WorldWideScience

Sample records for high-resolution continuum source

  1. High-resolution continuum-source atomic absorption spectrometry: what can we expect?

    Directory of Open Access Journals (Sweden)

    Welz Bernhard

    2003-01-01

    Full Text Available A new instrumental concept has been developed for atomic absorption spectrometry (AAS, using a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator and a CCD array detector, providing a resolution of ~2 pm per pixel. Among the major advantages of the system are: i an improved signal-to-noise ratio because of the high intensity of the radiation source, resulting in improved photometric precision and detection limits; ii for the same reason, there are no more 'weak' lines, i.e. secondary lines can be used without compromises; iii new elements might be determined, for which no radiation source has been available; iv the entire spectral environment around the analytical line becomes 'visible', giving a lot more information than current AAS instruments; v the CCD array detector allows a truly simultaneous background correction close to the analytical line; vi the software is capable of storing reference spectra, e.g. of a molecular absorption with rotational fine structure, and of subtracting such spectra from the spectra recorded for a sample, using a least squares algorithm; vii although not yet realized, the system makes possible a truly simultaneous multi-element AAS measurement when an appropriate two-dimensional detector is used, as is already common practice in optical emission spectrometry; vii preliminary experiments have indicated that the instrumental concept could result in a more rugged analytical performance in the determination of trace elements in complex matrices.

  2. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  3. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  4. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  5. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    Science.gov (United States)

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    Science.gov (United States)

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  7. Determination of total sulfur in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry.

    Science.gov (United States)

    Virgilio, Alex; Raposo, Jorge L; Cardoso, Arnaldo A; Nóbrega, Joaquim A; Gomes Neto, José A

    2011-03-23

    The usefulness of molecular absorption was investigated for the determination of total sulfur (S) in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry. The lines for CS at 257.595, 257.958, and 258.056 nm and for SH at 323.658, 324.064, and 327.990 nm were evaluated. Figures of merit, such as linear dynamic range, sensitivity, linear correlation, characteristic concentration, limit of detection, and precision, were established. For selected CS lines, wavelength-integrated absorbance equivalent to 3 pixels, analytical curves in the 100-2500 mg L(-1) (257.595 nm), 250-2000 mg L(-1) (257.958 nm), and 250-5000 mg L(-1) (258.056 nm) ranges with a linear correlation coefficient better than 0.9980 were obtained. Results were in agreement at a 95% confidence level (paired t test) with those obtained by gravimetry. Recoveries of S in fungicide and fertilizer samples were within the 84-109% range, and the relative standard deviation (n=12) was typically <5%.

  8. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    Science.gov (United States)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  9. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  10. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  11. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    Science.gov (United States)

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  12. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  14. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  15. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Science.gov (United States)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  16. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  17. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  18. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    Katskov, Dmitri

    2015-01-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D 2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  19. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  20. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  1. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  2. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  3. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    Science.gov (United States)

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  5. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    Science.gov (United States)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  6. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest

    2018-06-01

    The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.

  8. Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Brandao, Geovani C; de Jesus, Raildo M; da Silva, Erik G P; Ferreira, Sergio L C

    2010-06-15

    This paper presents an analytical procedure for the direct determination of zinc in yogurt employing sampling slurry and high resolution-continuum source flame atomic absorption spectrometry (HR-CS FAAS). The step optimization established the experimental conditions of: 2.0molL(-1) hydrochloric acid, a sonication time of 20min and a sample mass of 1.0g for a slurry volume of 25mL. This method allows the determination of zinc with a limit of quantification of 0.32microgg(-1). The precision expressed as relative standard deviation (RSD) were 0.82 and 2.08% for yogurt samples containing zinc concentrations of 4.85 and 2.49microgg(-1), respectively. The accuracy was confirmed by the analysis of a certified reference material of non-fat milk powder furnished by the National Institute of Standard and Technology. The proposed method was applied for the determination of zinc in seven yogurt samples. The zinc content was varied from 2.19 to 4.85microgg(-1). These results agreed with those reported in the literature. The samples were also analyzed after acid digestion and zinc determination by FAAS. No statistical difference was observed between the results obtained by both of the procedures performed.

  9. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    International Nuclear Information System (INIS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-01-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50–750 pg Cr, R 2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3–17.7 μg g −1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g −1 Cr. The limit of detection was 3.3 ng g −1 Cr. - Highlights: ► Direct solid sampling is first time employed for Cr in plant materials. ► Calibration curves with liquids and solids are coincident. ► Microanalysis of plants for Cr is validated by reference materials. ► The proposed HR-CS GF AAS method is environmental friendly.

  10. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, Alex; Nobrega, Joaquim A. [Department of Chemistry, Federal University of Sao Carlos, Post Office Box 676, 13560-970, Sao Carlos-SP (Brazil); Rego, Jardes F. [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil); Neto, Jose A. Gomes, E-mail: anchieta@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil)

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 Degree-Sign C and 2400 Degree-Sign C, respectively. Slopes of calibration curves (50-750 pg Cr, R{sup 2} > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 {mu}g g{sup -1} Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 {+-} 2.1 {mu}g g{sup -1} Cr. The limit of detection was 3.3 ng g{sup -1} Cr. - Highlights: Black-Right-Pointing-Pointer Direct solid sampling is first time employed for Cr in plant materials. Black-Right-Pointing-Pointer Calibration curves with liquids and solids are coincident. Black-Right-Pointing-Pointer Microanalysis of plants for Cr is validated by reference materials. Black-Right-Pointing-Pointer The proposed HR-CS GF AAS method is environmental friendly.

  11. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  12. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  13. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L{sup −1} HNO{sub 3} solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L{sup −1} and 36.4 mg L{sup −1}, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93–105% with the repeatability in the range of 4.1–5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg{sup −1}), egg white (2188 ± 29 mg kg{sup −1}), mineral water (31.0 ± 0.9 mg L{sup −1}), white wine (260 ± 4 mg L{sup −1}) and red wine (82 ± 2 mg L{sup −1}), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L{sup −1}). - Highlights: • HR-CS FMAS technique was used for sulfur measurement via molecular absorption of carbon monosulfide, CS. • Organic DL

  14. High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities

    International Nuclear Information System (INIS)

    Resano, M.; Flórez, M.R.; García-Ruiz, E.

    2013-01-01

    This work examines the capabilities and limitations of commercially available high-resolution continuum source atomic absorption spectrometry instrumentation for multi-line monitoring, discussing in detail the possible strategies to develop multi-element methodologies that are truly simultaneous, or else sequential, but from the same sample aliquot. Moreover, the simultaneous monitoring of various atomic or molecular lines may bring other important analytical advantages, such as: i) expansion of the linear range by monitoring multiplets; ii) improvements in the limit of detection and in precision by summing the signals from different lines of the same element or molecule; iii) simple correction for matrix-effects by selecting a suitable internal standard; or iv) accurate mathematical correction of spectral overlaps by simultaneous monitoring of free lines of the interfering molecule or element. This work discusses how authors have made use of these strategies to develop analytical methodologies that permit the straightforward analysis of complex samples. - Highlights: • HR CS AAS potential for simultaneous multi-line monitoring is critically examined. • Strategies to develop simultaneous multi-element methods are discussed. • Other benefits of multi-line monitoring (e.g., use of an IS or LSBC) are highlighted. • Selected examples from the literature are discussed in detail

  15. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    Science.gov (United States)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  16. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    Science.gov (United States)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  17. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Monitoring and Method development of Hg in Istanbul Airborne Particulates by Solid Sampling Continuum Source-High Resolution Electrothermal Atomic Absorption Spectromerty

    Directory of Open Access Journals (Sweden)

    Soydemir E.

    2014-07-01

    Full Text Available In this work, a method has been developed and monitoring for the determination of mercury in PM2.5 airborne particulates by solid sampling high-resolution continuum source electrothermal atomic absorption spectrometry. The PM2.5 airborne particulates were collected on quartz filters using high volume samplers (500 L/min in Istanbul (Turkey for 96 hours every month in one year. At first, experimental conditions as well as the validation tests were optimized using collected filter. For this purpose, the effects of atomization temperature, amount of sample intoduced in to the furnace, addition of acids and/or KMnO4 on the sample, covering of graphite tube and platform or using of Ag nanoparticulates, Au nanoparticulates, and Pd solutions on the accuracy and precision were investigated. After optimization of the experimental conditions, the mercury concentrations were determined in the collected filter. The filters with PM2.5 airborne particulates were dried, divided into small fine particles and then Hg concentrations were determined directly. In order to eliminate any error due to the sensitivity difference between aqueous standards and solid samples, the quantification was performed using solid calibrants. The limit of detection, based on three times the standard deviations for ten atomizations of an unused filter, was 30 ng/g. The Hg content was dependent on the sampling site, season etc, ranging from

  19. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Borges, Daniel L.G.; Welz, Bernhard; Silva, Marcia M.; Heitmann, Uwe

    2008-01-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS

  20. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Science.gov (United States)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  2. Haro 11: Where is the Lyman Continuum Source?

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, Ryan P.; Oey, M. S. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-10-10

    Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.

  3. RESOLUTION OF THE COMPACT RADIO CONTINUUM SOURCES IN Arp220

    International Nuclear Information System (INIS)

    Batejat, Fabien; Conway, John E.; Hurley, Rossa; Parra, Rodrigo; Diamond, Philip J.; Lonsdale, Colin J.; Lonsdale, Carol J.

    2011-01-01

    We present 2 cm and 3.6 cm wavelength very long baseline interferometry images of the compact radio continuum sources in the nearby ultra-luminous infrared galaxy Arp220. Based on their radio spectra and variability properties, we confirm these sources to be a mixture of supernovae (SNe) and supernova remnants (SNRs). Of the 17 detected sources we resolve 7 at both wavelengths. The SNe generally only have upper size limits. In contrast all the SNRs are resolved with diameters ≥0.27 pc. This size limit is consistent with them having just entered their Sedov phase while embedded in an interstellar medium (ISM) of density 10 4 cm -3 . These objects lie on the diameter-luminosity correlation for SNRs (and so also on the diameter-surface brightness relation) and extend these correlations to very small sources. The data are consistent with the relation L∝D -9/4 . Revised equipartition arguments adjusted to a magnetic field to a relativistic particle energy density ratio of 1% combined with a reasonable synchrotron-emitting volume filling factor of 10% give estimated magnetic field strengths in the SNR shells of ∼15-50 mG. The SNR shell magnetic fields are unlikely to come from compression of ambient ISM fields and must instead be internally generated. We set an upper limit of 7 mG for the ISM magnetic field. The estimated energy in relativistic particles, 2%-20% of the explosion kinetic energy, is consistent with estimates from models that fit the IR-radio correlation in compact starburst galaxies.

  4. Simultaneous determination of Cd and Fe in beans and soil of different regions of Brazil using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling.

    Science.gov (United States)

    dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut

    2009-11-11

    A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.

  5. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    Science.gov (United States)

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    Science.gov (United States)

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  7. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  8. On the possibilities of high-resolution continuum source graphite furnace atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple atomic lines

    International Nuclear Information System (INIS)

    Resano, M.; Rello, L.; Florez, M.; Belarra, M.A.

    2011-01-01

    This paper explores the potential of commercially available high-resolution continuum source graphite furnace atomic absorption spectrometry instrumentation for the simultaneous or sequential monitoring of various atomic lines, in an attempt to highlight the analytical advantages that can be derived from this strategy. In particular, it is demonstrated how i) the monitoring of multiplets may allow for the simple expansion of the linear range, as shown for the measurement of Ni using the triplet located in the vicinity of 234.6 nm; ii) the use of a suitable internal standard may permit improving the precision and help in correcting for matrix-effects, as proved for the monitoring of Ni in different biological samples; iii) direct and multi-element analysis of solid samples may be feasible on some occasions, either by monitoring various atomic lines that are sufficiently close (truly simultaneous monitoring, as demonstrated in the determination of Co, Fe and Ni in NIST 1566a Oyster tissue) or, alternatively, by opting for a selective and sequential atomization of the elements of interest during every single replicate. Determination of Cd and Ni in BCR 679 White cabbage is attempted using both approaches, which permits confirming that both methods can offer very similar and satisfactory results. However, it is important to stress that the second approach provides more flexibility, since analysis is no longer limited to those elements that show very close atomic lines (closer than 0.3 nm in the ultraviolet region) with a sensitivity ratio similar to the concentration ratio of the analytes in the samples investigated.

  9. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  10. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    International Nuclear Information System (INIS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    2012-01-01

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of “fluorine as a probe in medicinal chemistry” an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells. - Highlights: ► Development of HR-CS MAS for quantification of fluorine bound to organic molecules ► Measuring as molecular absorption of gallium monofluoride ► Quantification of organic-bound fluorine in biological material ► The concept of “fluorine as a probe in medicinal chemistry” could be established

  11. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations

    Science.gov (United States)

    Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea

    2017-11-01

    Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources

  12. Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Leao, Danilo J; Junior, Mario M S; Brandao, Geovani C; Ferreira, Sergio L C

    2016-06-01

    A method was established to simultaneously determine cadmium, iron and tin in canned-food samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). The quantification step has been performed using the primary line (228.802nm) for cadmium and the adjacent secondary lines (228.725nm and 228.668nm) for iron and tin, respectively. The selected chemical modifier was an acid solution that contained a mixture of 0.1% (w/v) Pd and 0.05% (w/v) Mg. The absorbance signals were measured based on the peak area using 3 pixels for cadmium and 5 pixels for iron and tin. Under these conditions, cadmium, iron and tin have been determined in canned-food samples using the external calibration technique based on aqueous standards, where the limits of quantification were 2.10ngg(-1) for cadmium, 1.95mgkg(-1) for iron and 3.00mgkg(-1) for tin, and the characteristic masses were 1.0pg for cadmium, 0.9ng for iron and 1.1ng for tin. The precision was evaluated using two solutions of each metal ion, and the results, which were expressed as the relative standard deviation (RSD%), were 3.4-6.8%. The method accuracy for cadmium and iron was confirmed by analyzing a certified reference material of apple leaves (NIST 1515), which was supplied by NIST. However, for tin, the accuracy was confirmed by comparing the results of the proposed method and another analytical technique (inductively coupled plasma optical emission spectrometry). The proposed procedure was applied to determine cadmium, iron and tin in canned samples of peeled tomato and sardine. Eleven samples were analyzed, and the analyte concentrations were 3.57-62.9ngg(-1), 2.68-31.48mgkg(-1) and 4.06-122.0mgkg(-1) for cadmium, iron and tin, respectively. In all analyzed samples, the cadmium and tin contents were lower than the permissible maximum levels for these metals in canned foods in the Brazilian legislation. Copyright © 2016. Published by Elsevier B.V.

  13. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  14. Trace elements determination in high salinity petroleum produced formation water by high-resolution continuum source graphite furnace atomic absorption spectrometry after matrix separation using Chelex-100 Registered-Sign resin

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Aline Soares [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil); Santelli, Ricardo Erthal, E-mail: santelli@iq.ufrj.br [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil)

    2012-05-15

    This study describes a procedure used for the determination of trace metals (Co, Cu, Mn, Ni and Pb) in high salinity petroleum produced formation water (PFW) employing high-resolution continuum source graphite furnace atomic absorption spectrometry for detection and Chelex-100 Registered-Sign resin for matrix elimination and analytes preconcentration. Using 15.0 mL of PFW for the separation/preconcentration, detection limits of 0.006, 0.07, 0.03, 0.08 and 0.02 {mu}g L{sup -1} were obtained for Co, Cu, Mn, Ni and Pb, respectively. The accuracy of the proposed method was evaluated by analyzing three seawater certified reference materials and by recovery tests, and the data indicate that the methodology can be successfully applied to this kind of samples. The precision values, expressed as relative standard deviation (% RSD, n = 10) for 2.0 {mu}g L{sup -1}, were found to be 3.5, 4.0, 9.0, 5.3 and 5.9 for Co, Cu, Mn, Ni and Pb, respectively. The proposed procedure was applied for the determination of these metals in medium and high salinity PFW samples obtained from Brazilian offshore petroleum exploration platforms. - Highlights: Black-Right-Pointing-Pointer Petroleum-produced formation water were analyzed for Co, Cu, Mn, Ni and Pb determination. Black-Right-Pointing-Pointer In batch analyte preconcentration/matrix separation using Chelex-100 Registered-Sign was used. Black-Right-Pointing-Pointer Detection limits between 0.006 and 0.08 {mu}g L{sup -1} were found by using HR-CS-GFAAS. Black-Right-Pointing-Pointer Trace elements characterization is possible using the developed method. Black-Right-Pointing-Pointer Maximum trace element concentrations found could support future Brazilian directives.

  15. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.

    2015-01-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO 3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L −1 HNO 3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg −1 . Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and samples

  16. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Magnus [Freie Universitaet Berlin, Institut fuer Pharmazie, Pharmazeutische Chemie, Koenigin-Luise-Str. 2-4, 14195 Berlin (Germany); Huang, Mao-Dong; Becker-Ross, Helmut; Florek, Stefan [Leibniz Institut fuer Analytische Wissenschaften, ISAS-e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Ott, Ingo [Technische Universitaet Carolo Wilhelmina zu Braunschweig, Institut fuer Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig (Germany); Gust, Ronald, E-mail: ronald.gust@uibk.ac.at [Universitaet Innsbruck, Institut fuer Pharmazie, Pharmazeutische Chemie, Innrain 80/82, 6020 Innsbruck (Austria)

    2012-03-15

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of 'fluorine as a probe in medicinal chemistry' an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Development of HR-CS MAS for quantification of fluorine bound to organic molecules Black-Right-Pointing-Pointer Measuring as molecular absorption of gallium monofluoride Black-Right-Pointing-Pointer Quantification of organic-bound fluorine in biological material Black-Right-Pointing-Pointer The concept of 'fluorine as a probe in medicinal chemistry' could be established.

  17. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6–4.3%), repeatability (4–9%), reproducibility (9–11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as

  18. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    Science.gov (United States)

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  20. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  1. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  2. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  3. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jorge S.; Anunciação, Taiana A. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Brandão, Geovani C. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); INCT de Energia e Ambiente, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Dantas, Alailson F. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Lemos, Valfredo A. [Laboratório de Química Analítica (LQA), Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Jequié, Bahia 45506-191 (Brazil); and others

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO{sub 3} gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L{sup −1} HNO{sub 3} as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg{sup −1}. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and

  4. Investigation of the feasibility to use Zeeman-effect background correction for the graphite furnace determination of phosphorus using high-resolution continuum source atomic absorption spectrometry as a diagnostic tool

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Fabio G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.b [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Dessuy, Morgana B.; Vale, Maria Goreti R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre-RS (Brazil); Bohrer, Denise [Departamento de Quimica, Universidade Federal de Santa Maria, 97110-905 Santa Maria, RS (Brazil); Loos-Vollebregt, Margaretha T.C. de [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 137, 2628 BL Delft (Netherlands); Department of Analytical Chemistry, Ghent University, Krijgslaan 281 - S12, B-9000 Ghent (Belgium); Mao Donghuang; Becker-Ross, Helmut [ISAS, Institute for Analytical Sciences, Department of Interface Spectroscopy, Albert-Einstein Str. 9, 12489 Berlin (Germany)

    2010-01-15

    The determination of phosphorus by graphite furnace atomic absorption spectrometry at the non-resonance line at 213.6 nm, and the capability of Zeeman-effect background correction (Z-BC) to deal with the fine-structured background absorption due to the PO molecule have been investigated in the presence of selected chemical modifiers. Two line source atomic absorption spectrometers, one with a longitudinally heated and the other with a transversely heated graphite tube atomizer have been used in this study, as well as two prototype high-resolution continuum source atomic absorption spectrometers, one of which had a longitudinally arranged magnet at the furnace. It has been found that Z-BC is capable correcting very well the background caused by the PO molecule, and also that of the NO molecule, which has been encountered when the Pd + Ca mixed modifier was used. Both spectra exhibited some Zeeman splitting, which, however, did not cause any artifacts or correction errors. The practical significance of this study is to confirm that accurate results can be obtained for the determination of phosphorus using Z-BC. The best sensitivity with a characteristic mass of m{sub 0} = 11 ng P has been obtained with the pure Pd modifier, which also caused the lowest background level. The characteristic mass obtained with the mixed Pd+Ca modifier depended on the equipment used and was between m{sub 0} = 9 ng P and m{sub 0} = 15 ng P, and the background signal was higher. The major problem of Z-BC remains the relatively restricted linear working range.

  5. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  6. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.; Ekers, R. D., E-mail: kshitij@rri.res.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  7. 1300 micron continuum observations of the Sagittarius B2 molecular cloud core

    International Nuclear Information System (INIS)

    Goldsmith, P.F.; Snell, R.L.; Lis, D.C.

    1987-01-01

    Observations with 23-arcsec angular resolution are obtained of the continuum emission at 1300 microns wavelength from the central region of the Sgr B2 molecular cloud, which contains the north and middle high-mass star-forming regions and associated radio continuum and maser sources. The spatial resolution of the present data shows that the 1300-micron continuum emission peak is located at Sgr B2(N), in contrast to the midinfrared emission, which is centered on Sgr B2(M). Comparison with 53 micron data having comparable angular resolution suggests that there is optically thick foreground dust which prevents detection of Sgr B2(N) at wavelengths not greater than 100 microns. Within the about 1.5 x 3.5 pc region mapped, the total mass is 500,000 solar masses and the mean H2 density is 300,000/cu cm, somewhat larger than found in previous investigations. 27 references

  8. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  9. STATCONT: A statistical continuum level determination method for line-rich sources

    Science.gov (United States)

    Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A.

    2018-01-01

    STATCONT is a python-based tool designed to determine the continuum emission level in spectral data, in particular for sources with a line-rich spectrum. The tool inspects the intensity distribution of a given spectrum and automatically determines the continuum level by using different statistical approaches. The different methods included in STATCONT are tested against synthetic data. We conclude that the sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination. This uncertainty can be used to correct the final continuum emission level, resulting in the here called `corrected sigma-clipping method' or c-SCM. The c-SCM has been tested against more than 750 different synthetic spectra reproducing typical conditions found towards astronomical sources. The continuum level is determined with a discrepancy of less than 1% in 50% of the cases, and less than 5% in 90% of the cases, provided at least 10% of the channels are line free. The main products of STATCONT are the continuum emission level, together with a conservative value of its uncertainty, and datacubes containing only spectral line emission, i.e., continuum-subtracted datacubes. STATCONT also includes the option to estimate the spectral index, when different files covering different frequency ranges are provided.

  10. Development of high resolution vacuum ultraviolet beam line at Indus-1 synchrotron source

    International Nuclear Information System (INIS)

    Shukla, R.P.; Das, N.C.; Udupa, D.V.; Saraswathy, P.; Sunanda, K.; Jha, S.N.; Shastri, Aparna; Singh, Paramjeet; Mallick, Manika; Mishra, A.P.; Sahoo, N.K.; Sinha, A.K.; Bhatt, S.; Sahni, V.C.

    2005-07-01

    High resolution vacuum ultraviolet beamline at Indus-1 450 MeV synchrotron source has been developed for carrying out absorption spectral studies of atoms and molecules. The beamline consists of three major parts i.e. a focusing optical system, an absorption cell and a high resolution 6.65 m vacuum ultraviolet spectrometer in Eagle mount. The wavelength range of the spectrometer is from 700 A to 2000 A and the resolution of the spectrometer is 0.01 A. Using the synchrotron source Indus-1, the absorption spectra of oxygen, ammonia and carbon disulphide have been recorded at the wavelength band of 1750 A, 1881 A and 3100 A respectively. Details of different aspects of design and development of the high resolution VUV beamline are described in this report. (author)

  11. The relationship between Class I and Class II methanol masers at high angular resolution

    Science.gov (United States)

    McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.

    2018-06-01

    We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.

  12. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta, E-mail: anchieta@iq.unesp.br

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L{sup −1} N (r = 0.9994), 100–2000 mg L{sup −1} P (r = 0.9946), and 100–2500 mg L{sup −1} K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO{sub 3}{sup −}-N), 95–103% (NH{sub 4}{sup +}-N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H{sub 2}O{sub 2} allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time.

  13. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-07

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    International Nuclear Information System (INIS)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2014-01-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L −1 N (r = 0.9994), 100–2000 mg L −1 P (r = 0.9946), and 100–2500 mg L −1 K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO 3 − -N), 95–103% (NH 4 + -N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H 2 O 2 allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time

  15. Quasielastic high-resolution time-of-flight spectrometers employing multi-disk chopper cascades for spallation sources

    International Nuclear Information System (INIS)

    Lechner, R.E.

    2001-01-01

    The design of multi-disk chopper time-of-flight (MTOF) spectrometers for high-resolution quasielastic and low-energy inelastic neutron scattering at spallation sources is discussed in some detail. A continuously variable energy resolution (1 μeV to 10 meV), and a large dynamic range (1 μeV to 100 meV), are outstanding features of this type of instrument, which are easily achieved also at a pulsed source using state-of-the-art technology. The method of intensity-resolution optimization of MTOF spectrometers at spallation sources is treated on the basis of the requirement of using (almost) 'all the neutrons of the pulse', taking into account the constant, but wavelength-dependent duration of the source pulse. It follows, that the optimization procedure (which is slightly different from that employed in the steady-state source case) should give priority to the highest resolution, whenever such a choice becomes necessary. This leads to long monochromator distances (L l2 ) of the order of 50 m, for achieving resolutions now available at reactor sources. A few examples of spectrometer layout and corresponding design parameters for large-angle and for small-angle quasielastic scattering instruments are given. In the latter case higher energy resolution than for large-angle scattering is required and achieved. The use of phase-space transformers, neutron wavelength band-pass filters and multichromatic operation for the purpose of intensity-resolution optimization are discussed. This spectrometer can be designed to make full use of the pulsed source peak flux. Therefore, and because of a number of improvements, high resolution will be available at high intensity: for any given resolution the total intensity at the detectors, when placed at one of the planned new spallation sources (SNS, JSNS, ESS, AUSTRON) will be larger by at least three orders of magnitude than the total intensity of any of the presently existing instruments of this type in routine operation at steady

  16. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong, E-mail: huang@isas.de; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV–VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions. - Highlights: • Echelle spectrometer with a full frame CCD array detector • High and variable spectral resolution from λ/Δλ of 55,000 to 95,000 • Laser-driven continuum light source

  17. High-resolution in-source laser spectroscopy in perpendicular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinke, R., E-mail: reinhard.heinke@uni-mainz.de; Kron, T. [Universität Mainz, Institut für Physik (Germany); Raeder, S. [Helmholtz-Institut Mainz (Germany); Reich, T.; Schönberg, P. [Universität Mainz, Institut für Kernchemie (Germany); Trümper, M.; Weichhold, C.; Wendt, K. [Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    Operation of the novel laser ion source unit LIST (Laser Ion Source and Trap), operating at the on-line radioactive ion beam facility ISOLDE at CERN allowed for the production of ultra-pure beams of exotic isotopes far-off stability as well as direct isobar-free laser spectroscopy, giving access to the study of atomic and nuclear properties of so far inaccessible nuclides. We present a specific upgrade and adaption of the LIST targeted for high resolution spectroscopy with a Doppler-reduced perpendicular atom - laser beam geometry. With this PI-LIST (Perpendicularly Illuminated Laser Ion Source and Trap) setup, experimental linewidths below 100 MHz could be demonstrated in optical laser spectroscopy off-line, applying a pulsed injection-locked high repetition rate Ti:sapphire laser. A dual repeller configuration ensured highest suppression of isobaric interferences and almost background-free measurements on small samples in the order of 10{sup 11} atoms.

  18. Determination of chlorine in food samples via the AlCl molecule using high-resolution continuum source molecular absorption spectrometry in a graphite furnace

    Energy Technology Data Exchange (ETDEWEB)

    Fechetia, Miriam; Tognon, Andre Luiz; Veiga, Marcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2012-05-15

    Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis, 10 {mu}L of the sample followed by 10 {mu}L of a solution containing Al-Ag-Sr modifier, (1 g L{sup -1} each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 Degree-Sign C and 2200 Degree-Sign C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO{sub 3} only at room temperature, and (B) a digestion method with Ag, HNO{sub 3} and H{sub 2}O{sub 2}, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3{sigma}/s) for Cl in methods A and B was 18 {mu}g g{sup -1} and 9 {mu}g g{sup -1}, respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively. - Highlights: Black-Right-Pointing-Pointer HR-CS MAS as technique for Cl determination via AlCl molecule Black-Right-Pointing-Pointer Spectral interference was corrected by the least-squares algorithm. Black-Right-Pointing-Pointer Chorine precipitation as AgCl prevents Cl losses during

  19. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers

    Science.gov (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas

    2017-04-01

    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  20. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  2. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Robles, A.; Drury, O.B.; Friedrich, S.

    2009-01-01

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm 3 Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  3. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping

    2011-07-08

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration-scale seismic data. We now demonstrate the high-resolution and the super-stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal-to-noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super-stacking and greatly exceeds the classical signal-to-noise enhancement factor of. High-resolution and super-stacking are properties also enjoyed by seismic interferometry and reverse-time migration with the exact velocity model. © 2011 European Association of Geoscientists & Engineers.

  4. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  5. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

    Science.gov (United States)

    Fausnaugh, Michael Martin

    I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently

  6. High resolution far-infrared survey of A section of the galactic plane. I. The nature of the sources

    International Nuclear Information System (INIS)

    Jaffe, D.T.; Stier, M.T.; Fazio, G.G.

    1982-01-01

    We have surveyed a 7.5 deg 2 portion of the galactic plane between l/sup II/ = 10 0 and l/sup II/ = 16 0 at 70 μm with a 1' beam. We present far-infrared, radio continuum, and 12 CO and 13 CO line observations of the 42 far-infrared sources in the survey region. The sources range in luminosity from 4 x 10 3 to 3 x 10 6 L/sub sun/. Most are associated with 12 CO peaks. More than half of the sources have associated H 2 O maser emission. Half have associated radio continuum emission at a limit of 100 mJy. Eight sources have radio emission at weaker levels. In a number of cases, the far-infrared source is smaller than its associated radio source. This difference can be explained in the context of the ''blister'' picture of H II regions. One group of sources emits many fewer Lyman continuum photons than expected, given the far-infrared luminosities. We examine a number of possible reasons for this and conclude that the most reasonable explanation is that clusters of early type stars rather than single stars excite the far-infrared sources. We examine the energetics in the molecular clouds surrounding the infrared sources and conclude that the sources could supply the energy to explain the observed temperature structure and velocity field in the molecular gas

  7. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  8. High-resolution and super stacking of time-reversal mirrors in locating seismic sources

    KAUST Repository

    Cao, Weiping; Hanafy, Sherif M.; Schuster, Gerard T.; Zhan, Ge; Boonyasiriwat, Chaiwoot

    2011-01-01

    Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high-resolution and super-stacking properties. These benefits of time reversal mirrors

  9. Novel high resolution 125I brachytherapy source dosimetry using Ge-doped optical fibres

    International Nuclear Information System (INIS)

    Issa, Fatma; Hugtenburg, Richard P.; Nisbet, Andrew; Bradley, David A.

    2013-01-01

    The steep dose gradients close to brachytherapy sources limit the ability to obtain accurate measurements of dose. Here we use a novel high spatial resolution dosimeter to measure dose around a 125 I source and compare against simulations. Ge-doped optical fibres, used as thermoluminescent dosimeters, offer sub-mm spatial resolution, linear response from 10 cGy to >1 kGy and dose-rate independence. For a 125 I brachytherapy seed in a PMMA phantom, doses were obtained for source-dosimeter separations from 0.1 cm up to several cm, supported by EGSnrc/DOSRZznrc Monte Carlo simulations and treatment planning system data. The measurements agree with simulations to within 2.3%±0.3% along the transverse and perpendicular axes and within 3.0%±0.5% for measurements investigating anisotropy in angular dose distribution. Measured and Veriseed™ brachytherapy treatment planning system (TPS) values agreed to within 2.7%±0.5%. Ge-doped optical fibre dosimeters allow detailed dose mapping around brachytherapy sources, not least in situations of high dose gradient. - Highlights: • We evaluate fall-off in dose for distances from an 125 I source of 1 mm to 60 mm. • The TL of optical fibres accommodate high dose gradients and doses that reduce by a factor of 10 3 across the range of separations. • We verify measured values using DOSRZnrc Monte Carlo code simulations and the Variseed™ Treatment Planning System. • Measured radial and angular dose are obtained with ≤3% uncertainty

  10. Development of High-Resolution Dynamic Dust Source Function - A Case Study with a Strong Dust Storm in a Regional Model

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M.; Tao, Zhining; Peters-Lidard, Christa D.; Ginoux, Paul

    2017-01-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 0203 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  11. Development of High-Resolution Dynamic Dust Source Function -A Case Study with a Strong Dust Storm in a Regional Model.

    Science.gov (United States)

    Kim, Dongchul; Chin, Mian; Kemp, Eric M; Tao, Zhining; Peters-Lidard, Christa D; Ginoux, Paul

    2017-06-01

    A high-resolution dynamic dust source has been developed in the NASA Unified-Weather Research and Forecasting (NU-WRF) model to improve the existing coarse static dust source. In the new dust source map, topographic depression is in 1-km resolution and surface bareness is derived using the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS). The new dust source better resolves the complex topographic distribution over the Western United States where its magnitude is higher than the existing, coarser resolution static source. A case study is conducted with an extreme dust storm that occurred in Phoenix, Arizona in 02-03 UTC July 6, 2011. The NU-WRF model with the new high-resolution dynamic dust source is able to successfully capture the dust storm, which was not achieved with the old source identification. However the case study also reveals several challenges in reproducing the time evolution of the short-lived, extreme dust storm events.

  12. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Science.gov (United States)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence

  13. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewska, Zofia, E-mail: zofia.kowalewska@obr.pl

    2011-07-15

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the {Delta}{nu} = 0 vibrational sequence within the electronic transition X{sup 1}{Sigma}{sup +} {yields} A{sup 1}{Pi}, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd{sub x}S{sub y} molecules. At the 258.056 nm line, with the wavelength range covering central pixel {+-} 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg{sup -1} in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg{sup -1} in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with

  14. Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs

    Directory of Open Access Journals (Sweden)

    Arun Mondal

    2017-05-01

    Full Text Available Digital Elevation Model (DEM is one of the important parameters for soil erosion assessment. Notable uncertainties are observed in this study while using three high resolution open source DEMs. The Revised Universal Soil Loss Equation (RUSLE model has been applied to analysis the assessment of soil erosion uncertainty using open source DEMs (SRTM, ASTER and CARTOSAT and their increasing grid space (pixel size from the actual. The study area is a part of the Narmada river basin in Madhya Pradesh state, which is located in the central part of India and the area covered 20,558 km2. The actual resolution of DEMs is 30 m and their increasing grid spaces are taken as 90, 150, 210, 270 and 330 m for this study. Vertical accuracy of DEMs has been assessed using actual heights of the sample points that have been taken considering planimetric survey based map (toposheet. Elevations of DEMs are converted to the same vertical datum from WGS 84 to MSL (Mean Sea Level, before the accuracy assessment and modelling. Results indicate that the accuracy of the SRTM DEM with the RMSE of 13.31, 14.51, and 18.19 m in 30, 150 and 330 m resolution respectively, is better than the ASTER and the CARTOSAT DEMs. When the grid space of the DEMs increases, the accuracy of the elevation and calculated soil erosion decreases. This study presents a potential uncertainty introduced by open source high resolution DEMs in the accuracy of the soil erosion assessment models. The research provides an analysis of errors in selecting DEMs using the original and increased grid space for soil erosion modelling.

  15. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction.

    Science.gov (United States)

    Husáková, Lenka; Urbanová, Iva; Šafránková, Michaela; Šídová, Tereza

    2017-12-01

    In this work a simple, efficient, and environmentally-friendly method is proposed for determination of Be in soil and sediment samples employing slurry sampling and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS-ETAAS). The spectral effects originating from SiO species were identified and successfully corrected by means of a mathematical correction algorithm. Fractional factorial design has been employed to assess the parameters affecting the analytical results and especially to help in the development of the slurry preparation and optimization of measuring conditions. The effects of seven analytical variables including particle size, concentration of glycerol and HNO 3 for stabilization and analyte extraction, respectively, the effect of ultrasonic agitation for slurry homogenization, concentration of chemical modifier, pyrolysis and atomization temperature were investigated by a 2 7-3 replicate (n = 3) design. Using the optimized experimental conditions, the proposed method allowed the determination of Be with a detection limit being 0.016mgkg -1 and characteristic mass 1.3pg. Optimum results were obtained after preparing the slurries by weighing 100mg of a sample with particle size < 54µm and adding 25mL of 20% w/w glycerol. The use of 1μg Rh and 50μg citric acid was found satisfactory for the analyte stabilization. Accurate data were obtained with the use of matrix-free calibration. The accuracy of the method was confirmed by analysis of two certified reference materials (NIST SRM 2702 Inorganics in Marine Sediment and IGI BIL-1 Baikal Bottom Silt) and by comparison of the results obtained for ten real samples by slurry sampling with those determined after microwave-assisted extraction by inductively coupled plasma time of flight mass spectrometry (TOF-ICP-MS). The reported method has a precision better than 7%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. LTE modeling of inhomogeneous chromospheric structure using high-resolution limb observations

    Science.gov (United States)

    Lindsey, C.

    1987-01-01

    The paper discusses considerations relevant to LTE modeling of rough atmospheres. Particular attention is given to the application of recent high-resolution observations of the solar limb in the far-infrared and radio continuum to the modeling of chromospheric spicules. It is explained how the continuum limb observations can be combined with morphological knowledge of spicule structure to model the physical conditions in chromospheric spicules. This discussion forms the basis for a chromospheric model presented in a parallel publication based on observations ranging from 100 microns to 2.6 mm.

  17. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  18. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  19. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    International Nuclear Information System (INIS)

    Yao Dezhong; He Bin

    2003-01-01

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping

  20. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yao Dezhong [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu City, 610054, Sichuan Province (China); He Bin [The University of Illinois at Chicago, IL (United States)

    2003-11-07

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping.

  1. THE HIGH-ENERGY, ARCMINUTE-SCALE GALACTIC CENTER GAMMA-RAY SOURCE

    International Nuclear Information System (INIS)

    Chernyakova, M.; Malyshev, D.; Aharonian, F. A.; Crocker, R. M.; Jones, D. I.

    2011-01-01

    Employing data collected during the first 25 months of observations by the Fermi-LAT, we describe and subsequently seek to model the very high energy (>300 MeV) emission from the central few parsecs of our Galaxy. We analyze the morphological, spectral, and temporal characteristics of the central source, 1FGL J1745.6-2900. The data show a clear, statistically significant signal at energies above 10 GeV, where the Fermi-LAT has angular resolution comparable to that of HESS at TeV energies. This makes a meaningful joint analysis of the data possible. Our analysis of the Fermi data (alone) does not uncover any statistically significant variability of 1FGL J1745.6-2900 at GeV energies on the month timescale. Using the combination of Fermi data on 1FGL J1745.6-2900 and HESS data on the coincident, TeV source HESS J1745-290, we show that the spectrum of the central gamma-ray source is inflected with a relatively steep spectral region matching between the flatter spectrum found at both low and high energies. We model the gamma-ray production in the inner 10 pc of the Galaxy and examine cosmic ray (CR) proton propagation scenarios that reproduce the observed spectrum of the central source. We show that a model that instantiates a transition from diffusive propagation of the CR protons at low energy to almost rectilinear propagation at high energies can explain well the spectral phenomenology. We find considerable degeneracy between different parameter choices which will only be broken with the addition of morphological information that gamma-ray telescopes cannot deliver given current angular resolution limits. We argue that a future analysis performed in combination with higher-resolution radio continuum data holds out the promise of breaking this degeneracy.

  2. HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220

    Energy Technology Data Exchange (ETDEWEB)

    Barcos-Muñoz, L.; Evans, A. S.; Privon, G. C.; Stierwalt, S. [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Leroy, A. K.; Condon, J.; Reichardt, A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22904 (United States); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 220-6, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Mazzarella, J. M.; Murphy, E. J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Meier, D. S. [New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Momjian, E.; Ott, J. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Sakamoto, K. [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Sanders, D. B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96816 (United States); Schinnerer, E.; Walter, F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Surace, J. A. [Spitzer Science Center, MS 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Thompson, T. A., E-mail: ldb7et@virginia.edu [Department of Astronomy and Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2015-01-20

    We present new Karl G. Jansky Very Large Array radio continuum images of the nuclei of Arp 220, the nearest ultra-luminous infrared galaxy. These new images have both the angular resolution to study the detailed morphologies of the two nuclei that power the galaxy merger and sensitivity to a wide range of spatial scales. At 33 GHz, we achieve a resolution of 0.''081 × 0.''063 (29.9 × 23.3 pc) and resolve the radio emission surrounding both nuclei. We conclude from the decomposition of the radio spectral energy distribution that a majority of the 33 GHz emission is synchrotron radiation. The spatial distributions of radio emission in both nuclei are well described by exponential profiles. These have deconvolved half-light radii (R {sub 50d}) of 51 and 35 pc for the eastern and western nuclei, respectively, and they match the number density profile of radio supernovae observed with very long baseline interferometry. This similarity might be due to the fast cooling of cosmic rays electrons caused by the presence of a strong (∼mG) magnetic field in this system. We estimate extremely high molecular gas surface densities of 2.2{sub −1.0}{sup +2.1}×10{sup 5} (east) and 4.5{sub −1.9}{sup +4.5}×10{sup 5} (west) M {sub ☉} pc{sup –2}, corresponding to total hydrogen column densities of N {sub H} = 2.7{sub −1.2}{sup +2.7}×10{sup 25} (east) and 5.6{sub −2.4}{sup +5.5}×10{sup 25} cm{sup –2} (west). The implied gas volume densities are similarly high, n{sub H{sub {sub 2}}}∼3.8{sub −1.6}{sup +3.8}×10{sup 4} (east) and ∼11{sub −4.5}{sup +12}×10{sup 4} cm{sup –3} (west). We also estimate very high luminosity surface densities of Σ{sub IR}∼4.2{sub −0.7}{sup +1.6}×10{sup 13} (east) and Σ{sub IR}∼9.7{sub −2.4}{sup +3.7}×10{sup 13} (west) L{sub ⊙} kpc{sup −2}, and star formation rate surface densities of Σ{sub SFR} ∼ 10{sup 3.7} {sup ±} {sup 0.1} (east) and Σ{sub SFR} ∼ 10{sup 4.1} {sup ±} {sup 0.1}(west) M

  3. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Science.gov (United States)

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  4. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  5. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  6. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  7. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    Science.gov (United States)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  8. Preparation of very small point sources for high resolution radiography

    International Nuclear Information System (INIS)

    Case, F.N.

    1976-01-01

    The need for very small point sources of high specific activity 192 Ir, 169 Yb, 170 Tm, and 60 Co in non-destructive testing has motivated the development of techniques for the fabrication of these sources. To prepare 192 Ir point sources for use in examination of tube sheet welds in LMFBR heat exchangers, 191 Ir enriched to greater than 90 percent was melted in a helium blanketed arc to form spheres as small as 0.38 mm in diameter. Methods were developed to form the roughly spherical shaped arc product into nearly symmetrical spheres that could be used for high resolution radiography. Similar methods were used for spherical shaped sources of 169 Yb and 170 Tm. The oxides were arc melted to form rough spheres followed by grinding to precise dimensions, neutron irradiation of the spheres at a flux of 2 to 3 x 10 15 nv, and use of enriched 168 Yb to provide the maximum specific activity. Cobalt-60 with a specific activity of greater than 1100 Ci/g was prepared by processing 59 Co that had been neutron irradiated to nearly complete burnup of the 59 Co target to produce 60 Co, 61 Ni, and 62 Ni. Ion exchange methods were used to separate the cobalt from the nickel. The cobalt was reduced to metal by plating either onto aluminum foil which was dissolved away from the cobalt plate, or by plating onto mercury to prepare amalgam that could be easily formed into a pellet of cobalt with exclusion of the mercury. Both methods are discussed

  9. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  10. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  11. Photoionization of Ar2 at high resolution

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1982-01-01

    The relative photoionization cross section of Ar 2 was determined at a resolution of 0.07 A in the wavelength region from 800 to 850 A using a new photoionization mass spectrometer that combines a high intensity helium continuum lamp with a free supersonic molecular beam source. In the region studied, the photoionization cross section is dominated by autoionization of molecular Rydberg states, and the structure is diffuse owing to the combined effects of autoionization and predissociation. The molecular photoionization spectrum is extremely complex and shows little resemblence either to the corresponding atomic spectrum (indicating that the spectrum of the dimer is not simply a perturbed atomic spectrum) or to the molecular absorption spectrum at longer wavelengths. The regular vibrational progressions seen at longer wavelengths are absent above the first ionization potential. Detailed spectroscopic analysis is possible for only a small fraction of the observed features; however, vibrational intervals of 50--100 cm -1 suggest that some of the Rydberg states have B 2 Pi/sub 3/2g/ ionic cores. A comparison of the absorption and photoionization spectra shows that, at wavelengths shorter than approx.835 A, many of the excited states decay via mechanisms other than autoionization

  12. High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers

    Science.gov (United States)

    Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.

    2017-12-01

    The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and

  13. Quantitative characterization of urban sources of organic aerosol by high-resolution gas chromatography

    International Nuclear Information System (INIS)

    Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T.

    1991-01-01

    Fine aerosol emissions have been collected from a variety of urban combustion sources, including an industrial boiler, a fireplace, automobiles, diesel trucks, gas-fired home appliances, and meat cooking operations, by use of a dilution sampling system. Other sampling techniques have been utilized to collect fine aerosol samples of paved road dust, brake wear, tire wear, cigarette smoke, tar pot emissions, and vegetative detritus. The organic matter contained in each of these samples has been analyzed via high-resolution gas chromatography. By use of a simple computational approach, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type has been determined. The organic mass distribution fingerprints obtained by this approach are shown to differ significantly from each other for most of the source types tested, using hierarchical cluster analysis

  14. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  15. One millimeter continuum observations of high redshift quasars

    International Nuclear Information System (INIS)

    Ennis, D.J.; Soifer, B.T.

    1981-01-01

    Upper limits to the one-millimeter continuum flux densities of the high redshift quasars B2 1225 + 31, Ton 490, and PHL 957 are presented. The upper limit to the power observed from these quasars at 1 mm is, on the average, one half of the observed power in the continuum at L-alpha. These observations are used to constrain the temperature of a hypothetical dust shell which reddens the quasar line and continuum emission by an extinction optical depth sufficient to account for the anomalously low L-alpha/H-alpha emission line ratio observed in each of these quasars. For the quasars studied, dust shell temperatures between 25 K and 50 to 95 K are prohibited by the present data. A dust shell at a temperature within this span reradiating all the power absorbed from the quasar ultraviolet continuum would produce a one-millimeter flux density greater than the measured upper limit. The average radius of the model dust shell cannot be between 70 kpc and 1 Mpc

  16. The High-Resolution IRAS Galaxy Atlas

    Science.gov (United States)

    Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.; Oliversen, R. (Technical Monitor)

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg is less than b is less than 4.7 deg), along with the molecular clouds in Orion, rho Oph, and Taurus-Auriga, has been produced at 60 and 100 microns from IRAS data. The atlas consists of resolution-enhanced co-added images with 1 min - 2 min resolution and co-added images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the Dominion Radio Astrophysical Observatory H(sub I) line/21 cm continuum and FCRAO CO (1-0) Galactic plane surveys, which both have similar (approx. 1 min) resolution to the IRAS atlas, provides a powerful tool for studying the interstellar medium, star formation, and large-scale structure in our Galaxy. This paper documents the production and characteristics of the atlas.

  17. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  18. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  19. Mechanical design of a high-resolution x-ray powder diffractometer at the Advanced Photon Source.

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Lee, P.; Preissner, C.; Ramanathan, M.; Beno, M.; VonDreele, R.; Ranay, R.; Ribaud, L.; Kurtz, C.; Jiao, X.; Kline, D.; Jemian, P.; Toby, B.

    2007-01-01

    A novel high-resolution x-ray powder diffractometer has been designed and commissioned at the bending magnet beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). This state-of-the-art instrument is designed to meet challenging mechanical and optical specifications for producing high-quality powder diffraction data with high throughput. The 2600 mm (H) X 2100 mm (L) X 1700 mm (W) diffractometer consists of five subassemblies: a customized two-circle goniometer with a 3-D adjustable supporting base; a twelve-channel high-resolution crystal analyzer system with an array of precision x-ray slits; a manipulator system for a twelve scintillator x-ray detectors; a 4-D sample manipulator with cryo-cooling capability; and a robot-based sample exchange automation system. The mechanical design of the diffractometer as well as the test results of its positioning performance are presented in this paper.

  20. Mechanical design of a high-resolution x-ray powder diffractometer at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Lee, P.; Preissner, C.; Ramanathan, M.; Beno, M.; VonDreele, R.; Ranay, R.; Ribaud, L.; Kurtz, C.; Jiao, X.; Kline, D.; Jemian, P.; Toby, B.

    2007-01-01

    A novel high-resolution x-ray powder diffractometer has been designed and commissioned at the bending magnet beamline 11-BM at the Advanced Photon Source (APS), Argonne National Laboratory (ANL). This state-of-the-art instrument is designed to meet challenging mechanical and optical specifications for producing high-quality powder diffraction data with high throughput. The 2600 mm (H) X 2100 mm (L) X 1700 mm (W) diffractometer consists of five subassemblies: a customized two-circle goniometer with a 3-D adjustable supporting base; a twelve-channel high-resolution crystal analyzer system with an array of precision x-ray slits; a manipulator system for a twelve scintillator x-ray detectors; a 4-D sample manipulator with cryo-cooling capability; and a robot-based sample exchange automation system. The mechanical design of the diffractometer as well as the test results of its positioning performance are presented in this paper.

  1. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  2. High-resolution spectral analysis of light from neutral beams and ion source plasmas

    International Nuclear Information System (INIS)

    McNeill, D.H.; Kim, J.

    1980-05-01

    The spectral distributions of Balmer alpha emission from 7- and 22-cm-diam neutral hydrogen beams have been measured with a Fabry-Perot interferometer to obtain information on the beam energy, divergence, and species composition. Results of these measurements are compared with other data on the beam properties to evaluate high-resolution spectroscopy as a beam diagnostic technique. Measurements on ion source plasmas and on beam-produced background plasmas yield average neutral atom energies of approximately 0.3 and 2.5 eV, respectively

  3. High-resolution 8-13 micron imaging of the planetary nebulae BD + 30 deg 3639 and NGC 6572

    International Nuclear Information System (INIS)

    Hora, J.L.; Hoffmann, W.F.; Deutsch, L.K.; Fazio, G.G.

    1990-01-01

    High-resolution midinfrared images of the planetary nebulae BD + 30 deg 3639 and NGC 6572 are presented at 8.3, 8.7, 9.8, 11.2, and 12.4 microns. Analysis of the maps of BD + 30 deg 3639 supports a model in which the infrared emission originates from two spatially distinct components, one which is responsible for the continuum radiation at 8-12 microns and the other which produces the emission-line features. The NGC 6572 images provides evidence for a previously undetected 11.2 micron UIR emission feature. Comparison with radio continuum maps indicates that the distribution of dust is similar to the distribution of ionized gas in each nebula. Various models of source morphology are also investigated. The planetary nebulae DB + 30 deg 3639 and NGC 6572 can be modeled by an optically thin cylinder or a prolate ellipsoid with enhanced equatorial emission. These models reproduce well the general features of the nebula, such as the bipolar lobes of emission and the ring structure. 67 refs

  4. Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios

    Science.gov (United States)

    Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Thuan, T. X.; Fricke, K. J.; Verhamme, A.; Orlitová, I.

    2018-05-01

    We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993 - 0.4317 and with high emission-line flux ratios O32 = [O III]λ5007/[O II]λ3727 ˜ 8 - 27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2 - 72 per cent. A narrow Lyα emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ˜153 km s-1 to ˜ 345 km s-1. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M⋆, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.

  5. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  6. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...... have studied and compared the noise of several SC light sources and evaluated how their noise properties affect the performance of Ultra-High Resolution OCT (UHR-OCT) at 1300 nm. We have measured several SC light sources with different parameters (pulse length, energy, seed repetition rate, etc.). We...

  7. Probing the bias of radio sources at high redshift

    CSIR Research Space (South Africa)

    Passmoor, S

    2012-11-01

    Full Text Available The relationship between the clustering of dark matter and that of luminous matter is often described using the bias parameter. Here, we provide a new method to probe the bias of intermediate-to-high-redshift radio continuum sources for which...

  8. THE STATISTICS OF RADIO ASTRONOMICAL POLARIMETRY: BRIGHT SOURCES AND HIGH TIME RESOLUTION

    International Nuclear Information System (INIS)

    Van Straten, W.

    2009-01-01

    A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal-broadening phenomenon in single-pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single- and giant-pulse polarimetry typically involves sources with large flux-densities and observations with high time-resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self-noise is shown to fully explain the excess polarization dispersion previously noted in single-pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated.

  9. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  10. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Aatrokoski, J.; Lähteenmäki, A.; Lavonen, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz......, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase...... of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data...

  11. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  12. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  13. RELATIVISTIC PLASMA AS THE DOMINANT SOURCE OF THE OPTICAL CONTINUUM EMISSION IN THE BROAD-LINE RADIO GALAXY 3C 120

    International Nuclear Information System (INIS)

    Leon-Tavares, J.; Lobanov, A. P.; Arshakian, T. G.; Chavushyan, V. H.; Doroshenko, V. T.; Sergeev, S. G.; Efimov, Y. S.; Nazarov, S. V.

    2010-01-01

    We report a relation between radio emission in the inner jet of the Seyfert galaxy 3C 120 and optical continuum emission in this galaxy. Combining the optical variability data with multi-epoch high-resolution very long baseline interferometry observations reveals that an optical flare rises when a superluminal component emerges into the jet, and its maxima is related to the passage of such component through the location of a stationary feature at a distance of ∼1.3 pc from the jet origin. This indicates that a significant fraction of the optical continuum produced in 3C 120 is non-thermal, and it can ionize material in a sub-relativistic wind or outflow. We discuss implications of this finding for the ionization and structure of the broad emission line region, as well as for the use of broad emission lines for determining black hole masses in radio-loud active galactic nucleus.

  14. Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source

    DEFF Research Database (Denmark)

    Tu, H.; Liu, Y.; Lægsgaard, Jesper

    2012-01-01

    source with the MIIPS-integrated pulse shaper produces compressed transform-limited 9.6 fs (FWHM) pulses or arbitrarily shaped pulses at a central wavelength of 1020 nm, an average power over 100 mW, and a repetition rate of 76 MHz. In comparison to the 229-fs pump laser pulses that generate the fiber......The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross......-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression of the fiber continuum pulses by the pulse shaper performing the MIIPS measurement, and permits the subsequent coherent control on the fiber continuum pulses by this pulse shaper. The combination of the fiber continuum...

  15. Investigation of the continuum radiation from a high pressure argon arc

    International Nuclear Information System (INIS)

    Glasser, J.; Chapelle, J.

    1975-01-01

    At the high electronic densities existing in high temperature strongly correlated plasmas (with number of electrons in the Debye sphere Nd<<1) it is sometimes difficult to find lines for which Stark broadening allows determination of electronic density. Since the broadening effect is rather strong, the lines overlap or could not be easily extracted from the intense continuous background. The continuum emission in the UV, visible and near infra-red regions, principally due to the radiative recombination, could thus be widely used for the diagnostics of such plasmas. So far a limited number of data on the continuum emission of Argon plasma is available. At the same time certain discrepancies between theoretical predictions and experiments have also been found. The aim of this work is to obtain more elaborated data on the Argon continuum emission at high pressure, where the differences were found to be the largest. (Auth.)

  16. Radio-continuum jets around the peculiar galaxy pair ESO 295-IG022

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2010-01-01

    Full Text Available We report new radio-continuum observations with the Australia Telescope Compact Array (ATCA of the region surrounding the peculiar galaxy pair ESO 295-IG022 at the centre of the poor cluster Abell S0102. We observed this cluster at wavelengths of λ=20/13 and 6/3 cm with the ATCA 6 km array. With these configurations, we achieved a resolution of ~2'' at 3 cm which is sufficient to resolve the jet-like structure of ~3' length detected at 20 cm. From our new high resolution images at 6 and 3 cm we confirm the presence of a double jet structure, most likely originating from the northern galaxy (ESO 295-IG022-N, bent and twisted towards the south. We found the spectral index of the jet to be very steep (α=-1.32. No point source was detected that could be associated with the core of ESO 295-IG022-N. On the other hand, ESO 295-IG022-S does not show any jet structure, but does show a point radio source. This source has variable flux and spectral index, and appears to be superposed on the line-of-sight of the jets (seen at 20-cm originating from the northern galaxy ESO 295-IG022-N. Finally, regions of very high and somewhat well ordered polarization were detected at the level of 70%.

  17. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    Science.gov (United States)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  18. New microfocus bremsstrahlung source based on betatron B-18 for high-resolution radiography and tomography

    Science.gov (United States)

    Rychkov, M. M.; Kaplin, V. V.; Malikov, E. L.; Smolyanskiy, V. A.; Stepanov, I. B.; Lutsenko, A. S.; Gentsel'man, V.; Vas'kovskiy, I. K.

    2018-01-01

    New microfocus source of hard bremsstrahlung (photon energy > 1 MeV), based on the betatron B-18 with a narrow Ta target inside, for high-resolution radiography and tomography is presented. The first studies of the source demonstrate its possibilities for practical applications to detect the microdefects in products made from heavy materials and to control gaps in joints of parts of composite structures of engineering facilities. The radiography method was used to investigate a compound object consisting of four vertically arranged steel bars between which surfaces were exposed gaps of 10 μm in width. The radiographic image of the object, obtained with a magnification of 2.4, illustrates the good sensitivity of detecting the gaps between adjacent bars, due to the small width of the linear focus of the bremsstrahlung source.

  19. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Ichinohe, Yuto; Takeda, Shin'ichiro; Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka

    2012-01-01

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick Si-DSD and four layers of 750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  20. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    Science.gov (United States)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  1. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  2. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  3. Multi-group transport methods for high-resolution neutron activation analysis

    International Nuclear Information System (INIS)

    Burns, K. A.; Smith, L. E.; Gesh, C. J.; Shaver, M. W.

    2009-01-01

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of multi-group deterministic methods for the simulation of neutron activation problems. Central to this work is the development of a method for generating multi-group neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so that the key signatures in neutron activation analysis (i.e., the characteristic line energies) are preserved. The mechanics of the cross-section preparation method are described and contrasted with standard neutron-gamma cross-section sets. These custom cross-sections are then applied to several benchmark problems. Multi-group results for neutron and photon flux are compared to MCNP results. Finally, calculated responses of high-resolution spectrometers are compared. Preliminary findings show promising results when compared to MCNP. A detailed discussion of the potential benefits and shortcomings of the multi-group-based approach, in terms of accuracy, and computational efficiency, is provided. (authors)

  4. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

    Science.gov (United States)

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-04-01

    The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection

  5. Towards high resolution polarisation analysis using double polarisation and ellipsoidal analysers

    CERN Document Server

    Martin-Y-Marero, D

    2002-01-01

    Classical polarisation analysis methods lack the combination of high resolution and high count rate necessary to cope with the demand of modern condensed-matter experiments. In this work, we present a method to achieve high resolution polarisation analysis based on a double polarisation system. Coupling this method with an ellipsoidal wavelength analyser, a high count rate can be achieved whilst delivering a resolution of around 10 mu eV. This method is ideally suited to pulsed sources, although it can be adapted to continuous sources as well. (orig.)

  6. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mathioudakis, Mihalis [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Hawley, Suzanne L.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Dhillon, Vik S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, Tom R. [Department of Physics, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Benjamin P., E-mail: adam.f.kowalski@nasa.gov [Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.

  7. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Brown, Benjamin P.

    2016-01-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10 4 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100

  8. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  9. Simultaneous Determination of Metals in Coal with Low-Resolution ...

    African Journals Online (AJOL)

    The setup including low-resolution spectrometer with the charge-coupled device (CCD) detector, continuum radiation source and filter furnace (FF) atomizer was employed for direct simultaneous determination of Al, Fe, Mg, Cu and Mn in coal slurry. In the FF, sample vapour entered absorption volume by filtering through ...

  10. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  11. Far-infrared observations of Sagittarius B2 - reconsideration of source structure

    International Nuclear Information System (INIS)

    Thronson, H.A. Jr.; Harper, D.A.; Yerkes Observatory, Williams Bay, WI)

    1986-01-01

    New moderate-angular-resolution far-infrared observations of the Sagittarius B2 star-forming region are presented, discussed, and compared with recent radio molecular and continuum observations of this source. In contrast to previous analyses, its far-infrared spectrum is interpreted as the result of a massive frigid cloud overlying a more-or-less normal infrared source, a natural explanation for the object's previously-noted peculiarities. The characteristics derived for the obscuring cloud are similar to those found for the W51 MAIN object. Both sources have high sub-millimeter surface brightness, a high ratio of sub-millimeter to far-infrared flux, and numerous regions of molecular maser emission. 28 references

  12. The CO_2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    International Nuclear Information System (INIS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO_2 absorption continuum near 2.3 µm is determined for a series of sub atmospheric pressures (250–750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO_2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO_2 continuum was obtained as the difference between the CO_2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm"−"1. Following the results of the preceding analysis of the CO_2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer (10.1016/j.jqsrt.2016.07.002), a CO_2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10"−"8 cm"−"1 amagat"−"2 between 4320 and 4380 cm"−"1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra. - Highlights: • The CO_2 absorption continuum is measured by CRDS in the 2.3 µm window. • The achieved sensitivity and stability allow measurements at sub-atmospheric pressure. • The absorption coefficient is on the order of 3×10"−"8 cm"−"1 amagat"−"2 near 4350 cm"−"1. • A good agreement is obtained with previous results at much higher density (20 amagat).

  13. FTIR free-jet set-up for the high resolution spectroscopic investigation of condensable species

    Science.gov (United States)

    Georges, R.; Bonnamy, A.; Benidar, A.; Decroi, M.; Boissoles, J.

    2002-05-01

    An existing experimental set-up combining Fourier transform infrared (FTIR) spectroscopy and free-jet cooling has been modified significantly to allow high resolution studies of the spectrum of monomer species which are liquid under standard conditions. Evaporation of the liquid samples is controlled by a condenser apparatus which is described. A supersonic planar expansion issuing from a narrow aperture is preferred for its very high cooling rate. Such an expansion, probed with a pitot tube, has a zone of limited temperature gradient close to the nozzle exit. The continuum isentropic model appears well suited to describing the thermodynamic properties of the flow up to a high number of nozzle diameters downstream. High resolution spectra of benzene and methanol have been recorded in the 3 µm wavelength range, and their analysis demonstrates a well defined rotational temperature in the 20-25 K range.

  14. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  15. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    Science.gov (United States)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different

  16. Resolution enhancement of low-quality videos using a high-resolution frame

    Science.gov (United States)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  17. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  18. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  19. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  1. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  2. Electron Temperatures in W51 Complex from High Resolution, Low ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We have made continuum radio observations of these HII regions of the W51 complex at 240, 610, 1060 and 1400 MHz using GMRT with lower resolution (20'' × 15'') at the lowest frequency. The observed spectra of the prominent thermal subcomponents of W51 have been fitted to a free-free emission ...

  3. The supersoft X-ray source in V5116 Sagittarii. I. The high resolution spectra

    Science.gov (United States)

    Sala, G.; Ness, J. U.; Hernanz, M.; Greiner, J.

    2017-05-01

    Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims: In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods: We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results: The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova. Based on

  4. A lower limit to the accretion disc radius in the low-luminosity AGN NGC 1052 derived from high-angular resolution data

    Science.gov (United States)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-05-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  5. New high-resolution rocket-ultraviolet filtergrams of the solar disc

    Science.gov (United States)

    Foing, B.; Bonnet, R.-M.; Bruner, M.

    1986-01-01

    A rocket-borne solar ultraviolet telescope named Transition Region Camera was launched successfully for the third on July 13, 1982. High quality calibrated photographic images of the sun were obtained at Lyman alpha and in the continuum at 160 nm and 220 nm. The angular resolution achieved is better than one arcsec. A flare, active regions, sunspots, the 8 Mm mesostructure, the chromospheric network, bright UV grains and coronal loops were observed during the flight. The results are presented and the evolution with height in the solar atmosphere of the various structures observed is followed from one wavelength to the other, showing distinct differences. The value of the field's intensity of magnetic flux tubes is deduced from the observations.

  6. Development and analytical characterization of a Grimm-type glow discharge ion source operated with high gas flow rates and coupled to a mass spectrometer with high mass resolution

    International Nuclear Information System (INIS)

    Beyer, Claus; Feldmann, Ingo; Gilmour, Dave; Hoffmann, Volker; Jakubowski, Norbert

    2002-01-01

    A Grimm-type glow discharge ion source has been developed and was coupled to a commercial inductively coupled plasma mass spectrometer (ICP-MS) with high mass resolution (Axiom, ThermoElemental, Winsford, UK) by exchanging the front plate of the ICP-MS interface system only. In addition to high discharge powers of up to 70 W, which are typical for a Grimm-type design, this source could be operated with relative high gas flow rates of up to 240 ml min -1 . In combination with a high discharge voltage the signal intensities are reaching a constant level within the first 20 s after the discharge has started. An analytical characterization of this source is given utilizing a calibration using the steel standard reference material NIST 1261A-1265A. The sensitivity for the investigated elements measured with a resolution of 4000 is in the range of 500-6000 cps μg -1 g -1 , and a relative standard deviation (R.S.D.) of the measured isotope relative to Fe of less than 8% for the major and minor components of the sample has been achieved. Limits of detection at ng g -1 levels could be obtained

  7. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  8. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  9. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  10. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  11. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  12. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  13. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  14. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  15. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT.

    Science.gov (United States)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-03-01

    The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same amount of data being used

  16. Temporal resolution and motion artifacts in single-source and dual-source cardiac CT

    International Nuclear Information System (INIS)

    Schöndube, Harald; Allmendinger, Thomas; Stierstorfer, Karl; Bruder, Herbert; Flohr, Thomas

    2013-01-01

    Purpose: The temporal resolution of a given image in cardiac computed tomography (CT) has so far mostly been determined from the amount of CT data employed for the reconstruction of that image. The purpose of this paper is to examine the applicability of such measures to the newly introduced modality of dual-source CT as well as to methods aiming to provide improved temporal resolution by means of an advanced image reconstruction algorithm. Methods: To provide a solid base for the examinations described in this paper, an extensive review of temporal resolution in conventional single-source CT is given first. Two different measures for assessing temporal resolution with respect to the amount of data involved are introduced, namely, either taking the full width at half maximum of the respective data weighting function (FWHM-TR) or the total width of the weighting function (total TR) as a base of the assessment. Image reconstruction using both a direct fan-beam filtered backprojection with Parker weighting as well as using a parallel-beam rebinning step are considered. The theory of assessing temporal resolution by means of the data involved is then extended to dual-source CT. Finally, three different advanced iterative reconstruction methods that all use the same input data are compared with respect to the resulting motion artifact level. For brevity and simplicity, the examinations are limited to two-dimensional data acquisition and reconstruction. However, all results and conclusions presented in this paper are also directly applicable to both circular and helical cone-beam CT. Results: While the concept of total TR can directly be applied to dual-source CT, the definition of the FWHM of a weighting function needs to be slightly extended to be applicable to this modality. The three different advanced iterative reconstruction methods examined in this paper result in significantly different images with respect to their motion artifact level, despite exactly the same

  17. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    Science.gov (United States)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification

  18. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  19. On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, P.; Kašparová, J. [Astronomical Institute, Czech Academy of Sciences, 25165 Ondřejov (Czech Republic); Kleint, L.; Krucker, S., E-mail: pheinzel@asu.cas.cz [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2017-09-20

    The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanisms depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.

  20. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  1. Solar radio continuum storms and a breathing magnetic field model. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms

  2. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    Science.gov (United States)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  3. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Claussen, M. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro, NM 87801 (United States); Kurtz, S.; Carrasco-González, C.; Rodríguez, L. F.; Loinard, L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58090, México (Mexico); Cesaroni, R. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Menten, K. M.; Wyrowski, F. [Max-Planck-Institute für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Ellingsen, S. P. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania 7001 (Australia)

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sources associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.

  4. Neutron powder diffraction at a pulsed neutron source: a study of resolution effects

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Hitterman, R.L.

    1985-11-01

    The General Purpose Powder Diffractometer (GPPD), a high resolution (Δd/d = 0.002) time-of-flight instrument, exhibits a resolution function that is almost independent of d-spacing. Some of the special properties of time-of-flight scattering data obtained at a pulsed neutron source will be discussed. A method is described that transforms wavelength dependent data, obtained at a pulsed neutron source, so that standard structural least-squares analyses can be applied. Several criteria are given to show when these techniques are useful in time-of-flight data analysis. 14 refs., 6 figs., 1 tab

  5. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    Science.gov (United States)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  6. High resolution Thomson scattering system for steady-state linear plasma sources

    Science.gov (United States)

    Lee, K. Y.; Lee, K. I.; Kim, J. H.; Lho, T.

    2018-01-01

    The high resolution Thomson scattering system with 63 points along a 25 mm line measures the radial electron temperature (Te) and its density (ne) in an argon plasma. By using a DC arc source with lanthanum hexaboride (LaB6) electrode, plasmas with electron temperature of over 5 eV and densities of 1.5 × 1019 m-3 have been measured. The system uses a frequency doubled (532 nm) Nd:YAG laser with 0.25 J/pulse at 20 Hz. The scattered light is collected and sent to a triple-grating spectrometer via optical-fibers, where images are recorded by an intensified charge coupled device (ICCD) camera. Although excellent in stray-light reduction, a disadvantage comes with its relatively low optical transmission and in sampling a tiny scattering volume. Thus requires accumulating multitude of images. In order to improve photon statistics, pixel binning in the ICCD camera as well as enlarging the intermediate slit-width inside the triple-grating spectrometer has been exploited. In addition, the ICCD camera capture images at 40 Hz while the laser is at 20 Hz. This operation mode allows us to alternate between background and scattering shot images. By image subtraction, influences from the plasma background are effectively taken out. Maximum likelihood estimation that uses a parameter sweep finds best fitting parameters Te and ne with the incoherent scattering spectrum.

  7. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  8. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  9. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  10. Polarized high-brilliance and high-resolution soft x-ray source at ELETTRA: The performance of beamline BACH

    International Nuclear Information System (INIS)

    Zangrando, M.; Zacchigna, M.; Finazzi, M.; Cocco, D.; Rochow, R.; Parmigiani, F.

    2004-01-01

    BACH, a soft x-ray beamline for polarization-dependent experiments at the Italian synchrotron radiation facility ELETTRA, was recently completed and characterized. Its performance, in terms of energy resolution, flux and polarization, is presented. Based on two APPLE II undulators, BACH covers the energy range between 35 and 1600 eV with the control of the light polarization. The monochromator is equipped with four gratings and allows one to work either in a high resolution or in a high flux mode. After the monochromator, the beamline is split into two branches with different refocusing properties. One is optimized to exploit the performance of the soft x-ray spectrometer (ComIXS) available at the beamline. Resolving powers between 12000 at 90 eV photon energy and 6600 near 867 eV were achieved using the high-resolution gratings and the smallest available slit width (10 μm). For the high-brilliance grating, which works between 290 and 1600 eV, resolving powers between 7000 at 400 eV and 2200 at 867 eV were obtained. The flux in the experimental chamber, measured with the high-resolution gratings for linearly polarized light at the best achievable resolution, ranges between 4x10 11 photons/s at 125 eV and 2x10 10 photons/s between 900 and 1250 eV. In circularly polarized mode the flux is two times larger for energies up to 380 eV. A gain of nearly one order of magnitude is obtained for the high-brilliance grating, in accordance with theoretical predictions. Flux beyond 1.3x10 11 photons/s was measured up to 1300 eV, and thus over nearly the complete energy range covered by this high-brilliance grating, with a maximum of 1.6x10 11 photons/s between 800 and 1100 eV. First results from polarization measurements confirm a polarization above 99.7% for both linearly and circularly polarized modes at low energies. Circular dichroism experiments indicate a circular polarization beyond 90% at the Fe L 2 /L 3 edge near 720 eV

  11. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    Science.gov (United States)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  12. Passing waves from atomistic to continuum

    Science.gov (United States)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  13. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  14. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  15. High spatial resolution and high brightness ion beam probe for in-situ elemental and isotopic analysis

    Science.gov (United States)

    Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi

    2018-03-01

    A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.

  16. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data.

    Science.gov (United States)

    Jaitly, Navdeep; Mayampurath, Anoop; Littlefield, Kyle; Adkins, Joshua N; Anderson, Gordon A; Smith, Richard D

    2009-03-17

    Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS)-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC) elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to identify and quantify peptides in the

  17. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  18. HOT HIGH-MASS ACCRETION DISK CANDIDATES

    International Nuclear Information System (INIS)

    Beuther, H.; Walsh, A. J.; Longmore, S. N.

    2009-01-01

    To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a dozen high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope Compact Array (ATCA) in the high-excitation (4,4) and (5,5) lines of NH 3 . All of our originally selected sources were detected in both NH 3 transitions, directly associated with CH 3 OH Class II maser emission and implying that high-excitation NH 3 lines are good tracers of the dense gas components in hot-core-type targets. Only the one source that did not satisfy the initial selection criteria remained undetected. From the 11 mapped sources, six show clear signatures of rotation and/or infall motions. These signatures vary from velocity gradients perpendicular to the outflows, to infall signatures in absorption against ultracompact H II regions, to more spherical infall signatures in emission. Although our spatial resolution is ∼1000 AU, we do not find clear Keplerian signatures in any of the sources. Furthermore, we also do not find flattened structures. In contrast to this, in several of the sources with rotational signatures, the spatial structure is approximately spherical with sizes exceeding 10 4 AU, showing considerable clumpy sub-structure at even smaller scales. This implies that on average typical Keplerian accretion disks-if they exist as expected-should be confined to regions usually smaller than 1000 AU. It is likely that these disks are fed by the larger-scale rotating envelope structure we observe here. Furthermore, we do detect 1.25 cm continuum emission in most fields of view. While in some cases weak cm continuum emission is associated with our targets, more typically larger-scale H II regions are seen offset more than 10'' from our sources. While these H II regions are unlikely to be directly related to the target regions, this spatial association nevertheless additionally stresses that high-mass star formation rarely

  19. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  20. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  1. Individual tree detection based on densities of high points of high resolution airborne lidar

    NARCIS (Netherlands)

    Abd Rahman, M.Z.; Gorte, B.G.H.

    2008-01-01

    The retrieval of individual tree location from Airborne LiDAR has focused largely on utilizing canopy height. However, high resolution Airborne LiDAR offers another source of information for tree detection. This paper presents a new method for tree detection based on high points’ densities from a

  2. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    International Nuclear Information System (INIS)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements. (paper)

  3. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  4. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  5. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  6. The HDUV Survey: Six Lyman Continuum Emitter Candidates at z ˜ 2 Revealed by HST UV Imaging

    Science.gov (United States)

    Naidu, R. P.; Oesch, P. A.; Reddy, N.; Holden, B.; Steidel, C. C.; Montes, M.; Atek, H.; Bouwens, R. J.; Carollo, C. M.; Cibinel, A.; Illingworth, G. D.; Labbé, I.; Magee, D.; Morselli, L.; Nelson, E. J.; van Dokkum, P. G.; Wilkins, S.

    2017-09-01

    We present six galaxies at z˜ 2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multiwavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high—typically > 60 % (> 13 % for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies with high escape fraction. These six galaxies compose the largest sample yet of LyC leaking candidates at z˜ 2 whose inferred LyC flux has been observed at HST resolution. While three of our six candidates show evidence of hosting an active galactic nucleus, two of these are heavily obscured and their LyC emission appears to originate from star-forming regions rather than the central nucleus. Extensive multiwavelength data in the GOODS fields, especially the near-IR grism spectra from the 3D-HST survey, enable us to study the candidates in detail and tentatively test some recently proposed indirect methods to probe LyC leakage. High-resolution spectroscopic follow-up of our candidates will help constrain such indirect methods, which are our only hope of studying f esc at z˜ 5-9 in the JWST era. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  7. Development of high-energy resolution inverse photoemission technique

    International Nuclear Information System (INIS)

    Asakura, D.; Fujii, Y.; Mizokawa, T.

    2005-01-01

    We developed a new inverse photoemission (IPES) machine based on a new idea to improve the energy resolution: off-plane Eagle mounting of the optical system in combination with dispersion matching between incoming electron and outgoing photon. In order to achieve dispersion matching, we have employed a parallel plate electron source and have investigated whether the electron beam is obtained as expected. In this paper, we present the principle and design of the new IPES method and report the current status of the high-energy resolution IPES machine

  8. Alfven continuum and high-frequency eigenmodes in optimized stellarators

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Wobig, H.; Yakovenko, Yu.V.; Fesenyuk, O.P.

    2001-01-01

    An equation of shear Alfven eigenmodes (AE) in optimized stellarators of Wendelstein line (Helias configurations) is derived. The metric tensor coefficients, which are contained in this equation, are calculated analytically. Two numerical codes are developed: the first one, COBRA (COntinuum BRanches of Alfven waves), is intended for the investigation of the structure of Alfven continuum; the second, BOA (Branches Of Alfven modes), solves the eigenvalue problem. The family of possible gaps in Alfven continuum of a Helias configuration is obtained. It is predicted that there exist gaps which arise due to or are strongly affected by the variation of the shape of the plasma cross section along the large azimuth of the torus. In such gaps, discrete eigenmodes, namely, helicity-induced eigenmodes (HAE 21 ) and mirror-induced eigenmodes (MAE) are found. It is shown that plasma inhomogeneity may suppress the AEs with a wide region of localization

  9. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  10. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  11. The relationship between peer conflict resolution knowledge and peer victimization in school-age children across the language continuum.

    Science.gov (United States)

    Campbell, Wenonah N; Skarakis-Doyle, Elizabeth

    2011-01-01

    Peer victimization, or bullying, has been identified as a significant child health priority and children with language impairment (LI) are among those who are vulnerable. Given the mandate of educators to provide support for all students who are bullied regardless of language status, research is needed that integrates the study of risk factors for peer victimization among children who are developing typically and children who have LI. Accordingly, this preliminary study explored the degree to which one potential risk factor, peer conflict resolution knowledge, was related to peer victimization in children across the language continuum, and considered whether or not individual differences in language ability influenced that relationship. Participants included 17 girls and 15 boys aged 9-12 years with a wide range of language abilities, six meeting criteria for LI. Participants completed a hypothetical peer conflict resolution task and a measure of peer victimization. Correlational analyses revealed very different patterns of relationships for boys and girls. Whereas boys' reports of peer victimization were meaningfully related to how they responded to hypothetical peer conflicts, girls' reports were most strongly associated with language ability. These preliminary findings suggest that it is important to consider gender when conceptualizing how factors such as peer conflict resolution knowledge might influence children's risk of being bullied. Readers will be able to: (1) provide a definition of peer victimization and give examples of different forms of peer victimization; (2) recognize that inadequate peer conflict resolution knowledge may be a risk factor for peer victimization; (3) describe the relationships between peer conflict resolution knowledge, language ability, and peer victimization in this study, and explain how these relationships differed for boys and girls; and (4) identify at least three opportunities for future research that would help to clarify

  12. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  13. The high-resolution time-of-flight spectrometer TOFTOF

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Tobias [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: Tobias.Unruh@frm2.tum.de; Neuhaus, Juergen; Petry, Winfried [Technische Universitaet Muenchen, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching (Germany)

    2007-10-11

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of {approx}10{sup 10}n/cm{sup 2}/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  14. The high-resolution time-of-flight spectrometer TOFTOF

    Science.gov (United States)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  15. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    Science.gov (United States)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  16. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    Science.gov (United States)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this

  17. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  18. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  19. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    Science.gov (United States)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  20. High-resolution neutron-diffraction measurements to 8 kbar

    Science.gov (United States)

    Bull, C. L.; Fortes, A. D.; Ridley, C. J.; Wood, I. G.; Dobson, D. P.; Funnell, N. P.; Gibbs, A. S.; Goodway, C. M.; Sadykov, R.; Knight, K. S.

    2017-10-01

    We describe the capability to measure high-resolution neutron powder diffraction data to a pressure of at least 8 kbar. We have used the HRPD instrument at the ISIS neutron source and a piston-cylinder design of pressure cell machined from a null-scattering titanium zirconium alloy. Data were collected under hydrostatic conditions from an elpasolite perovskite La?NiMnO?; by virtue of a thinner cell wall on the incident-beam side of the cell, it was possible to obtain data in the instrument's highest resolution back-scattering detector banks up to a maximum pressure of 8.5 kbar.

  1. Decon2LS: An open-source software package for automated processing and visualization of high resolution mass spectrometry data

    Directory of Open Access Journals (Sweden)

    Anderson Gordon A

    2009-03-01

    Full Text Available Abstract Background Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. Results With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to

  2. OBSERVATIONAL STUDY OF THE CONTINUUM AND WATER MASER EMISSION IN THE IRAS 19217+1651 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Esnard, T.; Trinidad, M. A. [Departamento de Astronomia, Universidad de Guanajuato, Apdo Postal 144, Guanajuato, GTO, Mexico CP 36000 (Mexico); Migenes, V., E-mail: tatiana@iga.cu, E-mail: trinidad@astro.ugto.mx, E-mail: vmigenes@byu.edu [Department of Physics and Astronomy, Brigham Young University, ESC-N145, Provo, UT 84602 (United States)

    2012-12-20

    We report interferometric observations of the high-mass star-forming region IRAS 19217+1651. We observed the radio continuum (1.3 cm and 3.6 cm) and water maser emission using the Very Large Array (VLA-EVLA) in transition mode (configuration A). Two radio continuum sources were detected at both wavelengths, I19217-A and I19217-B. In addition, 17 maser spots were observed distributed mainly in two groups, M1 and M2, and one isolated maser. This latter could be indicating the relative position of another continuum source which we did not detect. The results indicate that I19217-A appears to be consistent with an ultracompact H II region associated with a zero-age main-sequence B0-type star. Furthermore, the 1.3 cm continuum emission of this source suggests a cometary morphology. In addition, I19217-B appears to be an H II region consisting of at least two stars, which may be contributing to its complex structure. It was also found that the H{sub 2}O masers of the group M1 are apparently associated with the continuum source I19217-A. These are tracing motions which are not gravitationally bound according to their spatial distribution and kinematics. They also seem to be describing outflows in the direction of the elongated cometary region. On the other hand, the second maser group, M2, could be tracing the base of a jet. Finally, infrared data from Spitzer, Midcourse Space Experiment, and IRIS show that IRAS 19217+1651 is embedded inside a large open bubble, like a broken ring, which possibly has affected the morphology of the cometary H II region observed at 1.3 cm.

  3. Moderate resolution spectrophotometry of high redshift quasars

    Science.gov (United States)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  4. A high resolution β-detector

    International Nuclear Information System (INIS)

    Charon, Y.; Cuzon, J.C.; Tricoire, H.; Valentin, L.

    1987-01-01

    We present a detector which associates a charge coupled device to a light amplifier. This image sensor must detect weak β-activity, with a 10 μm resolution and should replace the autoradiographic films used for molecular hybridization. The best results are obtained with the 35 S emittor, for which the resolution and the efficiency are respectively 20 μm and 100% (relative to the measured standard source)

  5. SOFIA/EXES High Spectral Resolution Observations of the Orion Hot Core

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean; Le Gal, Romane; Acharya, Kinsuk; Huang, Xinchuan; Herbst, Eric; Lee, Timothy J.; Richter, Matthew J.; Boogert, Adwin

    2018-01-01

    The Orion hot core has one of the richest molecular chemistries observed in the ISM. In the MIR, the Orion hot core composition is best probed by the closest, compact, bright background continuum source in this region, IRc2. We present high-spectral resolution observations from 12.96 - 13.33 μm towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA, to probe the physical and chemical conditions of the Orion hot core. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. These data show distinct ortho and para ladders towards the Orion hot core for the first time, with an ortho to para ratio (OPR) of only 0.6 - much lower than the high temperature equilibrium value of 3. A non-equilibrium OPR is a further indication of the Orion hot core being heated externally by shocks likely resulting from a well-known explosive event which occurred 500 yrs ago. The OPR conversion timescales are much longer than the 500 yr shock timescale and thus a low OPR might be a remnant from an earlier colder pre-stellar phase before the density enhancement (now the hot core) was impacted by shocks.We will also present preliminary results from an on-going SOFIA Cycle-5 impact program to use EXES to conduct an unbiased, high-S/N, continuous, molecular line survey of the Orion hot core from 12.5 - 28.3 microns. This survey is expected to be 50 times better than ISO in detecting isolated, narrow lines to (a) resolve the ro-vibrational structure of the gas phase molecules and their kinematics, (b) detect new gas phase molecules missed by ISO, and (c) provide useful constraints on the hot core chemistry and the source of Orion hot core excitation. This survey will greatly enhance the inventory of resolved line features in the MIR for hot cores

  6. Continuum Mechanics

    CERN Document Server

    Romano, Antonio

    2010-01-01

    This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin

  7. Moving contact lines: linking molecular dynamics and continuum-scale modelling.

    Science.gov (United States)

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-04

    Despite decades of research, the modelling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily-life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide the link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which govern the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modelling, and highlight the opportunities for future developments in this area.

  8. Emission features in the spectrum of NGC 7027 near 3. 3 microns at very high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P. (Western Ontario Univ., London (Canada) CNRS, Institut d' Astrophysique, Paris (France))

    1991-02-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs.

  9. Emission features in the spectrum of NGC 7027 near 3.3 microns at very high resolution

    International Nuclear Information System (INIS)

    Lowe, R.P.; Moorhead, J.M.; Wehlau, W.H.; Maillard, J.P.

    1991-01-01

    A very high resolution spectrum is presented of the planetary nebula NGC 7027 over a 200/cm interval centered at 2950/cm, and the features found are described: (1) nebular continuum, (2) atomic recombination lines of H and He II, and (3) three broader emission features of uncertain origin. For the latter the first evidence is presented that the 3.46 micron feature and possibly the 3.40 micron feature are resolvable into a sequence of narrower features. The interpretation of the broader features is discussed in terms of the hypothesis of identification with emission by polycyclic aromatic hydrocarbons. 18 refs

  10. HIGH-RESOLUTION OBSERVATIONS OF DUST CONTINUUM EMISSION AT 340 GHz FROM THE LOW-MASS T TAURI STAR FN TAURI

    International Nuclear Information System (INIS)

    Momose, Munetake; Ohashi, Nagayoshi; Kudo, Tomoyuki; Tamura, Motohide; Kitamura, Yoshimi

    2010-01-01

    FN Tau is a rare example of a very low-mass T Tauri star that exhibits a spatially resolved nebulosity in near-infrared scattering light. To directly derive the parameters of a circumstellar disk around FN Tau, observations of dust continuum emission at 340 GHz are carried out with the Submillimeter Array (SMA). A point-like dust continuum emission was detected with a synthesized beam of ∼0.''7 in FWHM. From the analysis of the visibility plot, the radius of the emission is estimated to be ≤0.''29, corresponding to 41 AU. This is much smaller than the radius of the nebulosity, 1.''85 for its brighter part at 1.6 μm. The 340 GHz continuum emission observed with the SMA and the photometric data at λ ≤ 70 μm are explained by a power-law disk model whose outer radius and mass are 41 AU and (0.24-5.9) x 10 -3 M sun , respectively, if the exponent of dust mass opacity (β) is assumed to be 0-2. The disk model cannot fully reproduce the flux density at 230 GHz obtained with the IRAM 30 m telescope, suggesting that there is another extended 'halo' component that is missed in the SMA observations. By requiring the halo not to be detected with the SMA, the lower limit to the size of the halo is evaluated to be between 174 AU and 574 AU, depending on the assumed β value. This size is comparable to the near-infrared nebulosity, implying that the halo unseen with the SMA corresponds to the origin of the near-infrared nebulosity. The halo can contain mass comparable to or at most 8 times greater than that of the inner power-law disk, but its surface density should be lower than that at the outer edge of the power-law disk by more than 1 order of magnitude. The physical nature of the halo is unclear, but it may be the periphery of a flared circumstellar disk that is not described well in terms of a power-law disk model, or a remnant of a protostellar envelope having flattened structure.

  11. Ultra-high resolution spectroscopy of the He doubly excited states

    International Nuclear Information System (INIS)

    Bozek, J.D.; Schlachter, A.S.; Kaindl, G.; Schulz, K.

    1995-11-01

    Photoionization spectra of the doubly-excited states of He were measured using beamline 9.0.1 at the Advanced Light Source. The beamline utilizes a 4.5 m long 8 cm period undulator as its source together with a spherical grating monochromator to provide an extremely bright source of photons in the range of 20 - 300 eV. A resolving power (E/ΔE) of 64,000 was obtained from the 1 MeV FWEM (2p,3d) doubly excited state resonance of He at 64.12 eV. The high brightness of the source and the very high quality optical elements of the beamline were all essential for achieving such a high resolution. The beamline components and operation are described and spectra of the double excitation resonances of He presented

  12. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    Science.gov (United States)

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. RESOLVING THE STRUCTURE AND KINEMATICS OF THE BN OBJECT AT 0.''2 RESOLUTION

    International Nuclear Information System (INIS)

    Rodriguez, Luis F.; Zapata, Luis A.; Ho, Paul T. P.

    2009-01-01

    We present sensitive 7 mm observations of the H53α recombination line and adjacent continuum, made toward the Orion BN/KL region. In the continuum we detect the BN object, the radio source I (GMR I) and the radio counterpart of the infrared (IR) source n (Orion-n). Comparing with observations made at similar angular resolutions but lower frequency, we discuss the spectral indices and angular sizes of these sources. In the H53α line, we only detect the BN object. This is the first time that radio recombination lines have been detected from this source. The LSR radial velocity of BN from the H53α line, v LSR = 20.1 ± 2.1 km s -1 , is consistent with that found from previous studies in near-IR lines. While the continuum emission is expected to have considerable optical depth at 7 mm, the observed H53α line emission is consistent with an optically thin nature and we discuss possible explanations for this apparent discrepancy. There is evidence of a velocity gradient, with the NE part of BN being redshifted by ∼10 km s -1 with respect to the SW part. This is consistent with the suggestion of Jiang et al. that BN may be driving an ionized outflow along that direction.

  14. High-resolution backprojection at regional distance: Application to the Haiti M7.0 earthquake and comparisons with finite source studies

    Science.gov (United States)

    Meng, L.; Ampuero, J.-P.; Sladen, A.; Rendon, H.

    2012-04-01

    A catastrophic Mw7 earthquake ruptured on 12 January 2010 on a complex fault system near Port-au-Prince, Haiti. Offshore rupture is suggested by aftershock locations and marine geophysics studies, but its extent remains difficult to define using geodetic and teleseismic observations. Here we perform the multitaper multiple signal classification (MUSIC) analysis, a high-resolution array technique, at regional distance with recordings from the Venezuela National Seismic Network to resolve high-frequency (about 0.4 Hz) aspects of the earthquake process. Our results indicate westward rupture with two subevents, roughly 35 km apart. In comparison, a lower-frequency finite source inversion with fault geometry based on new geologic and aftershock data shows two slip patches with centroids 21 km apart. Apparent source time functions from USArray further constrain the intersubevent time delay, implying a rupture speed of 3.3 km/s. The tips of the slip zones coincide with subevents imaged by backprojections. The different subevent locations found by backprojection and source inversion suggest spatial complementarity between high- and low-frequency source radiation consistent with high-frequency radiation originating from rupture arrest phases at the edges of main slip areas. The centroid moment tensor (CMT) solution and a geodetic-only inversion have similar moment, indicating most of the moment released is captured by geodetic observations and no additional rupture is required beyond where it is imaged in our preferred model. Our results demonstrate the contribution of backprojections of regional seismic array data for earthquakes down to M ≈ 7, especially when incomplete coverage of seismic and geodetic data implies large uncertainties in source inversions.

  15. Characterization of the rod-pinch diode at 2 to 4 Mv as a high-resolution source for flash radiography

    International Nuclear Information System (INIS)

    Commisso, R.J.; Allen, R.J.; Cooperstein, G.; Mosher, D.; Young, F.C.; Boller, J.R.; Swanekamp, S.B.; Bayol, F.; Charre, P.; Garrigues, A.; Gonzales, C.; Pompier, F.; Vezinet, R.

    2002-01-01

    The ASTERIX generator is used to evaluatate the rod-pinch electron-beam diode as an intense source of x-rays for high-resolution, pulsed (30- to 40-ns FWHM) radiography at peak diode voltages of voltages of 2.4 to 4.4 MV and peak diode currents of 55 to 135 kA. At 4 MV, tungsten anode rods of 1-mm or 2-mm diameter produce on-axis doses at 1 meter of 16 rad(Si) or 20 rad(Si), respectively. The on-axis source diameter based on the full-width at half-maximum (FWHM) of the line-spread-function (LSF) is 0.9 ± 0.1 mm for a 1-mm diameter rod and 1.4 ± 0.1 mm for a 2-mm diam rod, independent of voltage. The LANL source diameter is nearly twice the FWHM. The measured rod-pinch current is reproduced with a diode model that includes ions and accounts for anode and cathode plasma expansion. A composite diode with a large diameter carbon-rod anode followed by a smaller-diameter tungsten-tip converter shows promise for applications where a small central source feature is desired

  16. Applications of high lateral and energy resolution imaging XPS with a double hemispherical analyser based spectromicroscope

    International Nuclear Information System (INIS)

    Escher, M.; Winkler, K.; Renault, O.; Barrett, N.

    2010-01-01

    The design and applications of an instrument for imaging X-ray photoelectron spectroscopy (XPS) are reviewed. The instrument is based on a photoelectron microscope and a double hemispherical analyser whose symmetric configuration avoids the spherical aberration (α 2 -term) inherent for standard analysers. The analyser allows high transmission imaging without sacrificing the lateral and energy resolution of the instrument. The importance of high transmission, especially for highest resolution imaging XPS with monochromated laboratory X-ray sources, is outlined and the close interrelation of energy resolution, lateral resolution and analyser transmission is illustrated. Chemical imaging applications using a monochromatic laboratory Al Kα-source are shown, with a lateral resolution of 610 nm. Examples of measurements made using synchrotron and laboratory ultra-violet light show the broad field of applications from imaging of core level electrons with chemical shift identification, high resolution threshold photoelectron emission microscopy (PEEM), work function imaging and band structure imaging.

  17. Band-9 ALMA Observations of the [N II] 122 μm Line and FIR Continuum in Two High-z galaxies.

    Science.gov (United States)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Stacey, Gordon J.; Sheth, Kartik; Hailey-Dunsheath, Steve; Falgarone, Edith

    2015-06-01

    We present Atacama Large Millimeter Array (ALMA) observations of two high-redshift systems (SMMJ02399-0136 at z 1 ˜ 2.8 and the Cloverleaf QSO at z 1 ˜ 2.5) in their rest-frame 122 μm continuum (ν sky ˜ 650 GHz, λ sky ˜ 450 μm) and [N ii] 122 μm line emission. The continuum observations with a synthesized beam of ˜0.″ 25 resolve both sources and recover the expected flux. The Cloverleaf is resolved into a partial Einstein ring, while SMMJ02399-0136 is unambiguously separated into two components: a point source associated with an active galactic nucleus and an extended region at the location of a previously identified dusty starburst. We detect the [N ii] line in both systems, though significantly weaker than our previous detections made with the first generation z (Redshift) and Early Universe Spectrometer. We show that this discrepancy is mostly explained if the line flux is resolved out due to significantly more extended emission and longer ALMA baselines than expected. Based on the ALMA observations we determine that ≥75% of the total [N ii] line flux in each source is produced via star formation. We use the [N ii] line flux that is recovered by ALMA to constrain the N/H abundance, ionized gas mass, hydrogen- ionizing photon rate, and star formation rate. In SMMJ02399-0136 we discover it contains a significant amount (˜1000 M ⊙ yr-1) of unobscured star formation in addition to its dusty starburst and argue that SMMJ02399-0136 may be similar to the Antennae Galaxies (Arp 244) locally. In total these observations provide a new look at two well-studied systems while demonstrating the power and challenges of Band-9 ALMA observations of high-z systems.

  18. BAND-9 ALMA OBSERVATIONS OF THE [N II] 122 μm LINE AND FIR CONTINUUM IN TWO HIGH-z GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ferkinhoff, Carl [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Brisbin, Drew; Stacey, Gordon J. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Nikola, Thomas [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Sheth, Kartik [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Hailey-Dunsheath, Steve [California Institute of Technology, Mail Code 301-17, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Falgarone, Edith, E-mail: ferkinhoff@mpia.de [LERMA, CNRS, Observatoire de Paris and ENS (France)

    2015-06-20

    We present Atacama Large Millimeter Array (ALMA) observations of two high-redshift systems (SMMJ02399-0136 at z{sub 1} ∼ 2.8 and the Cloverleaf QSO at z{sub 1} ∼ 2.5) in their rest-frame 122 μm continuum (ν{sub sky} ∼ 650 GHz, λ{sub sky} ∼ 450 μm) and [N ii] 122 μm line emission. The continuum observations with a synthesized beam of ∼0.″ 25 resolve both sources and recover the expected flux. The Cloverleaf is resolved into a partial Einstein ring, while SMMJ02399-0136 is unambiguously separated into two components: a point source associated with an active galactic nucleus and an extended region at the location of a previously identified dusty starburst. We detect the [N ii] line in both systems, though significantly weaker than our previous detections made with the first generation z (Redshift) and Early Universe Spectrometer. We show that this discrepancy is mostly explained if the line flux is resolved out due to significantly more extended emission and longer ALMA baselines than expected. Based on the ALMA observations we determine that ≥75% of the total [N ii] line flux in each source is produced via star formation. We use the [N ii] line flux that is recovered by ALMA to constrain the N/H abundance, ionized gas mass, hydrogen- ionizing photon rate, and star formation rate. In SMMJ02399-0136 we discover it contains a significant amount (∼1000 M{sub ⊙} yr{sup −1}) of unobscured star formation in addition to its dusty starburst and argue that SMMJ02399-0136 may be similar to the Antennae Galaxies (Arp 244) locally. In total these observations provide a new look at two well-studied systems while demonstrating the power and challenges of Band-9 ALMA observations of high-z systems.

  19. Arrested Development: High-Resolution Imaging of Foveal Morphology in Albinism

    Science.gov (United States)

    McAllister, John T.; Dubis, Adam M.; Tait, Diane M.; Ostler, Shawn; Rha, Jungtae; Stepien, Kimberly E.; Summers, C. Gail; Carroll, Joseph

    2010-01-01

    Albinism, an inherited disorder of melanin biosynthesis, disrupts normal retinal development, with foveal hypoplasia as one of the more commonly associated ocular phenotypes. However the cellular integrity of the fovea in albinism is not well understood – there likely exist important anatomical differences that underlie phenotypic variability within the disease and that also may affect responsiveness to therapeutic intervention. Here, using spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO) retinal imaging, we obtained high-resolution images of the foveal region in six individuals with albinism. We provide a quantitative analysis of cone density and outer segment elongation demonstrating that foveal cone specialization is variable in albinism. In addition, our data reveal a continuum of foveal pit morphology, roughly aligning with schematics of normal foveal development based on post-mortem analyses. Different albinism subtypes, genetic mutations, and constitutional pigment background likely play a role in determining the degree of foveal maturation. PMID:20149815

  20. Hyperbolic conservation laws in continuum physics

    CERN Document Server

    Dafermos, Constantine M

    2016-01-01

    This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...

  1. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    M. F. Heringa

    2012-02-01

    Full Text Available Organic aerosol (OA represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm mass. Secondary organic aerosol (SOA is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS and compared to SOA from α-pinene.

    The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production.

    Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25–0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions.

    The HR data of the four sources could be clustered and separated using

  2. Navigating Earthquake Physics with High-Resolution Array Back-Projection

    Science.gov (United States)

    Meng, Lingsen

    Understanding earthquake source dynamics is a fundamental goal of geophysics. Progress toward this goal has been slow due to the gap between state-of-art earthquake simulations and the limited source imaging techniques based on conventional low-frequency finite fault inversions. Seismic array processing is an alternative source imaging technique that employs the higher frequency content of the earthquakes and provides finer detail of the source process with few prior assumptions. While the back-projection provides key observations of previous large earthquakes, the standard beamforming back-projection suffers from low resolution and severe artifacts. This thesis introduces the MUSIC technique, a high-resolution array processing method that aims to narrow the gap between the seismic observations and earthquake simulations. The MUSIC is a high-resolution method taking advantage of the higher order signal statistics. The method has not been widely used in seismology yet because of the nonstationary and incoherent nature of the seismic signal. We adapt MUSIC to transient seismic signal by incorporating the Multitaper cross-spectrum estimates. We also adopt a "reference window" strategy that mitigates the "swimming artifact," a systematic drift effect in back projection. The improved MUSIC back projections allow the imaging of recent large earthquakes in finer details which give rise to new perspectives on dynamic simulations. In the 2011 Tohoku-Oki earthquake, we observe frequency-dependent rupture behaviors which relate to the material variation along the dip of the subduction interface. In the 2012 off-Sumatra earthquake, we image the complicated ruptures involving orthogonal fault system and an usual branching direction. This result along with our complementary dynamic simulations probes the pressure-insensitive strength of the deep oceanic lithosphere. In another example, back projection is applied to the 2010 M7 Haiti earthquake recorded at regional distance. The

  3. High-resolution assessment of global technical and economic hydropower potential

    NARCIS (Netherlands)

    Gernaat, David E.H.J.; Bogaart, Patrick W.; Vuuren, van Detlef P.; Biemans, Hester; Niessink, Robin

    2017-01-01

    Hydropower is the most important renewable energy source to date, providing over 72% of all renewable electricity globally. Yet, only limited information is available on the global potential supply of hydropower and the associated costs. Here we provide a high-resolution assessment of the technical

  4. Simulation study for high resolution alpha particle spectrometry with mesh type collimator

    International Nuclear Information System (INIS)

    Park, Seunghoon; Kwak, Sungwoo; Kang, Hanbyeol; Shin, Jungki; Park, Iljin

    2014-01-01

    An alpha particle spectrometry with a mesh type collimator plays a crucial role in identifying specific radionuclide in a radioactive source collected from the atmosphere or environment. The energy resolution is degraded without collimation because particles with a high angle have a longer path to travel in the air. Therefore, collision with the background increases. The collimator can cut out particles which traveling at a high angle. As a result, an energy distribution with high resolution can be obtained. Therefore, the mesh type collimator is simulated for high resolution alpha particle spectrometry. In conclusion, the collimator can improve resolution. With collimator, the collimator is a role of cutting out particles with a high angle, so, low energy tail and broadened energy distribution can be reduced. The mesh diameter is found out as an important factor to control resolution and counting efficiency. Therefore, a target particle, for example, 235 U, can be distinguished by a detector with a collimator under a mixture of various nuclides, for example: 232 U, 238 U, and 232 Th

  5. Continuum capture in the three-body problem

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum

  6. Monitoring Oilfield Operations and GHG Emissions Sources Using Object-based Image Analysis of High Resolution Spatial Imagery

    Science.gov (United States)

    Englander, J. G.; Brodrick, P. G.; Brandt, A. R.

    2015-12-01

    Fugitive emissions from oil and gas extraction have become a greater concern with the recent increases in development of shale hydrocarbon resources. There are significant gaps in the tools and research used to estimate fugitive emissions from oil and gas extraction. Two approaches exist for quantifying these emissions: atmospheric (or 'top down') studies, which measure methane fluxes remotely, or inventory-based ('bottom up') studies, which aggregate leakage rates on an equipment-specific basis. Bottom-up studies require counting or estimating how many devices might be leaking (called an 'activity count'), as well as how much each device might leak on average (an 'emissions factor'). In a real-world inventory, there is uncertainty in both activity counts and emissions factors. Even at the well level there are significant disagreements in data reporting. For example, some prior studies noted a ~5x difference in the number of reported well completions in the United States between EPA and private data sources. The purpose of this work is to address activity count uncertainty by using machine learning algorithms to classify oilfield surface facilities using high-resolution spatial imagery. This method can help estimate venting and fugitive emissions sources from regions where reporting of oilfield equipment is incomplete or non-existent. This work will utilize high resolution satellite imagery to count well pads in the Bakken oil field of North Dakota. This initial study examines an area of ~2,000 km2 with ~1000 well pads. We compare different machine learning classification techniques, and explore the impact of training set size, input variables, and image segmentation settings to develop efficient and robust techniques identifying well pads. We discuss the tradeoffs inherent to different classification algorithms, and determine the optimal algorithms for oilfield feature detection. In the future, the results of this work will be leveraged to be provide activity

  7. The high-resolution regional reanalysis COSMO-REA6

    Science.gov (United States)

    Ohlwein, C.

    2016-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  8. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer

    Czech Academy of Sciences Publication Activity Database

    Malenovský, Z.; Homolová, L.; Zurita-Milla, R.; Lukeš, Petr; Kaplan, Věroslav; Hanuš, Jan; Gastellu-Etchegory, J.P.; Schaepman, M.E.

    2013-01-01

    Roč. 131, APR (2013), s. 85-102 ISSN 0034-4257 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : Chlorophyll retrieval * Imaging spectroscopy * Continuum removal * Radiative transfer * PROSPECT * DART * Optical indices * Norway spruce * High spatial resolution * AISA Subject RIV: EH - Ecology, Behaviour Impact factor: 4.769, year: 2013

  9. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources

    Directory of Open Access Journals (Sweden)

    Reka A. Haraszti

    2016-11-01

    Full Text Available Extracellular vesicles (EVs, including exosomes and microvesicles (MVs, are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs. We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types.

  10. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Preliminary report on the development of a high resolution PET camera using semiconductor detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Yamazaki, Hiromichi; Matsuyama, Shigeo; Yamaguchi, Takashi; Yamamoto, Yusuke; Sato, Takemi; Aoki, Yasushi; Aoki, Kenichi

    2005-01-01

    We are developing a PET camera using small semiconductor detectors, whose resolution is equivalent to the physical limit of spatial resolution. First, a coincidence system of 16 Schottky CdTe detectors of 0.5 mm width obtained a resolution of <1 mm and it was confirmed that the Schottky CdTe detector is suitable for high resolution PET. Next, the performance of a pair of 32 channel CdTe arrays (1.2 mm width per channel) was investigated for the development of the prototype of high resolution PET. The time resolution between opposing detector pair was 13 ns (FWHM) when high voltage (700 V) was applied. The image of a 0.6 mm diameter point source was obtained in an experiment with opposing detector arrays using four channels, indicating that, a higher resolution can be achieved with the 32 channel CdTe array

  12. Extraction method based on emulsion breaking for the determination of Cu, Fe and Pb in Brazilian automotive gasoline samples by high-resolution continuum source flame atomic absorption spectrometry

    Science.gov (United States)

    Leite, Clarice C.; de Jesus, Alexandre; Kolling, Leandro; Ferrão, Marco F.; Samios, Dimitrios; Silva, Márcia M.

    2018-04-01

    This work reports a new method for extraction of Cu, Fe and Pb from Brazilian automotive gasoline and their determination by high-resolution continuous source flame atomic absorption spectrometry (HR-CS FAAS). The method was based on the formation of water-in-oil emulsion by mixing 2.0 mL of extraction solution constituted by 12% (w/v) Triton X-100 and 5% (v/v) HNO3 with 10 mL of sample. After heating at 90 °C for 10 min, two well-defined phases were formed. The bottom phase (approximately 3.5 mL), composed of acidified water and part of the ethanol originally present in the gasoline sample, containing the extracted analytes was analyzed. The surfactant and HNO3 concentrations and the heating temperature employed in the process were optimized by Doehlert design, using a Brazilian gasoline sample spiked with Cu, Fe and Pb (organometallic compounds). The efficiency of extraction was investigated and it ranged from 80 to 89%. The calibration was accomplished by using matrix matching method. For this, the standards were obtained performing the same extraction procedure used for the sample, using emulsions obtained with a gasoline sample free of analytes and the addition of inorganic standards. Limits of detection obtained were 3.0, 5.0 and 14.0 μg L-1 for Cu, Fe and Pb, respectively. These limits were estimated for the original sample taking into account the preconcentration factor obtained. The accuracy of the proposed method was assured by recovery tests spiking the samples with organometallic standards and the obtained values ranged from 98 to 105%. Ten gasoline samples were analyzed and Fe was found in four samples (0.04-0.35 mg L-1) while Cu (0.28 mg L-1) and Pb (0.60 mg L-1) was found in just one sample.

  13. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Kim, Kang-Min; Oh, Jae Sok; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Sungho [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Pyo, Tae-Soo [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong; Lee, Hye-In; Le, Huynh Anh Nguyen [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of); Kaplan, Kyle; Pavel, Michael; Mace, Gregory, E-mail: hyoh@kasi.re.kr [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); and others

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.

  14. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  15. Feasibility and evaluation of dual-source transmit 3D imaging of the orbits: Comparison to high-resolution conventional MRI at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim, E-mail: achim.seeger@gmx.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schulze, Maximilian, E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schuettauf, Frank, E-mail: fschuettauf@uni-tuebingen.de [University Eye Hospital, Department of Ophthalmology, Eberhard-Karls-University, Schleichstrasse 12, Tübingen 72076 (Germany); Klose, Uwe, E-mail: uwe.klose@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Ernemann, Ulrike, E-mail: ulrike.ernemann@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Hauser, Till-Karsten, E-mail: till-karsten.hauser@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany)

    2015-06-15

    Highlights: • Reduced FOV imaging enables a 3D approach for a very fast assessment of the orbits. • Conventional MRI exhibited higher eSNR values and consecutively higher scores for overall image quality in the subjective readers’ analysis. • All pathologies could be detected compared to high-resolution conventional MRI making 3D pTX SPACE to a potential alternative and fast imaging technique. - Abstract: Purpose: To prospectively compare the image quality and diagnostic performance of orbital MR images obtained by using a dual-source parallel transmission (pTX) 3D sequence (Sampling Perfection with Application optimized Contrasts using different flip angle Evolution, SPACE) with the image quality of conventional high-resolution standard protocol for clinical use in patients at 3T. Materials and methods: After obtaining institutional review board approval and patient consent, 32 patients with clinical indication for orbital MRI were examined using a high-resolution conventional sequences and 3D pTX SPACE sequences. Quantitative measurements, image quality of the healthy orbit, incidence of artifacts, and the subjective diagnostic performance to establish diagnosis was rated. Statistical significance was calculated by using a Student's t-test and nonparametric Wilcoxon signed rank test. Results: Length measurements were comparable in the two techniques, 3D pTX SPACE resulted in significant faster image acquisition with higher spatial resolution and less motion artifacts as well as better delineation of the optic nerve sheath. However, estimated contrast-to-noise and signal-to-noise and overall image quality as well as subjective scores of the conventional TSE imaging were rated significantly higher. The conventional MR sequences were the preferred techniques by the readers. Conclusion: This study demonstrates the feasibility of 3D pTX SPACE of the orbit resulting in a rapid acquisition of isotropic high-resolution images. Although no pathology was

  16. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    Science.gov (United States)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  17. Mid infra-red hyper-spectral imaging with bright super continuum source and fast acousto-optic tuneable filter for cytological applications

    International Nuclear Information System (INIS)

    Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; Van der Zanden, Koen; Napier, Bruce

    2015-01-01

    Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described. (paper)

  18. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  19. Characterizing the Motion of Solar Magnetic Bright Points at High Resolution

    Science.gov (United States)

    Van Kooten, Samuel J.; Cranmer, Steven R.

    2017-11-01

    Magnetic bright points in the solar photosphere, visible in both continuum and G-band images, indicate footpoints of kilogauss magnetic flux tubes extending to the corona. The power spectrum of bright-point motion is thus also the power spectrum of Alfvén wave excitation, transporting energy up flux tubes into the corona. This spectrum is a key input in coronal and heliospheric models. We produce a power spectrum of bright-point motion using radiative magnetohydrodynamic simulations, exploiting spatial resolution higher than can be obtained in present-day observations, while using automated tracking to produce large data quantities. We find slightly higher amounts of power at all frequencies compared to observation-based spectra, while confirming the spectrum shape of recent observations. This also provides a prediction for observations of bright points with DKIST, which will achieve similar resolution and high sensitivity. We also find a granule size distribution in support of an observed two-population distribution, and we present results from tracking passive tracers, which show a similar power spectrum to that of bright points. Finally, we introduce a simplified, laminar model of granulation, with which we explore the roles of turbulence and of the properties of the granulation pattern in determining bright-point motion.

  20. Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications

    International Nuclear Information System (INIS)

    Bacrania, Minesh K.; Croce, Mark; Bond, Evelyn; Dry, Donald; Moody, W. Allen; Lamont, Stephen; Rabin, Michael; Rim, Jung; Smith, Audrey; Beall, James; Bennett, Douglas; Kotsubo, Vincent; Horansky, Robert; Hilton, Gene; Schmidt, Daniel; Ullom, Joel; Cantor, Robin

    2010-01-01

    We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

  1. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  2. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  3. Positron annihilation radiation from the Galactic center - Cheshire cat' Compton scattering and the origin of excess continuum

    International Nuclear Information System (INIS)

    Bildsten, L.; Zurek, W.H.

    1988-01-01

    Two observations of the gamma-ray spectrum from the direction of the Galactic center were made by HEAO 3 in the fall of 1979 and the spring of 1980. The 2-gamma 511 keV annihilation line flux decreased by a factor of about three during the 6 months between these observations, while the excess gamma-ray continuum below the annihilation line, often interpreted as 3-gamma decay of orthopositronium, barely changed. This discrepancy in temporal behavior makes the identification of the bulk of excess continuum as 3-gamma decay of positronium difficult. It is shown that Compton scattering of the line and high-energy radiation provides a natural explanation for the surprisingly small changes seen in the excess continuum. Scattered photons are delayed by a time corresponding to the size of the scattering region. For the annihilation source in the Galactic center, this distance is probably a fraction of a parsec. Thus, even after the high-energy continuum and annihilation line are gone, low-energy Compton-scattered photons can still be detected with an almost unchanged flux. 23 references

  4. ZINGRS: Understanding Hot DOGs via the resolved radio continuum of W2246-0526

    Science.gov (United States)

    Hershey, Deborah; Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Brisbin, Drew; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.

    2018-06-01

    We present new high-resolution (~0.5”) radio-continuum images of the high-redshift galaxy W2246-0526 obtained with the Jansky Very Large Array. W2246 at z~4.6 is a hot dust obscured galaxy (Hot DOG) that have extreme luminosities, LIR > 1014 L⊙ produced by hot T~450 K dust. It hosts both an active galactic nucleus and significant star formation. Having observed the [OIII] 88 micron line from W2246 with our ZEUS spectrometer, the source is part of our ZEUS INvestigate Galaxy Reference Sample (ZINGRS). The radio images are initial observations from the ZINGRS Radio Survey where we observe the free-free and non-thermal emissions of high-z galaxies. Combining the radio emission with ALMA and ZEUS observations of the [CII] 158 micron, [OIII] 88 micron and [NII] 122 micron lines we probe the metallicity, age of stellar population, and ionization parameter. For W2246 we pay special attention to gradients of the stellar age and metallicity to determine the impact of the AGN on the host galaxy. Our work here is our initial analysis. When complete for all of ZINGRS ours findings will improve our understanding of early galaxies, including helping to explain Hot DOGs like W2246.

  5. High dose-rate brachytherapy source localization: positional resolution using a diamond detector

    International Nuclear Information System (INIS)

    Nakano, T; Suchowerska, N; Bilek, M M; McKenzie, D R; Ng, N; Kron, T

    2003-01-01

    A potential real-time source position verification process for high dose-rate (HDR) brachytherapy treatment is described. This process is intended to provide immediate confirmation that a treatment is proceeding according to plan, so that corrective action can be taken if necessary. We show that three dosimeters are in principle sufficient and demonstrate the feasibility of the process using a diamond detector and an Ir-192 source. An error analysis including all identified sources of error shows that this detector is capable of locating the distance to the source to within 2 mm for distances up to 12 cm. This positional accuracy is less than the diameter of typical HDR catheters indicating that a diamond detector can be used to accurately determine the distance to the source. The uncertainty in the distance is found to increase with distance

  6. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  7. Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces-A review

    International Nuclear Information System (INIS)

    Welz, Bernhard; Lepri, Fabio G.; Araujo, Rennan G.O.; Ferreira, Sergio L.C.; Huang Maodong; Okruss, Michael; Becker-Ross, Helmut

    2009-01-01

    The literature about the investigation of molecular spectra of phosphorus, sulfur and the halogens in flames and furnaces, and the use of these spectra for the determination of these non-metals has been reviewed. Most of the investigations were carried out using conventional atomic absorption spectrometers, and there were in essence two different approaches. In the first one, dual-channel spectrometers with a hydrogen or deuterium lamp were used, applying the two-line method for background correction; in the second one, a line source was used that emitted an atomic line, which overlapped with the molecular spectrum. The first approach had the advantage that any spectral interval could be accessed, but it was susceptible to spectral interference; the second one had the advantage that the conventional background correction systems could be used to minimize spectral interferences, but had the problem that an atomic line had to be found, which was overlapping sufficiently well with the maximum of the molecular absorption spectrum. More recently a variety of molecular absorption spectra were investigated using a low-resolution polychromator with a CCD array detector, but no attempt was made to use this approach for quantitative determination of non-metals. The recent introduction and commercial availability of high-resolution continuum source atomic absorption spectrometers is offering completely new possibilities for molecular absorption spectrometry and its use for the determination of non-metals. The use of a high-intensity continuum source together with a high-resolution spectrometer and a CCD array detector makes possible selecting the optimum wavelength for the determination and to exclude most spectral interferences.

  8. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  9. A critical source area phosphorus index with topographic transport factors using high resolution LiDAR digital elevation models

    Science.gov (United States)

    Thomas, Ian; Murphy, Paul; Fenton, Owen; Shine, Oliver; Mellander, Per-Erik; Dunlop, Paul; Jordan, Phil

    2015-04-01

    A new phosphorus index (PI) tool is presented which aims to improve the identification of critical source areas (CSAs) of phosphorus (P) losses from agricultural land to surface waters. In a novel approach, the PI incorporates topographic indices rather than watercourse proximity as proxies for runoff risk, to account for the dominant control of topography on runoff-generating areas and P transport pathways. Runoff propensity and hydrological connectivity are modelled using the Topographic Wetness Index (TWI) and Network Index (NI) respectively, utilising high resolution digital elevation models (DEMs) derived from Light Detection and Ranging (LiDAR) to capture the influence of micro-topographic features on runoff pathways. Additionally, the PI attempts to improve risk estimates of particulate P losses by incorporating an erosion factor that accounts for fine-scale topographic variability within fields. Erosion risk is modelled using the Unit Stream Power Erosion Deposition (USPED) model, which integrates DEM-derived upslope contributing area and Universal Soil Loss Equation (USLE) factors. The PI was developed using field, sub-field and sub-catchment scale datasets of P source, mobilisation and transport factors, for four intensive agricultural catchments in Ireland representing different agri-environmental conditions. Datasets included soil test P concentrations, degree of P saturation, soil attributes, land use, artificial subsurface drainage locations, and 2 m resolution LiDAR DEMs resampled from 0.25 m resolution data. All factor datasets were integrated within a Geographical Information System (GIS) and rasterised to 2 m resolution. For each factor, values were categorised and assigned relative risk scores which ranked P loss potential. Total risk scores were calculated for each grid cell using a component formulation, which summed the products of weighted factor risk scores for runoff and erosion pathways. Results showed that the new PI was able to predict

  10. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  11. A high resolution atlas of the galactic plane at 12 microns and 25 microns

    Science.gov (United States)

    Price, Stephan D.; Korte, Rose M.; Sample, Rebecca S.; Kennealy, John P.; Gonsalves, Robert A.

    1994-01-01

    High resolution images of the 12 micron and 25 micron IRAS survey data from each HCON crossing the Galactic Plane are being created for those regions that the original IRAS processing labeled as confused. This encompasses the area within 100 deg longitude of the Galactic Center and within 3 deg to 10 deg of the Plane. The procedures used to create the images preserve the spatial resolution inherent in the IRAS instrument. The images are separated into diffuse and point source components and candidate sources are extracted from the point source image after non-linear spatial sharpening. Fluxes are estimated by convolving the candidate sources with the point response function and cross-correlating with the original point source image. A source is considered real if it is seen on at least two HCON's with a rather generous flux match but a stringent position criterion. A number of fields spanning a range of source densities from low to high have been examined. Initial analysis indicates that the imaging and extraction works quite well up to a source density of about 100 sources per square degree or down to roughly 0.8 Janskys.

  12. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  13. Neutron spin echo and high resolution inelastic spectroscopy

    International Nuclear Information System (INIS)

    Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-01-01

    The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently

  14. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  15. Application of high-resolution film for lithography to synchrotron X-ray topography

    International Nuclear Information System (INIS)

    Mizuno, Kaoru; Ito, Kazuyoshi; Iwami, Masayuki; Hashimoto, Eiji; Kino, Takao.

    1994-01-01

    A high-resolution film for lithography is applied to a detector for synchrotron radiation topography, instead of a nuclear plate. The film shows much better resolution than that of the plate although exposure time an about 500 times longer is required. The size distribution of interstitial loops grown as vacancy sources in a nearly perfect aluminum crystal after a temperature rise is examined from the while beam topograph. (author)

  16. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  17. Defect testing of large aperture optics based on high resolution CCD camera

    International Nuclear Information System (INIS)

    Cheng Xiaofeng; Xu Xu; Zhang Lin; He Qun; Yuan Xiaodong; Jiang Xiaodong; Zheng Wanguo

    2009-01-01

    A fast testing method on inspecting defects of large aperture optics was introduced. With uniform illumination by LED source at grazing incidence, the image of defects on the surface of and inside the large aperture optics could be enlarged due to scattering. The images of defects were got by high resolution CCD camera and microscope, and the approximate mathematical relation between viewing dimension and real dimension of defects was simulated. Thus the approximate real dimension and location of all defects could be calculated through the high resolution pictures. (authors)

  18. Compact continuum radio sources in the Orion Nebula

    International Nuclear Information System (INIS)

    Garay, G.; Moran, J.M.; Reid, M.J.; European Southern Observatory, Garching, West Germany)

    1987-01-01

    The Orion Nebula was observed with the VLA in order to search for radio emission from compact H II regions indicative of embedded OB stars or from winds associated with pre-main sequence, low-mass stars. Fourteen of the 21 detected radio sources are within 30 arcsec of Omega 1 Orionis C; 13 of these objects are probably neutral condensations surrounded by ionized envelopes that are excited by the star. If the temperature of the ionized envelopes is 10,000 K and their electron densities decrease as the square of the distance from the core center, then a typical neutral condensation has a radius of 10 to the 15th cm and a peak electron density of 400,000/cu cm. Seven sources are in or near the Orion molecular cloud. Four of the sources have optical counterparts. Two are highly variable radio sources associated with X-ray sources, and two have radio spectra indicative of thermal emission. Two of the three optically invisible sources have radio emission likely to arise in a dense ionized envelope surrounding and excited by an early B-type star. 46 references

  19. First measurements with new high-resolution gadolinium-GEM neutron detectors

    CERN Document Server

    Pfeiffer, Dorothea; Birch, Jens; Etxegarai, Maddi; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Llamas-Jansa, Isabel; Oliveri, Eraldo; Oksanen, Esko; Robinson, Linda; Ropelewski, Leszek; Schmidt, Susann; Streli, Christina; Thuiner, Patrik

    2016-05-17

    European Spallation Source instruments like the macromolecular diffractometer, NMX, require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The {\\mu}TPC analysis, proven to improve the spatial resolution in the case of $^{10}$B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with an estimated efficiency of 10% at a wavelength of 2 {\\AA} and a position resolution better than 350 {\\mu}m.

  20. Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Ji, XueBin; Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing

    2015-05-01

    Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects. When two point sources with the separation distance of λ0 / 4 are covered with the illusion media (λ0 is the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point sources with the separation distance larger than λ0 / 2 in free space, leading to the far-field high resolution effects (in free space, the separation distance of λ0 / 4 is less than half-wavelength, and thus the two point sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simulations are carried out to verify the performance of our device.

  1. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution

    Science.gov (United States)

    Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.

    1994-01-01

    High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.

  2. Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation

    Directory of Open Access Journals (Sweden)

    M. Agatonović

    2012-12-01

    Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.

  3. THE SPATIAL EXTENT OF (U)LIRGs IN THE MID-INFRARED. I. THE CONTINUUM EMISSION

    International Nuclear Information System (INIS)

    DIaz-Santos, T.; Charmandaris, V.; Armus, L.; Petric, A. O.; Howell, J. H.; Murphy, E. J.; Inami, H.; Haan, S.; Marshall, J. A.; Stierwalt, S.; Surace, J. A.; Mazzarella, J. M.; Veilleux, S.; Bothun, G.; Appleton, P. N.; Evans, A. S.; Sanders, D. B.

    2010-01-01

    We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey sample based on 5-15 μm low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for the galaxies in the sample, FEE λ , defined as the fraction of the emission which originates outside of the unresolved component of a source at a given distance. We find that the FEE λ varies from one galaxy to another, but we can identify three general types of FEE λ : one where FEE λ is constant, one where features due to emission lines and polycyclic aromatic hydrocarbons appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7 μm. More than 30% of the galaxies have a median FEE λ larger than 0.5, implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0 ∼ 13.2 μ m ∼ 13.2 μ m that we find in many LIRGs suggest that the extended component of their MIR continuum emission originates in scales up to 10 kpc and may contribute as much as the nuclear region to their total MIR luminosity. The mean size of the LIRG cores at 13.2 μm is 2.6 kpc. However, once the IR luminosity of the systems reaches the threshold of L IR ∼ 10 11.8 L sun , slightly below the regime of Ultra-luminous Infrared Galaxies (ULIRGs), all sources become clearly more compact, with FEE 13.2 μ m ∼ IR ∼> 10 11.25 L sun strongly increases in those classified as mergers in their final stage of interaction. The FEE 13.2 μ m is also related to the contribution of an active galactic nucleus (AGN) to the MIR emission. Galaxies which are more AGN dominated are less extended, independently of their L IR . We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f 60 μ m /f 100 μ m

  4. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    CERN Document Server

    Rissi, M; Bolle, E; Dorholt, O; Hines, K E; Rohne, O; Skretting, A; Stapnes, S; Volgyes, D

    2012-01-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the gamma-rays. To determine the point of interaction (P01) between gamma-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The P01 and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered gamma-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the...

  5. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    Science.gov (United States)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  6. Evaluation of a High-Resolution Regional Reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  7. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  8. Absorption cross section measurements of oxygen in the wavelength region 195-241 nm of the Herzberg continuum

    International Nuclear Information System (INIS)

    Cheung, A.S.C.; Yoshino, K.; Parkinson, W.H.; Freeman, D.E.

    1985-01-01

    The continuum cross section of oxygen at 296-300 K has been measured with a resolution of 0.13 nm throughout the wavelength region 205-241 nm with oxygen pressures from 5 to 760 torr and optical lengths from 13.3 to 133 m. The three processes contributing to the observed cross section are absorption into two continua, viz., the Herzberg continuum of O 2 and a pressure-dependent continuum involving two molecules of O 2 , and Rayleigh scattering. Comparison between different laboratory measurements and in situ stratospheric studies will also be presented. 1 reference

  9. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  10. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    Science.gov (United States)

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  11. Continuum emission from classical nova winds

    International Nuclear Information System (INIS)

    Harkness, R.P.

    1983-01-01

    The emergent continuum of a slow classical nova during outburst is considered in the quasi-steady optically thick, transonic wind model. Models are presented for various steady mass loss rates and are related to the evolution of slow novae during decline and early post-maximum. The continuum emission is found to depart radically from a blackbody spectrum and to exhibit features common to highly extended stellar atmospheres. (author)

  12. Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals

    International Nuclear Information System (INIS)

    Mayer, Alexander E.; Mayer, Polina N.

    2015-01-01

    A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, and Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets

  13. Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography

    International Nuclear Information System (INIS)

    Unterhuber, A; Povazay, B; Bizheva, K; Hermann, B; Sattmann, H; Stingl, A; Le, T; Seefeld, M; Menzel, R; Preusser, M; Budka, H; Schubert, Ch; Reitsamer, H; Ahnelt, P K; Morgan, J E; Cowey, A; Drexler, W

    2004-01-01

    Novel ultra-broad bandwidth light sources enabling unprecedented sub-2 μm axial resolution over the 400 nm-1700 nm wavelength range have been developed and evaluated with respect to their feasibility for clinical ultrahigh resolution optical coherence tomography (UHR OCT) applications. The state-of-the-art light sources described here include a compact Kerr lens mode locked Ti:sapphire laser (λ c = 785 nm, Δλ = 260 nm, P out = 50 mW) and different nonlinear fibre-based light sources with spectral bandwidths (at full width at half maximum) up to 350 nm at λ c = 1130 nm and 470 nm at λ c = 1375 nm. In vitro UHR OCT imaging is demonstrated at multiple wavelengths in human cancer cells, animal ganglion cells as well as in neuropathologic and ophthalmic biopsies in order to compare and optimize UHR OCT image contrast, resolution and penetration depth

  14. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  15. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  16. Continuum gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1981-06-01

    When angular momentum is added to a nucleus, it is, of course, carried by the individual nucleons, but two limiting types of behavior may be distinguished: (1) a small number of high-j particles align with the rotation axis and (2) the nucleus is deformed and rotates as a whole. At high spin all nuclei seem to show a compromise utilizing both motions. The excited nuclei left as products of (HI,xn) reactions have so many pathways down that none of the γ-ray transitions have enough intensity to be seen individually until the population gathers near the yrast line. This occurs usually between spin 20 to 40 h-bar. All our information on the higher states comes from their continuum spectra. With the new techniques that are developing, including the use of multiplicity filters, total-energy spectrometers, energy correlation studies, crystal balls, and observation of giant dipole resonances in the continuum spectra, there is hope to learn much about the nature of the high-spin states

  17. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  18. Correcting X-ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    Science.gov (United States)

    Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.

    1993-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.

  19. All solution-processed high-resolution bottom-contact transparent metal-oxide thin film transistors

    International Nuclear Information System (INIS)

    Park, Sung Kyu; Kim, Yong-Hoon; Han, Jeong-In

    2009-01-01

    We report all solution-processed high-resolution bottom-contact indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) using a simple surface patterning and dip-casting process. High-resolution nanoparticulate Ag source/drain electrodes and a sol-gel processed IGZO semiconductor were deposited by a simple dip-casting along with a photoresist-free, non-relief-pattern lithographic process. The deposited Ag and IGZO solution can be steered into the desired hydrophilic areas by a low surface energy self-assembled monolayer, resulting in source/drain electrodes and semiconducting layer, respectively. The all solution-processed bottom-contact IGZO TFTs including a channel length of 10 μm typically showed a mobility range 0.05-0.2 cm 2 V -1 s -1 with an on/off ratio of more than 10 6 .

  20. High-Resolution Powder Diffractometer HRPT for Thermal Neutrons at SINQ

    International Nuclear Information System (INIS)

    Fischer, P.; Koch, M.; Koennecke, M.; Pomjakushin, V.; Schefer, J.; Schlumpf, N.

    1999-01-01

    The new neutron powder diffractometer at the Swiss continuous spallation neutron source SINQ is designed as a flexible instrument for high resolution [best values δd/d: ( -3 with d = lattice spacing in the high resolution or high intensity modes, respectively]. It uses large scattering angles 2Θ M = 120 deg or 90 deg of the monochromator, a 28 cm high, vertically focusing wafer type Ge(hkk) monochromator and a position-sensitive 3 He detector(3.6 bar) produced by Cerca at Romans, France. It has 1600 (25x64) detectors with an angular separation of 0.1 deg and includes modern electronics developed by E. Berruyer, Cerca and PSI. The SICS software of PSI controls the instrument with a server running on an unix workstation and clients written in Java through the TCP/IP network. The design principles and first experiences are presented. The interdisciplinary applications of HRPT will permit high-resolution refinement of chemical and magnetic structures as well as phase analysis including the detection of defects and internal microstrain. In particular real-time investigations of chemical or structural changes and of magnetic phase transitions in crystalline, quasicrystalline, amorphous and liquid samples including technically interesting new materials are possible. (author)

  1. Application of ultra-fast high-resolution gated-image intensifiers to laser fusion studies

    International Nuclear Information System (INIS)

    Lieber, A.J.; Benjamin, R.F.; Sutphin, H.D.; McCall, G.H.

    1975-01-01

    Gated-image intensifiers for fast framing have found high utility in laser-target interaction studies. X-ray pinhole camera photographs which can record asymmetries of laser-target interactions have been instrumental in further system design. High-resolution high-speed x-ray images of laser irradiated targets are formed using pinhole optics and electronically amplified by proximity focused channelplate intensifiers before being recorded on film. Spectral resolution is obtained by filtering. In these applications shutter duration is determined by source duration. Electronic gating serves to reduce background thereby enhancing signal-to-noise ratio. Cameras are used to view the self light of the interaction but may also be used for shadowgraphs. Sources for shadowgraphs may be sequenced to obtain a series of pictures with effective rates of 10 10 frame/s. Multiple aperatures have been used to obtain stereo x-ray views, yielding three dimensional information about the interactions. (author)

  2. Developmental approach towards high resolution optical coherence tomography for glaucoma diagnostics

    Science.gov (United States)

    Kemper, Björn; Ketelhut, Steffi; Heiduschka, Peter; Thorn, Marie; Larsen, Michael; Schnekenburger, Jürgen

    2018-02-01

    Glaucoma is caused by a pathological rise in the intraocular pressure, which results in a progressive loss of vision by a damage to retinal cells and the optical nerve head. Early detection of pressure-induced damage is thus essential for the reduction of eye pressure and to prevent severe incapacity or blindness. Within the new European Project GALAHAD (Glaucoma Advanced, Label free High Resolution Automated OCT Diagnostics), we will develop a new low-cost and high-resolution OCT system for the early detection of glaucoma. The device is designed to improve diagnosis based on a new system of optical coherence tomography. Although OCT systems are at present available in ophthalmology centres, high-resolution devices are extremely expensive. The novelty of the new Galahad system is its super wideband light source to achieve high image resolution at a reasonable cost. Proof of concept experiments with cell and tissue Glaucoma test standards and animal models are planned for the test of the new optical components and new algorithms performance for the identification of Glaucoma associated cell and tissue structures. The intense training of the software systems with various samples should result in a increased sensitivity and specificity of the OCT software system.

  3. High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy.

    Science.gov (United States)

    Hunter, Ryan C; Beveridge, Terry J

    2005-11-01

    High-pressure freeze-substitution and transmission electron microscopy have been used for high-resolution imaging of the natural structure of a gram-negative biofilm. Unlike more conventional embedding techniques, this method confirms many of the observations seen by confocal microscopy but with finer structural detail. It further reveals that there is a structural complexity to biofilms at both the cellular and extracellular matrix levels that has not been seen before. Different domains of healthy and lysed cells exist randomly dispersed within a single biofilm as well as different structural organizations of exopolymers. Particulate matter is suspended within this network of fibers and appears to be an integral part of the exopolymeric substance (EPS). O-side chains extending from the outer membrane are integrated into EPS polymers so as to form a continuum. Together, the results support the concept of physical microenvironments within biofilms and show a complexity that was hitherto unknown.

  4. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  5. Kinota: An Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring

    Science.gov (United States)

    Miles, B.; Chepudira, K.; LaBar, W.

    2017-12-01

    The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next

  6. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    Science.gov (United States)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  7. High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tsubaki, Ippei; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2012-12-15

    Recently, there has been an increasing interest in broadband light sources to develop a biomolecular imaging technique called optical coherence tomography (OCT). We fabricated superluminescent diodes (SLDs) using three kinds of quantum dot (QD) layers with different emission wavelength in the active region. The emission wavelength was controlled by reducing the strain in QDs by using In{sub 0.1}Ga{sub 0.9}As strain-reducing layer. The SLD device showed a broad electroluminescence spectrum with the center wavelength of 1104 nm and the spectral linewidth of 122 nm at the injection of 40 mA, which corresponds to the theoretical axial resolution of 4.4 {mu}m. To estimate the actual resolution of the OCT system using fabricated SLD, we measured the interference signal in the Michelson interferometer. An axial resolution of 5.4 {mu}m, which is close to the theoretical limit, was obtained (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  9. Novel Insight for Organic Matter Sourcing: Interest of Time Resolved Fluorescence to Qualify and Quantify PAH Content of Solid Matrix at High Resolution

    Science.gov (United States)

    Quiers, M.; Perrette, Y.; Jacq, K.; Pousset, E.; Plassart, G.

    2017-12-01

    OM fluorescence is today a well-developed tool used to characterize and quantify organic matter (OM), but also to evaluate and discriminate OM fate and changes related to climate and environmental modifications. While fluorescence measurements on water and soils extracts provide information about organic fluxes today, solid phase fluorescence using natural archives allows to obtain high resolution records of OM evolution during time. These evolutions can be discussed in regards of climate and environmental perturbations detected in archives using different proxies, and thus provide keys for understanding factors driving carbon fluxes mechanisms. Among fluorescent organic species, Polycyclic Aromatic Hydrocarbons (PAH) have been used as probe molecules for organic contamination tracking. Moreover, monitoring studies have shown that PAH could also be used as markers to discriminates atmospheric and erosion factors leading to PAH and organic matter fluxes to the aquifer. PAH records in soils and natural archives appear as a promising proxy to follow both past atmospheric contamination and soil erosion. But, PAH fluorescence is difficult to discriminate from bulk OM fluorescence using steady-state fluorescence (SSF) technics as their fluorescence domains recover. Time resolved emission spectroscopy (TRES) increases the information provided by SSF technic, adding a time dimension to measurements and allowing to discriminate PAH fluorescence. We report here a first application of this technic on natural archives. The challenge is to obtain TRES signature along the sample, including for low PAH concentrations. This study aims to evaluate the reliability of high resolution TRES measurement as PAH carbon fluxes sources. Method is based on LIF instrument for solid phase fluorescence measurement. An instrument coupling an excitation system constituting by 2 pulsed lasers (266 and 355 nm) and a detection system was developed. This measurement provides high resolution record of

  10. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  11. Target continuum distorted-wave theory for collisions of fast protons with atomic hydrogen

    International Nuclear Information System (INIS)

    Crothers, D.S.F.; Dunseath, K.M.

    1990-01-01

    By considering the target continuum distorted-wave (TCDW) theory as the high-energy limit of the half-way house variational continuum distorted-wave theory, it is shown not only that there is no intermediate elastic divergence but also that the second-order amplitude based on a purely elastic intermediate state is of order υ -6 and is thus negligible. The residual inelastic TCDW theory is developed to second-order at high velocities. It is used to describe charge exchange during collisions of fast protons with atomic hydrogen. Using an on-shell peaking approximation and considering 1s-1s capture it is shown that the residual purely second-order transition amplitude comprises two terms, one real term of order υ -6 and one purely imaginary term of order υ -7 ln υ. At 5 MeV laboratory energy, it is shown that these are negligible. It is also shown that the υ -5 first-order term gives a differential cross section in very good agreement with an experiment at all angles including forward, interference minimum, Thomas maximum and large angles, particularly having folded our theory over experimental resolution. (author)

  12. A CATALOG OF NEAR-IR SOURCES FOUND TO BE UNRESOLVED WITH MILLIARCSECOND RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A. [National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Rd., Suthep, Muang, Chiang Mai 50200 (Thailand); Fors, O. [Departament Astronomia i Meteorologia and Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (UB/IEEC), Marti i Franques 1, E-08028 Barcelona (Spain); Cusano, F. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Moerchen, M., E-mail: andrea@narit.or.th [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-12-15

    Calibration is one of the long-standing problems in optical interferometric measurements, particularly with long baselines which demand stars with angular sizes on the milliarcsecond scale and no detectable companions. While systems of calibrators have been generally established for the near-infrared in the bright source regime (K {approx}< 3 mag), modern large interferometers are sensitive to significantly fainter magnitudes. We aim to provide a list of sources found to be unresolved from direct observations with high angular resolution and dynamic range, which can be used to choose interferometric calibrators. To this purpose, we have used a large number of lunar occultations recorded with the ISAAC instrument at the Very Large Telescope to select sources found to be unresolved and without close companions. An algorithm has been used to determine the limiting angular resolution achieved for each source, taking into account a noise model built from occulted and unocculted portions of the light curves. We have obtained upper limits on the angular sizes of 556 sources, with magnitudes ranging from K{sub s} Almost-Equal-To 4 to 10, with a median of 7.2 mag. The upper limits on possible undetected companions (within Almost-Equal-To 0.''5) range from K{sub s} Almost-Equal-To 8 to 13, with a median of 11.5 mag. One-third of the sources have angular sizes {<=}1 mas, and two-thirds have sizes {<=}2 mas. This list of unresolved sources matches well the capabilities of current large interferometric facilities. We also provide available cross-identifications, magnitudes, spectral types, and other auxiliary information. A fraction of the sources are found to be potentially variable. The list covers parts of the Galactic Bulge and in particular the vicinity of the Galactic Center, where extinction is very significant and traditional lists of calibrators are often insufficient.

  13. Chemical Composition and Source Apportionment of high temporal resolution PM1 data for January-August 2017 in Delhi, India

    Science.gov (United States)

    Bhandari, S.; Wang, D. S.; Gani, S.; Seraj, S.; Arub, Z.; Habib, G.; Apte, J.; Hildebrandt Ruiz, L.

    2017-12-01

    Exposure to fine particulate matter (PM) poses significant health risks, especially to residents in heavily populated areas. The current understanding of the sources and dynamics of PM pollution in developing countries like India is limited. Delhi, India is the second most populated city in the world that has extremely high winter PM concentrations and frequent severe pollution episodes. This study reports on composition measurements of submicron aerosol at 1 minute time resolution from January to August of 2017, collected at the Indian Institute of Technology Delhi using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and black carbon (BC) measurements using an Aethalometer. Source apportionment was conducted on organic and inorganic mass spectra measured by the ACSM and black carbon data measured using Positive Matrix Factorization (PMF). High concentrations of particulate matter were observed with total PM1 at times exceeding 200 µg m-3 in winter. A significant drop in PM1 concentrations was observed in the winter-spring transition. As observed elsewhere, organic species dominated the submicron mass, contributing 60% of the total mass over the duration of the campaign. However, this fractional contribution varied substantially over the day: from 48% early in the morning to 73% late at night. Along with diurnal variation in total PM1 mass loadings, particulate chloride levels also exhibited a strong diurnal cycle, with concentrations as high as 50 µg m-3 observed in the early mornings of January 2017. Literature review on identification of winter chloride sources in Delhi points to local and regional sources such as biomass/open-waste burning and coal combustion. PMF receptor modeling identified several factors with distinct diurnal patterns. While hydrocarbon-like organic aerosol (HOA) factor has the largest mass fraction contribution, PMF results consistently suggest chloride presence as attributable to ammonium chloride. Interestingly, aerosol

  14. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  15. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    IR telescope in spece, will enable GRBs to be used as probes of the formation of the first stars and structure in the Universe. HREXI on its own, with broad bandwidth and high spectral and spatial resolution, will extend both Galactic surveys for obscured young supernova remnants (44Ti sources) and for transients, black holes and flaring AGN and TDEs well at greatly increased sensitivity and spatial/spectral resolution than has been done with Swift or INTEGRAL. If the HREXI-1 technology is developed in the first year of this proposed effort, it could be used on the upcoming Brazil-US MIRAX telescope on the Lattes satellite, scheduled for a 2018 launch with imaging detector planes to be provided (under contract) by our group. Finally, the 3D stacking technology development proposed here for imaging detector arrays has broad application to Wide Field soft X-ray imaging, to CMB polarization mode (B mode) imaging detectors with very high detector-pixel count, and to Homeland Security.

  16. A High-resolution Reanalysis for the European CORDEX Region

    Science.gov (United States)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  17. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  18. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  19. High resolution X-ray detector for synchrotron-based microtomography

    CERN Document Server

    Stampanoni, M; Wyss, P; Abela, R; Patterson, B; Hunt, S; Vermeulen, D; Rueegsegger, P

    2002-01-01

    Synchrotron-based microtomographic devices are powerful, non-destructive, high-resolution research tools. Highly brilliant and coherent X-rays extend the traditional absorption imaging techniques and enable edge-enhanced and phase-sensitive measurements. At the Materials Science Beamline MS of the Swiss Light Source (SLS), the X-ray microtomographic device is now operative. A high performance detector based on a scintillating screen optically coupled to a CCD camera has been developed and tested. Different configurations are available, covering a field of view ranging from 715x715 mu m sup 2 to 7.15x7.15 mm sup 2 with magnifications from 4x to 40x. With the highest magnification 480 lp/mm had been achieved at 10% modulation transfer function which corresponds to a spatial resolution of 1.04 mu m. A low-noise fast-readout CCD camera transfers 2048x2048 pixels within 100-250 ms at a dynamic range of 12-14 bit to the file server. A user-friendly graphical interface gives access to the main parameters needed for ...

  20. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  1. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  2. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  3. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  4. High-resolution SMA imaging of bright submillimetre sources from the SCUBA-2 Cosmology Legacy Survey

    Science.gov (United States)

    Hill, Ryley; Chapman, Scott C.; Scott, Douglas; Petitpas, Glen; Smail, Ian; Chapin, Edward L.; Gurwell, Mark A.; Perry, Ryan; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Dunlop, James S.; Farrah, Duncan; Fazio, Giovanni G.; Geach, James E.; Howson, Paul; Ivison, R. J.; Lacaille, Kevin; Michałowski, Michał J.; Simpson, James M.; Swinbank, A. M.; van der Werf, Paul P.; Wilner, David J.

    2018-06-01

    We have used the Submillimeter Array (SMA) at 860 μm to observe the brightest sources in the Submillimeter Common User Bolometer Array-2 (SCUBA-2) Cosmology Legacy Survey (S2CLS). The goal of this survey is to exploit the large field of the S2CLS along with the resolution and sensitivity of the SMA to construct a large sample of these rare sources and to study their statistical properties. We have targeted 70 of the brightest single-dish SCUBA-2 850 μm sources down to S850 ≈ 8 mJy, achieving an average synthesized beam of 2.4 arcsec and an average rms of σ860 = 1.5 mJy beam-1 in our primary beam-corrected maps. We searched our SMA maps for 4σ peaks, corresponding to S860 ≳ 6 mJy sources, and detected 62, galaxies, including three pairs. We include in our study 35 archival observations, bringing our sample size to 105 bright single-dish submillimetre sources with interferometric follow-up. We compute the cumulative and differential number counts, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent S2CLS cumulative number count by 14 ± 6 per cent between 11 and 15 mJy. We estimate the probability that a ≳10 mJy single-dish submillimetre source resolves into two or more galaxies with similar flux densities to be less than 15 per cent. Assuming the remaining 85 per cent of the targets are ultraluminous starburst galaxies between z = 2 and 3, we find a likely volume density of ≳400 M⊙ yr-1 sources to be {˜ } 3^{+0.7}_{-0.6} {× } 10^{-7} Mpc-3. We show that the descendants of these galaxies could be ≳4 × 1011 M⊙ local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star formation.

  5. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  6. Quantifying and containing the curse of high resolution coronal imaging

    Directory of Open Access Journals (Sweden)

    V. Delouille

    2008-10-01

    Full Text Available Future missions such as Solar Orbiter (SO, InterHelioprobe, or Solar Probe aim at approaching the Sun closer than ever before, with on board some high resolution imagers (HRI having a subsecond cadence and a pixel area of about (80 km2 at the Sun during perihelion. In order to guarantee their scientific success, it is necessary to evaluate if the photon counts available at these resolution and cadence will provide a sufficient signal-to-noise ratio (SNR. For example, if the inhomogeneities in the Quiet Sun emission prevail at higher resolution, one may hope to locally have more photon counts than in the case of a uniform source. It is relevant to quantify how inhomogeneous the quiet corona will be for a pixel pitch that is about 20 times smaller than in the case of SoHO/EIT, and 5 times smaller than TRACE. We perform a first step in this direction by analyzing and characterizing the spatial intermittency of Quiet Sun images thanks to a multifractal analysis. We identify the parameters that specify the scale-invariance behavior. This identification allows next to select a family of multifractal processes, namely the Compound Poisson Cascades, that can synthesize artificial images having some of the scale-invariance properties observed on the recorded images. The prevalence of self-similarity in Quiet Sun coronal images makes it relevant to study the ratio between the SNR present at SoHO/EIT images and in coarsened images. SoHO/EIT images thus play the role of "high resolution" images, whereas the "low-resolution" coarsened images are rebinned so as to simulate a smaller angular resolution and/or a larger distance to the Sun. For a fixed difference in angular resolution and in Spacecraft-Sun distance, we determine the proportion of pixels having a SNR preserved at high resolution given a particular increase in effective area. If scale-invariance continues to prevail at smaller scales, the conclusion reached with SoHO/EIT images can be transposed

  7. High resolution absorption spectrum of nitrogen in the vacuum ultraviolet

    International Nuclear Information System (INIS)

    Guertler, P.; Saile, V.; Koch, E.E.

    1977-03-01

    The photoabsorption cross section of molecular N 2 has been determined in the range from 10-35 eV utilizing the continuum of synchrotron radiation from the DORIS storage ring, a 3 m normal incidence monochromator of 0.03 A resolution and photoelectrical recording. New detailed features are observed which make possible a refined analysis of the valence-Rydberg interaction of the b 1 πsub(u)-c 1 πsub(u), b' 1 Σ + sub(u)-c' 1 Σ + sub(u) states as well as an improved analysis of Rydberg series leading to the X 2 Σ + sub(g), the A 2 πsub(u), the B 2 Σ + sub(u) and the C 2 Σ + sub(u) states of the N + 2 ion. (orig.) [de

  8. High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers

    International Nuclear Information System (INIS)

    Lu, C; Lichtner, P C

    2007-01-01

    CO 2 sequestration (capture, separation, and long term storage) in various geologic media including depleted oil reservoirs, saline aquifers, and oceanic sediments is being considered as a possible solution to reduce green house gas emissions. Dissolution of supercritical CO 2 in formation brines is considered an important storage mechanism to prevent possible leakage. Accurate prediction of the plume dissolution rate and migration is essential. Analytical analysis and numerical experiments have demonstrated that convective instability (Rayleigh instability) has a crucial effect on the dissolution behavior and subsequent mineralization reactions. Global stability analysis indicates that a certain grid resolution is needed to capture the features of density-driven fingering phenomena. For 3-D field scale simulations, high resolution leads to large numbers of grid nodes, unfeasible for a single workstation. In this study, we investigate the effects of convective instability on geologic sequestration of CO 2 by taking advantage of parallel computing using the code PFLOTRAN, a massively parallel 3-D reservoir simulator for modeling subsurface multiphase, multicomponent reactive flow and transport based on continuum scale mass and energy conservation equations. The onset, development and long-term fate of a supercritical CO 2 plume will be resolved with high resolution numerical simulations to investigate the rate of plume dissolution caused by fingering phenomena

  9. Impact of earthquake source complexity and land elevation data resolution on tsunami hazard assessment and fatality estimation

    Science.gov (United States)

    Muhammad, Ario; Goda, Katsuichiro

    2018-03-01

    This study investigates the impact of model complexity in source characterization and digital elevation model (DEM) resolution on the accuracy of tsunami hazard assessment and fatality estimation through a case study in Padang, Indonesia. Two types of earthquake source models, i.e. complex and uniform slip models, are adopted by considering three resolutions of DEMs, i.e. 150 m, 50 m, and 10 m. For each of the three grid resolutions, 300 complex source models are generated using new statistical prediction models of earthquake source parameters developed from extensive finite-fault models of past subduction earthquakes, whilst 100 uniform slip models are constructed with variable fault geometry without slip heterogeneity. The results highlight that significant changes to tsunami hazard and fatality estimates are observed with regard to earthquake source complexity and grid resolution. Coarse resolution (i.e. 150 m) leads to inaccurate tsunami hazard prediction and fatality estimation, whilst 50-m and 10-m resolutions produce similar results. However, velocity and momentum flux are sensitive to the grid resolution and hence, at least 10-m grid resolution needs to be implemented when considering flow-based parameters for tsunami hazard and risk assessments. In addition, the results indicate that the tsunami hazard parameters and fatality number are more sensitive to the complexity of earthquake source characterization than the grid resolution. Thus, the uniform models are not recommended for probabilistic tsunami hazard and risk assessments. Finally, the findings confirm that uncertainties of tsunami hazard level and fatality in terms of depth, velocity and momentum flux can be captured and visualized through the complex source modeling approach. From tsunami risk management perspectives, this indeed creates big data, which are useful for making effective and robust decisions.

  10. UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Ford, H.; Conselice, C. J.; Giavalisco, M.; Van Dokkum, P.

    2009-01-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ∼ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z= 3 ) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi 'dropout' Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ∼ 2-4 than it is at z ∼ 5-6 (from ∼-2.4 at z ∼ 6 to ∼-1.5 at z ∼ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ∼ 2.5 and z ∼ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ∼ 4, and particularly at z ∼> 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ∼ 4). This suggests that star-forming galaxies at z ∼> 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z ∼> 5 that are missed in 'dropout' searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ∼ 0 and z ∼ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (∼ 4.

  11. On the Nature of Orion Source I

    Science.gov (United States)

    Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.

    2018-01-01

    The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.

  12. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  13. A feasibility study of PETiPIX: an ultra high resolution small animal PET scanner

    Science.gov (United States)

    Li, K.; Safavi-Naeini, M.; Franklin, D. R.; Petasecca, M.; Guatelli, S.; Rosenfeld, A. B.; Hutton, B. F.; Lerch, M. L. F.

    2013-12-01

    PETiPIX is an ultra high spatial resolution positron emission tomography (PET) scanner designed for imaging mice brains. Four Timepix pixellated silicon detector modules are placed in an edge-on configuration to form a scanner with a field of view (FoV) 15 mm in diameter. Each detector module consists of 256 × 256 pixels with dimensions of 55 × 55 × 300 μm3. Monte Carlo simulations using GEANT4 Application for Tomographic Emission (GATE) were performed to evaluate the feasibility of the PETiPIX design, including estimation of system sensitivity, angular dependence, spatial resolution (point source, hot and cold phantom studies) and evaluation of potential detector shield designs. Initial experimental work also established that scattered photons and recoil electrons could be detected using a single edge-on Timepix detector with a positron source. Simulation results estimate a spatial resolution of 0.26 mm full width at half maximum (FWHM) at the centre of FoV and 0.29 mm FWHM overall spatial resolution with sensitivity of 0.01%, and indicate that a 1.5 mm thick tungsten shield parallel to the detectors will absorb the majority of non-coplanar annihilation photons, significantly reducing the rates of randoms. Results from the simulated phantom studies demonstrate that PETiPIX is a promising design for studies demanding high resolution images of mice brains.

  14. Note: A new design for a low-temperature high-intensity helium beam source

    Science.gov (United States)

    Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.

    2013-02-01

    A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.

  15. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015

    OpenAIRE

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and sol...

  16. ALMA 690 GHz OBSERVATIONS OF IRAS 16293–2422B: INFALL IN A HIGHLY OPTICALLY THICK DISK

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Loinard, Laurent; Rodríguez, Luis F.; Hernández-Hernández, Vicente; Takahashi, Satoko; Trejo, Alfonso; Parise, Bérengère

    2013-01-01

    We present sensitive, high angular resolution (∼0.''2) submillimeter continuum and line observations of IRAS 16293–2422B made with the Atacama Large Millimeter/Submillimeter Array. The 0.45 mm continuum observations reveal a single and very compact source associated with IRAS 16293–2422B. This submillimeter source has a deconvolved angular size of about 400 mas (50 AU) and does not show any inner structure inside of this diameter. The H 13 CN, HC 15 N, and CH 3 OH line emission regions are about twice as large as the continuum emission and reveal a pronounced inner depression or ''hole'' with a size comparable to that estimated for the submillimeter continuum. We suggest that the presence of this inner depression and the fact that we do not see an inner structure (or a flat structure) in the continuum are produced by very optically thick dust located in the innermost parts of IRAS 16293–2422B. All three lines also show pronounced inverse P-Cygni profiles with infall and dispersion velocities larger than those recently reported from observations at lower frequencies, suggesting that we are detecting faster and more turbulent gas located closer to the central object. Finally, we report a small east-west velocity gradient in IRAS 16293–2422B that suggests that its disk plane is likely located very close to the plane of the sky.

  17. High resolution VUV facility at INDUS-1

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Saraswathy, P.; Rao, P.M.R.; Mishra, A.P.; Kartha, V.B.

    1993-01-01

    Synchrotron radiation (SR) generated in the electron storage rings is an unique source for the study of atomic and molecular spectroscopy especially in the vacuum ultra violet region. Realizing the potential of this light source, efforts are in progress to develop a beamline facility at INDUS-1 to carry out high resolution atomic and molecular spectroscopy. This beam line consists of a fore-optic which is a combination of three cylindrical mirrors. The mirrors are so chosen that SR beam having a 60 mrad (horizontal) x 6 mrad (vertical) divergence is focussed onto a slit of a 6.65 metre off-plane spectrometer in Eagle Mount equipped with horizontal slit and vertical dispersion. The design of the various components of the beam line is completed. It is decided to build the spectrometer as per the requirements of the user community. Details of the various aspects of the beam line will be presented. (author). 3 figs

  18. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  19. A full-sky, high-resolution atlas of galactic 12 μm dust emission with WISE

    International Nuclear Information System (INIS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-01-01

    We describe our custom processing of the entire Wide-field Infrared Survey Explorer (WISE) 12 μm imaging data set, and present a high-resolution, full-sky map of diffuse Galactic dust emission that is free of compact sources and other contaminating artifacts. The principal distinctions between our resulting co-added images and the WISE Atlas stacks are our removal of compact sources, including their associated electronic and optical artifacts, and our preservation of spatial modes larger than 1.°5. We provide access to the resulting full-sky map via a set of 430 12.°5 × 12.°5 mosaics. These stacks have been smoothed to 15'' resolution and are accompanied by corresponding coverage maps, artifact images, and bit-masks for point sources, resolved compact sources, and other defects. When combined appropriately with other mid-infrared and far-infrared data sets, we expect our WISE 12 μm co-adds to form the basis for a full-sky dust extinction map with angular resolution several times better than Schlegel et al.

  20. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: image reconstruction and assessment of image quality.

    Science.gov (United States)

    Flohr, Thomas G; Leng, Shuai; Yu, Lifeng; Aiimendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H

    2009-12-01

    To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. No significant differences in quantitative measures of image quality were found between single-source scans at pitch = 1.0 and dual-source scans at pitch = 3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6 pitch 3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch = 3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving coronary artery phantom

  1. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    International Nuclear Information System (INIS)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H.

    2009-01-01

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6≤pitch≤3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  2. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H. [Siemens Healthcare, Computed Tomography, 91301 Forchheim, Germany and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet, 72076 Tuebingen (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Siemens Healthcare, Computed Tomography, 91301 Forchheim (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  3. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    Science.gov (United States)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  4. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    Science.gov (United States)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  5. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  6. Low-cost, high-resolution scanning laser ophthalmoscope for the clinical environment

    Science.gov (United States)

    Soliz, P.; Larichev, A.; Zamora, G.; Murillo, S.; Barriga, E. S.

    2010-02-01

    Researchers have sought to gain greater insight into the mechanisms of the retina and the optic disc at high spatial resolutions that would enable the visualization of small structures such as photoreceptors and nerve fiber bundles. The sources of retinal image quality degradation are aberrations within the human eye, which limit the achievable resolution and the contrast of small image details. To overcome these fundamental limitations, researchers have been applying adaptive optics (AO) techniques to correct for the aberrations. Today, deformable mirror based adaptive optics devices have been developed to overcome the limitations of standard fundus cameras, but at prices that are typically unaffordable for most clinics. In this paper we demonstrate a clinically viable fundus camera with auto-focus and astigmatism correction that is easy to use and has improved resolution. We have shown that removal of low-order aberrations results in significantly better resolution and quality images. Additionally, through the application of image restoration and super-resolution techniques, the images present considerably improved quality. The improvements lead to enhanced visualization of retinal structures associated with pathology.

  7. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  8. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions

    Directory of Open Access Journals (Sweden)

    S. Feng

    2016-07-01

    Full Text Available Megacities are major sources of anthropogenic fossil fuel CO2 (FFCO2 emissions. The spatial extents of these large urban systems cover areas of 10 000 km2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO2 emissions over the Los Angeles (LA megacity area. The Weather Research and Forecasting (WRF-Chem model was coupled to a very high-resolution FFCO2 emission product, Hestia-LA, to simulate atmospheric CO2 concentrations across the LA megacity at spatial resolutions as fine as  ∼  1 km. We evaluated multiple WRF configurations, selecting one that minimized errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010. Our results show no significant difference between moderate-resolution (4 km and high-resolution (1.3 km simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution and Hestia-LA (1.3 km resolution fossil fuel CO2 emission products to evaluate the impact of the spatial resolution of the CO2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO2 concentrations. We find that high spatial resolution in the fossil fuel CO2 emissions is more important than in the atmospheric model to capture CO2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO2 fields reflect the coverage of

  9. High-resolution seismic reflection surveying with a land streamer

    Science.gov (United States)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  10. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  11. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.

    Science.gov (United States)

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole

    2018-04-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

  12. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    Science.gov (United States)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  13. High resolution measurements of Cyg X-1 from rockets

    International Nuclear Information System (INIS)

    Rothschild, R.E.; Boldt, E.A.; Holt, S.S.; Serlemitsos, P.J.

    1976-01-01

    Cyg X-1 was observed on two occasions (Oct. 4, 1973 and Oct. 3, 1974) by the Goddard x-ray rocket payload. This payload consisted of two gas proportional counters (xenon--methane with 710 cm 2 and argon--methane with 610 cm 2 ) using the same 128 channel pulse height analyzer and having 320 μs temporal resolution on the 1973 flight and 160 μs resolution on the 1974 flight. During both flights bursts of 1 ms duration were observed with very high statistical certainty. To date all 13 of these bursts have been analyzed for spectral and temporal character, and the results of this analysis are presented. The spectra of overall x-ray emission from both flights are also presented. In a source known for its variability it is remarkable that the spectra taken one year apart are virtually identical

  14. Possible wave modes of wideband nonthermal continuum radiation in its source region

    Czech Academy of Sciences Publication Activity Database

    Grimald, S.; Santolík, Ondřej

    2010-01-01

    Roč. 115, - (2010), A06209/1-A06209/8 ISSN 0148-0227 R&D Projects: GA ČR GA205/09/1253; GA MŠk ME09107 Grant - others:ESA(XE) PECS98025 Institutional research plan: CEZ:AV0Z30420517 Keywords : nonthermal continuum * NTC * wave modes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.303, year: 2010

  15. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  16. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  17. Etude d'un continuum de lumière en régime femtoseconde. Applications au domaine biologique : microscopies et spectroscopie en temps résolu.

    OpenAIRE

    Courvoisier , Céline

    2006-01-01

    For few years, a new type of source, called "continuum of light", has been developed. It presents many advantages like a wideband spectrum, a huge brilliancy, a pulsed nature. The aim of this work is to perform a complete characterization of a continuum generated by the injection of femtosecond pulses into a microstructured fiber, and to consider the use of this continuum as optical source for biomedical applications.With acousto-optic filters, the continuum has been successfully employed as ...

  18. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Liu, Zhongkai [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Zong, Alfred [Department of Physics, Stanford University, Stanford, California 94305 (United States); Jefferson, C. Michael; Merriam, Andrew J. [Lumeras LLC, 207 McPherson St, Santa Cruz, California 95060 (United States); Moore, Robert G.; Kirchmann, Patrick S. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  19. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Directory of Open Access Journals (Sweden)

    N. C. Wright

    2018-04-01

    Full Text Available Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  20. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    Science.gov (United States)

    Wright, Nicholas C.; Polashenski, Chris M.

    2018-04-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  1. HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES

    International Nuclear Information System (INIS)

    Olmi, Luca; Poventud, Carlos M.; Araya, Esteban D.; Chapin, Edward L.; Gibb, Andrew; Hofner, Peter; Martin, Peter G.

    2010-01-01

    We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 μm. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH 3 (1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T k -1 . The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  2. FRONT-END ASIC FOR HIGH RESOLUTION X-RAY SPECTROMETERS

    International Nuclear Information System (INIS)

    DE GERONIMO, G.; CHEN, W.; FRIED, J.; LI, Z.; PINELLI, D.A.; REHAK, P.; VERNON, E.; GASKIN, J.A.; RAMSEY, B.D.; ANELLI, G.

    2007-01-01

    We present an application specific integrated circuit (ASIC) for high-resolution x-ray spectrometers. The ASIC is designed to read out signals from a pixelated silicon drift detector (SDD). Each hexagonal pixel has an area of 15 mmz and an anode capacitance of less than 100 fF. There is no integrated Field Effect transistor (FET) in the pixel, rather, the readout is done by wirebonding the anodes to the inputs of the ASIC. The ASIC provides 14 channels of low-noise charge amplification, high-order shaping with baseline stabilization, and peak detection with analog memory. The readout is sparse and based on low voltage differential signaling. An interposer provides all the interconnections required to bias and operate the system. The channel dissipates 1.6 mW. The complete 14-pixel unit covers an area of 210 mm 2 , dissipates 12 mW cm -2 , and can be tiled to cover an arbitrarily large detection area. We measured a preliminary resolution of 172 eV at -35 C on the 6 keV peak of a 55 Fe source

  3. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  4. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2010-02-01

    Full Text Available We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004–April 2005 global inversion of CO sources at 4°×5° spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM and its adjoint applied to MOPITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD, and aircraft (MOZAIC are used for evaluation of the a posteriori solution. Using GEOS-Chem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a−1. This is much higher than current bottom-up emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-than-expected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posteriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets.

  5. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy

    Science.gov (United States)

    Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz

    2018-04-01

    The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/

  6. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  7. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  8. Evaluation and optimization of the High Resolution Research Tomograph (HRRT)

    International Nuclear Information System (INIS)

    Knoess, C.

    2004-01-01

    Positron Emission Tomography (PET) is an imaging technique used in medicine to determine qualitative and quantitative metabolic parameters in vivo. The High Resolution Research Tomograph (HRRT) is a new high resolution tomograph that was designed for brain studies (312 mm transaxial field-of-view (FOV), 252 mm axial FOV). The detector blocks are arranged in a quadrant sharing design and consist of two crystal layers with dimensions of 2.1 mm x 2.1 mm x 7.5 mm. The main detector material is the newly developed scintillator lutetium oxyorthosilicate (LSO). Events from the different crystal layers are distinguished by Pulse Shape Discrimination (PSD) to gain Depth of Interaction (DOI) information. This will improve the spatial resolution, especially at the edges of the FOV. A prototype of the tomograph was installed at the Max-Planck Institute for Neurological Research in Cologne, Germany in 1999 and was evaluated with respect to spatial resolution, sensitivity, scatter fraction, and count rate behavior. These performance measurements showed that this prototype provided a spatial resolution of around 2.5 mm in a volume big enough to contain the human brain. A comparison with a single layer HRRT prototype showed a 10% worsening of the resolution, despite the fact that DOI was used. Without DOI, the resolution decreased considerably. The sensitivity, as measured with a 22 Na point source, was 46.5 cps/kBq for an energy window of 350-650 keV and 37.9 cps/kBq for an energy window of 400-650 keV, while the scatter fractions were 56% for 350-650 keV and 51% for 400-650 keV, respectively. A daily quality check was developed and implemented that uses the uniform, natural radioactive background of the scintillator material LSO. In 2001, the manufacturer decided to build a series of additional HRRT scanners to try to improve the design (detector electronics, transmission source design, and shielding against out-of-FOV activity) and to eliminate problems (difficult detector

  9. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  10. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  11. Impact relevance and usability of high resolution climate modeling and data

    Energy Technology Data Exchange (ETDEWEB)

    Arnott, James C. [Aspen Global Change Inst., Basalt, CO (United States)

    2016-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Impact Relevance and Usability of High-Resolution Climate Modeling and Datasets,” on August 2-7, 2015 in Aspen, CO. Kate Calvin (Pacific Northwest National Laboratory), Andrew Jones (Lawrence Berkeley National Laboratory) and Jean-François Lamarque (NCAR) served as co-chairs for the workshop. The meeting included the participation of 29 scientists for a total of 145 participant days. Following the workshop, workshop co-chairs authored a meeting report published in Eos on April 27, 2016. Insights from the workshop directly contributed to the formation of a new DOE-supported project co-led by workshop co-chair Andy Jones. A subset of meeting participants continue to work on a publication on institutional innovations that can support the usability of high resolution modeling, among other sources of climate information.

  12. A high brightness source for nano-probe secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N.S. [Oregon Physics LLC, 2704 SE 39th Loop, Suite 109, Hillsboro, OR 97123 (United States)], E-mail: n.smith@oregon-physics.com; Tesch, P.P.; Martin, N.P.; Kinion, D.E. [Oregon Physics LLC, 2704 SE 39th Loop, Suite 109, Hillsboro, OR 97123 (United States)

    2008-12-15

    The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.

  13. A high-resolution atlas of composite Sloan Digital Sky Survey galaxy spectra

    Science.gov (United States)

    Dobos, László; Csabai, István.; Yip, Ching-Wa; Budavári, Tamás.; Wild, Vivienne; Szalay, Alexander S.

    2012-02-01

    In this work we present an atlas of composite spectra of galaxies based on the data of the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Galaxies are classified by colour, nuclear activity and star formation activity to calculate average spectra of high signal-to-noise ratio (S/N) and resolution (? at Δλ= 1 Å), using an algorithm that is robust against outliers. Besides composite spectra, we also compute the first five principal components of the distributions in each galaxy class to characterize the nature of variations of individual spectra around the averages. The continua of the composite spectra are fitted with BC03 stellar population synthesis models to extend the wavelength coverage beyond the coverage of the SDSS spectrographs. Common derived parameters of the composites are also calculated: integrated colours in the most popular filter systems, line-strength measurements and continuum absorption indices (including Lick indices). These derived parameters are compared with the distributions of parameters of individual galaxies, and it is shown on many examples that the composites of the atlas cover much of the parameter space spanned by SDSS galaxies. By co-adding thousands of spectra, a total integration time of several months can be reached, which results in extremely low noise composites. The variations in redshift not only allow for extending the spectral coverage bluewards to the original wavelength limit of the SDSS spectrographs, but also make higher spectral resolution achievable. The composite spectrum atlas is available online at .

  14. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  15. Memory binding in clinical and non-clinical psychotic experiences: how does the continuum model fare?

    Science.gov (United States)

    Chhabra, S; Badcock, J C; Maybery, M T

    2013-07-01

    Both clinical and non-clinical auditory hallucinations (AH) have been associated with source memory deficits, supporting a continuum of underlying cognitive mechanisms, though few studies have employed the same task in patient and nonpatient samples. Recent commentators have called for more debate on the continuum model of psychosis. Consequently, the current study investigated the continuity model of AH with reference to memory binding. We used an identical voice and word recognition memory task to assess binding in two separate studies of: (1) healthy hallucination-prone individuals and controls (30 high and 30 low scorers on the Launay-Slade Hallucination Scale-Revised) and (2) schizophrenia patient samples (32 with AH, 32 without AH) and 32 healthy controls. There was no evidence of impaired binding in high hallucination-prone, compared to low hallucination-prone individuals. In contrast, individuals with schizophrenia (both with and without AH) had difficulties binding (remembering "who said what"), alongside difficulties remembering individual words and voices. Binding ability and memory for voices were also negatively linked to the loudness of hallucinated voices reported by patients with AH. These findings suggest that different mechanisms may exist in clinical and non-clinical hallucinators, adding to the growing debate on the continuum model of psychotic symptoms.

  16. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    Science.gov (United States)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back

  17. A novel VLSI processor for high-rate, high resolution spectroscopy

    CERN Document Server

    Pullia, Antonio; Gatti, E; Longoni, A; Buttler, W

    2000-01-01

    A novel time-variant VLSI shaper amplifier, suitable for multi-anode Silicon Drift Detectors or other multi-element solid-state X-ray detection systems, is proposed. The new read-out scheme has been conceived for demanding applications with synchrotron light sources, such as X-ray holography or EXAFS, where both high count-rates and high-energy resolutions are required. The circuit is of the linear time-variant class, accepts randomly distributed events and features: a finite-width (1-10 mu s) quasi-optimal weight function, an ultra-low-level energy discrimination (approx 150 eV), and a full compatibility for monolithic integration in CMOS technology. Its impulse response has a staircase-like shape, but the weight function (which is in general different from the impulse response in time-variant systems) is quasi trapezoidal. The operation principles of the new scheme as well as the first experimental results obtained with a prototype of the circuit are presented and discussed in the work.

  18. UV Continuum Slope and Dust Obscuration from z ~ 6 to z ~ 2: The Star Formation Rate Density at High Redshift

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Conselice, C. J.; Ford, H.; Giavalisco, M.; van Dokkum, P.

    2009-11-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ~ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z = 3) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi "dropout" Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ~ 2-4 than it is at z ~ 5-6 (from ~-2.4 at z ~ 6 to ~-1.5 at z ~ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ~ 2.5 and z ~ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ~ 4, and particularly at z gsim 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ~ 4). This suggests that star-forming galaxies at z gsim 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z gsim 5 that are missed in "dropout" searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ~ 0 and z ~ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (lsim2 times) at all times for lower luminosity galaxies. Because these same lower luminosity galaxies

  19. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  20. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  1. Tracking and evolution of irrigation triggered active landslides by multi-source high resolution DEM: The Jiaojiacun landslide group of Heifangtai (Northwest of China)

    Science.gov (United States)

    Zeng, Runqiang; Meng, Xingmin; Wang, Siyuan; Chen, Guan; Lee, Yajun; Zhang, Yi

    2014-05-01

    The construction of three large hydropower stations, i.e. Liujia, Yanguo and Bapan, resulted in the immigration of the impacted people to Heifangtai from 1960s. To support the living and farming of the immigrated people, a large amount of water has been pumped from the Yellow River to Heifangtai, which has changed the former underground water budget and led to 111 landslides from 1968 in this area. To reveal the deformation process of landslides in Heifangtai, a quantitative deformation analysis model of landslide based on multi-source DEM data is established using four periods of topographic maps obtained in 1970, 2001, 2010 and 2013 respectively, including two 1:10000 topographic maps and two 1:1000 data acquired from 3D Laser Scanner. The whole study area was divided into two sections based on the two distinct kinds of landslide patterns. The selected morphometric parameters, residual topographic surface and surface roughness, extracted from three typical landslides, and the statistical analysis (Box-plot diagrams) of the temporal variations of these parameters, allowed the reconstruction and tracking of these landslides. We monitored the changing of landslide boundaries, average vertical and horizontal displacement rates and zones of uplift and subsidence. The volumes of removed and/or accumulated material were estimated as well. We can then demonstrate the kinematics of landslides based on information from high-resolution DEM, and the changing table of underground water, ring-shear test and soil-water characteristic curve referenced from other researchers. The results provide a new insight on the use of multi-source high resolution DEM in the monitoring of irrigation-triggered landslides.

  2. Effects of detector–source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors

    International Nuclear Information System (INIS)

    Ermis, E.E.; Celiktas, C.

    2012-01-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. 133 Ba and 207 Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. - Highlights: ► Effect of the source-detector distance on time spectra was investigated. ► Effect of the detector bias voltage variations on time spectra was examined. ► Optimum detector–source distance was determined for the best time resolution. ► Optimum detector bias voltage was determined for the best time resolution. ► 133 Ba and 207 Bi radioisotopes were used.

  3. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  4. Continuum variational and diffusion quantum Monte Carlo calculations

    International Nuclear Information System (INIS)

    Needs, R J; Towler, M D; Drummond, N D; Lopez RIos, P

    2010-01-01

    This topical review describes the methodology of continuum variational and diffusion quantum Monte Carlo calculations. These stochastic methods are based on many-body wavefunctions and are capable of achieving very high accuracy. The algorithms are intrinsically parallel and well suited to implementation on petascale computers, and the computational cost scales as a polynomial in the number of particles. A guide to the systems and topics which have been investigated using these methods is given. The bulk of the article is devoted to an overview of the basic quantum Monte Carlo methods, the forms and optimization of wavefunctions, performing calculations under periodic boundary conditions, using pseudopotentials, excited-state calculations, sources of calculational inaccuracy, and calculating energy differences and forces. (topical review)

  5. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  6. A high resolution gridded ionization chamber for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Vitale, E.R.

    1988-01-01

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  7. Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator with a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.

  8. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    transient (based on a bright supercontinuum light source) spectroscopies in a wide spectral range (200-1600 nm). Details and future combination of this innovative system with high-resolution synchrotron micro-diffraction at GSECARS for full characterization of materials in-situ at extreme conditions will be discussed.

  9. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    Science.gov (United States)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  10. Variational principles of continuum mechanics. Vol. 1. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Victor L. [Wayne State Univ., Detroit, MI (United States). Dept. of Mechanical Engineering

    2009-07-01

    The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky's work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. In this book, the first volume, the author covers the variational principles for systems with a finite number of degrees of freedom; the variational principles of thermodynamics; the basics of continuum mechanics; the variational principles for classical models of continuum mechanics, such as elastic and plastic bodies, and ideal and viscous fluids; and direct methods of calculus of variations. (orig.)

  11. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

    Science.gov (United States)

    Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul

    2016-06-01

    We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ˜0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ˜2 m with direct geolocation accuracy of process individual stereo pairs on a local workstation, the methods presented here were developed for large-scale batch processing in a high-performance computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

  12. Resolution dependence on phase extraction by the Hilbert transform in phase calibrated and dispersion compensated ultrahigh resolution spectrometer-based OCT

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Maria, Michael; Feuchter, Thomas

    2018-01-01

    -linearities lead together to an unknown chirp of the detected interferogram. One method to compensate for the chirp is to perform a pixel-wavenumber calibration versus phase that requires numerical extraction of the phase. Typically a Hilbert transform algorithm is employed to extract the optical phase versus...... wavenumber for calibration and dispersion compensation. In this work we demonstrate UHR-OCT at 1300 nm using a Super continuum source and highlight the resolution constraints in using the Hilbert transform algorithm when extracting the optical phase for calibration and dispersion compensation. We demonstrate...... that the constraints cannot be explained purely by the numerical errors in the data processing module utilizing the Hilbert transform but must be dictated by broadening mechanisms originating from the experimentally obtained interferograms....

  13. Initial results from the high resolution powder diffractometer HRPD at ISIS

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.; Johnson, M.W.

    1986-07-01

    The paper reviews the initial commissioning of the high resolution time-of-flight neutron powder diffractometer, HRPD, on the Spallation Neutron Source, ISIS, at the Rutherford Appleton Laboratory. Preliminary results have confirmed both intensity and resolution predictions indicating that (Δd/d) lies between 0.04% and 0.08% for all d-spacings between 0.2 and 5A. The scientific potential of this increased resolution over existing time-of-flight diffractometers has been demonstrated in the successful ab initio structure determination of an unknown inorganic material, FeAsO 4 , and the detailed study of subtle symmetry changes in NiO. The true instrumental resolution, however, has been observed in only a small number of experiments: sample broadening is often seen to play a dominant role in the determination of the peak shape, particularly at longer d-spacings. This leads to additional useful information about macroscopic properties, such as anisotropic crystallite size, strain distribution and sample homogeneity, but also results in a significant increase in complexity of peak-shape description and data-analysis strategy. (author)

  14. Mode structure and continuum damping of high-n toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.

    1992-02-01

    An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma

  15. Dosimetric advancement of high-dose-rate after-loading 192Ir source

    International Nuclear Information System (INIS)

    Zhang Shuxu; Li Wenhua; Xu Hairong

    2004-01-01

    High-dose-rate (HDR) 192 Ir source is a nuclide commonly used in the brachytherapy system. The basic dosimetry data of the near source area is usually measured by pin ion chambers or TLD techniques, but these methods have a lower spatial resolution than Electron spin resonance (ESR) dosimetry which has a spatial resolution of 156 μm, and the Monte Carlo photon transport simulations are taken as the golden standard of those measures. The precision in two-dimensional dose distribution measured by GafChromic film is reported to be 1.0%. In vivo dosimetry using TLD during HDR intracavitary after-loading brachytherapy is a good predictor of late rectal complications. The accuracy of magnetic resonance imaging (MRI) Fricke-gel dosimetry for three-dimensional dose distribution is about 2.5% with a spatial resolution of 1.56 mm. The optical computed tomography polymer gel dosimetry has a unique advance than MRI gel dosimetry

  16. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  17. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  18. Continuum mechanics

    CERN Document Server

    Spencer, A J M

    2004-01-01

    The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

  19. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  20. LEAP: Looking beyond pixels with continuous-space EstimAtion of Point sources

    Science.gov (United States)

    Pan, Hanjie; Simeoni, Matthieu; Hurley, Paul; Blu, Thierry; Vetterli, Martin

    2017-12-01

    Context. Two main classes of imaging algorithms have emerged in radio interferometry: the CLEAN algorithm and its multiple variants, and compressed-sensing inspired methods. They are both discrete in nature, and estimate source locations and intensities on a regular grid. For the traditional CLEAN-based imaging pipeline, the resolution power of the tool is limited by the width of the synthesized beam, which is inversely proportional to the largest baseline. The finite rate of innovation (FRI) framework is a robust method to find the locations of point-sources in a continuum without grid imposition. The continuous formulation makes the FRI recovery performance only dependent on the number of measurements and the number of sources in the sky. FRI can theoretically find sources below the perceived tool resolution. To date, FRI had never been tested in the extreme conditions inherent to radio astronomy: weak signal / high noise, huge data sets, large numbers of sources. Aims: The aims were (i) to adapt FRI to radio astronomy, (ii) verify it can recover sources in radio astronomy conditions with more accurate positioning than CLEAN, and possibly resolve some sources that would otherwise be missed, (iii) show that sources can be found using less data than would otherwise be required to find them, and (iv) show that FRI does not lead to an augmented rate of false positives. Methods: We implemented a continuous domain sparse reconstruction algorithm in Python. The angular resolution performance of the new algorithm was assessed under simulation, and with visibility measurements from the LOFAR telescope. Existing catalogs were used to confirm the existence of sources. Results: We adapted the FRI framework to radio interferometry, and showed that it is possible to determine accurate off-grid point-source locations and their corresponding intensities. In addition, FRI-based sparse reconstruction required less integration time and smaller baselines to reach a comparable

  1. High Spectral Resolution SOFIA/EXES Observations of C2H2 toward Orion IRc2

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean W. J.; Le Gal, Romane; Acharyya, Kinsuk; Huang, Xinchuan; Lee, Timothy J.; Herbst, Eric; deWitt, Curtis; Richter, Matt; Boogert, Adwin; McKelvey, Mark

    2018-03-01

    We present high spectral resolution observations from 12.96 to 13.33 microns toward Orion IRc2 using the mid-infrared spectrograph, Echelon-Cross-Echelle Spectrograph (EXES), at Stratospheric Observatory for Infrared Astronomy (SOFIA). These observations probe the physical and chemical conditions of the Orion hot core, which is sampled by a bright, compact, mid-infrared background continuum source in the region, IRc2. All 10 of the rovibrational C2H2 transitions expected in our spectral coverage are detected with high signal-to-noise ratios (S/Ns), yielding continuous coverage of the R-branch lines from J = 9–8 to J = 18–17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. The isotopologue, 13CCH2, is clearly detected with a high S/N. This enabled a direct measurement of the 12C/13C isotopic ratio for the Orion hot core of 14 ± 1 and an estimated maximum value of 21. We also detected several HCN rovibrational lines. The ortho and para C2H2 ladders are clearly separate, and tracing two different temperatures, 226 K and 164 K, respectively, with a non-equilibrium ortho to para ratio (OPR) of 1.7 ± 0.1. Additionally, the ortho and para V LSR values differ by about 1.8 ± 0.2 km s‑1, while the mean line widths differ by 0.7 ± 0.2 km s‑1, suggesting that these species are not uniformly mixed along the line of sight to IRc2. We propose that the abnormally low C2H2 OPR could be a remnant from an earlier, colder phase, before the density enhancement (now the hot core) was impacted by shocks generated from an explosive event 500 years ago.

  2. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    Science.gov (United States)

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  3. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  4. Quantifying uncertainty due to internal variability using high-resolution regional climate model simulations

    Science.gov (United States)

    Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.

    2015-12-01

    The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.

  5. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    associated reprocessing plants or uranium enrichment plants. These plants would have some characteristic visible features, which can be seen from lm-resolution satellite images. For example, from an initial study of these lm-resolution IKONOS images: 1) it is quite straightforward to identify characteristic features of a dedicated plutonium production reactor site: a cooling system of cooling towers or other water source, a high narrow stack, a reactor building, and the security fence; 2) it can reveal identifiable features of a reprocessing plant: a reprocessing building, and a very high stack (which would be unable to be discerned by the medium-resolution images); 3) it suggests common characteristics of a uranium-enriched gaseous diffusion plant (GDP) would include large-area processing buildings; cooling towers or a nearby river or lake; a nearby fossil-fuel power plant to supply the enrichment complex; and waste management and disposal facilities at some enrichment sites. However, for smaller scales such as gas centrifuge plants (CEP) which could be a preferred way for future proliferants, they will have much less obviously observable characteristic as a GDP have for satellite images. The identification of a CEP had to rely heavily on other collateral information; 4) the one-meter resolution images also show the observable features of a typical heavy water production plant using GS process: a row of exchange columns, the high tower for discharge pious H 2 S gas, and a number of water storage tanks. Facing this new challenge of widely available high-resolution satellite imagery, some states in the future could take deceptions and antisatellite-imaging countermeasures to make their dedicated nuclear facilities hide such as underground. However, the cost of such clandestine program would be substantially higher. Moreover, based on the experience of a few known underground nuclear facilities, there are still some observable characteristic features for high- resolution

  6. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  7. High-resolution stochastic integrated thermal–electrical domestic demand model

    International Nuclear Information System (INIS)

    McKenna, Eoghan; Thomson, Murray

    2016-01-01

    Highlights: • A major new version of CREST’s demand model is presented. • Simulates electrical and thermal domestic demands at high-resolution. • Integrated structure captures appropriate time-coincidence of variables. • Suitable for low-voltage network and urban energy analyses. • Open-source development in Excel VBA freely available for download. - Abstract: This paper describes the extension of CREST’s existing electrical domestic demand model into an integrated thermal–electrical demand model. The principle novelty of the model is its integrated structure such that the timing of thermal and electrical output variables are appropriately correlated. The model has been developed primarily for low-voltage network analysis and the model’s ability to account for demand diversity is of critical importance for this application. The model, however, can also serve as a basis for modelling domestic energy demands within the broader field of urban energy systems analysis. The new model includes the previously published components associated with electrical demand and generation (appliances, lighting, and photovoltaics) and integrates these with an updated occupancy model, a solar thermal collector model, and new thermal models including a low-order building thermal model, domestic hot water consumption, thermostat and timer controls and gas boilers. The paper reviews the state-of-the-art in high-resolution domestic demand modelling, describes the model, and compares its output with three independent validation datasets. The integrated model remains an open-source development in Excel VBA and is freely available to download for users to configure and extend, or to incorporate into other models.

  8. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    Science.gov (United States)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  9. High resolution measurements of solar induced chlorophyll fluorescence in the Fraunhofer oxigen bands

    Science.gov (United States)

    Mazzoni, M.; Agati, G.; Cecchi, G.; Toci, G.; Mazzinghi, P.

    2017-11-01

    Spectra of solar radiance reflected by leaves close to the Fraunhofer bands show the net contribution of chlorophyll fluorescence emission which adds to the reflected solar spectra. In a laboratory experiment, a low stray light, high resolution, 0.85 m double monochromator was used to filter radiation living leaves still attached to the plant in correspondence of the 687 nm and 760 nm O2 absorption bands. Reference spectra from a non fluorescent white reference were also acquired. Acquisition was performed by a Microchannel plate (MCP) intensified diode array with 512 elements. A fit of the spectral data outside the absorption lines allowed to retrieve the spectral base-line as a function of wavelength for the reference panel and the leaf. Reflectance functions were determined extending the Plascyck equation system to all the resolved lines of the oxygen absorption bands and using the base-lines for the continuum values. Fluorescence was deduced from the same equation system, using both the measured leaf and reference radiance spectra and the leaf reflectance fitting function.

  10. Flare continuum

    International Nuclear Information System (INIS)

    Robinson, R.D.

    1985-01-01

    This paper reviews the metre-wave continuum radiation which is related to similar solar emissions observed in the decimetre and centimetre spectral regions. This type of emission, known as Flare Contiuum, is related to the radio bursts of types II and IV. After summarising the history of the phenomenon and reviewing the observational work, the author discusses the various possible radiation mechanisms and their relation to the solar corona, the interplanetary medium and related regions. The theoretical topics covered include the role of high-energy particles, the trapping of such particles, gyro-synchrotron radiation, polarization and plasma interactions. (U.K.)

  11. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.

    Science.gov (United States)

    Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca

    2018-02-01

    Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.

  12. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  13. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  14. A high-resolution regional reanalysis for the European CORDEX region

    Science.gov (United States)

    Bollmeyer, Christoph; Keller, Jan; Ohlwein, Christian; Wahl, Sabrina

    2015-04-01

    Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Weather Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations, renewable energy applications). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on two regional reanalyses for Europe and Germany. The European reanalysis COSMO-REA6 matches the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). Nested into COSMO-REA6 is COSMO-REA2, a convective-scale reanalysis with 2km resolution for Germany. COSMO-REA6 comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-Interim data. COSMO-REA2 also uses the nudging scheme complemented by a latent heat nudging of radar information. The reanalysis data set currently covers 17 years (1997-2013) for COSMO-REA6 and 4 years (2010-2013) for COSMO-REA2 with a very large set of output variables and a high temporal output step of hourly 3D-fields and quarter-hourly 2D-fields. The evaluation

  15. The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations

    Science.gov (United States)

    Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.

    2018-05-01

    We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.

  16. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  17. The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope

    Science.gov (United States)

    Adam, R.; Adane, A.; Ade, P. A. R.; André, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Bracco, A.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; De Petris, M.; Désert, F.-X.; Doyle, S.; Driessen, E. F. C.; Evans, R.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Leggeri, J.-P.; Lestrade, J.-F.; Macías-Pérez, J. F.; Mauskopf, P.; Mayet, F.; Maury, A.; Monfardini, A.; Navarro, S.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Rigby, A.; Ritacco, A.; Romero, C.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2018-01-01

    Context. Millimetre-wave continuum astronomy is today an indispensable tool for both general astrophysics studies (e.g. star formation, nearby galaxies) and cosmology (e.g. cosmic microwave background and high-redshift galaxies). General purpose, large-field-of-view instruments are needed to map the sky at intermediate angular scales not accessible by the high-resolution interferometers (e.g. ALMA in Chile, NOEMA in the French Alps) and by the coarse angular resolution space-borne or ground-based surveys (e.g. Planck, ACT, SPT). These instruments have to be installed at the focal plane of the largest single-dish telescopes, which are placed at high altitude on selected dry observing sites. In this context, we have constructed and deployed a three-thousand-pixel dual-band (150 GHz and 260 GHz, respectively 2 mm and 1.15 mm wavelengths) camera to image an instantaneous circular field-of-view of 6.5 arcmin in diameter, and configurable to map the linear polarisation at 260 GHz. Aims: First, we are providing a detailed description of this instrument, named NIKA2 (New IRAM KID Arrays 2), in particular focussing on the cryogenics, optics, focal plane arrays based on Kinetic Inductance Detectors, and the readout electronics. The focal planes and part of the optics are cooled down to the nominal 150 mK operating temperature by means of an adhoc dilution refrigerator. Secondly, we are presenting the performance measured on the sky during the commissioning runs that took place between October 2015 and April 2017 at the 30-m IRAM telescope at Pico Veleta, near Granada (Spain). Methods: We have targeted a number of astronomical sources. Starting from beam-maps on primary and secondary calibrators we have then gone to extended sources and faint objects. Both internal (electronic) and on-the-sky calibrations are applied. The general methods are described in the present paper. Results: NIKA2 has been successfully deployed and commissioned, performing in-line with expectations. In

  18. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  19. Lyman continuum observations of solar flares

    Science.gov (United States)

    Machado, M. E.; Noyes, R. W.

    1978-01-01

    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  20. Estimating spatially distributed turbulent heat fluxes from high-resolution thermal imagery acquired with a UAV system.

    Science.gov (United States)

    Brenner, Claire; Thiem, Christina Elisabeth; Wizemann, Hans-Dieter; Bernhardt, Matthias; Schulz, Karsten

    2017-05-19

    In this study, high-resolution thermal imagery acquired with a small unmanned aerial vehicle (UAV) is used to map evapotranspiration (ET) at a grassland site in Luxembourg. The land surface temperature (LST) information from the thermal imagery is the key input to a one-source and two-source energy balance model. While the one-source model treats the surface as a single uniform layer, the two-source model partitions the surface temperature and fluxes into soil and vegetation components. It thus explicitly accounts for the different contributions of both components to surface temperature as well as turbulent flux exchange with the atmosphere. Contrary to the two-source model, the one-source model requires an empirical adjustment parameter in order to account for the effect of the two components. Turbulent heat flux estimates of both modelling approaches are compared to eddy covariance (EC) measurements using the high-resolution input imagery UAVs provide. In this comparison, the effect of different methods for energy balance closure of the EC data on the agreement between modelled and measured fluxes is also analysed. Additionally, the sensitivity of the one-source model to the derivation of the empirical adjustment parameter is tested. Due to the very dry and hot conditions during the experiment, pronounced thermal patterns developed over the grassland site. These patterns result in spatially variable turbulent heat fluxes. The model comparison indicates that both models are able to derive ET estimates that compare well with EC measurements under these conditions. However, the two-source model, with a more complex treatment of the energy and surface temperature partitioning between the soil and vegetation, outperformed the simpler one-source model in estimating sensible and latent heat fluxes. This is consistent with findings from prior studies. For the one-source model, a time-variant expression of the adjustment parameter (to account for the difference between

  1. The Virtuality Continuum Revisited

    NARCIS (Netherlands)

    Nijholt, Antinus; Traum, D.; Zhai, Sh.; Kellogg, W.

    2005-01-01

    We survey the themes and the aims of a workshop devoted to the state-of-the-art virtuality continuum. In this continuum, ranging from fully virtual to real physical environments, allowing for mixed, augmented and desktop virtual reality, several perspectives can be taken. Originally, the emphasis

  2. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    Science.gov (United States)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  3. A method for geological hazard extraction using high-resolution remote sensing

    International Nuclear Information System (INIS)

    Wang, Q J; Chen, Y; Bi, J T; Lin, Q Z; Li, M X

    2014-01-01

    Taking Yingxiu, the epicentre of the Wenchuan earthquake, as the study area, a method for geological disaster extraction using high-resolution remote sensing imagery was proposed in this study. A high-resolution Digital Elevation Model (DEM) was used to create mask imagery to remove interfering factors such as buildings and water at low altitudes. Then, the mask imagery was diced into several small parts to reduce the large images' inconsistency, and they were used as the sources to be classified. After that, vector conversion was done on the classified imagery in ArcGIS. Finally, to ensure accuracy, other interfering factors such as buildings at high altitudes, bare land, and land covered by little vegetation were removed manually. Because the method can extract geological hazards in a short time, it is of great importance for decision-makers and rescuers who need to know the degree of damage in the disaster area, especially within 72 hours after an earthquake. Therefore, the method will play an important role in decision making, rescue, and disaster response planning

  4. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  5. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  6. High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; James T. Johnson; Edward H. Seabury

    2012-07-01

    Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations

  7. [Uncertainty evaluation of the determination of toxic equivalent quantity of polychlorinated dibenzo-p-dioxins and dibenzofurans in soil by isotope dilution high resolution gas chromatography and high resolution mass spectrometry].

    Science.gov (United States)

    Du, Bing; Liu Aimin; Huang, Yeru

    2014-09-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil samples were analyzed by isotope dilution method with high resolution gas chromatography and high resolution mass spectrometry (ID-HRGC/HRMS), and the toxic equivalent quantity (TEQ) were calculated. The impacts of major source of measurement uncertainty are discussed, and the combined relative standard uncertainties were calculated for each 2, 3, 7, 8 substituted con- gener. Furthermore, the concentration, combined uncertainty and expanded uncertainty for TEQ of PCDD/Fs in a soil sample in I-TEF, WHO-1998-TEF and WHO-2005-TEF schemes are provided as an example. I-TEF, WHO-1998-TEF and WHO-2005-TEF are the evaluation schemes of toxic equivalent factor (TEF), and are all currently used to describe 2,3,7,8 sub- stituted relative potencies.

  8. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei.

    Science.gov (United States)

    Pauli, Wolfgang M; Nili, Amanda N; Tyszka, J Michael

    2018-04-17

    Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T 1 - and T 2 - weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain.

  9. Ultra High-Mass Resolution Paper Spray by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kevin D. Quinn

    2012-01-01

    Full Text Available Paper Spray Ionization is an atmospheric pressure ionization technique that utilizes an offline electro-osmotic flow to generate ions off a paper medium. This technique can be performed on a Bruker SolariX Fourier transform ion cyclotron resonance mass spectrometer by modifying the existing nanospray source. High-resolution paper spray spectra were obtained for both organic and biological samples to demonstrate the benefit of linking the technique with a high-resolution mass analyzer. Error values in the range 0.23 to 2.14 ppm were obtained for calf lung surfactant extract with broadband mass resolving power (m/Δm50% above 60,000 utilizing an external calibration standard.

  10. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  11. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  12. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  13. Comet Halley: An optical continuum study

    International Nuclear Information System (INIS)

    Hoban, S.M.

    1989-01-01

    From an analysis of narrowband CCD images of Comet Halley from 1986 January, March, and April, certain dust structures which are redder than the remainder of the dust coma have become apparent. Mie calculations suggest that this reddening is due to an enhancement of particles with sizes comparable to the observing wavelengths. Although the mass range derived from the calculations presented here is somewhat uncertain as a result of the limitations of Mie theory, these values are in the expected range derived from the calculations presented here is somewhat uncertain as a result of particle sizes which would be both sensitive to radiation pressure and significantly reddened with respect to the solar spectrum at the observing wavelengths. Thus, the red envelopes are plausibly the result of size sorting by solar radiation pressure. The red jets observed on 1986 January 10, March 1 and March 9 can then be explained by the enhanced dust flux at the jet sources, and the subsequent trapping of a relative excess of intermediate mass (i.e. red) particles into the jets which are visible in the continuum images. Analysis of narrowband photometry of the optical continuum of Comet Halley reveals no correlation between the color of the dust and heliocentric distance, phase angle, strength of the continuum or gas-to-dust ratio. The photometric data are thus consistent with a post-ejection sorting mechanism. Chemical inhomogeneities of the nucleus are therefore not necessary to explain the observed structure in the color of the dust in Comet Halley

  14. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  15. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  16. Mini-Sosie - a new concept in high-resolution seismic surveys

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, C J

    1977-12-01

    Mini-Sosie is a new approach to high-resolution reflection seismics using a nondynamite source. The basic principles is to use an ordinary earth tamper to produce a long duration pseudo-random input pulse train. Returning signals from suitable geophone arrays are decoded in real time by crosscorrelation with the reference signal recorded from a source-sensor attached to the tamper plate. Relatively weak signals are stacked until sufficient amplitude is obtained; most noise is phased out during the decoding process while in-phase seismic events are added, resulting in good signal-to-noise ratios. The resulting output is the standard field seismogram. The source is relatively quiet and surface damage is insignificant thereby avoiding environmental restrictions. Mini-Sosie is especially useful for shallow investigation to one second (two-way time) and has a wide range of applications from shallow oil and gas exploration, coal, and hard mineral exploration to hydrology and engineering studies.

  17. ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS.

    Science.gov (United States)

    Baars, Oliver; Morel, François M M; Perlman, David H

    2014-11-18

    Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).

  18. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  19. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  20. Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging.

    Science.gov (United States)

    Cui, Quan; Chen, Zhongyun; Liu, Qian; Zhang, Zhihong; Luo, Qingming; Fu, Ling

    2017-09-01

    In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.

  1. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    Science.gov (United States)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N

  2. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  3. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  4. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  5. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  6. High-resolution inner-shell spectroscopies of free atoms and molecules using soft-x-ray beamlines at the third-generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article reviews the current status of inner-shell spectroscopies of free atoms and molecules using high-resolution soft-x-ray monochromators installed in the soft-x-ray beamlines at the third-generation synchrotron radiation facilities. Beamlines and endstations devoted to atomic and molecular inner-shell spectroscopies and various types of experimental techniques, such as ion yield spectroscopy, resonant photoemission spectroscopy and multiple-coincidence momentum imaging, are described. Experimental results for K-shell excitation of Ne, O K-shell excitation of H 2 O and CO 2 , C K-shell excitation and ionization of CO 2 and B K-shell excitation of BF 3 , obtained at beamline 27SU of SPring-8 in Japan, are discussed as examples of atomic and molecular inner-shell spectroscopies using the third-generation synchrotron radiation sources. (topical review)

  7. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  8. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  9. High spatial resolution imaging of some of the distant 3CR galaxies

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Jones, J.

    1988-01-01

    Deep, high spatial resolution imaging of several sources from the high-redshift 3CR galaxy sample is presented. Very complex and unexpected morphologies are found. All the galaxies observed so far are resolved, and most of them show multimodal sources. Significant color differences for the components of each galaxy are measured. An interpretation in terms of gravitational amplification/lensing by foreground galaxies or galactic clusters is proposed for 3C 238, 3C 241, and 3C 305.1, 3C 238 being the strongest candidate. The complexity of the 3CR galaxies like 3C 356, which includes a compact object, and 3C 326.1 shows that they are not normal ellipticals and their use as standard candles to test for galaxy evolution is therefore questionable. 29 references

  10. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  11. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Wardlow, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Baes, M. [1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bourne, N.; Dye, S. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Bussmann, R. S. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Eales, S. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  12. Notes on continuum mechanics

    CERN Document Server

    Chaves, Eduardo W V

    2013-01-01

    This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately.   The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.

  13. Effects of detector-source distance and detector bias voltage variations on time resolution of general purpose plastic scintillation detectors.

    Science.gov (United States)

    Ermis, E E; Celiktas, C

    2012-12-01

    Effects of source-detector distance and the detector bias voltage variations on time resolution of a general purpose plastic scintillation detector such as BC400 were investigated. (133)Ba and (207)Bi calibration sources with and without collimator were used in the present work. Optimum source-detector distance and bias voltage values were determined for the best time resolution by using leading edge timing method. Effect of the collimator usage on time resolution was also investigated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  15. Design studies for a high-resolution, transportable neutron radiography/radioscopy system

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Micklich, B.J.; McMichael, G.E.

    1996-01-01

    A preliminary design has been developed for a high-resolution, transportable neutron radiology system (TNRS) concept. The primary system requirement is taken to be a thermal neutron flux of 10[sup 6] n/(cm[sup 2]-sec) with a L/D ratio of 100. The approach is to use an accelerator-driven neutron source, with a radiofrequency quadrupole (RFQ) as the primary accelerator component. Initial concepts for all of the major components of the system have been developed,and selected key parts have been examined further. An overview of the system design is presented, together with brief summaries of the concepts for the ion source, low energy beam transport (LEBT), RFQ, high energy beam transport (HEBT), target, moderator, collimator, image collection, power, cooling, vacuum, structure, robotics, control system, data analysis, transport vehicle, and site support. The use of trade studies for optimizing the TNRS concept are also described

  16. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  17. Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context

    Science.gov (United States)

    Goix, Sylvaine; Resongles, Eléonore; Point, David; Oliva, Priscia; Duprey, Jean Louis; de la Galvez, Erika; Ugarte, Lincy; Huayta, Carlos; Prunier, Jonathan; Zouiten, Cyril; Gardon, Jacques

    2013-12-01

    Monitoring atmospheric trace elements (TE) levels and tracing their source origin is essential for exposure assessment and human health studies. Epiphytic Tillandsia capillaris plants were used as bioaccumulator of TE in a complex polymetallic mining/smelting urban context (Oruro, Bolivia). Specimens collected from a pristine reference site were transplanted at a high spatial resolution (˜1 sample/km2) throughout the urban area. About twenty-seven elements were measured after a 4-month exposure, also providing new information values for reference material BCR482. Statistical power analysis for this biomonitoring mapping approach against classical aerosols surveys performed on the same site showed the better aptitude of T. Capillaris to detect geographical trend, and to deconvolute multiple contamination sources using geostatistical principal component analysis. Transplanted specimens in the vicinity of the mining and smelting areas were characterized by extreme TE accumulation (Sn > Ag > Sb > Pb > Cd > As > W > Cu > Zn). Three contamination sources were identified: mining (Ag, Pb, Sb), smelting (As, Sn) and road traffic (Zn) emissions, confirming results of previous aerosol survey.

  18. Source-space ICA for MEG source imaging.

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  19. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  20. Changing public stigma with continuum beliefs.

    Science.gov (United States)

    Corrigan, Patrick W; Schmidt, Annie; Bink, Andrea B; Nieweglowski, Katherine; Al-Khouja, Maya A; Qin, Sang; Discont, Steve

    2017-10-01

    Given the egregious effect of public stigma on the lives of people with mental illness, researchers have sought to unpack and identify effective components of anti-stigma programs. We expect to show that continuum messages have more positive effect on stigma and affirming attitudes (beliefs that people with mental illness recover and should be personally empowered) than categorical perspectives. The effect of continuum beliefs will interact with contact strategies. A total of 598 research participants were randomly assigned to online presentations representing one of the six conditions: three messages (continuum, categorical, or neutral control) by two processes (education or contact). Participants completed measures of continuum beliefs (as a manipulation check), stigma and affirming attitudes after viewing the condition. Continuum messages had significantly better effect on views that people with mental illness are "different," a finding that interacted with contact. Continuum messages also had better effects on recovery beliefs, once again an effect that interacted significantly with contact. Implications of these findings for improving anti-stigma programs are discussed.

  1. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    Directory of Open Access Journals (Sweden)

    Niels Buchhold

    2017-01-01

    Full Text Available This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD. The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels, the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force. This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability.

  2. High Resolution Topography of Polar Regions from Commercial Satellite Imagery, Petascale Computing and Open Source Software

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Kramer, WIlliam; Bauer, Greg; Bates, Brian; Williamson, Cathleen

    2017-04-01

    Surface topography is among the most fundamental data sets for geosciences, essential for disciplines ranging from glaciology to geodynamics. Two new projects are using sub-meter, commercial imagery licensed by the National Geospatial-Intelligence Agency and open source photogrammetry software to produce a time-tagged 2m posting elevation model of the Arctic and an 8m posting reference elevation model for the Antarctic. When complete, this publically available data will be at higher resolution than any elevation models that cover the entirety of the Western United States. These two polar projects are made possible due to three equally important factors: 1) open-source photogrammetry software, 2) petascale computing, and 3) sub-meter imagery licensed to the United States Government. Our talk will detail the technical challenges of using automated photogrammetry software; the rapid workflow evolution to allow DEM production; the task of deploying the workflow on one of the world's largest supercomputers; the trials of moving massive amounts of data, and the management strategies the team needed to solve in order to meet deadlines. Finally, we will discuss the implications of this type of collaboration for future multi-team use of leadership-class systems such as Blue Waters, and for further elevation mapping.

  3. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  4. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    Science.gov (United States)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  5. Erythrocyte orientation and lung conductivity analysis with a high temporal resolution FEM model for bioimpedance measurements

    NARCIS (Netherlands)

    Ulbrich, M.; Paluchowski, P.; Muehlsteff, J.; Leonhardt, S.

    2012-01-01

    Impedance cardiography (ICG) is a simple and cheap method to acquirehemodynamic parameters. In this work, the influence of three dynamic physiological sources has been analyzed using a model of the humanthorax with a high temporal resolution. Therefore, simulations havebeen conducted using the

  6. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High resolution far-infrared observations of the evolved H II region M16

    International Nuclear Information System (INIS)

    McBreen, B.; Fazio, G.G.; Jaffe, D.T.

    1982-01-01

    M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10 6 years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H 2 O maser is associated with this source, but no radio continuum emission has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment

  8. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  9. Montecarlo simulation for a new high resolution elemental analysis methodology

    International Nuclear Information System (INIS)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto

    1996-01-01

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2π solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  10. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  11. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  12. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  13. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  14. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    DEFF Research Database (Denmark)

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...

  15. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue.

    Science.gov (United States)

    Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A

    2015-09-30

    Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions

  16. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  17. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  18. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    Science.gov (United States)

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.

  19. The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared

    Science.gov (United States)

    Maillard, J. P.; Paumard, T.; Stolovy, S. R.; Rigaut, F.

    2004-08-01

    High spatial resolution observations in the 1 to 3.5 μm/ region of the Galactic Center source known historically as IRS 13 are presented. They include ground-based adaptive optics images in the H, Kp (2.12/0.4 μm) and L bands, HST-NICMOS data in filters between 1.1 and 2.2 μm, and integral field spectroscopic data from BEAR, an Imaging FTS, in the He I 2.06 μm/ and the Brγ line regions. Analysis of all these data provides a completely new picture of the main component, IRS 13E, which appears as a cluster of seven individual stars within a projected diameter of ˜0.5 arcsec (0.02 pc). The brightest sources, 13E1, 13E2, 13E3 which is detected as a binary, and 13E4, are all massive stars of different type. The star 13E1 is a luminous, blue object, with no detected emission line. 13E2 and 13E4 are two hot, high-mass emission line stars, 13E2 being at the WR stage and 13E4 a massive O-type star. In contrast, 13E3A and B are extremely red objects, proposed as other examples of dusty WR stars, like IRS 21 (Tanner et al. \\cite{tanner}). All these sources have a common westward proper motion (Ott et al. \\cite{ott2}) indicating they are bounded. Two other sources, detected after deconvolution of the AO images in the H and Kp bands, are also identified. One, that we call 13E5, is a red source similar to 13E3A and B, while the other one, 13E6, is probably a main sequence O star in front of the cluster. Considering this exceptional concentration of comoving massive hot stars, IRS 13E is proposed as the remaining core of a massive star cluster, which could harbor an intermediate-mass black hole (IMBH) (Portegies Zwart & McMillan \\cite{zwart2)} of ˜1300 M⊙. This detection plays in favor of a scenario, first suggested by Gerhard (\\cite{gerhard}), in which the helium stars and the other hot stars in the central parsec originate from the stripping of a massive cluster formed several tens of pc from the center. This cluster would have spiraled towards SgrA*, and IRS 13E

  20. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  1. Isotopic composition of neon in the galactic cosmic rays: a high resolution measurement

    International Nuclear Information System (INIS)

    Greiner, D.E.; Wiedenbeck, M.E.; Bieser, F.S.; Crawford, H.J.; Heckman, H.H.; Lindstrom, P.J.

    1979-06-01

    A measurement of the isotopic composition of galactic cosmic ray neon in the energy range 70 to 260 MeV/amu has been made using the U.C. Berkeley HKH instrument aboard ISEE-3. A combination of high resolution and good statistical accuracy makes possible a precise determination of the local interplanetary neon composition. We find 22 Ne/ 20 Ne = 0.64 +- 0.07 and 21 Ne/ 20 Ne < 0.30 in local interplanetary space. These ratios, when interpreted in using standard galactic propagation and solar modulation models, yield cosmic ray source abundances which are inconsistent with a solar-like source composition

  2. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  3. Security of highly radioactive sources in Nepal

    International Nuclear Information System (INIS)

    Shrestha, Kamal K.

    2010-01-01

    Subsequent to 9/11, concerned countries and UN agencies have taken especial interest in the security of highly radioactive sources throughout the world. The IAEA Nuclear Security Plan (2006-2009) consequently made as a result of UN Security Council Resolution 1540 is binding to all States. The Global Threat Reduction Initiative (GTRI) of the US and the Global Threat Reduction Programme (GTRP) of UK have assisted the four hospitals in Nepal having more than 1,000 Curies of radioactivity in their Cobalt-60 sources used for teletherapy. The physical upgrade of the security of the nuclear materials has also been launched in Nepal for prevention of theft with malicious intention or threats. In this presentation, the radioisotopes in Nepal that comes under different categories according to TECDOC-1355 of IAEA will be described. Problems and issues regarding the security and protection of radioactive sources at hospitals, academic and research institutions that could be prevalent in many developing counties too will be discussed by taking a case study of one of the cancer hospitals in Kathmandu valley. (author)

  4. Implementation and performance of an optical motion tracking system for high resolution brain PET imaging

    Science.gov (United States)

    Lopresti, B. J.; Russo, A.; Jones, W. F.; Fisher, T.; Crouch, D. G.; Altenburger, D. E.; Townsend, D. W.

    1999-12-01

    Head motion during PET scanning is widely regarded as a source of image degradation and resolution loss. Recent improvements in the spatial resolution of state-of-the-art tomographs may be compromised by patient motion during scanning, as these high resolution data will be increasingly susceptible to smaller movements of the head. The authors have developed an opto-electronic motion tracking system based on commercially-available technology that is capable of very accurate real-time measurements of the position and orientation of the patient's head. These positions are transformed to the reference frame of the PET scanner, and could potentially be used to provide motion correction of list-mode emission data on an event-by-event basis.

  5. High Brightness Neutron Source for Radiography. Final report

    International Nuclear Information System (INIS)

    Cremer, J.T.; Piestrup, Melvin A.; Gary, Charles K.; Harris, Jack L.; Williams, David J.; Jones, Glenn E.; Vainionpaa, J.H.; Fuller, Michael J.; Rothbart, George H.; Kwan, J.W.; Ludewigt, B.A.; Gough, R.A.; Reijonen, Jani; Leung, Ka-Ngo

    2008-01-01

    of yield of two orders of magnitude. The first fast neutron radiographic images were obtained using neutron cameras and a new fast neutron generator. These early images demonstrated the feasibility of using fast neutrons for imaging and penetrating thick objects of high density and imaging. Fast neutrons can be used to image low atomic number materials (e.g. plastics, explosives, lubricants and ceramics) that are shielded by high density materials (e.g. lead, tungsten and uranium). Fast neutron radiography could be used as a means to screen weapons for flaws and chemical stability. X-ray radiography can not easily do this. Fast neutron imaging is technically difficult and, consequently, a completely undeveloped market. Two of the generators were designed to have small source size and high brightness, ideal for fast-neutron imaging. With these generators we successfully used two fast neutron cameras: one developed by us, and another developed by a collaborator, Commonwealth Scientific and Industrial Research Organization, CSIRO. We have successfully used these cameras to obtain low resolution images of various objects such as pipe fittings filled with water and other mechanical objects. Higher resolution and contrast images are expected by decreasing the source size and increasing generator yield.

  6. High-heat tank safety issue resolution program plan. Revision 2

    International Nuclear Information System (INIS)

    Wang, O.S.

    1994-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank 241-C-106. The heat source of approximately 110,000 Btu/hr is the radioactive decay of the stored waste material (primarily 90 Sr) inadvertently transferred into the tank in the later 1960s. Currently, forced ventilation, with added water to promote thermal conductivity and evaporation cooling, is used for heat removal. The method is very effective and economical. At this time, the only viable solution identified to permanently resolve this safety issue is the removal of heat-generating waste in the tank. This solution is being aggressively pursued as the only remediation method to this safety issue, and tank 241-C-106 has been selected as the first single-shell tank for retrieval. The current cooling method and other alternatives are addressed in this program as means to mitigate this safety issue before retrieval. This program plan has three parts. The first part establishes program objectives and defines safety issue, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and other alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. A table of best-estimate schedules for the key tasks is also included in this program plan

  7. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  8. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  9. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    Science.gov (United States)

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  10. Obtaining high-resolution stage forecasts by coupling large-scale hydrologic models with sensor data

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.

    2017-12-01

    We investigate how "big" quantities of distributed sensor data can be coupled with a large-scale hydrologic model, in particular the National Water Model (NWM), to obtain hyper-resolution forecasts. The recent launch of the NWM provides a great example of how growing computational capacity is enabling a new generation of massive hydrologic models. While the NWM spans an unprecedented spatial extent, there remain many questions about how to improve forecast at the street-level, the resolution at which many stakeholders make critical decisions. Further, the NWM runs on supercomputers, so water managers who may have access to their own high-resolution measurements may not readily be able to assimilate them into the model. To that end, we ask the question: how can the advances of the large-scale NWM be coupled with new local observations to enable hyper-resolution hydrologic forecasts? A methodology is proposed whereby the flow forecasts of the NWM are directly mapped to high-resolution stream levels using Dynamical System Identification. We apply the methodology across a sensor network of 182 gages in Iowa. Of these sites, approximately one third have shown to perform well in high-resolution flood forecasting when coupled with the outputs of the NWM. The quality of these forecasts is characterized using Principal Component Analysis and Random Forests to identify where the NWM may benefit from new sources of local observations. We also discuss how this approach can help municipalities identify where they should place low-cost sensors to most benefit from flood forecasts of the NWM.

  11. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    Science.gov (United States)

    Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas

    2018-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.

  12. Divergence with gene flow across a speciation continuum of Heliconius butterflies.

    Science.gov (United States)

    Supple, Megan A; Papa, Riccardo; Hines, Heather M; McMillan, W Owen; Counterman, Brian A

    2015-09-24

    A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.

  13. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  14. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  15. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  16. VOXES: a high precision X-ray spectrometer for diffused sources with HAPG crystals in the 2–20 keV range

    Science.gov (United States)

    Scordo, A.; Curceanu, C.; Miliucci, M.; Shi, H.; Sirghi, F.; Zmeskal, J.

    2018-04-01

    Bragg spectroscopy is one of the best established experimental methods for high energy resolution X-ray measurements and has been widely used in several fields, going from fundamental physics to quantum mechanics tests, synchrotron radiation and X-FEL applications, astronomy, medicine and industry. However, this technique is limited to the measurement of photons produced from well collimated or point-like sources and becomes quite inefficient for photons coming from extended and diffused sources like those, for example, emitted in the exotic atoms radiative transitions. The VOXES project's goal is to realise a prototype of a high resolution and high precision X-ray spectrometer, using Highly Annealed Pyrolitic Graphite (HAPG) crystals in the Von Hamos configuration, working also for extended sources. The aim is to deliver a cost effective system having an energy resolution at the level of eV for X-ray energies from about 2 keV up to tens of keV, able to perform sub-eV precision measurements with non point-like sources. In this paper, the working principle of VOXES, together with first results, are presented.

  17. CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. I. ENVELOPE STRUCTURE REVEALED BY CARMA DUST CONTINUUM OBSERVATIONS

    International Nuclear Information System (INIS)

    Tobin, John J.; Stutz, Amelia M.; Henning, Thomas; Ragan, Sarah E.; Megeath, S. Thomas; Fischer, William J.; Ali, Babar; Stanke, Thomas; Manoj, P.; Calvet, Nuria; Hartmann, Lee

    2015-01-01

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ∼5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ ∝ R –2.5 . Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved

  18. The evolution of young HII regions. I. Continuum emission and internal dynamics

    Science.gov (United States)

    Klaassen, P. D.; Johnston, K. G.; Urquhart, J. S.; Mottram, J. C.; Peters, T.; Kuiper, R.; Beuther, H.; van der Tak, F. F. S.; Goddi, C.

    2018-04-01

    Context. High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M > 8 M⊙), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. Aim. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments. Methods: We present high-resolution ( 0.5″) ALMA observations of nine HII regions selected from the red MSX source survey with compact radio emission and bolometric luminosities greater than 104 L⊙. We focus on the initial presentation of the data, including initial results from the radio recombination line H29α, some complementary molecules, and the 256 GHz continuum emission. Results: Of the six (out of nine) regions with H29α detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J = 5 - 4)), often (but not always) finding the HII region had cleared its immediate vicinity of molecules. Conclusions: Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29α emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region. Table A.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130

  19. High-resolution far-infrared observations of the galactic center

    International Nuclear Information System (INIS)

    Harvey, P.M.; Campbell, M.F.; Hoffmann, W.F.

    1976-01-01

    A map at 53 μ with 17'' resolution and three-color observations at 53 μ, 100 μ, and 175 μ with approx.30'' beams of Sgr A are presented. Sagittarius A is resolved into two main sources, one associated with the cluster of strong 10 μ sources and another approx.45'' to the southwest coincident with a weak 10 μ source. The dust temperature peaks near the strong 10 μ sources, but the 100 μ and 175 μ fluxes and the far-infrared optical depth are greatest near the southwest source. The amount of dust required to explain the far-infrared emission is comparable to that observed in absorption in the near-infrared

  20. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...