosk, Allard; Russell, Philip St.J.; Pinkse, Pepijn Willemszoon Harry

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled resolution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze the

  6. The construction of a high resolution crystal backscattering spectrometer HERMES I

    Energy Technology Data Exchange (ETDEWEB)

    Larese, J.Z.

    1998-11-01

    There is a need in the United States for a state-of-the-art, cold-neutron, crystal backscattering spectrometer (CBS) designed to investigate the structure and dynamics of condensed matter systems by the simultaneous utilization of long wavelength elastic diffraction and high-energy-resolution inelastic scattering. Cold neutron spectroscopy with CBS-type instruments has already made many important contributions to the study of atomic and molecular diffusion in biomaterials, polymers, semiconductors, liquid crystals, superionic conductors and the like. Such instruments have also been invaluable for ultra high resolution investigations of the low-lying quantum tunneling processes that provide direct insight into the dynamical response of solids at the lowest energies. Until relatively recently, however, all such instruments were located at steady-state reactors. This proposal describes HERMES I (High Energy Resolution Machines I) a CBS intended for installation at the LANSCE pulsed neutron facility of Los Alamos National Laboratory. As explained in detail in the main text, the authors propose to construct an updated, high-performance CBS which incorporates neutron techniques developed during the decade since IRIS was built, i.e., improved supermirror technology, a larger area crystal analyzer and high efficiency wire gas detectors. The instrument is designed in such a way as to be readily adaptable to future upgrades. HERMES I, they believe, will substantially expand the range and flexibility of neutron investigations in the United States and open new and potentially fruitful directions for condensed matter exploration. This document describes a implementation plan with a direct cost range between $4.5 to 5.6 M and scheduled duration of 39--45 months for identified alternatives.

  7. Koenigs-Knorr reaction of fusel alcohols with methyl (1-bromo-2,3,4-tri-O-acetyl-α-D-glucopyranosid)uronate leading to the protected alkyl glucuronides-crystal structures and high resolution 1H and 13C NMR data.

    Science.gov (United States)

    Mönch, Bettina; Gebert, Antje; Emmerling, Franziska; Becker, Roland; Nehls, Irene

    2012-05-01

    Crystal structures and high resolution (1)H and (13)C NMR spectral data for methyl (alkyl 2,3,4-tri-O-acetyl-β-D-glucopyranosid)uronates (alkyl=methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, i-butyl, n-pentyl, 2-methyl-1-butyl and 3-methyl-1-butyl) are presented. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  9. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs.

  10. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging.

    Science.gov (United States)

    Amitonova, Lyubov V; Descloux, Adrien; Petschulat, Joerg; Frosz, Michael H; Ahmed, Goran; Babic, Fehim; Jiang, Xin; Mosk, Allard P; Russell, Philip St J; Pinkse, Pepijn W H

    2016-02-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled resolution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze the beam waist and power in the focal spot on the fiber output using different types of fibers and different wavefront shaping approaches. We show that the complex wavefront shaping technique, together with a properly designed multimode photonic crystal fiber, enables us to create a tightly focused spot on the desired position on the fiber output facet with a subwavelength beam waist.

  11. High-resolution structures of a heterochiral coiled coil.

    Science.gov (United States)

    Mortenson, David E; Steinkruger, Jay D; Kreitler, Dale F; Perroni, Dominic V; Sorenson, Gregory P; Huang, Lijun; Mittal, Ritesh; Yun, Hyun Gi; Travis, Benjamin R; Mahanthappa, Mahesh K; Forest, Katrina T; Gellman, Samuel H

    2015-10-27

    Interactions between polypeptide chains containing amino acid residues with opposite absolute configurations have long been a source of interest and speculation, but there is very little structural information for such heterochiral associations. The need to address this lacuna has grown in recent years because of increasing interest in the use of peptides generated from d amino acids (d peptides) as specific ligands for natural proteins, e.g., to inhibit deleterious protein-protein interactions. Coiled-coil interactions, between or among α-helices, represent the most common tertiary and quaternary packing motif in proteins. Heterochiral coiled-coil interactions were predicted over 50 years ago by Crick, and limited experimental data obtained in solution suggest that such interactions can indeed occur. To address the dearth of atomic-level structural characterization of heterochiral helix pairings, we report two independent crystal structures that elucidate coiled-coil packing between l- and d-peptide helices. Both structures resulted from racemic crystallization of a peptide corresponding to the transmembrane segment of the influenza M2 protein. Networks of canonical knobs-into-holes side-chain packing interactions are observed at each helical interface. However, the underlying patterns for these heterochiral coiled coils seem to deviate from the heptad sequence repeat that is characteristic of most homochiral analogs, with an apparent preference for a hendecad repeat pattern.

  12. High-resolution Laue-type DuMond curved crystal spectrometer.

    Science.gov (United States)

    Szlachetko, M; Berset, M; Dousse, J-Cl; Hoszowska, J; Szlachetko, J

    2013-09-01

    We report on a high-resolution transmission-type curved crystal spectrometer based on the modified DuMond slit geometry. The spectrometer was developed at the University of Fribourg for the study of photoinduced X-ray spectra. K and L X-ray transitions with energies above about 10 keV can be measured with an instrumental resolution comparable to their natural linewidths. Construction details and operational characteristics of the spectrometer are presented. The variation of the energy resolution as a function of the focal distance and diffraction order is discussed. The high sensitivity of the spectrometer is demonstrated via the 2s-1s dipole-forbidden X-ray transition of Gd which could be observed despite its extremely low intensity. The precision of the instrument is illustrated by comparing the sum of the energies of the Au K-L2 and L2-M3 cascading transitions with the energy of the crossover K-M3 transition as well as by considering the energy differences of the Gd Kα1 X-ray line measured at five different diffraction orders. Finally, to demonstrate the versatility of the spectrometer, it is shown that the latter can also be used for in-house extended X-ray absorption fine structure measurements.

  13. Binding site and interlobe interactions of the ionotropic glutamate receptor GluK3 ligand binding domain revealed by high resolution crystal structure in complex with (S)-glutamate

    DEFF Research Database (Denmark)

    Venskutonyte, Raminta; Frydenvang, Karla; Gajhede, Michael

    2011-01-01

    present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen...

  14. Visualization of small scale structures on high resolution DEMs

    Science.gov (United States)

    Kokalj, Žiga; Zakšek, Klemen; Pehani, Peter; Čotar, Klemen; Oštir, Krištof

    2015-04-01

    Knowledge on the terrain morphology is very important for observation of numerous processes and events and digital elevation models are therefore one of the most important datasets in geographic analyses. Furthermore, recognition of natural and anthropogenic microrelief structures, which can be observed on detailed terrain models derived from aerial laser scanning (lidar) or structure-from-motion photogrammetry, is of paramount importance in many applications. In this paper we thus examine and evaluate methods of raster lidar data visualization for the determination (recognition) of microrelief features and present a series of strategies to assist selecting the preferred visualization of choice for structures of various shapes and sizes, set in varied landscapes. Often the answer is not definite and more frequently a combination of techniques has to be used to map a very diverse landscape. Researchers can only very recently benefit from free software for calculation of advanced visualization techniques. These tools are often difficult to understand, have numerous options that confuse the user, or require and produce non-standard data formats, because they were written for specific purposes. We therefore designed the Relief Visualization Toolbox (RVT) as a free, easy-to-use, standalone application to create visualisations from high-resolution digital elevation data. It is tailored for the very beginners in relief interpretation, but it can also be used by more advanced users in data processing and geographic information systems. It offers a range of techniques, such as simple hillshading and its derivatives, slope gradient, trend removal, positive and negative openness, sky-view factor, and anisotropic sky-view factor. All included methods have been proven to be effective for detection of small scale features and the default settings are optimised to accomplish this task. However, the usability of the tool goes beyond computation for visualization purposes, as sky

  15. High-resolution XES and RIXS studies with a von Hamos Bragg crystal spectrometer

    CERN Document Server

    Hoszowska, J; 10.1016/j.elspec.2004.02.005

    2004-01-01

    The high-resolution von Hamos Bragg crystal spectrometer was constructed for the study of K X-ray emission from low-Z elements and L and M X-ray spectra of medium to high Z elements. Recently, this instrument was applied to high-resolution XES and RIXS studies using X-ray synchrotron radiation at the ID21 and BM5 beamlines at the ESRF. An outline of the spectrometer design and performance characteristics will be given. The studies deal with the energy dependent KL double photoexcitation of argon, the L3 and M1 atomic- level widths of elements 54

  16. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    Science.gov (United States)

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  17. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M; Gates, D; Monticello, D; Neilson, H; Reiman, A; Roquemore, A L; Morita, S; Goto, M; Yamada, H

    2010-07-29

    A high-resolution X-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for LHD. This instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of < 2 cm and ≥ 10 ms. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD.

  18. Objectives and layout of a high-resolution x-ray imaging crystal spectrometer for the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M.; Hill, K.; Gates, D.; Monticello, D.; Neilson, H.; Reiman, A.; Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Morita, S.; Goto, M.; Yamada, H. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Rice, J. E. [Plasma Fusion Center, MIT, Cambridge, Massachusetts 02139-4307 (United States)

    2010-10-15

    A high-resolution x-ray imaging crystal spectrometer, whose concept was tested on NSTX and Alcator C-Mod, is being designed for the large helical device (LHD). This instrument will record spatially resolved spectra of helium-like Ar{sup 16+} and will provide ion temperature profiles with spatial and temporal resolutions of <2 cm and {>=}10 ms, respectively. The spectrometer layout and instrumental features are largely determined by the magnetic field structure of LHD. The stellarator equilibrium reconstruction codes, STELLOPT and PIES, will be used for the tomographic inversion of the spectral data.

  19. High-resolution x-ray characterization of mosaic crystals for hard x-ray astronomy

    Science.gov (United States)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2012-04-01

    GaAs, Cu, CdTe, and CdZnTe crystals have been studied as optical elements for lenses for hard x-ray astronomy. High-resolution x-ray diffraction at 8 keV in Bragg geometry and at synchrotron at energies up to 500 keV in Laue geometry has been used. A good agreement was found between the mosaicity evaluated in Bragg geometry at 8 keV with x-ray penetration of the order of few tens of micrometers and that derived at synchrotron in transmission Laue geometry at higher x-ray energies. Mosaicity values in a range between a few to 150 arcsec were found in all the samples but, due to the presence of crystal grains in the cm range, CdTe and CdZnTe crystals were found not suitable. Cu crystals exhibit a mosaicity of the order of several arcmin; they indeed were found to be severely affected by cutting damage which could only be removed with a very deep etching. The full width at half maximum of the diffraction peaks decreased at higher x-ray energies showing that the peak broadening is affected by crystallite size. GaAs crystals grown by Czochralski method showed a mosaic spread up to 30 arcsec and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread was also evaluated.

  20. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  1. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  2. High-resolution structure of a retroviral protease folded as a monomer

    Energy Technology Data Exchange (ETDEWEB)

    Gilski, Miroslaw [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland); Kazmierczyk, Maciej; Krzywda, Szymon [A. Mickiewicz University, 60-780 Poznan (Poland); Zábranská, Helena [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Cooper, Seth; Popović, Zoran [University of Washington, Box 352350, Seattle, WA 98195 (United States); Khatib, Firas; DiMaio, Frank; Thompson, James; Baker, David [University of Washington, Box 357350, Seattle, WA 98195 (United States); Pichová, Iva [Academy of Sciences of the Czech Republic, 166 10 Prague (Czech Republic); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [A. Mickiewicz University, 60-780 Poznan (Poland); Polish Academy of Sciences, 61-704 Poznan (Poland)

    2011-11-01

    The crystal structure of Mason–Pfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs. Mason–Pfizer monkey virus (M-PMV), a D-type retrovirus assembling in the cytoplasm, causes simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Its pepsin-like aspartic protease (retropepsin) is an integral part of the expressed retroviral polyproteins. As in all retroviral life cycles, release and dimerization of the protease (PR) is strictly required for polyprotein processing and virion maturation. Biophysical and NMR studies have indicated that in the absence of substrates or inhibitors M-PMV PR should fold into a stable monomer, but the crystal structure of this protein could not be solved by molecular replacement despite countless attempts. Ultimately, a solution was obtained in mr-rosetta using a model constructed by players of the online protein-folding game Foldit. The structure indeed shows a monomeric protein, with the N- and C-termini completely disordered. On the other hand, the flap loop, which normally gates access to the active site of homodimeric retropepsins, is clearly traceable in the electron density. The flap has an unusual curled shape and a different orientation from both the open and closed states known from dimeric retropepsins. The overall fold of the protein follows the retropepsin canon, but the C{sup α} deviations are large and the active-site ‘DTG’ loop (here NTG) deviates up to 2.7 Å from the standard conformation. This structure of a monomeric retropepsin determined at high resolution (1.6 Å) provides important extra information for the design of dimerization inhibitors that might be developed as drugs for the treatment of retroviral infections

  3. Structure determination of two metal-organic complexes from high-resolution synchrotron powder diffraction data.

    Science.gov (United States)

    Dova, E; Goubitz, K; van Langevelde, A; Driessen, R; Mahabiersing, T; Blaauw, R; Peschar, R; Schenk, H

    2001-11-01

    The crystal structures of [1,2-bis(2,6-diisopropylphenylimino)acenaphthene-N,N']carbonylchlororhodium(I) (1) and [N,N'-ethylene-bis(3-methylsalicylideneiminato)-O,N,N',O'](tetrahydrofurfuryl)-cobalt(II) (2) have been determined from high-resolution synchrotron X-ray powder diffraction data. Compound 1 is the first neutral Rh complex, in contrast with findings in the literature, containing a bidentate nitrogen ligand, and compound 2 is the first three-dimensional structure of a (five-coordinated) tetrahydrofurfurylcobalt(III) complex. Grid-search and Rietveld refinement have been used to determine and refine the structures, respectively. Crystals of 1 are orthorhombic, space group Pbca, Z = 8, with cell parameters a = 21.729 (2), b = 27.376 (3), c = 11.580 (1) A. Crystals of 2 are monoclinic, space group P2(1)/n, Z = 4, a = 16.6701 (6), b = 9.4170 (4), c = 13.7088 (7) A and beta = 96.520 (3) degrees. Chemical diagrams for the two compounds are given. Soft restraints were applied during Rietveld refinement; for 1 converging to R(p) = 8.4%, R(w) = 11.0%, GoF = 2.3, and for 2 converging to R(p) = 8.5%, R(w) = 11.4%, GoF = 7.6.

  4. Raman, AFM and SNOM high resolution imaging of carotene crystals in a model carrot cell system.

    Science.gov (United States)

    Rygula, Anna; Oleszkiewicz, Tomasz; Grzebelus, Ewa; Pacia, Marta Z; Baranska, Malgorzata; Baranski, Rafal

    2018-02-02

    Three non-destructive and complementary techniques, Raman imaging, Atomic Force Microscopy and Scanning Near-field Optical Microscopy were used simultaneously to show for the first time chemical and structural differences of carotenoid crystals. Spectroscopic and microscopic scanning probe measurements were applied to the released crystals or to crystals accumulated in a unique, carotenoids rich callus tissue growing in vitro that is considered as a new model system for plant carotenoid research. Three distinct morphological crystal types of various carotenoid composition were identified, a needle-like, rhomboidal and helical. Raman imaging using 532 and 488 nm excitation lines provided evidence that the needle-like and rhomboidal crystals had similar carotenoid composition and that they were composed mainly of β-carotene accompanied by α-carotene. However, the presence of α-carotene was not identified in the helical crystals, which had the characteristic spatial structure. AFM measurements of crystals identified by Raman imaging revealed the crystal topography and showed the needle-like and rhomboidal crystals were planar but they differed in all three dimensions. Combining SNOM and Raman imaging enabled indication of carotenoid rich structures and visualised their distribution in the cell. The morphology of identified subcellular structures was characteristic for crystalline, membraneous and tubular chromoplasts that are plant organelles responsible for carotenoid accumulation in cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Aberration production using a high-resolution liquid-crystal spatial light modulator.

    Science.gov (United States)

    Schmidt, Jason D; Goda, Matthew E; Duncan, Bradley D

    2007-05-01

    Phase-only liquid-crystal spatial light modulators provide a powerful means of wavefront control. With high resolution and diffractive (modulo 2pi) operation, they can accurately represent large-dynamic-range phase maps. As a result, they provide an excellent means of producing electrically controllable, dynamic, and repeatable aberrations. However, proper calibration is critical to achieving accurate phase maps. Several calibration methods from previous literature were considered. With simplicity and accuracy in mind, we selected one method for each type of necessary calibration. We augmented one of the selected methods with a new step that improves its accuracy. After calibrating our spatial light modulator with our preferred methods, we evaluated its ability to produce aberrations in the laboratory. We studied Zernike polynomial aberrations using interferometry and Fourier-transform-plane images, and atmospheric aberrations using a Shack-Hartmann wavefront sensor. These measurements show the closest agreement with theoretical expectations that we have seen to date.

  6. Proton–silicon interaction potential extracted from high-resolution measurements of crystal rainbows

    Energy Technology Data Exchange (ETDEWEB)

    Petrović, S., E-mail: petrovs@vinca.rs [Laboratory of Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade (Serbia); Nešković, N.; Ćosić, M. [Laboratory of Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade (Serbia); Motapothula, M. [Center for Ion Beam Applications, Physics Department, National University of Singapore, Lower Kent Ridge Road, Singapore 117542 (Singapore); Breese, M.B.H. [Center for Ion Beam Applications, Physics Department, National University of Singapore, Lower Kent Ridge Road, Singapore 117542 (Singapore); Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore 117603 (Singapore)

    2015-10-01

    This study provides a way to produce very accurate ion–atom interaction potentials. We present the high-resolution measurements of angular distributions of protons of energies between 2.0 and 0.7 MeV channeled in a 55 nm thick (0 0 1) silicon membrane. Analysis is performed using the theory of crystal rainbows in which the Molière’s interaction potential is modified to make it accurate both close to the channel axis and close to the atomic strings defining the channel. This modification is based on adjusting the shapes of the rainbow lines appearing in the transmission angle plane, with the resulting theoretical angular distributions of transmitted protons being in excellent agreement with the corresponding experimental distributions.

  7. Ultra-high-resolution time projection chambers with liquid crystal backplanes

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Benjamin

    2014-10-15

    We investigated the possibility of incorporating a liquid-crystal device into a gas ionization detector. After extensive R&D on several candidate liquid-crystal technologies, we developed some novel materials allowing twisted nematic liquid-crystal layers to be coupled directly to gas ionization counters. However, the resulting structures were unsuitable for large-scale or practical use. We tested several technologies known to result in mechanically-robust liquid crystal electrooptic layers, but found poor behavior in the detector context.

  8. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  9. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    . Next, a plausible neighborhood structure is estimated. Finally, atom positions are adjusted by simulation of a Markov random field model, integrating image evidence and the strong geometric prior. A pristine sample with high regularity and a sample with an induced hole are analyzed. False discovery...... rate-controlled large-scale simultaneous hypothesis testing is used as a statistical framework for interpretation of results. The first sample yields, as expected, a homogeneous distribution of carbon–carbon (C–C) bond lengths. The second sample exhibits regions of shorter C–C bond lengths...... with a preferred orientation, suggesting either strain in the structure or a buckling of the graphene sheet. The precision of the method is demonstrated on simulated model structures and by its application to multiple exposures of the two graphene samples....

  10. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  11. High-Resolution Structure of Viruses from Random Snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2013-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and reconstruct the three-dimensional structure of the object. Existing approaches are limited in reconstruction resolution to at best 1/30th of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to 1/100th of the object diameter, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic resolution. Combined with the previously demonstrated capability to operate at ultralow signal, our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and...

  12. Quasi-mosaic Crystals For High-resolution Focusing Of Hard X-rays Through A Laue Lens

    Science.gov (United States)

    Camattari, R.; Guidi, V.; Bellucci, V.; Neri, I.

    2011-09-01

    We propose the usage of bent crystals exploiting the Quasi-Mosaicity for high-resolution focusing of hard X-rays. Quasi-Mosaicity is an effect of anisotropy in crystals that manifests itself along selected crystallographic directions. As a result of primary curvature imparted to the crystal, a secondary curvature (Quasi-Mosaic curvature) occurs. We demonstrated that a combination of primary and Quasi-Mosaic curvatures allows high-efficiency diffraction and high-resolution focusing of diffracted photons. As compared to traditional mosaic crystals with same size and energy passband, Quasi-Mosaic crystals would increases the signal-to-noise ratio by about an order of magnitude and no mosaic defocusing would occur.

  13. High resolution crystal structure of rat long chain hydroxy acid oxidase in complex with the inhibitor 4-carboxy-5-[(4-chlorophenyl)sulfanyl]-1, 2, 3-thiadiazole. Implications for inhibitor specificity and drug design

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-wei; Vignaud, Caroline; Jaafar, Adil; Lévy, Bernard; Guéritte, Françoise; Guénard, Daniel; Lederer, Florence; Mathews, F. Scott (CNRS-UMR); (WU-MED)

    2012-05-24

    Long chain hydroxy acid oxidase (LCHAO) is responsible for the formation of methylguanidine, a toxic compound with elevated serum levels in patients with chronic renal failure. Its isozyme glycolate oxidase (GOX), has a role in the formation of oxalate, which can lead to pathological deposits of calcium oxalate, in particular in the disease primary hyperoxaluria. Inhibitors of these two enzymes may have therapeutic value. These enzymes are the only human members of the family of FMN-dependent L-2-hydroxy acid-oxidizing enzymes, with yeast flavocytochrome b{sub 2} (Fcb2) among its well studied members. We screened a chemical library for inhibitors, using in parallel rat LCHAO, human GOX and the Fcb2 flavodehydrogenase domain (FDH). Among the hits was an inhibitor, CCPST, with an IC{sub 50} in the micromolar range for all three enzymes. We report here the crystal structure of a complex between this compound and LCHAO at 1.3 {angstrom} resolution. In comparison with a lower resolution structure of this enzyme, binding of the inhibitor induces a conformational change in part of the TIM barrel loop 4, as well as protonation of the active site histidine. The CCPST interactions are compared with those it forms with human GOX and those formed by two other inhibitors with human GOX and spinach GOX. These compounds differ from CCPST in having the sulfur replaced with a nitrogen in the five-membered ring as well as different hydrophobic substituents. The possible reason for the {approx}100-fold difference in affinity between these two series of inhibitors is discussed. The present results indicate that specificity is an issue in the quest for therapeutic inhibitors of either LCHAO or GOX, but they may give leads for this quest.

  14. Planetary-scale streak structures produced in a high-resolution simulation of Venus atmosphere

    Science.gov (United States)

    Kashimura, H.; Sugimoto, N.; Takagi, M.; Matsuda, Y.; Ohfuchi, W.; Enomoto, T.; Nakajima, K.; Ishiwatari, M.; Sato, T. M.; Hashimoto, G. L.; Satoh, T.; Takahashi, Y. O.; Hayashi, Y.-Y.

    2017-09-01

    Planetary-scale streak structures captured by the IR2 camera onboard AKATSUKI was reproduced in a high-resolution simulation of Venus Atmosphere. We have found that the streak structures are extending from the polar vortices and synchronized in both hemispheres. Our experiments suggest that a low-stability layer is a key for forming the planetary-scale streak structures.

  15. The high-resolution architecture and structural dynamics of Bacillus spores

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T J; Wheeler, K E; Malkin, A J

    2004-05-06

    The capability to image single microbial cell surfaces at nanometer scale under native conditions would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, environmental resistance and biotransformation. We report here that advances in atomic force microscopy (AFM) have allowed us to directly visualize high-resolution native structures of bacterial endospores, including the exosporium and spore coats of four Bacillus species in air and water environments. The dimensions of individual Bacillus atrophaeus spores were found to decrease reversibly by 12% in response to a change in the environment from aqueous to aerial phase. Intraspecies spore size distribution analyses revealed that spore length could vary by a factor of 2 while the absolute deviation is 7 - 13% in length and 4 - 6 % in width. AFM analysis also demonstrated that the mechanisms of spore coat self-assembly are similar to those described for inorganic and macromolecular crystallization. These results establish AFM as a powerful new tool for the analysis of molecular architecture and variability as a function of spatial, temporal and developmental organizational scales.

  16. Crystal interface and high-resolution electron microscopy—the best partner

    Directory of Open Access Journals (Sweden)

    H Ichinose

    2000-01-01

    Full Text Available Several contributions of HRTEM on the interface science are reviewed in chronological order. The first contribution of HRTEM is the observation of gold (113Σ°11 boundary, giving experimental proof of the CSL model. An observation of the asymmetric (112Σ°3 boundary follows. A SiC grain boundary is effectively assessed not by the density of CSL point but the number of dangling bonds in the boundary. A ZnO/Pd interface provides an example that a misfit dislocation does not necessarily accommodate the lattice mismatch. Segregated interface shows characteristic HRTEM image contrast, suggesting change in atomic bonding. An atomic height step in the semiconductor hetero interface is observed by the Chemical Lattice Image technique. In the diamond grain boundary a dangling bond may not elevate the boundary energy, being contradictory of the least dangling bond rule. Super-high resolution of the HVHRTEM enable us to determine atomic species in the grain boundary. Combined use of HRTEM and EELSE allows us to discuss the correlation between atomic structure and nature of the corresponding interface. It is not exaggeration to say that modern interface science does not exist witout HRTEM. On the other hand, many complicated interfaces found by HRTEM remained as unaswered questions. An innovative structural model is requested to appear on the scene.

  17. Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures

    Science.gov (United States)

    Nord, Gordon L., Jr.

    This book is a well-written English translation of the original 1981 Russian edition, Strukturnoye issledovaniye mineralov metodami mikrodifraktsii i elechtronnoi mikroskopii vysokogo razresheniya. The 1987 English version has been extensively updated and includes references up to 1986. The book is essentially a text on the theoretical and experimental aspects of transmission electron microscopy and has chapters on the reciprocal lattice, electron diffraction (both kinematic and dynamic), and high-resolution electron microscopy.Electron diffraction is emphasized, especially its use for structure analysis of poorly crystalline and fine-grained phases not readily determined by the more exact X ray diffraction method. Two methods of electron diffraction are discussed: selected area electron diffraction (SAED) and oblique-texture electron diffraction (OTED); the latter technique is rarely used in the west and is never discussed in western electron microscopy texts. A SAED pattern is formed by isolating a small micrometer-size area with an aperture and obtaining single-crystal patterns from the diffracted beams. By tilting the sample and obtaining many patterns, a complete picture of the reciprocal lattice can be taken. An OTED pattern is formed when the incident electron beam passes through an inclined preparation consisting of a great number of thin platy crystals lying normal to the texture axis (axis normal to the support grid). To form an OTED pattern, the plates must all lie on a common face, such as a basal plane in phyllosilicates. Upon tilting the plates, an elliptical powder diffraction pattern is formed. Intensities measured from these patterns are used for a structural analysis of the platy minerals.

  18. A high resolution X-ray crystal spectrometer to study electron and ...

    Indian Academy of Sciences (India)

    satellite lines of Al have been studied in collision with 3–12 keV electrons and 40 MeV. C. 4+ ions. In ion collisions as large as ... bilities to resolve complex multiplet structures in the atomic spectra. Following the first crystal spectrometer .... The Bragg's equation (nλ = 2d sin θ) and slope of the straight line (nrot vs. sin θ, not ...

  19. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  20. High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber.

    Science.gov (United States)

    Fedotov, I V; Blakley, S M; Serebryannikov, E E; Hemmer, P; Scully, M O; Zheltikov, A M

    2016-02-01

    We demonstrate high-resolution magnetic field imaging with a scanning fiber-optic probe which couples nitrogen-vacancy (NV) centers in diamond to a high-numerical-aperture photonic-crystal fiber integrated with a two-wire microwave transmission line. Magnetic resonance excitation of NV centers driven by the microwave field is read out through optical interrogation through the photonic-crystal fiber to enable high-speed, high-sensitivity magnetic field imaging with sub 30 μm spatial resolution.

  1. Endlessly single-mode photonic crystal fiber as a high resolution probe.

    Science.gov (United States)

    Valtna-Lukner, Heli; Repän, Jaagup; Valdma, Sandhra-Mirella; Piksarv, Peeter

    2016-11-20

    We sample ultra-broadband light, focused onto a diffraction-limited spot, to an endlessly single-mode photonic crystal fiber (ESM) and detect both the field amplitude and phase using a SEA TADPOLE interferometer. We resolve spatial features up to 2.5 times finer than the fiber mode size while sampling the periodic features of the bipolar oscillating field in the transverse section. The resolution enhancement is expected also in other types of single-mode fibers in intensity measurements and leads to an inexpensive method for characterizing the point-spread function of such optical fields, e.g., diffraction-limited spots from microscope objectives. In addition, we demonstrate the guidance of a high-NA light field in the fine structure of an ESM fiber mode. The results are especially valuable for devices where a fiber tip acts as an input slit and defines the spatial resolution, e.g., fiber-based interferometers, spectrometers, and sensors.

  2. Homogenization-based topology optimization for high-resolution manufacturable micro-structures

    DEFF Research Database (Denmark)

    Groen, Jeroen Peter; Sigmund, Ole

    2017-01-01

    This paper presents a projection method to obtain high-resolution, manufacturable structures from efficient and coarse-scale, homogenization-based topology optimization results. The presented approach bridges coarse and fine scale, such that the complex periodic micro-structures can be represented...... designs are almost equal to the homogenization-based solutions. A significant reduction in computational cost is observed compared to conventional topology optimization approaches....

  3. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  4. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks.

    Science.gov (United States)

    Lu, Bing-Rui; Xu, Chen; Liao, Jianfeng; Liu, Jianpeng; Chen, Yifang

    2016-04-01

    We present transmissive plasmonic structural colors from subwavelength nanohole arrays with bottom metal disks for scaled-up manufacturing by nanoimprint lithography (NIL). Comprehensive theoretical and experimental studies are carried out to understand the specific extraordinary optical transmission behavior of the structures with such bottom metal disks. Distinctive colors covering the entire visible spectrum can be generated by changing the structural dimensions of hole arrays in Ag covered by the metal disks. The plasmonic energy hybridization theory is applied to explain the unstable color output with shallow holes so that a large processing window during NIL could be achieved for mass production. A high-resolution of 127,000 dots per inch is demonstrated with potential applications, including color filters and displays, high-resolution color printing, CMOS color imaging, and anti-counterfeiting.

  5. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy.

    Science.gov (United States)

    Stark, Holger; Chari, Ashwin

    2016-02-01

    Single particle cryo-EM has recently developed into a powerful tool to determine the 3D structure of macromolecular complexes at near-atomic resolution, which allows structural biologists to build atomic models of proteins. All technical aspects of cryo-EM technology have been considerably improved over the last two decades, including electron microscopic hardware, image processing software and the ever growing speed of computers. This leads to a more widespread use of the technique, and it can be anticipated that further automation of electron microscopes and image processing tools will soon fully shift the focus away from the technological aspects, onto biological questions that can be answered. In single particle cryo-EM, no crystals of a macromolecule are required. In contrast to X-ray crystallography, this significantly facilitates structure determination by cryo-EM. Nevertheless, a relatively high level of biochemical control is still essential to obtain high-resolution structures by cryo-EM, and it can be anticipated that the success of the cryo-EM technology goes hand in hand with further developments of sample purification and preparation techniques. This will allow routine high-resolution structure determination of the many macromolecular complexes of the cell that until now represent evasive targets for X-ray crystallographers. Here we discuss the various biochemical tools that are currently available and the existing sample purification and preparation techniques for cryo-EM grid preparation that are needed to obtain high-resolution images for structure determination. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. High Resolution Three-Dimensional MR Imaging of the Skull Base: Compartments, Boundaries, and Critical Structures.

    Science.gov (United States)

    Blitz, Ari Meir; Aygun, Nafi; Herzka, Daniel A; Ishii, Masaru; Gallia, Gary L

    2017-01-01

    High-resolution 3D MRI of the skull base allows for a more detailed and accurate assessment of normal anatomic structures as well as the location and extent of skull base pathologies than has previously been possible. This article describes the techniques employed for high-resolution skull base MRI including pre- and post-contrast constructive interference in the steady state (CISS) imaging and their utility for evaluation of the many small structures of the skull base, focusing on those regions and concepts most pertinent to localization of cranial nerve palsies and in providing pre-operative guidance and post-operative assessment. The concept of skull base compartments as a means of conceptualizing the various layers of the skull base and their importance in assessment of masses of the skull base is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. An Optimized, Grid Independent, Narrow Band Data Structure for High Resolution Level Sets

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Museth, Ken

    2004-01-01

    enforced by the convex boundaries of an underlying cartesian computational grid. Here we present a novel very memory efficient narrow band data structure, dubbed the Sparse Grid, that enables the representation of grid independent high resolution level sets. The key features our new data structure are...... that use fixed computational grids with convex boundaries our Sparse Grid can expand and/or contract dynamically in any direction with non-convex boundaries. Our data structure generalizes to any number of dimensions. Our flexible data structure can transparently be integrated with the existing finite...

  8. High Resolution X-ray Characterization Of Mosaic Crystals For Hard X- And Gamma-ray Astronomy

    Science.gov (United States)

    Marchini, L.; Ferrari, C.; Buffagni, E.; Zappettini, A.

    2011-09-01

    For hard X-ray astronomy in the 70-1000 keV energy range Laue lenses have been proposed where the focusing elements are made of single mosaic crystals, in order to increase the diffraction efficiency with respect to perfect crystals. Suitable crystals to be used for such application should have a sufficient density to increase the diffraction efficiency and a mosaicity ranging between 30 arcsec and 1-2 arcmin, depending on the lens focusing distance and resolution. In the past germanium and copper crystals, often employed as monochromators for neutrons, have been considered. In this work we propose several crystalline materials of different degree of crystal perfection such as GaAs, Cu, CdTe, and CdZnTe as possible mosaic crystals for hard X-ray astronomy. They were analyzed by high resolution X-ray diffraction at 8 keV and by diffraction at energies up to 700 keV at synchrotron. It was found that: CdTe and CdZnTe crystals exhibit low angle grain boundaries preventing the formation of a single diffracted X-ray beam; Cu crystals exhibit mosaicity of the order of several arcmin, however a deep etching is needed to remove the cutting damage; GaAs crystals grown by LEC method show mosaicity between 15 and 30 arcsec and good diffraction efficiency up to energies of 700 keV. Annealing and surface damage were considered as possible methods to increase the GaAs crystal mosaicity.

  9. Curved crystals for high-resolution focusing of X and gamma rays through a Laue lens

    Science.gov (United States)

    Guidi, Vincenzo; Bellucci, Valerio; Camattari, Riccardo; Neri, Ilaria

    2013-08-01

    Crystals with curved diffracting planes have been investigated as high-efficiency optical components for the realization of a Laue lens for satellite-borne experiments in astrophysics. At Sensor and Semiconductor Laboratory (Ferrara, Italy) a research and development plan to implement Si and Ge curved crystals by surface grooving technique has been undertaken. The method of surface grooving allows obtaining Si and Ge curved crystals with self-standing curvature, i.e., with no need for external bending device, which is a mandatory issue in satellite-borne experiments. Si and Ge grooved crystals have been characterized by X-ray diffraction at ESRF and ILL to prove their functionality for a high-reflectivity Laue lens.

  10. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

    Science.gov (United States)

    Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Della Giustina, Gioia; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna

    2017-06-01

    Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures. The design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking is reported. Significantly, topological and mechanical conditions of polymerized gelatin structures were suitable for cell accommodation in the volume of the woodpiles, leading to a cell density per unit area comparable to the bare substrate. The fabricated structures, presenting micrometric features of high resolution, are actively deformed by cells, both in terms of cell invasion within rods and of cell attachment in-between contiguous woodpiles. Possible biological targets for this 3D approach are customized 3D tissue models, or studies of cell adhesion

  11. High-resolution spectroscopy, crystal-field calculations, and quadrupole helix chirality of DyFe3(BO34

    Directory of Open Access Journals (Sweden)

    Popova M.N.

    2017-01-01

    Full Text Available High-resolution polarized transmission spectra of DyFe3(BO34 single crystals were investigated in broad spectral (10-23000 cm−1 and temperature (3.5-300 K ranges. Energies of the dysprosium levels in the paramagnetic and antiferromagnetic phases were determined. On the basis of these data and preliminary calculations in the frameworks of the exchange-charge model, we determined the crystal-field and Dy-Fe exchange interaction parameters of the Dy3+ ions at sites with the point C2 symmetry corresponding to the enantiomorphic P3121 and P3221 space groups. The values of electronic quadrupole moments of the Dy3+ ions were calculated, which enabled us to interpret results of the work [Usui et al., Nature Mater. 13, 611 (2014] on the observation of domains of different quadrupole chirality in DyFe3(BO34.

  12. High-resolution x-ray characterization of mosaic crystals for hard x-and gamma-ray astronomy

    Science.gov (United States)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2011-09-01

    We have analyzed GaAs, Cu, CdTe, and CdZnTe crystals as possible optical elements for hard x-ray lenses for x-ray astronomy. We used high resolution x-ray diffraction at 8keV in Bragg geometry and Laue transmission diffraction at synchrotron at energies up to 500 keV. A good agreement was found between the mosaicity evaluated in Bragg diffraction geometry with x-ray penetration of the order of few tens micrometers and in Laue transmission geometry at synchrotron. All the analyzed crystals showed mosaicity values in a range between a few to 150 arcseconds and suitable for the application. Nevertheless -CdTe and CdZnTe crystals exhibit non-uniformity due to the presence of low angle grain boundaries; -Cu crystals exhibit mosaicity of the order of several arcminutes; they indeed suffer by a severe cutting damage that had to be removed with a very deep etching. The FWHM was also rapidly decreasing with the x-ray energy showing that the mosaic spread is not the only origin of peak broadening; -GaAs crystals grown by Czochralski method show mosaicity up to 30 arcseconds and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread is also evaluated.

  13. In vitro high-resolution structural dynamics of single germinating bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2006-12-11

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  14. In vitro high-resolution structural dynamics of single germinating bacterial spores

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2006-11-14

    Although significant progress has been achieved in understanding the genetic and biochemical bases of the spore germination process, the structural basis for breaking the dormant spore state remains poorly understood. We have used atomic force microscopy (AFM) to probe the high-resolution structural dynamics of single Bacillus atrophaeus spores germinating under native conditions. Here we show that AFM can reveal previously unrecognized germination-induced alterations in spore coat architecture and topology as well as the disassembly of outer spore coat rodlet structures. These results and previous studies in other microorganisms suggest that the spore coat rodlets are structurally similar to amyloid fibrils. AFM analysis of the nascent surface of the emerging germ cell revealed a porous network of peptidoglycan fibers. The results are consistent with a honeycomb model structure for synthetic peptidoglycan oligomers determined by nuclear magnetic resonance. AFM is a promising experimental tool for investigating the morphogenesis of spore germination and cell wall peptidoglycan structure.

  15. High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best?

    Science.gov (United States)

    Link, Thomas M; Vieth, Volker; Stehling, Christoph; Lotter, Albrecht; Beer, Ambros; Newitt, David; Majumdar, Sharmila

    2003-04-01

    The purpose of this study was to compare trabecular bone structure parameters obtained from high-resolution magnetic resonance (HRMR) and multislice computed tomography (MSCT) images with those determined in contact radiographs from corresponding specimen sections. High-resolution MR and MSCT images were obtained in 39 distal radius specimens. For HRMR the in-plane spatial resolution was 0.152x0.153 mm(2) with a slice thickness of 0.9 and 0.3 mm using a 3D T1-weighted spin-echo sequence. For MSCT the resolution was 0.247x0.247 mm(2) with a collimation of 1 mm. Using a diamond saw, 117 0.9- to 1-mm-thick sections were obtained from these specimens and contact radiographs were acquired. In the corresponding sections structure parameters analogous to bone histomorphometry were determined. Significant correlations between MR- and CT-derived structure parameters and those derived from the contact radiographs were found (pbone structure parameters assessed in distal radius HRMR and MSCT images are significantly correlated with those determined in corresponding specimen sections (pbone structure.

  16. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamaka)

    Science.gov (United States)

    Lu, B.; Wang, F.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.; Fu, J.; Li, Y.; Wan, B.

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (Ti), electron temperature (Te) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  17. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Lu, B; Wang, F; Shi, Y; Bitter, M; Hill, K W; Lee, S G; Fu, J; Li, Y; Wan, B

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T(i)), electron temperature (T(e)) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  18. Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging

    Science.gov (United States)

    Roman, Maciej; Marzec, Katarzyna M.; Grzebelus, Ewa; Simon, Philipp W.; Baranska, Malgorzata; Baranski, Rafal

    2015-02-01

    Three categories of roots differing in both β/α-carotene ratio and in total carotenoid content were selected based on HPLC measurements: high α- and β-carotene (HαHβ), low α- and high β-carotene (LαHβ), and low α- and low β-carotene (LαLβ). Single carotenoid crystals present in the root cells were directly measured using high resolution Raman imaging technique with 532 nm and 488 nm lasers without compound extraction. Crystals of the HαHβ root had complex composition and consisted of β-carotene accompanied by α-carotene. In the LαHβ and LαLβ roots, measurements using 532 nm laser indicated the presence of β-carotene only, but measurements using 488 nm laser confirmed co-occurrence of xanthophylls, presumably lutein. Thus the results show that independently on carotenoid composition in the root, carotenoid crystals are composed of more than one compound. Individual spectra extracted from Raman maps every 0.2-1.0 μm had similar shapes in the 1500-1550 cm-1 region indicating that different carotenoid molecules were homogeneously distributed in the whole crystal volume. Additionally, amorphous carotenoids were identified and determined as composed of β-carotene molecules but they had a shifted the ν1 band probably due to the effect of bonding of other plant constituents like proteins or lipids.

  19. LTE modeling of inhomogeneous chromospheric structure using high-resolution limb observations

    Science.gov (United States)

    Lindsey, C.

    1987-01-01

    The paper discusses considerations relevant to LTE modeling of rough atmospheres. Particular attention is given to the application of recent high-resolution observations of the solar limb in the far-infrared and radio continuum to the modeling of chromospheric spicules. It is explained how the continuum limb observations can be combined with morphological knowledge of spicule structure to model the physical conditions in chromospheric spicules. This discussion forms the basis for a chromospheric model presented in a parallel publication based on observations ranging from 100 microns to 2.6 mm.

  20. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  1. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  2. Studies of X-pinch Plasma Fine Structure Using High Resolution Optical and Imaging Spectroscopy Methods

    Science.gov (United States)

    Pikuz, S. A.; Shelkovenko, T. A.; Romanova, V. M.; Sarkisov, G. S.; Hammer, D. A.; Acton, D. F.; Kalantar, D. H.

    1996-11-01

    An X-pinch is formed by placing two or more fine wires between the output electrodes of a high current pulser so that the wires cross and touch in mid-gap. The predictable position of a neck in the resulting plasma at the wire cross point enables the use of high resolution optical systems for studies of the neck-forming plasma dynamics(D.H. Kalantar and D.A. Hammer, Phys. Rev. Lett 71), 3806 (1993); S.A. Pikuz et al., JQSRT 51, 291 (1994)., as well as high resolution imaging x-ray spectroscopy(A.Ya. Faenov et al., X-ray Sci. & Tech. 5), 323 (1995). for studying the internal structure of the neck. The position of the neck in the relation to the cross-point of the X-pinch wires, the neck structure during pinching, plasma parameters in the vicinity of the neck and in the plasma around of the wires cores were investigating using pulsed lasers. The internal structure of the bright spot near the cross point was studied with spatial resolution better than 10 microns using a time integrated pin-hole camera and the radiation of individual spectral lines of highly charged ions such as He-like Ni and Al. Work supported by Sandia Contact AJ-6400.

  3. High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.; Bycroft, Mark, E-mail: mxb@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH (United Kingdom)

    2016-05-23

    In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1, which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined.

  4. Structural characterization of suppressor lipids by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian

    2016-01-01

    RATIONALE: Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long...... chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. METHODS: Suppressor lipids were...... isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. RESULTS: Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization...

  5. Lessons from crystal structures of kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Frydenvang, Karla Andrea; Pickering, Darryl S

    2017-01-01

    -length structure has been determined of GluK2 by cryo electron microscopy to 7.6 Å resolution as well as 84 high-resolution crystal structures of N-terminal domains and ligand-binding domains, including agonist and antagonist bound structures, modulatory ions and mutations. However, there are still many unanswered...

  6. Hybrid Young interferometer for high resolution measurement of dynamic speckle using high birefringence liquid crystal

    Science.gov (United States)

    Bennis, N.; Holdynski, Z.; Merta, I.; Marc, P.; Kula, P.; Mazur, R.; Piecek, W.; Jaroszewicz, L. R.

    2015-08-01

    It is well known that the Young interference experiment is the fundamental setup to combine two beams and to construct the phase modulated light. Moreover, homodyne phase demodulator is based on signal decoding in back Fourier focal plane using bicell photodetector (B-PD). On the above base, we propose a novel experimental approach to the signals demodulation by using the optical interferometer which operates in homodyne mode, combined with liquid crystal spatial light modulators operating both phase as speckle modulator. Dynamic phase changes between the two beams can be controlled by monopixel liquid crystals cell placed in one branch of the interferometer. A phase modulation effect in a signal arm of interferometer is observed as a dynamic shift of the speckle pattern. Simple arithmetic combination of signals from B-PD placed in speckle pattern plane is only one necessary numerical manipulation to obtain exactly phase difference. Concept of signals demodulation in the Fourier focal plane can be only used for exactly defined geometrical (B-PD as well as Young interferometer) and physical parameters (polarization, wavelength). We optimize the setup geometry to obtain extremely high measurement resolution. In this paper we focus on the principles of operation of each part of the system as well as discussion their requirement in order to increase the signal to noise ratio.

  7. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    Science.gov (United States)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  8. High-Resolution Structures of HIV-1 Reverse Transcriptase/TMC278 Complexes: Strategic Flexibility Explains Potency Against Resistance Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Das,K.; Bauman, J.; Clark, Jr., A.; Frenkel, Y.; Lewi, P.; Shatkin, A.; Hughes, S.; Arnold, E.

    2008-01-01

    TMC278 is a diarylpyrimidine (DAPY) nonnucleoside reverse transcriptase inhibitor (NNRTI) that is highly effective in treating wild-type and drug-resistant HIV-1 infections in clinical trials at relatively low doses ({approx}25-75 mg/day). We have determined the structure of wild-type HIV-1 RT complexed with TMC278 at 1.8 Angstroms resolution, using an RT crystal form engineered by systematic RT mutagenesis. This high-resolution structure reveals that the cyanovinyl group of TMC278 is positioned in a hydrophobic tunnel connecting the NNRTI-binding pocket to the nucleic acid-binding cleft. The crystal structures of TMC278 in complexes with the double mutant K103N/Y181C (2.1 Angstroms ) and L100I/K103N HIV-1 RTs (2.9 Angstroms ) demonstrated that TMC278 adapts to bind mutant RTs. In the K103N/Y181C RT/TMC278 structure, loss of the aromatic ring interaction caused by the Y181C mutation is counterbalanced by interactions between the cyanovinyl group of TMC278 and the aromatic side chain of Y183, which is facilitated by an {approx}1.5 Angstroms shift of the conserved Y183MDD motif. In the L100I/K103N RT/TMC278 structure, the binding mode of TMC278 is significantly altered so that the drug conforms to changes in the binding pocket primarily caused by the L100I mutation. The flexible binding pocket acts as a molecular 'shrink wrap' that makes a shape complementary to the optimized TMC278 in wild-type and drug-resistant forms of HIV-1 RT. The crystal structures provide a better understanding of how the flexibility of an inhibitor can compensate for drug-resistance mutations.

  9. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    Science.gov (United States)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  10. A High-resolution Atlas and Statistical Model of the Vocal Tract from Structural MRI.

    Science.gov (United States)

    Woo, Jonghye; Lee, Junghoon; Murano, Emi Z; Xing, Fangxu; Al-Talib, Meena; Stone, Maureen; Prince, Jerry L

    Magnetic resonance imaging (MRI) is an essential tool in the study of muscle anatomy and functional activity in the tongue. Objective assessment of similarities and differences in tongue structure and function has been performed using unnormalized data, but this is biased by the differences in size, shape, and orientation of the structures. To remedy this, we propose a methodology to build a 3D vocal tract atlas based on structural MRI volumes from twenty normal subjects. We first constructed high-resolution volumes from three orthogonal stacks. We then removed extraneous data so that all 3D volumes contained the same anatomy. We used an unbiased diffeomorphic groupwise registration using a cross-correlation similarity metric. Principal component analysis was applied to the deformation fields to create a statistical model from the atlas. Various evaluations and applications were carried out to show the behaviour and utility of the atlas.

  11. High resolution structure of the large ribosomal subunit from a Mesophilic Eubacterium

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Joerg; Schluenzen, Frank; Zarivach, Raz; Bashan, Anat; Gat, Sharon; Agmon, Ilana; Bartels, Heike; Franceschi, Francois; Yonath, Ada (Weizmann Inst Israel); (Mac Planck Germany); (Max Planck Germany)

    2009-10-07

    We describe the high resolution structure of the large ribosomal subunit from Deinococcus radiodurans (D50S), a gram-positive mesophile suitable for binding of antibiotics and functionally relevant ligands. The over-all structure of D50S is similar to that from the archae bacterium Haloarcula marismortui (H50S); however, a detailed comparison revealed significant differences, for example, in the orientation of nucleotides in peptidyl transferase center and in the structures of many ribosomal proteins. Analysis of ribosomal features involved in dynamic aspects of protein biosynthesis that are partially or fully disordered in H50S revealed the conformations of intersubunit bridges in unbound subunits, suggesting how they may change upon subunit association and how movements of the L1-stalk may facilitate the exit of tRNA.

  12. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics.

    Science.gov (United States)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H; Ejsing, Christer S

    2015-03-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics to characterize, for the first time, the lipid complement of the archaeon Sulfolobus islandicus. To support the identification of lipids in S. islandicus, we first compiled a database of ether lipid species previously ascribed to Archaea. Next, we analyzed the lipid complement of S. islandicus by high-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we performed structural analysis using multistage activation on the ion trap-orbitrap instrument as well as tandem mass analysis using a quadrupole time-of-flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described before. This uncharacterized lipid species features two head group structures composed of a trisaccharide residue carrying an uncommon sulfono group (-SO3) and an inositol phosphate group. Both head groups are linked to a glycerol dialkyl glycerol tetraether core structure having isoprenoid chains with a total of 80 carbon atoms and 4 cyclopentane moieties. The shotgun lipidomics approach deployed here defines a novel workflow for exploratory lipid profiling of Archaea. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Development of high-resolution gamma detector using sub-mm GAGG crystals coupled to TSV-MPPC array

    Science.gov (United States)

    Lipovec, A.; Shimazoe, K.; Takahashi, H.

    2016-03-01

    In this study a high-resolution gamma detector based on an array of sub-millimeter Ce:GAGG (Cerium doped Gd3Al2Ga3O12) crystals read out by an array of surface-mount type of TSV-MPPC was developed. MPPC sensor from Hamamatsu which has a 26 by 26 mm2 detector area with 64 channels was used. One channel has a 3 by 3 mm2 photosensitive area with 50 μ m pitch micro cells. MPPC sensor provides 576 mm2 sensing area and was used to decode 48 by 48 array with 0.4 by 0.4 by 20 mm3 Ce:GAGG crystals of 500 μ m pitch. The base of the detector with the crystal module was mounted to a read out board which consists of charge division circuit, thus allowing for a read out of four channels to identify the position of the incident event on the board. The read out signals were amplified using charge sensitive amplifiers. The four amplified signals were digitized and analyzed to produce a position sensitive event. For the performance analysis a 137Cs source was used. The produced events were used for flood histogram and energy analysis. The effects of the glass thickness between the Ce:GAGG and MPPC were analyzed using the experimental flood diagrams and Geant4 simulations. The glass between the scintillator and the detector allows the spread of the light over different channels and is necessary if the channel's sensitive area is bigger than the scintillator's area. The initial results demonstrate that this detector module is promising and could be used for applications requiring compact and high-resolution detectors. Experimental results show that the detectors precision increases using glass guide thickness of 1.35 mm and 1.85 mm; however the precision using 2.5 mm are practically the same as if using 0.8 mm or 1.0 mm glass guide thicknesses. In addition, simulations using Geant4 indicate that the light becomes scarcer if thicker glass is used, thus reducing the ability to indicate which crystal was targeted. When 2.5 mm glass thickness is used, the scarce light effect becomes

  14. High-resolution /sup 1/H NMR study of the solution structure of delta-hemolysin

    Energy Technology Data Exchange (ETDEWEB)

    Tappin, M.J.; Pastore, A.; Norton, R.S.; Freer, J.H.; Campbell, I.D.

    1988-03-08

    The 26-residue toxin from Staphylococcus aureus delta-hemolysin, is thought to act by traversing the plasma membrane. The structure of this peptide, in methanol solution, has been investigated by using high-resolution NMR in combination with molecular dynamics calculations. The /sup 1/H NMR spectrum has been completely assigned, and it is shown that residues 2-20 form a relatively stable helix while the residues at the C-terminal end appear to be more flexible. The structures were calculated only from nuclear Overhauser effect data and standard bond lengths. It is shown that the results are consistent with /sup 3/J/sub NH-..cap alpha..CH/ coupling constants and amide hydrogen exchange rates.

  15. A High Resolution Solid State NMR Approach for the Structural Studies of Bicelles

    Science.gov (United States)

    Dvinskikh, Sergey; Dürr, Ulrich; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2008-01-01

    Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints such as heteronuclear dipolar couplings between 1H, 13C and 31P nuclei in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques like PISEMA. In addition, multiple dipolar couplings can be measured accurately and the presence of a strong dipolar coupling does not suppress the weak couplings. High resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins. PMID:16683791

  16. A high-resolution solid-state NMR approach for the structural studies of bicelles.

    Science.gov (United States)

    Dvinskikh, Sergey; Dürr, Ulrich; Yamamoto, Kazutoshi; Ramamoorthy, Ayyalusamy

    2006-05-17

    Bicelles are increasingly being used as membrane mimicking systems in NMR experiments to investigate the structure of membrane proteins. In this study, we demonstrate the effectiveness of a 2D solid-state NMR approach that can be used to measure the structural constraints, such as heteronuclear dipolar couplings between 1H, 13C, and 31P nuclei, in bicelles without the need for isotopic enrichment. This method does not require a high radio frequency power unlike the presently used rotating-frame separated-local-field (SLF) techniques, such as PISEMA. In addition, multiple dipolar couplings can be measured accurately, and the presence of a strong dipolar coupling does not suppress the weak couplings. High-resolution spectra obtained from magnetically aligned DMPC:DHPC bicelles even in the presence of peptides suggest that this approach will be useful in understanding lipid-protein interactions that play a vital role in shaping up the function of membrane proteins.

  17. High-resolution modeling of transmembrane helical protein structures from distant homologues.

    Directory of Open Access Journals (Sweden)

    Kuang-Yui M Chen

    2014-05-01

    Full Text Available Eukaryotic transmembrane helical (TMH proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs, size (from 183 to 420 residues and sequence identity (from 15% to 70%, the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.

  18. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  19. Analysis of trabecular bone structure in the distal radius using high-resolution MRI

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Magnetic Resonance Science Center and Musculoskeletal Section, Dept. of Radiology, Univ. of California, San Francisco, CA (United States); Genant, H.K. [Magnetic Resonance Science Center and Musculoskeletal Section, Dept. of Radiology, Univ. of California, San Francisco, CA (United States); Grampp, S. [Magnetic Resonance Science Center and Musculoskeletal Section, Dept. of Radiology, Univ. of California, San Francisco, CA (United States); Jergas, M.D. [Magnetic Resonance Science Center and Musculoskeletal Section, Dept. of Radiology, Univ. of California, San Francisco, CA (United States); Newitt, D.C. [Magnetic Resonance Science Center and Musculoskeletal Section, Dept. of Radiology, Univ. of California, San Francisco, CA (United States); Gies, A.A. [Magnetic Resonance Science Center and Musculoskeletal Section, Dept. of Radiology, Univ. of California, San Francisco, CA (United States)

    1994-12-01

    The objective of this study was to develop high-resolution in vivo magnetic resonance techniques to resolve the structure of trabecular bone in conjunction with image processing techniques to quantify variations in trabecular bone structure. Such techniques could then potentially be applied to assess osteoporotic changes and predict the risk fractures. Axial and coronal volumetric MRI images of the distal radius were obtained using a modified gradient echo sequence on a 1.5 T imager, at a spatial resolution of {approx} 150 {mu}m and a slice thickness of 0.7 mm. Image thresholding techniques were used to identify trabecular bone and bone marrow; thereafter the area occupied by trabecular bone, mean trabecular width and mean intercept length as a function of angle were computed. An automatic boundary tracking algorithm was used to identify the bone and marrow interface. Fractal analysis was used to quantify the convolutedness of the marrow-trabecular bone interface. It is well known that the trabecular bone density is the greater at distal sites of the radius and decreases proximally. These variations were reflected by the decreases in the trabecular width, fractional area and fractal dimension. Over a 28 mm range, starting at 7 mm proximal from the joint line and extending 35 mm proximal to the joint line, the mean trabecular width decreased from 444.6 {mu}m to 341.6 {mu}m, the fractional area of trabecular bone decreased from 0.44 to 0.15, and the fractal dimension decreased from 1.67 to 1.10. The choice of the threshold affected the quantification of the mean trabecular width and fractional trabecular bone area measurements, but the fractal dimension was more robust. High-resolution MRI images combined with image analysis techniques can be used to quantify structural variations in trabecular bone in the distal radius. (orig.)

  20. High resolution electron microscopy investigations of interface and other structure defects in some ceramics.

    Science.gov (United States)

    Wen, S; Liu, Q

    1998-02-01

    Interface, grain boundary, and other structure defects are the most important structural factors to affect the properties of ceramics materials. The present paper shows the relationship between the properties and those structure features such as grain boundaries, phase boundaries, interfaces, twins, intergrowths, dislocations, point defect aggregates, order-disorder, and other structure defects in different kinds of ceramics materials. At present this research covers: C60, sialon-based ceramics (alpha-sialon/SiC(w) composite, Y-alpha-sialon/beta-sialon composite), high Tc superconductors (YBa2Cu3O7, YBa2Cu4O8, Bi2Sr2CaCu2O8, Bi2Sr2Ca2Cu3O10), and bioceramics (hydroxyapatite, chlorapatite) and so on. The structure features mentioned above were characterized by high-resolution electron microscopy; so the structure details are at an atomic level and the related physical, chemical, engineering, even biological phenomena can be understood at an atomic and molecular level.

  1. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes.

    Science.gov (United States)

    von Loeffelholz, Ottilie; Natchiar, S Kundhavai; Djabeur, Nadia; Myasnikov, Alexander G; Kratzat, Hanna; Ménétret, Jean-François; Hazemann, Isabelle; Klaholz, Bruno P

    2017-10-01

    Cryo electron microscopy (cryo-EM) historically has had a strong impact on the structural and mechanistic analysis of protein synthesis by the prokaryotic and eukaryotic ribosomes. Vice versa, studying ribosomes has helped moving forwards many methodological aspects in single particle cryo-EM, at the level of automated data collection and image processing including advanced techniques for particle sorting to address structural and compositional heterogeneity. Here we review some of the latest ribosome structures, where cryo-EM allowed gaining unprecedented insights based on 3D structure sorting with focused classification and refinement methods helping to reach local resolution levels better than 3Å. Such high-resolution features now enable the analysis of drug interactions with RNA and protein side-chains including even the visualization of chemical modifications of the ribosomal RNA. These advances represent a major breakthrough in structural biology and show the strong potential of cryo-EM beyond the ribosome field including for structure-based drug design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, Bamberg 96049 (Germany); Beiersdorfer, P.; Magee, E. W.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5°–3° spectral range at Bragg angles around 51.3°. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (>10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument’s spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 μm size of the EBIT-I source width to characterize the spatial focusing of the spectrometer.

  3. Glaciotectonic structures mapped by GPR, geoelectrical, high-resolution seismic and airborne transient electromagnetic methods

    Science.gov (United States)

    Høyer, Anne-Sophie; Møller, Ingelise; Jørgensen, Flemming

    2013-04-01

    Glaciotectonic structures have traditionally been recognized through observations in the landscape or exposures like cliffs. However, mapping of these structures can highly benefit from geophysical data, which can give information on buried glaciotectonic complexes. In the current study, we focus on the appearance of glaciotectonic structures in data from four commonly used geophysical methods: Ground penetrating radar (GPR), geoelectrical, high-resolution seismic and airborne transient electromagnetic (SkyTEM). The data are collected within a study area that covers 100 km2 and is located in the western part of Denmark. The study area is characterized by a highly heterogeneous geological setting, which has been influenced by multiple glacial deformation phases resulting in a buried glaciotectonic complex. The glaciotectonic structures appear as folds and faults and are recognizable at all scales. As a consequence of the different resolution capabilities of the methods, different degrees of detail are observed: Large-scale structures are recognized based on the seismic and airborne transient electromagnetic data, whereas small-scale structures are interpreted based on the GPR and geoelectrical data. At the same time, the nature of the methods results in different types of information from the data: The GPR and the seismic data generally provide detailed structural information, whereas the electric and electromagnetic data provide a more 'blurred' resistivity image of the subsurface. In order to recognize geological structures on the electric and electromagnetic data, the structures therefore need to influence sediments with contrasting resistivities to the surroundings. The structures are recognizable on all the different data sets, but the understanding and thus, the interpretation, of the geological environment strongly benefits from the combined observations from the different types of data.

  4. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.

    Science.gov (United States)

    Morgan, Jessica I W; Han, Grace; Klinman, Eva; Maguire, William M; Chung, Daniel C; Maguire, Albert M; Bennett, Jean

    2014-09-04

    We characterized retinal structure in patients and carriers of choroideremia using adaptive optics and other high resolution modalities. A total of 57 patients and 18 carriers of choroideremia were imaged using adaptive optics scanning light ophthalmoscopy (AOSLO), optical coherence tomography (OCT), autofluorescence (AF), and scanning light ophthalmoscopy (SLO). Cone density was measured in 59 eyes of 34 patients where the full cone mosaic was observed. The SLO imaging revealed scalloped edges of RPE atrophy and large choroidal vessels. The AF imaging showed hypo-AF in areas of degeneration, while central AF remained present. OCT images showed outer retinal tubulations and thinned RPE/interdigitation layers. The AOSLO imaging revealed the cone mosaic in central relatively intact retina, and cone density was either reduced or normal at 0.5 mm eccentricity. The border of RPE atrophy showed abrupt loss of the cone mosaic at the same location. The AF imaging in comparison with AOSLO showed RPE health may be compromised before cone degeneration. Other disease features, including visualization of choroidal vessels, hyper-reflective clumps of cones, and unique retinal findings, were tabulated to show the frequency of occurrence and model disease progression. The data support the RPE being one primary site of degeneration in patients with choroideremia. Photoreceptors also may degenerate independently. High resolution imaging, particularly AOSLO in combination with OCT, allows single cell analysis of disease in choroideremia. These modalities promise to be useful in monitoring disease progression, and in documenting the efficacy of gene and cell-based therapies for choroideremia and other diseases as these therapies emerge. (ClinicalTrials.gov number, NCT01866371.). Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  5. Imaging the slab structure in the Alpine region by high-resolution P-wave tomography

    Science.gov (United States)

    Guillot, Stéphane; Zhao, Liang; Paul, Anne; Malusà, Marco G.; Xu, Xiaobing; Zheng, Tianyu; Solarino, stefano; Schwartz, Stéphane; Dumont, Thierry; Salimbeni, Simone; Aubert, Coralie; Pondrelli, Silvia; Wang, Qingchen; Zhu, Rixiang

    2017-04-01

    Based upon a finite-frequency inversion of traveltimes, we computed a new high-resolution tomography model using P-wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments (Zhao et al., 2016). This model provides an improved image of the slab structure in the Alpine region, and fundamental pin-points for the analysis of Cenozoic magmatism, (U)HP metamorphism and Alpine topography. Our results document the lateral continuity of the European slab from the Western to the Central Alps, and the down-dip slab continuity beneath the Central Alps, ruling out the hypothesis of slab breakoff to explain Cenozoic Alpine magmatism. A low velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects (Malusà et al., this meeting). A NE-dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines, and becomes near vertical in the Alps-Apennines transition zone. Tear faults accommodating opposite-dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab breakoffs along the Alpine-Zagros-Himalaya orogenic belt might be proficiently reconsidered. Malusà M.G. et alii (2017) On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis. EGU 2017. Zhao L. et alii (2016), Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.

  6. High resolution, low hν photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters.

    Science.gov (United States)

    Suga, S; Sekiyama, A; Funabashi, G; Yamaguchi, J; Kimura, M; Tsujibayashi, M; Uyama, T; Sugiyama, H; Tomida, Y; Kuwahara, G; Kitayama, S; Fukushima, K; Kimura, K; Yokoi, T; Murakami, K; Fujiwara, H; Saitoh, Y; Plucinski, L; Schneider, C M

    2010-10-01

    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF(2), and LiF), which can supply three strong lines near the photon energy of hnyu hν=8.4, 10.0, and 11.6 eV, with the hν resolution of better than 600 μeV for photoelectron spectroscopy. Its performance is demonstrated on some materials by means of both angle-integrated and angle-resolved measurements.

  7. Structural information, resolution, and noise in high-resolution atomic force microscopy topographs.

    Science.gov (United States)

    Fechner, Peter; Boudier, Thomas; Mangenot, Stéphanie; Jaroslawski, Szymon; Sturgis, James N; Scheuring, Simon

    2009-05-06

    AFM has developed into a powerful tool in structural biology, providing topographs of proteins under close-to-native conditions and featuring an outstanding signal/noise ratio. However, the imaging mechanism exhibits particularities: fast and slow scan axis represent two independent image acquisition axes. Additionally, unknown tip geometry and tip-sample interaction render the contrast transfer function nondefinable. Hence, the interpretation of AFM topographs remained difficult. How can noise and distortions present in AFM images be quantified? How does the number of molecule topographs merged influence the structural information provided by averages? What is the resolution of topographs? Here, we find that in high-resolution AFM topographs, many molecule images are only slightly disturbed by noise, distortions, and tip-sample interactions. To identify these high-quality particles, we propose a selection criterion based on the internal symmetry of the imaged protein. We introduce a novel feature-based resolution analysis and show that AFM topographs of different proteins contain structural information beginning at different resolution thresholds: 10 A (AqpZ), 12 A (AQP0), 13 A (AQP2), and 20 A (light-harvesting-complex-2). Importantly, we highlight that the best single-molecule images are more accurate molecular representations than ensemble averages, because averaging downsizes the z-dimension and "blurs" structural details.

  8. High resolution microendoscopy with structured illumination and Lugol's iodine staining for evaluation of breast cancer architecture

    Science.gov (United States)

    Dobbs, Jessica; Kyrish, Matthew; Krishnamurthy, Savitri; Grant, Benjamin; Kuerer, Henry; Yang, Wei; Tkaczyk, Tomasz; Richards-Kortum, Rebecca

    2016-03-01

    Intraoperative margin assessment to evaluate resected tissue margins for neoplastic tissue is performed to prevent reoperations following breast-conserving surgery. High resolution microendoscopy (HRME) can rapidly acquire images of fresh tissue specimens, but is limited by low image contrast in tissues with high optical scattering. In this study we evaluated two techniques to reduce out-of-focus light: HRME image acquisition with structured illumination (SI-HRME) and topical application of Lugol's Iodine. Fresh breast tissue specimens from 19 patients were stained with proflavine alone or Lugol's Iodine and proflavine. Images of tissue specimens were acquired using a confocal microscope and an HRME system with and without structured illumination. Images were evaluated based on visual and quantitative assessment of image contrast. The highest mean contrast was measured in confocal images stained with proflavine. Contrast was significantly lower in HRME images stained with proflavine; however, incorporation of structured illumination significantly increased contrast in HRME images to levels comparable to that in confocal images. The addition of Lugol's Iodine did not increase mean contrast significantly for HRME or SI-HRME images. These findings suggest that structured illumination could potentially be used to increase contrast in HRME images of breast tissue for rapid image acquisition.

  9. In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

    Science.gov (United States)

    Nielsen, Jakob Toudahl; Kulminskaya, Natalia V.; Bjerring, Morten; Linnanto, Juha M.; Rätsep, Margus; Pedersen, Marie Østergaard; Lambrev, Petar H.; Dorogi, Márta; Garab, Győző; Thomsen, Karen; Jegerschöld, Caroline; Frigaard, Niels-Ulrik; Lindahl, Martin; Nielsen, Niels Chr.

    2016-01-01

    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a. Here we present the first high-resolution structure of the CsmA baseplate using intact fully functional, light-harvesting organelles from Cba. tepidum, following a hybrid approach combining five complementary methods: solid-state NMR spectroscopy, cryo-electron microscopy, isotropic and anisotropic circular dichroism and linear dichroism. The structure calculation was facilitated through development of new software, GASyCS for efficient geometry optimization of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix. PMID:27534696

  10. Bulk Crystal Growth, and High-Resolution X-ray Diffraction Results of LiZnAs Semiconductor Material

    Science.gov (United States)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; Henson, Luke C.; McGregor, Douglas S.

    2017-08-01

    LiZnAs is being explored as a candidate for solid-state neutron detectors. The compact form, solid-state device would have greater efficiency than present day gas-filled 3He and 10BF3 detectors. Devices fabricated from LiZnAs having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. The 6Li( n, t)4He reaction yields a total Q-value of 4.78 MeV, an energy larger than that of the 10B reaction, which can easily be identified above background radiations. LiZnAs material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace (Montag et al. in J Cryst Growth 412:103, 2015). The raw synthesized LiZnAs was purified by a static vacuum sublimation in quartz (Montag et al. in J Cryst Growth 438:99, 2016). Bulk crystalline LiZnAs ingots were grown from the purified material with a high-temperature Bridgman-style growth process described here. One of the largest LiZnAs ingots harvested was 9.6 mm in diameter and 4.2 mm in length. Samples were harvested from the ingot and were characterized for crystallinity using a Bruker AXS Inc. D8 AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS Inc. D8 DISCOVER, high-resolution x-ray diffractometer equipped with molybdenum radiation, Gobel mirror, four bounce germanium monochromator and a scintillation detector. The primary beam divergence was determined to be 0.004°, using a single crystal Si standard. The x-ray based characterization revealed that the samples nucleated in the (110) direction and a high-resolution open detector rocking curve recorded on the (220) LiZnAs yielded a full width at half maximum (FWHM) of 0.235°. Sectional pole figures using off-axis reflections of the (211) LiZnAs confirmed in-plane ordering, and also indicated the presence of multiple

  11. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products

    Science.gov (United States)

    Schollée, Jennifer E.; Schymanski, Emma L.; Stravs, Michael A.; Gulde, Rebekka; Thomaidis, Nikolaos S.; Hollender, Juliane

    2017-12-01

    High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.

  12. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment.

    Directory of Open Access Journals (Sweden)

    Theresa Tiefenbrunn

    Full Text Available The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+ and e(- transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba(3-type cytochrome c oxidase from Thermus thermophilus at 1.8 Å resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O(2-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu(B atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe(a3 and Cu(B atoms that is best modeled as peroxide. The structure of ba(3-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba(3-oxidase crystals diffracting to high resolution, together with an established expression system for generating mutants, opens the

  13. High Resolution Structure of the ba3 Cytochrome c Oxidase from Thermus thermophilus in a Lipidic Environment

    Energy Technology Data Exchange (ETDEWEB)

    Tiefenbrunn, Theresa; Liu, Wei; Chen, Ying; Katritch, Vsevolod; Stout, C. David; Fee, James A.; Cherezov, Vadim (Scripps); (UCSD)

    2012-06-27

    The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO) superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H{sup +} and e{sup -} transport are coupled. Toward addressing this problem, we report wild type and A120F mutant structures of the ba{sub 3}-type cytochrome c oxidase from Thermus thermophilus at 1.8 {angstrom} resolution. The enzyme has been crystallized from the lipidic cubic phase, which mimics the biological membrane environment. The structures reveal 20 ordered lipid molecules that occupy binding sites on the protein surface or mediate crystal packing interfaces. The interior of the protein encloses 53 water molecules, including 3 trapped in the designated K-path of proton transfer and 8 in a cluster seen also in A-type enzymes that likely functions in egress of product water and proton translocation. The hydrophobic O{sub 2}-uptake channel, connecting the active site to the lipid bilayer, contains a single water molecule nearest the Cu{sub B} atom but otherwise exhibits no residual electron density. The active site contains strong electron density for a pair of bonded atoms bridging the heme Fe{sub a3} and Cu{sub B} atoms that is best modeled as peroxide. The structure of ba{sub 3}-oxidase reveals new information about the positioning of the enzyme within the membrane and the nature of its interactions with lipid molecules. The atomic resolution details provide insight into the mechanisms of electron transfer, oxygen diffusion into the active site, reduction of oxygen to water, and pumping of protons across the membrane. The development of a robust system for production of ba{sub 3}-oxidase crystals diffracting to high resolution, together with an established expression system

  14. High-resolution Observations of Photospheric Structural Evolution Associated with a Flare

    Science.gov (United States)

    Liu, Chang; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Deng, Na; Cao, Wenda; Wang, Haimin

    2017-08-01

    The structural evolution of the photosphere not only play an important role in contributing to the accumulation of free energy in the corona that powers solar flares, but also may response to the restructuring of coronal field as a result of flare energy release. A better understanding of these issues may be achieved by high-resolution observations of the photospheric structure covering the entire flaring period, which are, however, still rare. Here we present photospheric vector magnetograms and TiO images (at 0.2" and 0.09" resolution, respectively) from before to after a major flare, taken by the 1.6 m New Solar Telescope at Big Bear Solar Observatory. In the pre-flare state, a small-scale magnetic structure of opposite-polarity configuration is seen near the footpoints of sheared magnetic loops; its magnetic fluxes and currents enhance till the flare start time and decline afterwards. During the main phase, as one flare ribbon sweeps across a sunspot, its different portions accelerate at different times corresponding to peaks of flare hard X-ray emission. We suggest that the small-scale flux emergence between the two sheared flux systems triggers the flare reconnection, and that the sunspot rotation is driven by the surface Lorentz-force change due to the coronal back reaction.

  15. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures.

    Directory of Open Access Journals (Sweden)

    Amelie Stein

    2010-05-01

    Full Text Available Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of

  16. Novel Peptide-Mediated Interactions Derived from High-Resolution 3-Dimensional Structures

    Science.gov (United States)

    Stein, Amelie; Aloy, Patrick

    2010-01-01

    Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D) structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of which had not been

  17. High-Resolution Macromolecular Structure Determination by MicroED, a cryo-EM Method

    Science.gov (United States)

    Rodriguez, J.A.; Gonen, T.

    2017-01-01

    Microelectron diffraction (MicroED) is a new cryo-electron microscopy (cryo-EM) method capable of determining macromolecular structures at atomic resolution from vanishingly small 3D crystals. MicroED promises to solve atomic resolution structures from even the tiniest of crystals, less than a few hundred nanometers thick. MicroED complements frontier advances in crystallography and represents part of the rebirth of cryo-EM that is making macromolecular structure determination more accessible for all. Here we review the concept and practice of MicroED, for both the electron microscopist and crystallographer. Where other reviews have addressed specific details of the technique (Hattne et al., 2015; Shi et al., 2016; Shi, Nannenga, Iadanza, & Gonen, 2013), we aim to provide context and highlight important features that should be considered when performing a MicroED experiment. PMID:27572734

  18. 'Structure-from-Motion': a high resolution, low-cost photogrammetric tool for geoscience applications

    Science.gov (United States)

    Westoby, M. J.; Glasser, N. F.; Brasington, J.; Hambrey, M.; Reynolds, J. M.

    2011-12-01

    Presently, the majority of methods capable of surveying, at high resolution, often complex landforms and landscapes are accompanied by high costs and difficult portability. Furthermore, the relative remoteness and inaccessibility of many field sites renders these approaches impractical. The 'Structure-from-Motion' (SfM) method operates under the same basic assumption of stereoscopic photogrammetry, namely that 3D structure can be resolved from two or more overlapping, offset images. Using only a consumer-grade digital camera and a network of ground control targets, the user moves through the environment, acquiring photographs of the feature or area of interest from as many locations and perspectives as possible. Freely-available, automated feature extraction and bundle adjustment software is used to reconstruct scene geometry. Results from example applications of the technique to two moraine dam complexes in the Nepal Himalaya will be presented. Both sites have produced catastrophic glacial lake outburst floods, and as a result possess impressive breaches through their moraine dams. DTMs of the moraine complexes were constructed, facilitating the extraction of precise metric data pertaining to breach dimensions, volumes of released water from the lake basin, and amounts of material removed from the moraine complexes during the outburst. Such data are invaluable for detailed hydrodynamic modelling and subsequent hazard assessments. To conclude, SfM output will be directly compared with that obtained from a Terrestrial Laser Scanning system.

  19. Structural Mapping and Geomorphology of Ireland's Southwest Continental Shelf Using High Resolution Sonar

    Science.gov (United States)

    Bowden, S.; Wireman, R.

    2016-02-01

    Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.

  20. Retrieving Forest Structure Variables from Very High Resolution Satellite Images Using AN Automatic Method

    Science.gov (United States)

    Beguet, B.; Chehata, N.; Boukir, S.; Guyon, D.

    2012-07-01

    The main goal of this study is to define a method to describe the forest structure of maritime pine stands from Very High Resolution satellite imagery. The emphasis is placed on the automatisation of the process to identify the most relevant image features, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features (derived from Grey Level Co-occurrence Matrix). The main drawback of this well- known texture representation is the underlying parameters (window size, displacement length, orientation and quantification level) which are extremely difficult to set due to the spatial complexity of forest structure. To tackle this major issue, probably the main cause of poor texture analysis in practice, we propose an automatic feature selection process whose originality lies on the use of image test frames of adequate forest samples whose forest structure variables were measured at ground. This method, inspired by camera calibration protocols, selects the best image features via statistical modelling, exploring a wide range of parameter values. Hence, just a few samples are required to build up the test frames but allow a fast assessment of thousands of descriptors, given the large number of tested combinations of parameters values. This method was developed and tested on Quickbird panchromatic and multispectral images. It has been successfully applied to the modelling of 7 typical forest structure variables (age, tree height, crown diameter, diameter at breast height, basal area, density and tree spacing). The coefficient of correlation, R2, of the best single models for 6 of the forest variables of interest, estimated from the test frames, ranges from 0.89 to 0.97. Only the basal area was weakly correlated to the considered image features (0.64). To improve the results, combinations of panchromatic and or multi-spectral features

  1. High-resolution modeling of protein structures based on flexible fitting of low-resolution structural data.

    Science.gov (United States)

    Zheng, Wenjun; Tekpinar, Mustafa

    2014-01-01

    To circumvent the difficulty of directly solving high-resolution biomolecular structures, low-resolution structural data from Cryo-electron microscopy (EM) and small angle solution X-ray scattering (SAXS) are increasingly used to explore multiple conformational states of biomolecular assemblies. One promising venue to obtain high-resolution structural models from low-resolution data is via data-constrained flexible fitting. To this end, we have developed a new method based on a coarse-grained Cα-only protein representation, and a modified form of the elastic network model (ENM) that allows large-scale conformational changes while maintaining the integrity of local structures including pseudo-bonds and secondary structures. Our method minimizes a pseudo-energy which linearly combines various terms of the modified ENM energy with an EM/SAXS-fitting score and a collision energy that penalizes steric collisions. Unlike some previous flexible fitting efforts using the lowest few normal modes, our method effectively utilizes all normal modes so that both global and local structural changes can be fully modeled with accuracy. This method is also highly efficient in computing time. We have demonstrated our method using adenylate kinase as a test case which undergoes a large open-to-close conformational change. The EM-fitting method is available at a web server (http://enm.lobos.nih.gov), and the SAXS-fitting method is available as a pre-compiled executable upon request. © 2014 Elsevier Inc. All rights reserved.

  2. Identification and classification of structural soil conservation measures based on very high resolution stereo satellite data.

    Science.gov (United States)

    Eckert, Sandra; Tesfay Ghebremicael, Selamawit; Hurni, Hans; Kohler, Thomas

    2017-05-15

    Land degradation affects large areas of land around the globe, with grave consequences for those living off the land. Major efforts are being made to implement soil and water conservation measures that counteract soil erosion and help secure vital ecosystem services. However, where and to what extent such measures have been implemented is often not well documented. Knowledge about this could help to identify areas where soil and water conservation measures are successfully supporting sustainable land management, as well as areas requiring urgent rehabilitation of conservation structures such as terraces and bunds. This study explores the potential of the latest satellite-based remote sensing technology for use in assessing and monitoring the extent of existing soil and water conservation structures. We used a set of very high resolution stereo Geoeye-1 satellite data, from which we derived a detailed digital surface model as well as a set of other spectral, terrain, texture, and filtered information layers. We developed and applied an object-based classification approach, working on two segmentation levels. On the coarser level, the aim was to delimit certain landscape zones. Information about these landscape zones is useful in distinguishing different types of soil and water conservation structures, as each zone contains certain specific types of structures. On the finer level, the goal was to extract and identify different types of linear soil and water conservation structures. The classification rules were based mainly on spectral, textural, shape, and topographic properties, and included object relationships. This approach enabled us to identify and separate from other classes the majority (78.5%) of terraces and bunds, as well as most hillside terraces (81.25%). Omission and commission errors are similar to those obtained by the few existing studies focusing on the same research objective but using different types of remotely sensed data. Based on our results

  3. High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation.

    Science.gov (United States)

    Anandapadamanaban, Madhanagopal; Andresen, Cecilia; Helander, Sara; Ohyama, Yoshifumi; Siponen, Marina I; Lundström, Patrik; Kokubo, Tetsuro; Ikura, Mitsuhiko; Moche, Martin; Sunnerhagen, Maria

    2013-08-01

    The general transcription factor TFIID provides a regulatory platform for transcription initiation. Here we present the crystal structure (1.97 Å) and NMR analysis of yeast TAF1 N-terminal domains TAND1 and TAND2 bound to yeast TBP, together with mutational data. We find that yeast TAF1-TAND1, which in itself acts as a transcriptional activator, binds TBP's concave DNA-binding surface by presenting similar anchor residues to TBP as does Mot1 but from a distinct structural scaffold. Furthermore, we show how TAF1-TAND2 uses an aromatic and acidic anchoring pattern to bind a conserved TBP surface groove traversing the basic helix region, and we find highly similar TBP-binding motifs also presented by the structurally distinct TFIIA, Mot1 and Brf1 proteins. Our identification of these anchoring patterns, which can be easily disrupted or enhanced, provides insight into the competitive multiprotein TBP interplay critical to transcriptional regulation.

  4. GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function

    DEFF Research Database (Denmark)

    Rosenbaum, Daniel M; Cherezov, Vadim; Hanson, Michael A

    2007-01-01

    The beta2-adrenergic receptor (beta2AR) is a well-studied prototype for heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the beta2AR and to facilitate its...... crystallization, we engineered a beta2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR ("beta2AR-T4L") and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context...

  5. High-resolution observations and modeling of turbulence sources, structures, and intensities in the upper mesosphere

    Science.gov (United States)

    Fritts, David C.; Wang, Ling; Baumgarten, Gerd; Miller, Amber D.; Geller, Marvin A.; Jones, Glenn; Limon, Michele; Chapman, Daniel; Didier, Joy; Kjellstrand, Carl B.; Araujo, Derek; Hillbrand, Seth; Korotkov, Andrei; Tucker, Gregory; Vinokurov, Jerry

    2017-09-01

    New capabilities for imaging small-scale instabilities and turbulence and for modeling gravity wave (GW), instability, and turbulence dynamics at high Reynolds numbers are employed to identify the major instabilities and quantify turbulence intensities near the summer mesopause. High-resolution imaging of polar mesospheric clouds (PMCs) reveal a range of instability dynamics and turbulence sources that have their roots in multi-scale GW dynamics at larger spatial scales. Direct numerical simulations (DNS) of these dynamics exhibit a range of instability types that closely resemble instabilities and turbulence seen in PMC imaging and by ground-based and in-situ instruments at all times and altitudes. The DNS also exhibit the development of ;sheet-and-layer; (S&L) structures in the horizontal wind and thermal stability fields that resemble observed flows near the mesopause and at lower altitudes. Both observations and modeling suggest major roles for GW breaking, Kelvin-Helmholtz instabilities (KHI), and intrusions in turbulence generation and energy dissipation. Of these, larger-scale GW breaking and KHI play the major roles in energetic flows leading to strong turbulence. GW propagation and breaking can span several S&L features and induce KHI ranging from GW to turbulence scales. Intrusions make comparable contributions to turbulence generation as instabilities become weaker and more intermittent. Turbulence intensities are highly variable in the vertical and typically span 3 or more decades. DNS results that closely resemble observed flows suggest a range of mechanical energy dissipation rates of ε 10-3-10 W kg-1 that is consistent with the range of in-situ measurements at 80-90 km in summer.

  6. Computationally-optimized bone mechanical modeling from high-resolution structural images.

    Directory of Open Access Journals (Sweden)

    Jeremy F Magland

    Full Text Available Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time, which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM. To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.

  7. Structural studies of a non-stoichiometric channel hydrate using high resolution X-ray powder diffraction, solid-state nuclear magnetic resonance, and moisture sorption methods.

    Science.gov (United States)

    Kiang, Y-H; Cheung, Eugene; Stephens, Peter W; Nagapudi, Karthik

    2014-09-01

    Structural investigations of a nonstoichiometric hydrate, AMG 222 tosylate, a DPP-IV inhibitor in clinical development for type II diabetes, were performed using a multitechnique approach. The moisture sorption isotherm is in good agreement with a simple Langmuir model, suggesting that the hydrate water is located in well-defined crystallographic sites, which become vacant during dehydration. Crystal structures of AMG 222 tosylate at ambient and dry conditions were determined from high-resolution X-ray diffraction using the direct space method. On the basis of these crystal structures, hydrated water is located in channels formed by the drug framework. Upon dehydration, an isostructural dehydrate is formed with the channels remaining void and accessible to water for rehydration. Kitaigorodskii packing coefficients of the solid between relative humidity of 0% and 90% indicate that the equilibrium form of AMG 222 tosylate is the fully hydrated monohydrate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Improvement on the visualization of cytoskeletal structures of protozoan parasites using high-resolution field emission scanning electron microscopy (FESEM).

    Science.gov (United States)

    Sant'Anna, Celso; Campanati, Loraine; Gadelha, Catarina; Lourenço, Daniela; Labati-Terra, Letícia; Bittencourt-Silvestre, Joana; Benchimol, Marlene; Cunha-e-Silva, Narcisa Leal; De Souza, Wanderley

    2005-07-01

    The association of high resolution field emission scanning electron microscopy (FESEM), with a more efficient system of secondary electron (SE) collection and in-lens specimen position, provided a great improvement in the specimen's topographical contrast and in the generation of high-resolution images. In addition, images obtained with the use of the high-resolution backscattered electrons (BSE) detector provided a powerful tool for immunocytochemical analysis of biological material. In this work, we show the contribution of the FESEM to the detailed description of cytoskeletal structures of the protozoan parasites Herpetomonas megaseliae, Trypanosoma brucei and Giardia lamblia. High-resolution images of detergent extracted H. megaseliae and T. brucei showed the profile of the cortical microtubules, also known as sub-pellicular microtubules (SPMT), and protein bridges cross-linking them. Also, it was possible to visualize fine details of the filaments that form the lattice-like structure of the paraflagellar rod (PFR) and its connection with the axoneme. In G. lamblia, it was possible to observe the intricate structure of the adhesive disk, funis (a microtubular array) and other cytoskeletal structures poorly described previously. Since most of the stable cytoskeletal structures of this protozoan rely on tubulin, we used the BSE images to accurately map immunolabeled tubulin in its cytoskeleton. Our results suggest that the observation of detergent extracted parasites using FESEM associated to backscattered analysis of immunolabeled specimens represents a new approach for the study of parasite cytoskeletal elements and their protein associations.

  9. A benchmark server using high resolution protein structure data, and benchmark results for membrane helix predictions.

    Science.gov (United States)

    Rath, Emma M; Tessier, Dominique; Campbell, Alexander A; Lee, Hong Ching; Werner, Tim; Salam, Noeris K; Lee, Lawrence K; Church, W Bret

    2013-03-27

    Helical membrane proteins are vital for the interaction of cells with their environment. Predicting the location of membrane helices in protein amino acid sequences provides substantial understanding of their structure and function and identifies membrane proteins in sequenced genomes. Currently there is no comprehensive benchmark tool for evaluating prediction methods, and there is no publication comparing all available prediction tools. Current benchmark literature is outdated, as recently determined membrane protein structures are not included. Current literature is also limited to global assessments, as specialised benchmarks for predicting specific classes of membrane proteins were not previously carried out. We present a benchmark server at http://sydney.edu.au/pharmacy/sbio/software/TMH_benchmark.shtml that uses recent high resolution protein structural data to provide a comprehensive assessment of the accuracy of existing membrane helix prediction methods. The server further allows a user to compare uploaded predictions generated by novel methods, permitting the comparison of these novel methods against all existing methods compared by the server. Benchmark metrics include sensitivity and specificity of predictions for membrane helix location and orientation, and many others. The server allows for customised evaluations such as assessing prediction method performances for specific helical membrane protein subtypes.We report results for custom benchmarks which illustrate how the server may be used for specialised benchmarks. Which prediction method is the best performing method depends on which measure is being benchmarked. The OCTOPUS membrane helix prediction method is consistently one of the highest performing methods across all measures in the benchmarks that we performed. The benchmark server allows general and specialised assessment of existing and novel membrane helix prediction methods. Users can employ this benchmark server to determine the most

  10. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    Science.gov (United States)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  11. High Resolution Structure of Deinococcus Bacteriophytochrome Yields New Insights into Phytochrome Architecture and Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jeremiah R.; Zhang, Junrui; Brunzelle, Joseph S.; Vierstra, Richard D.; Forest, Katrina T. (NWU); (UW)

    2010-03-08

    Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IX{alpha}. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45 {angstrom} resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3{sup 2} carbon of biliverdin to Cys{sup 24}, the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.

  12. Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis.

    Directory of Open Access Journals (Sweden)

    Simon Oakley

    Full Text Available Barbiturates potentiate GABA actions at the GABA(A receptor and act as central nervous system depressants that can induce effects ranging from sedation to general anesthesia. No structural information has been available about how barbiturates are recognized by their protein targets. For this reason, we tested whether these drugs were able to bind specifically to horse spleen apoferritin, a model protein that has previously been shown to bind many anesthetic agents with affinities that are closely correlated with anesthetic potency. Thiopental, pentobarbital, and phenobarbital were all found to bind to apoferritin with affinities ranging from 10-500 µM, approximately matching the concentrations required to produce anesthetic and GABAergic responses. X-ray crystal structures were determined for the complexes of apoferritin with thiopental and pentobarbital at resolutions of 1.9 and 2.0 Å, respectively. These structures reveal that the barbiturates bind to a cavity in the apoferritin shell that also binds haloalkanes, halogenated ethers, and propofol. Unlike these other general anesthetics, however, which rely entirely upon van der Waals interactions and the hydrophobic effect for recognition, the barbiturates are recognized in the apoferritin site using a mixture of both polar and nonpolar interactions. These results suggest that any protein binding site that is able to recognize and respond to the chemically and structurally diverse set of compounds used as general anesthetics is likely to include a versatile mixture of both polar and hydrophobic elements.

  13. High resolution interface nanochemistry and structure: Final project report, December 1, 1993--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R.W.; Lin, S.H.

    1997-02-27

    Work includes studies of interface and grain boundary chemistry and structure in silicon nitride matrix/silicon carbide whisker composites, and in monolithic silicon nitride and silicon carbide synthesized by several different methods. Off-stoichiometric, impurity, and sintering aid elemental distributions in these materials (and other ceramics) have been of great interest because of expected effects on properties but these distributions have proven very difficult to measure because the spatial resolution required is high. The authors made a number of these measurements for the first time, using techniques and instrumentation developed here. Interfaces between metals and SiC are the basis for important metal matrix composites and contacts for high temperature SiC-based solid state electronic devices. The authors have investigated ultrapure interfaces between Ti, Hf, Ti-Hf alloys, Pt, and Co and Si-terminated (0001) 6H SiC single crystals for the first time.

  14. High-Resolution Structural and Electronic Properties of Epitaxial Topological Crystalline Insulator Films

    Science.gov (United States)

    Dagdeviren, Omur; Zhou, Chao; Zou, Ke; Simon, Georg; Albright, Stephen; Mandal, Subhasish; Morales-Acosta, Mayra; Zhu, Xiaodong; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles; Schwarz, Udo; Altman, Eric

    Revealing the local electronic properties of surfaces and their link to structural properties is an important problem for topological crystalline insulators (TCI) in which metallic surface states are protected by crystal symmetry. The microstructure and electronic properties of TCI SnTe film surfaces grown by molecular beam epitaxy were characterized using scanning probe microscopy. These results reveal the influence of various defects on the electronic properties: tilt boundaries leading to dislocation arrays that serve as periodic nucleation sites for pit growth; screw dislocations, and point defects. These features have varying length scale and display variations in the electronic structure of the surface, which are mapped with scanning tunneling microscopy images as standing waves superimposed on atomic scale images of the surface topography that consequently shape the wave patterns. Since the growth process results in symmetry breaking defects that patterns the topological states, we propose that the scanning probe tip can pattern the surface and electronic structure and enable the fabrication of topological devices on the SnTe surface. Financial support from the National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) and FAME.

  15. High resolution electron diffraction analysis of structural changes associated with the photocycle of bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Han, B. -G. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Biophysics

    1994-04-01

    Changes in protein structure that occur during the formation of the M photointermediate of bacteriorhodopsin can be directly visualized by electron diffraction techniques. Samples containing a high percentage of the M intermediate were trapped by rapidly cooling the crystals with liquid nitrogen following illumination with filtered green light at 240K and 260K respectively. Difference Fourier projection maps for M minus bR at two temperatures and for M{sub 260K} minus M{sub 240K} are presented. While it is likely that a unique M-substate is trapped when illuminated at 260K produces a mixture of the M{sub 240K} substate and a second M-substate which may have a protein structure similar to the N-intermediate. The diffraction data clearly show that statistically significant structural changes occur upon formation of the M{sub 240K} specimen and then further upon formation of the second substate which is present in the mixture that is produced at 260K. A preliminary 3-D difference map, based on data collected with samples tilted up to 30{degree}, has been constructed at a resolution of 3.5{angstrom} parallel to the membrane plane and a resolution of 8.5{angstrom} perpendicular to the membrane. The data have been analyzed by a number of different criteria to ensure that the differences seen reflect real conformation changes at a level which is significantly above the noise in the map. Furthermore, a comparison of the positions of specific backbone and side-chain groups relative to significant difference peaks suggests that it will be necessary to further refine the atomic resolution model before it will be possible to interpret the changes in chemical structure that occur in the protein at this stage of the photocycle.

  16. High resolution time-to-space conversion of sub-picosecond pulses at 1.55µm by non-degenerate SFG in PPLN crystal.

    Science.gov (United States)

    Shayovitz, Dror; Herrmann, Harald; Sohler, Wolfgang; Ricken, Raimund; Silberhorn, Christine; Marom, Dan M

    2012-11-19

    We demonstrate high resolution and increased efficiency background-free time-to-space conversion using spectrally resolved non-degenerate and collinear SFG in a bulk PPLN crystal. A serial-to-parallel resolution factor of 95 and a time window of 42 ps were achieved. A 60-fold increase in conversion efficiency slope compared with our previous work using a BBO crystal [D. Shayovitz and D. M. Marom, Opt. Lett. 36, 1957 (2011)] was recorded. Finally the measured 40 GHz narrow linewidth of the output SFG signal implies the possibility to extract phase information by employing coherent detection techniques.

  17. Development of Micro-Structured Fluorescent Plates for High-resolution Imaging

    Science.gov (United States)

    Sakai, Takuro; Yasuda, Ryo; Iikura, Hiroshi; Matsubayashi, Masahito

    We have developed novel fluorescent plates for high-resolution imaging. The devices consist of capillary plates and fine phosphor grains; specifically, each capillary is filled with the grains. The fabricated fluorescent plates were characterized by optical microscopy and scanning electron microscopy. The observation revealed that all capillaries were well filled with grains. Imaging experiments were performed using a small X-ray source. Results show that the fluorescent plates are expected to be compatible with both high spatial resolution and good detection efficiency.

  18. High-resolution structure of the antibiotic resistance protein NimA from Deinococcus radiodurans.

    Science.gov (United States)

    Leiros, Hanna Kirsti S; Tedesco, Consiglia; McSweeney, Seán M

    2008-06-01

    Many anaerobic human pathogenic bacteria are treated using 5-nitroimidazole-based (5-Ni) antibiotics, a class of inactive prodrugs that contain a nitro group. The nitro group must be activated in an anaerobic one-electron reduction and is therefore dependent on the redox system in the target cells. Antibiotic resistance towards 5-Ni drugs is found to be related to the nim genes (nimA, nimB, nimC, nimD, nimE and nimF), which are proposed to encode a reductase that is responsible for converting the nitro group of the antibiotic into a nonbactericidal amine. A mechanism for the Nim enzyme has been proposed in which two-electron reduction of the nitro group leads to the generation of nontoxic derivatives and confers resistance against these antibiotics. The cofactor was found to be important in the mechanism and was found to be covalently linked to the reactive His71. In this paper, the 1.2 A atomic resolution crystal structure of the 5-nitroimidazole antibiotic resistance protein NimA from Deinococcus radiodurans (DrNimA) is presented. A planar cofactor is clearly visible and well defined in the electron-density map adjacent to His71, the identification of the cofactor and its properties are discussed.

  19. The Project Serapis: High Resolution Seismic Imagingof The Campi Flegrei Caldera Structure

    Science.gov (United States)

    Zollo, A.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; Musacchio, G.; Serapis Group

    During September 2001, an extended active seismic survey has been performed in the gulfs of Naples and Pozzuoli in the framework of the so called SERAPIS (SEismic Re- flection Acquisition Project for Imaging Structures). The project SERAPIS is aimed at the acquisition in the bays of Naples and Pozzuoli, on land and at the sea bottom (using sea bottom seismographs), of seismic signals emitted by a very dense network of airgun sources. The energization is performed through the syncronized implosion of bubbles produced by a battery of three to twelve, 16 liters airguns, mounted on the oceanographic vessel NADIR, owned by the french company IFREMER, which supported the project at no cost. The experiment has been designed to have 2D-3D acquisition lay-outs and its objective is the high resolution imaging of the main shal- low crustal discontinuities underneath the major neapolitan volcanic complexes. In particular some desired targets are the location and spatial definition of the magmatic feeding system of Campi Flegrei and the morphologic reconstruction of the interface separating the shallow volcano-alluvium sediments and the Mesozoic carbonates, re- cently detected and accurately imaged underneath Mt.Vesuvius volcano. A secondary but not less important objective is the denser re-sampling of areas in the Bay of Naples prospicient to Mt.Vesuvius, which have been investigated during the last marine sur- vey using the same vessel in 1997 (MareVes 97). Sixty, three-component stations have been installed on-land in the areas of Campi Flegrei, Mt.Vesuvius and on the islands of Ischia and Procida. In particular, the Mt.Vesuvius stations have been deployed along a 40 km long, SE-NW profile crossing the Campanian Plain toward the limestone out- crops. 72 sea bottom seismographs (OBS) have been installed in the gulfs of Naples and Pozzuoli by the University of Hamburg, with the logistic support of Geopro smbh and Geolab Italia. The OBS network geometry follows the main

  20. Visualizing impact structures using high-resolution LiDAR-derived DEMs: A case study of two structures in Missouri

    Science.gov (United States)

    Finn, Michael P.; Krizanich, Gary W.; Evans, Kevin R.; Cox, Melissa R.; Yamamoto, Kristina H.

    2015-01-01

    Evidence suggests that a crypto-explosive hypothesis and a meteorite impact hypothesis may be partly correct in explaining several anomalous geological features in the middle of the United States. We used a primary geographic information science (GIScience) technique of creating a digital elevation model (DEM) of two of these features that occur in Missouri. The DEMs were derived from airborne light detection and ranging, or LiDAR. Using these DEMs, we characterized the Crooked Creek structure in southern Crawford County and the Weaubleau structure in southeastern St. Clair County, Missouri. The mensuration and study of exposed and buried impact craters implies that the craters may have intrinsic dimensions which could only be produced by collision. The results show elevations varying between 276 and 348 m for Crooked Creek and between 220 and 290 m for Weaubleau structure. These new high- resolution DEMs are accurate enough to allow for precise measurements and better interpretations of geological structures, particularly jointing in the carbonate rocks, and they show greater definition of the central uplift area in the Weaubleau structure than publicly available DEMs.

  1. Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ruggeri, Marco; Major, James C; McKeown, Craig; Knighton, Robert W; Puliafito, Carmen A; Jiao, Shuliang

    2010-11-01

    To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey.

  2. Precision mechanical structure of an ultra-high-resolution spectrometer for inelastic X-ray scattering instrument

    Science.gov (United States)

    Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy

    2015-04-14

    A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.

  3. Atomic force microscopy: High resolution dynamic imaging of cellular and molecular structure in health and disease.

    Science.gov (United States)

    Taatjes, Douglas J; Quinn, Anthony S; Rand, Jacob H; Jena, Bhanu P

    2013-10-01

    The atomic force microscope (AFM), invented in 1986, and a member of the scanning probe family of microscopes, offers the unprecedented ability to image biological samples unfixed and in a hydrated environment at high resolution. This opens the possibility to investigate biological mechanisms temporally in a heretofore unattainable resolution. We have used AFM to investigate: (1) fundamental issues in cell biology (secretion) and, (2) the pathological basis of a human thrombotic disease, the antiphospholipid syndrome (APS). These studies have incorporated the imaging of live cells at nanometer resolution, leading to discovery of the "porosome," the universal secretory portal in cells, and a molecular understanding of membrane fusion from imaging the interaction and assembly of proteins between opposing lipid membranes. Similarly, the development of an in vitro simulacrum for investigating the molecular interactions between proteins and lipids has helped define an etiological explanation for APS. The prime importance of AFM in the success of these investigations will be presented in this manuscript, as well as a discussion of the limitations of this technique for the study of biomedical samples. Copyright © 2013 Wiley Periodicals, Inc.

  4. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    Science.gov (United States)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  5. Unraveling the Architecture and Structural Dynamics of Pathogens by High-Resolution in vitro Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Plomp, M; Leighton, T J; McPherson, A; Wheeler, K E

    2005-04-12

    Progress in structural biology very much depends upon the development of new high-resolution techniques and tools. Despite decades of study of viruses, bacteria and bacterial spores and their pressing importance in human medicine and biodefense, many of their structural properties are poorly understood. Thus, characterization and understanding of the architecture of protein surface and internal structures of pathogens is critical to elucidating mechanisms of disease, immune response, physicochemical properties, environmental resistance and development of countermeasures against bioterrorist agents. Furthermore, even though complete genome sequences are available for various pathogens, the structure-function relationships are not understood. Because of their lack of symmetry and heterogeneity, large human pathogens are often refractory to X-ray crystallographic analysis or reconstruction by cryo-electron microscopy (cryo-EM). An alternative high-resolution method to examine native structure of pathogens is atomic force microscopy (AFM), which allows direct visualization of macromolecular assemblies at near-molecular resolution. The capability to image single pathogen surfaces at nanometer scale in vitro would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, specific cellular processes, environmental dynamics and biotransformation.

  6. A postprocessing method based on high-resolution spectral estimation for FDTD calculation of phononic band structures

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li Jianbao; Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-05-15

    If the energy bands of a phononic crystal are calculated by the finite difference time domain (FDTD) method combined with the fast Fourier transform (FFT), good estimation of the eigenfrequencies can only be ensured by the postprocessing of sufficiently long time series generated by a large number of FDTD iterations. In this paper, a postprocessing method based on the high-resolution spectral estimation via the Yule-Walker method is proposed to overcome this difficulty. Numerical simulation results for three-dimensional acoustic and two-dimensional elastic systems show that, compared with the classic FFT-based postprocessing method, the proposed method can give much better estimation of the eigenfrequencies when the FDTD is run with relatively few iterations.

  7. High-resolution structure of the N-terminal endonuclease domain of the Lassa virus L polymerase in complex with magnesium ions.

    Directory of Open Access Journals (Sweden)

    Gregor D Wallat

    Full Text Available Lassa virus (LASV causes deadly hemorrhagic fever disease for which there are no vaccines and limited treatments. LASV-encoded L polymerase is required for viral RNA replication and transcription. The functional domains of L-a large protein of 2218 amino acid residues-are largely undefined, except for the centrally located RNA-dependent RNA polymerase (RdRP motif. Recent structural and functional analyses of the N-terminal region of the L protein from lymphocytic choriomeningitis virus (LCMV, which is in the same Arenaviridae family as LASV, have identified an endonuclease domain that presumably cleaves the cap structures of host mRNAs in order to initiate viral transcription. Here we present a high-resolution crystal structure of the N-terminal 173-aa region of the LASV L protein (LASV L173 in complex with magnesium ions at 1.72 Å. The structure is highly homologous to other known viral endonucleases of arena- (LCMV NL1, orthomyxo- (influenza virus PA, and bunyaviruses (La Crosse virus NL1. Although the catalytic residues (D89, E102 and K122 are highly conserved among the known viral endonucleases, LASV L endonuclease structure shows some notable differences. Our data collected from in vitro endonuclease assays and a reporter-based LASV minigenome transcriptional assay in mammalian cells confirm structural prediction of LASV L173 as an active endonuclease. The high-resolution structure of the LASV L endonuclease domain in complex with magnesium ions should aid the development of antivirals against lethal Lassa hemorrhagic fever.

  8. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  9. High-resolution structural and elemental analyses of calcium storage structures synthesized by the noble crayfish Astacus astacus.

    Science.gov (United States)

    Luquet, Gilles; Salomé, Murielle; Ziegler, Andreas; Paris, Céline; Percot, Aline; Dauphin, Yannicke

    2016-11-01

    During premolt, crayfish develop deposits of calcium ions, called gastroliths, in their stomach wall. The stored calcium is used for the calcification of parts of the skeleton regularly renewed for allowing growth. Structural and molecular analyses of gastroliths have been primarily performed on three crayfish species, Orconectes virilis, Procambarus clarkii, and more recently, Cherax quadricarinatus. We have performed high-resolution analyses of gastroliths from the native noble crayfish, Astacus astacus, focusing on the microstructure, the mineralogical and elemental composition and distribution in a comparative perspective. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) observations showed a classical layered microstructure composed of 200-nm diameter granules aligned along fibers. These granules are themselves composed of agglomerated nanogranules of 50nm-mean diameters. Denser regions of bigger fused granules are also present. Micro-Raman spectroscopy show that if A. astacus gastroliths, similarly to the other analyzed gastroliths, are mainly composed of amorphous calcium carbonate (ACC), they are also rich in amorphous calcium phosphate (ACP). The presence of a carotenoid pigment is also observed in A. astacus gastrolith contrary to C. quadricarinatus. Energy-dispersive X-ray spectroscopy (EDX) analyses demonstrate the presence of minor elements such as Mg, Sr, Si and P. The distribution of this last element is particularly heterogeneous. X-ray absorption near edge structure spectroscopy (XANES) reveals an alternation of layers more or less rich in phosphorus evidenced in the mineral phase as well as in the organic matrix in different molecular forms. Putative functions of the different P-comprising molecules are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices.

    Science.gov (United States)

    Ryan, Herbert; Smith, Alison; Utz, Marcel

    2014-05-21

    High-resolution proton NMR spectroscopy is well-established as a tool for metabolomic analysis of biological fluids at the macro scale. Its full potential has, however, not been realised yet in the context of microfluidic devices. While microfabricated NMR detectors offer substantial gains in sensitivity, limited spectral resolution resulting from mismatches in the magnetic susceptibility of the sample fluid and the chip material remains a major hurdle. In this contribution, we show that susceptibility broadening can be avoided even in the presence of substantial mismatch by including suitably shaped compensation structures into the chip design. An efficient algorithm for the calculation of field maps from arbitrary chip layouts based on Gaussian quadrature is used to optimise the shape of the compensation structure to ensure a flat field distribution inside the sample area. Previously, the complexity of microfluidic NMR systems has been restricted to simple capillaries to avoid susceptibility broadening. The structural shimming approach introduced here can be adapted to virtually any shape of sample chamber and surrounding fluidic network, thereby greatly expanding the design space and enabling true lab-on-a-chip systems suitable for high-resolution NMR detection.

  11. Structure of MoS2 Plates as Revealed by High Resolution Electron Microscopic Techniques

    Science.gov (United States)

    Castro Guerrero, Carlos; Deepak, Leonard; Jose-Yacaman, Miguel

    2010-10-01

    Molybdenum disulfide (MoS2) is a compound found in nature as molybdenite, natural MoS2 has a hexagonal crystal form. MoS2 is a compound very useful for its properties; it is used as lubricant, catalyst in hydrodesulfuration, in hydrogen fuel storage, etc. Currently, researchers are synthesizing MoS2 with new shapes and MoS2 nanoparticles. In this work MoS2 nanohexagonal plates were synthesized at different temperatures and characterized with XRD, SEM, Raman spectroscopy and HRTEM. This compound has a plate size of 20--30 nm as revealed by SEM, with HRTEM was possible to measure the interatomic distance of Mo--Mo, which was 2.8 å. This compound is intended to be used as catalyst in fuel hydrodesulfuration.

  12. High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex

    DEFF Research Database (Denmark)

    Wotzlaw, Joern-Frederik; Bindeman, Ilya N.; Schaltegger, Urs

    2012-01-01

    intrusions, and related remelting events, which cause the generation of low-delta O-18 magmas. Our precise temporal framework for intrusion crystallization also provides constraints for the timing of coeval flood basalt volcanism and its synchronicity with the Paleocene-Eocene thermal maximum....

  13. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  14. Structural Characterisation of Acetogenins from Annona muricata by Supercritical Fluid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Laboureur, Laurent; Bonneau, Natacha; Champy, Pierre; Brunelle, Alain; Touboul, David

    2017-11-01

    Acetogenins are plant polyketides known to be cytotoxic and proposed as antitumor candidates. They are also suspected to be alimentary neurotoxins. Their occurrence as complex mixtures renders their dereplication and structural identification difficult using liquid chromatography coupled to tandem mass spectrometry and efforts are required to improve the methodology. To develop a supercritical fluid chromatography (SFC) high-resolution tandem mass spectrometry method, involving lithium post-column cationisation, for the structural characterisation of Annonaceous acetogenins in crude extracts. The seeds of Annona muricata L. were extracted with methanol. Supercritical fluid chromatography of the extract, using a 2-ethylpyridine stationary phase column, was monitored using a high-resolution quadrupole time-of-flight mass spectrometer. Lithium iodide was added post-column in the make-up solvent. For comparison, the same extract was analysed using high-pressure liquid chromatography coupled to the same mass spectrometer, with a column based on solid core particles. Sensitivity was similar for both HPLC and SFC approaches. Retention behaviour and fragmentation pathways of three different isomer groups are described. A previously unknown group of acetogenins was also evidenced for the first time. The use of SFC-MS/MS allows the reduction of the time of analysis, of environmental impact and an increase in the chromatographic resolution, compared to liquid chromatography. This new methodology enlightened a new group of acetogenins, isomers of montanacin-D. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...... performed structural analysis using multistage activation on the ion trap-orbitrap instrument as well as tandem mass analysis using a quadrupole time-of-flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described...

  16. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R. [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Linn, Jennifer; Bochmann, Katja [LMU Munich, Department of Neuroradiology, Munich (Germany); Dassinger, Benjamin [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Justus-Liebig-University Giessen, Department of Neuroradiology, Giessen (Germany); Forsting, Michael [University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2014-03-15

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  17. The molecular structure of quinuclidine obtained by high resolution microwave spectroscopy

    Science.gov (United States)

    Consalvo, Daniela; Stahl, Wolfgang

    1998-06-01

    The rotational spectra of all 13C- and 15N- substituted isotopomers of quinuclidine (or 1-azabicyclo[2.2.2]octane, ABCO), C 7H 13N, in their natural abundance have been measured for the first time in the region 4-20 GHz employing pulsed molecular beam Fourier transform microwave spectroscopy (MB-FTMW). Their analysis yielded accurate rotational constants which allowed to determine the ground state heavy atom rs structure and the global r0-structure.

  18. Normal Mode Flexible Fitting of High-Resolution Structures of Biological Molecules Toward SAXS Data

    Directory of Open Access Journals (Sweden)

    Christian Gorba

    2010-06-01

    Full Text Available We present a method to reconstruct a three-dimensional protein structure from an atomic pair distribution function derived from the scattering intensity profile from SAXS data by flexibly fitting known x-ray structures. This method uses a linear combination of low-frequency normal modes from an elastic network description of the molecule in an iterative manner to deform the structure to conform optimally to the target pair distribution function derived from SAXS data. For computational efficiency, the protein and water molecules included in the protein first hydration shell are coarse-grained. In this paper, we demonstrate the validity of our coarse- graining approach to study SAXS data. Illustrative results of our flexible fitting studies on simulated SAXS data from five different proteins are presented.

  19. High-resolution cryo-EM proteasome structures in drug development.

    Science.gov (United States)

    Morris, Edward P; da Fonseca, Paula C A

    2017-06-01

    With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein-ligand interactions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein-ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction.

  20. High-Resolution Mapping of Structural Mutations in Prostate Cancer with Single Nucleotide Polymorphism Arrays

    Science.gov (United States)

    2006-11-01

    Mol Cell Biol 8: 1816-1820. 10. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, et al. (1992) Structural alterations of the epidermal...Aid). Dr. Beroukhim is the recipient of a Department of Defense postdoctoral training award. Dr. Sawyers is a Doris Duke Distinguished Clinical

  1. High resolution microtomography for density and spatial infomation about wood structures

    Science.gov (United States)

    Barbara. Illman; Betsy. Dowd

    1999-01-01

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...

  2. Comparison of borehole geophysics, CPT, resistivity, GPR, and high-resolution seismic data across a shallow structure in unconsolidated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Temples, T.J.; Wyatt, D.E.; Cumbest, R.; Waddell, M.G.

    1995-12-31

    The geological characterization of the shallow subsurface in the unconsolidated sediments of the Atlantic Coastal Plain, and other unconsolidated sediment regimes, may involve faulting and channeling not readily detectable by conventional drilling and mapping. A knowledge of these features is required in environment and geotechnical studies in areas that may have critical impact to groundwater flow and contaminant transport. In many cases, shallow structural influences are missed during site characterization. A case study is presented using ground penetrating radar (GPR) and high resolution seismic data, compared with a geologic interpretation from borehole logs and core data, with Wenner and dipole-dipole resistivity data and with cone penetrometer (CPT) data in an area where shallow structure is probable and contamination exists.

  3. Medical images of patients in voxel structures in high resolution for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, Leonardo S.; Menezes, Artur F.; Silva, Ademir X., E-mail: lboia@con.ufrj.b, E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear; Salmon Junior, Helio A. [Clinicas Oncologicas Integradas (COI), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    This work aims to present a computational process of conversion of tomographic and MRI medical images from patients in voxel structures to an input file, which will be manipulated in Monte Carlo Simulation code for tumor's radiotherapic treatments. The problem's scenario inherent to the patient is simulated by such process, using the volume element (voxel) as a unit of computational tracing. The head's voxel structure geometry has voxels with volumetric dimensions around 1 mm{sup 3} and a population of millions, which helps - in that way, for a realistic simulation and a decrease in image's digital process techniques for adjustments and equalizations. With such additional data from the code, a more critical analysis can be developed in order to determine the volume of the tumor, and the protection, beside the patients' medical images were borrowed by Clinicas Oncologicas Integradas (COI/RJ), joined to the previous performed planning. In order to execute this computational process, SAPDI computational system is used in a digital image process for optimization of data, conversion program Scan2MCNP, which manipulates, processes, and converts the medical images into voxel structures to input files and the graphic visualizer Moritz for the verification of image's geometry placing. (author)

  4. A Structure Feature for Automatic Extraction of Plantation from High-resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    YAN Li

    2016-09-01

    Full Text Available Satellite remote sensing is an invaluable tool to manage land resources. However, data analysis procedures should satisfy the good adaptability, wide application prospects and high accuracy levels demanded by users. This study presented a novel multi-scale and multi-direction structure index (MMI to describe the structure feature of plantation caused by cultivation. Plantation are extracted by performing a threshold on the MMI feature map, and combined with morphological operators to refine the extraction results. We designed three groups of experiments to test our method, each group used panchromatic and multispectral imagery respectively with various cultivation mode, different vegetated background and structure complexity. The results show our method is much more adaptive on plantation extraction than traditional methods. It is efficient for various complex plantations, e.g. multi-direction, multi-scale, highly vegetated backgrounds, low regularity of planting mode with deformation of textons and planting lines, the accuracy results exceed 90%. And panchromatic images achieve accuracies as high as multispectral images, which indicate our method has low dependence on spectrum, thus it is more flexible for data selection and application.

  5. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.

    Science.gov (United States)

    Efremov, Rouslan G; Gatsogiannis, Christos; Raunser, Stefan

    2017-01-01

    The "resolution revolution" in electron cryomicroscopy (cryo-EM) profoundly changed structural biology of membrane proteins. Near-atomic structures of medium size to large membrane protein complexes can now be determined without crystallization. This significantly accelerates structure determination and also the visualization of small bound ligands. There is an additional advantage: the structure of membrane proteins can now be studied in their native or nearly native lipid bilayer environment. A popular lipid bilayer mimetic are lipid nanodiscs, which have been thoroughly characterized and successfully utilized in multiple applications. Here, we provide a guide for using lipid nanodiscs as a tool for single-particle cryo-EM of membrane proteins. We discuss general methodological aspects and specific challenges of protein reconstitution into lipid nanodiscs and high-resolution structure determination of the nanodisc-embedded complexes. Furthermore, we describe in detail case studies of two successful applications of nanodiscs in cryo-EM, namely, the structure determination of the rabbit ryanodine receptor, RyR1, and the pore-forming TcdA1 toxin subunit from Photorhabdus luminescens. We discuss cryo-EM-specific hurdles concerning sample homogeneity, distribution of reconstituted particles in vitreous ice, and solutions to overcome them. © 2017 Elsevier Inc. All rights reserved.

  6. Membrane protein structures without crystals, by single particle electron cryomicroscopy.

    Science.gov (United States)

    Vinothkumar, Kutti R

    2015-08-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. High resolution spectroscopy of the hyperfine structure splitting in 97,99Tc

    Science.gov (United States)

    Raeder, Sebastian; Kron, Tobias; Heinke, Reinhard; Henares, Jose L.; Lecesne, Nathalie; Schönberg, Pascal; Trümper, Marcel; Wendt, Klaus

    2017-11-01

    Resonance ionization mass spectrometry is an efficient tool for detecting trace amounts of long-lived radio-isotopes in environmental samples. For absolute quantification a tracer with identical atomic properties and chemical behavior is needed to prevent a possible dependency onto the absolute efficiency for the analytical method. For an application in 99Tc, the isotope 97Tc could serve as a potential tracer. Therefore the optical transitions of an efficient ionization scheme for technetium were investigated for the two odd mass isotopes 97,99Tc, both with a nuclear spin of I={9}/{2}. Using a pulsed, single mode laser with narrow bandwidth, the hyperfine structures (HFS) of two transitions were fully resolved. The observed isotope shift is small in comparison to the width of the hyperfine structure splitting. This is ideal for the application of 97Tc as tracer isotope for 99Tc quantification. The evaluation of the observed HFS splitting results in a first experimental value for the magnetic dipole for 97Tc of μ=+5.82(9) μ N .

  8. High-resolution probing of inner core structure with seismic interferometry

    KAUST Repository

    Huang, Hsin-Hua

    2015-12-23

    © 2015. American Geophysical Union. All Rights Reserved. Increasing complexity of Earth\\'s inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.

  9. High-resolution structure of HLA-A*1101 in complex with SARS nucleocapsid peptide

    DEFF Research Database (Denmark)

    Blicher, Thomas; Kastrup, Jette Sandholm; Buus, Søren

    2005-01-01

    The structure of the human MHC-I molecule HLA-A*1101 in complex with a nonameric peptide (KTFPPTEPK) has been determined by X-ray crystallography to 1.45 A resolution. The peptide is derived from the SARS-CoV nucleocapsid protein positions 362-370 (SNP362-370). It is conserved in all known isolates...... of SARS-CoV and has been verified by in vitro peptide-binding studies to be a good to intermediate binder to HLA-A*0301 and HLA-A*1101, with IC50 values of 70 and 186 nM, respectively [Sylvester-Hvid et al. (2004), Tissue Antigens, 63, 395-400]. In terms of the residues lining the peptide-binding groove...

  10. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures.

    Science.gov (United States)

    Zenou, M; Sa'ar, A; Kotler, Z

    2015-11-25

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.

  11. High-resolution ultrasound biomicroscopy for monitoring ovarian structures in mice

    Directory of Open Access Journals (Sweden)

    Singh Jaswant

    2009-07-01

    Full Text Available Abstract Background Until recently, the limit of spatial resolution of ultrasound systems has prevented characterization of structures Methods Experiment 1 was a pilot study to develop methods of immobilization (physical restraint vs. general anesthesia and determine technical factors affecting ovarian images using ultrasound bio-microscopy in rats vs. mice. The hair coat was removed over the thoraco-lumber area using depilation cream, and a highly viscous acoustic gel was applied while the animals were maintained in sternal recumbency. In Experiment 2, changes in ovarian structures during the estrous cycle were monitored by twice daily ultrasonography in 10 mice for 2 estrous cycles. Results Ovarian images were not distinct in rats due to attenuation of ultrasound waves. Physical restraint, without general anesthesia, was insufficient for immobilization in mice. By placing the transducer face over the dorsal flank, the kidney was visualized initially as a point of reference. A routine of moving the transducer a few millimetres caudo-laterally from the kidney was established to quickly and consistently localize the ovaries; the total time to scan both ovaries in a mouse was about 10 minutes. By comparing vaginal cytology with non-anesthetized controls, repeated exposure to anesthesia did not affect the estrous cycle. Temporal changes in the number of follicles in 3 different size categories support the hypothesis that follicles ≥ 20 microns develop in a wave-like fashion. Conclusion The mouse is a suitable model for the study of ovarian dynamics using transcutaneous ultrasound bio-microscopy. Repeated general anesthesia for examination had no apparent effect on the estrous cycle, and preliminary results revealed a wave-like pattern of ovarian follicle development in mice.

  12. Determination of the {ital S}-wave scattering length in pionic deuterium with a high resolution crystal spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Chatellard, D.; Egger, J.; Jeannet, E. [Institut de Physique de l`Universite, Breguet 1, CH-2000 Neuchatel (Switzerland); Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.; Schroeder, H.; Sigg, D.; Zhao, Z.G. [Institut fuer Teilchenphysik der Eidgenoessische Technische Hochschule Zuerich, CH-5232 Villigen PSI (Switzerland); Aschenauer, E.C.; Gabathuler, K.; Hauser, P.; Simons, L.M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Rusi, A.J.; Hassani, E. [Ecole Mohammadia des Ingenieurs, Rabat (Morocco)

    1995-05-22

    The pionic deuterium 3{ital P}{minus}1{ital S} x-ray transition was measured with a quartz crystal spectrometer in combination with a cyclotron trap and charge coupled device detectors. The strong interaction shift and total decay width of the 1{ital S} level are {epsilon}{sub 1{ital S}}(shift)=2.48{plus_minus}0.10 eV (repulsive), {Gamma}{sub 1{ital S}}(width)=1.02{plus_minus}0.21 eV, where the statistical and systematic errors were added linearly. They yield the total pionic deuterium {ital S}-wave scattering length: {ital a}{sub {pi}{sup {minus}}{ital d}}= {minus}0.0264({plus_minus}0.0011)+{ital i}0.0054({plus_minus}0.0011){ital m}{sub {pi}}{sup {minus}1}.

  13. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  14. Microminiature high-resolution linear displacement sensor for peak strain detection in smart structures

    Science.gov (United States)

    Arms, Steven W.; Guzik, David C.; Townsend, Christopher P.

    1998-07-01

    Critical civil and military structures require 'smart' sensors in order to report their strain histories; this can help to insure safe operation after exposure to potentially damaging loads. A passive resetable peak strain detector was developed by modifying the mechanics of a differential variable reluctance transducer. The peak strain detector was attached to an aluminum test beam along with a bonded resistance strain gauge and a standard DVRT. Strain measurements were recorded during cyclic beam deflections. DVRT output was compared to the bonded resistance strain gauge output, yielding correlation coefficients ranging from 0.9989 to 0.9998 for al teste, including re-attachment of the DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT and this was compared to the peak bending strains as measured by the bonded strain gauge. The peak detect DVRT demonstrated an accuracy of approximately +/- 5 percent over a peak range of 2000 to 2800 microstrain.

  15. High resolution solution structure of the 1.3S subunit of transcarboxylase from Propionibacterium shermanii.

    Science.gov (United States)

    Reddy, D V; Shenoy, B C; Carey, P R; Sönnichsen, F D

    2000-03-14

    Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate to form propionyl-CoA and oxalacetate. Within the multi-subunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier and also binds the other two subunits to assist in the overall assembly of the enzyme. The 1.3S subunit is a 123 amino acid polypeptide (12.6 kDa) to which biotin is covalently attached at Lys 89. The three-dimensional solution structure of the full-length holo-1.3S subunit of TC has been solved by multidimensional heteronuclear NMR spectroscopy. The C-terminal half of the protein (51-123) is folded into a compact all-beta-domain comprising of two four-stranded antiparallel beta-sheets connected by short loops and turns. The fold exhibits a high 2-fold internal symmetry and is similar to that of the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase, but lacks an extension that has been termed "protruding thumb" in BCCP. The first 50 residues, which have been shown to be involved in intersubunit interactions in the intact enzyme, appear to be disordered in the isolated 1.3S subunit. The molecular surface of the folded domain has two distinct surfaces: one side is highly charged, while the other comprises mainly hydrophobic, highly conserved residues.

  16. High-resolution electron spectroscopy and structures of lithium-nucleobase (adenine, uracil, and thymine) complexes.

    Science.gov (United States)

    Krasnokutski, Serge A; Lee, Jung Sup; Yang, Dong-Sheng

    2010-01-28

    Li complexes of adenine, uracil, and thymine were produced by laser vaporization of rods made of Li and nucleobase powders in a metal-cluster beam source and studied by pulsed-field-ionization zero-electron-kinetic-energy (ZEKE) spectroscopy and density functional theory calculations. The ZEKE measurements determined the adiabatic ionization energies of the three neutral complexes and frequencies of several vibrational modes for the metal-adenine and -uracil ions. The measured spectra were compared with spectral simulations to determine the preferred metal binding sites. For adenine, the most stable structure is formed by Li/Li(+) bidentately binding to both the N7 atom of the imidazole ring and the NH(2) group of the pyrimidine ring. For uracil and thymine, the ideal site for Li/Li(+) coordination is the O4 atom. Although it has only a small effect on the geometries of uracil and thymine, lithium coordination forces the rotation of the NH(2) group out of the adenine plane. The adiabatic ionization energies of the three complexes follow the trend of uracil (33910+/-5 cm(-1))>thymine (33386+/-5 cm(-1))>adenine (32240+/-5 cm(-1)), whereas their metal-ligand bond dissociation energies are about the same, (92-97) +/-6 kJ mol(-1). For all three complexes, the neutral bond energies are smaller than those of the corresponding ions due to a weaker electrostatic interaction and stronger electron repulsion.

  17. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Robert, E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, Sang Chul, E-mail: sclee99@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Shi, Yezhou; Chueh, William C. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-05-15

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e{sup -}/Å{sup 2}s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e{sup -}/Å{sup 2}s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce{sup 3+} versus Ce{sup 4+} cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface. - Highlights: • The local structure and chemistry of ceria can be studied by TEM combined with EELS. • At lower electron, there are no observable changes in the ceria thin films. • At higher dose rates, an ordered phase is created due to oxygen vacancy ordering. • In situ HRTEM shows the oxygen vacancy ordering and the movement of surface atoms.

  18. Inferring coarse-grain histone-DNA interaction potentials from high-resolution structures of the nucleosome

    CERN Document Server

    Meyer, Sam

    2014-01-01

    The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unkown despite a growing structural knowledge of the complex. Here, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We apply the procedure on a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at the sites of histone-DNA contact, the DNA base-pairs are locally shifted outwards, consistent with locally repulsive forces exerted by the histones. In a second step, we show that the various force profiles of the analyzed structures derive locally from a unique, sequence-independent, quadratic repulsive force field, while the sequence preferences are entirely due to the internal DNA mechanics. We thus obtain the first knowledge-derived nanosca...

  19. High resolution digital elevation modelling from TLS and UAV campaign reveals structural complexity at the 2014 Holuhraun eruption site

    Science.gov (United States)

    Müller, Daniel; Walter, Thomas R.; Titt, Tanja; Schöpa, Anne; Tumi Gudmundsson, Magnus; Dürig, Tobi

    2017-04-01

    Fissure eruptions are commonly linked to magma dikes at depth, associated with deformation that is described by subsidence and lateral widening at the surface. The structure formation associated with such fissure eruptions, however, is barely preserved in nature because of the rapid erosion and/or difficult access to these areas, which is why, so far, normal fault displacements are commonly assumed for this type of fractures. At the 2014 Holuhraun eruption sites, the largest fissure eruption in Iceland since almost two centuries, evidence is increasing that the developing structures are related to pre-existing topography, reactivation of earlier fractures and possible complexity in the opening mode of the dike. In an attempt to investigate the Holuhraun structures in greater detail, a fieldwork mapping project combining terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) based aerophoto analysis was realized. From this data, we generated a locally high resolution digital elevation model and a structural map that allow for identification of kinematic indicators and assessing senses of fault opening, strike-slip movements, and complexities in fracture pathways. We identified fracture curvatures, step-overs and en-echelon type structures, and measured strike directions for single fault segments including the amount of opening and opening angles. We conjecture that local complexities in the fracture paths and fracture geometries are closely related to pre-existing geometric and mechanical heterogeneities. Moreover, we identified local changes in fracture trends and offsets close to eruption sites, which are possibly associated with geometrical changes in the feeding dike itself. Results have important implications for the development of surface structures at fissure eruption sites and underline that the structural memory is a very important factor in understanding the complexities of local fault structures above dike intrusions.

  20. Soot structure and reactivity analysis by Raman microspectroscopy, temperature-programmed oxidation, and high-resolution transmission electron microscopy.

    Science.gov (United States)

    Knauer, Markus; Schuster, Manfred E; Su, Dangsheng; Schlögl, Robert; Niessner, Reinhard; Ivleva, Natalia P

    2009-12-17

    Raman microspectroscopy (RM), temperature-programmed oxidation (TPO), high-resolution transmission electron microscopy (HRTEM), and electron energy loss spectroscopy (EELS) were combined to get comprehensive information on the relationship between structure and reactivity of soot in samples of spark discharge (GfG), heavy duty engine diesel (EURO VI and IV) soot, and graphite powder upon oxidation by oxygen at increasing temperatures. GfG soot and graphite powder represent the higher and lower reactivity limits. Raman microspectroscopic analysis was conducted by determination of spectral parameters using a five band fitting procedure (G, D1-D4) as well as by evaluation of the dispersive character of the D mode. The analysis of spectral parameters shows a higher degree of disorder and a higher amount of molecular carbon for untreated GfG soot samples than for samples of untreated EURO VI and EURO IV soot. The structural analysis based on the dispersive character of the D mode revealed substantial differences in ordering descending from graphite powder, EURO IV, VI to GfG soot. HRTEM images and EELS analysis of EURO IV and VI samples indicated a different morphology and a higher structural order as compared to GfG soot in full agreement with the Raman analysis. These findings are also confirmed by the reactivity of soot during oxidation (TPO), where GfG soot was found to be the most reactive and EURO IV and VI soot samples exhibited a moderate reactivity.

  1. High-resolution heat-transfer-coefficient maps applicable to compound-curve surfaces using liquid crystals in a transient wind tunnel

    Science.gov (United States)

    Jones, Terry V.; Hippensteele, Steven A.

    1988-01-01

    Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.

  2. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  3. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  4. Changes in structural lung disease in cystic fibrosis children over 4 years as evaluated by high-resolution computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carpio, Carlos; Alvarez-Sala, Rodolfo; Prados, Concepcion [University Hospital La Paz, La Paz Hospital Research Institute, Department of Respiratory Medicine, Madrid (Spain); Albi, Gustavo [Nino de Jesus Children' s Hospital, Department of Radiology, Madrid (Spain); Rayon-Aledo, Jose Carlos; Caballero, Paloma [University Hospital La Princesa, Department of Radiology, Madrid (Spain); Giron, Rosa [University Hospital La Princesa, Department of Respiratory Medicine, Madrid (Spain)

    2015-12-15

    To compare the worsening of structural lung disease on high-resolution computed tomography (HRCT) with changes in spirometry results in cystic fibrosis (CF) patients, and analyse factors associated with the worsening of structural lung disease over time. A total of 31 CF subjects (mean age 11.03 ± 3.67 years old) were prospectively evaluated by two HRCT and spirometry tests performed 4 years apart. HRCT abnormalities were scored using the Bhalla scoring system. Comparisons between changes on HRCT and spirometry were made for all patients, and also for groups categorized by age, sex, genotypic alterations and lung obstruction. The mean HRCT Bhalla scoring, forced expiratory volume in 1 s (FEV{sub 1} %pred.) and forced vital capacity (FVC %pred.) were 7.92 ± 3.59, 87.76 ± 20.52 and 96.54 ± 15.12, respectively. There was a significant deterioration in the Bhalla score (p < 0.01) and in certain categories: severity of bronchiectasis, peribronchial thickening, mucous plugging and bronchial divisions. Females had a more pronounced worsening of the Bhalla score than males (p = 0.048). No change over time was found in FEV{sub 1} and FVC. Only sex was associated with a deterioration in HRCT. HRCT Bhalla scoring changes statistically significantly over 4 years, but spirometry results do not. Worsening on HRCT is more evident in females. (orig.)

  5. Investigations into the Structure and Dynamics of Chalcogenide Glasses using High-Resolution Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Kaseman, Derrick Charles

    Chalcogenide glasses constitute an important class of materials that are sulfides, selenides or tellurides of group IV and/or V elements, namely Ge, As, P and Si with minor concentrations of other elements such as Ga, Sb, In. Because of their infrared transparency that can be tuned by changing chemistry and can be actively altered by exposure to band gap irradiation, chalcogenide glasses find use in passive and active optical devices for applications in the areas of photonics, remote sensing and memory technology. Therefore, it is important to establish predictive models of structure-property relationships for these materials for optimization of their physical properties for various applications. Structural elucidation of chalcogenide glasses is experimentally challenging and in order to make predictive structural models, structural units at both short and intermediate -range length scales must be identified and quantified. Nuclear Magnetic Resonance (NMR) spectroscopy is an element-specific structural probe that is uniquely suited for this task, but resolution and sensitivity issues have severely limited the applications of such techniques in the past. The recent development of multi-dimensional solid-state NMR techniques, such as Phase Adjusted Spinning Sidebands (PASS) and Magic Angle Turning (MAT) can potentially alleviate such issues. In this study novel two-dimensional, high-resolution 77Se and 125Te MATPASS NMR spectroscopic techniques are utilized to elucidate quantitatively the compositional evolution of the short- and intermediate- range atomic structure in three binary chalcogenide glass-forming systems, namely: GexSe100-x, AsxSe100-x , and AsxTe100-x. The spectroscopic results provide unambiguous site speciation and quantification for short- and intermediate-range structural motifs present in these glasses. In turn, for all systems, robust structural models and the corresponding structure-property relationships are successfully established as a function

  6. Very high resolution Earth Observation features for testing the direct and indirect effects of landscape structure on local habitat quality

    Science.gov (United States)

    Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.

    2015-02-01

    Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context

  7. High-Resolution Seismic Reflection Survey of the Southwestern Margin of the Chesapeake Bay Impact Structure, Virginia

    Science.gov (United States)

    Catchings, R. D.; Powars, D. S.; Gohn, G. S.; Goldman, M. R.

    2002-05-01

    The late Eocene Chesapeake Bay impact structure is a buried, 90-km-wide, "wet-target," complex crater situated in the eastern Virginia Coastal Plain. A high-resolution seismic reflection survey across the crater's southwestern margin on the lower York-James Peninsula is tied to the core samples and sonic velocity log from a 635-m-deep corehole that reached crystalline basement rocks at the NASA Langley Research Center, Hampton, VA. The seismic transect was 13.6 km long although data gaps reduced the actual survey distance to about 9.0 km. Acquisition parameters included: 5-m spacing for the seisgun source and geophones; 25-m spacing for the explosive source (0.11 kg of ammonium nitrate); and four 60-channel seismographs. Time-distance, depth-distance, and migrated depth-distance images were generated. Preliminary analysis of the seismic images indicates a good correlation between the core stratigraphy and the seismic stratigraphy within the crater's outer annular trough. Granitic basement and overlying sections of impact-modified Cretaceous and lower Tertiary sediments, impact-generated sediments, and post-impact sediments have distinctive seismic signatures. At Langley, thick high-amplitude reflections represent the top of basement near 625 m depth, in good agreement with the corehole; this seismic signature is readily traced across the entire survey. Relief on the basement top approaches 200 m, and numerous diffractions on the unmigrated images indicate that the basement rock is highly fractured. Moderately continuous, horizontal to locally inclined reflections characterize the unshocked, locally fluidized, parauthochthonous Cretaceous sediments in the lower part of the sedimentary section above basement. These reflections are broken by pervasive, subvertical, small-offset faults that are well displayed on the migrated depth section. Higher in the sedimentary section, strongly faulted and fluidized Cretaceous and lower Tertiary sediments are represented by

  8. Using Unmanned Aerial Vehicles (UAV for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments

    Directory of Open Access Journals (Sweden)

    Francesco Mancini

    2013-12-01

    Full Text Available The availability of high-resolution Digital Surface Models of coastal environments is of increasing interest for scientists involved in the study of the coastal system processes. Among the range of terrestrial and aerial methods available to produce such a dataset, this study tests the utility of the Structure from Motion (SfM approach to low-altitude aerial imageries collected by Unmanned Aerial Vehicle (UAV. The SfM image-based approach was selected whilst searching for a rapid, inexpensive, and highly automated method, able to produce 3D information from unstructured aerial images. In particular, it was used to generate a dense point cloud and successively a high-resolution Digital Surface Models (DSM of a beach dune system in Marina di Ravenna (Italy. The quality of the elevation dataset produced by the UAV-SfM was initially evaluated by comparison with point cloud generated by a Terrestrial Laser Scanning (TLS surveys. Such a comparison served to highlight an average difference in the vertical values of 0.05 m (RMS = 0.19 m. However, although the points cloud comparison is the best approach to investigate the absolute or relative correspondence between UAV and TLS methods, the assessment of geomorphic features is usually based on multi-temporal surfaces analysis, where an interpolation process is required. DSMs were therefore generated from UAV and TLS points clouds and vertical absolute accuracies assessed by comparison with a Global Navigation Satellite System (GNSS survey. The vertical comparison of UAV and TLS DSMs with respect to GNSS measurements pointed out an average distance at cm-level (RMS = 0.011 m. The successive point by point direct comparison between UAV and TLS elevations show a very small average distance, 0.015 m, with RMS = 0.220 m. Larger values are encountered in areas where sudden changes in topography are present. The UAV-based approach was demonstrated to be a straightforward one and accuracy of the vertical dataset

  9. High Resolution MRI Reveals Detailed Layer Structures in Early Human Fetal Stages: In Vitro Study with Histologic Correlation.

    Science.gov (United States)

    Wang, Rongpin; Dai, Guangping; Takahashi, Emi

    2015-01-01

    An understanding of normal fetal brain development is essential in detecting the early onset of brain disorders. It is challenging to obtain high-quality images that show detailed local anatomy in the early fetal stages because the fetal brain is very small with rapidly-changing complex structures related to brain development, including neurogenesis, neuronal migration, and axonal elongation. Previous magnetic resonance imaging (MRI) studies detected three layers throughout the fetal cerebral wall that showed differences in MR contrasts at 10 gestational weeks (GW), which is one of the earliest ages studied using MRI. Contrary to the MRI studies, histological studies found more layers at this fetal age. The purpose of this work is to study the development of brain structures from an early fetal period to an early second trimester stage using ex vivo MRI and compare it to histology. Special attention was paid to laminar structures in the cerebral wall. T2-weighted imaging was performed on fetal brain specimens ranging from 10 GW to 18 GW on a 4.7 tesla MR scanner. We obtained standard grayscale as well as color-coded images using weighted red-green-blue scales, and compared them with the histological images. Our study confirmed laminar structure in the cerebral wall in all the fetal specimens studied. We found that MRI detected four layers within the cerebral wall as early as 10 GW during the early fetal period (10-13 GW). Early second trimester (15-18 GW) was characterized by the emergence of subplate structures and five layers within the cerebral wall. The color-coded images were more useful than the standard grayscale images in detecting the laminar structures. Scans with appropriate parameters from a high tesla MR scanner showed detailed laminar structures even through a very small and thin cerebral wall at 10 GW ex vivo. A combination of high-resolution structural imaging and color-coding processing with histological analysis may be a potential tool for

  10. High resolution MRI reveals detailed layer structures in early human fetal stages: In vitro study with histologic correlation

    Directory of Open Access Journals (Sweden)

    Rongpin eWang

    2015-11-01

    Full Text Available An understanding of normal fetal brain development is essential in detecting the early onset of brain disorders. It is challenging to obtain high-quality images that show detailed local anatomy in the early fetal stages because the fetal brain is very small with rapidly-changing complex structures related to brain development, including neurogenesis, neuronal migration, and axonal elongation. Previous magnetic resonance imaging (MRI studies detected three layers throughout the fetal cerebral wall that showed differences in MR contrasts at 10 gestational weeks (GW, which is one of the earliest ages studied using MRI. Contrary to the MRI studies, histological studies found more layers at this fetal age. The purpose of this work is to study the development of brain structures from an early fetal period to an early second trimester stage using ex vivo MRI and compare it to histology. Special attention was paid to laminar structures in the cerebral wall. T2-weighted imaging was performed on fetal brain specimens ranging from 10 GW to 18 GW on a 4.7 tesla MR scanner. We obtained standard grayscale as well as color-coded images using weighted red-green-blue scales, and compared them with the histological images. Our study confirmed laminar structure in the cerebral wall in all the fetal specimens studied. We found that MRI detected four layers within the cerebral wall as early as 10 GW during the early fetal period (10-13 GW. Early second trimester (15-18 GW was characterized by the emergence of subplate structures and five layers within the cerebral wall. The color-coded images were more useful than the standard grayscale images in detecting the laminar structures. Scans with appropriate parameters from a high tesla MR scanner showed detailed laminar structures even through a very small and thin cerebral wall at 10 GW ex vivo. A combination of high-resolution structural imaging and color-coding processing with histological analysis may be a potential

  11. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.

    2010-11-28

    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  12. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy.

    Science.gov (United States)

    Zhang, Yanfeng; Gao, Teng; Gao, Yabo; Xie, Shubao; Ji, Qingqing; Yan, Kai; Peng, Hailin; Liu, Zhongfan

    2011-05-24

    Understanding of the continuity and the microscopic structure of as-grown graphene on Cu foils through the chemical vapor deposition (CVD) method is of fundamental significance for optimizing the growth parameters toward high-quality graphene. Because of the corrugated nature of the Cu foil surface, few experimental efforts on this issue have been made so far. We present here a high-resolution scanning tunneling microscopy (STM) study of CVD graphene directly on Cu foils. Our work indicates that graphene can be grown with a perfect continuity extending over both crystalline and noncrystalline regions, highly suggestive of weak graphene-substrate interactions. Due to thermal expansion mismatch, defect-like wrinkles and ripples tend to evolve either along the boundaries of crystalline terraces or on noncrystalline areas for strain relief. Furthermore, the strain effect arising from the conforming of perfect two-dimensional graphene to the highly corrugated surface of Cu foils is found to induce local bonding configuration change of carbon from sp(2) to sp(3), evidenced by the formation of "three-for-six" lattices.

  13. High resolution X-ray structures of mouse major urinary protein nasal isoform in complex with pheromones

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Miller, Samantha; Zou, Qin; Novotny, Milos V.; Hurley, Thomas D. (Indiana-Med); (Indiana)

    2010-09-07

    In mice, the major urinary proteins (MUP) play a key role in pheromonal communication by binding and transporting semiochemicals. MUP-IV is the only isoform known to be expressed in the vomeronasal mucosa. In comparison with the MUP isoforms that are abundantly excreted in the urine, MUP-IV is highly specific for the male mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT). To examine the structural basis of this ligand preference, we determined the X-ray crystal structure of MUP-IV bound to three mouse pheromones: SBT, 2,5-dimethylpyrazine, and 2-heptanone. We also obtained the structure of MUP-IV with 2-ethylhexanol bound in the cavity. These four structures show that relative to the major excreted MUP isoforms, three amino acid substitutions within the binding calyx impact ligand coordination. The F103 for A along with F54 for L result in a smaller cavity, potentially creating a more closely packed environment for the ligand. The E118 for G substitution introduces a charged group into a hydrophobic environment. The sidechain of E118 is observed to hydrogen bond to polar groups on all four ligands with nearly the same geometry as seen for the water-mediated hydrogen bond network in the MUP-I and MUP-II crystal structures. These differences in cavity size and interactions between the protein and ligand are likely to contribute to the observed specificity of MUP-IV.

  14. High-Resolution X-Ray Structure and Functional Analysis of the Murine Norovirus 1 Capsid Protein Protruding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Taube, Stefan; Rubin, John R.; Katpally, Umesh; Smith, Thomas J.; Kendall, Ann; Stuckey, Jeanne A.; Wobus, Christiane E. (Michigan); (Danforth)

    2010-07-23

    Murine noroviruses (MNV) are closely related to the human noroviruses (HuNoV), which cause the majority of nonbacterial gastroenteritis. Unlike HuNoV, MNV grow in culture and in a small-animal model that represents a tractable model to study norovirus biology. To begin a detailed investigation of molecular events that occur during norovirus binding to cells, the crystallographic structure of the murine norovirus 1 (MNV-1) capsid protein protruding (P) domain has been determined. Crystallization of the bacterially expressed protein yielded two different crystal forms (Protein Data Bank identifiers [PDB ID], 3LQ6 and 3LQE). Comparison of the structures indicated a large degree of structural mobility in loops on the surface of the P2 subdomain. Specifically, the A{prime}-B{prime} and E{prime}-F{prime} loops were found in open and closed conformations. These regions of high mobility include the known escape mutation site for the neutralizing antibody A6.2 and an attenuation mutation site, which arose after serial passaging in culture and led to a loss in lethality in STAT1{sup -/-} mice, respectively. Modeling of a Fab fragment and crystal structures of the P dimer into the cryoelectron microscopy three-dimensional (3D) image reconstruction of the A6.2/MNV-1 complex indicated that the closed conformation is most likely bound to the Fab fragment and that the antibody contact is localized to the A{prime}-B{prime} and E{prime}-F{prime} loops. Therefore, we hypothesize that these loop regions and the flexibility of the P domains play important roles during MNV-1 binding to the cell surface.

  15. High-resolution spectroscopy using synchrotron radiation for surface structure determination and the study of correlated electron systems

    Energy Technology Data Exchange (ETDEWEB)

    Moler, Jr., Edward John [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The surface structure of three molecular adsorbate systems on transition metal surfaces, (√3 x √3)R30° and (1.5 x 1.5)R18° CO adsorbed on Cu(111), and c(2x2) N2/Ni(100), have been determined using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS). The adsorption site and bond lengths are reported for the adsorbate-metal bond and the first two substrate layers. The ARPEFS diffraction pattern of the shake-up peak for c(2x2) N2/Ni(100) is also discussed. A unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level satellites is presented. We show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. Specifically, we present data for the C 1s from (√3x√3)R30 CO/Cu(111) and p2mg(2x1)CO/Ni(110), N is from c(2x2) N2/Ni(100), and Ni 3p from clean nickel(111). The satellite peaks in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature. A Fourier Transform Soft X-ray spectrometer (FF-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The spectrometer is designed for ultra-high resolution theoretical resolving power E/ΔE≈-106 in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  16. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy

    Science.gov (United States)

    Webb, James L.; Hart, Lewis S.; Wolverson, Daniel; Chen, Chaoyu; Avila, Jose; Asensio, Maria C.

    2017-09-01

    The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two-dimensional heterostructure devices. The nature of the band gap (direct or indirect) for bulk, few-, and single-layer forms of ReS2 is of particular interest, due to its comparatively weak interplanar interaction. However, the degree of interlayer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS2 using high-resolution angle-resolved photoemission spectroscopy. We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 me ) than along them (1.6 me ). An appreciable interplane interaction results in an experimentally measured difference of ≈100 -200 meV between the valence band maxima at the Z point (0,0,1/2 ) and the Γ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at Γ , implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the nature of the band gap in this material.

  17. Ultra high-resolution gene centric genomic structural analysis of a non-syndromic congenital heart defect, Tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Douglas C Bittel

    Full Text Available Tetralogy of Fallot (TOF is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months. Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1 for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001. We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects.

  18. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Thai Leong [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G. [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); Lescar, Julien, E-mail: julien@ntu.edu.sg [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2007-02-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.

  19. High resolution imaging of lithospheric structures beneath the Pyrenees by full waveform inversion of shortperiod teleseismic P waves

    Science.gov (United States)

    Wang, Yi; Chevrot, Sébastien; Komatitsch, Dimitri; Monteiller, Vadim; Durochat, Clément

    2016-04-01

    Thanks to the deployment of permanent and temporary broadband arrays, coverage and data quality have dramatically improved in the last decade, especially for regional-scale studies. In addition, owing to the progress of high-performance resources and numerical simulation techniques, waveform inversion approaches nowadays become a viable alternative to classical asymptotic ray based tomographic approaches. Exploiting full waveforms in seismic tomography requires an efficient and precise method to solve the elastic wave equation in 3D inhomogeneous media. Since resolution of waveform inversion is limited by the seismic wavelength as well as the wavefield sampling density, it is crucial to exploit short-period teleseismic waves recorded by dense regional arrays. However, modeling the propagation of short-period body waves in heterogeneous media is still very challenging, even on the largest modern supercomputers. For this reason, we have developed a hybrid method that couples a global wave propagation method in a 1D Earth to a 3D spectral-element method in a regional domain. This hybrid method restricts the costly 3D computations to inside the regional domain, which dramatically decreases the computational cost, allows us to compute teleseismic wavefields down to 1s period, thus accounting for the complexities that affect the propagation of seismic waves in the regional domain. We present the first application of this new waveform inversion approach to broadband data coming from two dense transects deployed during the PYROPE experiment across the Pyrenees mountains. We obtain the first high-resolution lithospheric section of compressional and shear velocities across an orogenic belt. The tomographic model provides clear evidence for the under-thrusting of the thinned Iberian crust beneath the European plate and for the important role of rift-inherited mantle structures during the formation of the Pyrenees.

  20. High-resolution imaging of remanent state and magnetization reversal of superdomain structures in high-density cobalt antidot arrays.

    Science.gov (United States)

    Rodríguez, L A; Magén, C; Snoeck, E; Gatel, C; Castán-Guerrero, C; Sesé, J; García, L M; Herrero-Albillos, J; Bartolomé, J; Bartolomé, F; Ibarra, M R

    2014-09-26

    Remanent state and magnetization reversal processes of a series of cobalt antidot arrays with a fixed hole diameter (d ≈ 55 nm) and an array periodicity (p) ranging between 95 and 524 nm were studied by in situ Lorentz microscopy (LM) as a function of the magnetic field. At remanence, defocused LM images showed the periodicity dependence of the magnetic states inside the lattice. A remarkable transition was observed in the type of domain structures as a function of p: for the large periodicities (p > 300 nm), conventional 90° and 180° domain walls were formed, whereas in small-period antidot arrays (p ≦ 160 nm) magnetic superdomain walls (SDWs) were nucleated to separate regions with different average magnetization direction, the so-called magnetic superdomains. In the SDW regime, a low-frequency Fourier filtering method was implemented to allow a quantitative analysis of the LM images by the transport of intensity equation method. In situ LM experiments under applied magnetic fields were performed to study the reversal magnetization process in a particular array (p = 160 nm), and clear differences were observed as a function of the magnetic field orientation. The switching process under magnetic fields parallel to the horizontal antidot rows occurs in two stages: the system first nucleates and propagates horizontal SDWs, parallel to the field. Then, at higher magnetic fields, vertical SDWs, perpendicular to the field, appear before saturation. When the magnetic field is applied at 45° with respect to the antidot rows, both horizontal and vertical SDWs are nucleated and propagated simultaneously. All the experiments were successfully correlated with micromagnetic simulations. The current study sheds new light on the magnetization reversal processes of antidot arrays and opens new possibilities of exploiting the potential of high-resolution in situ LM and new data analysis procedures to probe magnetization processes in nanomagnetism, particularly in

  1. Very high resolution Earth observation features for monitoring plant and animal community structure across multiple spatial scales in protected areas

    Science.gov (United States)

    Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco; Tarantino, Cristina; Lucas, Richard M.; Nagendra, Harini; Didham, Raphael K.

    2015-05-01

    Monitoring the status and future trends in biodiversity can be prohibitively expensive using ground-based surveys. Consequently, significant effort is being invested in the use of satellite remote sensing to represent aspects of the proximate mechanisms (e.g., resource availability) that can be related to biodiversity surrogates (BS) such as species community descriptors. We explored the potential of very high resolution (VHR) satellite Earth observation (EO) features as proxies for habitat structural attributes that influence spatial variation in habitat quality and biodiversity change. In a semi-natural grassland mosaic of conservation concern in southern Italy, we employed a hierarchical nested sampling strategy to collect field and VHR-EO data across three spatial extent levels (landscape, patch and plot). Species incidence and abundance data were collected at the plot level for plant, insect and bird functional groups. Spectral and textural VHR-EO image features were derived from a Worldview-2 image. Three window sizes (grains) were tested for analysis and computation of textural features, guided by the perception limits of different organisms. The modelled relationships between VHR-EO features and BS responses differed across scales, suggesting that landscape, patch and plot levels are respectively most appropriate when dealing with birds, plants and insects. This research demonstrates the potential of VHR-EO for biodiversity mapping and habitat modelling, and highlights the importance of identifying the appropriate scale of analysis for specific taxonomic groups of interest. Further, textural features are important in the modelling of functional group-specific indices which represent BS in high conservation value habitat types, and provide a more direct link to species interaction networks and ecosystem functioning, than provided by traditional taxonomic diversity indices.

  2. Inorganic Crystal Structure Database (ICSD)

    Science.gov (United States)

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  3. Crystal structure of fipronil

    Directory of Open Access Journals (Sweden)

    Hyunjin Park

    2017-10-01

    Full Text Available The title compound, C12H4Cl2F6N4OS {systematic name: 5-amino-1-[2,6-dichloro-4-(trifluoromethylphenyl]-4-[(trifluoromethanesulfinyl]-1H-pyrazole-3-carbonitrile}, is a member of the phenylpyrazole group of acaricides, and one of the phenylpyrazole group of insecticides. The dihedral angle between the planes of the pyrazole and benzene rings is 89.03 (9°. The fluorine atoms of the trifluoromethyl substituent on the benzene ring are disordered over two sets of sites, with occupancy ratios 0.620 (15:0.380 (15. In the crystal, C—N...π interactions [N...ring centroid = 3.607 (4 Å] together with N—H...N and C—H...F hydrogen bonds form a looped chain structure along [10\\overline{1}]. Finally, N—H...O hydrogen bonds and C—Cl...π interactions [Cl...ring centroid = 3.5159 (16 Å] generate a three-dimensional structure. Additionally, there are a short intermolecular F... F contacts present.

  4. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  5. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  6. High-resolution modeling of antibody structures by a combination of bioinformatics, expert knowledge, and molecular simulations.

    Science.gov (United States)

    Shirai, Hiroki; Ikeda, Kazuyoshi; Yamashita, Kazuo; Tsuchiya, Yuko; Sarmiento, Jamica; Liang, Shide; Morokata, Tatsuaki; Mizuguchi, Kenji; Higo, Junichi; Standley, Daron M; Nakamura, Haruki

    2014-08-01

    In the second antibody modeling assessment, we used a semiautomated template-based structure modeling approach for 11 blinded antibody variable region (Fv) targets. The structural modeling method involved several steps, including template selection for framework and canonical structures of complementary determining regions (CDRs), homology modeling, energy minimization, and expert inspection. The submitted models for Fv modeling in Stage 1 had the lowest average backbone root mean square deviation (RMSD) (1.06 Å). Comparison to crystal structures showed the most accurate Fv models were generated for 4 out of 11 targets. We found that the successful modeling in Stage 1 mainly was due to expert-guided template selection for CDRs, especially for CDR-H3, based on our previously proposed empirical method (H3-rules) and the use of position specific scoring matrix-based scoring. Loop refinement using fragment assembly and multicanonical molecular dynamics (McMD) was applied to CDR-H3 loop modeling in Stage 2. Fragment assembly and McMD produced putative structural ensembles with low free energy values that were scored based on the OSCAR all-atom force field and conformation density in principal component analysis space, respectively, as well as the degree of consensus between the two sampling methods. The quality of 8 out of 10 targets improved as compared with Stage 1. For 4 out of 10 Stage-2 targets, our method generated top-scoring models with RMSD values of less than 1 Å. In this article, we discuss the strengths and weaknesses of our approach as well as possible directions for improvement to generate better predictions in the future. © 2014 Wiley Periodicals, Inc.

  7. Prediction of molecular crystal structures

    CERN Document Server

    Beyer, T

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of parac...

  8. Crystal structure of oxamyl

    Directory of Open Access Journals (Sweden)

    Eunjin Kwon

    2016-12-01

    Full Text Available The title compound, C7H13N3O3S [systematic name: (Z-methyl 2-dimethylamino-N-(methylcarbamoyloxy-2-oxoethanimidothioate], is an oxime carbamate acaride, insecticide and nematicide. The asymmetric unit comprises two independent molecules, A and B. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (A and 0.0016 Å (B] of the acetamide and oxyimino groups are 88.80 (8° for A and 87.05 (8° for B. In the crystal, N/C—H...O hydrogen bonds link adjacent molecules, forming chains along the a axis. The chains are further linked by C—H...O hydrogen bonds, resulting in a three-dimensional network with alternating rows of A and B molecules in the bc plane stacked along the a-axis direction. The structure was refined as an inversion twin with a final BASF parameter of 0.16 (9.

  9. Catalytic Features of the Botulinum Neurotoxin A Light Chain Revealed by High Resolution Structure of an Inhibitory Peptide Complex

    Energy Technology Data Exchange (ETDEWEB)

    Silvaggi,N.; Wilson, D.; Tzipori, S.; Allen, K.

    2008-01-01

    The Clostridium botulinum neurotoxin serotype A light chain (BoNT/A-LC) is a Zn(II)-dependent metalloprotease that blocks the release of acetylcholine at the neuromuscular junction by cleaving SNAP-25, one of the SNARE proteins required for exocytosis. Because of the potential for use of the toxin in bioterrorism and the increasingly widespread application of the toxin in the medical field, there is significant interest in the development of small-molecule inhibitors of the metalloprotease. Efforts to design such inhibitors have not benefited from knowledge of how peptides bind to the active site since the enzyme-peptide structures available previously either were not occupied in the vicinity of the catalytic Zn(II) ion or did not represent the product of SNAP-25 substrate cleavage. Herein we report the 1.4 Angstroms-resolution X-ray crystal structure of a complex between the BoNT/A-LC and the inhibitory peptide N-Ac-CRATKML, the first structure of the light chain with an inhibitory peptide bound at the catalytic Zn(II) ion. The peptide is bound with the Cys S? atom coordinating the metal ion. Surprisingly, the cysteine sulfur is oxidized to the sulfenic acid form. Given the unstable nature of this species in solution, is it likely that oxidation occurs on the enzyme. In addition to the peptide-bound structure, we report two structures of the unliganded light chain with and without the Zn(II) cofactor bound at 1.25 and 1.20 Angstroms resolution, respectively. The two structures are nearly identical, confirming that the Zn(II) ion plays a purely catalytic role. Additionally, the structure of the Zn(II)-bound uncomplexed enzyme allows identification of the catalytic water molecule and a second water molecule that occupies the same position as the peptidic oxygen in the tetrahedral intermediate. This observation suggests that the enzyme active site is prearranged to stabilize the tetrahedral intermediate of the protease reaction.

  10. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus. Purification, Crystallization and Structure Determination

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, William M.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki (MRC); (Utah); (MRC)

    2009-10-07

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 {angstrom} resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 {angstrom} resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  11. Genome-wide analysis of chromatin structures in Trypanosoma brucei using high-resolution MNase-ChIP-seq.

    Science.gov (United States)

    Wedel, Carolin; Siegel, T Nicolai

    2017-09-01

    Specific DNA-protein interactions are the basis for many important cellular mechanisms like the regulation of gene expression or replication. Knowledge about the precise genomic locations of DNA-protein interactions is important because it provides insight into the regulation of these processes. Recently, we have adapted an approach that combines micrococcal nuclease (MNase) digestion of chromatin with chromatin immunoprecipitation in Trypanosoma brucei. Here, we describe in detail how this method can be used to map the genome-wide distribution of nucleosomes or other DNA-binding proteins at high resolution in T. brucei. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Buried volcanic structures in the Gulf of Naples (Southern Tyrrhenian Sea, Italy resulting from high resolution magnetic survey and seismic profiling

    Directory of Open Access Journals (Sweden)

    S. Ruggieri

    2005-06-01

    Full Text Available In this paper we present a correlation between volcanic structures and magnetic anomalies in the Gulf of Naples (Southern Tyrrhenian Sea based on high resolution magnetic profiling. A densely spaced grid of magnetic profiles coupled with multichannel seismics (seismic source Watergun 15 cubic inch was recorded in the Gulf of Naples, representing an active volcanic area during the Late Quaternary (volcanic centers of Somma-Vesuvius, Phlegraean Fields and Ischia and Procida islands. The dataset was collected during the oceanographic cruise GMS00-05 which took place during October-November 2000 in the South Tyrrhenian Sea onboard of the R/V Urania (National Research Council, Italy. Shallow volcanic structures in the subsurface of the gulf were recognized by seismo-stratigraphic analysis of high resolution profiles; the volcanic nature of some of these structures was inferred identifying the magnetic anomalies on a high resolution magnetic anomaly map of the gulf. Even if qualitative, the correlations between seismic and magnetic profiles allow us to better assess the geological structure of the Gulf of Naples.

  13. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

    DEFF Research Database (Denmark)

    Ostergaard, L; Teilum, K; Mirza, O

    2000-01-01

    to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover...... of ATP A2 was solved to 1.45 A resolution at 100 K. Docking of p-coumaryl, coniferyl and sinapyl alcohol in the substrate binding site of ATP A2 were analysed on the basis of the crystal structure of a horseradish peroxidase C-CN-ferulic acid complex. The analysis indicates that the precursors p......-coumaryl and coniferyl alcohols are preferred by ATP A2, while the oxidation of sinapyl alcohol will be sterically hindered in ATP A2 as well as in all other plant peroxidases due to an overlap with the conserved Pro-139. We suggest ATP A2 is involved in a complex regulation of the covalent cross-linking in the plant...

  14. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    OpenAIRE

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.; Garimella, Sandilya V.B.; Webb, Ian K.; Zheng, Xueyun; Prost, Spencer A; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-01-01

    We report the development and initial evaluation of a 13 m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC, and TW electrodes and positioned with a 2.75 mm intersurface gap. Ions were effectively confined in field-generated conduits between the surfaces by R...

  15. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  16. Bone Structure and Estimated Bone Strength in Obese Patients Evaluated by High-Resolution Peripheral Quantitative Computed Tomography

    DEFF Research Database (Denmark)

    Andersen, Stine; Frederiksen, Katrine Diemer; Hansen, Stinus

    2014-01-01

    females, age 25-56 years and BMI 33.2-57.6 kg/m(2)) matched with healthy controls (age 25-54 years and BMI 19.5-24.8 kg/m(2)) in regard to gender, menopausal status, age (±6 years) and height (±6 cm) using high resolution peripheral quantitative computed tomography and dual energy X-ray absorptiometry....... In radius, total bone area and trabecular area were significantly higher in obese patients (both p radius. Trabecular integrity was strengthened in obese...... patients compared with controls in radius and tibia with higher trabecular number (p = 0.002 and p radius in obese patients. FL was significantly...

  17. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB-REDO strategies

    Energy Technology Data Exchange (ETDEWEB)

    Rimsa, Vadim; Eadsforth, Thomas C. [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Joosten, Robbie P. [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom)

    2014-02-01

    The structure of a bacterial M14-family carboxypeptidase determined exploiting microfocus synchrotron radiation and highly automated refinement protocols reveals its potential to act as a polyglutamylase. A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB-REDO were coupled with model–map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn{sup 2+}-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn{sup 2+}, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1′ recognition subsite that suggests specificity towards an acidic substrate.

  18. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Ma

    Full Text Available We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS, identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7, presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  19. Glacio-tectonic thrust and deformation structures in the Vejle Fjord, Denmark revealed by high-resolution subbottom-profile data

    DEFF Research Database (Denmark)

    Andresen, Katrine Juul; Boldreel, Lars Ole; Wahlgreen, Katrine Bak

    Surface geomorphological features and partial cliff exposures up till now represent the predominant source of information of glaciation related deformation in Denmark. In this study we apply high-resolution marine reflection seismic data from the Vejle Fjord area, supported by gravity and Rumohr...... coring, to document intense glacio-tectonic deformation in the shallow subsurface of Denmark. The subbottom profiler seismic data have a peak frequency around 13 kHz and a vertical resolution in the order of 10-20 cm. The data reveal several variations of glacio-tectonic deformation structures, primarily...... observed near the edges of the fjord where coarse-grained and sandy deposits are present. These sediments allows for an exceptionally good and high-resolution imaging of the marine shallow subsurface. Within the central regions of the fjord, widespread shallow gas accumulations probably generated from...

  20. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment

    Energy Technology Data Exchange (ETDEWEB)

    Rumpel, Sigrun; Becker, Stefan; Zweckstetter, Markus [Max Planck Institute for Biophysical Chemistry, Department for NMR-based Structural Biology (Germany)], E-mail: mzwecks@gwdg.de

    2008-01-15

    Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 A from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions.

  1. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  2. High resolution electron microscopy studies of twin boundary structures in B19{prime} martensite in the Ti-Ni shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, M.; Itai, I.; Ohgi, H.; Chiba, A. [Kumamoto Univ. (Japan). Dept. of Materials Science and Resource Engineering; Yamauchi, K. [Tokin Corp., Sendai (Japan). Materials Science and Development Lab.

    1995-03-01

    The boundary structure of the <011> Type II, {l_brace}11{bar 1}{r_brace} Type I, {l_brace}011{r_brace} Type I, (100) compound and (001) compound twins in the B19{prime} martensite in the Ti-Ni shape memory alloy was observed in the edge-on state by high resolution electron microscopy (HREM). The lattice images of the Type I and the compound twins exhibit the well-defined crystallographic features of those boundaries. Lattice image of the <011> Type II twin taken from the unique {eta}{sub 1} axis suggests that neither ledge nor step structures are present at the irrational boundary.

  3. High resolution solid state sup 13 C nuclear magnetic resonance study of the. gamma. -radiation effect on cellulose and wood structure

    Energy Technology Data Exchange (ETDEWEB)

    Spevacek, J. (Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Makromolekularni Chemie); Kafka, D. (Kosice Technical Univ. (Czechoslovakia). Dept. of Physics)

    1991-06-01

    {sup 13}C solid state high resolution NMR spectroscopy is a suitable method for studying the degradation of cellulose or wood by {gamma}-radiation. It allows to simultaneously study both disruption of the crystalline structure of cellulose, and changes in the chemical structure (reduction of the mean degree of polymerization as observed by means of the bands of chain-end groups, and formation of carboxyl and carbonyl groups). At irradiation doses between 1 and 5 MGy, changes that can be detected in {sup 13}C NMR spectra occur both in pure cellulose (cotton linters) and in the cellulose component of wood. (orig.).

  4. High-resolution 3D reconstruction of microtubule structures by quantitative multi-angle total internal reflection fluorescence microscopy

    Science.gov (United States)

    Jin, Luhong; Wu, Jian; Xiu, Peng; Fan, Jiannan; Hu, Miao; Kuang, Cuifang; Xu, Yingke; Zheng, Xiaoxiang; Liu, Xu

    2017-07-01

    Total internal reflection fluorescence microscopy (TIRFM) has been widely used in biomedical research to visualize cellular processes near the cell surface. In this study, a novel multi-angle ring-illuminated TIRFM system, equipped with two galvo mirrors that are on conjugate plan of a 4f optical system was developed. Multi-angle TIRFM generates images with different penetration depths through the controlled variation of the incident angle of illuminating laser. We presented a method to perform three-dimensional (3-D) reconstruction of microtubules from multi-angle TIRFM images. The performance of our method was validated in simulated microtubules with variable signal-to-noise ratios (SNR) and the axial resolution and accuracy of reconstruction were evaluated in selecting different numbers of illumination angles or in different SNR conditions. In U373 cells, we reconstructed the 3-D localization of microtubules near the cell surface with high resolution using over a hundred different angles. Theoretically, the presented TIRFM setup and 3-D reconstruction method can achieve 40 nm axial resolution in experimental conditions where SNR is as low as 2, with 35 different illumination angles. Moreover, our system and reconstruction method have the potential to be used in live cells to track membrane dynamics in 3-D.

  5. Crystal structure of cafenstrole

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available The title compound (systematic name: N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide, C16H22N4O3S, is a triazole herbicide. The dihedral angle between the planes of the triazole and benzene ring planes is 88.14 (10°. In the crystal, C—H...O hydrogen bonds and weak C—H...π interactions link adjacent molecules, forming one-dimensional chains along the a axis.

  6. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...

  7. Development of a sub-cm high resolution ion Doppler tomography diagnostics for fine structure measurement of guide field reconnection in TS-U

    Science.gov (United States)

    Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi

    2017-10-01

    A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  8. Crystal structure of yeast Sco1

    Energy Technology Data Exchange (ETDEWEB)

    Abajian, Carnie; Rosenzweig, Amy C. (NWU)

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  9. HIGH-RESOLUTION CO OBSERVATION OF THE CARBON STAR CIT 6 REVEALING THE SPIRAL STRUCTURE AND A NASCENT BIPOLAR OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E.; Kemper, Francisca [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Jongsoo; Byun, Do-Young; Liu, Tie, E-mail: hkim@asiaa.sinica.edu.tw [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-11-20

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPNs). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC{sub 3}N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB–pPN transition. We have carried out high-resolution {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescope (single-dish) data. The {sup 12}CO channel maps reveal a spiral-shell pattern connecting the HC{sub 3}N segments in a continuous form and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the {sup 12}CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presence of an anisotropic mass loss to the west and a double spiral pattern. The lack of interarm emission to the west may indicate a feature corresponding to the periastron passage of a highly eccentric orbit of the binary. Spatially averaged radial and spectral profiles of {sup 12}CO J = 2–1 and {sup 13}CO J = 2–1 are compared with simple spherical radiative transfer models, suggesting a change of {sup 12}CO/{sup 13}CO abundance ratio from ∼30 to ∼50 inward in the CSE of CIT 6. The millimeter continuum emission is decomposed into extended dust thermal emission (spectral index ∼ −2.4) and compact emission from radio photosphere (spectral index ∼ −2.0)

  10. High-resolution studies of double-layered ejecta craters: Morphology, inherent structure, and a phenomenological formation model

    Science.gov (United States)

    Wulf, Gerwin; Kenkmann, Thomas

    2015-02-01

    The ejecta blankets of impact craters in volatile-rich environments often possess characteristic layered ejecta morphologies. The so-called double-layered ejecta (DLE) craters are characterized by two ejecta layers with distinct morphologies. The analysis of high-resolution image data, especially HiRISE and CTX, provides new insights into the formation of DLE craters. A new phenomenological excavation and ejecta emplacement model for DLE craters is proposed based on a detailed case study of the Martian crater Steinheim—a well-preserved DLE crater—and studies of other DLE craters. The observations show that the outer ejecta layer is emplaced as medial and distal ejecta that propagate outwards in a debris avalanche or (if saturated with water) a debris flow mode after landing, overrunning previously formed secondary craters. In contrast, the inner ejecta layer is formed by a translational slide of the proximal ejecta deposits during the emplacement stage that overrun and superimpose parts of the outer ejecta layer. Based on our model, DLE craters on Mars are the result of an impact event into a rock/ice mixture that produces large amounts of shock-induced vaporization and melting of ground ice, leading to high ejection angles, proximal landing positions, and an ejecta curtain with relatively wet (in terms of water in liquid form) composition in the distal part versus dryer composition in the proximal part. As a consequence, basal melting of ice components in the ejecta at the transient crater rim, which is induced by frictional heating and the enhanced pressure at depth, initiates an outwards directed collapse of crater rim material in a translational slide mode. Our results indicate that similar processes may also be applicable for other planetary bodies with volatile-rich environments, such as Ganymede, Europa, and the Earth.

  11. Crystal structure of pyriproxyfen

    Directory of Open Access Journals (Sweden)

    Gihaeng Kang

    2015-08-01

    Full Text Available In the title compound {systematic name: 4-phenoxyphenyl (RS-2-[(pyridin-2-yloxy]propyl ether}, C20H19NO3, which is a juvenile hormone mimic and insecticide, the dihedral angles between the plane of the central benene ring and those of the pendant pyridine ring and phenyl ring are 78.09 (6 and 82.14 (8°, respectively. The conformation of the O—C—C—O linkage is gauche [torsion angle = −75.0 (2°]. In the crystal, weak aromatic π–π stacking interactions [centroid–centroid separation = 3.8436 (13 Å] and C—H...π interactions link adjacent molecules, forming a three-dimensional network.

  12. Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS

    Science.gov (United States)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1979-01-01

    The chemical structures of thin SiO2 films, thin native oxides of GaAs (20-30 A), and the respective oxide-semiconductor interfaces, have been investigated using high-resolution X-ray photoelectron spectroscopy. Depth profiles of these structures have been obtained using argon ion bombardment and wet chemical etching techniques. The chemical destruction induced by the ion profiling method is shown by direct comparison of these methods for identical samples. Fourier transform data-reduction methods based on linear prediction with maximum entropy constraints are used to analyze the discrete structure in oxides and substrates. This discrete structure is interpreted by means of a structure-induced charge-transfer model.

  13. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: gsheldr@shelx.uni-ac.gwdg.de [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  14. Crystal structure of pymetrozine

    Directory of Open Access Journals (Sweden)

    Youngeun Jeon

    2015-07-01

    Full Text Available The title compound, C10H11N5O {systematic name: 6-methyl-4-[(E-(pyridin-3-ylmethylideneamino]-4,5-dihydro-1,2,4-triazin-3(2H-one}, C10H11N5O, is used as an antifeedant in pest control. The asymmetric unit comprises two independent molecules, A and B, in which the dihedral angles between the pyridinyl and triazinyl ring planes [r.m.s. deviations = 0.0132 and 0.0255 ] are 11.60 (6 and 18.06 (4°, respectively. In the crystal, N—H...O, N—H...N, C—H...N and C—H...O hydrogen bonds, together with weak π–π interactions [ring-centroid separations = 3.5456 (9 and 3.9142 (9 Å], link the pyridinyl and triazinyl rings of A molecules, generating a three-dimensional network.

  15. The high-resolution structure of activated opsin reveals a conserved solvent network in the transmembrane region essential for activation

    Science.gov (United States)

    Blankenship, Elise; Vahedi-Faridi, Ardeschir; Lodowski, David T.

    2015-01-01

    Rhodopsin, a light-activated G protein coupled receptor (GPCR), has been the subject of numerous biochemical and structural investigations, serving as a model receptor for GPCRs and their activation. Herein we present the 2.3 Å resolution structure of native-source rhodopsin stabilized in a conformation competent for G protein binding. An extensive water-mediated hydrogen bond network linking the chromophore binding site to the site of G protein binding is observed, providing connections to conserved motifs essential for GPCR activation. Comparison of this extensive solvent mediated hydrogen-bonding network to the positions of ordered solvent in earlier crystallographic structures of rhodopsin photointermediates reveals both static structural and dynamic functional water-protein interactions present during the activation process. When taken with observations that solvent occupies similar positions in the structures of other GPCRs, these analyses strongly support an integral role for this dynamic ordered water network in both rhodopsin and GPCR activation. PMID:26526852

  16. Crystal defects and cation ordering domains in epitaxial PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} relaxor ferroelectric thin films investigated by high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Birajdar, B.I., E-mail: balaji.birajdar@ww.uni-erlangen.de [Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Chopra, A.; Alexe, M.; Hesse, D. [Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany)

    2011-06-15

    Highlights: > Epitaxial thin films of PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} grown by pulsed laser deposition. > Microstructure studied by transmission electron microscopy. > Microstructural defects: {pi} stacking faults and cation ordering domains. > Explanation for the formation of defects. > Explanation of reduced dielectric constant of relaxor thin films. - Abstract: Epitaxial thin films of the relaxor ferroelectric PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} (PST) were grown by pulsed laser deposition on an SrTiO{sub 3} substrate with an SrRuO{sub 3} buffer layer and investigated by diffraction contrast imaging and high-resolution transmission electron microscopy (TEM) in cross-section and plan-view. Crystal defects, viz. misfit dislocations, {pi} stacking faults and cation ordering domains, have been characterized and the mechanism of their formation is discussed. The state of the structural disorder in PST relaxor thin films is characterized by the high density of {pi} stacking faults and the rather small size (<10 nm) of the cation ordering domains, and is therefore markedly distinct from the state of the disorder in bulk relaxor PST. Polar nanoregions, supposed to be essential for explaining the relaxor properties, could not be detected using TEM, possibly due to their high fluctuation frequency. The dielectric constant of the relaxor PST thin films is about an order of magnitude smaller than that of bulk relaxor PST, which is attributed to the large density of {pi} stacking faults in the thin films.

  17. High-resolution topography of 1974 Mount Etna lava flow based on Unmanned Aerial Vehicle (UAV) surveys and Structure from Motion (SfM) photogrammetry

    Science.gov (United States)

    Fornaciai, Alessandro; Favalli, Massimiliano; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2017-04-01

    The production of high resolution Digital Elevation Models (DEMs) of lava is of increasing interest in volcanology because the time scales of change are fast and involve vertical and planimetric changes of millimeters to meters. Among the wide range of terrestrial and aerial methods available to collect topographic data, the use of unmanned aerial vehicle (UAV) acquiring platform and structure from motion (SfM) photogrammetric technique is especially useful because it allow collecting data of inaccessible, kilometer scale areas, with low cost and minimal hazard to personnel. This study presents the application of UAV-SfM method to generate a high-resolution DEMs and orthomosaic of the 1974 Mount Etna lava field. The UAV was flown over lava field at flight altitude to about 70 m above ground level (AGL) and acquired 2781 photographs. SfM-photogrammetry applied to these images enabled the extraction of very (20 cm) high-resolution DEMs and 3 cm orthomosaic for a total area of 1.35 square kilometers. The data produced by the UAV-SfM was compared with airborne LiDAR data. Such comparison gives a root mean squared error between the two DEMs of 0.24 m. The unprecedented topographic resolution obtained with UAV-SfM methods enabled us to derive morphometry of sub-meter-scale lava features, such as folds, blocks, and cracks, over kilometric scale areas. The 3 cm orthomosaic allowed us to further push the analysis to dm-scale grain distribution of the lava surface. This study shows that SfM and UAV platforms can be effectively used for mapping volcanic features producing topographic data in a manner not possible with the 1-m LiDAR-derived DEM. The spectral analysis of surface folding support this analysis showing a much larger spectrum of frequencies of the SfM-derived DEM than the LiDAR DEM.

  18. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE ...

    African Journals Online (AJOL)

    Preferred Customer

    The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property. INTRODUCTION. Coordination chemistry of molybdenum(VI) has attracted considerable attention ...

  19. Twinning structures in near-stoichiometric lithium niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shuhua; Chen, Yanfeng [Nanjing Univ. (China). Dept. of Materials Science and Engineering; Hu, Xiaobo; Yan, Tan; Liu, Hong; Wang, Jiyang [Shandong Univ., Jinan (China). State Key Lab. of Crystal Materials; Qin, Xiaoyong [Deqing Huaying Electronics Co. (China)

    2010-04-15

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts {delta}X and {delta}Y in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {l_brace}01 anti 1 anti 2{r_brace}{sub m} planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  20. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; van der Walle, P.; Offerhaus, Herman L.; van Hulst, N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses from

  1. High-resolution NMR structure of the antimicrobial peptide protegrin-2 in the presence of DPC micelles

    Energy Technology Data Exchange (ETDEWEB)

    Usachev, K. S., E-mail: k.usachev@kpfu.ru; Efimov, S. V.; Kolosova, O. A.; Filippov, A. V.; Klochkov, V. V. [Kazan Federal University (Russian Federation)

    2015-04-15

    PG-1 adopts a dimeric structure in dodecylphosphocholine (DPC) micelles, and a channel is formed by the association of several dimers but the molecular mechanisms of the membrane damage by non-α-helical peptides are still unknown. The formation of the PG-1 dimer is important for pore formation in the lipid bilayer, since the dimer can be regarded as the primary unit for assembly into the ordered aggregates. It was supposed that only 12 residues (RGGRL-CYCRR-RFCVC-V) are needed to endow protegrin molecules with strong antibacterial activity and that at least four additional residues are needed to add potent antifungal properties. Thus, the 16-residue protegrin (PG-2) represents the minimal structure needed for broad-spectrum antimicrobial activity encompassing bacteria and fungi. As the peptide conformation and peptide-to-membrane binding properties are very sensitive to single amino acid substitutions, the solution structure of PG-2 in solution and in a membrane mimicking environment are crucial. In order to find evidence if the oligomerization state of PG-1 in a lipid environment will be the same or not for another protegrins, we investigate in the present work the PG-2 NMR solution structure in the presence of perdeuterated DPC micelles. The NMR study reported in the present work indicates that PG-2 form a well-defined structure (PDB: 2MUH) composed of a two-stranded antiparallel β-sheet when it binds to DPC micelles.

  2. Planar interfaces: Synthesis and high resolution chemistry and structure analysis. Progress report, March 1, 1997--February 28, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R.W.; Kim, M.J.

    1998-04-01

    The interface synthesis unit is operational and working well. The authors have synthesized interfaces between substrates of austenitic stainless steel, silicon, silicon/niobium, and alumina with and without addition of other materials in the interfaces. Early in the synthesis work it was apparent that substrate surface preparation was critical, along with the usual variables: temperature, time, and pressure. After suitable surface preparation successful interfaces were bonded. Substrate surface preparation requires surface cleaning, to activate the surface and polishing to flatten the bonding surfaces. Flatness has two components: large scale flatness and short wavelength near atomic scale flatness. Analytical TEM electron energy loss (ELS) and energy dispersive x-ray (EDS) nanospectroscopies showed that no detectable oxygen contamination occurred in any of the interfaces they have synthesized, in particular in the stainless steel interfaces containing Ti or Cu. Those two interfaces were especially stringent tests of the synthesis unit because of the high reactivity of Ti and Cu with oxygen. Single crystal Si {l_brace}100{r_brace} substrates are more useful than polycrystalline stainless steel for determining the effect of ion cleaning induced roughness on interface morphology. Nb was deposited at room temperature on ion-cleaned and as-received Si wafers to evaluate this effect in edge-on transmission geometry. The authors have extended their work on contacts for GaN to TiN/GaN interfaces and Au/Ti/GaN multilayer interfaces. Some recent results from the GaN contact research are given in Smith et. al. (1996a) and Smith et. al. (1996b). The authors have evaluated the usefulness of one of the new oxygen plasma cleaning units for prevention of carbonaceous contamination build-up on TEM specimens. It proved very successful.

  3. Analyses of the temporal and spatial structures of heavy rainfall from a catalog of high-resolution radar rainfall fields

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Smith, James A.; Baeck, Mary Lynn

    2014-01-01

    that relate to size, structure and evolution of heavy rainfall. Extreme rainfall is also linked with severe weather (tornados, large hail and damaging wind). The diurnal cycle of rainfall for heavy rain days is characterized by an early peak in the largest rainfall rates, an afternoon-evening peak in rain...

  4. Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Tina Gerl

    2014-08-01

    Full Text Available The modeling of flood damage is an important component for risk analyses, which are the basis for risk-oriented flood management, risk mapping, and financial appraisals. An automatic urban structure type mapping approach was applied on a land use/land cover classification generated from multispectral Ikonos data and LiDAR (Light Detection And Ranging data in order to provide spatially detailed information about the building stock of the case study area of Dresden, Germany. The multi-parameter damage models FLEMOps (Flood Loss Estimation Model for the private sector and regression-tree models have been adapted to the information derived from remote sensing data and were applied on the basis of the urban structure map. To evaluate this approach, which is suitable for risk analyses, as well as for post-disaster event analyses, an estimation of the flood losses caused by the Elbe flood in 2002 was undertaken. The urban structure mapping approach delivered a map with a good accuracy of 74% and on this basis modeled flood losses for the Elbe flood in 2002 in Dresden were in the same order of magnitude as official damage data. It has been shown that single-family houses suffered significantly higher damages than other urban structure types. Consequently, information on their specific location might significantly improve damage modeling, which indicates a high potential of remote sensing methods to further improve risk assessments.

  5. High-resolution Vp and Vs Structure of the Post-Paleozoic Sediments in the Upper Mississippi Embayment, Central USA

    Science.gov (United States)

    Chiu, J.; Asmerom, B.; Woolery, E.; Wang, Z.

    2008-12-01

    Site response, sedimentary basin geometry, earthquake induced strong ground motion, distribution of earthquake hypocenters, and geometry and characteristic feature of active faults are among the most essential elements for seismic hazard assessment in the upper Mississippi Embayment. However, these elements cannot be successfully evaluated without reliable Vp and Vs information for the embayment sediments. A total of 20 sites in the northern Mississippi Embayment were selected for field experiment to explore detail Vp and Vs structural information. At each site, a seismic reflection/refraction line has been conducted using a seismic source that generates both P- and S-waves. For sites not near any regional seismic network stations, a temporary portable broadband seismic station has been installed for a few weeks to record local earthquakes. Seismic data from the reflection/refraction line and from the recorded local earthquakes are analyzed to explore the Vp and Vs structures of the post Paleozoic sediments beneath each site. The Vp and Vs structures for the sediments beneath adjacent sites are then compared to explore lateral velocity structural variations. Preliminary results reveal that seismic velocities and lithologic features of the sediments in the embayment are characterized by extremely low seismic velocity, especially Vs, near surface and by very significant lateral and vertical variations. The sediments in the Upper Mississippi Embayment cannot be described simply by any 1-D homogeneous horizontally layered velocity model, typically obtained from surface wave analysis and from long seismic refraction profiles. Thus, earthquake locations as well as seismic hazard assessment cannot be properly determined without more detail 3-D Vp and Vs structural models for the sediments in the Upper Mississippi Embayment.

  6. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.; Garimella, Sandilya V. B.; Webb, Ian K.; Zheng, Xueyun; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-09-20

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RF parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.

  7. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module.

    Science.gov (United States)

    Deng, Liulin; Ibrahim, Yehia M; Hamid, Ahmed M; Garimella, Sandilya V B; Webb, Ian K; Zheng, Xueyun; Prost, Spencer A; Sandoval, Jeremy A; Norheim, Randolph V; Anderson, Gordon A; Tolmachev, Aleksey V; Baker, Erin S; Smith, Richard D

    2016-09-20

    We report the development and initial evaluation of a 13 m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC, and TW electrodes and positioned with a 2.75 mm intersurface gap. Ions were effectively confined in field-generated conduits between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 "U" turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, and TW and RF parameters. After initial optimization, the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s(-1), respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled, e.g., isomeric sugars (lacto-N-fucopentaose I and lacto-N-fucopentaose II) to be baseline resolved, and peptides from an albumin tryptic digest were much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multipass designs.

  8. Crystal structure of human tooth enamel studied by neutron diffraction

    Science.gov (United States)

    Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre

    2015-02-01

    Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.

  9. Spectroscopic study on deuterated benzenes. II. High-resolution laser spectroscopy and rotational structure in the S{sub 1} state

    Energy Technology Data Exchange (ETDEWEB)

    Kunishige, Sachi; Katori, Toshiharu; Baba, Masaaki, E-mail: baba@kuchem.kyoto-u.ac.jp [Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Hayashi, Masato [Institute for Molecular Science, National Institute of Natural Science, Myodaiji, Okazaki 444-8585 (Japan); Hasegawa, Hirokazu [Department of Basic Science, Graduated School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902 (Japan); Ohshima, Yasuhiro [Institute for Molecular Science, National Institute of Natural Science, Myodaiji, Okazaki 444-8585 (Japan); Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2015-12-28

    High-resolution spectra of the S{sub 1}←S{sub 0} transition in jet-cooled deuterated benzenes were observed using pulse dye amplification of single-mode laser light and mass-selective resonance enhanced multiphoton ionization (REMPI) detection. The vibrational and rotational structures were accurately analyzed for the vibronic levels in the S{sub 1} state. The degenerate 6{sup 1} levels of C{sub 6}H{sub 6} or C{sub 6}D{sub 6} are split into 6a{sup 1} and 6b{sup 1} in many of deuterated benzenes. The rigid-rotor rotational constants were assessed and found to be slightly different between 6a and 6b because of different mean molecular structures. Their rotational levels are significantly shifted by Coriolis interactions. It was found that the Coriolis parameter proportionally changed with the number of substituted D atoms.

  10. High-resolution electron-beam-induced-current study of the defect structure in GaN epilayers

    CERN Document Server

    Shmidt, N M; Usikov, A S; Yakimov, E B; Zavarin, E E

    2002-01-01

    Electron-beam-induced-current (EBIC) investigations of GaN structures grown by metal-organic chemical vapour deposition on (0001) sapphire substrates have been carried out. It is shown that the widths of the EBIC profiles for individual extended defects can be as small as about 100 nm. This width is observed to decrease with decreasing diffusion length and/or with increasing electron beam energy. The high spatial resolution is explained by the small diffusion length in the samples under study. The diffusion length is small even in structures with dislocation densities of about 10 sup 8 cm sup - sup 3 and carrier mobilities of about 600 cm sup 2 V sup - sup 1 s sup - sup 1 at 300 K and 1800 cm sup 2 V sup - sup 1 s sup - sup 1 at 125 K.

  11. Low-temperature structural behaviour of LaCoO3 - A high-resolution neutron study

    Science.gov (United States)

    Bull, Craig L.; Knight, Kevin S.

    2016-07-01

    We present the temperature evolution of the crystallographic structure of LaCoO3 in the range 4-300 K. We observe no anomalies in the rhombohedral unit cell parameters at temperatures where electronic transitions are expected to occur. We also find no evidence of the monoclinic distortion of the unit cell proposed others. We parameterise the octahedral tilt and distortion as a function of temperature which show a linear evolution towards a more symmetric form.

  12. High-resolution water window X-ray imaging of in vivo cells and their products using LiF crystal detectors.

    Science.gov (United States)

    Bonfigli, Francesca; Faenov, Anatoly; Flora, Francesco; Francucci, Massimo; Gaudio, Pasqualino; Lai, Antonia; Martellucci, Sergio; Montereali, Rosa Maria; Pikuz, Tania; Reale, Lucia; Richetta, Maria; Vincenti, Maria Aurora; Baldacchini, Giuseppe

    2008-01-01

    High contrast imaging of in vivo Chlorella sorokiniana cells with submicron spatial resolution was obtained with a contact water window X-ray microscopy technique using a point-like, laser-plasma produced, water-window X-ray radiation source, and LiF crystals as detectors. This novel type of X-ray imaging detectors is based on photoluminescence of stable electronic point defects, characterized by high intrinsic resolution. The fluorescence images obtained on LiF crystals exposed in single-shot experiments demonstrate the high sensitivity and dynamic range of this new detector. The powerful performances of LiF crystals allowed us to detect the exudates of Chlorella cells in their living medium and their spatial distribution in situ, without any special sample preparation. 2007 Wiley-Liss, Inc

  13. Evolution of dislocation structures following a change in loading conditions studied by in situ high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Wejdemann, Christian

    corresponding to the contributions from the subgrains and the walls. The analysis showed that the morphology of the dislocation structures is almost unchanged during the micro-plastic range of the in situ deformation, and during the macroplastic range the evolution occurs in a gradual manner without any sudden......-granular stresses are substantially redistributed during the micro-plastic range. In a few individual subgrains it was possible to follow the evolution of the elastic back-strain from the tensile to the compressive case. Following an increase in temperature from -196 ○C to room temperature, both the average intra...

  14. Local sequence assembly reveals a high-resolution profile of somatic structural variations in 97 cancer genomes.

    Science.gov (United States)

    Zhuang, Jiali; Weng, Zhiping

    2015-09-30

    Genomic structural variations (SVs) are pervasive in many types of cancers. Characterizing their underlying mechanisms and potential molecular consequences is crucial for understanding the basic biology of tumorigenesis. Here, we engineered a local assembly-based algorithm (laSV) that detects SVs with high accuracy from paired-end high-throughput genomic sequencing data and pinpoints their breakpoints at single base-pair resolution. By applying laSV to 97 tumor-normal paired genomic sequencing datasets across six cancer types produced by The Cancer Genome Atlas Research Network, we discovered that non-allelic homologous recombination is the primary mechanism for generating somatic SVs in acute myeloid leukemia. This finding contrasts with results for the other five types of solid tumors, in which non-homologous end joining and microhomology end joining are the predominant mechanisms. We also found that the genes recursively mutated by single nucleotide alterations differed from the genes recursively mutated by SVs, suggesting that these two types of genetic alterations play different roles during cancer progression. We further characterized how the gene structures of the oncogene JAK1 and the tumor suppressors KDM6A and RB1 are affected by somatic SVs and discussed the potential functional implications of intergenic SVs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Estimation of unknown structure parameters from high-resolution (S)TEM images: what are the limits?

    Science.gov (United States)

    den Dekker, A J; Gonnissen, J; De Backer, A; Sijbers, J; Van Aert, S

    2013-11-01

    Statistical parameter estimation theory is proposed as a quantitative method to measure unknown structure parameters from electron microscopy images. Images are then purely considered as data planes from which structure parameters have to be determined as accurately and precisely as possible using a parametric statistical model of the observations. For this purpose, an efficient algorithm is proposed for the estimation of atomic column positions and intensities from high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. Furthermore, the so-called Cramér-Rao lower bound (CRLB) is reviewed to determine the limits to the precision with which continuous parameters such as atomic column positions and intensities can be estimated. Since this lower bound can only be derived for continuous parameters, alternative measures using the principles of detection theory are introduced for problems concerning the estimation of discrete parameters such as atomic numbers. An experimental case study is presented to show the practical use of these measures for the optimization of the experiment design if the purpose is to decide between the presence of specific atom types using STEM images. © 2013 Elsevier B.V. All rights reserved.

  16. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

    Science.gov (United States)

    Shakeel, Shabih; Westerhuis, Brenda M.; Domanska, Ausra; Koning, Roman I.; Matadeen, Rishi; Koster, Abraham J.; Bakker, Arjen Q.; Beaumont, Tim; Wolthers, Katja C.; Butcher, Sarah J.

    2016-07-01

    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.

  17. Investigation of Tsunami Effects on Harbor Structures with High Resolution Tsunami Modeling: Case study in the Biggest Port of Turkey in Istanbul

    Science.gov (United States)

    Ozer Sozdinler, Ceren; Arikawa, Taro; Meral Ozel, Nurcan; Necmioglu, Ocal; Cevdet Yalciner, Ahmet; Zaytsev, Andrey; Tomita, Takashi

    2015-04-01

    Ports and harbors are critical marine transportation hubs which must survive and continue functions and operability after the disasters. Hence the recovery operations may continue without interruption. Tsunami is one of the important marine hazards and major impact of any tsunamis are observed mainly in the harbors. Therefore a complete assessment of tsunami behavior, tsunami amplification, abnormal agitation and related damage in ports and harbors is highly essential. Tsunami modeling with high resolution would be a proper approach to understand the effects of tsunamis on marine structures and harbor facilities. The tsunami mitigation plans can be developed using the results of high resolution modeling. The large scale industrial facilities of Turkey are located along the coasts of Marmara Sea in Turkey. Ambarli Port in Istanbul is known to be the biggest trade gate of Marmara region with seven different terminals and an offshore platform operated by different companies for container and cargo handling. The port is serving not only the megacity Istanbul but also the whole country. Compiling the earthquake catalogs and historical records, possible earthquake locations in Marmara Sea are used to select the tsunami source scenarios for modeling. The high resolution bathymetric and topographic data for Ambarli Port region is also another necessary data which has been constructed with a resolution of less than 4m grid size. The sensitively digitized coastline and the sea and land structures with their coordinates and heights are also included in bathy/topo data. The tsunami modeling codes NAMIDANCE and STOC-CADMAS are used for the calculations of tsunami hydrodynamic parameters as the distributions of wave amplitude, current velocity, flow depth and inundation distance. The tsunami pressure exerted onto the terminal blocks are determined by tsunami modeling consisting of three-dimensional and non-hydrostatic calculation approaches. The results of each code are

  18. In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Nielsen, Jakob Toudahl; Kulminskaya, Natalia V.; Bjerring, Morten

    2016-01-01

    Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chloroba......Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium...... of highly symmetric oligomeric structures. We show that the baseplate is composed of rods of repeated dimers of the strongly amphipathic CsmA with pigments sandwiched within the dimer at the hydrophobic side of the helix....

  19. High-resolution X-ray structure of the trimeric Scar/WAVE-complex precursor Brk1.

    Directory of Open Access Journals (Sweden)

    Joern Linkner

    Full Text Available The Scar/WAVE-complex links upstream Rho-GTPase signaling to the activation of the conserved Arp2/3-complex. Scar/WAVE-induced and Arp2/3-complex-mediated actin nucleation is crucial for actin assembly in protruding lamellipodia to drive cell migration. The heteropentameric Scar/WAVE-complex is composed of Scar/WAVE, Abi, Nap, Pir and a small polypeptide Brk1/HSPC300, and recent work suggested that free Brk1 serves as a homooligomeric precursor in the assembly of this complex. Here we characterized the Brk1 trimer from Dictyostelium by analytical ultracentrifugation and gelfiltration. We show for the first time its dissociation at concentrations in the nanomolar range as well as an exchange of subunits within different DdBrk1 containing complexes. Moreover, we determined the three-dimensional structure of DdBrk1 at 1.5 Å resolution by X-ray crystallography. Three chains of DdBrk1 are associated with each other forming a parallel triple coiled-coil bundle. Notably, this structure is highly similar to the heterotrimeric α-helical bundle of HSPC300/WAVE1/Abi2 within the human Scar/WAVE-complex. This finding, together with the fact that Brk1 is collectively sandwiched by the remaining subunits and also constitutes the main subunit connecting the triple-coil domain of the HSPC300/WAVE1/Abi2/ heterotrimer to Sra1(Pir1, implies a critical function of this subunit in the assembly process of the entire Scar/WAVE-complex.

  20. High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP, and YFP to study the structural composition of gap junctions in living cells.

    Science.gov (United States)

    Falk, M M; Lauf, U

    2001-02-01

    High-resolution, fluorescence deconvolution (DV) microscopy was implemented to obtain a detailed view of the organization and structural composition of gap junctions assembled from one or two different connexin isotypes in live and fixed cells. To visualize gap junctions, the structural protein components of gap junction channels, the connexin polypeptides alpha1(Cx43), beta1(Cx32), and beta2(Cx26), were tagged on their C-termini with the autofluorescent tracers green fluorescent protein (GFP), and its cyan (CFP), and yellow (YFP) color variants. Tagged connexins were expressed in transiently transfected HeLa cells. Comprehensive analysis including dye-transfer analysis demonstrated that the tagged connexins trafficked, assembled, and packed normally into functional gap junction channel plaques. Such gap junction plaques were examined by single, dual, and triple-color DV microscopy. High-resolution images and three-dimensional volume reconstructions of gap junction plaques were obtained by this technique, which revealed several new aspects of gap junction structure. Specifically, the studies demonstrated that the mode of channel distribution strictly depends on the connexin isotypes. Here we present such images, and volume reconstructions in context with images obtained by other light, and electron microscopic techniques, such as laser scanning confocal, conventional wide-field fluorescence, thin section, and freeze-fracture electron microscopy. In addition, we give a simple description of the principal mechanisms of DV microscopy, name advantages and disadvantages, and discuss issues such as dual-color imaging using CFP and YFP, spatial resolution, colocalization, and avoiding imaging artifacts.

  1. Crystal Initiation Structures in Developing Enamel: Possible Implications for Caries Dissolution of Enamel Crystals

    Directory of Open Access Journals (Sweden)

    Colin Robinson

    2017-06-01

    Full Text Available Investigations of developing enamel crystals using Atomic and Chemical Force Microscopy (AFM, CFM have revealed a subunit structure. Subunits were seen in height images as collinear swellings about 30 nM in diameter on crystal surfaces. In friction mode they were visible as positive regions. These were similar in size (30–50 nM to collinear spherical structures, presumably mineral matrix complexes, seen in developing enamel using a freeze fracturing/freeze etching procedure. More detailed AFM studies on mature enamel suggested that the 30–50 nM structures were composed of smaller units, ~10–15 nM in diameter. These were clustered in hexagonal or perhaps a spiral arrangement. It was suggested that these could be the imprints of initiation sites for mineral precipitation. The investigation aimed at examining original freeze etched images at high resolution to see if the smaller subunits observed using AFM in mature enamel were also present in developing enamel i.e., before loss of the organic matrix. The method used was freeze etching. Briefly samples of developing rat enamel were rapidly frozen, fractured under vacuum, and ice sublimed from the fractured surface. The fractured surface was shadowed with platinum or gold and the metal replica subjected to high resolution TEM. For AFM studies high-resolution tapping mode imaging of human mature enamel sections was performed in air under ambient conditions at a point midway between the cusp and the cervical margin. Both AFM and freeze etch studies showed structures 30–50 nM in diameter. AFM indicated that these may be clusters of somewhat smaller structures ~10–15 nM maybe hexagonally or spirally arranged. High resolution freeze etching images of very early enamel showed ~30–50 nM spherical structures in a disordered arrangement. No smaller units at 10–15 nM were clearly seen. However, when linear arrangements of 30–50 nM units were visible the picture was more complex but also

  2. Structural investigation of cooperite (PtS) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvina, V. I., E-mail: veronika@ascnet.ru [Russian Academy of Sciences, Institute of Geology and Nature Management, Far East Branch (Russian Federation); Udovenko, A. A. [Russian Academy of Sciences, Institute of Chemistry, Far East Branch (Russian Federation); Rubanov, S. V. [University of Melbourne, Bio21 Institute (Australia); Mudrovskaya, N. V. [Russian Academy of Sciences, Institute of Geology and Nature Management, Far East Branch (Russian Federation)

    2016-03-15

    The single-crystal structure of cooperite, a natural platinum sulfide PtS, is studied by X-ray diffraction supported by high-resolution scanning transmission electron microscopy and X-ray spectrum microanalysis. It is found that, in addition to the main reflections corresponding to the known tetragonal cell (a = 3.47 and c = 6.11 Å; space group P4{sub 2}/mmc), many weak reflections with intensities I ≤ 60σ(I) are clearly observed. These reflections fit the tetragonal cell (space group I4/mmm) with doubled parameters. In structures with small (P4{sub 2}/mmc) and large (I4/mmm) cells, the S atoms occupy statistically two special positions. It is shown that the chemical composition of the cooperite crystals deviates from the stoichiometric composition: sulfur-deficient specimens predominate.

  3. Nuclear structure of neutron-deficient Au and Pt isotopes from high-resolution laser spectroscopy at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Sauvage, J. [Institut de Physique Nucleaire, Orsay (France); Cabaret, L. [Lab. Aime Cotton, Orsay (France); Crawford, J. [Foster Radiation Laboratory, McGill University, Montreal (Canada)] [and others; ISOLDE Collaboration

    1999-05-01

    Atomic spectroscopy measurements were carried out using the COMPLIS setup installed at the ISOLDE-BOOSTER facility. Hyperfine structure (HFS) spectra and isotope shift (IS) values were obtained for the neutron-deficient {sup 178-185}Pt and for {sup 184}Au{sup gm}, providing deformation parameters {beta}, magnetic moments {mu} and spectroscopic quadrupole moments (for I {>=} 1) Q{sub s}. In Pt isotopes, a deformation drop for A = 178 and an inverted odd-even staggering for the charge radius around the neutron mid-shell N=104, have been observed very clearly. Furthermore, deformation changes {delta}{beta} between isomeric and ground states for {sup 183,185}Pt and {sup 184}Au have been put forward. Thus, the influence of the proton-neutron coupling on the {delta}{beta} value in {sup 184}Au relatively to that in its isotope {sup 183}Pt has been determined. Besides, the h{sub 9/2} proton state that is decoupled from the core in {sup 183,185}Au, becomes the 3/2 [532] state strongly coupled in {sup 184}Au. The spin and parity values I{sup {pi}} = 3{sup +} have been assigned to the {sup 182}Ir ground state from internal conversion electron measurements to prepare atomic spectroscopy studies in the Ir isotopic series. (author) 37 refs, 8 figs, 4 tabs

  4. High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart.

    Science.gov (United States)

    Aston, Daniel; Capel, Rebecca A; Ford, Kerrie L; Christian, Helen C; Mirams, Gary R; Rog-Zielinska, Eva A; Kohl, Peter; Galione, Antony; Burton, Rebecca A B; Terrar, Derek A

    2017-01-17

    Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) stimulates calcium release from acidic stores such as lysosomes and is a highly potent calcium-mobilising second messenger. NAADP plays an important role in calcium signalling in the heart under basal conditions and following β-adrenergic stress. Nevertheless, the spatial interaction of acidic stores with other parts of the calcium signalling apparatus in cardiac myocytes is unknown. We present evidence that lysosomes are intimately associated with the sarcoplasmic reticulum (SR) in ventricular myocytes; a median separation of 20 nm in 2D electron microscopy and 3.3 nm in 3D electron tomography indicates a genuine signalling microdomain between these organelles. Fourier analysis of immunolabelled lysosomes suggests a sarcomeric pattern (dominant wavelength 1.80 μm). Furthermore, we show that lysosomes form close associations with mitochondria (median separation 6.2 nm in 3D studies) which may provide a basis for the recently-discovered role of NAADP in reperfusion-induced cell death. The trigger hypothesis for NAADP action proposes that calcium release from acidic stores subsequently acts to enhance calcium release from the SR. This work provides structural evidence in cardiac myocytes to indicate the formation of microdomains between acidic and SR calcium stores, supporting emerging interpretations of NAADP physiology and pharmacology in heart.

  5. Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Ahmed M.; Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Deng, Liulin; Zheng, Xueyun; Webb, Ian K.; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-09-20

    We report on ion mobility separations (IMS) achievable using traveling waves in a Structures for Lossless Ion Manipulations (TW-SLIM) module having a 44-cm path length and sixteen 90º turns. The performance of the TW-SLIM module was evaluated for ion transmission, and ion mobility separations with different RF, TW parameters and SLIM surface gaps in conjunction with mass spectrometry. In this work TWs were created by the transient and dynamic application of DC potentials. The TW-SLIM module demonstrated highly robust performance and the ion mobility resolution achieved even with sixteen close spaced turns was comparable to a similar straight path TW-SLIM module. We found an ion mobility peak capacity of ~ 31 and peak generation rate of 780 s-1 for TW speeds of <210 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ~ 0.9-m drift tube-based IMS-MS platform operated at the same pressure (4 torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater ion mobility resolutions via greatly extended ion path lengths and compact serpentine designs that do not significantly impact the instrumentation profile, a direction described in a companion manuscript.

  6. Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Hamid, Ahmed M; Garimella, Sandilya V B; Ibrahim, Yehia M; Deng, Liulin; Zheng, Xueyun; Webb, Ian K; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Baker, Erin S; Smith, Richard D

    2016-09-20

    We report on ion mobility (IM) separations achievable using traveling waves (TW) in a Structures for Lossless Ion Manipulations (SLIM) module having a 44 cm path length and 16 90° turns. The performance of the TW-SLIM module was evaluated for ion transmission and IM separations with different RF, TW parameters, and SLIM surface gaps in conjunction with mass spectrometry. In this work, TWs were created by the transient and dynamic application of DC potentials. The module demonstrated highly robust performance and, even with 16 closely spaced turns, achieving IM resolution performance and ion transmission comparable to a similar straight path module. We found an IM peak capacity of ∼31 and peak generation rate of 780 s(-1) for TW speeds of ∼80 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ∼0.9-m drift tube-based IM-MS platform operated at the same pressure (4 Torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater IM resolution via greatly extended ion path lengths and using compact serpentine designs.

  7. In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy

    Science.gov (United States)

    Megens, Remco T. A.; Reitsma, Sietze; Prinzen, Lenneke; Oude Egbrink, Mirjam G. A.; Engels, Wim; Leenders, Peter J. A.; Brunenberg, Ellen J. L.; Reesink, Koen D.; Janssen, Ben J. A.; Ter Haar Romeny, Bart M.; Slaaf, Dick W.; van Zandvoort, Marc A. M. J.

    2010-01-01

    In vivo (molecular) imaging of the vessel wall of large arteries at subcellular resolution is crucial for unraveling vascular pathophysiology. We previously showed the applicability of two-photon laser scanning microscopy (TPLSM) in mounted arteries ex vivo. However, in vivo TPLSM has thus far suffered from in-frame and between-frame motion artifacts due to arterial movement with cardiac and respiratory activity. Now, motion artifacts are suppressed by accelerated image acquisition triggered on cardiac and respiratory activity. In vivo TPLSM is performed on rat renal and mouse carotid arteries, both surgically exposed and labeled fluorescently (cell nuclei, elastin, and collagen). The use of short acquisition times consistently limit in-frame motion artifacts. Additionally, triggered imaging reduces between-frame artifacts. Indeed, structures in the vessel wall (cell nuclei, elastic laminae) can be imaged at subcellular resolution. In mechanically damaged carotid arteries, even the subendothelial collagen sheet (~1 μm) is visualized using collagen-targeted quantum dots. We demonstrate stable in vivo imaging of large arteries at subcellular resolution using TPLSM triggered on cardiac and respiratory cycles. This creates great opportunities for studying (diseased) arteries in vivo or immediate validation of in vivo molecular imaging techniques such as magnetic resonance imaging (MRI), ultrasound, and positron emission tomography (PET).

  8. Intensive structural investigation of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds using high resolution powder neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Mujamilah; Ridwan [Materials Science Research Center, National Atomic Energy Agency of Indonesia, Jakarta (Indonesia)

    1998-10-01

    The crystallographic and magnetic structure of R{sub 2}Fe{sub 17-x}M{sub x} intermetallic compounds system were refined by Rietveld analyses of the high resolution neutron powder diffraction data. The analyses results show that the substituent atoms were not distributed randomly over the Fe sites, but preferentially occupied some Fe sites. More further, it was also found that the substituent atoms which atomic radius smaller than Fe tend to avoid the 6c site at low concentration while the larger substituent atom tend to replace the Fe atom at this 6c site corresponding to their concentration. From these crystallographic data, it was suggested that the change of magnetic ordering temperature Tc, is not mainly determined by the change of short bond distance between this `dumb-bell` atoms, but it was also influenced by the nearest coordinated atoms to this site. (author)

  9. Ab Initio Structure Determination of the Triple Mutant (K53,56,121M) of Bovine Pancreatic Phospholipase A(2) at Atomic and High Resolution Using ACORN

    Energy Technology Data Exchange (ETDEWEB)

    Velmurugan,D.; Rajakannan, V.; Gayathri, D.; Banumathi, S.; Yamane, T.; Dauter, Z.; Dauter, M.; Sekar, K.

    2006-01-01

    Atomic resolution (0.97 Angstroms) data were collected for the triple mutant (K53,56,121M) of bovine pancreatic phospholipase A{sub 2} at 100 K and data extending to 1.0 Angstroms resolution were used for the present study. Accuracy of the data at high resolution allowed the structure to be solved using the program ACORN, with a random single-atom start in an ab initio manner. The phases obtained from ACORN are of good quality and revealed most of the amino acid residues. Single wavelength Anomalous Diffraction (SAD) data were also used to locate the position of the sulphurs and ACORN was run with these atomic positions as a source of phasing information. The effect of truncating the data to 1.4 and 1.45 Angstroms for input to ACORN is also examined. Larger fragments are required to trigger successful phase refinement at these lower resolutions.

  10. Structural-depth analysis of the Yola Arm of the Upper Benue Trough of Nigeria using high resolution aeromagnetic data

    Science.gov (United States)

    Ogunmola, J. K.; Ayolabi, E. A.; Olobaniyi, S. B.

    2016-12-01

    The Yola Arm is the east-west trending part of the Upper Benue Trough made up of Cretaceous sediments that are Albian to Maastrichtian in age. This work involves interpreting satellite imagery and aeromagnetic data to map out structures within the basin and estimate the depth to the magnetic basement which could be an aid to further exploratory work in the basin. The SPOT 5 imagery covering the basin was processed and interpreted and lineaments extracted from it. The digital elevation model (DEM) of the area was also used to extract the drainage pattern of the area and as an aid in mapping the lineaments that are visible on the surface. The geomagnetic field of the earth was removed from the aeromagnetic data using the IGRF-12 model. The vertical derivative (VDR) enhanced the high frequency and short wavelength components of the data which could be volcanics. The source parameter imaging (SPI) technique which works well at all magnetic latitudes and the spectral analysis were applied to the data to estimate the sediment thickness within the basin. A low pass filter with a cut-off wavelength of 1000 m was applied to the data to remove the high frequency short wavelength component of the data after which the tilt derivative (TDR) was computed to enhance anomalies that may be faults on the underlying basement. The lineaments from the SPOT 5 data show a predominant NNE-SSW, NE-SW followed by the NNW-SSE with a few N-S and E-W trends and the TDR of the aeromagnetic data show a predominantly NE-SW trend which is the predominant trend in the Benue Trough while a few strike in the N-S,NW-SE, and WNW-ESE direction. This suggests that the basin was subjected to several stress regimes. Differential uplift of the basement fault blocks may have given rise to drape folds observed in the overlying sediments. The depths to the magnetic basement range from about 1 km to about 4.3 km with the deepest part in the eastern part of the Basin. The depth analysis indicates that the

  11. High-resolution shear-wave seismics across the Carlsberg Fault zone south of Copenhagen - Implications for linking Mesozoic and late Pleistocene structures

    Science.gov (United States)

    Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars

    2016-07-01

    The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.

  12. Near-surface Faults and Structure of the Western Santa Clara Valley, California as Seen From High-Resolution Seismic Reflection and Refraction Images

    Science.gov (United States)

    Catchings, R. D.; Goldman, M. R.; Gandhok, G.; Langenheim, V. E.

    2002-12-01

    The U.S.G.S acquired an ~10-km-long, high-resolution seismic reflection/refraction profile across the western Santa Clara Valley in the fall of 2000. The seismic profile, which originated within Franciscian rocks of the Santa Cruz Mountains and extended across the Cupertino basin to downtown San Jose, was designed to image shallow (upper 500 m) subsurface structure and stratigraphy along its length. The seismic profile crossed the Monte Vista fault zone and other buried faults inferred to exist beneath the western Santa Clara Valley. High resolution images were provided by seismic sources and geophones that were spaced at 5-m increments along the entire profile, resulting in CDP intervals of 2.5 m. The data were recorded on a 240-channel moving array, which yielded maximum folds over 200 along many segments of the profile. Both velocity and reflection images were developed from the data. Near-surface velocities range from about 500 m/s in the shallow subsurface of the Cupertino basin to more than 3000 m/s in surficial Franciscian rocks of the Santa Cruz Mountains. Reflectivity along the profile varies with rock types, with more reflective strata associated with sediments of the Cupertino basin than Franciscian rocks rocks of the Santa Cruz Mountains. Small offset faults and folds are apparent at several locations along the profile. Larger-offset, south-dipping faults are apparent within the Monte Vista fault zone and at least one other fault zone near the central Santa Clara Valley. The high-resolution images show that the faults extend to the near-surface, suggesting that recency of faulting may be accessed with paleseismological methods. If active, these faults may pose significant hazards to the Santa Clara Valley because they are located in highly populated areas. Furthermore, thick, low-velocity sediments observed in high-population areas along the parts of the profile may amplify seismic waves generated by movement on either local or regional faults, posing

  13. High resolution digital elevation modelling from TLS and UAV campaign reveals structural complexity at the 2014/15 Holuhraun eruption site, Iceland

    Science.gov (United States)

    Müller, Daniel; Walter, Thomas R.; Schöpa, Anne; Witt, Tanja; Steinke, Bastian; Gudmundsson, Magnús T.; Dürig, Tobias

    2017-07-01

    Fissure eruptions are commonly linked to magma dikes at depth, associated with elastic and anelastic surface deformation. Elastic deformation is well described by subsidence above, uplift and lateral widening perpendicular to the dike plane. The anelastic part is associated with the formation of a graben, bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally secondary structures, like push ups, bends and step overs yield information about the deforming domain. The formation of such structures associated with fissure eruptions, however, is barely preserved in nature because of the rapid erosion or sediment coverage. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland), evidence is increasing that the developing fractures are showing variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) based aerophoto analysis was realized. From this data, we generated locally high resolution Digital Elevation Models (DEMs) and a structural map that allows for identification of kinematic indicators and assessing particularities of the observed structures. We identified 315 fracture segments from satellite data. For single segments we measured strike directions including the amount of opening and opening angles, indicating that many of the measured fractures show transtensional dislocations. Out of these, 81 % are showing significant left-lateral slip, only 17% right-lateral slip and 2% pure tensile opening. We show that local complexities in the fracture traces and geometries are closely related to variations in the transtensional opening direction. Moreover, we identified local changes in fracture azimuths and offsets close to eruption sites, which we speculate to be associated with geometrical changes in the magma feeder

  14. Pulse shape discrimination characteristics of stilbene crystal, pure and 6Li loaded plastic scintillators for a high resolution coded-aperture neutron imager

    Science.gov (United States)

    Cieślak, M. J.; Gamage, K. A. A.; Glover, R.

    2017-07-01

    Pulse shape discrimination performances of single stilbene crystal, pure plastic and 6Li loaded plastic scintillators have been compared. Three pulse shape discrimination algorithms have been tested for each scintillator sample, assessing their quality of neutron/gamma separation. Additionally, the digital implementation feasibility of each algorithm in a real-time embedded system was evaluated. Considering the pixelated architecture of the coded-aperture imaging system, a reliable method of simultaneous multi-channel neutron/gamma discrimination was sought, accounting for the short data analysis window available for each individual channel. In this study, each scintillator sample was irradiated with a 252Cf neutron source and a bespoke digitiser system was used to collect the data allowing detailed offline examination of the sampled pulses. The figure-of-merit was utilised to compare the discrimination quality of the collected events with respect to various discrimination algorithms. Single stilbene crystal presents superior neutron/gamma separation performance when compared to the plastic scintillator samples.

  15. Layout And Results From The Initial Operation Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N A [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Delgado-Apricio, L [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Goto, M [National Institute for Fusion Science, Toki 509-5292, Gifu, Japan; Hill, K W [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Lzerson, S [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Morita, S [National Institute for Fusion Science, Toki 509-5292, Gifu, Japan; Roquemore, A L [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Gates, D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Monticello, D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Neilson, H [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Reiman, A [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Reinke, M [Plasma Science Fusion Center, MIT, Cambridge, Massachusetts (United States); Rice, J E [Plasma Science Fusion Center, MIT, Cambridge, Massachusetts (United States)

    2012-04-05

    First results of ion and electron temperature pro le measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the rst application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature pro les in LHD with a spatial resolution of 2cm and a time resolution of ≥ 10ms. Ion temperature pro les from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar16+. The nal hardware design and con guration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.

  16. Layout and results from the initial operation of the high-resolution x-ray imaging crystal spectrometer on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Roquemore, A. L.; Gates, D.; Monticello, D.; Nielson, H.; Reiman, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Goto, M.; Morita, S.; Yamada, H. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Reinke, M.; Rice, J. E. [Plasma Science Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)

    2012-08-15

    First results of ion and electron temperature profile measurements from the x-ray imaging crystal spectrometer (XICS) diagnostic on the Large Helical Device (LHD) are presented. This diagnostic system has been operational since the beginning of the 2011 LHD experimental campaign and is the first application of the XICS diagnostic technique to helical plasma geometry. The XICS diagnostic provides measurements of ion and electron temperature profiles in LHD with a spatial resolution of 2 cm and a maximum time resolution of 5 ms (typically 20 ms). Ion temperature profiles from the XICS diagnostic are possible under conditions where charge exchange recombination spectroscopy (CXRS) is not possible (high density) or is perturbative to the plasma (low density or radio frequency heated plasmas). Measurements are made by using a spherically bent crystal to provide a spectrally resolved 1D image of the plasma from line integrated emission of helium-like Ar{sup 16+}. The final hardware design and configuration are detailed along with the calibration procedures. Line-integrated ion and electron temperature measurements are presented, and the measurement accuracy is discussed. Finally central temperature measurements from the XICS system are compared to measurements from the Thomson scattering and CXRS systems, showing excellent agreement.

  17. Nuclear structures: Twinning and modulation in crystals

    Science.gov (United States)

    Petříček, Václav; Dušek, Michal

    2017-10-01

    Crystal structure analysis is a standard technique routinely applied to single crystals as well as powders. However the process is not so straightforward if the crystal sample is affected by twinning or if the structure is modulated. In such cases the standard procedures are not directly applicable. The main purpose of this contribution is to show how to solve and refine such difficult structures. While for twinned structures the basic property of crystal - translation symmetry in three dimensional space-remains valid, for modulated crystals a special superspace theory must be exploited in order to describe the atomic structure with crystallographic methods generalized for superspace.

  18. High-Resolution Digital Elevation Modeling from TLS and UAV Campaign Reveals Structural Complexity at the 2014/2015 Holuhraun Eruption Site, Iceland

    Directory of Open Access Journals (Sweden)

    Daniel Müller

    2017-07-01

    Full Text Available Fissure eruptions are commonly linked to magma dikes at depth and are associated with elastic and inelastic surface deformation. Elastic deformation is well described by subsidence occurring above the dike plane and uplift and lateral widening occurring perpendicular to the dike plane. Inelastic deformation is associated with the formation of a graben, which is bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally, secondary structures, such as push-ups, bends and step overs, yield information about the deforming domain. However, once these structures are formed during fissure eruptions, they are rarely preserved in nature, due to the effects of rapid erosion, sediment coverage or overprinting by other faulting events. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland, increasing evidence suggests that developing fractures exhibited variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS and Unmanned Aerial Vehicle (UAV-based aerophoto analysis was undertaken. Using these data, we generated local high-resolution Digital Elevation Models (DEMs and a structural map that facilitated the identification of kinematic indicators and the assessment of the observed structures. We identified 315 fracture segments from these satellite data. We measured the strike directions of single segments, including the amount of opening and opening angles, which indicate that many of the measured fractures show transtensional dislocations. Of these, ~81% exhibit a significant left-lateral component and only ~17% exhibit a right-lateral component. Here, we demonstrate that the local complexities in these fracture traces and geometries are closely related to variations in their transtensional opening directions. Moreover, we identified local

  19. High-resolution 3D spatial modelling of complex geological structures for an environmental risk assessment of abundant mining and industrial megasites

    Science.gov (United States)

    Wycisk, P.; Hubert, T.; Gossel, W.; Neumann, Ch.

    2009-01-01

    Conceptual geological models of industrial and mining megasites are an essential task of groundwater investigations as well as environmental risk assessment studies. Therefore, the conceptualization process of the structural geological model has depended on the development of a set of 2D cross-sections to portray a 3D picture of groundwater flow. This attempt always includes some simplifications that require, only to some extent, the true 3D situation of heterogeneous aquifers. Consequently, the modelled predictions of the path flow and transport conditions of contaminated groundwater are not satisfying in terms of a flow-path and risk based modelling approach. A more structured approach to develop the hydrogeological framework for the conceptual model is advocated, using different 3D geological modelling software packages to assemble the data, working in three dimensions and using this platform for subsequent groundwater flow modelling. Attention is given to the capability of different 3D modelling approaches, indicated by geostatistically based versus constructive cross-section based interpolations of complex sedimentary successions, that are compared in their results and suitability for subsequent hydrogeological modelling requirements. The paper describes the results, in high-resolution 3D modelling, of the complex geological environment of the Bitterfeld/Wolfen megasite in the eastern part of Germany. Identification, assessment, and remediation of large-scale groundwater contamination require a detailed knowledge of the heterogeneous geological structure to predict the fate and pathways of contaminants and their potential interaction with, e.g., surface water. An area of 16 km 2 of the model area of the Bitterfeld/Wolfen area was chosen to transfer the complex structural geological setting. The subsurface geology could be assigned to 31 lithostratigraphic units and depicted using a 10×10 m GIS grid. This constructive and "knowledge-driven" 3D modelling allows

  20. imide, crystal structure, thermal and dielectric studies

    Indian Academy of Sciences (India)

    IR and Raman spectroscopies and its crystal structure is confirmed by single crystal X-ray diffraction method. The X-ray studies on ... Di-cationic ionic liquids; crystal structure; dielectric; thermal properties. 1. Introduction. The chemistry of ionic ... exposed in various emerging areas as solvents of high tem- perature organic ...

  1. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis.

    Science.gov (United States)

    Truernit, Elisabeth; Bauby, Hélène; Dubreucq, Bertrand; Grandjean, Olivier; Runions, John; Barthélémy, Julien; Palauqui, Jean-Christophe

    2008-06-01

    Currently, examination of the cellular structure of plant organs and the gene expression therein largely relies on the production of tissue sections. Here, we present a staining technique that can be used to image entire plant organs using confocal laser scanning microscopy. This technique produces high-resolution images that allow three-dimensional reconstruction of the cellular organization of plant organs. Importantly, three-dimensional domains of gene expression can be analyzed with single-cell precision. We used this technique for a detailed examination of phloem cells in the wild type and mutants. We were also able to recognize phloem sieve elements and their differentiation state in any tissue type and visualize the structure of sieve plates. We show that in the altered phloem development mutant, a hybrid cell type with phloem and xylem characteristics develops from initially normally differentiated protophloem cells. The simplicity of sieve element data collection allows for the statistical analysis of structural parameters of sieve plates, essential for the calculation of phloem conductivity. Taken together, this technique significantly improves the speed and accuracy of the investigation of plant growth and development.

  2. Crystal Engineering of HIV-1 Reverse Transcriptase for structure-Based Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Bauman,J.; Das, K.; Ho, W.; Baweja, M.; Himmel, D.; Clark, A.; Oren, D.; Shatkin, A.; Arnold, E.

    2008-01-01

    HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at {approx}2.5-3.0 Angstroms resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 Angstroms resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 Angstroms resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs.

  3. Crystal structure of 3-(diethylaminophenol

    Directory of Open Access Journals (Sweden)

    James A. Golen

    2015-12-01

    Full Text Available The title compound, C10H15NO, has two molecules in the asymmetric unit. Each molecule has a near-planar C8NO unit excluding H atoms and the terminal methyl groups on the diethylamino groups, with mean deviations from planarity of 0.036 and 0.063 Å. In the crystal, hydrogen bonding leads to four-membered O—H...O—H...O—H·· rings. No π–π interactions were observed in the structure.

  4. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard, E-mail: rh15@mrc-lmb.cam.ac.uk

    2013-12-15

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  5. Synthesis, crystal structure, theoretical study and luminescence ...

    Indian Academy of Sciences (India)

    phenanthroline) has been synthesized and characterized by elemental analysis, infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray single crystal analysis and fluorescent analysis. Its crystal structure is monoclinic with space group 2/ and ...

  6. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  7. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  8. High resolution diffraction studies with synchrotron radiation on the structure of Li{sub 0.95}Mn{sub 2.05}O{sub 4} spinel

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, W. [Laboratory of Magnetochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60780 Poznan (Poland)]. E-mail: waldek@amu.edu.pl; Darul, J. [Laboratory of Magnetochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60780 Poznan (Poland); Piszora, P. [Laboratory of Magnetochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60780 Poznan (Poland); Baehtz, C. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 32, D-64287 Darmstadt (Germany); Wolska, E. [Laboratory of Magnetochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, PL-60780 Poznan (Poland)

    2005-09-29

    Investigations of the structure transformations of lithium deficient Li{sub 0.95}Mn{sub 2.05}O{sub 4}, in the temperature range of 10-1173 K, have been undertaken with X-ray powder diffraction, using synchrotron radiation, at the HASYLAB high-resolution diffractometer (beamline B2). Single phase spinel-like oxide was obtained by a solid state reaction between {alpha}-Mn{sub 2}O{sub 3} and Li{sub 2}CO{sub 3} at 1073 K, followed by rapid quenching of the sample in the solid CO{sub 2}. At the room temperature, the lithium deficient sample (with x = 0.95 in Li {sub x}Mn{sub 3-x}O{sub 4}) shows a tetragonally distorted spinel lattice, with c/a = 0.98. No phase transition has been observed when temperature decreased and the sample remained tetragonal in the range 300-10 K. A reversible phase transition appears, however, during very mild heating of Li{sub 0.95}Mn{sub 2.05}O{sub 4} above the room temperature. The tetragonal spinel structure (F4{sub 1}/ddm) undergoes a transition into cubic form (Fd3m) at 393 K. A thermal treatment above 573 K causes a partial decomposition of the sample, resulting in a formation of a nearly stoichiometric LiMn{sub 2}O{sub 4}, with the admixture of manganese oxides.

  9. Epitope Structure of the Carbohydrate Recognition Domain of Asialoglycoprotein Receptor to a Monoclonal Antibody Revealed by High-Resolution Proteolytic Excision Mass Spectrometry

    Science.gov (United States)

    Stefanescu, Raluca; Born, Rita; Moise, Adrian; Ernst, Beat; Przybylski, Michael

    2011-01-01

    Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5-16) and (17-23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.

  10. Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging

    Science.gov (United States)

    Perkins, R. G.; Williamson, C. J.; Brodie, J.; Barillé, L.; Launeau, P.; Lavaud, J.; Yallop, M. L.; Jesus, B.

    2016-02-01

    Calcifying coralline macroalgae provide biogenic habitats colonised by epiphytic microalgae that contribute significantly to community productivity. Georeferenced hyperspectral and high-resolution fluorescence imaging were coupled to microspatially mapped community composition and relative biomass of macroalgal host and epiphyte microalgal groups, and their weighted contributions to productivity within host fronds of Corallina officinalis on upper and lower zones of a rocky shore were determined. Lower shore epiphytes were dominated by filamentous diatoms (Bacillariophyta), confined to the apex of the frond structure, which were low light acclimated but retained a high capacity for photoprotective down regulation and contributed up to 51% of total community productivity. Upper shore epiphytes were dominated by green algae (Chlorophyta) and single-celled diatoms (principally Cocconeis spp.), which were high light acclimated but present at far lower relative biomass and contributed negligibly to productivity. The host, C. officinalis was the main primary producer. Variation in light environment resulting from differences in shore height and shading within the host macroalga, likely play a large role in determining patterns in epiphyte community structure, biomass and productivity observed. Additionally, microspatial gradients in photophysiological parameters along the host macroalga likely resulted from age-dependent variation in pigments as well as the gradient in light environment.

  11. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy.

    Science.gov (United States)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R; Murshudov, Garib N; Short, Judith M; Scheres, Sjors H W; Henderson, Richard

    2013-12-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  12. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆

    Science.gov (United States)

    Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R.; Murshudov, Garib N.; Short, Judith M.; Scheres, Sjors H.W.; Henderson, Richard

    2013-01-01

    Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an

  13. High-resolution three-dimensional NMR structure of theKRASproto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation.

    Science.gov (United States)

    Kerkour, Abdelaziz; Marquevielle, Julien; Ivashchenko, Stefaniia; Yatsunyk, Liliya A; Mergny, Jean-Louis; Salgado, Gilmar F

    2017-05-12

    Non-canonical base pairing within guanine-rich DNA and RNA sequences can produce G-quartets, whose stacking leads to the formation of a G-quadruplex (G4). G4s can coexist with canonical duplex DNA in the human genome and have been suggested to suppress gene transcription, and much attention has therefore focused on studying G4s in promotor regions of disease-related genes. For example, the human KRAS proto-oncogene contains a nuclease-hypersensitive element located upstream of the major transcription start site. The KRAS nuclease-hypersensitive element (NHE) region contains a G-rich element (22RT; 5'-AGGGCGGTGTGGGAATAGGGAA-3') and encompasses a Myc-associated zinc finger-binding site that regulates KRAS transcription. The NEH region therefore has been proposed as a target for new drugs that control KRAS transcription, which requires detailed knowledge of the NHE structure. In this study, we report a high-resolution NMR structure of the G-rich element within the KRAS NHE. We found that the G-rich element forms a parallel structure with three G-quartets connected by a four-nucleotide loop and two short one-nucleotide double-chain reversal loops. In addition, a thymine bulge is found between G8 and G9. The loops of different lengths and the presence of a bulge between the G-quartets are structural elements that potentially can be targeted by small chemical ligands that would further stabilize the structure and interfere or block transcriptional regulators such as Myc-associated zinc finger from accessing their binding sites on the KRAS promoter. In conclusion, our work suggests a possible new route for the development of anticancer agents that could suppress KRAS expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. High-resolution extreme ultraviolet spectroscopy of G191-B2B: structure of the stellar photosphere and the surrounding interstellar medium

    Science.gov (United States)

    Barstow, M. A.; Cruddace, R. G.; Kowalski, M. P.; Bannister, N. P.; Yentis, D.; Lapington, J. S.; Tandy, J. A.; Hubeny, I.; Schuh, S.; Dreizler, S.; Barbee, T. W.

    2005-10-01

    We have continued our detailed analysis of the high-resolution (R= 4000) spectroscopic observation of the DA white dwarf G191-B2B, obtained by the Joint Astrophysical Plasmadynamic Experiment (J-PEX) normal incidence sounding rocket-borne telescope, comparing the observed data with theoretical predictions for both homogeneous and stratified atmosphere structures. We find that the former models give the best agreement over the narrow waveband covered by J-PEX, in conflict with what is expected from previous studies of the lower resolution but broader wavelength coverage Extreme Ultraviolet Explorer spectra. We discuss the possible limitations of the atomic data and our understanding of the stellar atmospheres that might give rise to this inconsistency. In our earlier study, we obtained an unusually high ionization fraction for the ionized HeII present along the line of sight to the star. In the present paper, we obtain a better fit when we assume, as suggested by Space Telescope Imaging Spectrograph results, that this HeII resides in two separate components. When one of these is assigned to the local interstellar cloud, the implied He ionization fraction is consistent with measurements along other lines of sight. However, the resolving power and signal-to-noise available from the instrument configuration used in this first successful J-PEX flight are not sufficient to clearly identify and prove the existence of the two components.

  15. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV Imagery, Based on Structure from Motion (SfM Point Clouds

    Directory of Open Access Journals (Sweden)

    Christopher Watson

    2012-05-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are an exciting new remote sensing tool capable of acquiring high resolution spatial data. Remote sensing with UAVs has the potential to provide imagery at an unprecedented spatial and temporal resolution. The small footprint of UAV imagery, however, makes it necessary to develop automated techniques to geometrically rectify and mosaic the imagery such that larger areas can be monitored. In this paper, we present a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM photogrammetric techniques. Images are processed to create three dimensional point clouds, initially in an arbitrary model space. The point clouds are transformed into a real-world coordinate system using either a direct georeferencing technique that uses estimated camera positions or via a Ground Control Point (GCP technique that uses automatically identified GCPs within the point cloud. The point cloud is then used to generate a Digital Terrain Model (DTM required for rectification of the images. Subsequent georeferenced images are then joined together to form a mosaic of the study area. The absolute spatial accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique achieves an accuracy of approximately 10–15 cm.

  16. Comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in prokaryotic, eukaryotic and viral integral membrane proteins of high-resolution structure.

    Science.gov (United States)

    Saidijam, Massoud; Azizpour, Sonia; Patching, Simon G

    2017-02-15

    We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.

  17. Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Webb, Ian K.; Garimella, Venkata BS; Hamid, Ahmed M.; Zheng, Xueyun; Norheim, Randolph V.; Prost, Spencer A.; Anderson, Gordon A.; Sandoval, Jeremy A.; Baker, Erin M.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-04-05

    Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution limits many applications. Here we report on traveling wave (TW) ion mobility (IM) separations in a Serpentine Ultra-long Path with Extended Routing (SUPER) Structures for Lossless Ion Manipulations (SLIM) module in conjunction with mass spectrometry (MS). The extended routing utilized multiple passes was facilitated by the introduction of a lossless ion switch at the end of the ion path that either directed ions to the MS detector or to another pass through the serpentine separation region, providing theoretically unlimited TWIM path lengths. Ions were confined in the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths (e.g., ~1094 meters over 81 passes through the 13.5 m serpentine path). In this multi-pass SUPER TWIM provided resolution approximately proportional to the square root of the number of passes (or path length). More than 30-fold higher IM resolution for Agilent tuning mix m/z 622 and 922 ions (~340 vs. ~10) was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars Lacto-N-hexaose and Lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for Lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.

  18. Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Deng, Liulin; Webb, Ian K; Garimella, Sandilya V B; Hamid, Ahmed M; Zheng, Xueyun; Norheim, Randolph V; Prost, Spencer A; Anderson, Gordon A; Sandoval, Jeremy A; Baker, Erin S; Ibrahim, Yehia M; Smith, Richard D

    2017-04-18

    Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution often limits their utility. Here, we report on ion mobility separations in a structures for lossless ion manipulations (SLIM) serpentine ultralong path with extended routing (SUPER) traveling wave (TW) ion mobility (IM) module in conjunction with mass spectrometry (MS). Ions were confined in the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths. The extended routing utilized multiple passes (e.g., ∼1094 m over 81 passes through the 13.5 m serpentine path) and was facilitated by the introduction of a lossless ion switch that allowed ions to be directed to either the MS detector or for another pass through the serpentine separation region, allowing theoretically unlimited IM path lengths. The multipass SUPER IM-MS provided resolution approximately proportional to the square root of the number of passes (or total path length). More than 30-fold higher IM resolution (∼340 vs ∼10) for Agilent tuning mix m/z 622 and 922 ions was achieved for 40 passes compared to commercially available drift tube IM and other TWIM-based platforms. An initial evaluation of the isomeric sugars lacto-N-hexaose and lacto-N-neohexaose showed the isomeric structures to be baseline resolved, and a new conformational feature for lacto-N-neohexaose was revealed after 9 passes. The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.

  19. A multidisciplinary approach to landslide structure characterization: integration of seismic tomography survey and high resolution LiDar data with the Sloping Local Base Level method.

    Science.gov (United States)

    Travelletti, Julien; Samyn, Kevin; Malet, Jean-Philippe; Grandjean, Gilles; Jaboyedoff, Michel

    2010-05-01

    A challenge to progress in the understanding of landslides is to precisely define their 3D geometry and structure as an input for volume estimation and further hydro-mechanical modelling. The objective of this work is to present a multidisciplinary approach to the geometrical modelling of the La Valette landslide by integrating seismic tomography survey (P and S wave) and high resolution LiDar data with the Sloping Local Base Level (SLBL) method. The La Valette landslide, triggered in March 1982, is one of the most important slope instability in the South French Alps. Its dimensions are 1380 m length and 290 m width, and the total volume is estimated at 3.5 106 m3. Since 2002, an important activity of the upper part of the landslide is observed, and consisted mainly in the retrogression of the crown through the opening of an important fracture over several meters and rotational slumps. The failed mass is currently loading the upper part of the mudslide and is a potential threat for the 170 residential communities. A seismic tomography survey combined to airborne and terrestrial LiDar data analysis have been carried out to identify the geological structures and discontinuities and characterize the stability of the failing mass. Seismic tomography allows direct and non-intrusive measurements of P and S waves velocities which are key parameters for the analysis of the mechanical properties of reworked and highly fissured masses. 4 seismic lines have been performed (3 of them in the direction of the slope and the other perpendicular). The 2 longest devices are composed of 24 geophones spaced by 5 meters and have a sufficient investigation depth for a large scale characterization of the landslide's structure with depth. The 2 shortest devices, composed of 24 geophones spaced by 2 meters bring information about the fracturing degree between the moving material of the landslide and the competent rock. 100gr of pentrite for each shot were used as seismic sources. The

  20. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry

    Science.gov (United States)

    Fontaine, Fabien; Morettoni, Luca; Zamora, Ismael

    2017-01-01

    Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids). This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids) of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The main advantages of

  1. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Tatiana Radchenko

    Full Text Available Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids. This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The

  2. Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry.

    Science.gov (United States)

    Radchenko, Tatiana; Brink, Andreas; Siegrist, Yves; Kochansky, Christopher; Bateman, Alison; Fontaine, Fabien; Morettoni, Luca; Zamora, Ismael

    2017-01-01

    Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids). This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids) of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The main advantages of

  3. High-Resolution Structure of a Self-Assembly-Competent Form of a Hydrophobic Peptide Captured in a Soluble [beta]-Sheet Scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Makabe, Koki; Biancalana, Matthew; Yan, Shude; Tereshko, Valentina; Gawlak, Grzegorz; Miller-Auer, Hélène; Meredith, Stephen C.; Koide, Shohei (UC)

    2010-02-08

    {beta}-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer {beta}-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that a penta-Ile peptide (Ile{sub 5}), which is insoluble and forms {beta}-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-{angstrom} crystal structure revealed that the Ile{sub 5} stretch forms a highly regular {beta}-strand within this flat {beta}-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat {beta}-strand of the Ile{sub 5} stretch primed for self-assembly is a low-energy conformation of the Ile{sub 5} stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to 'solubilize' an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.

  4. Structure from motion, a low cost, very high resolution method for surveying glaciers using GoPros and opportunistic helicopter flights

    Science.gov (United States)

    Girod, L.; Nuth, C.; Schellenberger, T.

    2014-12-01

    The capability of structure from motion techniques to survey glaciers with a very high spatial and temporal resolution is a promising tool for better understanding the dynamic changes of glaciers. Modern software and computing power allow us to produce accurate data sets from low cost surveys, thus improving the observational capabilities on a wider range of glaciers and glacial processes. In particular, highly accurate glacier volume change monitoring and 3D movement computations will be possible Taking advantage of the helicopter flight needed to survey the ice stakes on Kronenbreen, NW Svalbard, we acquired high resolution photogrammetric data over the well-studied Midre Lovénbreen in September 2013. GoPro Hero 2 cameras were attached to the landing gear of the helicopter, acquiring two images per second. A C/A code based GPS was used for registering the stereoscopic model. Camera clock calibration is obtained through fitting together the shapes of the flight given by both the GPS logger and the relative orientation of the images. A DEM and an ortho-image are generated at 30cm resolution from 300 images collected. The comparison with a 2005 LiDAR DEM (5 meters resolution) shows an absolute error in the direct registration of about 6±3m in 3D which could be easily reduced to 1,5±1m by using fine point cloud alignment algorithms on stable ground. Due to the different nature of the acquisition method, it was not possible to use tie point based co-registration. A combination of the DEM and ortho-image is shown with the point cloud in figure below. A second photogrammetric data set will be acquired in September 2014 to survey the annual volume change and movement. These measurements will then be compared to the annual resolution glaciological stake mass balance and velocity measurements to assess the precision of the method to monitor at an annual resolution.

  5. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    Science.gov (United States)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  6. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Directory of Open Access Journals (Sweden)

    D. E. Scipión

    2016-09-01

    Full Text Available The SOUSY (SOUnding SYstem radar was relocated to the Jicamarca Radio Observatory (JRO near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz, it is able to characterize clear-air backscattering with high range resolution (37.5 m. A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz using the DataHawk (DH small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  7. Prediction Models of Retention Indices for Increased Confidence in Structural Elucidation during Complex Matrix Analysis: Application to Gas Chromatography Coupled with High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Dossin, Eric; Martin, Elyette; Diana, Pierrick; Castellon, Antonio; Monge, Aurelien; Pospisil, Pavel; Bentley, Mark; Guy, Philippe A

    2016-08-02

    Monitoring of volatile and semivolatile compounds was performed using gas chromatography (GC) coupled to high-resolution electron ionization mass spectrometry, using both headspace and liquid injection modes. A total of 560 reference compounds, including 8 odd n-alkanes, were analyzed and experimental linear retention indices (LRI) were determined. These reference compounds were randomly split into training (n = 401) and test (n = 151) sets. LRI for all 552 reference compounds were also calculated based upon computational Quantitative Structure-Property Relationship (QSPR) models, using two independent approaches RapidMiner (coupled to Dragon) and ACD/ChromGenius software. Correlation coefficients for experimental versus predicted LRI values calculated for both training and test set compounds were calculated at 0.966 and 0.949 for RapidMiner and at 0.977 and 0.976 for ACD/ChromGenius, respectively. In addition, the cross-validation correlation was calculated at 0.96 from RapidMiner and the residual standard error value obtained from ACD/ChromGenius was 53.635. These models were then used to predict LRI values for several thousand compounds reported present in tobacco and tobacco-related fractions, plus a range of specific flavor compounds. It was demonstrated that using the mean of the LRI values predicted by RapidMiner and ACD/ChromGenius, in combination with accurate mass data, could enhance the confidence level for compound identification from the analysis of complex matrixes, particularly when the two predicted LRI values for a compound were in close agreement. Application of this LRI modeling approach to matrixes with unknown composition has already enabled the confirmation of 23 postulated compounds, demonstrating its ability to facilitate compound identification in an analytical workflow. The goal is to reduce the list of putative candidates to a reasonable relevant number that can be obtained and measured for confirmation.

  8. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    In both the materials, the crystal structure has been determined by X-ray single crystal analysis at room temperature (293 K). The compound structures consist of K + (or NH 4 + ) cations and double chains of CdCl 6 octahedra sharing one edge extending along b -axis. The mixture of KA + /NH 4 + cations are located ...

  9. Crystal structure and hydrogen bonding interactions

    Indian Academy of Sciences (India)

    Giacovazzo C, Guagliardi A, Moliteni A G G, Polidori. G and Spagna R 1997 SIR97 (Release 1.02) - A program for automatic solution and refinement of crystal structure. 10. Sheldrick G M 1997 SHELXL-97, Programs for Crystal. Structure Analysis; University of Göttingen, Germany. 11. ORTEP3 for Windows and Farrugia L J ...

  10. Photonic crystal laser-driven accelerator structures

    CERN Document Server

    Cowan, Benjamin

    2005-01-01

    We discuss simulated photonic crystal structure designs, including two- and three-dimensional planar structures and fibers. The discussion of 2D structures demonstrates guiding of a speed-of-light accelerating mode by a defect in a photonic crystal lattice and reveals design considerations and trade-offs. With a three-dimensional lattice, we introduce a candidate geometry and discuss beam dynamics, coupling, and manufacturing techniques for that structure. In addition we discuss W-band scale tests of photonic crystal structures. The computational methods are also discussed.

  11. A Comparison of the Crystal Structures of Phospholipase A2 from Bovine Pancreas and Crotalus atrox Venom

    NARCIS (Netherlands)

    RENETSEDER, R; BRUNIE, S; DRENTH, J; SIGLER, PB

    1985-01-01

    The refined high resolution crystal structure of the bovine phospholipase A2 was compared with its counterpart from the venom of Crotalus atrox, the western diamondbacked rattlesnake. The strong similarity in their backbone conformations forms the basis of a common numbering system for the amino

  12. Close-range airborne Structure-from-Motion Photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach

    Science.gov (United States)

    Brunier, Guillaume; Fleury, Jules; Anthony, Edward J.; Gardel, Antoine; Dussouillez, Philippe

    2016-05-01

    The field of photogrammetry has seen significant new developments essentially related to the emergence of new computer-based applications that have fostered the growth of the workflow technique called Structure-from-Motion (SfM). Low-cost, user-friendly SfM photogrammetry offers interesting new perspectives in coastal and other fields of geomorphology requiring high-resolution topographic data. The technique enables the construction of topographic products such as digital surface models (DSMs) and orthophotographs, and combines the advantages of the reproducibility of GPS surveys and the high density and accuracy of airborne LiDAR, but at very advantageous cost compared to the latter. Three SfM-based photogrammetric experiments were conducted on the embayed beach of Montjoly in Cayenne, French Guiana, between October 2013 and 2014, in order to map morphological changes and quantify sediment budgets. The beach is affected by a process of rotation induced by the alongshore migration of mud banks from the mouths of the Amazon River that generate spatial and temporal changes in wave refraction and incident wave angles, thus generating the reversals in longshore drift that characterise this process. Sub-vertical aerial photographs of the beach were acquired from a microlight aircraft that flew alongshore at low elevation (275 m). The flight plan included several parallel flight axes with an overlap of 85% between pictures in the lengthwise direction and 50% between paths. Targets of 40 × 40 cm, georeferenced by RTK-DGPS, were placed on the beach, spaced 100 m apart. These targets served in optimizing the model and in producing georeferenced 3D products. RTK-GPS measurements of random points and cross-shore profiles were used to validate the photogrammetry results and assess their accuracy. We produced dense point clouds with 150 to 200 points/m², from which we generated DSMs and orthophotos with respective resolutions of 10 cm and 5 cm. Compared to the GPS control

  13. Crystal structure of 2-pentyloxybenzamide

    Directory of Open Access Journals (Sweden)

    Bernhard Bugenhagen

    2014-10-01

    Full Text Available In the title molecule, C12H17NO2, the amide NH2 group is oriented toward the pentyloxy substituent and an intramolecular N—H...O hydrogen bond is formed with the pentyloxy O atom. The benzene ring forms dihedral angles of 2.93 (2 and 5.60 (2° with the amide group and the pentyloxy group mean planes, respectively. In the crystal, molecules are linked by pairs of N—H...O hydrogen bonds, forming inversion dimers with their molecular planes parallel, but at an offset of 0.45 (1 Å to each other. These dimers are ordered into two types of symmetry-related columns extended along the a axis, with the mean plane of one set of dimers in a column approximately parallel to (121 and the other in a column approximately parallel to (1-21. The two planes form a dihedral angle of 85.31 (2°, and are linked via C—H...O hydrogen bonds and C—H...π interactions, forming a three-dimensional framework structure.

  14. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  15. Structure and dynamics of dark-state bovine rhodopsin revealed by chemical cross-linking and high-resolution mass spectrometry.

    Science.gov (United States)

    Jacobsen, Richard B; Sale, Kenneth L; Ayson, Marites J; Novak, Petr; Hong, Joohee; Lane, Pamela; Wood, Nichole L; Kruppa, Gary H; Young, Malin M; Schoeniger, Joseph S

    2006-06-01

    Recent work using chemical cross-linking to define interresidue distance constraints in proteins has shown that these constraints are useful for testing tertiary structural models. We applied this approach to the G-protein-coupled receptor bovine rhodopsin in its native membrane using lysine- and cysteine-targeted bifunctional cross-linking reagents. Cross-linked proteolytic peptides of rhodopsin were identified by combined liquid chromatography and FT-ICR mass spectrometry with automated data-reduction and assignment software. Tandem mass spectrometry was used to verify cross-link assignments and locate the exact sites of cross-link attachment. Cross-links were observed to form between 10 pairs of residues in dark-state rhodopsin. For each pair, cross-linkers with a range of linker lengths were tested to determine an experimental distance-of-closest-approach (DCA) between reactive side-chain atoms. In all, 28 cross-links were identified using seven different cross-linking reagents. Molecular mechanics procedures were applied to published crystal structure data to calculate energetically achievable theoretical DCAs between reactive atoms without altering the position of the protein backbone. Experimentally measured DCAs are generally in good agreement with the theoretical DCAs. However, a cross-link between C316 and K325 in the C-terminal region cannot be rationalized by DCA simulations and suggests that backbone reorientation relative to the crystal coordinates occurs on the timescale of cross-linking reactions. Biochemical and spectroscopic data from other studies have found that the C-terminal region is highly mobile in solution and not fully represented by X-ray crystallography data. Our results show that chemical cross-linking can provide reliable three-dimensional structural information and insight into local conformational dynamics in a membrane protein.

  16. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  17. Crystal structure and morphology of syndiotactic polypropylene single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bu, J.Z. [GE Plastics, Washington, WV (United States); Cheng, S.Z.D. [Univ. of Akron, OH (United States)

    1996-12-31

    In the past several years there have been an increased interest in the crystal structure and morphology of s-PP due to the new development of homogeneous metallocene catalysts which can produce s-PP having a high stereoregularity. In this research, the crystal structure and morphology of s-PP single crystals grown from the melt were investigated. A series of ten fractions of s-PP was studied with different molecular weights ranging from 10,300 to 234,000 (g/mol). These fractions all possess narrow molecular weight distributions (around 1.1-1.2) and high syndiotacticities ([r]{approximately}95%). The main techniques employed including transmission electron microscopy (TEM), atomic force microscopy (AFM), wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering (SAXS).

  18. A multi-sample based method for identifying common CNVs in normal human genomic structure using high-resolution aCGH data.

    Directory of Open Access Journals (Sweden)

    Chihyun Park

    Full Text Available BACKGROUND: It is difficult to identify copy number variations (CNV in normal human genomic data due to noise and non-linear relationships between different genomic regions and signal intensity. A high-resolution array comparative genomic hybridization (aCGH containing 42 million probes, which is very large compared to previous arrays, was recently published. Most existing CNV detection algorithms do not work well because of noise associated with the large amount of input data and because most of the current methods were not designed to analyze normal human samples. Normal human genome analysis often requires a joint approach across multiple samples. However, the majority of existing methods can only identify CNVs from a single sample. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a multi-sample-based genomic variations detector (MGVD that uses segmentation to identify common breakpoints across multiple samples and a k-means-based clustering strategy. Unlike previous methods, MGVD simultaneously considers multiple samples with different genomic intensities and identifies CNVs and CNV zones (CNVZs; CNVZ is a more precise measure of the location of a genomic variant than the CNV region (CNVR. CONCLUSIONS AND SIGNIFICANCE: We designed a specialized algorithm to detect common CNVs from extremely high-resolution multi-sample aCGH data. MGVD showed high sensitivity and a low false discovery rate for a simulated data set, and outperformed most current methods when real, high-resolution HapMap datasets were analyzed. MGVD also had the fastest runtime compared to the other algorithms evaluated when actual, high-resolution aCGH data were analyzed. The CNVZs identified by MGVD can be used in association studies for revealing relationships between phenotypes and genomic aberrations. Our algorithm was developed with standard C++ and is available in Linux and MS Windows format in the STL library. It is freely available at: http://embio.yonsei.ac.kr/~Park/mgvd.php.

  19. Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop

    Energy Technology Data Exchange (ETDEWEB)

    González-Páez, Gonzalo E.; Wolan, Dennis W. (Scripps)

    2012-09-05

    Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50} values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.

  20. Solving Crystal Structures from Powder Diffraction Data

    DEFF Research Database (Denmark)

    Christensen, A. Nørlund; Lehmann, M. S.; Nielsen, Mogens

    1985-01-01

    High resolution powder data from both neutron and X-ray (synchrotron) sources have been used to estimate the possibility of direct structure determination from powder data. Two known structures were resolved by direct methods with neutron and X-ray data. With synchrotron X-ray data, the measured...... range of data was insufficient for a structure analysis, but the R-factor calculations showed the intensities extracted from the profile data to be of acceptable quality. The results were used to estimate the largest structure that might be solved using routine techniques. It was found that the limit...... would be near twenty atoms in the asymmetric part of a centro-symmetric structure....

  1. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  2. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  3. High resolution neutron diffractometer HRND at research reactor CMRR

    Science.gov (United States)

    Zhang, J.; Xia, Y.; Wang, Y.; Xie, C.; Sun, G.; Liu, L.; Pang, B.; Li, J.; Huang, C.; Liu, Y.; Gong, J.

    2018-01-01

    The high resolution neutron diffractometer HRND is located at the 20 MW China Mianyang Research Reactor (CMRR), which is a neutron powder diffractometer especially dedicated to crystal and magnetic structure studies for polycrystalline powder samples. A vertical focusing Ge (511) monochromator produce a monochromatic neutron beam with a wavelength of 1.885 Å at a fixed take-off angle of 120o. An array of 64 equidistant 3He filled proportional counters can acquire diffraction patterns with a large-scale diffraction angle range over 160o. As all the Soller slit collimators of HRND have a collimation angle of 10' and the monochromator has an average mosaicity of 0.359o, HRND obtains a best resolution of about 1.6\\textperthousand based on experiments, which makes the resolution of HRND can compete with the mainstream-level high resolution neutron powder diffractometers in the world. Equipped with a cryostat and a furnace, HRND allows structural characterization in an extremely broad temperature range. The details of the configuration and performance of the instrument are reported along with its specifications and performance assessments in the present paper.

  4. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    Science.gov (United States)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration phosphatase domains. In the bound state, PTEN's regulatory C-terminal tail is

  5. Crystal structure of cyclohexylammonium thiocyanate

    OpenAIRE

    Abdulaziz A. Bagabas; Sultan B. Alhoshan; Hazem A. Ghabbour; C. S. Chidan Kumar; Hoong-Kun Fun

    2015-01-01

    In the title salt, C6H11NH3 +?SCN?, the cyclo?hexyl?ammonium ring adopts a slightly distorted chair conformation. The ammonium group occupies an equatorial position to minimize 1,3 and 1,5 diaxial inter?actions. In the crystal, the components are linked by N?H?N and N?H?S hydrogen-bonding inter?actions, resulting in a three-dimensional network.

  6. Crystal structure of cyclohexylammonium thiocyanate

    Directory of Open Access Journals (Sweden)

    Abdulaziz A. Bagabas

    2015-01-01

    Full Text Available In the title salt, C6H11NH3+·SCN−, the cyclohexylammonium ring adopts a slightly distorted chair conformation. The ammonium group occupies an equatorial position to minimize 1,3 and 1,5 diaxial interactions. In the crystal, the components are linked by N—H...N and N—H...S hydrogen-bonding interactions, resulting in a three-dimensional network.

  7. Crystal structure from one-electron theory

    DEFF Research Database (Denmark)

    Skriver, H. L.

    1985-01-01

    The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated by the the......The authors have studied the crystal structure of all the 3d, 4d, and 5d transition metals at zero pressure and temperature by means of the linear muffin-tin orbital method and Andersen's force theorem. They find that, although the structural energy differences seem to be overestimated...

  8. Crystal structures of ethylene glycol and ethylene glycol monohydrate.

    Science.gov (United States)

    Fortes, A Dominic; Suard, Emmanuelle

    2011-12-21

    We have carried out a neutron powder diffraction study of deuterated ethylene glycol (1,2-ethanediol), and deuterated ethylene glycol monohydrate with the D2B high-resolution diffractometer at the Institut Laue-Langevin. Using these data, we have refined the complete structure, including all hydrogen atoms, of the anhydrous phase at 220 K. In addition, we have determined the structure of ethylene glycol monohydrate at 210 K using direct space methods. Anhydrous ethylene glycol crystallizes in space-group P2(1)2(1)2(1) with four formula units in a unit-cell of dimensions a = 5.0553(1) Å, b = 6.9627(1) Å, c = 9.2709(2) Å, and V = 326.319(8) Å(3) [ρ(calc)(deuterated) = 1386.26(3) kg m(-3)] at 220 K. Ethylene glycol monohydrate crystallizes in space-group P2(1)/c with four formula units in a unit-cell of dimensions a = 7.6858(3) Å, b = 7.2201(3) Å, c = 7.7356(4) Å, β = 92.868(3)°, and V = 428.73(2) Å(3) [ρ(calc)(deuterated) = 1365.40(7) kg m(-3)] at 210 K. Both the structures are characterized by the gauche conformation of the ethylene glycol molecule; however, the anhydrous phase contains the tGg' rotamer (or its mirror, g'Gt), whereas the monohydrate contains the gGg' rotamer. In the monohydrate, each water molecule is tetrahedrally coordinated, donating two hydrogen bonds to, and accepting two hydrogen bonds from the hydroxyl groups of neighboring ethylene glycol molecules. There are substantial differences in the degree of weak C-D···O hydrogen bonding between the two crystals, which calls into question the role of these interactions in determining the conformation of the ethylene glycol molecule.

  9. Tailoring quantum structures for active photonic crystals

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda

    This work is dedicated to the tailoring of quantum structures, with particular attention to the integration of selective area grown (SAG) active material into photonic crystal (PhC) slabs. The platform based on active PhC is vital to the realization of highly efficient elements with low energy......; in particular, the emission control of SAG QW matched the operating wavelength of photonic crystals. A strong photoluminescence signal in the slow light regime with the group index of 18 was demonstrated....

  10. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  11. Crystal structure of enolase from Drosophila melanogaster.

    Science.gov (United States)

    Sun, Congcong; Xu, Baokui; Liu, Xueyan; Zhang, Zhen; Su, Zhongliang

    2017-04-01

    Enolase is an important enzyme in glycolysis and various biological processes. Its dysfunction is closely associated with diseases. Here, the enolase from Drosophila melanogaster (DmENO) was purified and crystallized. A crystal of DmENO diffracted to 2.0 Å resolution and belonged to space group R32. The structure was solved by molecular replacement. Like most enolases, DmENO forms a homodimer with conserved residues in the dimer interface. DmENO possesses an open conformation in this structure and contains conserved elements for catalytic activity. This work provides a structural basis for further functional and evolutionary studies of enolase.

  12. Crystal structure of levomepromazine maleate

    Directory of Open Access Journals (Sweden)

    Gyula Tamás Gál

    2016-05-01

    Full Text Available The asymmetric unit of the title salt, C19H25N2OS+·C4H3O4− [systematic name: (S-3-(2-methoxyphenothiazin-10-yl-N,N,2-trimethylpropanaminium hydrogen maleate], comprises two (S-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the methoxy substituent at the phenothiazine ring system. The crystal components form a three-dimensional supramolecular network via N—H...O, C—H...O and C—H...π interactions. A comparison of the conformations of the levomepromazine cations with those of the neutral molecule and similar protonated molecules reveals significant conformational flexibility of the phenothiazine ring system and the substituent at the phenothiazine N atom.

  13. High-resolution multiphoton cryomicroscopy.

    Science.gov (United States)

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Crystal Structures of Inhibitir Complexes of Human T-Cell Leukemia Virus (HTLV-1) Protease

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander (NCI); (Kyoto)

    2010-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  15. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander (NCI); (Kyoto)

    2010-09-28

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  16. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  17. Evidence for Phenylalanine Zipper-Mediated Dimerization in the X-Ray Crystal Structure of a Magainin 2 Analogue

    OpenAIRE

    Hayouka, Zvi; Mortenson, David E.; Kreitler, Dale F.; Weisblum, Bernard; Forest, Katrina T.; Gellman, Samuel H.

    2013-01-01

    High-resolution structure elucidation has been challenging for the large group of host-defense peptides that form helices on or within membranes but do not manifest a strong folding propensity in aqueous solution. Here we report the crystal structure of an analogue of the widely-studied host-defense peptide magainin 2. Ala8,13,18-magainin 2 is a designed variant that displays enhanced antibacterial activity relative to the natural peptide. The crystal structure of Ala8,13,18-magainin 2, obtai...

  18. Applying Lidar and High-Resolution Multispectral Imagery for Improved Quantification and Mapping of Tundra Vegetation Structure and Distribution in the Alaskan Arctic

    Science.gov (United States)

    Greaves, Heather E.

    Climate change is disproportionately affecting high northern latitudes, and the extreme temperatures, remoteness, and sheer size of the Arctic tundra biome have always posed challenges that make application of remote sensing technology especially appropriate. Advances in high-resolution remote sensing continually improve our ability to measure characteristics of tundra vegetation communities, which have been difficult to characterize previously due to their low stature and their distribution in complex, heterogeneous patches across large landscapes. In this work, I apply terrestrial lidar, airborne lidar, and high-resolution airborne multispectral imagery to estimate tundra vegetation characteristics for a research area near Toolik Lake, Alaska. Initially, I explored methods for estimating shrub biomass from terrestrial lidar point clouds, finding that a canopy-volume based algorithm performed best. Although shrub biomass estimates derived from airborne lidar data were less accurate than those from terrestrial lidar data, algorithm parameters used to derive biomass estimates were similar for both datasets. Additionally, I found that airborne lidar-based shrub biomass estimates were just as accurate whether calibrated against terrestrial lidar data or harvested shrub biomass--suggesting that terrestrial lidar potentially could replace destructive biomass harvest. Along with smoothed Normalized Differenced Vegetation Index (NDVI) derived from airborne imagery, airborne lidar-derived canopy volume was an important predictor in a Random Forest model trained to estimate shrub biomass across the 12.5 km2 covered by our lidar and imagery data. The resulting 0.80 m resolution shrub biomass maps should provide important benchmarks for change detection in the Toolik area, especially as deciduous shrubs continue to expand in tundra regions. Finally, I applied 33 lidar- and imagery-derived predictor layers in a validated Random Forest modeling approach to map vegetation

  19. High resolution genetic mapping uncovers chitin synthase-1 as the target-site of the structurally diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole in Tetranychus urticae

    Science.gov (United States)

    Demaeght, Peter; Osborne, Edward J.; Odman-Naresh, Jothini; Grbić, Miodrag; Nauen, Ralf; Merzendorfer, Hans

    2014-01-01

    The acaricides clofentezine, hexythiazox and etoxazole are commonly referred to as ‘mite growth inhibitors’, and clofentezine and hexythiazox have been used successfully for the integrated control of plant mite pests for decades. Although they are still important today, their mode of action has remained elusive. Recently, a mutation in chitin synthase 1 (CHS1) was linked to etoxazole resistance. In this study, we identified and investigated a T. urticae strain (HexR) harboring recessive, monogenic resistance to each of hexythiazox, clofentezine, and etoxazole. To elucidate if there is a common genetic basis for the observed cross-resistance, we adapted a previously developed bulk segregant analysis method to map with high resolution a single, shared resistance locus for all three compounds. This finding indicates that the underlying molecular basis for resistance to all three compounds is identical. This locus is centered on the CHS1 gene, and as supported by additional genetic and biochemical studies, a non-synonymous variant (I1017F) in CHS1 associates with resistance to each of the tested acaricides in HexR. Our findings thus demonstrate a shared molecular mode of action for the chemically diverse mite growth inhibitors clofentezine, hexythiazox and etoxazole as inhibitors of an essential, non-catalytic activity of CHS1. Given the previously documented cross-resistance between clofentezine, hexythiazox and the benzyolphenylurea compounds flufenoxuron and cycloxuron, CHS1 should be also considered as a potential target-site of insecticidal BPUs. PMID:24859419

  20. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  1. Enhanced High Resolution RBS System

    Science.gov (United States)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  2. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  3. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. High-resolution STIR for 3-T MRI of the posterior fossa: visualization of the lower cranial nerves and arteriovenous structures related to neurovascular compression.

    Science.gov (United States)

    Hiwatashi, Akio; Yoshiura, Takashi; Yamashita, Koji; Kamano, Hironori; Honda, Hiroshi

    2012-09-01

    Preoperative evaluation of small vessels without contrast material is sometimes difficult in patients with neurovascular compression disease. The purpose of this retrospective study was to evaluate whether 3D STIR MRI could simultaneously depict the lower cranial nerves--fifth through twelfth--and the blood vessels in the posterior fossa. The posterior fossae of 47 adults (26 women, 21 men) without gross pathologic changes were imaged with 3D STIR and turbo spin-echo heavily T2-weighted MRI sequences and with contrast-enhanced turbo field-echo MR angiography (MRA). Visualization of the cranial nerves on STIR images was graded on a 4-point scale and compared with visualization on T2-weighted images. Visualization of the arteries on STIR images was evaluated according to the segments in each artery and compared with that on MRA images. Visualization of the veins on STIR images was also compared with that on MRA images. Statistical analysis was performed with the Mann-Whitney U test. There were no significant differences between STIR and T2-weighted images with respect to visualization of the cranial nerves (p > 0.05). Identified on STIR and MRA images were 94 superior cerebellar arteries, 81 anteroinferior cerebellar arteries, and 79 posteroinferior cerebellar arteries. All veins evaluated were seen on STIR and MRA images. There were no significant differences between STIR and MRA images with respect to visualization of arteries and veins (p > 0.05). High-resolution STIR is a feasible method for simultaneous evaluation of the lower cranial nerves and the vessels in the posterior fossa without the use of contrast material.

  5. Mapping primary gyrogenesis during fetal development in primate brains: high-resolution in utero structural MRI study of fetal brain development in pregnant baboons

    Directory of Open Access Journals (Sweden)

    Peter Kochunov

    2010-05-01

    Full Text Available The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17-25 of 26 weeks total gestation. Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of ten primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length axis of cortical sulci was unrelated to the growth along the short (depth axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r=-0.60;p<.10, while the same trend for long axis was positive and not significant (p=0.3;p=0.40. These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates.

  6. Molecular and crystal structure of ivalin

    Energy Technology Data Exchange (ETDEWEB)

    Coetzer, J. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Physical Research Lab.); Kruger, G.J.; Levendis, D.C. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Chemical Research Lab.)

    1982-01-01

    The bromoacetate derivative of ivalin, which is a sesquiterpene lactone, crystallizes in the space group P2/sub 1/, with two molecules in the unit cell. Its structure was solved by standard X-ray methods. Full-matrix least-squares refinement converged at R=0,052. The proposed stereochemistry has been confirmed.

  7. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    Hydrothermal synthesis, crystal structure and luminescence property of a three dimensional Sm(III) coordination polymer with. 2,5-pyridinedicarboxylic acid. KRANTHI KUMAR GANGU, ANIMA S DADHICH and. SARATCHANDRA BABU MUKKAMALA. ∗. Department of Chemistry, GITAM University, Visakhapatnam 530 045, ...

  8. Hydrothermal synthesis, crystal structure and luminescence property ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 12. Hydrothermal synthesis, crystal structure and luminescence property of a three dimensional Sm(III) coordination polymer with 2,5-pyridinedicarboxylic acid. Kranthi Kumar Gangu Anima S Dadhich Saratchandra Babu Mukkamala. Volume 127 Issue 12 ...

  9. Synthesis, crystal structure, theoretical study and luminescence ...

    Indian Academy of Sciences (India)

    Synthesis, crystal structure, theoretical study and luminescence property of a butterfly-like W/Cu/S cluster with 1,10-phenanthroline. AI-HUA CHENa,b, SU-CI MENGc,d, JIN-FANG ZHANGb,c and CHI ZHANGb,c,∗. aSchool of Chemical & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051,.

  10. Theoretical investigation on crystal structure, detonation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 4. Theoretical investigation on crystal structure, detonation ... The bond dissociation energies and bond orders for the weakest bonds were analysed to investigate the thermal stability of the title compound. The detonation and pressure were evaluated by ...

  11. Solvothermal syntheses, crystal structures, optical and thermal ...

    Indian Academy of Sciences (India)

    Keywords. Selenidogermanates; nickel; solvothermal syntheses; crystal structures; optical properties ... The different coordination environments of Ni²⁺ ions indicate the influence of the denticity of ethylene polyamines on the formation of selenidogermanates in the presence of transition metal ions. Thecompounds 1–3 ...

  12. Modular crystals as modulated structures

    DEFF Research Database (Denmark)

    Elcoro, L.; Perez-Mato, J.M.; Friese, K.

    2008-01-01

    The use of the superspace formalism is extended to the description and refinement of the homologous series of modular structures with two symmetry-related modules with different orientations. The lillianite homologous series has been taken as a study case. Starting from a commensurate modulated...... and introduce in the starting model the two orientations of the underlying module sublattices. We show that a composite approach with this type of function, which treats the cations and anions as two separate subsystems forming a misfit compound, is the most appropriate and robust method for the refinements....

  13. Structural characterization of crystallized Si thin film material by HRTEM and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mchedlidze, Teimuraz; Sohal, Rakesh [Joint Lab, IHP/BTU, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); Beigmohamadi, Maryam; Mayer, Joachim [Institute of Solid State Research and Ernst-Ruska Centre for Microscopy und Spectroscopy with Electrons, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Berghoff, Birger; Suckow, Stephan; Wilck, Noel; Spangenberg, Bernd [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Arguirov, Tzanimir; Kittler, Martin [Joint Lab, IHP/BTU, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); IHP Microelectronics, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2011-03-15

    Comparative structural analyses of a crystallized, 60 nm thick silicon film deposited on quartz substrate were performed using high resolution transmission electron microscopy (HRTEM) and Raman spectroscopy (RS). Both methods suggest high degree of crystallization of the film. The material of the film consists of crystalline grains with sizes up to 20 nm (HRTEM) and the mean size of the grains is {proportional_to}4 nm (RS). HRTEM results suggest large scatter of the crystal orientations of the grains. The existence of boundary defects between grains grouped in large agglomerates was also detected by HRTEM. RS analyses indicate large compressive strain in the system and the existence of high pressure Si phases in the material of the film. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Simultaneous Speciation, Structure, and Equilibrium Constant Determination in the Ni2+-EDTA-CN-Ternary System via High-Resolution Laboratory X-ray Absorption Fine Structure Spectroscopy and Theoretical Calculations.

    Science.gov (United States)

    Bajnóczi, Éva G; Németh, Zoltán; Vankó, György

    2017-11-20

    Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.

  15. Detecting to secret folded composite lamina package pairs in cores related slump dump structures and seismites with high resolution sampling of physical parameters

    Science.gov (United States)

    Acar, Dursun; Cagatay, Namik; Feray Meydan, Aysegul; Eris, Kadir; Sari, Erol; Akcer, Sena; Makaroglu, Ozlem; Alkislar, Hakan; Biltekin, Demet; Nagehan Arslan, Tugce

    2016-04-01

    The core retrieved from Lake Van consists of seismites that were possibly deposited during the earthquakes around the Van region. Deformed parts of the core sediments display folded laminations that can be attributed to seismites. The problem arises that if the fold axis is deposited perpendicular to the liner and, if the hinge line is far enough, describing the true laminations might be impossible related to real age of basin evolution because extra laminae seem deposited to the area. Scientist must pay attention such problem that dating method like varve counting and basin evolution estimates can totally change due to extra laminae that explained before. For eliminate to wrong interpretations considering reversal reflected anomalies even with angularity effects to one package of pair can show significant difference than other symmetric one due to angle of the hinge line or soft sediment deformation. Considering the situation explained, p-wave is not enough to support the idea however; chemical analyses (x-ray florescence), ICP-MS (asdasd) analysis can provide appropriate results to identify laminae that appear on the limbs of the reversed micro folds. New easy designed extra U-Channel drive tray framework prepared by us. U-Channels are prepared well conditioned, saturated enough to well contact between sediment surface and plastic shield of u-channel samples from cores. Physical parameters are measured by Multi sensor core logger (MSCL) with high resolution step ratio fixed to 1mm. At the p- wave and gamma ray results, we observed together stair upwards form and reverse reflected downward data graphics, thus our interpretation of identifying the fold limbs are now visible. We understand that laminae packages are exactly the same. XRF and MSCL are totally supporting to origin of pairs generated after their sedimentation age with mechanical forces. For this reason, in this study, we attended to solve such problem to analyze deformed folded laminations that must be

  16. Photonic Crystal Laser-Driven Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Benjamin M

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  17. Four highly pseudosymmetric and/or twinned structures of d(CGCGCG) 2 extend the repertoire of crystal structures of Z-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhipu; Dauter, Zbigniew; Gilski, Miroslaw

    2017-10-30

    DNA oligomer duplexes containing alternating cytosines and guanines in their sequences tend to form left-handed helices of the Z-DNA type, with the sugar and phosphate backbone in a zigzag conformation and a helical repeat of two successive nucleotides. Z-DNA duplexes usually crystallize as hexagonally arranged parallel helical tubes, with various relative orientations and translation of neighboring duplexes. Four novel high-resolution crystal structures of d(CGCGCG)2duplexes are described here. They are characterized by a high degree of pseudosymmetry and/or twinning, with three or four independent duplexes differently oriented in a monoclinicP21lattice of hexagonal metric. The various twinning criteria give somewhat conflicting indications in these complicated cases of crystal pathology. The details of molecular packing in these crystal structures are compared with other known crystal forms of Z-DNA.

  18. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  19. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  20. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, Tonya

    2008-02-15

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu{sup 1+} and Cu{sup 2+}) and Fe (Fe{sup 2+} and Fe{sup 3+}) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn{sup 2+} and Mn{sup 3+} in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu{sup 1+}) and sixfold (Cu{sup 2+}) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with {sup 3}He{sup 2+} ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  1. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  2. A high-resolution structure of a DNA-chromomycin-Co(II) complex determined from pseudocontact shifts in nuclear magnetic resonance.

    Science.gov (United States)

    Gochin, M

    2000-04-15

    The drug chromomycin-A(3) binds to the minor groove of DNA and requires a divalent metal ion for complex formation. (1)H, (31)P and (13)C pseudocontact shifts occurring in the presence of a tightly bound divalent cobalt ion in the complex between d(TTGGCCAA)(2) and chromomycin-A(3) have been used to determine the structure of the complex. The accuracy of the structure was verified by validation with nuclear Overhauser enhancements (NOEs) and J-coupling constants not used in the structure calculation. The final structure was determined to 0.7 A resolution. The structure was compared with a structure obtained in an earlier study using NOEs, in order to assess the accuracy of NOEs in giving global structural information for a DNA complex. Although some basic features of the structures agreed, they differed substantially in the fine structural details and in the DNA axis curvature generated by the drug. The distortion of base-pair planarity that was observed in the NOE structure was not seen in our structure. Differences in drug orientation and hydrogen bonding also occurred. The curvature and elongation of the DNA that was obtained previously was not found to occur in our study. The use of pseudocontact shifts has enabled us to obtain a high-precision global structure of the chromomycin-DNA complex, which provides an accurate template on which to consider targeting minor groove binding drugs. The effect of such binding is not propagated far along the helix but is restricted to a local kink in the axis that reverts to its original direction within four base pairs.

  3. Structural analysis of GaN using high-resolution X-ray diffraction at variable temperatures; Analyse struktureller Eigenschaften von GaN mittels hochaufloesender Roentgenbeugung bei variabler Messtemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Roder, C.

    2007-02-26

    The main topic of this thesis was the study of stress phenomena in GaN layers by application of high-resolution X-ray diffractometry at variable measurement temperature. For this a broad spectrum of different GaN samples was studied, which extended from bulk GaN crystals as well as thick c-plane oriented HVPE-GaN layers on c-plane sapphire over laterlaly overgrown c-plane GaN Layers on Si(111) substrates toon-polar a-plnae GaN layers on r-plane sapphire. The main topic of the measurements was the determination of the lattice parameters. Supplementarily the curvature of the waver as well as the excitonic resosance energies were studied by means of photoluminescence respectively photoreflection spectroscopy. By the measurement of the temperature-dependent lattice parameters of different GaN bulk crystals for the first time a closed set of thermal-expansion coefficients of GaN was determined from 12 to 1205 K with large accuracy. Analoguously the thermal-expansion coefficents of the substrate material sapphire were determinde over a temperature range from 10 to 1166 K.

  4. Evaluation of Advanced Bionics high resolution mode.

    Science.gov (United States)

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  5. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  6. Synthesis, crystal structure, thermal analysis and dielectric ...

    Indian Academy of Sciences (India)

    providing information about the complete crystal structure at room temperature of the new compounds. These materi- ... Data collection instrument. Kappa-APEX II. Kappa-APEX II. Radiation, graphite ..... graphic method of the mixed compounds K0.57(NH4)0.43CdCl3 and K0.25(NH4)0.75CdCl3. This study is restricted to ...

  7. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  8. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  9. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy.

    Science.gov (United States)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G

    2014-09-29

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  10. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy

    Science.gov (United States)

    Demers, Jean-Philippe; Habenstein, Birgit; Loquet, Antoine; Kumar Vasa, Suresh; Giller, Karin; Becker, Stefan; Baker, David; Lange, Adam; Sgourakis, Nikolaos G.

    2014-09-01

    We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.

  11. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    L Vedula; G Brannigan; N Economou; J Xi; M Hall; R Liu; M Rossi; W Dailey; K Grasty; et. al.

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  12. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.; Xi, Jin; Hall, Michael A.; Liu, Renyu; Rossi, Matthew J.; Dailey, William P.; Grasty, Kimberly C.; Klein, Michael L.; Eckenhoff, Roderic G.; Loll, Patrick J.; (Drexel-MED); (UPENN)

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  13. Spatial attributes of the four-helix bundle group of bacteriocins – The high-resolution structure of BacSp222 in solution

    KAUST Repository

    Nowakowski, Michał

    2017-11-01

    BacSp222 is a multifunctional bacteriocin produced by Staphylococcus pseudintermedius strain 222, an opportunistic pathogen of domestic animals. At micromolar concentrations, BacSp222 kills Gram-positive bacteria and is cytotoxic toward mammalian cells, while at nanomolar doses, it acts as an immunomodulatory factor, enhancing nitric oxide release in macrophage-like cell lines. The bacteriocin is a cationic, N-terminally formylated, 50-amino-acid-long linear peptide that is rich in tryptophan residues.In this study, the solution structure of BacSp222 was determined and compared to the currently known structures of similar bacteriocins. BacSp222 was isolated from a liquid culture medium in a uniformly 13C- and 15N-labeled form, and NMR data were collected. The structure was calculated based on NMR-derived constraints and consists of a rigid and tightly packed globular bundle of four alpha-helices separated by three short turns.Although the amino acid sequence of BacSp222 has no significant similarity to any known peptide or protein, a 3D structure similarity search indicates a close relation to other four-helix bundle-motif bacteriocins, such as aureocin A53, lacticin Q and enterocins 7A/7B. Assuming similar functions, biology, structure and physicochemical properties, we propose to distinguish the four-helix bundle bacteriocins as a new Type A in subclass IId of bacteriocins, containing linear, non-pediocin-like peptides.

  14. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.F.

    1983-07-01

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A/sup 2/ in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure.

  15. Linking contemporary high resolution magnetic resonance imaging to the von economo legacy : A study on the comparison of MRI cortical thickness and histological measurements of cortical structure

    NARCIS (Netherlands)

    Scholtens, Lianne H.|info:eu-repo/dai/nl/413971392; de Reus, Marcel A.|info:eu-repo/dai/nl/413970728; van den Heuvel, Martijn P.|info:eu-repo/dai/nl/304820466

    The cerebral cortex is a distinctive part of the mammalian nervous system, displaying a spatial variety in cyto-, chemico-, and myelinoarchitecture. As part of a rich history of histological findings, pioneering anatomists von Economo and Koskinas provided detailed mappings on the cellular structure

  16. Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization.

    Science.gov (United States)

    Ropartz, David; Giuliani, Alexandre; Fanuel, Mathieu; Hervé, Cécile; Czjzek, Mirjam; Rogniaux, Hélène

    2016-08-24

    The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase.

    Science.gov (United States)

    Amaya, Maria Fernanda; Buschiazzo, Alejandro; Nguyen, Tong; Alzari, Pedro M

    2003-01-24

    The structure of the recombinant Trypanosoma rangeli sialidase (TrSA) has been determined at 1.6A resolution, and the structures of its complexes with the transition state analog inhibitor 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid (DANA), Neu-5-Ac-thio-alpha(2,3)-galactoside (NATG) and N-acetylneuraminic acid (NANA) have been determined at 1.64A, 2.1A and 2.85A, respectively. The 3D structure of TrSA is essentially identical to that of the natural enzyme, except for the absence of covalently attached sugar at five distinct N-glycosylation sites. The protein exhibits a topologically rigid active site architecture that is unaffected by ligand binding. The overall binding of DANA to the active site cleft is similar to that observed for other viral and bacterial sialidases, dominated by the interactions of the inhibitor carboxylate with the conserved arginine triad. However, the interactions of the other pyranoside ring substituents (hydroxyl, N-acetyl and glycerol moieties) differ between trypanosomal, bacterial and viral sialidases, providing a structural basis for specific inhibitor design. Sialic acid is found to bind the enzyme with the sugar ring in a distorted (half-chair or boat) conformation and the 2-OH hydroxyl group at hydrogen bonding distance of the carboxylate of Asp60, substantiating a direct catalytic role for this residue. A detailed comparison of TrSA with the closely related structure of T.cruzi trans-sialidase (TcTS) reveals a highly conserved catalytic center, where subtle structural differences account for strikingly different enzymatic activities and inhibition properties. The structure of TrSA in complex with NATG shows the active site cleft occupied by a smaller compound which could be identified as DANA, probably the product of a hydrolytic side reaction. Indeed, TrSA (but not TcTS) was found to cleave O and S-linked sialylated substrates, further stressing the functional differences between trypanosomal sialidases and trans-sialidases.

  18. Flux growth and crystal structure of pyromorphite.

    Science.gov (United States)

    Akao, A; Aoki, H; Innami, Y; Minamikata, S; Yamada, T

    1989-01-01

    Single crystals of pyromorphite, Pb5(PO4)3Cl, were grown by standard flux growth technique with excess lead chloride used as the flux. Pyromorphite was first prepared by heating an intimate mixture of lead hydrogen phosphate and lead chloride in the molar ratio 6:4 at 100 degrees C for 1 h. A mixture of 60 wt% of pyromorphite and 40 wt% of lead chloride was heated at 850 degrees C for 15 h and then cooled at the rate of 3.4 degrees C/h. Hexagonal prismatic crystals of length 1 mm were obtained. The chemical composition has close to the theoretical value. The crystal is hexagonal, space group P6(3)/m with a = 9.9981(8), c = 7.344(1) A and Z = 2. The structure was refined to R = 0.058 and Rw = 0.053 with 502 independent reflections. The structure is in principal the same as that of barium chlorapatite; the chlorine ions occupy the (0, 0, 0) position.

  19. Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Ropartz, David, E-mail: David.Ropartz@nantes.inra.fr [INRA, UR1268 Biopolymers Interactions Assemblies F-44316 Nantes (France); Giuliani, Alexandre [Synchrotron SOLEIL, L' Orme des Merisiers, F-91190 Gif-sur-Yvette (France); UAR 1008 CEPIA, INRA, F-44316 Nantes (France); Fanuel, Mathieu [INRA, UR1268 Biopolymers Interactions Assemblies F-44316 Nantes (France); Hervé, Cécile; Czjzek, Mirjam [Sorbonne Universités, Université Pierre et Marie Curie, Paris VI, CNRS, Integrative Biology of Marine Models, UMR 8227, Station Biologique, Place George Teissier, F29688 Roscoff Cedex (France); Rogniaux, Hélène [INRA, UR1268 Biopolymers Interactions Assemblies F-44316 Nantes (France)

    2016-08-24

    The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology. - Highlights: • For the first time, XUV photon activation tandem MS was coupled to UHPLC. • The approach was used to characterize a complex mixture of biomolecules. • The MSMS duty cycle was compatible with elution times of UHPLC without compromised. • Minor species were characterized with an enhanced sensitivity and dynamic range. • These results broaden the application of the technique in many field of

  20. Crystal structure of natural phaeosphaeride A

    Directory of Open Access Journals (Sweden)

    Victoria V. Abzianidze

    2015-08-01

    Full Text Available The asymmetric unit of the title compound, C15H23NO5, contains two independent molecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the molecules form layered structures. Nearly planar sheets, parallel to the (001 plane, form bilayers of two-dimensional hydrogen-bonded networks with the hydroxy groups located on the interior of the bilayer sheets. The network is constructed primarily of four O—H...O hydrogen bonds, which form a zigzag pattern in the (001 plane. The butyl chains interdigitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6:0.282 (6.

  1. Determining crystal structures through crowdsourcing and coursework

    Science.gov (United States)

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Roque, Paulo Sergio Silveira Belo Nascimento; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-01-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552

  2. Determining crystal structures through crowdsourcing and coursework

    Science.gov (United States)

    Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Silveira Belo Nascimento Roque, Paulo Sergio; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K.; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.

    2016-09-01

    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

  3. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kellar, S.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.

    1997-05-01

    This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.

  4. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  5. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  6. Diterbium heptanickel: a crystal structure redetermination

    Directory of Open Access Journals (Sweden)

    Volodymyr Levytskyy

    2014-08-01

    Full Text Available The crystal structure of the title compound, Tb2Ni7, was redetermined from single-crystal X-ray diffraction data. In comparison with previous studies based on powder X-ray diffraction data [Lemaire et al. (1967. C. R. Acad. Sci. Ser. B, 265, 1280–1282; Lemaire & Paccard (1969. Bull. Soc. Fr. Mineral. Cristallogr. 92, 9–16; Buschow & van der Goot (1970. J. Less-Common Met. 22, 419–428], the present redetermination affords refined coordinates and anisotropic displacement parameters for all atoms. A partial occupation for one Tb atom results in the non-stoichiometric composition Tb1.962 (4Ni7. The title compound adopts the Ce2Ni7 structure type and can also be derived from the CaCu5 structure type as an intergrowth structure. The asymmetric unit contains two Tb sites (both site symmetries 3m. and five Ni sites (.m., mm2, 3m., 3m., -3m.. The two different coordination polyhedra of Tb are a Frank–Kasper polyhedron formed by four Tb and 12 Ni atoms and a pseudo Frank–Kasper polyhedron formed by two Tb and 18 Ni atoms. The four different coordination polyhedra of Ni are Frank–Kasper icosahedra formed by five Tb and seven Ni atoms, four Tb and eight Ni atoms, three Tb and nine Ni atoms, and six Tb and six Ni atoms, respectively.

  7. Magnetization reversal of the domain structure in the anti-perovskite nitride Co{sub 3}FeN investigated by high-resolution X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hajiri, T., E-mail: t.hajiri@numse.nagoya-u.ac.jp; Kuroki, Y.; Ando, H.; Sakakibara, H.; Ueda, K.; Asano, H. [Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603 (Japan); Finizio, S. [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, Mainz D-55128 (Germany); Swiss Light Source, Paul Scherrer Institut, Villigen PSI CH-5232 (Switzerland); Vafaee, M.; Kläui, M. [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, Mainz D-55128 (Germany); Kleibert, A.; Howald, L. [Swiss Light Source, Paul Scherrer Institut, Villigen PSI CH-5232 (Switzerland); Kronast, F. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, D-12489 Berlin (Germany)

    2016-05-14

    We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co{sub 3}FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nanostructured thin films.

  8. Elucidation of the chemical and morphological structure of double-network (DN) hydrogels by high-resolution magic angle spinning (HRMAS) NMR spectroscopy.

    Science.gov (United States)

    Shestakova, Pavletta; Willem, Rudolph; Vassileva, Elena

    2011-12-23

    (1)H HRMAS NMR spectroscopy is applied to gain insight into the chemical and morphological structure of double-network (DN) hydrogels, prepared from poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) and poly(acrylamide) (PAAm). The method enables one to obtain detailed information at the molecular level about the formation of covalent bonds between the two polymer networks through non-reacted double bonds of the cross-linker N,N'-methylene bis(acrylamide) (MBAA). Evidence to the existence of strong hydrogen-bond interactions based on the N-H group of the PAMPS as a hydrogen-bond donor and the C=O group of the PAAm as a hydrogen-bond acceptor is also provided. These findings clarify the origin of the toughening mechanism and the exceptionally strong mechanical properties of DN gels, further supported by microhardness data. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    Science.gov (United States)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE Japan Society for the Promotion of Science.

  10. High-resolution seismic and side scan sonar imaging of active structures and Quaternary channels on the shallow shelf of Otago, southeastern New Zealand

    Science.gov (United States)

    Gorman, A. R.; Bruce, C.; Preskett, S. A.; Norris, R.; Choveaux, R.; Flemish, H.; Green, C.

    2011-12-01

    The shallow and narrow continental shelf off the coast of Otago has unique geological characteristics due to the juxtaposition of active coast-parallel contractional faults related to the nearby Pacific-Australian plate boundary and late-Miocene shield volcanism that affects the structural and sedimentological regimes of the region. For example, the offshore extent of the active Akatore Fault, a NE-SW trending reverse fault that runs along the coast SW of Dunedin, is poorly constrained to the northeast where is intersects the Dunedin Volcanic Complex. This fault is possibly associated with several other offshore coast-parallel faults based on shallow controlled-source seismic data. Historical earthquakes, including those of 1974 and 1989, are attributed these faults. The Dunedin Volcanic Complex also has impacted Quaternary erosional and sedimentation patterns on the shelf as a result of topographical features that affect drainage and sediment transport patterns. Single-channel electro-acoustic boomer seismic reflection data and side scan sonar profiles have been collected along a ~35-km-long section of the shallow shelf SW of Dunedin over the last three years. The majority of lines were collected along NW-SE azimuths (perpendicular to the coast), running from just outside the surf zone (<10 m water depth) to a maximum of 28 km offshore (~75 m water depth). Survey lines were ~250 m apart near shore and up to 5 km apart offshore. Boomer subsurface penetration is limited, primarily by the presence of multiple reflections. However, primary reflections were recorded from sub-seafloor depths of up to 100 m. Several significant structures have been imaged within the survey area, principally the Akatore and Green Island Faults. The Akatore Fault is imaged very near shore in the southern portion of the survey, and a minimum post-Miocene displacement of 55 m was calculated. Offset on the Green Island Fault, a high-angle reverse fault, was relatively well constrained to ~200

  11. Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure.

    Science.gov (United States)

    Alvarez, Laura; Hernandez, Sara B; de Pedro, Miguel A; Cava, Felipe

    2016-01-01

    High-performance liquid chromatography (HPLC) analysis has been critical for determining the structural and chemical complexity of the cell wall. However this method is very time consuming in terms of sample preparation and chromatographic separation. Here we describe (1) optimized methods for peptidoglycan isolation from both Gram-negative and Gram-positive bacteria that dramatically reduce the sample preparation time, and (2) the application of the fast and highly efficient ultra-performance liquid chromatography (UPLC) technology to muropeptide separation and quantification. The advances in both analytical instrumentation and stationary-phase chemistry have allowed for evolved protocols which cut run time from hours (2-3 h) to minutes (10-20 min), and sample demands by at least one order of magnitude. Furthermore, development of methods based on organic solvents permits in-line mass spectrometry (MS) of the UPLC-resolved muropeptides. Application of these technologies to high-throughput analysis will expedite the better understanding of the cell wall biology.

  12. Waveguide structures in anisotropic nonlinear crystals

    Science.gov (United States)

    Li, Da; Hong, Pengda; Meissner, Helmuth E.

    2017-02-01

    We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.

  13. Crystal Structures of Lipoglycopeptide Antibiotic Deacetylases: Implications for the Biosynthesis of A40926 and Teicoplanin

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yaozhong; Brunzelle, Joseph S.; Nair, Satish K. (UIUC); (NWU)

    2008-07-08

    The lipoglycopeptide antibiotics teicoplanin and A40926 have proven efficacy against Gram-positive pathogens. These drugs are distinguished from glycopeptide antibiotics by N-linked long chain acyl-D-glucosamine decorations that contribute to antibacterial efficacy. During the biosynthesis of lipoglycopeptides, tailoring glycosyltransferases attach an N-acetyl-D-glucosamine to the aglycone, and this N-acetyl-glucosaminyl pseudoaglycone is deacetylated prior to long chain hydrocarbon attachment. Here we present several high-resolution crystal structures of the pseudoaglycone deacetylases from the biosynthetic pathways of teicoplanin and A40926. The cocrystal structure of the teicoplanin pseudoaglycone deacetylase with a fatty acid product provides further insights into the roles of active-site residues, and suggests mechanistic similarities with structurally distinct zinc deacetylases, such as peptidoglycan deacetylase and LpxC. A unique, structurally mobile capping lid, located at the apex of these pseudoaglycone deacetylases, likely serves as a determinant of substrate specificity.

  14. A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance.

    Science.gov (United States)

    Pavy, Nathalie; Lamothe, Manuel; Pelgas, Betty; Gagnon, France; Birol, Inanç; Bohlmann, Joerg; Mackay, John; Isabel, Nathalie; Bousquet, Jean

    2017-04-01

    Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community. © 2017 Her Majesty the Queen in Right of Canada. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  15. Crystal structural characterization reveals novel oligomeric interactions of human voltage-dependent anion channel 1.

    Science.gov (United States)

    Hosaka, Toshiaki; Okazaki, Masateru; Kimura-Someya, Tomomi; Ishizuka-Katsura, Yoshiko; Ito, Kaori; Yokoyama, Shigeyuki; Dodo, Kosuke; Sodeoka, Mikiko; Shirouzu, Mikako

    2017-09-01

    Voltage-dependent anion channel 1 (VDAC1), which is located in the outer mitochondrial membrane, plays important roles in various cellular processes. For example, oligomerization of VDAC1 is involved in the release of cytochrome c to the cytoplasm, leading to apoptosis. However, it is unknown how VDAC1 oligomerization occurs in the membrane. In the present study, we determined high-resolution crystal structures of oligomeric human VDAC1 (hVDAC1) prepared by using an Escherichia coli cell-free protein synthesis system, which avoided the need for denaturation and refolding of the protein. Broad-range screening using a bicelle crystallization method produced crystals in space groups C222 and P221 21 , which diffracted to a resolution of 3.10 and 3.15 Å, respectively. Each crystal contained two hVDAC1 protomers in the asymmetric unit. Dimer within the asymmetrical unit of the crystal in space group C222 were oriented parallel, whereas those of the crystal in space group P221 21 were oriented anti-parallel. From a model of the crystal in space group C222, which we constructed by using crystal symmetry operators, a heptameric structure with eight patterns of interaction between protomers, including hydrophobic interactions with β-strands, hydrophilic interactions with loop regions, and protein-lipid interactions, was observed. It is possible that by having multiple patterns of interaction, VDAC1 can form homo- or hetero-oligomers not only with other VDAC1 protomers but also with other proteins such as VDAC2, VDAC3 and apoptosis-regulating proteins in the Bcl-2 family. © 2017 The Protein Society.

  16. Topological complexity of crystal structures: quantitative approach.

    Science.gov (United States)

    Krivovichev, Sergey

    2012-05-01

    The topological complexity of a crystal structure can be quantitatively evaluated using complexity measures of its quotient graph, which is defined as a projection of a periodic network of atoms and bonds onto a finite graph. The Shannon information-based measures of complexity such as topological information content, I(G), and information content of the vertex-degree distribution of a quotient graph, I(vd), are shown to be efficient for comparison of the topological complexity of polymorphs and chemically related structures. The I(G) measure is sensitive to the symmetry of the structure, whereas the I(vd) measure better describes the complexity of the bonding network. © 2012 International Union of Crystallography

  17. Crystal structure of (ferrocenylmethyldimethylammonium hydrogen oxalate

    Directory of Open Access Journals (Sweden)

    Mamadou Ndiaye

    2015-08-01

    Full Text Available The crystal structure of the title salt, [Fe(C5H5(C8H13N](HC2O4, consists of discrete (ferrocenylmethyldimethylammonium cations and hydrogen oxalate anions. The anions are connected through a strong O—H...O hydrogen bond, forming linear chains running parallel to [100]. The cations are linked to the anions through bifurcated N—H...(O,O′ hydrogen bonds. Weak C—H...π interactions between neighbouring ferrocenyl moieties are also observed.

  18. Crystal structure of Staphylococcus aureus Cas9

    OpenAIRE

    Nishimasu, Hiroshi; Cong, Le; Yan, Winston X.; Ran, F. Ann; Zetsche, Bernd; Li, Yinqing; Kurabayashi, Arisa; Ishitani, Ryuichiro; Zhang, Feng; Nureki, Osamu

    2015-01-01

    The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets with a protospacer adjacent motif (PAM) and complementarity to the guide RNA. Recently, we harnessed Staphylococcus aureus Cas9 (SaCas9), which is significantly smaller than Streptococcus pyogenes Cas9 (SpCas9), to facilitate efficient in vivo genome editing. Here, we report the crystal structures of SaCas9 in complex with a single guide RNA (sgRNA) and its double-stranded DNA targets, containing the 5′-TTGAAT-3′ PAM and...

  19. Magnetic flux structures in RNi{sub 2}B{sub 2}C single crystals in normal and superconducting states

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, L Ya; Veshchunov, I S [Institute of Solid State Physics, RAS, Chernogolovka, Moscow region 142432 (Russian Federation); Bud' ko, S L; Canfield, P C; Kogan, V G, E-mail: vinnik@issp.ac.r [Ames Laboratory U.S. DOE, Iowa State University, Ames, Iowa 50011 (United States)

    2009-03-01

    RNi{sub 2}B{sub 2}C single crystals, where R = Lu, Y, Er, Ho and Tb have been studied by high-resolution Bitter decoration technique, over the wide range temperatures and magnetic fields up to 2 T. Diverse vortex lattice structures were investigated: transition from triangular to square lattice for LuNi{sub 2}B{sub 2}C single crystals; peculiar vortex structures associated with antiferromagnetic (AFM) and weak-ferromagnetic (WFM) states below T{sub c} for ErNi{sub 2}B{sub 2}C single crystals . In addition, Bitter decoration revealed structures associated with a long range magnetic order in the non-superconducting TbNi{sub 2}B{sub 2}C as well as ErNi{sub 2}B{sub 2}C in the normal but magnetically ordered state.

  20. Seismic imaging of esker structures from a combination of high-resolution broadband multicomponent streamer and wireless sensors, Turku-Finland

    Science.gov (United States)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2015-04-01

    information down to the bedrock, 50-80 m depth, using a diving-wave travel-time tomographic inversion method. The reflection data processing was challenging due to the large velocity contrasts between the dry sediments and the saturated ones. A careful velocity analysis was the key-processing step apart from filtering source-generated noise. The seismic refraction and reflection sections correlate well with the existing borehole information. Depth to the bedrock from the boreholes matches well the high velocity zones. A zone of low velocity associated with a flat reflection at about 20 m depth below the topography shows a good correspondence with the groundwater table. A major morphologically undetectable kettle hole (MUKH) is clearly observed in the reflection data as a concave reflectivity zone, with indication of normal faulting. The deposits show alternating coarse- and fine-grained sediments with channel structures representing subaqueous fans. An esker core is defined from a zone of reflectivity from coarser-grained materials overlaid by proximal fan sediments of the main aquifer. Acknowledgments: Formas (http://www.trust-geoinfra.se), Turku Region Water Ltd., University of Turku, GTK

  1. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  2. Simulating complex crystal structures using the phase-field crystal model

    Science.gov (United States)

    Alster, Eli; Montiel, David; Thornton, Katsuyo; Voorhees, Peter W.

    2017-11-01

    We introduce a phase-field crystal model that creates an array of complex three- and two-dimensional crystal structures via a numerically tractable three-point correlation function. The three-point correlation function is designed in order to energetically favor the principal interplanar angles of a target crystal structure. This is achieved via an analysis performed by examining the crystal's structure factor. This approach successfully yields energetically stable simple cubic, diamond cubic, simple hexagonal, graphene layers, and CaF2 crystals. To illustrate the ability of the method to yield a particularly complex and technologically important crystal structure, we show how this three-point correlation function method can be used to generate perovskite crystals.

  3. High resolution EPR applications to metalloenzymes and metals in medicine

    CERN Document Server

    Berliner, Lawrence

    2009-01-01

    EPR spectroscopy has an important role in the geometric structural characterization of the redox cofactors in metalloproteins and their electronic structure, as this is crucial for their reactivity. This title covers high-resolution EPR methods, iron proteins, nickel and copper enzymes, and metals in medicine.

  4. Crystal Structure of Human Nicotinamide Riboside Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  5. Crystal structure of human nicotinamide riboside kinase.

    Science.gov (United States)

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  6. Syntheses and Crystal Structures of Ferrocenoindenes

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2013-02-01

    Full Text Available Ferrocenoindenes display planar chirality and thus represent valuable ligands for asymmetric catalysis. Here, we report on the synthesis of novel 3-(1,1-dibromomethyleneferroceno[1,2-a]indene, (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene, and benzo[5,6-f]ferroceno[2,3,a]inden-1-one. Any application-oriented design of chiral catalysts requires fundamental knowledge about the ligands involved, not only in terms of atom-connectivity, but also in terms of their three-dimensional structure and steric demand. Therefore, the crystal structures of 2-ferrocenylbenzoic acid, ferroceno[1,2-a]indene, and (Z-3-(1-bromomethylene-6-iodoferroceno[1,2-a]indene have been determined. The bond-lengths that can be retrieved therefrom also allow for an estimation of the reactivity of the aryl-iodo, bromo-methylidene and dibromomethylidene moieties.

  7. Crystal structure of red lead titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L.A.; Peng, J.L.; Jiang, B. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Li, X. [Jilin Univ., Changchun, JL (China). Dept of Chemistry

    1998-09-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate 7 refs., 1 tab., 4 figs.

  8. Structural Transitions in Cholesteric Liquid Crystal Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A.; Rahimi, Mohammad; Roberts, Tyler F.; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates.

  9. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  10. Crystal structures of five 6-mercaptopurine derivatives

    Directory of Open Access Journals (Sweden)

    Lígia R. Gomes

    2016-03-01

    Full Text Available The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(3-methoxyphenylethan-1-one (1, C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(4-methoxyphenylethan-1-one (2, C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(4-chlorophenylethan-1-one (3, C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-ylsulfanyl]-1-(4-bromophenylethan-1-one (4, C15H11BrN4O2S, and 1-(3-methoxyphenyl-2-[(9H-purin-6-ylsulfanyl]ethan-1-one (5, C14H12N4O2S. Compounds (2, (3 and (4 are isomorphous and accordingly their molecular and supramolecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the molecules of (1 and (5 are essentially planar but that in the case of the three isomorphous compounds (2, (3 and (4, these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1 all molecules are linked by weak C—H...O hydrogen bonds in their crystals. There is π–π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanylethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles.

  11. Crystal structure of strontium dinickel iron orthophosphate

    Directory of Open Access Journals (Sweden)

    Said Ouaatta

    2015-10-01

    Full Text Available The title compound, SrNi2Fe(PO43, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2, Fe is on 4b (2/m, Ni and the other P atom are on 8g (2, one O atom is on 8h (m and the other on 8i (m. The three-dimensional framework of the crystal structure is built up by [PO4] tetrahedra, [FeO6] octahedra and [Ni2O10] dimers of edge-sharing octahedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octahedra ([Ni2O10] dimer linked to [PO4] tetrahedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetrahedra and FeO6 octahedra sharing apices. The layers are held together through vertices of [PO4] tetrahedra and [FeO6] octahedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms.

  12. Crystal structure of N-deacetyllappaconitine

    Directory of Open Access Journals (Sweden)

    Xin-Wei Shi

    2015-08-01

    Full Text Available The title compound, C30H42N2O7 [systematic name: (1S,4S,5S,7S,8S,9S,10S,11S,13R,14S,16S,17R-20-ethyl-4,8,9-trihydroxy-1,14,16-trimethoxyaconitan-4-yl 2-aminobenzoate], isolated from roots of Aconitum sinomontanum Nakai, is a typical aconitane-type C19-diterpenoid alkaloid, which crystallizes with two independent molecules in the asymmetric unit. The conformations of the two independent molecules are closely similar. Each molecule comprises four six-membered rings (A, B, D and E including one six-membered N-containing heterocyclic ring (E, and two five-membered rings (C and F. Rings A, B and E adopt chair conformations, while ring D displays a boat conformation. Five-membered rings C and F exhibit envelope conformations. IntramolecularN—H...O hydrogen bonds between the amino group and carbonyl O atom help to stabilize molecular structure. In the crystal, O—H...O hydrogen bonds link the molecules into zigzag chains propagating in [010].

  13. Crystal Structures of Respiratory Pathogen Neuraminidases

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.; Parker, D; Ratner, A; Prince, A; Tong, L

    2009-01-01

    Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 {angstrom} resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.

  14. Crystal structure prediction supported with diffraction data

    Science.gov (United States)

    Tsujimoto, Naoto; Adachi, Daiki; Todo, Synge; Akashi, Ryosuke; Tsuneyuki, Shinji

    Atomistic computer simulation is of growing importance in the study of unidentified crystals, although prediction or determination of complicated structure is still a challenging problem due to its many degrees of freedom. Here we propose to utilize experimentally available data of powder diffraction to support and accelerate the structure simulation. In so-called direct-space methods for structure determination from powder diffraction, simplified interatomic potential energy or some other physical constraints are often used in combination with the cost function defined by diffraction data. On the other hand, we formulate a cost function called ``crystallinity'' to support simulation with accurate interatomic potential energy. Since the crystallinity here is defined as the sum of the diffraction intensities only at the peak positions detected in experiments, this method is applicable to low-quality diffraction data such as those obtained at high pressures. We apply this method to well-known polymorphs of SiO2 with up to 96 atoms in the simulation cell to find that it reproduces the correct structures efficiently with information of a very limited number of diffraction peaks.

  15. Crystal structure of a snake venom cardiotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

    1987-05-01

    Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6/sub 1/ (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel ..beta.. sheet, may be functionally relevant.

  16. Crystal structure of 4-(trimethylgermylbenzoic acid

    Directory of Open Access Journals (Sweden)

    Lena Knauer

    2015-06-01

    Full Text Available The title compound, [Ge(CH33(C7H5O2], was obtained as a by-product in the synthesis of the corresponding aldehyde. Two slightly different molecules are present in the asymmetric unit. In both molecules, the geometry of the aromatic ring plane is distorted by varying intensities. Additionally, the Ge atoms deviate from the mean aromatic ring planes. Whereas the distance of the Ge atom to the ring plane is only 0.101 (4 Å in the first molecule, this distance is increased to 0.210 (4 Å in the second. In the crystal structure, centrosymmetric O—H...O hydrogen-bonded dimers are formed. The title compound is isostructural with the Si analogue [Haberecht et al. (2004. Acta Cryst. E60, o329–0330].

  17. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  18. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  19. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  20. Crystal structure of Deep Vent DNA polymerase.

    Science.gov (United States)

    Hikida, Yasushi; Kimoto, Michiko; Hirao, Ichiro; Yokoyama, Shigeyuki

    2017-01-29

    DNA polymerases are useful tools in various biochemical experiments. We have focused on the DNA polymerases involved in DNA replication including the unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px). Many reports have described the different combinations between unnatural base pairs and DNA polymerases. As an example, for the replication of the Ds-Px pair, Deep Vent DNA polymerase exhibits high efficiency and fidelity, but Taq DNA polymerase shows much lower efficiency and fidelity. In the present study, we determined the crystal structure of Deep Vent DNA polymerase in the apo form at 2.5 Å resolution. Using this structure, we constructed structural models of Deep Vent DNA polymerase complexes with DNA containing an unnatural or natural base in the replication position. The models revealed that the unnatural Ds base in the template-strand DNA clashes with the side-chain oxygen of Thr664 in Taq DNA polymerase, but not in Deep Vent DNA polymerase. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    Energy Technology Data Exchange (ETDEWEB)

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  2. Crystal Structure of the Human NKX2.5 Homeodomain in Complex with DNA Target

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Lagnajeet; Genis, Caroli; Scone, Peyton; Weinberg, Ellen O.; Kasahara, Hideko; Nam, Hyun-Joo (BU-M); (Florida); (Texas)

    2012-10-16

    NKX2.5 is a homeodomain containing transcription factor regulating cardiac formation and function, and its mutations are linked to congenital heart disease. Here we provide the first report of the crystal structure of the NKX2.5 homeodomain in complex with double-stranded DNA of its endogenous target, locating within the proximal promoter -242 site of the atrial natriuretic factor gene. The crystal structure, determined at 1.8 {angstrom} resolution, demonstrates that NKX2.5 homeodomains occupy both DNA binding sites separated by five nucleotides without physical interaction between themselves. The two homeodomains show identical conformation despite the differences in the DNA sequences they bind, and no significant bending of the DNA was observed. Tyr54, absolutely conserved in NK2 family proteins, mediates sequence-specific interaction with the TAAG motif. This high resolution crystal structure of NKX2.5 protein provides a detailed picture of protein and DNA interactions, which allows us to predict DNA binding of mutants identified in human patients.

  3. High resolution spectroscopy of the disk chromosphere. I - Observing procedures.

    Science.gov (United States)

    Beckers, J. M.; Mauter, H. A.; Mann, G. R.; Brown, D. R.

    1972-01-01

    Review of some of the main features of a high resolution spectroscopy program aimed at the precise photometric observation of chromospheric fine structures using the Sacramento Peak vacuum telescope. The observing procedures are described, and a sample of the first observational results is presented.

  4. Interpretation of high resolution aeromagnetic data over southern ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 2 ... High resolution airborne magnetic data of parts of the southern Benue Trough were digitally processed and analyzed in order to estimate the depth of magnetic sources and to map the distribution and orientation of subsurface structural features.

  5. High resolution resist-free lithography in the SEM

    NARCIS (Netherlands)

    Hari, S.

    2017-01-01

    Focussed Electron Beam Induced Processing is a high resolution direct-write nanopatterning technique. Its ability to fabricate sub-10 nm structures together with its versatility and ease of use, in that it is resist-free and implementable inside a Scanning Electron Microscope, make it attractive for

  6. Growth of NBT-BT single crystals by flux method and their structural, morphological and electrical characterizations

    Science.gov (United States)

    Kanuru, Sreenadha Rao; Baskar, K.; Dhanasekaran, R.; Kumar, Binay

    2016-05-01

    In this paper, one of the important, eco-friendly polycrystalline material, (1-x)(Na0.5Bi0.5)TiO3 (NBT) - xBaTiO3 (BT) of different compositions (x=0.07, 0.06 and 0.05 wt%) around the morphotropic phase boundary (MPB) were synthesized by solid state reaction technique. And the single crystals with 13×7×7 mm3, 12×12×7 mm3 and 10×7×4 mm3 dimensions were grown by self flux method. The morphology, crystal structure and unit-cell parameters have been studied and the monoclinic phase has been identified for 0.07 wt% of BT. Higher BT concentration changes the crystal habit and the mechanism has been studied clearly. Raman spectroscopy at room-temperature confirms the presence of functional groups. The quality of the as grown single crystals was examined by high resolution x-ray diffraction analysis. The dielectric properties of the as grown crystals were investigated in the frequency range of 20 Hz-2 MHz from room temperature to 450 °C. The broad dielectric peak and frequency dispersion demonstrates the relaxor behavior of grown crystals. The dielectric constant (εr), transition temperature (Tm), and depolarization temperature (Td) of the grown crystals are found to be comparatively good. The diffusive factor (γ) from Curie-Weiss law confirms the as grown NBT-BT single crystals are relaxor in nature.

  7. High resolution quantum metrology via quantum interpolation

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  8. Crystal structure of the GTPase domain and the bundle signalling element of dynamin in the GDP state

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Roopsee; Eschenburg, Susanne; Reubold, Thomas F., E-mail: Reubold.Thomas@mh-hannover.de

    2016-01-01

    Dynamin is the prototype of a family of large multi-domain GTPases. The 100 kDa protein is a key player in clathrin-mediated endocytosis, where it cleaves off vesicles from membranes using the energy from GTP hydrolysis. We have solved the high resolution crystal structure of a fusion protein of the GTPase domain and the bundle signalling element (BSE) of dynamin 1 liganded with GDP. The structure provides a hitherto missing snapshot of the GDP state of the hydrolytic cycle of dynamin and reveals how the switch I region moves away from the active site after GTP hydrolysis and release of inorganic phosphate. Comparing our structure of the GDP state with the known structures of the GTP state, the transition state and the nucleotide-free state of dynamin 1 we describe the structural changes through the hydrolytic cycle. - Highlights: • High resolution crystal structure of the GDP-state of a dynamin 1 GTPase-BSE fusion. • Visualizes one of the key states of the hydrolytic cycle of dynamin. • The dynamin-specific loop forms a helix as soon as a guanine base is present.

  9. Formamidinium iodide: crystal structure and phase transitions

    Directory of Open Access Journals (Sweden)

    Andrey A. Petrov

    2017-04-01

    Full Text Available At a temperature of 100 K, CH5N2+·I− (I, crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7 and 1.309 (8 Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10 Å. The cation and anion of I form a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction. Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100–346 K, orthorhombic (346–387 K and cubic (387–525 K polymorphic modifications.

  10. Crystal structures of eight mono-methyl alkanes (C26–C32 via single-crystal and powder diffraction and DFT-D optimization

    Directory of Open Access Journals (Sweden)

    Lee Brooks

    2015-09-01

    Full Text Available The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S-9-methylpentacosane, C26H54; (S-9-methylheptacosane and (S-11-methylheptacosane, C28H58; (S-7-methylnonacosane, (S-9-methylnonacosane, (S-11-methylnonacosane and (S-13-methylnonacosane, C30H62; and (S-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  11. CCDC 1416891: Experimental Crystal Structure Determination : Methyl-triphenyl-germanium

    KAUST Repository

    Bernatowicz, Piotr

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. CCDC 1408042: Experimental Crystal Structure Determination : 6,13-dimesitylpentacene

    KAUST Repository

    Shi, Xueliang

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. Crystal structure and elastic constants of Dharwar cotton fibre using ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 5. Crystal structure and elastic constants of Dharwar cotton fibre using WAXS data. O M Samir R ... Using this data and employing linked atom least squares (LALS) method, we report here the molecular and crystal structure of these cotton fibres. Employing ...

  14. Crystal and magnetic structure of Eu4Ga8Ge16

    DEFF Research Database (Denmark)

    Christensen, M.; Bryan, J.D.; Birkedal, H.

    2003-01-01

    dependence of the crystal structure was investigated from 11 K to room temperature using synchrotron x-ray powder diffraction. Analysis of the atomic displacement parameters with Einstein and Debye models gives Theta(E)=82(3) K for the guest atom and Theta(D)=266(4) K for the framework atoms. Based on Theta......The antiferromagnetic ordering and crystal structure of the clathrate compound Eu4Ga8Ge16 was investigated using multitemperature neutron and synchrotron x-ray powder diffraction. High-resolution low-Q neutron data were measured at long wavelength (lambda=4.2 Angstrom) between 1.5 and 15 K...

  15. Crystal structure of human IRAK1.

    Science.gov (United States)

    Wang, Li; Qiao, Qi; Ferrao, Ryan; Shen, Chen; Hatcher, John M; Buhrlage, Sara J; Gray, Nathanael S; Wu, Hao

    2017-12-19

    Interleukin 1 (IL-1) receptor-associated kinases (IRAKs) are serine/threonine kinases that play critical roles in initiating innate immune responses against foreign pathogens and other types of dangers through their role in Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) mediated signaling pathways. Upon ligand binding, TLRs and IL-1Rs recruit adaptor proteins, such as myeloid differentiation primary response gene 88 (MyD88), to the membrane, which in turn recruit IRAKs via the death domains in these proteins to form the Myddosome complex, leading to IRAK kinase activation. Despite their biological and clinical significance, only the IRAK4 kinase domain structure has been determined among the four IRAK family members. Here, we report the crystal structure of the human IRAK1 kinase domain in complex with a small molecule inhibitor. The structure reveals both similarities and differences between IRAK1 and IRAK4 and is suggestive of approaches to develop IRAK1- or IRAK4-specific inhibitors for potential therapeutic applications. While the IRAK4 kinase domain is capable of homodimerization in the unphosphorylated state, we found that the IRAK1 kinase domain is constitutively monomeric regardless of its phosphorylation state. Additionally, the IRAK1 kinase domain forms heterodimers with the phosphorylated, but not unphosphorylated, IRAK4 kinase domain. Collectively, these data indicate a two-step kinase activation process in which the IRAK4 kinase domain first homodimerizes in the Myddosome, leading to its trans-autophosphorylation and activation. The phosphorylated IRAK4 kinase domain then forms heterodimers with the IRAK1 kinase domain within the Myddosome, leading to its subsequent phosphorylation and activation.

  16. Evidence for phenylalanine zipper-mediated dimerization in the X-ray crystal structure of a magainin 2 analogue.

    Science.gov (United States)

    Hayouka, Zvi; Mortenson, David E; Kreitler, Dale F; Weisblum, Bernard; Forest, Katrina T; Gellman, Samuel H

    2013-10-23

    High-resolution structure elucidation has been challenging for the large group of host-defense peptides that form helices on or within membranes but do not manifest a strong folding propensity in aqueous solution. Here we report the crystal structure of an analogue of the widely studied host-defense peptide magainin 2. Magainin 2 (S8A, G13A, G18A) is a designed variant that displays enhanced antibacterial activity relative to the natural peptide. The crystal structure of magainin 2 (S8A, G13A, G18A), obtained for the racemic form, features a dimerization mode that has previously been proposed to play a role in the antibacterial activity of magainin 2 and related peptides.

  17. Crystal structure determination and thermal behavior upon melting of p-synephrine

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Frédéric [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Négrier, Philippe [Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, UMR CNRS 5798, 351 cours de la Libération, 33 405 Talence Cedex (France); Corvis, Yohann [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Espeau, Philippe, E-mail: philippe.espeau@parisdescartes.fr [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2016-05-20

    Highlights: • The refinement of the crystal structure is achieved from X-ray powder diffraction. • P-Synephrine is revealed to be a racemic compound. • Degradation during melting can be bypassed using high DSC scan rates. • The temperature and enthalpy of melting are then proposed for this compound. - Abstract: The crystal structure of p-synephrine was solved from a high-resolution X-ray powder diffraction pattern optimized by energy-minimization calculations using the Dreiding force field. The title compound crystallizes in a monoclinic system (space group P2{sub 1}/c, Z = 4, with a = 8.8504(11) Å, b = 12.1166(15) Å, c = 9.7820(11) Å, β = 122.551(2)°, V = 884.21(19) Å{sup 3} and d = 1.256 g cm{sup −3}). Since p-synephrine degrades upon melting, its melting data were determined from DSC experiments carried out as a function of the heating rate. This method allowed determining a melting temperature and enthalpy equal to 199.8 ± 1.3 °C and 57 ± 3 kJ mol{sup −1}, respectively.

  18. Optical and structural properties of single-crystal lithium niobate thin film

    Science.gov (United States)

    Han, Huangpu; Cai, Lutong; Hu, Hui

    2015-04-01

    High-refractive-index contrast, single-crystal lithium niobate thin films are emerging as a new platform for integrated optics. Such lithium niobate thin films are prepared using ion implantation and direct-wafer bonding to a SiO2 layer deposited on a LN substrate. However, the ion-implantation process can cause changes in the refractive index and result in lattice damage, and there are few studies on the optical and structural properties of lithium niobate thin film to compensate for this. In this paper, we reported that the refractive index of lithium niobate thin film can reach that of the bulk material by annealing in an oxygen atmosphere at 500 °C for 5 h. The experimental results of high-resolution X-ray diffraction (HRXRD) and Rutherford back-scattering spectrum (RBS) showed a good crystal lattice arrangement in the LN thin film. These experimental results confirmed that the refractive index and crystal-lattice structural properties of the lithium niobate thin film were similar to that of the bulk material. To demonstrate the application on integrated optics, a 1 μm wide photonic wire was fabricated and the near-field intensity profile at 1.55 μm wavelength was obtained and compared with the simulation result.

  19. Structural derivation and crystal chemistry of apatites.

    Science.gov (United States)

    White, T J; ZhiLi, Dong

    2003-02-01

    The crystal structures of the [A(1)(2)][A(2)(3)](BO(4))(3)X apatites and the related compounds [A(1)(2)][A(2)(3)](BO(5))(3)X and [A(1)(2)][A(2)(3)](BO(3))(3)X are collated and reviewed. The structural aristotype for this family is Mn(5)Si(3) (D8(8) type, P6(3)/mcm symmetry), whose cation array approximates that of all derivatives and from which related structures arise through the systematic insertion of anions into tetrahedral, triangular or linear interstices. The construction of a hierarchy of space-groups leads to three apatite families whose high-symmetry members are P6(3)/m, Cmcm and P6(3)cm. Alternatively, systematic crystallographic changes in apatite solid-solution series may be practically described as deviations from regular anion nets, with particular focus on the O(1)-A(1)-O(2) twist angle phi projected on (001) of the A(1)O(6) metaprism. For apatites that contain the same A cation, it is shown that phi decreases linearly as a function of increasing average ionic radius of the formula unit. Large deviations from this simple relationship may indicate departures from P6(3)/m symmetry or cation ordering. The inclusion of A(1)O(6) metaprisms in structure drawings is useful for comparing apatites and condensed-apatites such as Sr(5)(BO(3))(3)Br. The most common symmetry for the 74 chemically distinct [A(1)(2)][A(2)(3)](BO(4))(3)X apatites that were surveyed was P6(3)/m (57%), with progressively more complex chemistries adopting P6(3) (21%), P3; (9%), P6 (4.3%), P2(1)/m (4.3%) and P2(1) (4.3%). In chemically complex apatites, charge balance is usually maintained through charge-coupled cation substitutions, or through appropriate mixing of monovalent and divalent X anions or X-site vacancies. More rarely, charge compensation is achieved through insertion/removal of oxygen to produce BO(5) square pyramidal units (as in ReO(5)) or BO(3) triangular coordination (as in AsO(3)). Polysomatism arises through the ordered filling of [001] BO(4) tetrahedral strings to

  20. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  1. High-resolution AMLCD for the electronic library system

    Science.gov (United States)

    Martin, Russel A.; Middo, Kathy; Turner, William D.; Lewis, Alan; Thompson, Malcolm J.; Silverstein, Louis D.

    1994-06-01

    The Electronic Library System (ELS), is a proposed data resource for the cockpit which can provide the aircrew with a vast array of technical information on their aircraft and flight plan. This information includes, but is not limited to, approach plates, Jeppeson Charts, and aircraft technical manuals. Most of these data are appropriate for digitization at high resolution (300 spi). Xerox Corporation has developed a flat panel active matrix liquid crystal display, AMLCD, that is an excellent match to the ELS, due to its innovative and aggressive design.

  2. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  3. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  4. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  5. Ordering of crystal structure by ionizing radiation

    Science.gov (United States)

    Chernov, I. P.; Momontov, A. P.; Cherdantsev, P. A.; Chakhlov, B. V.

    1994-12-01

    We have studied the action of ionizing radiation on defect-containing semiconductor crystals, metals, and alloys. Using modern methods for investigation of solids, Rutherford back scattering of channeled charged particles, x-ray diffraction, electron microscopy, and also calorimetric methods, we have established: a) irradiation (by x-ray beams, gamma rays, and electrons) of metals and alloys with an equivalent radiation dose less than 105 J/kg and of semiconductor crystals with a dose less than 103 J/kg does not lead to additional accumulation of defects but conversely leads to elimination of defects and transition of the crystal to a more equilibrium state; b) ionization processes play a determining role in rearrangment of defects in crystals exhibiting both semiconductor and metallic conductivity. We show that rearrangment of the crystal occurs as a result of stored energy in the crystal which is liberated due to chain reactions of annihilation of defects, initiated by ionization. Transition of the crystal to the equilibrium state is accompanied by improvement of its physical properties.

  6. Crystal structure and characterization of pyrroloquinoline quinone disodium trihydrate

    Directory of Open Access Journals (Sweden)

    Ikemoto Kazuto

    2012-06-01

    Full Text Available Abstract Background Pyrroloquinoline quinone (PQQ, a tricarboxylic acid, has attracted attention as a growth factor, and its application to supplements and cosmetics is underway. The product used for these purposes is a water-soluble salt of PQQ disodium. Although in the past, PQQ disodiumpentahydrates with a high water concentration were used, currently, low hydration crystals of PQQ disodiumpentahydrates are preferred. Results We prepared a crystal of PQQ disodium trihydrate in a solution of ethanol and water, studied its structure, and analyzed its properties. In the prepared crystal, the sodium atom interacted with the oxygen atom of two carboxylic acids as well as two quinones of the PQQ disodium trihydrate. In addition, the hydration water of the prepared crystal was less than that of the conventional PQQ disodium crystal. From the results of this study, it was found that the color and the near-infrared (NIR spectrum of the prepared crystal changed depending on the water content in the dried samples. Conclusions The water content in the dried samples was restored to that in the trihydrate crystal by placing the samples in a humid environment. In addition, the results of X-ray diffraction (XRD and X-ray diffraction-differential calorimetry (XRD-DSC analyses show that the phase of the trihydrate crystal changed when the crystallization water was eliminated. The dried crystal has two crystalline forms that are restored to the original trihydrate crystals in 20% relative humidity (RH. This crystalline (PQQ disodium trihydrate is stable under normal environment.

  7. Synthesis, Crystal Structure, Density Function Theory, Molecular ...

    African Journals Online (AJOL)

    isoindoline-1,3-dione, was characterized by proton nuclear magnetic resonance spectroscopy (NMR) and single crystal x-ray diffraction method. The target compound was tested for its antimicrobial activities and computational studies including density ...

  8. Structure and Properties of Liquid Crystals

    CERN Document Server

    Blinov, Lev M

    2011-01-01

    This book by Lev M. Blinov is ideal to guide researchers from their very first encounter with liquid crystals to the level where they can perform independent experiments on liquid crystals with a thorough understanding of their behaviour also in relation to the theoretical framework. Liquid crystals can be found everywhere around us. They are used in virtually every display device, whether it is for domestic appliances of for specialized technological instruments. Their finely tunable optical properties make them suitable also for thermo-sensing and laser technologies. There are many monographs written by prominent scholars on the subject of liquid crystals. The majority of them presents the subject in great depth, sometimes focusing on a particular research aspect, and in general they require a significant level of prior knowledge. In contrast, this books aims at an audience of advanced undergraduate and graduate students in physics, chemistry and materials science. The book consists of three parts: the firs...

  9. Fundamental constants and high-resolution spectroscopy

    Science.gov (United States)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system

  10. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...... region. The invention also relates to optical devices comprising planar optical waveguides and methods of making waveguides and optical devices....

  11. Scintillating crystals for hadron structure studies and instrumentation

    Science.gov (United States)

    Ngwenya, Blessed; Horn, Tanja; Pegg, Ian

    2017-09-01

    Deep exclusive and semi-inclusive processes like deeply virtual photon or neutral pion production play a critical role in 3D hadron imaging at the 12 GeV Jefferson Lab and the future Electron-Ion Collider. Measurements require detectors capable of identifying the final state photon or meson. Electromagnetic CALorimeters (ECAL) are well suited for this providing both particle identification and reconstruction. A typical ECAL is a light-transparent, homogeneous, crystal calorimeter with dimensions large enough to contain the complete shower of secondary particles. Important characteristics include high resolution, timing, and radiation hardness. The material of choice is PbWO4, which features a small Moliere radius, very good energy and position resolution, fast response, and radiation resistance. One company in the world is manufacturing PbWO4 but the quality is not satisfactory, in particular regarding light-yield and radiation hardness, which depend on the manufacturing process. It is important to understand the production and how impurities and the crystallization process affect the crystal's properties. This presentation will review the physics and detection requirements of neutral final states and present the development of a setup to grow PbWO4 using a Czochralsky method. Supported in part by: NSF PHY1306227 and PHY1714133, South Africa Washington International Program.

  12. Qualitative interpretation of high resolution aeromagnetic (HRAM ...

    African Journals Online (AJOL)

    Qualitative interpretation of high resolution aeromagnetic (HRAM) data from some parts of offshore Niger delta, Nigeria. ... Open Access DOWNLOAD FULL TEXT ... The original raster map, obtained from the Nigeria Geological Survey Agency (NGSA) in half degree sheet, was subjected to qualitative data analysis using the ...

  13. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  14. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling

  15. High resolution analysis of interphase chromosome domains

    NARCIS (Netherlands)

    Visser, A. E.; Jaunin, F.; Fakan, S.; Aten, J. A.

    2000-01-01

    Chromosome territories need to be well defined at high resolution before functional aspects of chromosome organization in interphase can be explored. To visualize chromosomes by electron microscopy (EM), the DNA of Chinese hamster fibroblasts was labeled in vivo with thymidine analogue BrdU. Labeled

  16. The crystal structure of some rhenium and technetium dichalcogenides

    NARCIS (Netherlands)

    Lamfers, H.J; Meetsma, A.; Wiegers, G.A; deBoer, J.L.

    1996-01-01

    The crystal structures of ReSe2,ReS2, ReSSe and TcS2 are determined using single crystal X-ray diffraction. The compounds are triclinic with space group P (1) over bar. ReSe2, Res(2) and ReSSe have a distorted CdCl2-type structure; TcS2 has a distorted Cd(OH)(2)-type structure. In the case of Res,

  17. Sharpening high resolution information in single particle electron cryomicroscopy.

    Science.gov (United States)

    Fernández, J J; Luque, D; Castón, J R; Carrascosa, J L

    2008-10-01

    Advances in single particle electron cryomicroscopy have made possible to elucidate routinely the structure of biological specimens at subnanometer resolution. At this resolution, secondary structure elements are discernable by their signature. However, identification and interpretation of high resolution structural features are hindered by the contrast loss caused by experimental and computational factors. This contrast loss is traditionally modeled by a Gaussian decay of structure factors with a temperature factor, or B-factor. Standard restoration procedures usually sharpen the experimental maps either by applying a Gaussian function with an inverse ad hoc B-factor, or according to the amplitude decay of a reference structure. EM-BFACTOR is a program that has been designed to widely facilitate the use of the novel method for objective B-factor determination and contrast restoration introduced by Rosenthal and Henderson [Rosenthal, P.B., Henderson, R., 2003. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721-745]. The program has been developed to interact with the most common packages for single particle electron cryomicroscopy. This sharpening method has been further investigated via EM-BFACTOR, concluding that it helps to unravel the high resolution molecular features concealed in experimental density maps, thereby making them better suited for interpretation. Therefore, the method may facilitate the analysis of experimental data in high resolution single particle electron cryomicroscopy.

  18. Structural distortion in thiourea-mixed ADP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jayarama, A. [Department of Physics, Mangalore University, Mangalagangotri 574199 (India)]. E-mail: jrmarasalike@yahoo.co.in; Dharmaprakash, S.M. [Department of Physics, Mangalore University, Mangalagangotri 574199 (India)

    2006-11-15

    Single crystals of ammonium dihydrogen phosphate (ADP) mixed with different mole concentrations of thiourea were grown using slow evaporation solution technique at 30deg. C. In order to study the effect of mixing thiourea on the structural characteristics of ADP, X-ray diffraction studies were carried out on the crystals using Shimadzu X-ray diffractometer with Cu K{alpha} radiation. X-ray study revealed that the structures of the thiourea-mixed ADP are slightly distorted compared to the pure ADP crystal structure. Inclusion of thiourea enhances the growth of (1-bar 00) plane of the ADP crystal. Thiourea-mixed ADP crystals were found to have maximum inclusion, as the thiourea concentration was 10mol%.

  19. Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors

    Directory of Open Access Journals (Sweden)

    Ke-Qin Zhang

    2013-03-01

    Full Text Available Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors.

  20. Crystal structure of the[mu]-opioid receptor bound to a morphinan antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien (Michigan-Med); (Stanford-MED); (UAB, Spain)

    2012-06-27

    Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled {mu}-opioid receptor ({mu}-OR) in the central nervous system. Here we describe the 2.8 {angstrom} crystal structure of the mouse {mu}-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the {mu}-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

  1. [Validation of the crystal structure of medicinal realgar in China].

    Science.gov (United States)

    Zhang, Zhi-Jie; Zhou, Qun; Wei, Jing-Zhi; Zhang, Yan-Ling; Sun, Su-Qin; Huang, Lu-Qi; Yuan, Si-Tong

    2011-02-01

    The crystal structure of medicated realgar in China was validated as alpha-As4 S4 by X-ray diffraction and Raman spectroscopy in the present paper. Ten batches of medicinal realgar were analyzed including realgar ore, medicinal realgar powder, and prepared Chinese medicine. Identification of two As4 S4 polymorphs confirmed that the crystal structure of medicated realgar in China is alpha-As4 S4. Studies on 18 batches of preparative realgar powder showed that processing of realgar can not change the crystal structure of realgar.

  2. X-Ray structural investigation of VAS-393 crystals

    CERN Document Server

    Martirosian, A H; Harurtjunian, V S

    2001-01-01

    X-ray structural study of VAS-393 crystals was performed. Investigations were carried out with the use of the Weissenberg rotating and powder (employing the Bjornstrem diagrams) methods. The lattice constants ''c'' and ''a''are calculated. The crystal is shown to belong to the trigonal syngony (medium category)

  3. Synthesis, characterization and crystal structure of new nickel ...

    Indian Academy of Sciences (India)

    Abstract. A novel nickel molybdenum complex with the 2,6-pyridine d