WorldWideScience

Sample records for high-resolution comparative map

  1. A high-resolution comparative RH map of porcine chromosome (SSC) 2.

    NARCIS (Netherlands)

    Rattink, A.P.; Faivre, M.; Jungerius, B.J.; Groenen, M.A.M.; Harlizius, B.

    2001-01-01

    A high-resolution comparative map was constructed for porcine Chromosome (SSC) 2, where a QTL for back fat thickness (BFT) is located. A radiation hybrid (RH) map containing 33 genes and 25 microsatellite markers was constructed for this chromosome with a 3000-rad porcine RH panel. In total, 16

  2. Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat.

    Directory of Open Access Journals (Sweden)

    Haibin Wu

    Full Text Available The wax (glaucousness on wheat leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2 and non-glaucousness loci (Iw1 and Iw2. The non-glaucousness (Iw loci act as inhibitors of the glaucousness loci (W. High-resolution comparative genetic linkage maps of the wax inhibitors Iw1 originating from Triticum dicoccoides, and Iw2 from Aegilops tauschii were developed by comparative genomics analyses of Brachypodium, sorghum and rice genomic sequences corresponding to the syntenic regions of the Iw loci in wheat. Eleven Iw1 and eight Iw2 linked EST markers were developed and mapped to linkage maps on the distal regions of chromosomes 2BS and 2DS, respectively. The Iw1 locus mapped within a 0.96 cM interval flanked by the BE498358 and CA499581 EST markers that are collinear with 122 kb, 202 kb, and 466 kb genomic regions in the Brachypodium 5S chromosome, the sorghum 6S chromosome and the rice 4S chromosome, respectively. The Iw2 locus was located in a 4.1 to 5.4-cM interval in chromosome 2DS that is flanked by the CJ886319 and CJ519831 EST markers, and this region is collinear with a 2.3 cM region spanning the Iw1 locus on chromosome 2BS. Both Iw1 and Iw2 co-segregated with the BF474014 and CJ876545 EST markers, indicating they are most likely orthologs on 2BS and 2DS. These high-resolution maps can serve as a framework for chromosome landing, physical mapping and map-based cloning of the wax inhibitors in wheat.

  3. High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution

    Directory of Open Access Journals (Sweden)

    Rodolphe François

    2006-08-01

    Full Text Available Abstract Background Comparative mapping provides new insights into the evolutionary history of genomes. In particular, recent studies in mammals have suggested a role for segmental duplication in genome evolution. In some species such as Drosophila or maize, transposable elements (TEs have been shown to be involved in chromosomal rearrangements. In this work, we have explored the presence of interspersed repeats in regions of chromosomal rearrangements, using an updated high-resolution integrated comparative map among cattle, man and mouse. Results The bovine, human and mouse comparative autosomal map has been constructed using data from bovine genetic and physical maps and from FISH-mapping studies. We confirm most previous results but also reveal some discrepancies. A total of 211 conserved segments have been identified between cattle and man, of which 33 are new segments and 72 correspond to extended, previously known segments. The resulting map covers 91% and 90% of the human and bovine genomes, respectively. Analysis of breakpoint regions revealed a high density of species-specific interspersed repeats in the human and mouse genomes. Conclusion Analysis of the breakpoint regions has revealed specific repeat density patterns, suggesting that TEs may have played a significant role in chromosome evolution and genome plasticity. However, we cannot rule out that repeats and breakpoints accumulate independently in the few same regions where modifications are better tolerated. Likewise, we cannot ascertain whether increased TE density is the cause or the consequence of chromosome rearrangements. Nevertheless, the identification of high density repeat clusters combined with a well-documented repeat phylogeny should highlight probable breakpoints, and permit their precise dating. Combining new statistical models taking the present information into account should help reconstruct ancestral karyotypes.

  4. A high-resolution comparative map between pig chromosome 17 and human chromosomes 4, 8, and 20: Identification of synteny breakpoints

    DEFF Research Database (Denmark)

    Lahbib-Mansais, Yvette; Karlskov-Mortensen, Peter; Mompart, Florence

    2005-01-01

    We report on the construction of a high-resolution comparative map of porcine chromosome 17 (SSC17) focusing on evolutionary breakpoints with human chromosomes. The comparative map shows high homology with human chromosome 20 but suggests more limited homologies with other human chromosomes. SSC1...

  5. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  6. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  7. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  8. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  9. High resolution fire risk mapping in Italy

    Science.gov (United States)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  10. High-Resolution Geologic Mapping of Martian Terraced Fan Deposits

    Science.gov (United States)

    Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.

    2018-06-01

    This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.

  11. A gene-based high-resolution comparative radiation hybrid map as a framework for genome sequence assembly of a bovine chromosome 6 region associated with QTL for growth, body composition, and milk performance traits

    Directory of Open Access Journals (Sweden)

    Laurent Pascal

    2006-03-01

    Full Text Available Abstract Background A number of different quantitative trait loci (QTL for various phenotypic traits, including milk production, functional, and conformation traits in dairy cattle as well as growth and body composition traits in meat cattle, have been mapped consistently in the middle region of bovine chromosome 6 (BTA6. Dense genetic and physical maps and, ultimately, a fully annotated genome sequence as well as their mutual connections are required to efficiently identify genes and gene variants responsible for genetic variation of phenotypic traits. A comprehensive high-resolution gene-rich map linking densely spaced bovine markers and genes to the annotated human genome sequence is required as a framework to facilitate this approach for the region on BTA6 carrying the QTL. Results Therefore, we constructed a high-resolution radiation hybrid (RH map for the QTL containing chromosomal region of BTA6. This new RH map with a total of 234 loci including 115 genes and ESTs displays a substantial increase in loci density compared to existing physical BTA6 maps. Screening the available bovine genome sequence resources, a total of 73 loci could be assigned to sequence contigs, which were already identified as specific for BTA6. For 43 loci, corresponding sequence contigs, which were not yet placed on the bovine genome assembly, were identified. In addition, the improved potential of this high-resolution RH map for BTA6 with respect to comparative mapping was demonstrated. Mapping a large number of genes on BTA6 and cross-referencing them with map locations in corresponding syntenic multi-species chromosome segments (human, mouse, rat, dog, chicken achieved a refined accurate alignment of conserved segments and evolutionary breakpoints across the species included. Conclusion The gene-anchored high-resolution RH map (1 locus/300 kb for the targeted region of BTA6 presented here will provide a valuable platform to guide high-quality assembling and

  12. High-resolution mapping of motor vehicle carbon dioxide emissions

    Science.gov (United States)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  13. Clickstream Data Yields High-Resolution Maps of Science

    Science.gov (United States)

    Bollen, Johan; Van de Sompel, Herbert; Rodriguez, Marko A.; Balakireva, Lyudmila

    2009-01-01

    Background Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Methodology Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Conclusions Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data. PMID:19277205

  14. Clickstream data yields high-resolution maps of science.

    Science.gov (United States)

    Bollen, Johan; Van de Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.

  15. Clickstream data yields high-resolution maps of science.

    Directory of Open Access Journals (Sweden)

    Johan Bollen

    Full Text Available BACKGROUND: Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. METHODOLOGY: Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. CONCLUSIONS: Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.

  16. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  17. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile......-deformed copper, individual, almost dislocation-free subgrains are identified from high-intensity peaks and distinguished by their unique combination of orientation and elastic strain; dislocation walls manifest themselves as a smooth cloud of lower intensity. The elastic strain shows only minor variations within...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  18. EMODnet High Resolution Seabed Mapping - further developing a high resolution digital bathymetry for European seas

    Science.gov (United States)

    Schaap, D.; Schmitt, T.

    2017-12-01

    Access to marine data is a key issue for the EU Marine Strategy Framework Directive and the EU Marine Knowledge 2020 agenda and includes the European Marine Observation and Data Network (EMODnet) initiative. EMODnet aims at assembling European marine data, data products and metadata from diverse sources in a uniform way. The EMODnet Bathymetry project has developed Digital Terrain Models (DTM) for the European seas. These have been produced from survey and aggregated data sets that are indexed with metadata by adopting the SeaDataNet Catalogue services. SeaDataNet is a network of major oceanographic data centres around the European seas that manage, operate and further develop a pan-European infrastructure for marine and ocean data management. The latest EMODnet Bathymetry DTM release has a grid resolution of 1/8 arcminute and covers all European sea regions. Use has been made of circa 7800 gathered survey datasets and composite DTMs. Catalogues and the EMODnet DTM are published at the dedicated EMODnet Bathymetry portal including a versatile DTM viewing and downloading service. End December 2016 the Bathymetry project has been succeeded by EMODnet High Resolution Seabed Mapping (HRSM). This continues gathering of bathymetric in-situ data sets with extra efforts for near coastal waters and coastal zones. In addition Satellite Derived Bathymetry data are included to fill gaps in coverage of the coastal zones. The extra data and composite DTMs will increase the coverage of the European seas and its coastlines, and provide input for producing an EMODnet DTM with a common resolution of 1/16 arc minutes. The Bathymetry Viewing and Download service will be upgraded to provide a multi-resolution map and including 3D viewing. The higher resolution DTMs will also be used to determine best-estimates of the European coastline for a range of tidal levels (HAT, MHW, MSL, Chart Datum, LAT), thereby making use of a tidal model for Europe. Extra challenges will be `moving to the

  19. The high resolution mapping of the Venice Lagoon tidal network

    Science.gov (United States)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Bellafiore, Debora; Trincardi, Fabio

    2017-04-01

    One of the biggest challenges of the direct observation of the ocean is to achieve a high resolution mapping of its seafloor morphology and benthic habitats. So far, sonars have mapped just 0.05% of the ocean floor with less than ten-meter resolution. The recent efforts of the scientific community have been devoted towards the mapping of both Deep Ocean and very shallow coastal areas. Coastal and transitional environments in particular undergo strong morphological changes due to natural and anthropogenic pressure. Nowadays, only about 5% of the seafloor of these environments † have been mapped: the shallowness of these environments has prevented the use of underwater acoustics to reveal their morphological features. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present results and case studies of an extensive multibeam survey carried out in the Lagoon of Venice in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea with a surface of about 550 km2 and with an average depth of about 1 m. In the last century, the morphological and ecological properties of the lagoon changed dramatically: the surface of the salt marshes was reduced by 60% and some parts of the lagoon are deepening with a net sediment flux exiting from the inlets. Moreover, major engineering interventions are currently ongoing at the inlets (MOSE project). These changes at the inlets could affect substantially the lagoon environment. To understand and monitor the future evolution of the Lagoon of Venice, ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to collect high resolution (0.5 m) bathymetry of key study areas such as the tidal inlets and channels. Following a broad

  20. Mapping mountain meadow with high resolution and polarimetric SAR data

    International Nuclear Information System (INIS)

    Tian, Bangsen; Li, Zhen; Xu, Juan; Fu, Sitao; Liu, Jiuli

    2014-01-01

    This paper presents a method to map the large grassland in the eastern margin of the Tibetan Plateau with the high resolution polarimetric SAR (PolSAR) imagery. When PolSAR imagery is used for land cover classification, the brightness of a SAR image is affected by topography due to varying projection between ground and image coordinates. The objective of this paper is twofold: (1) we first extend the theory of SAR terrain correction to the polarimetric case, to utilize the entire available polarimetric signature, where correction is performed explicitly based on a matrix format like covariance matrix. (2) Next, the orthoectified PolSAR is applied to classify mountain meadow and investigate the potential of PolSAR in mapping grassland. In this paper, the gamma naught radiometric correction estimates the local illuminated area at each grid point in the radar geometry. Then, each element of the coherency matrix is divided by the local area to produce a polarimetric product. Secondly, the impact of radiometric correction upon classification accuracy is investigated. A supervised classification is performed on the orthorectified Radarsat-2 PolSAR to map the spatial distribution of meadow and evaluate monitoring capabilities of mountain meadow

  1. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    Science.gov (United States)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  2. Towards a Global High Resolution Peatland Map in 2020

    Science.gov (United States)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Joosten, Hans; Dommain, Rene; Margalef, Olga

    2015-04-01

    Some 3% of land area on planet Earth (approx. 4 million km2) is covered by peatlands. About 10% (~ 0.3 % of the land area) are drained and responsible for a disproportional 5 % of the global anthropogenic CO2 emissions (Victoria et al., 2012). Additionally, peatland drainage and degradation lead to land subsidence, soil degradation, water pollution, and enhanced susceptibility to fire (Holden et al., 2004; Joosten et al., 2012). The global importance of peatlands for carbon storage and climate change mitigation has currently been recognized in international policy - since 2008 organic soils are subject of discussion in the UN Framework Convention on Climate Change (UNFCCC) (Joosten, 2011). In May 2013 the European Parliament decided that the global post 2020 climate agreement should include the obligation to report emissions and removals from peatland drainage and rewetting. Implementation of such program, however, necessitates the rapid availability of reliable, comprehensive, high resolution, spatially explicit data on the extent and status of peatlands. For many reporting countries this requires an innovation in peatland mapping, i.e. the better and integrative use of novel, but already available methods and technologies. We developed an approach that links various science networks, methodologies and data bases, including those of peatland/landscape ecology for understanding where and how peatlands may occur, those of remote sensing for identifying possible locations, and those of pedology (legacy soil maps) and (palaeo-)ecology for ground truthing. Such integration of old field data, specialized knowledge, and modern RS and GIS technologies enables acquiring a rapid, comprehensive, detailed and rather reliable overview, even on a continental scale. We illustrate this approach with a high resolution overview of peatland distribution, area, status and greenhouse gas fluxes e.g. for the East African countries Rwanda, Burundi, Uganda and Zambia. Furthermore, we

  3. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    Science.gov (United States)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  4. COMPARATIVE ASSESSMENT OF VERY HIGH RESOLUTION SATELLITE AND AERIAL ORTHOIMAGERY

    Directory of Open Access Journals (Sweden)

    P. Agrafiotis

    2015-03-01

    Full Text Available This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO provided by NCMA S.A (Hellenic Cadastre from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  5. High-resolution lattice-spacing comparator using SR

    International Nuclear Information System (INIS)

    Zhang, Xiaowei; Sugiyama, Hiroshi; Ando, Masami

    2004-01-01

    A novel lattice spacing measurement using a high-resolution self-reference d-spacing comparator has been described. Self selection of monochromatic synchrotron x-rays by a monolithic double channel-cut-crystal monochromator (MDCM) comprising silicon 2,6,4 and 6,2,4 reflections may lead to a stable, highly-collimated and narrow bandwidth beam. Also if utilizing 2,6,4 and 6,2,4 Bragg planes of a silicon sample, the interval between two associated Bragg peaks for the X-rays with wavelength of 0.13438 nm can be extremely small, so that the diffraction angle can be determined with high precision and the traveling time from one peak to the other can be marvelously reduced by the order of at least three compared to the established classical methods such as the Bond method. Thus this so-called self-reference comparator method can dramatically save measurement time and provide an absolute measurement on the basis of the x-ray wavelength of the MDCM, therefore a lattice spacing measurement with uncertainty of 10 -8 , for the 1mm 2 area on a silicon crystal within measurement time of a few ten seconds and has been achieved. (author)

  6. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping

    International Nuclear Information System (INIS)

    Darling, E M

    2011-01-01

    Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.

  7. High resolution skin colorimetry, strain mapping and mechanobiology.

    Science.gov (United States)

    Devillers, C; Piérard-Franchimont, C; Schreder, A; Docquier, V; Piérard, G E

    2010-08-01

    Skin colours are notoriously different between individuals. They are governed by ethnicities and phototypes, and further influenced by a variety of factors including photoexposures and sustained mechanical stress. Indeed, mechanobiology is a feature affecting the epidermal melanization. High-resolution epiluminescence colorimetry helps in deciphering the effects of forces generated by Langer's lines or relaxed skin tension lines on the melanocyte activity. The same procedure shows a prominent laddering pattern of melanization in striae distensae contrasting with the regular honeycomb pattern in the surrounding skin.

  8. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  9. Accuracy assessment of cadastral maps using high resolution aerial photos

    Directory of Open Access Journals (Sweden)

    Alwan Imzahim

    2018-01-01

    Full Text Available A cadastral map is a map that shows the boundaries and ownership of land parcels. Some cadastral maps show additional details, such as survey district names, unique identifying numbers for parcels, certificate of title numbers, positions of existing structures, section or lot numbers and their respective areas, adjoining and adjacent street names, selected boundary dimensions and references to prior maps. In Iraq / Baghdad Governorate, the main problem is that the cadastral maps are georeferenced to a local geodetic datum known as Clark 1880 while the widely used reference system for navigation purpose (GPS and GNSS and uses Word Geodetic System 1984 (WGS84 as a base reference datum. The objective of this paper is to produce a cadastral map with scale 1:500 (metric scale by using aerial photographs 2009 with high ground spatial resolution 10 cm reference WGS84 system. The accuracy assessment for the cadastral maps updating approach to urban large scale cadastral maps (1:500-1:1000 was ± 0.115 meters; which complies with the American Social for Photogrammetry and Remote Sensing Standards (ASPRS.

  10. High resolution hybrid optical and acoustic sea floor maps (Invited)

    Science.gov (United States)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final

  11. A system and method for online high-resolution mapping of gastric slow-wave activity.

    Science.gov (United States)

    Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2014-11-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.

  12. Estimated Depth Maps of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Estimated shallow-water, depth maps were produced using rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations in the...

  13. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    Science.gov (United States)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  14. Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps

    Science.gov (United States)

    Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios

    2017-09-01

    The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.

  15. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  16. High-resolution hyperspectral ground mapping for robotic vision

    Science.gov (United States)

    Neuhaus, Frank; Fuchs, Christian; Paulus, Dietrich

    2018-04-01

    Recently released hyperspectral cameras use large, mosaiced filter patterns to capture different ranges of the light's spectrum in each of the camera's pixels. Spectral information is sparse, as it is not fully available in each location. We propose an online method that avoids explicit demosaicing of camera images by fusing raw, unprocessed, hyperspectral camera frames inside an ego-centric ground surface map. It is represented as a multilayer heightmap data structure, whose geometry is estimated by combining a visual odometry system with either dense 3D reconstruction or 3D laser data. We use a publicly available dataset to show that our approach is capable of constructing an accurate hyperspectral representation of the surface surrounding the vehicle. We show that in many cases our approach increases spatial resolution over a demosaicing approach, while providing the same amount of spectral information.

  17. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available the extent of the mine workings. Two 94 m profiles (tied to boreholes) were surveyed using a sledgehammer source. Processing was optimized to image the shallow reflections. The refraction seismic models and stacked time sections were compared and integrated...

  18. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    Directory of Open Access Journals (Sweden)

    Francisco Eugenio

    2017-11-01

    Full Text Available Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2, can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  19. High-resolution mapping of European fishing pressure on the benthic habitats

    DEFF Research Database (Denmark)

    Eigaard, Ole Ritzau; Bastardie, Francois; Hintzen, Niels T.

    effort. Consequently, most logbook information is not well suited for quantitative estimation of seafloor impact (swept area and impact severity) of the different gears and trips. We present a method to overcome this information deficiency of official statistics and develop high-resolution large......) and gear width estimates were assigned to individual interpolated vessel tracks based on VMS data. The outcome was European wide highresolution fishing intensity maps (total yearly swept area within grid cells of 1*1 minutes longitude and latitude) for 2010, 2011 and 2012. Finally the high-resolution...... fishing pressure maps were overlaid with existing marine habitat maps to identify areas of potential ecosystem service conflicts...

  20. Machine vision-based high-resolution weed mapping and patch-sprayer performance simulation

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    1999-01-01

    An experimental machine vision-based patch-sprayer was developed. This sprayer was primarily designed to do real-time weed density estimation and variable herbicide application rate control. However, the sprayer also had the capability to do high-resolution weed mapping if proper mapping techniques

  1. Quantification of the Arrhythmogenic Effects of Spontaneous Atrial Extrasystole Using High-Resolution Epicardial Mapping.

    Science.gov (United States)

    Teuwen, Christophe P; Kik, Charles; van der Does, Lisette J M E; Lanters, Eva A H; Knops, Paul; Mouws, Elisabeth M J P; Bogers, Ad J J C; de Groot, Natasja M S

    2018-01-01

    Atrial extrasystoles (AES) can initiate atrial fibrillation. However, the impact of spontaneous AES on intra-atrial conduction is unknown. The aims of this study were to examine conduction disorders provoked by AES and to correlate these conduction differences with patient characteristics, mapping locations, and type of AES. High-resolution epicardial mapping (electrodes N=128 or N=192; interelectrode distance, 2 mm) of the entire atrial surface was performed in patients (N=164; 69.5% male; age 67.2±10.5 years) undergoing open-chest cardiac surgery. AES were classified as premature, aberrant, or prematurely aberrant. Conduction delay and conduction block were quantified during sinus rhythm and AES and subsequently compared. Median incidence of conduction delay and conduction block during sinus rhythm was 1.2% (interquartile, 0%-2.3%) and 0.4% (interquartile, 0%-2.1%). In comparison, the median incidence of conduction delay and conduction block during 339 AES was respectively 2.8% (interquartile, 1.3%-4.6%) and 2.2% (interquartile, 0.3%-5.1%) and differed between the types of AES (prematurely aberrant>aberrant>premature). The degree of prematurity was not associated with a higher incidence of conduction disorders ( P >0.05). In contrast, a higher degree of aberrancy was associated with a higher incidence of conduction disorders; AES emerging as epicardial breakthrough provoked most conduction disorders ( P ≥0.002). AES caused most conduction disorders in patients with diabetes mellitus and left atrial dilatation ( P <0.05). Intraoperative high-resolution epicardial mapping showed that conduction disorders are mainly provoked by prematurely aberrant AES, particularly in patients with left atrial dilation and diabetes mellitus or emerging as epicardial breakthrough. © 2017 American Heart Association, Inc.

  2. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  3. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  4. High Resolution Population Maps for Low Income Nations: Combining Land Cover and Census in East Africa

    Science.gov (United States)

    Tatem, Andrew J.; Noor, Abdisalan M.; von Hagen, Craig; Di Gregorio, Antonio; Hay, Simon I.

    2007-01-01

    Background Between 2005 and 2050, the human population is forecast to grow by 2.7 billion, with the vast majority of this growth occurring in low income countries. This growth is likely to have significant social, economic and environmental impacts, and make the achievement of international development goals more difficult. The measurement, monitoring and potential mitigation of these impacts require high resolution, contemporary data on human population distributions. In low income countries, however, where the changes will be concentrated, the least information on the distribution of population exists. In this paper we investigate whether satellite imagery in combination with land cover information and census data can be used to create inexpensive, high resolution and easily-updatable settlement and population distribution maps over large areas. Methodology/Principal Findings We examine various approaches for the production of maps of the East African region (Kenya, Uganda, Burundi, Rwanda and Tanzania) and where fine resolution census data exists, test the accuracies of map production approaches and existing population distribution products. The results show that combining high resolution census, settlement and land cover information is important in producing accurate population distribution maps. Conclusions We find that this semi-automated population distribution mapping at unprecedented spatial resolution produces more accurate results than existing products and can be undertaken for as little as $0.01 per km2. The resulting population maps are a product of the Malaria Atlas Project (MAP: http://www.map.ox.ac.uk) and are freely available. PMID:18074022

  5. High resolution population maps for low income nations: combining land cover and census in East Africa.

    Directory of Open Access Journals (Sweden)

    Andrew J Tatem

    2007-12-01

    Full Text Available Between 2005 and 2050, the human population is forecast to grow by 2.7 billion, with the vast majority of this growth occurring in low income countries. This growth is likely to have significant social, economic and environmental impacts, and make the achievement of international development goals more difficult. The measurement, monitoring and potential mitigation of these impacts require high resolution, contemporary data on human population distributions. In low income countries, however, where the changes will be concentrated, the least information on the distribution of population exists. In this paper we investigate whether satellite imagery in combination with land cover information and census data can be used to create inexpensive, high resolution and easily-updatable settlement and population distribution maps over large areas.We examine various approaches for the production of maps of the East African region (Kenya, Uganda, Burundi, Rwanda and Tanzania and where fine resolution census data exists, test the accuracies of map production approaches and existing population distribution products. The results show that combining high resolution census, settlement and land cover information is important in producing accurate population distribution maps.We find that this semi-automated population distribution mapping at unprecedented spatial resolution produces more accurate results than existing products and can be undertaken for as little as $0.01 per km(2. The resulting population maps are a product of the Malaria Atlas Project (MAP: http://www.map.ox.ac.uk and are freely available.

  6. Land use/land cover mapping using multi-scale texture processing of high resolution data

    Science.gov (United States)

    Wong, S. N.; Sarker, M. L. R.

    2014-02-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.

  7. Land use/land cover mapping using multi-scale texture processing of high resolution data

    International Nuclear Information System (INIS)

    Wong, S N; Sarker, M L R

    2014-01-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road

  8. GENERATION OF HIGH RESOLUTION AND HIGH PRECISION ORTHORECTIFIED ROAD IMAGERY FROM MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Sakamoto

    2012-07-01

    Full Text Available In this paper, a novel technique to generate a high resolution and high precision Orthorectified Road Imagery (ORI by using spatial information acquired from a Mobile Mapping System (MMS is introduced. The MMS was equipped with multiple sensors such as GPS, IMU, odometer, 2-6 digital cameras and 2-4 laser scanners. In this study, a Triangulated Irregular Network (TIN based approach, similar to general aerial photogrammetry, was adopted to build a terrain model in order to generate ORI with high resolution and high geometric precision. Compared to aerial photogrammetry, there are several issues that are needed to be addressed. ORI is generated by merging multiple time sequence images of a short section. Hence, the influence of occlusion due to stationary objects, such as telephone poles, trees, footbridges, or moving objects, such as vehicles, pedestrians are very significant. Moreover, influences of light falloff at the edges of cameras, tone adjustment among images captured from different cameras or a round trip data acquisition of the same path, and time lag between image exposure and laser point acquisition also need to be addressed properly. The proposed method was applied to generate ORI with 1 cm resolution, from the actual MMS data sets. The ORI generated by the proposed technique was more clear, occlusion free and with higher resolution compared to the conventional orthorectified coloured point cloud imagery. Moreover, the visual interpretation of road features from the ORI was much easier. In addition, the experimental results also validated the effectiveness of proposed radiometric corrections. In occluded regions, the ORI was compensated by using other images captured from different angles. The validity of the image masking process, in the occluded regions, was also ascertained.

  9. New approaches to high-resolution mapping of marine vertical structures.

    Science.gov (United States)

    Robert, Katleen; Huvenne, Veerle A I; Georgiopoulou, Aggeliki; Jones, Daniel O B; Marsh, Leigh; D O Carter, Gareth; Chaumillon, Leo

    2017-08-21

    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures.

  10. Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network

    Science.gov (United States)

    Mukashema, A.; Veldkamp, A.; Vrieling, A.

    2014-12-01

    African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.

  11. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  12. Monitoring microstructural evolution in-situ during cyclic deformation by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika Martina; Thiel, Felix; Fischer, Torben

    2017-01-01

    The recently developed synchrotron technique High Resolution Reciprocal Space Mapping (HRRSM) is used to characterize the deformation structures evolving during cyclic deformation of commercially pure, polycrystalline aluminium AA1050. Insight into the structural reorganization within single grains...... is gained by in-situ monitoring of the microstructural evolution during cyclic deformation. By HRRSM, a large number of individual subgrains can be resolved within individual grains in the bulk of polycrystalline specimens and their fate, their individual orientation and elastic stresses, tracked during...

  13. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  14. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.

    Science.gov (United States)

    Maynard, Jonathan J; Karl, Jason W

    2017-01-01

    ) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.

  15. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    Science.gov (United States)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  16. High resolution mapping of urban areas using SPOT-5 images and ancillary data

    Directory of Open Access Journals (Sweden)

    Elif Sertel

    2015-08-01

    Full Text Available This research aims to propose new rule sets to be used for object based classification of SPOT-5 images to accurately create detailed urban land cover/use maps. In addition to SPOT-5 satellite images, Normalized Difference Vegetation Index (NDVI and Normalized Difference Water Index (NDWI maps, cadastral maps, Openstreet maps, road maps and Land Cover maps, were also integrated into classification to increase the accuracy of resulting maps. Gaziantep city, one of the highly populated cities of Turkey with different landscape patterns was selected as the study area. Different rule sets involving spectral, spatial and geometric characteristics were developed to be used for object based classification of 2.5 m resolution Spot-5 satellite images to automatically create urban map of the region. Twenty different land cover/use classes obtained from European Urban Atlas project were applied and an automatic classification approach was suggested for high resolution urban map creation and updating. Integration of different types of data into the classification decision tree increased the performance and accuracy of the suggested approach. The accuracy assessment results illustrated that with the usage of newly proposed rule set algorithms in object-based classification, urban areas represented with seventeen different sub-classes could be mapped with 94 % or higher overall accuracy.

  17. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    Science.gov (United States)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  18. A novel intra-operative, high-resolution atrial mapping approach.

    Science.gov (United States)

    Yaksh, Ameeta; van der Does, Lisette J M E; Kik, Charles; Knops, Paul; Oei, Frans B S; van de Woestijne, Pieter C; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S

    2015-12-01

    A new technique is demonstrated for extensive high-resolution intra-operative atrial mapping that will facilitate the localization of atrial fibrillation (AF) sources and identification of the substrate perpetuating AF. Prior to the start of extra-corporal circulation, a 8 × 24-electrode array (2-mm inter-electrode distance) is placed subsequently on all the right and left epicardial atrial sites, including Bachmann's bundle, for recording of unipolar electrograms during sinus rhythm and (induced) AF. AF is induced by high-frequency pacing at the right atrial free wall. A pacemaker wire stitched to the right atrium serves as a reference signal. The indifferent pole is connected to a steal wire fixed to subcutaneous tissue. Electrograms are recorded by a computerized mapping system and, after amplification (gain 1000), filtering (bandwidth 0.5-400 Hz), sampling (1 kHz) and analogue to digital conversion (16 bits), automatically stored on hard disk. During the mapping procedure, real-time visualization secures electrogram quality. Analysis will be performed offline. This technique was performed in 168 patients of 18 years and older, with coronary and/or structural heart disease, with or without AF, electively scheduled for cardiac surgery and a ventricular ejection fraction above 40 %. The mean duration of the entire mapping procedure including preparation time was 9 ± 2 min. Complications related to the mapping procedure during or after cardiac surgery were not observed. We introduce the first epicardial atrial mapping approach with a high resolution of ≥1728 recording sites which can be performed in a procedure time of only 9±2 mins. This mapping technique can potentially identify areas responsible for initiation and persistence of AF and hopefully can individualize both diagnosis and therapy of AF.

  19. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  20. High-resolution YAC-cosmid-STS map of human chromosome 13.

    Science.gov (United States)

    Cayanis, E; Russo, J J; Kalachikov, S; Ye, X; Park, S H; Sunjevaric, I; Bonaldo, M F; Lawton, L; Venkatraj, V S; Schon, E; Soares, M B; Rothstein, R; Warburton, D; Edelman, I S; Zhang, P; Efstratiadis, A; Fischer, S G

    1998-01-01

    We have assembled a high-resolution physical map of human chromosome 13 DNA (approximately 114 Mb) from hybridization, PCR, and FISH mapping data using a specifically designed set of computer programs. Although the mapping of 13p is limited, 13q (approximately 98 Mb) is covered by an almost continuous contig of 736 YACs aligned to 597 contigs of cosmids. Of a total of 10,789 cosmids initially selected from a chromosome 13-specific cosmid library (16,896 colonies) using inter-Alu PCR probes from the YACs and probes for markers mapped to chromosome 13, 511 were assembled in contigs that were established from cross-hybridization relationships between the cosmids. The 13q YAC-cosmid map was annotated with 655 sequence tagged sites (STSs) with an average spacing of 1 STS per 150 kb. This set of STSs, each identified by a D number and cytogenetic location, includes database markers (198), expressed sequence tags (93), and STSs generated by sequencing of the ends of cosmid inserts (364). Additional annotation has been provided by positioning 197 cosmids mapped by FISH on 13q. The final (comprehensive) map, a list of STS primers, and raw data used in map assembly are available at our Web site (genome1.ccc.columbia.edu/ approximately genome/) and can serve as a resource to facilitate accurate localization of additional markers, provide substrates for sequencing, and assist in the discovery of chromosome 13 genes associated with hereditary diseases.

  1. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    International Nuclear Information System (INIS)

    Vernardos, G.; Fluke, C. J.; Croton, D.; Bate, N. F.

    2014-01-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/

  2. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    Energy Technology Data Exchange (ETDEWEB)

    Vernardos, G.; Fluke, C. J.; Croton, D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria, 3122 (Australia); Bate, N. F. [Sydney Institute for Astronomy, School of Physics, A28, University of Sydney, NSW, 2006 (Australia)

    2014-03-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy, finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/.

  3. High-resolution mapping and ablation of recurrent left lateral accessory pathway conduction

    Directory of Open Access Journals (Sweden)

    Francesco Solimene, MD

    2017-08-01

    Full Text Available Proper localization of the anatomical target during ablation of the accessory pathways (AP and the ability to detect clear AP potentials on the ablation catheter are crucial for successful AP ablation. We report a case of recurring AP conduction that was finally eliminated using a novel ablation catheter equipped with high-resolution mini-electrodes. Smaller and closer electrodes result in high mapping resolution with less signal averaging and cancellation effects. Owing to improved sensitivity, the new catheter seems effective in detecting fragmented and high frequency signals, thus allowing more effective radiofrequency application and improving ablation success.

  4. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly.

    Science.gov (United States)

    Bartholomé, Jérôme; Mandrou, Eric; Mabiala, André; Jenkins, Jerry; Nabihoudine, Ibouniyamine; Klopp, Christophe; Schmutz, Jeremy; Plomion, Christophe; Gion, Jean-Marc

    2015-06-01

    Genetic maps are key tools in genetic research as they constitute the framework for many applications, such as quantitative trait locus analysis, and support the assembly of genome sequences. The resequencing of the two parents of a cross between Eucalyptus urophylla and Eucalyptus grandis was used to design a single nucleotide polymorphism (SNP) array of 6000 markers evenly distributed along the E. grandis genome. The genotyping of 1025 offspring enabled the construction of two high-resolution genetic maps containing 1832 and 1773 markers with an average marker interval of 0.45 and 0.5 cM for E. grandis and E. urophylla, respectively. The comparison between genetic maps and the reference genome highlighted 85% of collinear regions. A total of 43 noncollinear regions and 13 nonsynthetic regions were detected and corrected in the new genome assembly. This improved version contains 4943 scaffolds totalling 691.3 Mb of which 88.6% were captured by the 11 chromosomes. The mapping data were also used to investigate the effect of population size and number of markers on linkage mapping accuracy. This study provides the most reliable linkage maps for Eucalyptus and version 2.0 of the E. grandis genome. © 2014 CIRAD. New Phytologist © 2014 New Phytologist Trust.

  5. A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome

    Science.gov (United States)

    Kou, Qinghe; Jiang, Jiao; Guo, Shaogui; Zhang, Haiying; Hou, Wenju; Zou, Xiaohua; Sun, Honghe; Gong, Guoyi; Levi, Amnon; Xu, Yong

    2012-01-01

    As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits. PMID:22247776

  6. TRANSFER OF TECHNOLOGY FOR CADASTRAL MAPPING IN TAJIKISTAN USING HIGH RESOLUTION SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    R. Kaczynski

    2012-07-01

    Full Text Available European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m

  7. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    Science.gov (United States)

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  8. Comparison of the large-scale radon risk map for southern Belgium with results of high resolution surveys

    International Nuclear Information System (INIS)

    Zhu, H.-C.; Charlet, J.M.; Poffijn, A.

    2000-01-01

    A large-scale radon survey consisting of long-term measurements in about 5200 singe-family houses in the southern part of Belgium was carried from 1995 to 1999. A radon risk map for the region was produced using geostatistical and GIS approaches. Some communes or villages situated within high risk areas were chosen for detailed surveys. A high resolution radon survey with about 330 measurements was performed in half part of the commune of Burg-Reuland. Comparison of radon maps on quite different scales shows that the general Rn risk map has similar pattern as the radon map for the detailed study area. Another detailed radon survey in the village of Hatrival, situated in a high radon area, found very high proportion of houses with elevated radon concentrations. The results of this detailed survey are comparable to the expectation for high risk areas on the large-scale radon risk map. The good correspondence between the findings of the general risk map and the analysis of the limited detailed surveys, suggests that the large-scale radon risk map is likely reliable. (author)

  9. Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska

    Directory of Open Access Journals (Sweden)

    Daniel Clewley

    2015-06-01

    Full Text Available As the largest natural source of methane, wetlands play an important role in the carbon cycle. High-resolution maps of wetland type and extent are required to quantify wetland responses to climate change. Mapping northern wetlands is particularly important because of a disproportionate increase in temperatures at higher latitudes. Synthetic aperture radar data from a spaceborne platform can be used to map wetland types and dynamics over large areas. Following from earlier work by Whitcomb et al. (2009 using Japanese Earth Resources Satellite (JERS-1 data, we applied the “random forests” classification algorithm to variables from L-band ALOS PALSAR data for 2007, topographic data (e.g., slope, elevation and locational information (latitude, longitude to derive a map of vegetated wetlands in Alaska, with a spatial resolution of 50 m. We used the National Wetlands Inventory and National Land Cover Database (for upland areas to select training and validation data and further validated classification results with an independent dataset that we created. A number of improvements were made to the method of Whitcomb et al. (2009: (1 more consistent training data in upland areas; (2 better distribution of training data across all classes by taking a stratified random sample of all available training pixels; and (3 a more efficient implementation, which allowed classification of the entire state as a single entity (rather than in separate tiles, which eliminated discontinuities at tile boundaries. The overall accuracy for discriminating wetland from upland was 95%, and the accuracy at the level of wetland classes was 85%. The total area of wetlands mapped was 0.59 million km2, or 36% of the total land area of the state of Alaska. The map will be made available to download from NASA’s wetland monitoring website.

  10. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays

    DEFF Research Database (Denmark)

    Buus, Søren; Rockberg, Johan; Forsström, Björn

    2012-01-01

    Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning...... against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high......-resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against...

  11. High-resolution Self-Organizing Maps for advanced visualization and dimension reduction.

    Science.gov (United States)

    Saraswati, Ayu; Nguyen, Van Tuc; Hagenbuchner, Markus; Tsoi, Ah Chung

    2018-05-04

    Kohonen's Self Organizing feature Map (SOM) provides an effective way to project high dimensional input features onto a low dimensional display space while preserving the topological relationships among the input features. Recent advances in algorithms that take advantages of modern computing hardware introduced the concept of high resolution SOMs (HRSOMs). This paper investigates the capabilities and applicability of the HRSOM as a visualization tool for cluster analysis and its suitabilities to serve as a pre-processor in ensemble learning models. The evaluation is conducted on a number of established benchmarks and real-world learning problems, namely, the policeman benchmark, two web spam detection problems, a network intrusion detection problem, and a malware detection problem. It is found that the visualization resulted from an HRSOM provides new insights concerning these learning problems. It is furthermore shown empirically that broad benefits from the use of HRSOMs in both clustering and classification problems can be expected. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Detection of a weak meddy-like anomaly from high-resolution satellite SST maps

    Directory of Open Access Journals (Sweden)

    Mikhail Emelianov

    2012-09-01

    Full Text Available Despite the considerable impact of meddies on climate through the long-distance transport of properties, a consistent observation of meddy generation and propagation in the ocean is rather elusive. Meddies propagate at about 1000 m below the ocean surface, so satellite sensors are not able to detect them directly and finding them in the open ocean is more fortuitous than intentional. However, a consistent census of meddies and their paths is required in order to gain knowledge about their role in transporting properties such as heat and salt. In this paper we propose a new methodology for processing high-resolution sea surface temperature maps in order to detect meddy-like anomalies in the open ocean on a near-real-time basis. We present an example of detection, involving an atypical meddy-like anomaly that was confirmed as such by in situ measurements.

  13. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Bakker, Erin; Achenbach, Ute; Bakker, Jeroen; van Vliet, Joke; Peleman, Johan; Segers, Bart; van der Heijden, Stefan; van der Linde, Piet; Graveland, Robert; Hutten, Ronald; van Eck, Herman; Coppoolse, Eric; van der Vossen, Edwin; Bakker, Jaap; Goverse, Aska

    2004-06-01

    The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH x RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (http://www.dpw.wageningen-ur.nl/uhd/). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F(1) SH x RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.

  14. High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors

    Science.gov (United States)

    Button, Steven W.; Mativetsky, Jeffrey M.

    2017-08-01

    Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.

  15. High resolution orientation mapping of secondary phases in ATI 718Plus® alloy

    Directory of Open Access Journals (Sweden)

    Krakow Robert

    2014-01-01

    Full Text Available The polycrystalline superalloy ATI 718Plus ® (hereafter 718Plus has been developed to replace the established alloy Inconel 718 by offering higher temperature capability for applications in gas turbines. The alloy exhibits two secondary phases in the austenitic matrix; it is strengthened by the γ′-phase with η-phase discontinuously precipitated at the grain boundaries. It can be utilized to control grain growth during forging. Generally, hexagonal η phase has been reported to possess a defined crystallographic orientation with the matrix. However, the material studied here exhibits blocky η-phase that has been precipitated and grown during thermo-mechanical processing. Therefore a measurable change in orientation relationship is expected. The standard technique for orientation mapping is electron back-scattered diffraction with spatial resolution of 100 nm. That is insufficient for studying η-phase in 718Plus. By applying high resolution orientation mapping in the transmission electron microscope (Philips CM 300 FEGTEM equipped with a Nanomegas ASTARTM system a resolution of 3 nm was achieved. The indexed diffraction data was analysed using the Matlab Toolbox Mtex. The analysis included grain reconstruction and exclusion of low confidence measurements. The data set allows generating phase boundary maps indicating interfaces characteristics. Quantitative assessment shows that only 19% of the γ-η-interfaces fulfil the orientation relationship.

  16. Large-Area, High-Resolution Tree Cover Mapping with Multi-Temporal SPOT5 Imagery, New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Adrian Fisher

    2016-06-01

    Full Text Available Tree cover maps are used for many purposes, such as vegetation mapping, habitat connectivity and fragmentation studies. Small remnant patches of native vegetation are recognised as ecologically important, yet they are underestimated in remote sensing products derived from Landsat. High spatial resolution sensors are capable of mapping small patches of trees, but their use in large-area mapping has been limited. In this study, multi-temporal Satellite pour l’Observation de la Terre 5 (SPOT5 High Resolution Geometrical data was pan-sharpened to 5 m resolution and used to map tree cover for the Australian state of New South Wales (NSW, an area of over 800,000 km2. Complete coverages of SPOT5 panchromatic and multispectral data over NSW were acquired during four consecutive summers (2008–2011 for a total of 1256 images. After pre-processing, the imagery was used to model foliage projective cover (FPC, a measure of tree canopy density commonly used in Australia. The multi-temporal imagery, FPC models and 26,579 training pixels were used in a binomial logistic regression model to estimate the probability of each pixel containing trees. The probability images were classified into a binary map of tree cover using local thresholds, and then visually edited to reduce errors. The final tree map was then attributed with the mean FPC value from the multi-temporal imagery. Validation of the binary map based on visually assessed high resolution reference imagery revealed an overall accuracy of 88% (±0.51% standard error, while comparison against airborne lidar derived data also resulted in an overall accuracy of 88%. A preliminary assessment of the FPC map by comparing against 76 field measurements showed a very good agreement (r2 = 0.90 with a root mean square error of 8.57%, although this may not be representative due to the opportunistic sampling design. The map represents a regionally consistent and locally relevant record of tree cover for NSW, and

  17. Clinical high-resolution mapping of the proteoglycan-bound water fraction in articular cartilage of the human knee joint.

    Science.gov (United States)

    Bouhrara, Mustapha; Reiter, David A; Sexton, Kyle W; Bergeron, Christopher M; Zukley, Linda M; Spencer, Richard G

    2017-11-01

    We applied our recently introduced Bayesian analytic method to achieve clinically-feasible in-vivo mapping of the proteoglycan water fraction (PgWF) of human knee cartilage with improved spatial resolution and stability as compared to existing methods. Multicomponent driven equilibrium single-pulse observation of T 1 and T 2 (mcDESPOT) datasets were acquired from the knees of two healthy young subjects and one older subject with previous knee injury. Each dataset was processed using Bayesian Monte Carlo (BMC) analysis incorporating a two-component tissue model. We assessed the performance and reproducibility of BMC and of the conventional analysis of stochastic region contraction (SRC) in the estimation of PgWF. Stability of the BMC analysis of PgWF was tested by comparing independent high-resolution (HR) datasets from each of the two young subjects. Unlike SRC, the BMC-derived maps from the two HR datasets were essentially identical. Furthermore, SRC maps showed substantial random variation in estimated PgWF, and mean values that differed from those obtained using BMC. In addition, PgWF maps derived from conventional low-resolution (LR) datasets exhibited partial volume and magnetic susceptibility effects. These artifacts were absent in HR PgWF images. Finally, our analysis showed regional variation in PgWF estimates, and substantially higher values in the younger subjects as compared to the older subject. BMC-mcDESPOT permits HR in-vivo mapping of PgWF in human knee cartilage in a clinically-feasible acquisition time. HR mapping reduces the impact of partial volume and magnetic susceptibility artifacts compared to LR mapping. Finally, BMC-mcDESPOT demonstrated excellent reproducibility in the determination of PgWF. Published by Elsevier Inc.

  18. ESTIMATION OF STAND HEIGHT AND FOREST VOLUME USING HIGH RESOLUTION STEREO PHOTOGRAPHY AND FOREST TYPE MAP

    Directory of Open Access Journals (Sweden)

    K. M. Kim

    2016-06-01

    Full Text Available Traditional field methods for measuring tree heights are often too costly and time consuming. An alternative remote sensing approach is to measure tree heights from digital stereo photographs which is more practical for forest managers and less expensive than LiDAR or synthetic aperture radar. This work proposes an estimation of stand height and forest volume(m3/ha using normalized digital surface model (nDSM from high resolution stereo photography (25cm resolution and forest type map. The study area was located in Mt. Maehwa model forest in Hong Chun-Gun, South Korea. The forest type map has four attributes such as major species, age class, DBH class and crown density class by stand. Overlapping aerial photos were taken in September 2013 and digital surface model (DSM was created by photogrammetric methods(aerial triangulation, digital image matching. Then, digital terrain model (DTM was created by filtering DSM and subtracted DTM from DSM pixel by pixel, resulting in nDSM which represents object heights (buildings, trees, etc.. Two independent variables from nDSM were used to estimate forest stand volume: crown density (% and stand height (m. First, crown density was calculated using canopy segmentation method considering live crown ratio. Next, stand height was produced by averaging individual tree heights in a stand using Esri’s ArcGIS and the USDA Forest Service’s FUSION software. Finally, stand volume was estimated and mapped using aerial photo stand volume equations by species which have two independent variables, crown density and stand height. South Korea has a historical imagery archive which can show forest change in 40 years of successful forest rehabilitation. For a future study, forest volume change map (1970s–present will be produced using this stand volume estimation method and a historical imagery archive.

  19. An Efficient Method for Mapping High-Resolution Global River Discharge Based on the Algorithms of Drainage Network Extraction

    Directory of Open Access Journals (Sweden)

    Jiaye Li

    2018-04-01

    Full Text Available River discharge, which represents the accumulation of surface water flowing into rivers and ultimately into the ocean or other water bodies, may have great impacts on water quality and the living organisms in rivers. However, the global knowledge of river discharge is still poor and worth exploring. This study proposes an efficient method for mapping high-resolution global river discharge based on the algorithms of drainage network extraction. Using the existing global runoff map and digital elevation model (DEM data as inputs, this method consists of three steps. First, the pixels of the runoff map and the DEM data are resampled into the same resolution (i.e., 0.01-degree. Second, the flow direction of each pixel of the DEM data (identified by the optimal flow path method used in drainage network extraction is determined and then applied to the corresponding pixel of the runoff map. Third, the river discharge of each pixel of the runoff map is calculated by summing the runoffs of all the pixels in the upstream of this pixel, similar to the upslope area accumulation step in drainage network extraction. Finally, a 0.01-degree global map of the mean annual river discharge is obtained. Moreover, a 0.5-degree global map of the mean annual river discharge is produced to display the results with a more intuitive perception. Compared against the existing global river discharge databases, the 0.01-degree map is of a generally high accuracy for the selected river basins, especially for the Amazon River basin with the lowest relative error (RE of 0.3% and the Yangtze River basin within the RE range of ±6.0%. However, it is noted that the results of the Congo and Zambezi River basins are not satisfactory, with RE values over 90%, and it is inferred that there may be some accuracy problems with the runoff map in these river basins.

  20. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    Science.gov (United States)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  1. Mapping turbidity in the Charles River, Boston using a high-resolution satellite.

    Science.gov (United States)

    Hellweger, Ferdi L; Miller, Will; Oshodi, Kehinde Sarat

    2007-09-01

    The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).

  2. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  3. Wild boar mapping using population-density statistics: From polygons to high resolution raster maps.

    Science.gov (United States)

    Pittiglio, Claudia; Khomenko, Sergei; Beltran-Alcrudo, Daniel

    2018-01-01

    The wild boar is an important crop raider as well as a reservoir and agent of spread of swine diseases. Due to increasing densities and expanding ranges worldwide, the related economic losses in livestock and agricultural sectors are significant and on the rise. Its management and control would strongly benefit from accurate and detailed spatial information on species distribution and abundance, which are often available only for small areas. Data are commonly available at aggregated administrative units with little or no information about the distribution of the species within the unit. In this paper, a four-step geostatistical downscaling approach is presented and used to disaggregate wild boar population density statistics from administrative units of different shape and size (polygons) to 5 km resolution raster maps by incorporating auxiliary fine scale environmental variables. 1) First a stratification method was used to define homogeneous bioclimatic regions for the analysis; 2) Under a geostatistical framework, the wild boar densities at administrative units, i.e. subnational areas, were decomposed into trend and residual components for each bioclimatic region. Quantitative relationships between wild boar data and environmental variables were estimated through multiple regression and used to derive trend components at 5 km spatial resolution. Next, the residual components (i.e., the differences between the trend components and the original wild boar data at administrative units) were downscaled at 5 km resolution using area-to-point kriging. The trend and residual components obtained at 5 km resolution were finally added to generate fine scale wild boar estimates for each bioclimatic region. 3) These maps were then mosaicked to produce a final output map of predicted wild boar densities across most of Eurasia. 4) Model accuracy was assessed at each different step using input as well as independent data. We discuss advantages and limits of the method and its

  4. Exploiting High Resolution Multi-Seasonal Textural Measures and Spectral Information for Reedbed Mapping

    Directory of Open Access Journals (Sweden)

    Alex Okiemute Onojeghuo

    2016-02-01

    Full Text Available Reedbeds across the UK are amongst the most important habitats for rare and endangered birds, wildlife and organisms. However, over the past century, this valued wetland habitat has experienced a drastic reduction in quality and spatial coverage due to pressures from human related activities. To this end, conservation organisations across the UK have been charged with the task of conserving and expanding this threatened habitat. With this backdrop, the study aimed to develop a methodology for accurate reedbed mapping through the combined use of multi-seasonal texture measures and spectral information contained in high resolution QuickBird satellite imagery. The key objectives were to determine the most effective single-date (autumn or summer and multi-seasonal QuickBird imagery suitable for reedbed mapping over the study area; to evaluate the effectiveness of combining multi-seasonal texture measures and spectral information for reedbed mapping using a variety of combinations; and to evaluate the most suitable classification technique for reedbed mapping from three selected classification techniques, namely maximum likelihood classifier, spectral angular mapper and artificial neural network. Using two selected grey-level co-occurrence textural measures (entropy and angular second moment, a series of experiments were conducted using varied combinations of single-date and multi-seasonal QuickBird imagery. Overall, the results indicate the multi-seasonal pansharpened multispectral bands (eight layers combined with all eight grey level co-occurrence matrix texture measures (entropy and angular second moment computed using windows 3 × 3 and 7 × 7 produced the optimal reedbed (76.5% and overall classification (78.1% accuracies using the maximum likelihood classifier technique. Using the optimal 16 layer multi-seasonal pansharpened multispectral and texture combined image dataset, a total reedbed area of 9.8 hectares was successfully mapped over the

  5. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  6. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  7. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    Science.gov (United States)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  8. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  9. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo; Liao, Mingsheng; Wang, Teng; Zhang, Lu; Shan, Wei; Wang, Chunjiao

    2014-01-01

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  10. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Sahin, Ozgur; Erina, Natalia

    2008-01-01

    High spatial resolution imaging of material properties is an important task for the continued development of nanomaterials and studies of biological systems. Time-varying interaction forces between the vibrating tip and the sample in a tapping-mode atomic force microscope contain detailed information about the elastic, adhesive, and dissipative response of the sample. We report real-time measurement and analysis of the time-varying tip-sample interaction forces with recently introduced torsional harmonic cantilevers. With these measurements, high-resolution maps of elastic modulus, adhesion force, energy dissipation, and topography are generated simultaneously in a single scan. With peak tapping forces as low as 0.6 nN, we demonstrate measurements on blended polymers and self-assembled molecular architectures with feature sizes at 1, 10, and 500 nm. We also observed an elastic modulus measurement range of four orders of magnitude (1 MPa to 10 GPa) for a single cantilever under identical feedback conditions, which can be particularly useful for analyzing heterogeneous samples with largely different material components.

  11. Radiation hybrid mapping as one of the main methods of the creation of high resolution maps of human and animal genomes

    International Nuclear Information System (INIS)

    Sulimova, G.E.; Kompanijtsev, A.A.; Mojsyak, E.V.; Rakhmanaliev, Eh.R.; Klimov, E.A.; Udina, I.G.; Zakharov, I.A.

    2000-01-01

    Radiation hybrid mapping (RH mapping) is considered as one of the main method of constructing physical maps of mammalian genomes. In introduction, theoretical prerequisites of developing of the RH mapping and statistical methods of data analysis are discussed. Comparative characteristics of universal commercial panels of the radiation hybrid somatic cells (RH panels) are shown. In experimental part of the work, RH mapping is used to localize nucleotide sequences adjacent to Not I sites of human chromosome 3 with the aim to integrate contig map of Nor I clones to comprehensive maps of human genome. Five nucleotide sequences adjacent to the sites of integration of papilloma virus in human genome and expressed in the cells of cervical cancer involved localized. It is demonstrated that the region 13q14.3-q21.1 was enriched with nucleotide sequences involved in the processes of carcinogenesis. RH mapping can be considered as one of the most perspective applications of modern radiation biology in the field of molecular genetics, that is, in constructing physical maps of mammalian genomes with high resolution level [ru

  12. High-resolution mapping reveals links of HP1 with active and inactive chromatin components.

    Directory of Open Access Journals (Sweden)

    Elzo de Wit

    2007-03-01

    Full Text Available Heterochromatin protein 1 (HP1 is commonly seen as a key factor of repressive heterochromatin, even though a few genes are known to require HP1-chromatin for their expression. To obtain insight into the targeting of HP1 and its interplay with other chromatin components, we have mapped HP1-binding sites on Chromosomes 2 and 4 in Drosophila Kc cells using high-density oligonucleotide arrays and the DNA adenine methyltransferase identification (DamID technique. The resulting high-resolution maps show that HP1 forms large domains in pericentric regions, but is targeted to single genes on chromosome arms. Intriguingly, HP1 shows a striking preference for exon-dense genes on chromosome arms. Furthermore, HP1 binds along entire transcription units, except for 5' regions. Comparison with expression data shows that most of these genes are actively transcribed. HP1 target genes are also marked by the histone variant H3.3 and dimethylated histone 3 lysine 4 (H3K4me2, which are both typical of active chromatin. Interestingly, H3.3 deposition, which is usually observed along entire transcription units, is limited to the 5' ends of HP1-bound genes. Thus, H3.3 and HP1 are mutually exclusive marks on active chromatin. Additionally, we observed that HP1-chromatin and Polycomb-chromatin are nonoverlapping, but often closely juxtaposed, suggesting an interplay between both types of chromatin. These results demonstrate that HP1-chromatin is transcriptionally active and has extensive links with several other chromatin components.

  13. High-resolution physical map for chromosome 16q12.1-q13, the Blau syndrome locus

    Directory of Open Access Journals (Sweden)

    Bonavita Gina

    2002-08-01

    Full Text Available Abstract Background The Blau syndrome (MIM 186580, an autosomal dominant granulomatous disease, was previously mapped to chromosome 16p12-q21. However, inconsistent physical maps of the region and consequently an unknown order of microsatellite markers, hampered us from further refining the genetic locus for the Blau syndrome. To address this problem, we constructed our own high-resolution physical map for the Blau susceptibility region. Results We generated a high-resolution physical map that provides more than 90% coverage of a refined Blau susceptibility region. The map consists of four contigs of sequence tagged site-based bacterial artificial chromosomes with a total of 124 bacterial artificial chromosomes, and spans approximately 7.5 Mbp; however, three gaps still exist in this map with sizes of 425, 530 and 375 kbp, respectively, estimated from radiation hybrid mapping. Conclusions Our high-resolution map will assist genetic studies of loci in the interval from D16S3080, near D16S409, and D16S408 (16q12.1 to 16q13.

  14. Structure and Evolution of Hawaii's Loihi Seamount from High-resolution Mapping

    Science.gov (United States)

    Clague, D. A.; Paduan, J. B.; Moyer, C. L.; Glazer, B. T.; Caress, D. W.; Yoerger, D.; Kaiser, C. L.

    2016-12-01

    Loihi Seamount has been mapped repeatedly using shipboard multibeam sonars with improving resolution over time. Simrad EM302 data with 25m resolution at the 950m summit and 90m at the 5000m base of the volcano were collected from Schmidt Ocean Institute's R/V Falkor in 2014. A contracted multibeam survey in 1997 employing a deep-towed vehicle has 7m resolution for the summit and upper north and south rift zones, but suffered from poor navigation. Woods Hole Oceanographic Institution's AUV Sentry surveyed most of the summit and low-T hydrothermal vents on the base of the south rift in 2013 and 2014. The 2m resolution of most data is more precise than the navigation. The 6 summit surveys were reprocessed using MB-System to remove abundant bad bottom picks and adjust the navigation to produce a spatially accurate map. The 3 summit pits, including Pele's Pit that formed in 1996, are complex collapse structures and nested inside a larger caldera that was modified by large landslides on the east and west summit flanks. The pits cut low shields that once formed a complex of overlapping summit shields, similar to Kilauea before the current caldera formed 1500 to 1790 CE. An 11m section of ash deposits crops out on the east rim of the summit along a caldera-bounding fault and is analogous to Kilauea where the caldera-bounding faults expose ash erupted as the present caldera formed. Most of the Loihi ash section is 3300 to 5880 yr BP, indicating that the larger caldera structure at Loihi is younger than 3300 yr BP. The landslides on the east and west edges of the summit are therefore younger 3300 yr BP. The uppermost south rift has several small pit craters between cones and pillow ridges, also analogous to Kilauea. Two cones near the deep low-T vents are steep pillow mounds with slopes of talus. High-resolution mapping reveals, for the first time, the many similarities between the structure and evolution of submarine Loihi Seamount and subaerial Kilauea Volcano.

  15. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  16. High Resolution Map of Water Supply and Demand for North East United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find

  17. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    Science.gov (United States)

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  18. National Hydrography Dataset Plus High Resolution (NHDPlus HR) - USGS National Map Downloadable Data Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The High Resolution National Hydrography Dataset Plus (NHDPlus HR) is an integrated set of geospatial data layers, including the best available National Hydrography...

  19. A new Concept for High Resolution Benthic Mapping and Data Aquisition: MANSIO-VIATOR

    Science.gov (United States)

    Flögel, S.

    2015-12-01

    Environmental conditions within sensitive seafloor ecosystems such as cold-seep provinces or cold-water coral reef communities vary temporally and spatially over a wide range of scales. Some of these are regularly monitored via short periods of intense shipborne activity or low resolution, fixed location studies by benthic lander systems. Long term measurements of larger areas and volumes are ususally coupled to costly infrastructure investments such as cabled observatories. In space exploration, a combination of fixed and mobile systems working together are commonly used, e.g. lander systems coupled to rovers, to tackle observational needs that are very similar to deep-sea data aquisition. The analogies between space and deep-sea research motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration under extreme conditions). The program objectives are to identify, develop and verify technological synergies between the robotic exploration of e.g. the moon and the deep-sea. Within ROBEX, the mobility of robots is a vital element for research missions due to valuable scientifice return potential from different sites as opposed to static landers. Within this context, we developed a new mobile crawler system (VIATOR, latin for traveller) and a fixed lander component for energy and data transfer (MANSIO, latin for housing/shelter). This innovative MANSIO-VIATOR system has been developed during the past 2.5 years. The caterpillar driven component is developed to conduct high resolution opitcal mapping and repeated monitoring of physical and biogeochemical parameters along transects. The system operates fully autonomously including navigational components such as camera and laser scanners, as well as marker based near-field navigation used in space technology. This new concept of data aquisition by a submarine crawler in combination with a fixed lander further opens up marine exploration possibilities.

  20. High-resolution mapping of yield curve shape and evolution for high porosity sandstones

    Science.gov (United States)

    Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.

    2017-12-01

    The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.

  1. The Megamaser Cosmology Project. X. High-resolution Maps and Mass Constraints for SMBHs

    Science.gov (United States)

    Zhao, W.; Braatz, J. A.; Condon, J. J.; Lo, K. Y.; Reid, M. J.; Henkel, C.; Pesce, D. W.; Greene, J. E.; Gao, F.; Kuo, C. Y.; Impellizzeri, C. M. V.

    2018-02-01

    We present high-resolution (submas) Very Long Baseline Interferometry maps of nuclear H2O megamasers for seven galaxies. In UGC 6093, the well-aligned systemic masers and high-velocity masers originate in an edge-on, flat disk and we determine the mass of the central supermassive black holes (SMBH) to be M SMBH = 2.58 × 107 M ⊙ (±7%). For J1346+5228, the distribution of masers is consistent with a disk, but the faint high-velocity masers are only marginally detected, and we constrain the mass of the SMBH to be in the range (1.5–2.0) × 107 M ⊙. The origin of the masers in Mrk 1210 is less clear, as the systemic and high-velocity masers are misaligned and show a disorganized velocity structure. We present one possible model in which the masers originate in a tilted, warped disk, but we do not rule out the possibility of other explanations including outflow masers. In NGC 6926, we detect a set of redshifted masers, clustered within a parsec of each other, and a single blueshifted maser about 4.4 pc away, an offset that would be unusually large for a maser disk system. Nevertheless, if it is a disk system, we estimate the enclosed mass to be M SMBH < 4.8 × 107 M ⊙. For NGC 5793, we detect redshifted masers spaced about 1.4 pc from a clustered set of blueshifted features. The orientation of the structure supports a disk scenario as suggested by Hagiwara et al. We estimate the enclosed mass to be M SMBH < 1.3 × 107 M ⊙. For NGC 2824 and J0350‑0127, the masers may be associated with parsec- or subparsec-scale jets or outflows.

  2. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    Science.gov (United States)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  3. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    International Nuclear Information System (INIS)

    Aksoy, B; Alaca, B E; Rehman, A; Bayraktar, H

    2017-01-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µ m are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  4. High-resolution linkage map in the proximity of the host resistance locus Cmv1

    Energy Technology Data Exchange (ETDEWEB)

    Depatie, C.; Muise, E.; Gros, P. [McGill Univ., Quebec (Canada)] [and others

    1997-01-15

    The mouse chromosome 6 locus Cmv1 controls replication of mouse Cytomegalovirus (MCMV) in the spleen of the infected host. In our effort to clone Cmv1, we have constructed a high-resolution genetic linkage map in the proximity of the gene. For this, a total of 45 DNA markers corresponding to either cloned genes or microsatellites were mapped within a 7.9-cM interval overlapping the Cmv1 region. We have followed the cosegregation of these markers with respect to Cmv1 in a total of 2248 backcross mice from a preexisting interspecific backcross panel of 281 (Mus spretus X C57BL/6J)F1 X C57BL/6J and 2 novel panels of 989 (A/J X C57BL6)F1 X A/J and 978 (BALB/c X C57BL/6J)F1 X BALB/c segregating Cmv1. Combined pedigree analysis allowed us to determine the following gene order and intergene distances (in cM) on the distal region of mouse chromosome 6: D6Mit216-(1.9)-D6Mit336-(2.2)-D6Mit218-(1.0)-D6Mit52-(0.5)-D6Mit194-(0.2)-Nkrp1/D6Mit61/135/257/289/338-(0.4)-Cmv1/Ly49A/D6Mit370-(0.3)-Prp/Kap/D6Mit13/111/219-(0.3)-Tel/D6Mit374/290/220/196/195/110-(1.1)-D6Mit25. Therefore, the minimal genetic interval for Cmv1 of 0.7 cM is defined by 13 tightly linked markers including 2 markers, Ly49A and D6Mit370, that did not show recombination with Cmv1 in 1967 meioses analyzed; the proximal limit of the Cmv1 domain was defined by 8 crossovers between Nkrp1/D6Mit61/135/257/289/338 and Cmv1/Ly49A/D6Mit370, and the distal limit was defined by 5 crossovers between Cmv1/Ly49A/D6Mit370 and Prp/Kap/D6Mit13/111/219. This work demonstrates tight linkage between Cmv1 and genes from the natural killer complex (NKC), such as Nkrp1 and Ly49A suggesting that Cmv1 may represent an NK cell recognition structure encoded in the NKC region. 54 refs., 4 figs., 2 tabs.

  5. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth.

    Science.gov (United States)

    Mulder, V L; Lacoste, M; Richer-de-Forges, A C; Arrouays, D

    2016-12-15

    This work presents the first GlobalSoilMap (GSM) products for France. We developed an automatic procedure for mapping the primary soil properties (clay, silt, sand, coarse elements, pH, soil organic carbon (SOC), cation exchange capacity (CEC) and soil depth). The procedure employed a data-mining technique and a straightforward method for estimating the 90% confidence intervals (CIs). The most accurate models were obtained for pH, sand and silt. Next, CEC, clay and SOC were found reasonably accurate predicted. Coarse elements and soil depth were the least accurate of all models. Overall, all models were considered robust; important indicators for this were 1) the small difference in model diagnostics between the calibration and cross-validation set, 2) the unbiased mean predictions, 3) the smaller spatial structure of the prediction residuals in comparison to the observations and 4) the similar performance compared to other developed GlobalSoilMap products. Nevertheless, the confidence intervals (CIs) were rather wide for all soil properties. The median predictions became less reliable with increasing depth, as indicated by the increase of CIs with depth. In addition, model accuracy and the corresponding CIs varied depending on the soil variable of interest, soil depth and geographic location. These findings indicated that the CIs are as informative as the model diagnostics. In conclusion, the presented method resulted in reasonably accurate predictions for the majority of the soil properties. End users can employ the products for different purposes, as was demonstrated with some practical examples. The mapping routine is flexible for cloud-computing and provides ample opportunity to be further developed when desired by its users. This allows regional and international GSM partners with fewer resources to develop their own products or, otherwise, to improve the current routine and work together towards a robust high-resolution digital soil map of the world

  6. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    Science.gov (United States)

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  7. Analysis of Chinese women with primary ovarian insufficiency by high resolution array-comparative genomic hybridization.

    Science.gov (United States)

    Liao, Can; Fu, Fang; Yang, Xin; Sun, Yi-Min; Li, Dong-Zhi

    2011-06-01

    Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis. Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction. All the 30 samples were negative by conventional karyotyping analysis. Microdeletions on chromosome 17q21.31-q21.32 with approximately 1.3 Mb were identified in four patients by high resolution array-CGH analysis. This included the female reproductive secretory pathway related factor N-ethylmaleimide-sensitive factor (NSF) gene. The results of the present study suggest that there may be critical regions regulating primary ovarian insufficiency in women with a 17q21.31-q21.32 microdeletion. This effect might be due to the loss of function of the NSF gene/genes within the deleted region or to effects on contiguous genes.

  8. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    Science.gov (United States)

    2012-01-01

    Background The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. Results We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia

  9. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    Science.gov (United States)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  10. Evolution of dislocation structures following a change in loading conditions studied by in situ high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Wejdemann, Christian

    or to a strain of 7% at a temperature of -196 ○C, and the samples were characterized by electron microscopy and mechanical tests. Transmission electron microscopy showed that the pre-deformation produced a characteristic dislocation cell structure consisting of regions with relatively high dislocation density...... the pre-deformation axis. In the X-ray diffraction experiments a technique was employed with which it is possible to obtain high-resolution reciprocal space maps from individual bulk grains. The high-resolution reciprocal space maps contain features related to the dislocation structure in the grains......: A spread-out ‘cloud’ of low intensity caused by diffraction from the dislocation walls and a number of sharp peaks of high intensity caused by diffraction from the individual subgrains. By acquiring reciprocal space maps at a number of different strain levels the evolution of the dislocation structures can...

  11. Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling

    Science.gov (United States)

    Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805

  12. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    Science.gov (United States)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  13. Comparative study of rare earth hexaborides using high resolution angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Ramankutty, S.V., E-mail: s.v.ramankutty@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Jong, N. de; Huang, Y.K.; Zwartsenberg, B. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Massee, F. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bay, T.V. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Golden, M.S., E-mail: m.s.golden@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Frantzeskakis, E., E-mail: e.frantzeskakis@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2016-04-15

    Highlights: • ARPES electronic structure study of rare-earth (RE) hexaborides SmB{sub 6}, CeB{sub 6} and YbB{sub 6}. • Increasing RE valence Yb[II], Sm[II/III], Ce[III] increases d-band occupancy. • YbB{sub 6} and SmB{sub 6} posses 2D states at E{sub F}, whereas the Fermi surface of CeB{sub 6} is 3D. • ARPES, LEED and STM data prove structural relaxation of the SmB{sub 6}(001) surface. - Abstract: Strong electron correlations in rare earth hexaborides can give rise to a variety of interesting phenomena like ferromagnetism, Kondo hybridization, mixed valence, superconductivity and possibly topological characteristics. The theoretical prediction of topological properties in SmB{sub 6} and YbB{sub 6} has rekindled the scientific interest in the rare earth hexaborides, and high-resolution ARPES has been playing a major role in the debate. The electronic band structure of the hexaborides contains the key to understand the origin of the different phenomena observed, and much can be learned by comparing the experimental data from different rare earth hexaborides. We have performed high-resolution ARPES on the (001) surfaces of YbB{sub 6}, CeB{sub 6} and SmB{sub 6}. On the most basic level, the data show that the differences in the valence of the rare earth element are reflected in the experimental electronic band structure primarily as a rigid shift of the energy position of the metal 5d states with respect to the Fermi level. Although the overall shape of the d-derived Fermi surface contours remains the same, we report differences in the dimensionality of these states between the compounds studied. Moreover, the spectroscopic fingerprint of the 4f states also reveals considerable differences that are related to their coherence and the strength of the d–f hybridization. For the SmB{sub 6} case, we use ARPES in combination with STM imaging and electron diffraction to reveal time dependent changes in the structural symmetry of the highly debated SmB{sub 6

  14. Internet-Enabled High-Resolution Brain Mapping and Virtual Microscopy

    OpenAIRE

    Mikula, Shawn; Trotts, Issac; Stone, James M.; Jones, Edward G.

    2007-01-01

    Virtual microscopy involves the conversion of histological sections mounted on glass microscope slides to high resolution digital images. Virtual microscopy offers several advantages over traditional microscopy, including remote viewing and data-sharing, annotation, and various forms of data-mining.

  15. Three very high resolution optical images for land use mapping of a suburban catchment: input to distributed hydrological models

    Science.gov (United States)

    Jacqueminet, Christine; Kermadi, Saïda; Michel, Kristell; Jankowfsky, Sonja; Braud, Isabelle; Branger, Flora; Beal, David; Gagnage, Matthieu

    2010-05-01

    resampled in the same low resolution of 2.5 m and compared in order to evaluate the accuracy of different image processing methods and to determine for each cover type, the more appropriate image and/or method. This comparison provides hydrologists with a synthetic land cover map. Four parameters affect the accuracy of land cover mapping: firstly the addition of the NIR band improves vegetation classification such as the distinction between coniferous forest and broad-leaved forest. Moreover the intensity of chlorophyllian activity allows us to characterize the use of agricultural fields. Secondly, the images were taken at three dates in the agricultural calendar. This multi-date data allows the discrimination between permanently vegetalized pastures, and temporarily bare crops, a useful information for hydrologists who study surfaces hydraulic properties. Thirdly, the high resolution of the BD Ortho IGN image emphasizes the heterogeneity inside the spatial entities. Thus, in urbanised areas, high-resolution imagery allows the precise identification of objects > 5 m2 and consequently the quantification of impervious and pervious surfaces. However, the continuity of forest areas is not maintained because of the presence of small entities with sparser tree cover that were classified as herbaceous areas. Finally, image characteristics are more crucial than classification methods for the accuracy of land cover mapping. However, object based approach improves the classification of mixed pixels on the edge between different objects. It's particularly true for buildings and roads.

  16. Spatiotemporal High-Resolution Cloud Mapping with a Ground-Based IR Scanner

    Directory of Open Access Journals (Sweden)

    Benjamin Brede

    2017-01-01

    Full Text Available The high spatiotemporal variability of clouds requires automated monitoring systems. This study presents a retrieval algorithm that evaluates observations of a hemispherically scanning thermal infrared radiometer, the NubiScope, to produce georeferenced, spatially explicit cloud maps. The algorithm uses atmospheric temperature and moisture profiles and an atmospheric radiative transfer code to differentiate between cloudy and cloudless measurements. In case of a cloud, it estimates its position by using the temperature profile and viewing geometry. The proposed algorithm was tested with 25 cloud maps generated by the Fmask algorithm from Landsat 7 images. The overall cloud detection rate was ranging from 0.607 for zenith angles of 0 to 10° to 0.298 for 50–60° on a pixel basis. The overall detection of cloudless pixels was 0.987 for zenith angles of 30–40° and much more stable over the whole range of zenith angles compared to cloud detection. This proves the algorithm’s capability in detecting clouds, but even better cloudless areas. Cloud-base height was best estimated up to a height of 4000 m compared to ceilometer base heights but showed large deviation above that level. This study shows the potential of the NubiScope system to produce high spatial and temporal resolution cloud maps. Future development is needed for a more accurate determination of cloud height with thermal infrared measurements.

  17. Gaussian Multiple Instance Learning Approach for Mapping the Slums of the World Using Very High Resolution Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Vatsavai, Raju [ORNL

    2013-01-01

    In this paper, we present a computationally efficient algo- rithm based on multiple instance learning for mapping infor- mal settlements (slums) using very high-resolution remote sensing imagery. From remote sensing perspective, infor- mal settlements share unique spatial characteristics that dis- tinguish them from other urban structures like industrial, commercial, and formal residential settlements. However, regular pattern recognition and machine learning methods, which are predominantly single-instance or per-pixel classi- fiers, often fail to accurately map the informal settlements as they do not capture the complex spatial patterns. To overcome these limitations we employed a multiple instance based machine learning approach, where groups of contigu- ous pixels (image patches) are modeled as generated by a Gaussian distribution. We have conducted several experi- ments on very high-resolution satellite imagery, represent- ing four unique geographic regions across the world. Our method showed consistent improvement in accurately iden- tifying informal settlements.

  18. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  19. High resolution population distribution maps for Southeast Asia in 2010 and 2015.

    Science.gov (United States)

    Gaughan, Andrea E; Stevens, Forrest R; Linard, Catherine; Jia, Peng; Tatem, Andrew J

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  20. High resolution population distribution maps for Southeast Asia in 2010 and 2015.

    Directory of Open Access Journals (Sweden)

    Andrea E Gaughan

    Full Text Available Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  1. High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.

    Science.gov (United States)

    McCasland, J S; Woolsey, T A

    1988-12-22

    Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization

  2. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus).

    Science.gov (United States)

    Feng, Xiu; Yu, Xiaomu; Fu, Beide; Wang, Xinhua; Liu, Haiyang; Pang, Meixia; Tong, Jingou

    2018-04-02

    A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several

  3. High resolution mapping of development in the wildland-urban interface using object based image extraction

    Science.gov (United States)

    Caggiano, Michael D.; Tinkham, Wade T.; Hoffman, Chad; Cheng, Antony S.; Hawbaker, Todd J.

    2016-01-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA

  4. High resolution mapping of development in the wildland-urban interface using object based image extraction

    Directory of Open Access Journals (Sweden)

    Michael D. Caggiano

    2016-10-01

    Full Text Available The wildland-urban interface (WUI, the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA approach that utilizes 4-band multispectral National Aerial Image Program (NAIP imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2 having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability

  5. A high-resolution computational localization method for transcranial magnetic stimulation mapping.

    Science.gov (United States)

    Aonuma, Shinta; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa; Takakura, Tomokazu; Tamura, Manabu; Muragaki, Yoshihiro

    2018-05-15

    Transcranial magnetic stimulation (TMS) is used for the mapping of brain motor functions. The complexity of the brain deters determining the exact localization of the stimulation site using simplified methods (e.g., the region below the center of the TMS coil) or conventional computational approaches. This study aimed to present a high-precision localization method for a specific motor area by synthesizing computed non-uniform current distributions in the brain for multiple sessions of TMS. Peritumoral mapping by TMS was conducted on patients who had intra-axial brain neoplasms located within or close to the motor speech area. The electric field induced by TMS was computed using realistic head models constructed from magnetic resonance images of patients. A post-processing method was implemented to determine a TMS hotspot by combining the computed electric fields for the coil orientations and positions that delivered high motor-evoked potentials during peritumoral mapping. The method was compared to the stimulation site localized via intraoperative direct brain stimulation and navigated TMS. Four main results were obtained: 1) the dependence of the computed hotspot area on the number of peritumoral measurements was evaluated; 2) the estimated localization of the hand motor area in eight non-affected hemispheres was in good agreement with the position of a so-called "hand-knob"; 3) the estimated hotspot areas were not sensitive to variations in tissue conductivity; and 4) the hand motor areas estimated by this proposal and direct electric stimulation (DES) were in good agreement in the ipsilateral hemisphere of four glioma patients. The TMS localization method was validated by well-known positions of the "hand-knob" in brains for the non-affected hemisphere, and by a hotspot localized via DES during awake craniotomy for the tumor-containing hemisphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Usefulness evaluation of low-dose for emphysema: Compared with high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Jeong [Dept. of Radiological Technology, Daejeon Health Institute of Technology, Daejeon (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluate the usefulness of low-dose CT (LDCT) for emphysema compared with high-resolution CT (HRCT). Measurements of radiation dose and noise were repeated 3 times in same exposure condition which was similar with obtaining HRCT and LDCT images. We analysed reading results of 146 subjects. Six images per participants selected for emphysema grading. Emphysema was graded for all 6 zones on the left and right sides of the lungs by the consensus reading of two chest radiologists using a 4-point scale. Between the HRCT and LDCT images, diagnostic differences and agreements for emphysema were analyzed by McNemar's and unweighted kappa tests, and radiation doses and noise by a Mann-Whitney U-test, using the SPSS 19.0 program. Radiation dose from HRCT was significantly higher than that of LDCT, but the noise was significantly lower in HRCT than in LDCT. Diagnostic agreement for emphysema between HRCT and LDCT images was excellent (k-value=0.88). Emphysema grading scores were not significantly different between HRCT and LDCT images for all six lung zones. Emphysema grading scores from LDCT images were significantly correlated with increased scores on HRCT images (r=0.599, p < 0.001). Considering the tradeoff between radiation dose and image noise, LDCT could be used as the gold standard method instead of HRCT for emphysema detection and grading.

  7. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Directory of Open Access Journals (Sweden)

    Mohammad Haris

    Full Text Available Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS has been commonly used to detect the glutamate (Glu changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4% was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  8. Potential of high resolution protein mapping as a method of monitoring the human immune system

    International Nuclear Information System (INIS)

    Anderson, N.L.; Anderson, N.G

    1980-01-01

    Immunology traditionally deals with complex cellular systems and heterogeneous mixtures of effector molecules (primarily antibodies). Some sense has emerged from this chaos through the use of functional assays. Such an approach however naturally leaves a great deal undiscovered since the assays are simple and the assayed objects are complex. In this chapter some experimental approaches to immunological problems are described using high-resolution two-dimensional electrophoresis, a method that can resolve thousands of proteins and can thus begin to treat immunological entities at their appropriate level of complexity. In addition, the possible application of this work to the problem of monitoring events in the individual human immune system are discussed

  9. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  10. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis

    Science.gov (United States)

    MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.

    2012-01-01

    Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.

  11. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  12. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  13. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  14. APPLICABILITY OF VARIOUS INTERPOLATION APPROACHES FOR HIGH RESOLUTION SPATIAL MAPPING OF CLIMATE DATA IN KOREA

    Directory of Open Access Journals (Sweden)

    A. Jo

    2018-04-01

    Full Text Available The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA. Automatic Weather System (AWS and Automated Synoptic Observing System (ASOS data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478 and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM with 30 m resolution, inverse distance weighting (IDW, co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  15. A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Directory of Open Access Journals (Sweden)

    Wang Zhiquan

    2007-07-01

    Full Text Available Abstract Background Radiation hybrid (RH maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL, haplotype map construction and refinement of candidate gene searches. Results A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1 as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement. Conclusion The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.

  16. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification

    Directory of Open Access Journals (Sweden)

    Daniel Fulop

    2016-10-01

    Full Text Available Quantitative Trait Loci (QTL mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum and its more distant interfertile relatives typically follow a near isogenic line (NIL design, such as the S. pennellii Introgression Line (IL population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.

  17. Vascular channels in metacarpophalangeal joints : a comparative histologic and high-resolution imaging study

    NARCIS (Netherlands)

    Scharmga, A.; Keller, K.K.; Peters, M.; van Tubergen, A.; van den Bergh, J.P.W.; van Rietbergen, B.; Weijers, R.; Loeffen, D.; Hauge, E.M.; Geusens, P.P.M.M.

    2017-01-01

    We evaluated whether cortical interruptions classified as vascular channel (VC) on high-resolution peripheral quantitative computed tomography (HR-pQCT) could be confirmed by histology. We subsequently evaluated the image characteristics of histologically identified VCs on matched single and

  18. Mapping groundwater dynamics using multiple sources of exhaustive high resolution data

    NARCIS (Netherlands)

    Finke, P.A.; Brus, D.J.; Bierkens, M.F.P.; Hoogland, T.; Knotters, M.; Vries, de F.

    2004-01-01

    Existing groundwater table (GWT) class maps, available at full coverage for the Netherlands at 1:50,000 scale, no longer satisfy user demands. Groundwater levels have changed due to strong human impact, so the maps are partially outdated. Furthermore, a more dynamic description of groundwater table

  19. Generation and Assessment of Urban Land Cover Maps Using High-Resolution Multispectral Aerial Images

    DEFF Research Database (Denmark)

    Höhle, Joachim; Höhle, Michael

    2013-01-01

    a unique method for the automatic generation of urban land cover maps. In the present paper, imagery of a new medium-format aerial camera and advanced geoprocessing software are applied to derive normalized digital surface models and vegetation maps. These two intermediate products then become input...... to a tree structured classifier, which automatically derives land cover maps in 2D or 3D. We investigate the thematic accuracy of the produced land cover map by a class-wise stratified design and provide a method for deriving necessary sample sizes. Corresponding survey adjusted accuracy measures...... and their associated confidence intervals are used to adequately reflect uncertainty in the assessment based on the chosen sample size. Proof of concept for the method is given for an urban area in Switzerland. Here, the produced land cover map with six classes (building, wall and carport, road and parking lot, hedge...

  20. 3-Dimentional Mapping Coastal Zone using High Resolution Satellite Stereo Imageries

    International Nuclear Information System (INIS)

    Hong, Zhonghua; Liu, Fengling; Zhang, Yun

    2014-01-01

    The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. The results of geometric processing of a Shanghai coastal zone from 0.7-m-resolution QuickBird Geo stereo images are presented firstly. The geo-positioning accuracy of ground point determination with vendor-provided rigorous physical model (RPM) parameters is evaluated and systematic errors are found when compared with ground control points surveyed by GPS real-time kinematic (GPS-RTK) with 5cm accuracy. A bias-compensation process in image space that applies a RPM bundle adjustment to the RPM-calculated 3D ground points to correct the systematic errors is used to improve the geo-positioning accuracy. And then, a area-based matching (ABM) method is used to generated the densely corresponding points of left and right QuickBird images. With the densely matching points, the 3-dimentinal coordinates of ground points can be calculated by using the refined geometric relationship between image and ground points. At last step, digital surface model (DSM) can be achieved automatically using interpolation method. Accuracies of the DSM as assessed from independent checkpoints (ICPs) are approximately 1.2 m in height

  1. ‘‘Blind'' mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis

    DEFF Research Database (Denmark)

    Studer, Bruno; Jensen, Louise Bach; Fiil, Alice

    2009-01-01

    High resolution melting curve analysis (HRM) measures dissociation of double stranded DNA of a PCR product amplified in the presence of a saturating fluorescence dye. Recently, HRM proved successful to genotype DNA sequence polymorphisms such as SSRs and SNPs based on the shape of the melting...... curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved...

  2. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  3. Creating a high resolution social vulnerability map in support of national decision makers in South Africa

    CSIR Research Space (South Africa)

    Le Roux, Alize

    2015-08-01

    Full Text Available The core objective of this study was to create a social vulnerability map based on generally accepted variables that are indicative of drivers of social vulnerability, capturing the unique attributes of South African communities. The paper explains...

  4. Spatiotemporal High-Resolution Cloud Mapping with a Ground-Based IR Scanner

    NARCIS (Netherlands)

    Brede, Benjamin; Thies, Boris; Bendix, Jörg; Feister, Uwe

    2017-01-01

    The high spatiotemporal variability of clouds requires automated monitoring systems. This study presents a retrieval algorithm that evaluates observations of a hemispherically scanning thermal infrared radiometer, the NubiScope, to produce georeferenced, spatially explicit cloud maps. The algorithm

  5. Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data

    Science.gov (United States)

    Xiao, P.; Kelly, M.; Guo, Q.

    2014-12-01

    This study compares the use of high-resolution multispectral WorldView images and high density Lidar data for individual tree segmentation. The application focuses on coniferous and deciduous forests in the Sierra Nevada Mountains. The tree objects are obtained in two ways: a hybrid region-merging segmentation method with multispectral images, and a top-down and bottom-up region-growing method with Lidar data. The hybrid region-merging method is used to segment individual tree from multispectral images. It integrates the advantages of global-oriented and local-oriented region-merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region. The merging iterations are constrained within the local vicinity, thus the segmentation is accelerated and can reflect the local context. The top-down region-growing method is adopted in coniferous forest to delineate individual tree from Lidar data. It exploits the spacing between the tops of trees to identify and group points into a single tree based on simple rules of proximity and likely tree shape. The bottom-up region-growing method based on the intensity and 3D structure of Lidar data is applied in deciduous forest. It segments tree trunks based on the intensity and topological relationships of the points, and then allocate other points to exact tree crowns according to distance. The accuracies for each method are evaluated with field survey data in several test sites, covering dense and sparse canopy. Three types of segmentation results are produced: true positive represents a correctly segmented individual tree, false negative represents a tree that is not detected and assigned to a nearby tree, and false positive represents that a point or pixel cluster is segmented as a tree that does not in fact exist. They respectively represent correct-, under-, and over-segmentation. Three types of index are compared for segmenting individual tree

  6. Mapping Mangroves Extents on the Red Sea Coastline in Egypt using Polarimetric SAR and High Resolution Optical Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Ayman Abdel-Hamid

    2018-02-01

    Full Text Available Mangroves ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They are among the most productive forest ecosystems. They provide various ecological and economic ecosystem services. Despite of their economic and ecological importance, mangroves experience high yearly loss rates. There is a growing demand for mapping and assessing changes in mangroves extents especially in the context of climate change, land use change, and related threats to coastal ecosystems. The main objective of this study is to develop an approach for mapping of mangroves extents on the Red Sea coastline in Egypt, through the integration of both L-band SAR data of ALOS/PALSAR, and high resolution optical data of RapidEye. This was achieved via using object-based image analysis method, through applying different machine learning algorithms, and evaluating various features such as spectral properties, texture features, and SAR derived parameters for discrimination of mangroves ecosystem classes. Three non-parametric machine learning algorithms were tested for mangroves mapping; random forest (RF, support vector machine (SVM, and classification and regression trees (CART. As an input for the classifiers, we tested various features including vegetation indices (VIs and texture analysis using the gray-level co-occurrence matrix (GLCM. The object-based analysis method allowed clearly discriminating the different land cover classes within mangroves ecosystem. The highest overall accuracy (92.15% was achieved by the integrated SAR and optical data. Among all classifiers tested, RF performed better than other classifiers. Using L-band SAR data integrated with high resolution optical data was beneficial for mapping and characterization of mangroves growing in small patches. The maps produced represents an important updated reference suitable for developing a regional action plan for conservation and management of mangroves resources along

  7. Generation of Land Cover Maps Using High-Resolution Multispectral Aerial Cameras

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2013-01-01

    . The classification had an overall accuracy of 79%. Suggestions for the improvements in the applied methodology are made. The potential of land cover maps lies in updating of topographic databases, quality control of maps, studies of town development, and other geo-spatial domain applications. The automatic...... for classification of land cover. A high degree of automation can be achieved. The obtained results of a practical example are checked with reference values derived from ortho-images in natural colour and from colour images using stereo-vision. An error matrix is applied in the evaluation of the results...

  8. Application of Low-Cost UASs and Digital Photogrammetry for High-Resolution Snow Depth Mapping in the Arctic

    Directory of Open Access Journals (Sweden)

    Emiliano Cimoli

    2017-11-01

    Full Text Available The repeat acquisition of high-resolution snow depth measurements has important research and civil applications in the Arctic. Currently the surveying methods for capturing the high spatial and temporal variability of the snowpack are expensive, in particular for small areal extents. An alternative methodology based on Unmanned Aerial Systems (UASs and digital photogrammetry was tested over varying surveying conditions in the Arctic employing two diverse and low-cost UAS-camera combinations (500 and 1700 USD, respectively. Six areas, two in Svalbard and four in Greenland, were mapped covering from 1386 to 38,410 m2. The sites presented diverse snow surface types, underlying topography and light conditions in order to test the method under potentially limiting conditions. The resulting snow depth maps achieved spatial resolutions between 0.06 and 0.09 m. The average difference between UAS-estimated and measured snow depth, checked with conventional snow probing, ranged from 0.015 to 0.16 m. The impact of image pre-processing was explored, improving point cloud density and accuracy for different image qualities and snow/light conditions. Our UAS photogrammetry results are expected to be scalable to larger areal extents. While further validation is needed, with the inclusion of extra validation points, the study showcases the potential of this cost-effective methodology for high-resolution monitoring of snow dynamics in the Arctic and beyond.

  9. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    International Nuclear Information System (INIS)

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues [Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916]. Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system

  10. High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution.

    Directory of Open Access Journals (Sweden)

    Yehudit Hasin

    2008-11-01

    Full Text Available Olfactory receptors (ORs, which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction ( approximately 55% of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs, we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that approximately 50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used

  11. Mapping tropical forest trees using high-resolution aerial digital photographs

    NARCIS (Netherlands)

    Garzon-Lopez, C.X.; Bohlman, S.A.; Olff, H.; Jansen, P.A.

    2013-01-01

    The spatial arrangement of tree species is a key aspect of community ecology. Because tree species in tropical forests occur at low densities, it is logistically challenging to measure distributions across large areas. In this study, we evaluated the potential use of canopy tree crown maps, derived

  12. Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data

    Directory of Open Access Journals (Sweden)

    Vanessa Machault

    2014-12-01

    Full Text Available Controlling dengue virus transmission mainly involves integrated vector management. Risk maps at appropriate scales can provide valuable information for assessing entomological risk levels. Here, results from a spatio-temporal model of dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane (Martinique, French Antilles using high spatial resolution remote-sensing environmental data and field entomological and meteorological information are presented. This tele-epidemiology methodology allows monitoring the dynamics of diseases closely related to weather/climate and environment variability. A Geoeye-1 image was processed to extract landscape elements that could surrogate societal or biological information related to the life cycle of Aedes vectors. These elements were subsequently included into statistical models with random effect. Various environmental and meteorological conditions have indeed been identified as risk/protective factors for the presence of Aedes aegypti immature stages in dwellings at a given date. These conditions were used to produce dynamic high spatio-temporal resolution maps from the presence of most containers harboring larvae. The produced risk maps are examples of modeled entomological maps at the housing level with daily temporal resolution. This finding is an important contribution to the development of targeted operational control systems for dengue and other vector-borne diseases, such as chikungunya, which is also present in Martinique.

  13. New geospatial approaches for efficiently mapping forest biomass logistics at high resolution over large areas

    Science.gov (United States)

    John Hogland; Nathaniel Anderson; Woodam Chung

    2018-01-01

    Adequate biomass feedstock supply is an important factor in evaluating the financial feasibility of alternative site locations for bioenergy facilities and for maintaining profitability once a facility is built. We used newly developed spatial analysis and logistics software to model the variables influencing feedstock supply and to estimate and map two components of...

  14. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  15. High-resolution AUV mapping of the 2015 flows at Axial Seamount, Juan de Fuca Ridge

    Science.gov (United States)

    Paduan, J. B.; Chadwick, W. W., Jr.; Clague, D. A.; Le Saout, M.; Caress, D. W.; Thomas, H. J.; Yoerger, D.

    2016-12-01

    Lava flows erupted in April 2015 at Axial Seamount were mapped at 1-m resolution with the AUV Sentry in August 2015 and the MBARI Mapping AUVs in July 2016 and observed and sampled with ROVs on those same expeditions. Thirty percent of terrain covered by new flows had been mapped by the MBARI AUVs prior to the eruption. Differencing of before and after maps (using ship-collected bathymetry where the AUV had not mapped before) allows calculation of extents and volumes of flows and shows new fissures. The maps reveal unexpected fissure patterns and shifts in the style of flow emplacement through a single eruption. There were 11 separate flows totaling 1.48 x 108 m3 of lava erupted from numerous en echelon fissures over 19 km on the NE caldera floor, on the NE flank, and down the N rift zone. Flows in and around the caldera have maximum thicknesses of 5-19 m. Most erupted as sheet flows and spread along intricate channels that terminated in thin margins. Some utilized pre-existing fissures. Some flows erupted from short fissures, while at least two longer new fissures produced little or no lava. A flow on the upper N rift has a spectacular lava channel flanked by narrow lava pillars supporting a thin roof left after the flow drained. A shatter ring still emanating warm fluid is visible in the map as a 15-m wide low cone. Hundreds of exploded pillows were observed but are not discernable in the bathymetry. The northern-most three flows deep on the N rift are similar in area to the others but comprise the bulk of the eruption volume. Differencing of ship-based bathymetry shows only these flows. Near the eruptive fissures they are sheet flows, but as they flowed downslope they built complexes of coalesced pillow mounds up to 67-128 m thick. Changes in flow morphology occurred through the course of the eruption. Large pillow mounds had molten cores that deformed as the eruption progressed. One flow began as a thin, effusive sheet flow but as the eruption rate decreased, a

  16. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  17. Detailed Maps Depicting the Shallow-Water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Detailed, shallow-water coral reef ecosystem maps were generated by rule-based, semi-automated image analysis of high-resolution satellite imagery for nine locations...

  18. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    Science.gov (United States)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  19. High-resolution three-dimensional mapping of semiconductor dopant potentials

    DEFF Research Database (Denmark)

    Twitchett, AC; Yates, TJV; Newcomb, SB

    2007-01-01

    Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how a combin......Semiconductor device structures are becoming increasingly three-dimensional at the nanometer scale. A key issue that must be addressed to enable future device development is the three-dimensional mapping of dopant distributions, ideally under "working conditions". Here we demonstrate how...... a combination of electron holography and electron tomography can be used to determine quantitatively the three-dimensional electrostatic potential in an electrically biased semiconductor device with nanometer spatial resolution....

  20. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    OpenAIRE

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it possible to map SCEs at orders-of-magnitude greater resolution than was previously possible. On average, murine embryonic stem (mES) cells exhibit eight SCEs, which are detected at a resolution of up...

  1. High resolution global flood hazard map from physically-based hydrologic and hydraulic models.

    Science.gov (United States)

    Begnudelli, L.; Kaheil, Y.; McCollum, J.

    2017-12-01

    The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak

  2. Nationwide high-resolution mapping of hazards in the Philippines (Plinius Medal Lecture)

    Science.gov (United States)

    Lagmay, Alfredo Mahar Francisco A.

    2015-04-01

    The Philippines being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Situated in a region where severe weather and geophysical unrest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. Recently, the Philippines put in place a responsive program called the Nationwide Operational Assessment of Hazards (NOAH) for disaster prevention and mitigation. The efforts of Project NOAH are an offshoot of lessons learned from previous disasters that have inflicted massive loss of lives and costly damage to property. Several components of the NOAH program focus on mapping of landslide, riverine flood and storm surge inundation hazards. By simulating hazards phenomena over IFSAR- and LiDAR-derived digital terrain models (DTMs) using high-performance computers, multi-hazards maps of 1:10,000 scale, have been produced and disseminated to local government units through a variety of platforms. These detailed village-level (barangay-level) maps are useful to identify safe evacuation sites, planning emergency access routes and prepositioning of search and rescue and relief supplies during times of crises. They are also essential for long-term development planning of communities. In the past two years, NOAH was instrumental in providing timely, site-specific, and understandable hazards information to the public, considered as best practice in disaster risk reduction management (DRR). The use of advanced science and technology in the country's disaster prevention efforts is imperative to successfully mitigate the adverse impacts of natural hazards and should be a continuous quest - to find the best products, put forth in the forefront of battle against

  3. Estimating Hydraulic Resistance for Floodplain Mapping and Hydraulic Studies from High-Resolution Topography: Physical and Numerical Simulations

    Science.gov (United States)

    Minear, J. T.

    2017-12-01

    One of the primary unknown variables in hydraulic analyses is hydraulic resistance, values for which are typically set using broad assumptions or calibration, with very few methods available for independent and robust determination. A better understanding of hydraulic resistance would be highly useful for understanding floodplain processes, forecasting floods, advancing sediment transport and hydraulic coupling, and improving higher dimensional flood modeling (2D+), as well as correctly calculating flood discharges for floods that are not directly measured. The relationship of observed features to hydraulic resistance is difficult to objectively quantify in the field, partially because resistance occurs at a variety of scales (i.e. grain, unit and reach) and because individual resistance elements, such as trees, grass and sediment grains, are inherently difficult to measure. Similar to photogrammetric techniques, Terrestrial Laser Scanning (TLS, also known as Ground-based LiDAR) has shown great ability to rapidly collect high-resolution topographic datasets for geomorphic and hydrodynamic studies and could be used to objectively quantify the features that collectively create hydraulic resistance in the field. Because of its speed in data collection and remote sensing ability, TLS can be used both for pre-flood and post-flood studies that require relatively quick response in relatively dangerous settings. Using datasets collected from experimental flume runs and numerical simulations, as well as field studies of several rivers in California and post-flood rivers in Colorado, this study evaluates the use of high-resolution topography to estimate hydraulic resistance, particularly from grain-scale elements. Contrary to conventional practice, experimental laboratory runs with bed grain size held constant but with varying grain-scale protusion create a nearly twenty-fold variation in measured hydraulic resistance. The ideal application of this high-resolution topography

  4. Cerebral gray matter volume losses in essential tremor: A case-control study using high resolution tissue probability maps.

    Science.gov (United States)

    Cameron, Eric; Dyke, Jonathan P; Hernandez, Nora; Louis, Elan D; Dydak, Ulrike

    2018-03-10

    Essential tremor (ET) is increasingly recognized as a multi-dimensional disorder with both motor and non-motor features. For this reason, imaging studies are more broadly examining regions outside the cerebellar motor loop. Reliable detection of cerebral gray matter (GM) atrophy requires optimized processing, adapted to high-resolution magnetic resonance imaging (MRI). We investigated cerebral GM volume loss in ET cases using automated segmentation of MRI T1-weighted images. MRI was acquired on 47 ET cases and 36 controls. Automated segmentation and voxel-wise comparisons of volume were performed using Statistical Parametric Mapping (SPM) software. To improve upon standard protocols, the high-resolution International Consortium for Brain Mapping (ICBM) 2009a atlas and tissue probability maps were used to process each subject image. Group comparisons were performed: all ET vs. Controls, ET with head tremor (ETH) vs. Controls, and severe ET vs. An analysis of variance (ANOVA) was performed between ET with and without head tremor and controls. Age, sex, and Montreal Cognitive Assessment (MoCA) score were regressed out from each comparison. We were able to consistently identify regions of cerebral GM volume loss in ET and in ET subgroups in the posterior insula, superior temporal gyri, cingulate cortex, inferior frontal gyri and other occipital and parietal regions. There were no significant increases in GM volume in ET in any comparisons with controls. This study, which uses improved methodologies, provides evidence that GM volume loss in ET is present beyond the cerebellum, and in fact, is widespread throughout the cerebrum as well. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley

    Directory of Open Access Journals (Sweden)

    Michelle E. Miro

    2018-01-01

    Full Text Available NASA’s Gravity Recovery and Climate Experiment (GRACE has already proven to be a powerful data source for regional groundwater assessments in many areas around the world. However, the applicability of GRACE data products to more localized studies and their utility to water management authorities have been constrained by their limited spatial resolution (~200,000 km2. Researchers have begun to address these shortcomings with data assimilation approaches that integrate GRACE-derived total water storage estimates into complex regional models, producing higher-resolution estimates of hydrologic variables (~2500 km2. Here we take those approaches one step further by developing an empirically based model capable of downscaling GRACE data to a high-resolution (~16 km2 dataset of groundwater storage changes over a portion of California’s Central Valley. The model utilizes an artificial neural network to generate a series of high-resolution maps of groundwater storage change from 2002 to 2010 using GRACE estimates of variations in total water storage and a series of widely available hydrologic variables (PRISM precipitation and temperature data, digital elevation model (DEM-derived slope, and Natural Resources Conservation Service (NRCS soil type. The neural network downscaling model is able to accurately reproduce local groundwater behavior, with acceptable Nash-Sutcliffe efficiency (NSE values for calibration and validation (ranging from 0.2445 to 0.9577 and 0.0391 to 0.7511, respectively. Ultimately, the model generates maps of local groundwater storage change at a 100-fold higher resolution than GRACE gridded data products without the use of computationally intensive physical models. The model’s simulated maps have the potential for application to local groundwater management initiatives in the region.

  6. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    Science.gov (United States)

    Ganguly, Sangram; Kalia, Subodh; Li, Shuang; Michaelis, Andrew; Nemani, Ramakrishna R.; Saatchi, Sassan A

    2017-01-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above ground biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  7. Very High Resolution Tree Cover Mapping for Continental United States using Deep Convolutional Neural Networks

    Science.gov (United States)

    Ganguly, S.; Kalia, S.; Li, S.; Michaelis, A.; Nemani, R. R.; Saatchi, S.

    2017-12-01

    Uncertainties in input land cover estimates contribute to a significant bias in modeled above gound biomass (AGB) and carbon estimates from satellite-derived data. The resolution of most currently used passive remote sensing products is not sufficient to capture tree canopy cover of less than ca. 10-20 percent, limiting their utility to estimate canopy cover and AGB for trees outside of forest land. In our study, we created a first of its kind Continental United States (CONUS) tree cover map at a spatial resolution of 1-m for the 2010-2012 epoch using the USDA NAIP imagery to address the present uncertainties in AGB estimates. The process involves different tasks including data acquisition/ingestion to pre-processing and running a state-of-art encoder-decoder based deep convolutional neural network (CNN) algorithm for automatically generating a tree/non-tree map for almost a quarter million scenes. The entire processing chain including generation of the largest open source existing aerial/satellite image training database was performed at the NEX supercomputing and storage facility. We believe the resulting forest cover product will substantially contribute to filling the gaps in ongoing carbon and ecological monitoring research and help quantifying the errors and uncertainties in derived products.

  8. New Geospatial Approaches for Efficiently Mapping Forest Biomass Logistics at High Resolution over Large Areas

    Directory of Open Access Journals (Sweden)

    John Hogland

    2018-04-01

    Full Text Available Adequate biomass feedstock supply is an important factor in evaluating the financial feasibility of alternative site locations for bioenergy facilities and for maintaining profitability once a facility is built. We used newly developed spatial analysis and logistics software to model the variables influencing feedstock supply and to estimate and map two components of the supply chain for a bioenergy facility: (1 the total biomass stocks available within an economically efficient transportation distance; (2 the cost of logistics to move the required stocks from the forest to the facility. Both biomass stocks and flows have important spatiotemporal dynamics that affect procurement costs and project viability. Though seemingly straightforward, these two components can be difficult to quantify and map accurately in a useful and spatially explicit manner. For an 8 million hectare study area, we used raster-based methods and tools to quantify and visualize these supply metrics at 10 m2 spatial resolution. The methodology and software leverage a novel raster-based least-cost path modeling algorithm that quantifies off-road and on-road transportation and other logistics costs. The results of the case study highlight the efficiency, flexibility, fine resolution, and spatial complexity of model outputs developed for facility siting and procurement planning.

  9. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.

    Science.gov (United States)

    Berry, Rachel; Miyagawa, Taimei; Paskaranandavadivel, Niranchan; Du, Peng; Angeli, Timothy R; Trew, Mark L; Windsor, John A; Imai, Yohsuke; O'Grady, Gregory; Cheng, Leo K

    2016-11-01

    High-resolution (HR) mapping has been used to study gastric slow-wave activation; however, the specific characteristics of antral electrophysiology remain poorly defined. This study applied HR mapping and computational modeling to define functional human antral physiology. HR mapping was performed in 10 subjects using flexible electrode arrays (128-192 electrodes; 16-24 cm 2 ) arranged from the pylorus to mid-corpus. Anatomical registration was by photographs and anatomical landmarks. Slow-wave parameters were computed, and resultant data were incorporated into a computational fluid dynamics (CFD) model of gastric flow to calculate impact on gastric mixing. In all subjects, extracellular mapping demonstrated normal aboral slow-wave propagation and a region of increased amplitude and velocity in the prepyloric antrum. On average, the high-velocity region commenced 28 mm proximal to the pylorus, and activation ceased 6 mm from the pylorus. Within this region, velocity increased 0.2 mm/s per mm of tissue, from the mean 3.3 ± 0.1 mm/s to 7.5 ± 0.6 mm/s (P human terminal antral contraction is controlled by a short region of rapid high-amplitude slow-wave activity. Distal antral wave acceleration plays a major role in antral flow and mixing, increasing particle strain and trituration. Copyright © 2016 the American Physiological Society.

  10. Application of Low-Cost UASs and Digital Photogrammetry for High-Resolution Snow Depth Mapping in the Arctic

    DEFF Research Database (Denmark)

    Cimoli, Emiliano; Marcer, Marco; Vandecrux, Baptiste Robert Marcel

    2017-01-01

    The repeat acquisition of high-resolution snow depth measurements has important research and civil applications in the Arctic. Currently the surveying methods for capturing the high spatial and temporal variability of the snowpack are expensive, in particular for small areal extents. An alternati...... areal extents. While further validation is needed, with the inclusion of extra validation points, the study showcases the potential of this cost-effective methodology for high-resolution monitoring of snow dynamics in the Arctic and beyond....... methodology based on Unmanned Aerial Systems (UASs) and digital photogrammetry was tested over varying surveying conditions in the Arctic employing two diverse and low-cost UAS-camera combinations (500 and 1700 USD, respectively). Six areas, two in Svalbard and four in Greenland, were mapped covering from......-estimated and measured snow depth, checked with conventional snow probing, ranged from 0.015 to 0.16 m. The impact of image pre-processing was explored, improving point cloud density and accuracy for different image qualities and snow/light conditions. Our UAS photogrammetry results are expected to be scalable to larger...

  11. High-resolution global maps of 21st-century forest cover change.

    Science.gov (United States)

    Hansen, M C; Potapov, P V; Moore, R; Hancher, M; Turubanova, S A; Tyukavina, A; Thau, D; Stehman, S V; Goetz, S J; Loveland, T R; Kommareddy, A; Egorov, A; Chini, L; Justice, C O; Townshend, J R G

    2013-11-15

    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

  12. High-Resolution 3-D Mapping of Soil Texture in Denmark

    DEFF Research Database (Denmark)

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mette Balslev

    2013-01-01

    Soil texture which is spatially variable in nature, is an important soil physical property that governs most physical, chemical, biological, and hydrological processes in soils. Detailed information on soil texture variability both in vertical and lateral dimensions is crucial for proper crop...... and land management and environmental studies, especially in Denmark where mechanized agriculture covers two thirds of the land area. We modeled the continuous depth function of texture distribution from 1958 Danish soil profiles (up to a 2-m depth) using equal-area quadratic splines and predicted clay......, silt, fine sand, and coarse sand content at six standard soil depths of GlobalSoilMap project (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm) via regression rules using the Cubist data mining tool. Seventeen environmental variables were used as predictors and their strength of prediction was also...

  13. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    Science.gov (United States)

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  14. A high-resolution land-use map; Nogales, Sonora, Mexico

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel L.; Wallace, Cynthia S.A.; Gil Anaya, Claudia Z.; Diaz Arcos, Israel; Gray, Floyd

    2010-01-01

    The cities of Nogales, Sonora, and Nogales, Arizona, are located in the Ambos Nogales Watershed, a topographically irregular bowl-shaped area with a northward gradient. Throughout history, residents in both cities have been affected by flooding. Currently, the primary method for regulating this runoff is to build a series of detention basins in Nogales, Sonora. Additionally, the municipality also is considering land-use planning to help mitigate flooding. This paper describes the production of a 10-meter resolution land-use map, derived from 2008 aerial photos of the Nogales, Sonora Watershed for modeling impacts of the detention basin construction and in support of an ?Early Warning Hazard System? for the region.

  15. High-resolution mapping and genetic characterization of the Lazy-2 gravitropic mutant of tomato

    Science.gov (United States)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    Mutation of the Lazy-2 (Lz-2) gene in tomato (Lycopersicon esculentum mill.) produces a phytochrome-dependent reversal of shoot gravitropism, providing a unique genetic resource for investigating how signals from light modulate gravitropism. We mapped the Lz-2 gene using RFLPs and a PCR-based technique to assess the feasibility of positional cloning. Analysis of a 1338 plant backcross population between L. esculentum and L. pennellii placed Lz-2 within a 1.2 cM interval on chromosome 5, 0.4 cM from TG504-CT201A interval. The inabililty to resolve these markers indicates that Lz-2 resides in a centromeric region in which recombination is highly suppressed. Lazy-2 is tightly linked to but does not encode the gene for ACC4, an enzyme involved in ethylene biosynthesis. We also observed that Lz-2 is partially dominant under certain conditions and stages of development.

  16. High Resolution Mapping of Drought Impacts on Small Waterbodies using Sentinel 1 SAR and Landsat Observations

    Science.gov (United States)

    Slinski, K.; Hogue, T. S.; McCray, J. E.

    2017-12-01

    Drought in semi-arid areas can have substantial impact on ephemeral and small water bodies, which provide critical ecological habitat and have important socio-economic value. This is particularly true in the pastoral areas of East Africa, where these ecosystems provide local communities with water for human and animal consumption and pasture for livestock. However, monitoring the impact of drought on ephemeral and small water bodies in East Africa is challenging because of sparse in situ observational systems. Satellite remote sensing observations have been shown to be a viable option for monitoring surface water change in data-poor regions. Landsat data is widely used to detect open water, but the use of Landsat data in small waterbody studies is limited by its 30-meter spatial resolution. New remote sensing-based tools are necessary to better understand the vulnerability of ephemeral and small waterbodies in semi-arid areas to drought and to monitor drought impacts. This study combines Landsat and Sentinel 1 SAR observations to create a series of monthly waterbody maps over the Awash River basin in Ethiopia depicting the change in surface water from October 2014 to March 2017. The study time period corresponds with a major drought event in the area. Waterbody maps were generated using a 10-meter resolution and utilized to monitor drought impacts on ephemeral and small waterbodies in the Awash River basin over the course of the drought event. Initial results show that surface waterbodies in the lower catchments of the Awash basin were more severely impacted by the drought event than the upper catchments. It is anticipated that the new information provided by this tool will inform decisions affecting the water, energy, agriculture and other sectors in East Africa reliant on water resources, enabling water authorities to better manage future drought events.

  17. High-resolution computed tomography of the toothed jaw compared with histologic microsections

    International Nuclear Information System (INIS)

    Klein, H.M.; Fuhrmann, R.; Diedrich, P.; Guenther, R.W.

    1993-01-01

    Human bone segments of the toothed jaw were scanned using high-resolution CT with axial and coronal contiguous 1 and 2 mm slices. The bone segments were sliced analogous to the performed CT image positions. Contact films and micro-sections were made from the cuttings. Length and width of the teeth, the thickness of the alveolar bone and the distance between bone and dental surface were measured. Comparison of the CT measurements with contact films and histological specimen yielded best results for axial slices with 1 mm slice thickness (mean error 0.3-0.5 mm). Coronary oriented slices showed an error of 0.3-1.6 mm. 3D-reformatting can improve spatial orientation for axially produced image series. For CT imaging of the toothed jaw concerning the dento-alveolar structures, contiguous axial scanning with 1 mm slice thickness appears to be the concept of choice. (orig.) [de

  18. A high-resolution map of the three-dimensional chromatin interactome in human cells.

    Science.gov (United States)

    Jin, Fulai; Li, Yan; Dixon, Jesse R; Selvaraj, Siddarth; Ye, Zhen; Lee, Ah Young; Yen, Chia-An; Schmitt, Anthony D; Espinoza, Celso A; Ren, Bing

    2013-11-14

    A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-α signalling in these cells. Unexpectedly, we found that TNF-α-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.

  19. Mid-IR DIAL for high-resolution mapping of explosive precursors

    Science.gov (United States)

    Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Sobolev, I.

    2013-10-01

    A DIAL instrument on a moving platform is seen as a valuable remote sensing component in a sensor network for area monitoring, targeting sites involved in unauthorised explosive manufacturing. Such instrument will perform the area mapping of the vapour concentration of key substances, known to be used as precursors in explosive fabrication, such as acetone and nitromethane. The IR spectra of acetone and nitromethane vapours have been defined from available spectroscopy databases and from laboratory measurements as showing optimal spectral band for the DIAL operation in the spectral range of 3.0 μm - 3.5 μm. The DIAL operation has been numerically simulated, with inputs based on the HITRAN database, the U.S. Standard Atmosphere and aerosol simulation software package OPAC. A combination of OPO and OPA has been chosen as a transmitter, where the idler wavelength is used for probing, with wavelength tuning in sequence. A scanner mounted on top of the coaxially aligned laser and receiver, is capable of covering almost 360 degrees horizontally and +/-30 degrees vertically. The detection is performed by a photovoltaic photodiode with 4-stage cooling, with a signal digitalisation having 14 bit amplitude resolution and 125 Ms/s sampling rate. Here we present the development and the first test of the DIAL instrument.

  20. Earth elevation map production and high resolution sensing camera imaging analysis

    Science.gov (United States)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  1. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

    Science.gov (United States)

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-06-20

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.

  2. High resolution micro-XRF maps of iron oxides inside sensory dendrites of putative avian magnetoreceptors

    International Nuclear Information System (INIS)

    Falkenberg, G; Fleissner, G E; Fleissner, G U E; Schuchardt, K; Kuehbacher, M; Chalmin, E; Janssens, K

    2009-01-01

    Iron mineral containing sensory dendrites in the inner lining of the upper beak of homing pigeons and various bird species are the first candidate structures for an avian magnetic field receptor. A new concept of magnetoreception is based on detailed ultra-structural optical and electron microscopy analyses in combination with synchrotron radiation microscopic X-ray fluorescence analysis (micro-XRF) and microscopic X-ray absorption near edge structures (micro-XANES). Several behavioral experiments and first mathematical simulations affirm our avian magnetoreceptor model. The iron minerals inside the dendrites are housed in three different subcellular compartments (bullets, platelets, vesicles), which could be clearly resolved and identified by electron microscopy on ultrathin sections. Micro-XRF and micro-XANES data obtained at HASYLAB beamline L added information about the elemental distribution and Fe speciation, but are averaged over the complete dendrite due to limited spatial resolution. Here we present recently performed micro-XRF maps with sub-micrometer resolution (ESRF ID21), which reveal for the first time subcellular structural information from almost bulk-like dendrite sample material. Due to the thickness of 30 μm the microarchitecture of the dendrites can be considered as undisturbed and artefacts introduced by sectioning might be widely reduced.

  3. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses

    Science.gov (United States)

    Agüera, Francisco; Aguilar, Fernando J.; Aguilar, Manuel A.

    The area occupied by plastic-covered greenhouses has undergone rapid growth in recent years, currently exceeding 500,000 ha worldwide. Due to the vast amount of input (water, fertilisers, fuel, etc.) required, and output of different agricultural wastes (vegetable, plastic, chemical, etc.), the environmental impact of this type of production system can be serious if not accompanied by sound and sustainable territorial planning. For this, the new generation of satellites which provide very high resolution imagery, such as QuickBird and IKONOS can be useful. In this study, one QuickBird and one IKONOS satellite image have been used to cover the same area under similar circumstances. The aim of this work was an exhaustive comparison of QuickBird vs. IKONOS images in land-cover detection. In terms of plastic greenhouse mapping, comparative tests were designed and implemented, each with separate objectives. Firstly, the Maximum Likelihood Classification (MLC) was applied using five different approaches combining R, G, B, NIR, and panchromatic bands. The combinations of the bands used, significantly influenced some of the indexes used to classify quality in this work. Furthermore, the quality classification of the QuickBird image was higher in all cases than that of the IKONOS image. Secondly, texture features derived from the panchromatic images at different window sizes and with different grey levels were added as a fifth band to the R, G, B, NIR images to carry out the MLC. The inclusion of texture information in the classification did not improve the classification quality. For classifications with texture information, the best accuracies were found in both images for mean and angular second moment texture parameters. The optimum window size in these texture parameters was 3×3 for IK images, while for QB images it depended on the quality index studied, but the optimum window size was around 15×15. With regard to the grey level, the optimum was 128. Thus, the

  4. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing

    Directory of Open Access Journals (Sweden)

    Asli Ozdarici-Ok

    2015-05-01

    Full Text Available Mapping agricultural crops is an important application of remote sensing. However, in many cases it is based either on hyperspectral imagery or on multitemporal coverage, both of which are difficult to scale up to large-scale deployment at high spatial resolution. In the present paper, we evaluate the possibility of crop classification based on single images from very high-resolution (VHR satellite sensors. The main objective of this work is to expose performance difference between state-of-the-art parcel-based smoothing and purely data-driven conditional random field (CRF smoothing, which is yet unknown. To fulfill this objective, we perform extensive tests with four different classification methods (Support Vector Machines, Random Forest, Gaussian Mixtures, and Maximum Likelihood to compute the pixel-wise data term; and we also test two different definitions of the pairwise smoothness term. We have performed a detailed evaluation on different multispectral VHR images (Ikonos, QuickBird, Kompsat-2. The main finding of this study is that pairwise CRF smoothing comes close to the state-of-the-art parcel-based method that requires parcel boundaries (average difference ≈ 2.5%. Our results indicate that a single multispectral (R, G, B, NIR image is enough to reach satisfactory classification accuracy for six crop classes (corn, pasture, rice, sugar beet, wheat, and tomato in Mediterranean climate. Overall, it appears that crop mapping using only one-shot VHR imagery taken at the right time may be a viable alternative, especially since high-resolution multitemporal or hyperspectral coverage as well as parcel boundaries are in practice often not available.

  5. High-Resolution Urban Greenery Mapping for Micro-Climate Modelling Based on 3d City Models

    Science.gov (United States)

    Hofierka, J.; Gallay, M.; Kaňuk, J.; Šupinský, J.; Šašak, J.

    2017-10-01

    Urban greenery has various positive micro-climate effects including mitigation of heat islands. The primary root of heat islands in cities is in absorption of solar radiation by the mass of building structures, roads and other solid materials. The absorbed heat is subsequently re-radiated into the surroundings and increases ambient temperatures. The vegetation can stop and absorb most of incoming solar radiation mostly via the photosynthesis and evapotranspiration process. However, vegetation in mild climate of Europe manifests considerable annual seasonality which can also contribute to the seasonal change in the cooling effect of the vegetation on the urban climate. Modern methods of high-resolution mapping and new generations of sensors have brought opportunity to record the dynamics of urban greenery in a high resolution in spatial, spectral, and temporal domains. In this paper, we use the case study of the city of Košice in Eastern Slovakia to demonstrate the methodology of 3D mapping and modelling the urban greenery during one vegetation season in 2016. The purpose of this monitoring is to capture 3D effects of urban greenery on spatial distribution of solar radiation in urban environment. Terrestrial laser scanning was conducted on four selected sites within Košice in ultra-high spatial resolution. The entire study area, which included these four smaller sites, comprised 4 km2 of the central part of the city was flown within a single airborne lidar and photogrammetric mission to capture the upper parts of buildings and vegetation. The acquired airborne data were used to generate a 3D city model and the time series of terrestrial lidar data were integrated with the 3D city model. The results show that the terrestrial and airborne laser scanning techniques can be effectively used to monitor seasonal changes in foliage of trees in order to assess the transmissivity of the canopy for microclimate modelling.

  6. HIGH RESOLUTION NEAR-INFRARED SURVEY OF THE PIPE NEBULA. I. A DEEP INFRARED EXTINCTION MAP OF BARNARD 59

    International Nuclear Information System (INIS)

    Roman-Zuniga, Carlos G.; Alves, Joao F.; Lada, Charles J.

    2009-01-01

    We present our analysis of a fully sampled, high resolution dust extinction map of the Barnard 59 complex in the Pipe Nebula. The map was constructed with the infrared color excess technique applied to a photometric catalog that combines data from both ground and space based observations. The map resolves for the first time the high density center of the main core in the complex, which is associated with the formation of a small cluster of stars. We found that the central core in Barnard 59 shows an unexpected lack of significant substructure consisting of only two significant fragments. Overall, the material appears to be consistent with being a single, large core with a density profile that can be well fit by a King model. A series of NH 3 pointed observations toward the high column density center of the core appear to show that the core is still thermally dominated, with subsonic non-thermal motions. The stars in the cluster could be providing feedback to support the core against collapse, but the relatively narrow radio lines suggest that an additional source of support, for example, a magnetic field, may be required to stabilize the core. Outside the central core our observations reveal the structure of peripheral cores and resolve an extended filament into a handful of significant substructures whose spacing and masses appear to be consistent with Jeans fragmentation.

  7. JOINT PROCESSING OF UAV IMAGERY AND TERRESTRIAL MOBILE MAPPING SYSTEM DATA FOR VERY HIGH RESOLUTION CITY MODELING

    Directory of Open Access Journals (Sweden)

    A. Gruen

    2013-08-01

    Full Text Available Both unmanned aerial vehicle (UAV technology and Mobile Mapping Systems (MMS are important techniques for surveying and mapping. In recent years, the UAV technology has seen tremendous interest, both in the mapping community and in many other fields of application. Carrying off-the shelf digital cameras, the UAV can collect high quality aerial optical images for city modeling using photogrammetric techniques. In addition, a MMS can acquire high density point clouds of ground objects along the roads. The UAV, if operated in an aerial mode, has difficulties in acquiring information of ground objects under the trees and along façades of buildings. On the contrary, the MMS collects accurate point clouds of objects from the ground, together with stereo images, but it suffers from system errors due to loss of GPS signals, and also lacks the information of the roofs. Therefore, both technologies are complementary. This paper focuses on the integration of UAV images, MMS point cloud data and terrestrial images to build very high resolution 3D city models. The work we will show is a practical modeling project of the National University of Singapore (NUS campus, which includes buildings, some of them very high, roads and other man-made objects, dense tropical vegetation and DTM. This is an intermediate report. We present work in progress.

  8. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

    Science.gov (United States)

    Reddy, Umesh K; Nimmakayala, Padma; Levi, Amnon; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Tomason, Yan R; Vajja, Gopinath; Reddy, Rishi; Abburi, Lavanya; Wehner, Todd C; Ronin, Yefim; Karol, Abraham

    2014-09-15

    We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication. Copyright © 2014 Reddy et al.

  9. Cold-seep habitat mapping: High-resolution spatial characterization of the Blake Ridge Diapir seep field

    Science.gov (United States)

    Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-08-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  10. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    Science.gov (United States)

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. High Resolution Mineral Mapping of the Oman Drilling Project Cores with Imaging Spectroscopy: Preliminary Results

    Science.gov (United States)

    Greenberger, R. N.; Ehlmann, B. L.; Kelemen, P. B.; Manning, C. E.; Teagle, D. A. H.; Harris, M.; Michibayashi, K.; Takazawa, E.

    2017-12-01

    mm-thick dolomite or calcite veins among dense sets of magnesite veins in the listvenite, indicating cross-cutting relationships that reflect changing alteration conditions with time. It also highlights key zones for sampling and additional analyses. Further data processing will provide mineralogical maps of the full 1.5 km of core.

  12. SAETTA: high resolution 3D mapping of the lightning activity around Corsica Island

    Science.gov (United States)

    Coquillat, Sylvain; Defer, Eric; Lambert, Dominique; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge

    2017-04-01

    In the frame of the French atmospheric observatory CORSiCA (http://www.obs-mip.fr/corsica), a total lightning activity detection system called SAETTA (Suivi de l'Activité Electrique Tridimensionnelle Totale de l'Atmosphère) has been deployed in Corsica Island in order to strengthen the potential of observation of convective events causing heavy rainfall and flash floods in the West Mediterranean basin. SAETTA is a network of 12 LMA stations (Lightning Mapping Array) developed by New Mexico Tech (USA). The instrument allows observing lightning flashes in 3D and real time, at high temporal (80 µs) and spatial resolutions. It detects the radiations emitted by cloud discharges in the 60-66 MHz band, in a radius of about 350 km from the centre of the network, in passive mode and standalone (solar panel and batteries). Initially deployed in May 2014, SAETTA operated from July 13 to October 20 in 2014 and from April 19 to December 1st in 2015. It is now in permanent operation since 16 April 2016. Many high quality observations have been performed so far that provide an accurate location in space and time of the convective events. They also bring interesting dynamical and microphysical features of those events. For example the intensity of the convective surges, the transport of charged ice particles in the stratiform area of the thunderclouds can be deduced from SAETTA observations. Specific events have also been detected as well: bolts-from-the-blue, inter cloud discharges, high level discharges in convective but also in stratiform areas, inverted dipoles. The specific lightning patterns of 2015 illustrate the complex influence of the relief, probably via slope and valley winds over Corsica and via induced lee-side convergences over the sea. SAETTA is expected to operate for at least a decade over Corsica so it will participate to the calibration/validation of upcoming lightning detectors from space such as MTG-LI. It will also be a key instrument during the field

  13. A high-resolution map of human evolutionary constraint using 29 mammals

    DEFF Research Database (Denmark)

    Lindblad-Toh, Kerstin; Garber, Manuel; Zuk, Or

    2011-01-01

    The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering...

  14. High-resolution mapping of wetland vegetation biomass and distribution with L-band radar in southeastern coastal Louisiana

    Science.gov (United States)

    Thomas, N. M.; Simard, M.; Byrd, K. B.; Windham-Myers, L.; Castaneda, E.; Twilley, R.; Bevington, A. E.; Christensen, A.

    2017-12-01

    Louisiana coastal wetlands account for approximately one third (37%) of the estuarine wetland vegetation in the conterminous United States, yet the spatial distribution of their extent and aboveground biomass (AGB) is not well defined. This knowledge is critical for the accurate completion of national greenhouse gas (GHG) inventories. We generated high-resolution baselines maps of wetland vegetation extent and biomass at the Atchafalaya and Terrebonne basins in coastal Louisiana using a multi-sensor approach. Optical satellite data was used within an object-oriented machine learning approach to classify the structure of wetland vegetation types, offering increased detail over currently available land cover maps that do not distinguish between wetland vegetation types nor account for non-permanent seasonal changes in extent. We mapped 1871 km2 of wetlands during a period of peak biomass in September 2015 comprised of flooded forested wetlands and leaf, grass and emergent herbaceous marshes. The distribution of aboveground biomass (AGB) was mapped using JPL L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Relationships between time-series radar imagery and field data collected in May 2015 and September 2016 were derived to estimate AGB at the Wax Lake and Atchafalaya deltas. Differences in seasonal biomass estimates reflect the increased AGB in September over May, concurrent with periods of peak biomass and the onset of the vegetation growing season, respectively. This method provides a tractable means of mapping and monitoring biomass of wetland vegetation types with L-band radar, in a region threatened with wetland loss under projections of increasing sea-level rise and terrestrial subsidence. Through this, we demonstrate a method that is able to satisfy the IPCC 2013 Wetlands Supplement requirement for Tier 2/Tier 3 reporting of coastal wetland GHG inventories.

  15. Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning

    Science.gov (United States)

    Debats, Stephanie Renee

    Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, we developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. We presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, we determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands. We also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. We designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Our active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples. This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling

  16. Ecosystem services - from assessements of estimations to quantitative, validated, high-resolution, continental-scale mapping via airborne LIDAR

    Science.gov (United States)

    Zlinszky, András; Pfeifer, Norbert

    2016-04-01

    service potential" which is the ability of the local ecosystem to deliver various functions (water retention, carbon storage etc.), but can't quantify how much of these are actually used by humans or what the estimated monetary value is. Due to its ability to measure both terrain relief and vegetation structure in high resolution, airborne LIDAR supports direct quantification of the properties of an ecosystem that lead to it delivering a given service (such as biomass, water retention, micro-climate regulation or habitat diversity). In addition, its high resolution allows direct calibration with field measurements: routine harvesting-based ecological measurements, local biodiversity indicator surveys or microclimate recordings all take place at the human scale and can be directly linked to the local value of LIDAR-based indicators at meter resolution. Therefore, if some field measurements with standard ecological methods are performed on site, the accuracy of LIDAR-based ecosystem service indicators can be rigorously validated. With this conceptual and technical approach high resolution ecosystem service assessments can be made with well established credibility. These would consolidate the concept of ecosystem services and support both scientific research and evidence-based environmental policy at local and - as data coverage is continually increasing - continental scale.

  17. A high-resolution map of human evolutionary constraint using 29 mammals.

    Science.gov (United States)

    Lindblad-Toh, Kerstin; Garber, Manuel; Zuk, Or; Lin, Michael F; Parker, Brian J; Washietl, Stefan; Kheradpour, Pouya; Ernst, Jason; Jordan, Gregory; Mauceli, Evan; Ward, Lucas D; Lowe, Craig B; Holloway, Alisha K; Clamp, Michele; Gnerre, Sante; Alföldi, Jessica; Beal, Kathryn; Chang, Jean; Clawson, Hiram; Cuff, James; Di Palma, Federica; Fitzgerald, Stephen; Flicek, Paul; Guttman, Mitchell; Hubisz, Melissa J; Jaffe, David B; Jungreis, Irwin; Kent, W James; Kostka, Dennis; Lara, Marcia; Martins, Andre L; Massingham, Tim; Moltke, Ida; Raney, Brian J; Rasmussen, Matthew D; Robinson, Jim; Stark, Alexander; Vilella, Albert J; Wen, Jiayu; Xie, Xiaohui; Zody, Michael C; Baldwin, Jen; Bloom, Toby; Chin, Chee Whye; Heiman, Dave; Nicol, Robert; Nusbaum, Chad; Young, Sarah; Wilkinson, Jane; Worley, Kim C; Kovar, Christie L; Muzny, Donna M; Gibbs, Richard A; Cree, Andrew; Dihn, Huyen H; Fowler, Gerald; Jhangiani, Shalili; Joshi, Vandita; Lee, Sandra; Lewis, Lora R; Nazareth, Lynne V; Okwuonu, Geoffrey; Santibanez, Jireh; Warren, Wesley C; Mardis, Elaine R; Weinstock, George M; Wilson, Richard K; Delehaunty, Kim; Dooling, David; Fronik, Catrina; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Minx, Patrick; Sodergren, Erica; Birney, Ewan; Margulies, Elliott H; Herrero, Javier; Green, Eric D; Haussler, David; Siepel, Adam; Goldman, Nick; Pollard, Katherine S; Pedersen, Jakob S; Lander, Eric S; Kellis, Manolis

    2011-10-12

    The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.

  18. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Diez, E. [McGill Univ., Quebec (Canada)] [and others

    1997-02-01

    Natural resistance of inbred mouse strains to infection with Legionella pneumophila is controlled by the expression of a single dominant gene on chromosome 13, designated Lgn1. The genetic difference at Lgn1 is phenotypically expressed as the presence or absence of intracellular replication of L. pneumophila in host macrophages. In our effort to identify the Lgn1 gene by positional cloning, we have generated a high-resolution linkage map of the Lgn1 chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J x C57BL/6J) X A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J X Mus spretus interspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping the Lgn1 region. Combined pedigree analyses for the 5.4-cM segment overlapping Lgn1 indicated the locus order and the interlocus distances (in cM): D13Mit128-(1.4)-D13Mit194-(0.1)-D13Mit147-(0.9)-Dl3Mit36-(0.9)-D13Mit146-(0.2)-Lgn1/D 13Mit37-(1.0)-D13Mit70. Additional genetic linkage studies of markers not informative in the A/J X C57BL/6J cross positioned D13Mit30, -72, -195, and -203, D13Gor4, D13Hun35, and Mtap5 in the immediate vicinity of the Lgn1 locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene. 60 refs., 2 figs., 2 tabs.

  19. The Challenge of High-resolution Mapping of Very Shallow Coastal Areas: Case Study of the Lagoon of Venice, Italy

    Science.gov (United States)

    Madricardo, F.; Foglini, F.; Kruss, A.; Bajo, M.; Campiani, E.; Ferrarin, C.; Fogarin, S.; Grande, V.; Janowski, L.; Keppel, E.; Leidi, E.; Lorenzetti, G.; Maicu, F.; Maselli, V.; Montereale Gavazzi, G.; Pellegrini, C.; Petrizzo, A.; Prampolini, M.; Remia, A.; Rizzetto, F.; Rovere, M.; Sarretta, A.; Sigovini, M.; Toso, C.; Zaggia, L.; Trincardi, F.

    2017-12-01

    Very shallow coastal environments are often highly urbanized with half of the world's population and 13 of the largest mega-cities located close to the coast. These environments undergo rapid morphological changes due to natural and anthropogenic pressure that will likely be enhanced in the near future by mean sea-level rise. Therefore, there is a strong need for high resolution seafloor mapping to monitor and protect shallow coastal areas. To date, only about 5% of their seafloor has been mapped: their shallowness has prevented so far the use of underwater acoustics to reveal their morphological features; their turbidity often hindered the efficient use of LIDAR technology, particularly in lagoons and estuaries. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present the results of an extensive multibeam survey carried out in the Lagoon of Venice (Italy) in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea (surface area of about 550 km2, average depth of about 1 m) and it is a UNESCO World Cultural and Natural Heritage site together with the historical city of Venice which is currently endangered by relative sea-level rise. Major engineering works are ongoing at the lagoon inlets (MOSE project) to protect Venice from flood events. In the last century, the morphology and ecology of the lagoon changed dramatically: the extent of the salt marshes was reduced by 60% and some parts of the lagoon deepened by more than 1 m with a net sediment flux exiting from the inlets. To understand and monitor the future evolution of the Lagoon of Venice in view of the inlet modifications and mean sea-level rise, CNR-ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to

  20. High-resolution gene maps of horse chromosomes 14 and 21: additional insights into evolution and rearrangements of HSA5 homologs in mammals.

    Science.gov (United States)

    Goh, Glenda; Raudsepp, Terje; Durkin, Keith; Wagner, Michelle L; Schäffer, Alejandro A; Agarwala, Richa; Tozaki, Teruaki; Mickelson, James R; Chowdhary, Bhanu P

    2007-01-01

    High-resolution physically ordered gene maps for equine homologs of human chromosome 5 (HSA5), viz., horse chromosomes 14 and 21 (ECA14 and ECA21), were generated by adding 179 new loci (131 gene-specific and 48 microsatellites) to the existing maps of the two chromosomes. The loci were mapped primarily by genotyping on a 5000-rad horse x hamster radiation hybrid panel, of which 28 were mapped by fluorescence in situ hybridization. The approximately fivefold increase in the number of mapped markers on the two chromosomes improves the average resolution of the map to 1 marker/0.9 Mb. The improved resolution is vital for rapid chromosomal localization of traits of interest on these chromosomes and for facilitating candidate gene searches. The comparative gene mapping data on ECA14 and ECA21 finely align the chromosomes to sequence/gene maps of a range of evolutionarily distantly related species. It also demonstrates that compared to ECA14, the ECA21 segment corresponding to HSA5 is a more conserved region because of preserved gene order in a larger number of and more diverse species. Further, comparison of ECA14 and the distal three-quarters region of ECA21 with corresponding chromosomal segments in 50 species belonging to 11 mammalian orders provides a broad overview of the evolution of these segments in individual orders from the putative ancestral chromosomal configuration. Of particular interest is the identification and precise demarcation of equid/Perissodactyl-specific features that for the first time clearly distinguish the origins of ECA14 and ECA21 from similar-looking status in the Cetartiodactyls.

  1. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    Science.gov (United States)

    Kamiran, N.; Sarker, M. L. R.

    2014-02-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.

  2. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    International Nuclear Information System (INIS)

    Kamiran, N; Sarker, M L R

    2014-01-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach ''multi-scale and multi-texture algorithms'' was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier A rtificial Neural Network (ANN) . Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm

  3. A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster.

    Science.gov (United States)

    Yin, Hang; Sweeney, Sarah; Raha, Debasish; Snyder, Michael; Lin, Haifan

    2011-12-01

    Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications.

  4. High Resolution Urban Land Cover Mapping Using NAIP Aerial Photography and Image Processing for the USEPA National Atlas of Sustainability and Ecosystem Services

    Science.gov (United States)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.

    2012-12-01

    The US EPA National Atlas for Sustainability is a web-based, easy-to-use, mapping application that allows users to view and analyze multiple ecosystem services in a specific region. The Atlas provides users with a visual method for interpreting ecosystem services and understanding how they can be conserved and enhanced for a sustainable future. The Urban Atlas component of the National Atlas will provide fine-scale information linking human health and well-being to environmental conditions such as urban heat islands, near-road pollution, resource use, access to recreation, drinking water quality and other quality of life indicators. The National Land Cover Data (NLCD) derived from 30 m scale 2006 Landsat imagery provides the land cover base for the Atlas. However, urban features and phenomena occur at finer spatial scales, so higher spatial resolution and more current LC maps are required. We used 4 band USDA NAIP imagery (1 m pixel size) and various classification approaches to produce urban land cover maps with these classes: impervious surface, grass and herbaceous, trees and forest, soil and barren, and water. Here we present the remote sensing methods used and results from four pilot cities in this effort, highlighting the pros and cons of the approach, and the benefits to sustainability and ecosystem services analysis. Example of high resolution land cover map derived from USDA NAIP aerial photo. Compare 30 m and 1 m resolution land cover maps of downtown Durham, NC.

  5. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  6. High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.).

    Science.gov (United States)

    Yang, Haiyuan; You, Aiqing; Yang, Zhifan; Zhang, Futie; He, Ruifeng; Zhu, Lili; He, Guangcun

    2004-12-01

    Resistance to the brown planthopper (BPH), Nilaparvata lugens Stal, a devastating sucking insect pest of rice, is an important breeding objective in rice improvement programs. Bph15, one of the 17 major BPH resistance genes so far identified in both cultivated and wild rice, has been identified in an introgression line, B5, and mapped on chromosome 4 flanked by restriction fragment length polymorphism markers C820 and S11182. In order to pave the way for positional cloning of this gene, we have developed a high-resolution genetic map of Bph15 by positioning 21 DNA markers in the target chromosomal region. Mapping was based on a PCR-based screening of 9,472 F(2) individuals derived from a cross between RI93, a selected recombinant inbred line of B5 bearing the resistance gene Bph15, and a susceptible variety, Taichung Native 1, in order to identify recombinant plants within the Bph15 region. Recombinant F(2) individuals with the Bph15 genotype were determined by phenotype evaluation. Analysis of recombination events in the Bph15 region delimited the gene locus to an interval between markers RG1 and RG2 that co-segregated with the M1 marker. A genomic library of B5 was screened using these markers, and bacterial artificial chromosome clones spanning the Bph15 chromosome region were obtained. An assay of the recombinants using the sub-clones of these clones in combination with sequence analysis delimited the Bph15 gene to a genomic segment of approximately 47 kb. This result should serve as the basis for eventual isolation of the Bph15 resistance gene.

  7. An Approach for High-Resolution Mapping of Hawaiian Metrosideros Forest Mortality Using Laser-Guided Imaging Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nicholas R. Vaughn

    2018-03-01

    Full Text Available Rapid ‘Ōhi‘a Death (ROD is a disease aggressively killing large numbers of Metrosideros polymorpha (‘ōhi‘a, a native keystone tree species on Hawaii Island. This loss threatens to deeply alter the biological make-up of this unique island ecosystem. Spatially explicit information about the present and past advancement of the disease is essential for its containment; yet, currently such data are severely lacking. To this end, we used the Carnegie Airborne Observatory to collect Laser-Guided Imaging Spectroscopy data and high-resolution digital imagery across >500,000 ha of Hawaii Island in June–July 2017. We then developed a method to map individual tree crowns matching the symptoms of both active (brown; desiccated ‘ōhi‘a crowns and past (leafless tree crowns ROD infection using an ensemble of two distinct machine learning approaches. Employing a very conservative classification scheme for minimizing false-positives, model sensitivity rates were 86.9 and 82.5, and precision rates were 97.4 and 95.3 for browning and leafless crowns, respectively. Across the island of Hawaii, we found 43,134 individual crowns suspected of exhibiting the active (browning stage of ROD infection. Hotspots of potential ROD infection are apparent in the maps. The peninsula on the eastern side of Hawaii known as the Puna district, where the ROD outbreak likely originated, contained a particularly high density of brown crown detections. In comparison, leafless crown detections were much more numerous (547,666 detected leafless crowns in total and more dispersed across the island. Mapped hotspots of likely ROD incidence across the island will enable scientists, administrators, and land managers to better understand both where and how ROD spreads and how to apply limited resources to limiting this spread.

  8. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    Science.gov (United States)

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  10. New High-Resolution Multibeam Mapping and Seismic Reflection Imaging of Mudflows on the Mississippi River Delta Front

    Science.gov (United States)

    Chaytor, J. D.; Baldwin, W. E.; Danforth, W. W.; Bentley, S. J.; Miner, M. D.; Damour, M.

    2017-12-01

    Mudflows (channelized and unconfined debris flows) on the Mississippi River Delta Front (MRDF) are a recognized hazard to oil and gas infrastructure in the shallow Gulf of Mexico. Preconditioning of the seafloor for failure results from high sedimentation rates coupled with slope over-steepening, under-consolidation, and abundant biogenic gas production. Cyclical loading of the seafloor by waves from passing major storms appears to be a primary trigger, but the role of smaller (more frequent) storms and background oceanographic processes are largely unconstrained. A pilot high-resolution seafloor mapping and seismic imaging study was carried out across portions of the MRDF aboard the R/V Point Sur from May 19-26, 2017, as part of a multi-agency/university effort to characterize mudflow hazards in the area. The primary objective of the cruise was to assess the suitability of seafloor mapping and shallow sub-surface imaging tools in the challenging environmental conditions found across delta fronts (e.g., variably-distributed water column stratification and wide-spread biogenic gas in the shallow sub-surface). More than 600 km of multibeam bathymetry/backscatter/water column data, 425 km of towed chirp data, and > 500 km of multi-channel seismic data (boomer/mini-sparker sources, 32-channel streamer) were collected. Varied mudflow (gully, lobe), pro-delta morphologies, and structural features, some of which have been surveyed more than once, were imaged in selected survey areas from Pass a Loutre to Southwest Pass. The present location of the SS Virginia, which has been moving with one of the mudflow lobes since it was sunk in 1942, was determined and found to be 60 m SW of its 2006 position, suggesting movement not linked to hurricane-induced wave triggering of mudflows. Preliminary versions these data were used to identify sediment sampling sites visited on a cruise in early June 2017 led by scientists from LSU and other university/agency partners.

  11. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  12. Object-Based Classification of Grasslands from High Resolution Satellite Image Time Series Using Gaussian Mean Map Kernels

    Directory of Open Access Journals (Sweden)

    Mailys Lopes

    2017-07-01

    Full Text Available This paper deals with the classification of grasslands using high resolution satellite image time series. Grasslands considered in this work are semi-natural elements in fragmented landscapes, i.e., they are heterogeneous and small elements. The first contribution of this study is to account for grassland heterogeneity while working at the object level by modeling its pixels distributions by a Gaussian distribution. To measure the similarity between two grasslands, a new kernel is proposed as a second contribution: the α -Gaussian mean kernel. It allows one to weight the influence of the covariance matrix when comparing two Gaussian distributions. This kernel is introduced in support vector machines for the supervised classification of grasslands from southwest France. A dense intra-annual multispectral time series of the Formosat-2 satellite is used for the classification of grasslands’ management practices, while an inter-annual NDVI time series of Formosat-2 is used for old and young grasslands’ discrimination. Results are compared to other existing pixel- and object-based approaches in terms of classification accuracy and processing time. The proposed method is shown to be a good compromise between processing speed and classification accuracy. It can adapt to the classification constraints, and it encompasses several similarity measures known in the literature. It is appropriate for the classification of small and heterogeneous objects such as grasslands.

  13. In-season wheat sown area mapping for Afghanistan using high resolution optical and RADAR images in cloud platform

    Science.gov (United States)

    Matin, M. A.; Tiwari, V. K.; Qamer, F. M.; Yadav, N. K.; Ellenburg, W. L.; Bajracharya, B.; Vadrevu, K.; Rushi, B. R.; Stanikzai, N.; Yusafi, W.; Rahmani, H.

    2017-12-01

    Afghanistan has only 11% of arable land while wheat is the major crop with 80% of total cereal planted area. The production of wheat is therefore highly critical to the food security of the country with population of 35 million among which 30% are food insecure. The lack of timely availability of data on crop sown area and production hinders decision on regular grain import policies as well as log term planning for self-sustainability. The objective of this study is to develop an operational in-season wheat area mapping system to support the Ministry of Agriculture, Irrigation and Livestock (MAIL) for annual food security planning. In this study, we used 10m resolution sentinel - 2 optical images in combination with sentinel - 1 SAR data to classify wheat area. The available provincial crop calendar and field data collected by MAIL was used for classification and validation. Since the internet and computing infrastructure in Afghanistan is very limited thus cloud computing platform of Google Earth Engine (GEE) is used to accomplish this work. During the assessment it is observed that the smaller size of wheat plots and mixing of wheat with other crops makes it difficult to achieve expected accuracy of wheat area particularly in rain fed areas. The cloud cover during the wheat growing season limits the availability of valid optical satellite data. In the first phase of assessment important learnings points were captured. In an extremely challenging security situation field data collection require use of innovative approaches for stratification of sampling sites as well as use of robust mobile app with adequate training of field staff. Currently, GEE assets only contain Sentinel-2 Level 1C product which limits the classification accuracy. In representative areas, where Level 2A product was developed and applied a significant improvement in accuracy is observed. Development of high resolution agro-climatic zones map, will enable extrapolating crop growth calendars

  14. Mapping of Polar Areas Based on High-Resolution Satellite Images: The Example of the Henryk Arctowski Polish Antarctic Station

    Science.gov (United States)

    Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł

    2017-12-01

    To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.

  15. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...... have studied and compared the noise of several SC light sources and evaluated how their noise properties affect the performance of Ultra-High Resolution OCT (UHR-OCT) at 1300 nm. We have measured several SC light sources with different parameters (pulse length, energy, seed repetition rate, etc.). We...

  16. The 2006 Pingtung Earthquake Doublet Triggered Seafloor Liquefaction: Revisiting the Evidence with Ultra-High-Resolution Seafloor Mapping

    Science.gov (United States)

    Su, C. C.; Chen, T. T.; Paull, C. K.; Gwiazda, R.; Chen, Y. H.; Lundsten, E. M.; Caress, D. W.; Hsu, H. H.; Liu, C. S.

    2017-12-01

    Since Heezen and Ewing's (1952) classic work on the 1929 Grand Banks earthquake, the damage of submarine cables have provided critical information on the nature of seafloor mass movements or sediment density flows. However, the understanding of the local conditions that lead to particular seafloor failures earthquakes trigger is still unclear. The Decemeber 26, 2006 Pingtung earthquake doublet which occurred offshore of Fangliao Township, southwestern Taiwan damaged 14 submarine cables between Gaoping slope to the northern terminus of the Manila Trench. Local fisherman reported disturbed waters at the head of the Fangliao submarine canyon, which lead to conjectures that eruptions of mud volcanoes which are common off the southwestern Taiwan. Geophysical survey were conducted to evaluate this area which revealed a series of faults, liquefied strata, pockmarks and acoustically transparent sediments with doming structures which may relate to the submarine groundwater discharge. Moreover, shipboard multi-beam bathymetric survey which was conducted at the east of Fangliao submarine canyon head shows over 10 km2 area with maximum depth around 40 m of seafloor subsidence after Pingtung earthquake. The north end of the subsidence is connected to the Fangliao submarine canyon where the first cable failed after Pingtung earthquake. The evidences suggests the earthquake triggered widespeard liquefaction and generated debris flows within Fangliao submarine canyon. In May 2017, an IONTU-MBARI Joint Survey Cruise (OR1-1163) was conducted on using MBARI Mapping AUV and miniROV to revisit the area where the cable damaged after Pingtung earthquake. From newly collected ultra-high-resolution (1-m lateral resolution) bathymetry data, the stair-stepped morphology is observed at the edge of canyon. The comet-shaped depressions are located along the main headwall of the seafloor failure. The new detailed bathymetry reveal details which suggest Fangliao submarine canyon head is

  17. Comparison Effectiveness of Pixel Based Classification and Object Based Classification Using High Resolution Image In Floristic Composition Mapping (Study Case: Gunung Tidar Magelang City)

    Science.gov (United States)

    Ardha Aryaguna, Prama; Danoedoro, Projo

    2016-11-01

    Developments of analysis remote sensing have same way with development of technology especially in sensor and plane. Now, a lot of image have high spatial and radiometric resolution, that's why a lot information. Vegetation object analysis such floristic composition got a lot advantage of that development. Floristic composition can be interpreted using a lot of method such pixel based classification and object based classification. The problems for pixel based method on high spatial resolution image are salt and paper who appear in result of classification. The purpose of this research are compare effectiveness between pixel based classification and object based classification for composition vegetation mapping on high resolution image Worldview-2. The results show that pixel based classification using majority 5×5 kernel windows give the highest accuracy between another classifications. The highest accuracy is 73.32% from image Worldview-2 are being radiometric corrected level surface reflectance, but for overall accuracy in every class, object based are the best between another methods. Reviewed from effectiveness aspect, pixel based are more effective then object based for vegetation composition mapping in Tidar forest.

  18. Establishment of a high-resolution 2-D reference map of human spermatozoal proteins from 12 fertile sperm-bank donors.

    Science.gov (United States)

    Li, Ling-Wei; Fan, Li-Qing; Zhu, Wen-Bing; Nien, Hong-Chuan; Sun, Bo-Lan; Luo, Ke-Li; Liao, Ting-Ting; Tang, Le; Lu, Guang-Xiu

    2007-05-01

    To extend the analysis of the proteome of human spermatozoa and establish a 2-D gel electrophoresis (2-DE) reference map of human spermatozoal proteins in a pH range of 3.5-9.0. In order to reveal more protein spots, immobilized pH gradient strips (24 cm) of broad range of pH 3-10 and the narrower range of pH 6-9, as well as different overlapping narrow range pH immobilized pH gradient (IPG) strips, including 3.5-4.5, 4.0-5.0, 4.5-5.5, 5.0-6.0 and 5.5-6.7, were used. After 2-DE, several visually identical spots between the different pH range 2-D gel pairs were cut from the gels and confirmed by mass spectrometry and used as landmarks for computer analysis. The 2-D reference map with pH value from 3.5 to 9.0 was synthesized by using the ImageMaster analysis software. The overlapping spots were excluded, so that every spot was counted only once. A total of 3872 different protein spots were identified from the reference map, an approximately 3-fold increase compared to the broad range pH 3-10 IPG strip (1306 spots). The present 2-D pattern is a high resolution 2-D reference map for human fertile spermatozoal protein spots. A comprehensive knowledge of the protein composition of human spermatozoa is very meaningful in studying dysregulation of male fertility.

  19. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

    Science.gov (United States)

    Wang, Bin; Waters, Cathy; Orgill, Susan; Gray, Jonathan; Cowie, Annette; Clark, Anthony; Liu, De Li

    2018-07-15

    Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R 2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha -1 at 0-5cm and 9.16MgCha -1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul

    2013-08-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.

  1. A comparative analysis of pixel- and object-based detection of landslides from very high-resolution images

    Science.gov (United States)

    Keyport, Ren N.; Oommen, Thomas; Martha, Tapas R.; Sajinkumar, K. S.; Gierke, John S.

    2018-02-01

    A comparative analysis of landslides detected by pixel-based and object-oriented analysis (OOA) methods was performed using very high-resolution (VHR) remotely sensed aerial images for the San Juan La Laguna, Guatemala, which witnessed widespread devastation during the 2005 Hurricane Stan. A 3-band orthophoto of 0.5 m spatial resolution together with a 115 field-based landslide inventory were used for the analysis. A binary reference was assigned with a zero value for landslide and unity for non-landslide pixels. The pixel-based analysis was performed using unsupervised classification, which resulted in 11 different trial classes. Detection of landslides using OOA includes 2-step K-means clustering to eliminate regions based on brightness; elimination of false positives using object properties such as rectangular fit, compactness, length/width ratio, mean difference of objects, and slope angle. Both overall accuracy and F-score for OOA methods outperformed pixel-based unsupervised classification methods in both landslide and non-landslide classes. The overall accuracy for OOA and pixel-based unsupervised classification was 96.5% and 94.3%, respectively, whereas the best F-score for landslide identification for OOA and pixel-based unsupervised methods: were 84.3% and 77.9%, respectively.Results indicate that the OOA is able to identify the majority of landslides with a few false positive when compared to pixel-based unsupervised classification.

  2. Spatio Temporal Detection and Virtual Mapping of Landslide Using High-Resolution Airborne Laser Altimetry (lidar) in Densely Vegetated Areas of Tropics

    Science.gov (United States)

    Bibi, T.; Azahari Razak, K.; Rahman, A. Abdul; Latif, A.

    2017-10-01

    Landslides are an inescapable natural disaster, resulting in massive social, environmental and economic impacts all over the world. The tropical, mountainous landscape in generally all over Malaysia especially in eastern peninsula (Borneo) is highly susceptible to landslides because of heavy rainfall and tectonic disturbances. The purpose of the Landslide hazard mapping is to identify the hazardous regions for the execution of mitigation plans which can reduce the loss of life and property from future landslide incidences. Currently, the Malaysian research bodies e.g. academic institutions and government agencies are trying to develop a landslide hazard and risk database for susceptible areas to backing the prevention, mitigation, and evacuation plan. However, there is a lack of devotion towards landslide inventory mapping as an elementary input of landslide susceptibility, hazard and risk mapping. The developing techniques based on remote sensing technologies (satellite, terrestrial and airborne) are promising techniques to accelerate the production of landslide maps, shrinking the time and resources essential for their compilation and orderly updates. The aim of the study is to provide a better perception regarding the use of virtual mapping of landslides with the help of LiDAR technology. The focus of the study is spatio temporal detection and virtual mapping of landslide inventory via visualization and interpretation of very high-resolution data (VHR) in forested terrain of Mesilau river, Kundasang. However, to cope with the challenges of virtual inventory mapping on in forested terrain high resolution LiDAR derivatives are used. This study specifies that the airborne LiDAR technology can be an effective tool for mapping landslide inventories in a complex climatic and geological conditions, and a quick way of mapping regional hazards in the tropics.

  3. High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China.

    Science.gov (United States)

    Gao, Mingxing; Xu, Xiwei; Klinger, Yann; van der Woerd, Jerome; Tapponnier, Paul

    2017-08-15

    The recent dramatic increase in millimeter- to centimeter- resolution topographic datasets obtained via multi-view photogrammetry raises the possibility of mapping detailed offset geomorphology and constraining the spatial characteristics of active faults. Here, for the first time, we applied this new method to acquire high-resolution imagery and generate topographic data along the Altyn Tagh fault, which is located in a remote high elevation area and shows preserved ancient earthquake surface ruptures. A digital elevation model (DEM) with a resolution of 0.065 m and an orthophoto with a resolution of 0.016 m were generated from these images. We identified piercing markers and reconstructed offsets based on both the orthoimage and the topography. The high-resolution UAV data were used to accurately measure the recent seismic offset. We obtained the recent offset of 7 ± 1 m. Combined with the high resolution satellite image, we measured cumulative offsets of 15 ± 2 m, 20 ± 2 m, 30 ± 2 m, which may be due to multiple paleo-earthquakes. Therefore, UAV mapping can provide fine-scale data for the assessment of the seismic hazards.

  4. High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato

    OpenAIRE

    Bossolini, Eligio; Klahre, Ulrich; Brandenburg, Anna; Reinhardt, Didier; Kuhlemeier, Cris

    2011-01-01

    Two linkage maps were constructed for the model plant Petunia. Mapping populations were obtained by crossing the wild species Petunia axillaris subsp. axillaris with Petunia inflata, and Petunia axillaris subsp. parodii with Petunia exserta. Both maps cover the seven chromosomes of Petunia, and span 970 centimorgans (cM) and 700 cM of the genomes, respectively. In total, 207 markers were mapped. Of these, 28 are multilocus amplified fragment length polymorphism (AFLP) markers and 179 are gene...

  5. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    Science.gov (United States)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  6. High-resolution mapping of genes involved in plant stage-specific partial resistance of barley to leaf rust

    NARCIS (Netherlands)

    Yeo, F.K.S.; Bouchon, R.; Kuijken, R.; Loriaux, A.; Boyd, C.; Niks, R.E.; Marcel, T.C.

    2017-01-01

    Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two

  7. Combining pixel and object based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters

    Science.gov (United States)

    Ierodiaconou, Daniel; Schimel, Alexandre C. G.; Kennedy, David; Monk, Jacquomo; Gaylard, Grace; Young, Mary; Diesing, Markus; Rattray, Alex

    2018-06-01

    Habitat mapping data are increasingly being recognised for their importance in underpinning marine spatial planning. The ability to collect ultra-high resolution (cm) multibeam echosounder (MBES) data in shallow waters has facilitated understanding of the fine-scale distribution of benthic habitats in these areas that are often prone to human disturbance. Developing quantitative and objective approaches to integrate MBES data with ground observations for predictive modelling is essential for ensuring repeatability and providing confidence measures for habitat mapping products. Whilst supervised classification approaches are becoming more common, users are often faced with a decision whether to implement a pixel based (PB) or an object based (OB) image analysis approach, with often limited understanding of the potential influence of that decision on final map products and relative importance of data inputs to patterns observed. In this study, we apply an ensemble learning approach capable of integrating PB and OB Image Analysis from ultra-high resolution MBES bathymetry and backscatter data for mapping benthic habitats in Refuge Cove, a temperate coastal embayment in south-east Australia. We demonstrate the relative importance of PB and OB seafloor derivatives for the five broad benthic habitats that dominate the site. We found that OB and PB approaches performed well with differences in classification accuracy but not discernible statistically. However, a model incorporating elements of both approaches proved to be significantly more accurate than OB or PB methods alone and demonstrate the benefits of using MBES bathymetry and backscatter combined for class discrimination.

  8. Clinical cone beam computed tomography compared to high-resolution peripheral computed tomography in the assessment of distal radius bone.

    Science.gov (United States)

    de Charry, C; Boutroy, S; Ellouz, R; Duboeuf, F; Chapurlat, R; Follet, H; Pialat, J B

    2016-10-01

    Clinical cone beam computed tomography (CBCT) was compared to high-resolution peripheral quantitative computed tomography (HR-pQCT) for the assessment of ex vivo radii. Strong correlations were found for geometry, volumetric density, and trabecular structure. Using CBCT, bone architecture assessment was feasible but compared to HR-pQCT, trabecular parameters were overestimated whereas cortical ones were underestimated. HR-pQCT is the most widely used technique to assess bone microarchitecture in vivo. Yet, this technology has been only applicable at peripheral sites, in only few research centers. Clinical CBCT is more widely available but quantitative assessment of the bone structure is usually not performed. We aimed to compare the assessment of bone structure with CBCT (NewTom 5G, QR, Verona, Italy) and HR-pQCT (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland). Twenty-four distal radius specimens were scanned with these two devices with a reconstructed voxel size of 75 μm for Newtom 5G and 82 μm for XtremeCT, respectively. A rescaling-registration scheme was used to define the common volume of interest. Cortical and trabecular compartments were separated using a semiautomated double contouring method. Density and microstructure were assessed with the HR-pQCT software on both modality images. Strong correlations were found for geometry parameters (r = 0.98-0.99), volumetric density (r = 0.91-0.99), and trabecular structure (r = 0.94-0.99), all p < 0.001. Correlations were lower for cortical microstructure (r = 0.80-0.89), p < 0.001. However, absolute differences were observed between modalities for all parameters, with an overestimation of the trabecular structure (trabecular number, 1.62 ± 0.37 vs. 1.47 ± 0.36 mm(-1)) and an underestimation of the cortical microstructure (cortical porosity, 3.3 ± 1.3 vs. 4.4 ± 1.4 %) assessed on CBCT images compared to HR-pQCT images. Clinical CBCT devices are able to

  9. Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Oursel, Stéphanie; Cholet, Sophie; Junot, Christophe; Fenaille, François

    2017-12-15

    Human milk oligosaccharides (HMOs) represent the third most abundant components of milk after lactose and lipids. HMOs are indigestible by the suckling infant but can act as prebiotics and have significant biological functions regarding the organism defense against pathogens (such as bacteria or viruses) by preventing interactions with their receptors. Although constituted of only five distinct monosaccharide building blocks, HMOs are highly structurally diverse compounds with many co-existing structural isomers. Here we report the development and comparison of two distinct glycomic platforms based on liquid chromatography coupled to high resolution mass spectrometry (LC-MS) for analyzing HMOs. We have implemented and thoroughly compared the LC-MS of permethylated and native HMOs on reversed phase (RP) and porous graphitic carbon (PGC) columns for their ability to resolve the natural heterogeneity of milk oligosaccharides at the highest sensitivity. Our data essentially underlines the usefulness of analyzing HMOs as permethylated derivatives especially for getting more precise structural information at high sensitivity. For instance, permethylation annihilates gas-phase fucose migration during MS/MS experiments, thus facilitating spectra interpretation and giving access to relevant information regarding oligosaccharide branching and isomer distinction. At the opposite, LC-MS profiling of native HMOs (using PGC) in milk performed best in terms of detected species, while also being much faster in terms of sample preparation. Although less efficient than PGC chromatography, RPLC proved successful for separating pairs of permethylated isomeric HMOs. A key advantage of RP over PGC liquid chromatography is that retention times can be correlated to molecular weights, which can greatly facilitate further HMO identification using retention time prediction. Altogether these data lead us to think that LC-MS analysis of native HMOs (using PGC) can be used as first

  10. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...

  11. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    Science.gov (United States)

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato.

    Science.gov (United States)

    Bossolini, Eligio; Klahre, Ulrich; Brandenburg, Anna; Reinhardt, Didier; Kuhlemeier, Cris

    2011-04-01

    Two linkage maps were constructed for the model plant Petunia. Mapping populations were obtained by crossing the wild species Petunia axillaris subsp. axillaris with Petunia inflata, and Petunia axillaris subsp. parodii with Petunia exserta. Both maps cover the seven chromosomes of Petunia, and span 970 centimorgans (cM) and 700 cM of the genomes, respectively. In total, 207 markers were mapped. Of these, 28 are multilocus amplified fragment length polymorphism (AFLP) markers and 179 are gene-derived markers. For the first time we report on the development and mapping of 83 Petunia microsatellites. The two maps retain the same marker order, but display significant differences of recombination frequencies at orthologous mapping intervals. A complex pattern of genomic rearrangements was detected with the related genome of tomato (Solanum lycopersicum), indicating that synteny between Petunia and other Solanaceae crops has been considerably disrupted. The newly developed markers will facilitate the genetic characterization of mutants and ecological studies on genetic diversity and speciation within the genus Petunia. The maps will provide a powerful tool to link genetic and genomic information and will be useful to support sequence assembly of the Petunia genome.

  13. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7T.

    Science.gov (United States)

    Betts, Matthew J; Acosta-Cabronero, Julio; Cardenas-Blanco, Arturo; Nestor, Peter J; Düzel, Emrah

    2016-09-01

    Quantitative susceptibility mapping (QSM) has recently emerged as a novel magnetic resonance imaging (MRI) method to detect non-haem iron deposition, calcifications, demyelination and vascular lesions in the brain. It has been suggested that QSM is more sensitive than the more conventional quantifiable MRI measure, namely the transverse relaxation rate, R2*. Here, we conducted the first high-resolution, whole-brain, simultaneously acquired, comparative study of the two techniques using 7Tesla MRI. We asked which of the two techniques would be more sensitive to explore global differences in tissue composition in elderly adults relative to young subjects. Both QSM and R2* revealed strong age-related differences in subcortical regions, hippocampus and cortical grey matter, particularly in superior frontal regions, motor/premotor cortices, insula and cerebellar regions. Within the basal ganglia system-but also hippocampus and cerebellar dentate nucleus-, QSM was largely in agreement with R2* with the exception of the globus pallidus. QSM, however, provided superior anatomical contrast and revealed age-related differences in the thalamus and in white matter, which were otherwise largely undetected by R2* measurements. In contrast, in occipital cortex, age-related differences were much greater with R2* compared to QSM. The present study, therefore, demonstrated that in vivo QSM using ultra-high field MRI provides a novel means to characterise age-related differences in the human brain, but also combining QSM and R2* using multi-gradient recalled echo imaging can potentially provide a more complete picture of mineralisation, demyelination and/or vascular alterations in aging and disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. High Resolution Typing by Whole Genome Mapping Enables Discrimination of LA-MRSA (CC398) Strains and Identification of Transmission Events

    Science.gov (United States)

    Bosch, Thijs; Verkade, Erwin; van Luit, Martijn; Pot, Bruno; Vauterin, Paul; Burggrave, Ronald; Savelkoul, Paul; Kluytmans, Jan; Schouls, Leo

    2013-01-01

    After its emergence in 2003, a livestock-associated (LA-)MRSA clade (CC398) has caused an impressive increase in the number of isolates submitted for the Dutch national MRSA surveillance and now comprises 40% of all isolates. The currently used molecular typing techniques have limited discriminatory power for this MRSA clade, which hampers studies on the origin and transmission routes. Recently, a new molecular analysis technique named whole genome mapping was introduced. This method creates high-resolution, ordered whole genome restriction maps that may have potential for strain typing. In this study, we assessed and validated the capability of whole genome mapping to differentiate LA-MRSA isolates. Multiple validation experiments showed that whole genome mapping produced highly reproducible results. Assessment of the technique on two well-documented MRSA outbreaks showed that whole genome mapping was able to confirm one outbreak, but revealed major differences between the maps of a second, indicating that not all isolates belonged to this outbreak. Whole genome mapping of LA-MRSA isolates that were epidemiologically unlinked provided a much higher discriminatory power than spa-typing or MLVA. In contrast, maps created from LA-MRSA isolates obtained during a proven LA-MRSA outbreak were nearly indistinguishable showing that transmission of LA-MRSA can be detected by whole genome mapping. Finally, whole genome maps of LA-MRSA isolates originating from two unrelated veterinarians and their household members showed that veterinarians may carry and transmit different LA-MRSA strains at the same time. No such conclusions could be drawn based spa-typing and MLVA. Although PFGE seems to be suitable for molecular typing of LA-MRSA, WGM provides a much higher discriminatory power. Furthermore, whole genome mapping can provide a comparison with other maps within 2 days after the bacterial culture is received, making it suitable to investigate transmission events and

  15. Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy.

    Science.gov (United States)

    Pitzalis, Sabrina; Strappini, Francesca; Bultrini, Alessandro; Di Russo, Francesco

    2018-03-13

    Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas. © 2018 Wiley Periodicals, Inc.

  16. Assessment of Machine Learning Algorithms for Automatic Benthic Cover Monitoring and Mapping Using Towed Underwater Video Camera and High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Hassan Mohamed

    2018-05-01

    Full Text Available Benthic habitat monitoring is essential for many applications involving biodiversity, marine resource management, and the estimation of variations over temporal and spatial scales. Nevertheless, both automatic and semi-automatic analytical methods for deriving ecologically significant information from towed camera images are still limited. This study proposes a methodology that enables a high-resolution towed camera with a Global Navigation Satellite System (GNSS to adaptively monitor and map benthic habitats. First, the towed camera finishes a pre-programmed initial survey to collect benthic habitat videos, which can then be converted to geo-located benthic habitat images. Second, an expert labels a number of benthic habitat images to class habitats manually. Third, attributes for categorizing these images are extracted automatically using the Bag of Features (BOF algorithm. Fourth, benthic cover categories are detected automatically using Weighted Majority Voting (WMV ensembles for Support Vector Machines (SVM, K-Nearest Neighbor (K-NN, and Bagging (BAG classifiers. Fifth, WMV-trained ensembles can be used for categorizing more benthic cover images automatically. Finally, correctly categorized geo-located images can provide ground truth samples for benthic cover mapping using high-resolution satellite imagery. The proposed methodology was tested over Shiraho, Ishigaki Island, Japan, a heterogeneous coastal area. The WMV ensemble exhibited 89% overall accuracy for categorizing corals, sediments, seagrass, and algae species. Furthermore, the same WMV ensemble produced a benthic cover map using a Quickbird satellite image with 92.7% overall accuracy.

  17. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul; Woo, Jongwook; Goodman, Matthew; Huffman, Todd; Choe, Yoonsuck

    2013-01-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy

  18. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Pl #424, New York, NY 10003 (United States); Lang, Dustin [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Gordon, Karl D.; Gilbert, Karoline M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sandstrom, Karin [Steward Observatory, University of Arizona, 933 N Cherry Ave, Tucson, AZ 85721 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States); Dong, Hui; Lauer, Tod R. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Gouliermis, Dimitrios A. [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Guhathakurta, Puragra [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Schruba, Andreas [California Institute of Technology, Cahill Center for Astrophysics, 1200 E. California Blvd, Pasadena, CA 91125 (United States); Seth, Anil C. [University of Utah, Salt Lake City, UT (United States); Skillman, Evan D., E-mail: jd@astro.washington.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2015-11-20

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  19. Diagnosis of asbestosis by a time expanded wave form analysis, auscultation and high resolution computed tomography: a comparative study.

    Science.gov (United States)

    al Jarad, N; Strickland, B; Bothamley, G; Lock, S; Logan-Sinclair, R; Rudd, R M

    1993-01-01

    BACKGROUND--Crackles are a prominent clinical feature of asbestosis and may be an early sign of the condition. Auscultation, however, is subjective and interexaminer disagreement is a problem. Computerised lung sound analysis can visualise, store, and analyse lung sounds and disagreement on the presence of crackles is minimal. High resolution computed tomography (HRCT) is superior to chest radiography in detecting early signs of asbestosis. The aim of this study was to compare clinical auscultation, time expanded wave form analysis (TEW), chest radiography, and HRCT in detecting signs of asbestosis in asbestos workers. METHODS--Fifty three asbestos workers (51 men and two women) were investigated. Chest radiography and HRCT were assessed by two independent readers for detection of interstitial opacities. HRCT was performed in the supine position with additional sections at the bases in the prone position. Auscultation for persistent fine inspiratory crackles was performed by two independent examiners unacquainted with the diagnosis. TEW analysis was obtained from a 33 second recording of lung sounds over the lung bases. TEW and auscultation were performed in a control group of 13 subjects who had a normal chest radiograph. There were 10 current smokers and three previous smokers. In asbestos workers the extent of pulmonary opacities on the chest radiograph was scored according to the International Labour Office (ILO) scale. Patients were divided into two groups: 21 patients in whom the chest radiograph was > 1/0 (group 1) and 32 patients in whom the chest radiograph was scored auscultation in seven (22%) patients and by TEW in 14 (44%). HRCT detected definite interstitial opacities in 11 (34%) and gravity dependent subpleural lines in two (6%) patients. All but two patients with evidence of interstitial disease or gravity dependent subpleural lines on HRCT had crackles detected by TEW. In patients with an ILO score of > 1/0 auscultation and TEW revealed mid to late

  20. Fusion Approaches for Land Cover Map Production Using High Resolution Image Time Series without Reference Data of the Corresponding Period

    Directory of Open Access Journals (Sweden)

    Benjamin Tardy

    2017-11-01

    Full Text Available Optical sensor time series images allow one to produce land cover maps at a large scale. The supervised classification algorithms have been shown to be the best to produce maps automatically with good accuracy. The main drawback of these methods is the need for reference data, the collection of which can introduce important production delays. Therefore, the maps are often available too late for some applications. Domain adaptation methods seem to be efficient for using past data for land cover map production. According to this idea, the main goal of this study is to propose several simple past data fusion schemes to override the current land cover map production delays. A single classifier approach and three voting rules are considered to produce maps without reference data of the corresponding period. These four approaches reach an overall accuracy of around 80% with a 17-class nomenclature using Formosat-2 image time series. A study of the impact of the number of past periods used is also done. It shows that the overall accuracy increases with the number of periods used. The proposed methods require at least two or three previous years to be used.

  1. Typhoon Doksuri Flooding in 2017 - High-Resolution Inundation Mapping and Monitoring from Sentinel Satellite SAR Data

    Science.gov (United States)

    Nghiem, S. V.; Nguyen, D. T.

    2017-12-01

    In 2017, typhoons and hurricanes have inflicted catastrophic flooding across extensive regions in many countries on several continents, including Asia and North America. The U.S. Federal Emergency Management Agency (FEMA) requested urgent support for flood mapping and monitoring in an emergency response to the devastating flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Because Sentinel SAR operates at C-band microwave frequency, it can be used for flood mapping regardless of could cover conditions typically associated with storms, and thus can provide immediate results without the need to wait for the clouds to clear out. In Southeast Asia, Typhoon Doksuri caused significant flooding across extensive regions in Vietnam and other countries in September 2017. Figure 1 presents the flood mapping result over a region around Hà Tĩnh (north central coast of Vietnam) showing flood inundated areas (in yellow) on 16 September 2017 together with pre-existing surface water (in blue) on 4 September 2017. This is just one example selected from a larger flood map covering an extensive region of about 250 km x 680 km all along the central coast of Vietnam.

  2. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    Science.gov (United States)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  3. High-Resolution Seafloor Mapping at A Deep-Sea Methane Seep Field with an Autonomous Underwater Vehicle

    Science.gov (United States)

    Skarke, A. D.

    2017-12-01

    A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed

  4. The songbird syrinx morphome: a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ

    Directory of Open Access Journals (Sweden)

    Düring Daniel N

    2013-01-01

    Full Text Available Abstract Background Like human infants, songbirds learn their species-specific vocalizations through imitation learning. The birdsong system has emerged as a widely used experimental animal model for understanding the underlying neural mechanisms responsible for vocal production learning. However, how neural impulses are translated into the precise motor behavior of the complex vocal organ (syrinx to create song is poorly understood. First and foremost, we lack a detailed understanding of syringeal morphology. Results To fill this gap we combined non-invasive (high-field magnetic resonance imaging and micro-computed tomography and invasive techniques (histology and micro-dissection to construct the annotated high-resolution three-dimensional dataset, or morphome, of the zebra finch (Taeniopygia guttata syrinx. We identified and annotated syringeal cartilage, bone and musculature in situ in unprecedented detail. We provide interactive three-dimensional models that greatly improve the communication of complex morphological data and our understanding of syringeal function in general. Conclusions Our results show that the syringeal skeleton is optimized for low weight driven by physiological constraints on song production. The present refinement of muscle organization and identity elucidates how apposed muscles actuate different syringeal elements. Our dataset allows for more precise predictions about muscle co-activation and synergies and has important implications for muscle activity and stimulation experiments. We also demonstrate how the syrinx can be stabilized during song to reduce mechanical noise and, as such, enhance repetitive execution of stereotypic motor patterns. In addition, we identify a cartilaginous structure suited to play a crucial role in the uncoupling of sound frequency and amplitude control, which permits a novel explanation of the evolutionary success of songbirds.

  5. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  6. Impact of Ischemic and Valvular Heart Disease on Atrial Excitation:A High-Resolution Epicardial Mapping Study.

    Science.gov (United States)

    Mouws, Elisabeth M J P; Lanters, Eva A H; Teuwen, Christophe P; van der Does, Lisette J M E; Kik, Charles; Knops, Paul; Yaksh, Ameeta; Bekkers, Jos A; Bogers, Ad J J C; de Groot, Natasja M S

    2018-03-08

    The influence of underlying heart disease or presence of atrial fibrillation (AF) on atrial excitation during sinus rhythm (SR) is unknown. We investigated atrial activation patterns and total activation times of the entire atrial epicardial surface during SR in patients with ischemic and/or valvular heart disease with or without AF. Intraoperative epicardial mapping (N=128/192 electrodes, interelectrode distances: 2 mm) of the right atrium, Bachmann's bundle (BB), left atrioventricular groove, and pulmonary vein area was performed during SR in 253 patients (186 male [74%], age 66±11 years) with ischemic heart disease (N=132, 52%) or ischemic valvular heart disease (N=121, 48%). As expected, SR origin was located at the superior intercaval region of the right atrium in 232 patients (92%). BB activation occurred via 1 wavefront from right-to-left (N=163, 64%), from the central part (N=18, 7%), or via multiple wavefronts (N=72, 28%). Left atrioventricular groove activation occurred via (1) BB: N=108, 43%; (2) pulmonary vein area: N=9, 3%; or (3) BB and pulmonary vein area: N=136, 54%; depending on which route had the shortest interatrial conduction time ( P <0.001). Ischemic valvular heart disease patients more often had central BB activation and left atrioventricular groove activation via pulmonary vein area compared with ischemic heart disease patients (N=16 [13%] versus N=2 [2%]; P =0.009 and N=86 [71%] versus N=59 [45%]; P <0.001, respectively). Total activation times were longer in patients with AF (AF: 136±20 [92-186] ms; no AF: 114±17 [74-156] ms; P <0.001), because of prolongation of right atrium ( P =0.018) and BB conduction times ( P <0.001). Atrial excitation during SR is affected by underlying heart disease and AF, resulting in alternative routes for BB and left atrioventricular groove activation and prolongation of total activation times. Knowledge of atrial excitation patterns during SR and its electropathological variations, as demonstrated in

  7. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.

    Science.gov (United States)

    Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A

    2010-05-01

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  8. High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset

    Science.gov (United States)

    Christopher Daly; Melissa E. Slater; Joshua A. Roberti; Stephanie H. Laseter; Lloyd W. Swift

    2017-01-01

    A 69-station, densely spaced rain gauge network was maintained over the period 1951–1958 in the Coweeta Hydrologic Laboratory, located in the southern Appalachians in western North Carolina, USA. This unique dataset was used to develop the first digital seasonal and annual precipitation maps for the Coweeta basin, using elevation regression functions and...

  9. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

    Science.gov (United States)

    A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant...

  10. High-resolution AUV mapping and sampling of a deep hydrocarbon plume in the Gulf of Mexico

    Science.gov (United States)

    Ryan, J. P.; Zhang, Y.; Thomas, H.; Rienecker, E.; Nelson, R.; Cummings, S.

    2010-12-01

    During NOAA cruise GU-10-02 on the Ship Gordon Gunter, the Monterey Bay Aquarium Research Institute (MBARI) autonomous underwater vehicle (AUV) Dorado was deployed to map and sample a deep (900-1200 m) volume centered approximately seven nautical miles southwest of the Deepwater Horizon wellhead. Dorado was equipped to detect optical and chemical signals of hydrocarbons and to acquire targeted samples. The primary sensor reading used for hydrocarbon detection was colored dissolved organic matter (CDOM) fluorescence (CF). On June 2 and 3, ship cast and subsequent AUV surveys detected elevated CF in a layer between 1100 and 1200 m depth. While the deep volume was mapped in a series of parallel vertical sections, the AUV ran a peak-capture algorithm to target sample acquisition at layer signal peaks. Samples returned by ship CTD/CF rosette sampling and by AUV were preliminarily examined at sea, and they exhibited odor and fluorometric signal consistent with oil. More definitive and detailed results on these samples are forthcoming from shore-based laboratory analyses. During post-cruise analysis, all of the CF data were analyzed to objectively define and map the deep plume feature. Specifically, the maximum expected background CF over the depth range 1000-1200 m was extrapolated from a linear relationship between depth and maximum CF over the depth range 200 to 1000 m. Values exceeding the maximum expected background in the depth range 1000-1200 m were interpreted as signal from a hydrocarbon-enriched plume. Using this definition we examine relationships between CF and other AUV measurements within the plume, illustrate the three-dimensional structure of the plume boundary region that was mapped, describe small-scale layering on isopycnals, and examine short-term variations in plume depth, intensity and hydrographic relationships. Three-dimensional representation of part of a deep hydrocarbon plume mapped and sampled by AUV on June 2-3, 2010.

  11. Advances in Shallow-Water, High-Resolution Seafloor Mapping: Integrating an Autonomous Surface Vessel (ASV) Into Nearshore Geophysical Studies

    Science.gov (United States)

    Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.

    2006-12-01

    The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence of oyster beds

  12. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    Science.gov (United States)

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods

  13. Hurricanes Harvey and Irma - High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON)

    Science.gov (United States)

    Nghiem, S. V.; Brakenridge, G. R.; Nguyen, D. T.

    2017-12-01

    Hurricane Harvey inflicted historical catastrophic flooding across extensive regions around Houston and southeast Texas after making landfall on 25 August 2017. The Federal Emergency Management Agency (FEMA) requested urgent supports for flood mapping and monitoring in an emergency response to the extreme flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Results from this new method are hydrologically consistent and have been verified with known surface waters (e.g., coastal ocean, rivers, lakes, reservoirs, etc.), with clear-sky high-resolution WorldView images (where waves can be seen on surface water in inundated areas within a small spatial coverage), and with other flood maps from the consortium of Global Flood Partnership derived from multiple satellite datasets (including clear-sky Landsat and MODIS at lower resolutions). Figure 1 is a high-resolution (4K UHD) image of a composite inundation map for the region around Rosharon (in Brazoria County, south of Houston, Texas). This composite inundation map reveals extensive flooding on 29 August 2017 (four days after Hurricane Harvey made landfall), and the inundation was still persistent in most of the west and south of Rosharon one week later (5 September 2017) while flooding was reduced in the east of Rosharon. Hurricane Irma brought flooding to a number of areas in Florida. As of 10 September 2017, Sentinel SAR flood maps reveal inundation in the Florida Panhandle and over lowland surfaces on several islands in the Florida Keys. However, Sentinel SAR results indicate that flooding along the Florida coast was not extreme despite Irma was a Category-5 hurricane that might

  14. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina.

    Directory of Open Access Journals (Sweden)

    Martin Ehler

    Full Text Available We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE bisretinoid distribution with an ≈ 50μm resolution.

  15. Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina

    Science.gov (United States)

    Ehler, Martin; Dobrosotskaya, Julia; Cunningham, Denise; Wong, Wai T.; Chew, Emily Y.; Czaja, Wojtek; Bonner, Robert F.

    2015-01-01

    We introduce and describe a novel non-invasive in-vivo method for mapping local rod rhodopsin distribution in the human retina over a 30-degree field. Our approach is based on analyzing the brightening of detected lipofuscin autofluorescence within small pixel clusters in registered imaging sequences taken with a commercial 488nm confocal scanning laser ophthalmoscope (cSLO) over a 1 minute period. We modeled the kinetics of rhodopsin bleaching by applying variational optimization techniques from applied mathematics. The physical model and the numerical analysis with its implementation are outlined in detail. This new technique enables the creation of spatial maps of the retinal rhodopsin and retinal pigment epithelium (RPE) bisretinoid distribution with an ≈ 50μm resolution. PMID:26196397

  16. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Dong-Xing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Williams, Paul N. [Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL (United Kingdom); Xu, Hua-Cheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Gang [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Luo, Jun, E-mail: esluojun@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Ma, Lena Q. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States)

    2016-10-05

    Highlights: • Two high-resolution diffusive gradients in thin-films samplers were characterized. • For the first time DGT was applied to study the bioavailability of W in soils. • 1D and 2D high resolution profiling of W fluxes across the SWI were obtained. • The apparent diffusion W fluxes across two micro-interfaces were calculated. - Abstract: Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. {sup Ferrihydrite}DGT can measure W at various ionic strengths (0.001–0.5 mol L{sup −1} NaNO{sub 3}) and pH (4–8), while {sup PZ}DGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment—water and hotspot—bulk media interfaces from Lake Taihu were obtained using {sup PZ}DGT coupled with laser ablation ICP–MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.

  17. High resolution spectroscopic mapping imaging applied in situ to multilayer structures for stratigraphic identification of painted art objects

    Science.gov (United States)

    Karagiannis, Georgios Th.

    2016-04-01

    The development of non-destructive techniques is a reality in the field of conservation science. These techniques are usually not so accurate, as the analytical micro-sampling techniques, however, the proper development of soft-computing techniques can improve their accuracy. In this work, we propose a real-time fast acquisition spectroscopic mapping imaging system that operates from the ultraviolet to mid infrared (UV/Vis/nIR/mIR) area of the electromagnetic spectrum and it is supported by a set of soft-computing methods to identify the materials that exist in a stratigraphic structure of paint layers. Particularly, the system acquires spectra in diffuse-reflectance mode, scanning in a Region-Of-Interest (ROI), and having wavelength range from 200 up to 5000 nm. Also, a fuzzy c-means clustering algorithm, i.e., the particular soft-computing algorithm, produces the mapping images. The evaluation of the method was tested on a byzantine painted icon.

  18. Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yi Yin

    2013-10-01

    Full Text Available In the yeast Saccharomyces cerevisiae and most other eukaryotes, mitotic recombination is important for the repair of double-stranded DNA breaks (DSBs. Mitotic recombination between homologous chromosomes can result in loss of heterozygosity (LOH. In this study, LOH events induced by ultraviolet (UV light are mapped throughout the genome to a resolution of about 1 kb using single-nucleotide polymorphism (SNP microarrays. UV doses that have little effect on the viability of diploid cells stimulate crossovers more than 1000-fold in wild-type cells. In addition, UV stimulates recombination in G1-synchronized cells about 10-fold more efficiently than in G2-synchronized cells. Importantly, at high doses of UV, most conversion events reflect the repair of two sister chromatids that are broken at approximately the same position whereas at low doses, most conversion events reflect the repair of a single broken chromatid. Genome-wide mapping of about 380 unselected crossovers, break-induced replication (BIR events, and gene conversions shows that UV-induced recombination events occur throughout the genome without pronounced hotspots, although the ribosomal RNA gene cluster has a significantly lower frequency of crossovers.

  19. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    Science.gov (United States)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  20. Geomorphology and vegetation mapping the ice-free terrains of the Western Antarctic Peninsula region using very high resolution imagery from an UAV

    Science.gov (United States)

    Vieira, G.; Mora, C.; Pina, P.; Bandeira, L.; Hong, S. G.

    2014-12-01

    The West Antarctic Peninsula (WAP) is one of the Earth's regions with a fastest warming signal since the 1950's with an increase of over +2.5 ºC in MAAT. Significant changes have been reported for glaciers, ice-shelves, sea-ice and also for the permafrost environment. Mapping and monitoring the ice-free areas of the WAP has been until recently limited by the available aerial photo surveys, but also by the scarce high resolution satellite imagery (e.g. QuickBird, WorldView, etc.) that are seriously constrained by the high cloudiness of the region. Recent developments in Unmanned Aerial Vehicles (UAV's), which have seen significant technological advances and price reduction in the last few years, allow for its systematical use for mapping and monitoring in remote environments. In the framework of projects PERMANTAR-3 (PTDC/AAG-GLO/3908/2012 - FCT) and 3DAntártida (Ciência Viva), we complement traditional terrain surveying and mapping, satellite remote sensing (SAR and optical) and D-GPS deformation monitoring, with the application of an UAV. In this communication, we present the results from the application of a Sensefly ebee UAV in mapping the vegetation and geomorphological processes (e.g. sorted circles), as well as for digital elevation model generation in a test site in Barton Pen., King George Isl.. The UAV is a lightweight (ci. 700g) aircraft, with a 96 cm wingspan, which is portable and easy to transport. It allows for up to 40 min flight time, with application of RGB or NIR cameras. We have tested the ebee successfully with winds up to 10 m/s and obtained aerial photos with a ground resolution of 4 cm/pixel. The digital orthophotomaps, high resolution DEM's together with field observations have allowed for deriving geomorphological maps with unprecedented detail and accuracy, providing new insight into the controls on the spatial distribution of geomorphological processes. The talk will focus on the first results from the field surveys of February and

  1. Predicting carbon benefits from climate-smart agriculture: High-resolution carbon mapping and uncertainty assessment in El Salvador.

    Science.gov (United States)

    Kearney, Sean Patrick; Coops, Nicholas C; Chan, Kai M A; Fonte, Steven J; Siles, Pablo; Smukler, Sean M

    2017-11-01

    Agroforestry management in smallholder agriculture can provide climate change mitigation and adaptation benefits and has been promoted as 'climate-smart agriculture' (CSA), yet has generally been left out of international and voluntary carbon (C) mitigation agreements. A key reason for this omission is the cost and uncertainty of monitoring C at the farm scale in heterogeneous smallholder landscapes. A largely overlooked alternative is to monitor C at more aggregated scales and develop C contracts with groups of land owners, community organizations or C aggregators working across entire landscapes (e.g., watersheds, communities, municipalities, etc.). In this study we use a 100-km 2 agricultural area in El Salvador to demonstrate how high-spatial resolution optical satellite imagery can be used to map aboveground woody biomass (AGWB) C at the landscape scale with very low uncertainty (95% probability of a deviation of less than 1%). Uncertainty of AGWB-C estimates remained low (agricultural lands in the study area, and that utilizing AGWB-C maps to target denuded areas could increase C gains per unit area by 46%. The potential value of C credits under a plausible adoption scenario would range from $38,270 to $354,000 yr -1 for the study area, or about $13 to $124 ha -1  yr -1 , depending on C prices. Considering farm sizes in smallholder landscapes rarely exceed 1-2 ha, relying solely on direct C payments to farmers may not lead to widespread CSA adoption, especially if farm-scale monitoring is required. Instead, landscape-scale approaches to C contracting, supported by satellite-based monitoring methods such as ours, could be a key strategy to reduce costs and uncertainty of C monitoring in heterogeneous smallholder landscapes, thereby incentivizing more widespread CSA adoption. Copyright © 2017. Published by Elsevier Ltd.

  2. High resolution array-based comparative genomic hybridisation of medulloblastomas and supra-tentorial primitive neuroectodermal tumours

    Science.gov (United States)

    McCabe, Martin Gerard; Ichimura, Koichi; Liu, Lu; Plant, Karen; Bäcklund, L Magnus; Pearson, Danita M; Collins, Vincent Peter

    2010-01-01

    Medulloblastomas and supratentorial primitive neuroectodermal tumours are aggressive childhood tumours. We report our findings using array comparative genomic hybridisation (CGH) on a whole-genome BAC/PAC/cosmid array with a median clone separation of 0.97Mb to study 34 medulloblastomas and 7 supratentorial primitive neuroectodermal tumours. Array CGH allowed identification and mapping of numerous novel small regions of copy number change to genomic sequence, in addition to the large regions already known from previous studies. Novel amplifications were identified, some encompassing oncogenes, MYCL1, PDGFRA, KIT and MYB, not previously reported to show amplification in these tumours. In addition, one supratentorial primitive neuroectodermal tumour had lost both copies of the tumour suppressor genes CDKN2A & CDKN2B. Ten medulloblastomas had findings suggestive of isochromosome 17q. In contrast to previous reports using conventional CGH, array CGH identified three distinct breakpoints in these cases: Ch 17: 17940393-19251679 (17p11.2, n=6), Ch 17: 20111990-23308272 (17p11.2-17q11.2, n=4) and Ch 17: 38425359-39091575 (17q21.31, n=1). Significant differences were found in the patterns of copy number change between medulloblastomas and supratentorial primitive neuroectodermal tumours, providing further evidence that these tumours are genetically distinct despite their morphological and behavioural similarities. PMID:16783165

  3. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging

    International Nuclear Information System (INIS)

    Kolbun, N.; Lund, E.; Adolfsson, E.; Gustafsson, H.

    2014-01-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogeneously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. (authors)

  4. Acquisition and Processing of High Resolution Hyperspectral Imageries for the 3d Mapping of Urban Heat Islands and Microparticles of Montreal

    Science.gov (United States)

    Mongeau, R.; Baudouin, Y.; Cavayas, F.

    2017-10-01

    Ville de Montreal wanted to develop a system to identify heat islands and microparticles at the urban scale and to study their formation. UQAM and UdeM universities have joined their expertise under the framework "Observatoire Spatial Urbain" to create a representative geospatial database of thermal and atmospheric parameters collected during the summer months. They innovated in the development of a methodology for processing high resolution hyperspectral images (1-2 m). In partnership with Ville de Montreal, they integrated 3D geospatial data (topography, transportation and meteorology) in the process. The 3D mapping of intraurban heat islands as well as air micro-particles makes it possible, initially, to identify the problematic situations for future civil protection interventions during extreme heat. Moreover, it will be used as a reference for the Ville de Montreal to establish a strategy for public domain tree planting and in the analysis of urban development projects.

  5. Undergraduates Conducting Research Using High-Resolution Multibeam and Sidescan Sonar to Map and Characterize the Seabed: the BEAMS Program

    Science.gov (United States)

    Harris, M. S.; Sautter, L.

    2017-12-01

    The College of Charleston's BEnthic Acoustic Mapping and Survey (BEAMS) Program has just completed its 10th year of operation, and has proven to be remarkably effective at activating and maintaining undergraduate student interest in conducting research using sophisticated software, state-of-the-art instrumentation, enormous datasets, and significant experiential time. BEAMS students conduct research as part of a minimum 3-course sequence of marine geology-based content, marine geospatial software, and seafloor research courses. Over 140 students have completed the program, 56% of the graduated students remain active in the marine geospatial workforce or academic arenas. Forty-eight percent (48%) of those students are female. As undergraduates, students not only conduct independent research projects, but present their work at national conferences each year. Additionally, over 90 % of all "BEAMers" have been provided a 2-3 day at-sea experience on a dedicated BEAMS Program multibeam survey research cruise, and many students also volunteer as survey technicians aboard NOAA research vessels. Critical partnerships have developed with private industry to provide numerous collaborative opportunities and an employment/employer pipeline, as well as provision of software and hardware at many fiscal levels. Ongoing collaboration with the Marine Institute of Ireland and the National and Kapodistrian University of Athens has also provided valuable field opportunities and collaborative experiences. This talk will summarize the program while highlighting some of the key areas and topics investigated by students, including detailed geomorphologic studies of continental margins, submarine canyons, tectonic features and seamounts. Students also work with NOAA investigators to aid in the characterization of fish and deep coral habitats, and with BOEM researchers to study offshore windfield suitability and submerged cultural landscapes. Our sister program at the University of

  6. It's all in the pixels: high resolution remote sensing data and the mapping and analysis of the archaeological and historical landscape

    Directory of Open Access Journals (Sweden)

    Erwin Meylemans

    2017-03-01

    Full Text Available In Flanders (Belgium a large amount of remote-sensing data has been acquired and processed over the past few years, including high-resolution lidar and multi/hyperspectral aerial photography. These new data are contributing to the detection of archaeological sites and the characterisation of the cultural/historical landscape. Of particular use in historically stable areas under forest and pasture, lidar demonstrates the presence of a large number of previously unknown features and sites. The analysis and modelling of these data, combined with other landscape data such as soil maps, augering data, geological and historical maps, and aerial photographs, also provide possible new instruments for the characterisation and evaluation of prehistoric and historic landscapes. This vast amount of new remote-sensing data, plus the information it delivers, however, presents not only obvious opportunities but also a number of challenges. A centralised online system was developed by the 'GIS-Flanders agency', storing both processed and raw data from multispectral recordings, airborne lidar, mobile mapping images etc., and presenting several download and visualisation possibilities and tools. A new system has also been set up to handle specific archaeological and cultural historical data (historical images and aerial photographs, archaeological field data. Dialogue is needed so that the preservation and management needs of the archaeological heritage are also included.

  7. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    International Nuclear Information System (INIS)

    Casadio, Francesca; Rose, Volker

    2013-01-01

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity. (orig.)

  8. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Francesca [The Art Institute of Chicago, Chicago, IL (United States); Rose, Volker [Argonne National Laboratory, Advanced Photon Source and Center for Nanoscale Materials, Argonne, IL (United States)

    2013-04-15

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity. (orig.)

  9. High-resolution numerical simulation of summer wind field comparing WRF boundary-layer parametrizations over complex Arctic topography: case study from central Spitsbergen

    Czech Academy of Sciences Publication Activity Database

    Láska, K.; Chládová, Zuzana; Hošek, Jiří

    2017-01-01

    Roč. 26, č. 4 (2017), s. 391-408 ISSN 0941-2948 Institutional support: RVO:68378289 Keywords : surface wind field * model evaluation * topographic effect * circulation pattern * Svalbard Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.989, year: 2016 http://www.schweizerbart.de/papers/metz/detail/prepub/87659/High_resolution_numerical_simulation_of_summer_wind_field_comparing_WRF_boundary_layer_parametrizations_over_complex_Arctic_topography_case_study_from_central_Spitsbergen

  10. Direct Push Optical Screening Tool for High-Resolution, Real-Time Mapping of Chlorinated Solvent DNAPL Architecture

    Science.gov (United States)

    2016-04-01

    due to higher densities, lower viscosities , and increased weathering (mass depletion) of residual chlorinated solvent DNAPL compared to those other...demonstration area can be generally classified as stratified layers of fine sand and silt with few clay layers. A silt layer was penetrated consistently at...toxic and carcinogenic. Another potential issue evaluated was that in plastic soils (stiff clays for example) there is potential for the thickness of

  11. Creating a Methodology for Coordinating High-resolution Air Quality Improvement Map and Greenhouse Gas Mitigation Strategies in Pittsburgh City

    Science.gov (United States)

    Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.

    2016-12-01

    In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.

  12. High Resolution Mapping of an Alleged Chemical Weapons Dump Site in the Santa Cruz Basin, offshore California

    Science.gov (United States)

    Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    Nautical charts record seven locations off the coast of California labeled as 'Chemical Munitions Dumping Area, Disused' that together cover some 12,000 km2 of sea floor. However only one such chemical munitions site is officially documented and no record exists of any chemical munitions disposed of at other locations, thus creating confusion. We have executed a one day AUV mapping survey of a corner of one such site in the Santa Cruz Basin, south of Port Hueneme, to examine and investigate the debris field. The region is covered with soft sediment and the overlying water is very low in oxygen at ~10 μmol/kg. The processed 110 kHz sidescan data revealed some 754 targets in 25.6 km2 for an average of 29 targets per km2. This was followed by two ROV dives to investigate the targets identified. We found but one false positives among the over 40 targets visited, and found items ranging from two distinct lines of unmarked or labeled and now empty barrels, two target drones, and much miscellaneous debris including 4-packs of cat food cans and a large ships mast over 30m in length. There was zero evidence of chemical weapons materiel as expected given the lack of official records. Almost all of the targets were covered in dense and colorful assemblages of invertebrates: sponges, anemones, and crabs. Where barrels were sufficiently open for full visual inspection, the interior sea floor appeared to have become fully anoxic and was covered in white and yellow bacterial mat. The area chosen for our survey (centered at 33.76 deg N 119.56 deg W) was across the north western boundary of the marked site, and represents only ~ 10% percent of the designated area. Our expectation, that human nature would drive the disposal activities to the nearest corner of the chosen area rather than the center of the field appears to have been confirmed. Objects were found both within and outside of the boundary of the dump site. We have not surveyed the full marked area but there appears to be

  13. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement)

    International Nuclear Information System (INIS)

    Quemener, Gilles

    1997-01-01

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c -1 with a σp/p = 10 -4 resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10 -4 relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author)

  14. Continuous assessment of land mapping accuracy at High Resolution from global networks of atmospheric and field observatories -concept and demonstration

    Science.gov (United States)

    Sicard, Pierre; Martin-lauzer, François-regis

    2017-04-01

    In the context of global climate change and adjustment/resilience policies' design and implementation, there is a need not only i. for environmental monitoring, e.g. through a range of Earth Observations (EO) land "products" but ii. for a precise assessment of uncertainties of the aforesaid information that feed environmental decision-making (to be introduced in the EO metadata) and also iii. for a perfect handing of the thresholds which help translate "environment tolerance limits" to match detected EO changes through ecosystem modelling. Uncertainties' insight means precision and accuracy's knowledge and subsequent ability of setting thresholds for change detection systems. Traditionally, the validation of satellite-derived products has taken the form of intensive field campaigns to sanction the introduction of data processors in Payload Data Ground Segments chains. It is marred by logistical challenges and cost issues, reason why it is complemented by specific surveys at ground-based monitoring sites which can provide near-continuous observations at a high temporal resolution (e.g. RadCalNet). Unfortunately, most of the ground-level monitoring sites, in the number of 100th or 1000th, which are part of wider observation networks (e.g. FLUXNET, NEON, IMAGINES) mainly monitor the state of the atmosphere and the radiation exchange at the surface, which are different to the products derived from EO data. In addition they are "point-based" compared to the EO cover to be obtained from Sentinel-2 or Sentinel-3. Yet, data from these networks, processed by spatial extrapolation models, are well-suited to the bottom-up approach and relevant to the validation of vegetation parameters' consistency (e.g. leaf area index, fraction of absorbed photosynthetically active radiation). Consistency means minimal errors on spatial and temporal gradients of EO products. Test of the procedure for land-cover products' consistency assessment with field measurements delivered by worldwide

  15. Permafrost Distribution along the Qinghai-Tibet Engineering Corridor, China Using High-Resolution Statistical Mapping and Modeling Integrated with Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    Fujun Niu

    2018-02-01

    Full Text Available Permafrost distribution in the Qinghai-Tibet Engineering Corridor (QTEC is of growing interest due to the increase in infrastructure development in this remote area. Empirical models of mountain permafrost distribution have been established based on field sampled data, as a tool for regional-scale assessments of its distribution. This kind of model approach has never been applied for a large portion of this engineering corridor. In the present study, this methodology is applied to map permafrost distribution throughout the QTEC. After spatial modelling of the mean annual air temperature distribution from MODIS-LST and DEM, using high-resolution satellite image to interpret land surface type, a permafrost probability index was obtained. The evaluation results indicate that the model has an acceptable performance. Conditions highly favorable to permafrost presence (≥70% are predicted for 60.3% of the study area, declaring a discontinuous permafrost distribution in the QTEC. This map is useful for the infrastructure development along the QTEC. In the future, local ground-truth observations will be required to confirm permafrost presence in favorable areas and to monitor permafrost evolution under the influence of climate change.

  16. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy.

    Science.gov (United States)

    Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L; de Pablo, Pedro J; Raman, Arvind

    2013-06-07

    Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.

  17. High-Resolution Mid-IR Imaging of Jupiter's Great Red Spot: Comparing Cassini, VLT and Subaru Observations

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, G. S.; Yanamandra-Fisher, P.; Irwin, P. G. J.; Baines, K. H.; Edkins, E.; Line, M. R.; Mousis, O.; Parrish, P. D.; Vanzi, L.; Fuse, T.; Fujoyoshi, T.

    2008-09-01

    In the eight years since the Cassini fly-by of Jupiter, the spatial resolution of ground-based observations of Jupiter's giant anticyclonic storm systems (the Great Red Spot, Oval BA and others) using 8m-class telescopes has surpassed the resolution of the Cassini/CIRS maps. We present a time-series of mid-IR imaging of the Great Red Spot (GRS) and its environs from the VISIR instrument on the Very Large Telescope (UT3/Melipal) and the COMICS instrument on the Subaru telescope (Hawaii). The NEMESIS optimal-estimation retrieval algorithm (Irwin et al., 2008) is used to analyse both the 7-25 micron filtered imaging from 2005-2008 and Cassini/CIRS 7-16 micron data from 2000. We demonstrate the ability to map temperatures in the 100-400 mbar range, NH3, aerosol opacity and the para-H2 fraction from the filtered imaging. Furthermore, the Cassini/CIRS spectra are used to map the PH3 mole fraction around the GRS. The thermal field, gaseous composition and aerosol distribution are used as diagnostics for the atmospheric motion associated with the GRS. Changes in the atmospheric state in response to close encounters with Oval BA and other vortices will be assessed. These results will be discussed in light of their implications for the planning of the Europa-Jupiter System Mission.

  18. High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations

    Science.gov (United States)

    Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.

    2016-12-01

    The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.

  19. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  20. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles.

    Science.gov (United States)

    Labonne, Jonathan J D; Goultiaeva, Alina; Shore, Joel S

    2009-06-01

    While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly.

  1. Linking high-resolution geomorphic mapping, sediment sources, and channel types in a formerly glaciated basin of northeastern Alto-Adige/Sudtirol, Italy

    Science.gov (United States)

    Brardinoni, F.; Perina, E.; Bonfanti, G.; Falsitta, G.; Agliardi, F.

    2012-04-01

    To characterize channel-network morphodynamics and response potential in the Gadria-Strimm basin (14.8 km^2) we conduct a concerted effort entailing: (i) high-resolution mapping of landforms, channel reaches, and sediment sources; and (ii) historical evolution of colluvial channel disturbance through sequential aerial photosets (1945-59-69-82-90-00-06-11). The mapping was carried out via stereographic inspection of aerial photographs, examination of 2.5-m gridded DTM and DSM, and extensive field work. The study area is a formerly glaciated basin characterized by peculiar landform assemblages imposed by a combination of tectonic and glacial first-order structures. The most striking feature in Strimm Creek is a structurally-controlled valley step separating an upper hanging valley, dominated by periglacial and fluvial processes, and a V-notched lower part in which lateral colluvial channels are directly connected to Strimm's main stem. In Gadria Creek, massive kame terraces located in proximity of the headwaters provide virtually unlimited sediment supply to frequent debris-flow activity, making this sub-catchment an ideal site for monitoring, hence studying the mechanics of these processes. Preliminary results point to a high spatial variability of the colluvial channel network, in which sub-sectors have remained consistently active during the study period while others have become progressively dormant with notable forest re-growth. In an attempt to link sediment flux to topography and substrate type, future work will involve photogrammetric analysis across the sequential aerial photosets as well as a morphometric/geomechanical characterization of the surficial materials.

  2. Increased polyp detection using narrow band imaging compared with high resolution endoscopy in patients with hyperplastic polyposis syndrome

    NARCIS (Netherlands)

    Boparai, K. S.; van den Broek, F. J. C.; van Eeden, S.; Fockens, P.; Dekker, E.

    2011-01-01

    Hyperplastic polyposis syndrome (HPS) is associated with colorectal cancer and is characterized by multiple hyperplastic polyps, sessile serrated adenomas (SSAs) and adenomas. Narrow band imaging (NBI) may improve the detection of polyps in HPS. We aimed to compare polyp miss rates with NBI with

  3. SU-E-CAMPUS-I-04: Automatic Skin-Dose Mapping for An Angiographic System with a Region-Of-Interest, High-Resolution Detector

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, S; Rana, V [Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center (United States); Setlur Nagesh, S [Toshiba Stroke and Vascular Research Center (United States); Ionita, C [Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY (United States); Rudin, S [Department of Radiology, Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center, Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY (United States); Bednarek, D [Department of Radiology, Department of Physiology and Biophysics, Toshiba Stroke and Vascular Research Center (United States)

    2014-06-15

    Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. The DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD

  4. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  5. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyak, Judith E. [Naviscan Inc., San Diego, CA (United States); Berg, Wendie A. [University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA (United States); Schilling, Kathy [Boca Raton Regional Hospital, Boca Raton, FL (United States); Madsen, Kathleen S. [Certus International, Inc., St. Louis, MO (United States); Narayanan, Deepa [Naviscan Inc., San Diego, CA (United States); National Cancer Institute, Bethesda, MD (United States); Tartar, Marie [Scripps Clinic, Scripps Green Hospital, La Jolla, CA (United States)

    2014-02-15

    To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer. A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and {sup 18}F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher's exact tests were used to compare distributions between groups, and McNemar's test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT. The mean age of the women was 59 ± 12 years (median 60 years, range 26-89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5-4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7-3.0) and invasive lobular carcinoma (median 1.5, range 0.7-3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4-12.9). PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm. (orig.)

  6. Comparing a Multivariate Global Ocean State Estimate With High-Resolution in Situ Data: An Anticyclonic Intrathermocline Eddy Near the Canary Islands

    Directory of Open Access Journals (Sweden)

    Bàrbara Barceló-Llull

    2018-03-01

    Full Text Available The provision of high-resolution in situ oceanographic data is key for the ongoing verification, validation and assessment of operational products, such as those provided by the Copernicus Marine Core Service (CMEMS. Here we analyze the ability of ARMOR3D—a multivariate global ocean state estimate that is available from CMEMS—to reconstruct a mesoscale anticyclonic intrathermocline eddy that was previously sampled with high-resolution independent in situ observations. ARMOR3D is constructed by merging remote sensing observations with in situ vertical profiles of temperature and salinity obtained primarily from the Argo network. In situ data from CTDs and an Acoustic Doppler Current Profiler were obtained during an oceanographic cruise near the Canary Islands (Atlantic ocean. The analysis of the ARMOR3D product using the in situ data is done over (i a high-resolution meridional transect crossing the eddy center and (ii a three-dimensional grid centered on the eddy center. An evaluation of the hydrographic eddy signature and derived dynamical variables, namely geostrophic velocity, vertical vorticity and quasi-geostrophic (QG vertical velocity, demonstrates that the ARMOR3D product is able to reproduce the vertical hydrographic structure of the independently sampled eddy below the seasonal pycnocline, with the caveat that the flow is surface intensified and the seasonal pycnocline remains flat. Maps of ARMOR3D density show the signature of the eddy, and agreement with the elliptical eddy shape seen in the in situ data. The major eddy axes are oriented NW-SE in both data sets. The estimated radius for the in situ eddy is ~46 km; the ARMOR3D radius is significantly larger at ~ 92 km and is considered an overestimation that is inherited from an across-track altimetry sampling issue. The ARMOR3D geostrophic flow is underestimated by a factor of 2, with maxima of 0.11 (−0.19 m s−1 at the surface, which implies an underestimation of the local

  7. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites

    Science.gov (United States)

    Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; Elgner, S.; Erkeling, G.; Fueten, F.; Hiesinger, H.; Hoekzema, N. M.; Kersten, E.; Loizeau, D.; Matz, K.-D.; McGuire, P. C.; Mertens, V.; Michael, G.; Pasewaldt, A.; Pinet, P.; Preusker, F.; Reiss, D.; Roatsch, T.; Schmidt, R.; Scholten, F.; Spiegel, M.; Stesky, R.; Tirsch, D.; van Gasselt, S.; Walter, S.; Wählisch, M.; Willner, K.

    2016-07-01

    The High Resolution Stereo Camera (HRSC) of ESA's Mars Express is designed to map and investigate the topography of Mars. The camera, in particular its Super Resolution Channel (SRC), also obtains images of Phobos and Deimos on a regular basis. As HRSC is a push broom scanning instrument with nine CCD line detectors mounted in parallel, its unique feature is the ability to obtain along-track stereo images and four colors during a single orbital pass. The sub-pixel accuracy of 3D points derived from stereo analysis allows producing DTMs with grid size of up to 50 m and height accuracy on the order of one image ground pixel and better, as well as corresponding orthoimages. Such data products have been produced systematically for approximately 40% of the surface of Mars so far, while global shape models and a near-global orthoimage mosaic could be produced for Phobos. HRSC is also unique because it bridges between laser altimetry and topography data derived from other stereo imaging instruments, and provides geodetic reference data and geological context to a variety of non-stereo datasets. This paper, in addition to an overview of the status and evolution of the experiment, provides a review of relevant methods applied for 3D reconstruction and mapping, and respective achievements. We will also review the methodology of specific approaches to science analysis based on joint analysis of DTM and orthoimage information, or benefitting from high accuracy of co-registration between multiple datasets, such as studies using multi-temporal or multi-angular observations, from the fields of geomorphology, structural geology, compositional mapping, and atmospheric science. Related exemplary results from analysis of HRSC data will be discussed. After 10 years of operation, HRSC covered about 70% of the surface by panchromatic images at 10-20 m/pixel, and about 97% at better than 100 m/pixel. As the areas with contiguous coverage by stereo data are increasingly abundant, we also

  8. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    International Nuclear Information System (INIS)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan; Cosgarea, Raluca; Kim, Ti-Sun; Heiland, Sabine; Beomonte Zobel, Bruno

    2011-01-01

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  9. MR-Imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Gaudino, Chiara; Csernus, Reka; Pham, Mirko; Bendszus, Martin; Rohde, Stefan [University Hospital Heidelberg, Department of Neuroradiology, Heidelberg (Germany); Cosgarea, Raluca; Kim, Ti-Sun [University Hospital Heidelberg, Department of Periodontology, Heidelberg (Germany); Heiland, Sabine [University Hospital Heidelberg, Section of Experimental Radiology, Heidelberg (Germany); Beomonte Zobel, Bruno [University Campus Bio-Medico of Rome, Department of Radiology, Interdisciplinary Center for Biomedical Research, Rome (Italy)

    2011-12-15

    The aim of this study was (1) to assess the ability of magnetic resonance imaging (MRI) to visualize dental and periodontal structures and (2) to compare findings with multidetector computed tomography (MDCT) and cone beam CT (CBCT). Four porcine mandibles were examined with (1) 3T-MRI, (2) MDCT and (3) CBCT. Two observers independently reviewed MR, MDCT and CBCT images and assessed image quality of different dental and periodontal structures. To assess quantitatively the accuracy of the different imaging technique, both observers measured burr holes, previously drilled in the mandibles. Dental structures, e.g. teeth roots, pulpa chamber and dentin, were imaged accurately with all imaging sources. Periodontal space and cortical/trabecular bone were better visualized by MRI (p < 0.001). MRI could excellently display the lamina dura, not detectable with MDCT and only inconstant visible with CBCT (p < 0.001). Burr hole measurements were highly precise with all imaging techniques. This experimental study shows the diagnostic feasibility of MRI in visualization of teeth and periodontal anatomy. Detection of periodontal structures was significantly better with MRI than with MDCT or CBCT. Prospective trials have to evaluate further the potential benefit of MRI in a clinical setting. (orig.)

  10. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    Science.gov (United States)

    Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru

    2017-08-01

    The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be

  11. Water-perfused manometry vs three-dimensional high-resolution manometry: a comparative study on a large patient population with anorectal disorders.

    Science.gov (United States)

    Vitton, V; Ben Hadj Amor, W; Baumstarck, K; Grimaud, J-C; Bouvier, M

    2013-12-01

    Our aim was to compare for the first time measurements obtained with water-perfused catheter anorectal manometry and three-dimensional (3D) high-resolution manometry in patients with anorectal disorders. Consecutive patients referred to our centre for anorectal manometry (ARM) were recruited to undergo the two procedures successively. Conventional manometry was carried out using a water-perfused catheter (WPAM) and high-resolution manometry was achieved with a 3D probe (3DHRAM). For each procedure, parameters recorded included the following: anal canal length, resting pressure, squeeze pressure and rectal sensitivity. Two hundred and one patients were included in this study. The mean values for resting and squeeze pressures were correlated and found to be significantly higher when measured with 3DHRAM than with WPAM. However, the length of the anal canal was not significantly different when measured by the two techniques without correlation between the two mean values obtained. The presence of the rectoanal inhibitory reflex was systematically assessed by both WPAM and 3DHRAM and anismus was also systematically diagnosed by both WPAM and 3DHRAM. The pressure values obtained with 3DHRAM are correlated with those measured with conventional manometry but are systematically higher. 3DHRAM has the advantage of providing a pressure recording over the entire length and circumference of the anal canal, allowing a more useful physiological assessment of anorectal function. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  12. Avoiding pitfalls in molecular genetic testing: case studies of high-resolution array comparative genomic hybridization testing in the definitive diagnosis of Mowat-Wilson syndrome.

    Science.gov (United States)

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-05-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both cases was negative, but the application of high-resolution array comparative genomic hybridization technology lead to definitive diagnosis in both cases. We summarize the clinical findings and molecular testing in each case, discuss the differential diagnoses, and review the clinical and pathological findings of Mowat-Wilson syndrome. This report highlights the importance for those involved in molecular testing to know the nature of the underlying genetic abnormalities associated with the suspected diagnosis, to recognize the limitations of each testing platform, and to persistently pursue repeat testing using high-resolution technologies when indicated. This concept is applicable to both germline and somatic molecular genetic testing. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    Science.gov (United States)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  14. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  15. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2016-09-01

    Full Text Available Aquatic vegetation has important ecological and regulatory functions and should be monitored in order to detect ecosystem changes. Field data collection is often costly and time-consuming; remote sensing with unmanned aircraft systems (UASs provides aerial images with sub-decimetre resolution and offers a potential data source for vegetation mapping. In a manual mapping approach, UAS true-colour images with 5-cm-resolution pixels allowed for the identification of non-submerged aquatic vegetation at the species level. However, manual mapping is labour-intensive, and while automated classification methods are available, they have rarely been evaluated for aquatic vegetation, particularly at the scale of individual vegetation stands. We evaluated classification accuracy and time-efficiency for mapping non-submerged aquatic vegetation at three levels of detail at five test sites (100 m × 100 m differing in vegetation complexity. We used object-based image analysis and tested two classification methods (threshold classification and Random Forest using eCognition®. The automated classification results were compared to results from manual mapping. Using threshold classification, overall accuracy at the five test sites ranged from 93% to 99% for the water-versus-vegetation level and from 62% to 90% for the growth-form level. Using Random Forest classification, overall accuracy ranged from 56% to 94% for the growth-form level and from 52% to 75% for the dominant-taxon level. Overall classification accuracy decreased with increasing vegetation complexity. In test sites with more complex vegetation, automated classification was more time-efficient than manual mapping. This study demonstrated that automated classification of non-submerged aquatic vegetation from true-colour UAS images was feasible, indicating good potential for operative mapping of aquatic vegetation. When choosing the preferred mapping method (manual versus automated the desired level of

  16. Ultra-high resolution C-Arm CT arthrography of the wrist: Radiation dose and image quality compared to conventional multidetector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Werncke, Thomas, E-mail: Werncke.Thomas@mh-hannover.de [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Sonnow, Lena; Meyer, Bernhard C. [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Lüpke, Matthias [University of Veterinary Medicine Hannover, Institute for General Radiology and Medical Physics, Bischofsholer Damm 15, 30173 Hannover (Germany); Hinrichs, Jan; Wacker, Frank K.; Falck, Christian von [Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany)

    2017-04-15

    Objective: Objective of this phantom and cadaveric study was to compare the effective radiation dose (ED) and image quality (IQ) between C-arm computed tomography (CACT) using an ultra-high resolution 1 × 1 binning with a standard 16-slice CT (MDCT) arthrography of the wrist. Methods: ED was determined with thermoluminescence dosimetry using an anthropomorphic phantom and different patient positions. Imaging was conducted in 10 human cadaveric wrists after tri-compartmental injection of diluted iodinated contrast material and a wire phantom. IQ of MDCT was compared with CACT reconstructed with a soft (CACT1) and sharp (CACT2) kernel. High and low contrast resolution was determined. Three radiologists assessed IQ of wrist structures and occurrence of image artifacts using a 5-point Likert scale. Results: ED of MDCT was comparable to standard CACT (4.3 μSv/3.7 μSv). High contrast resolution was best for CACT2, decreased to CACT1 and MDCT. Low contrast resolution increased between CACT2 and MDCT (P < 0.001). IQ was best for CACT2 (1.3 ± 0.5), decreased to CACT1 (1.9 ± 0.6) and MDCT (3.5 ± 0.6). Non-compromising artifacts were only reported for CACT. Conclusions: The results of this phantom and cadaveric study indicate that ultra-high resolution C-Arm CT arthrography of the wrist bears the potential to outperform MDCT arthrography in terms of image quality and workflow at the cost of mildly increasing image artifacts while radiation dose to the patient is comparably low for both, MDCT and C-Arm CT.

  17. Geophysical Modelling and Multi-Scale Studies in the Arctic Seiland Igneous Province: Millimeter to Micrometer Scale Mapping of the Magnetic Sources by High Resolution Magnetic Microscopy

    Science.gov (United States)

    Pastore, Z.; Church, N. S.; McEnroe, S. A.; Oda, H.; ter Maat, G. W.

    2017-12-01

    Rocks samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. These influence the magnetic anomalies from the micro to the global scale making the study of the magnetic properties of interest for multiple applications. Later geological processes such as serpentinization can significantly influence these properties and change the nature of the magnetic anomalies. Particularly, magnetic properties such as remanent magnetization and magnetic susceptibility are directly linked to the magnetic mineralogy composition and grain size and can provide useful information about the geological history of the source. Scanning magnetic microscopy is a highly sensitive and high-resolution magnetometric technique for mapping the magnetic field over a planar surface of a rock sample. The device measures the vertical component of the field above the thin sections and the technique offers a spatial resolution down to tens of micrometers and thus can be used to investigate discrete magnetic mineral grains or magnetic textures and structures, and the magnetic history of the sample. This technique allows a direct correlation between the mineral chemistry (through both electron and optical microscopy) and the magnetic properties. We present as case-study three thin section magnetic scans of two dunite samples from the Reinfjord Ultramafic complex, in northern Norway. The selected thin sections show different magnetic properties which reflect the magnetic petrology. One of the thin sections is from a pristine dunite sample; the other two are highly serpentinized with newly formed magnetite found in multiple, few micrometer thick, veins. We present the preliminary results obtained applying a forward modelling approach on the magnetic anomaly maps acquired over the thin sections. Modelling consists of uniformly-magnetized polygonal bodies whose geometry is constrained by the thickness of the thin section

  18. High-resolution meiotic and physical mapping of the Best`s vitelliform macular dystrophy (VMD2) locus to pericentromeric chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Weber, B.H.F.; Vogt, G. [Institut fuer Humangenetik, Wuerzburg (Germany); Walker, D. [UBC, Vancouver (Canada)] [and others

    1994-09-01

    Vitelliform macular dystrophy, also known as Best`s disease, is a juvenile-onset macular degeneration with autosomal dominant inheritance. It is characterized by well-demarcated accumulation of lipofuscin-like material within and beneath the retinal pigment epithelium (RPE) and classically results in an egg yolk-like appearance of the macula. Typically, carriers of the disease gene show a specific electrophysiological sign which can be detected by electrooculography (EOG). The EOG measures a standing potential between the cornea and the retina which is primarily generated by the RPE. The histopathological findings as well as the EOG abnormalities suggest that Best`s disease is a generalized disorder of the RPE. The basic biochemical defect is still unknown. As a first step in the positional cloning of the defective gene, the Best`s disease locus was mapped to chromosome 11 between markers at D11S871 and INT2. Subsequently, his region was refined to a 3.7 cM interval flanked by loci D11S903 and PYGM. To further narrow the D11S903-PYGM interval and to obtain an estimate of the physical size of the minimal candidate region, we used a combination of high-resolution PCR hybrid mapping and analysis of recombinant Best`s disease chromosomes. We identified six markers from within the D11S903-PYGM interval that show no recombination with the defective gene in three multigeneration Best`s disease pedigrees. Our hybrid panel localizes these markers on either side of the centromere on chromosome 11. The closest markers flanking the disease gene are at D11S986 in band p12-11.22 and at D11S480 in band q13.2-13.3. Our study demonstrates that the physical size of the Best`s disease region is exceedingly larger than was previously estimated from the genetic data due to the proximity of the defective gene to the centromere of chromosome 11.

  19. Comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane between normal and preeclampsia pregnancies with high-resolution mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Fuqiang Wang

    Full Text Available Preeclampsia is a serious complication of pregnancy, which affects 2-8% of all pregnancies and is one of the leading causes of maternal and perinatal mortality and morbidity worldwide. To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, we used high-resolution LC-MS/MS technologies to construct a comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane in normal and preeclamptic pregnancies. A total of 1027 N-glyco- and 2094 phospho- sites were detected in human placental plasma membrane, and 5 N-glyco- and 38 phospho- proteins, respectively, with differentially expression were definitively identified between control and preeclamptic placental plasma membrane. Further bioinformatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes occurring during pathological changes of preeclamptic placental plasma membrane.

  20. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    Science.gov (United States)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  1. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

    Science.gov (United States)

    Siewert, Matthias B.

    2018-03-01

    Soil organic carbon (SOC) stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m). A high-resolution (1 m) land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0-150 cm) is estimated to be 8.3 ± 8.0 kg C m-2 and the SOC stored in the top meter (0-100 cm) to be 7.7 ± 6.2 kg C m-2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions > 30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of SOC across all landscape compartments in post-permafrost landscapes.

  2. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F 2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F 2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  3. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment

    Directory of Open Access Journals (Sweden)

    M. B. Siewert

    2018-03-01

    Full Text Available Soil organic carbon (SOC stored in northern peatlands and permafrost-affected soils are key components in the global carbon cycle. This article quantifies SOC stocks in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The random forest model performed best and was used to predict SOC for several depth increments at a spatial resolution of 1 m (1×1 m. A high-resolution (1 m land cover classification generated for this study is the most relevant predictive variable. The landscape mean SOC storage (0–150 cm is estimated to be 8.3 ± 8.0 kg C m−2 and the SOC stored in the top meter (0–100 cm to be 7.7 ± 6.2 kg C m−2. The predictive modeling highlights the relative importance of wetland areas and in particular peat plateaus for the landscape's SOC storage. The total SOC was also predicted at reduced spatial resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a significant drop in land cover class detail and a tendency to underestimate the SOC at resolutions  >  30 m. This is associated with the occurrence of many small-scale wetlands forming local hot-spots of SOC storage that are omitted at coarse resolutions. Sharp transitions in SOC storage associated with land cover and permafrost distribution are the most challenging methodological aspect. However, in this study, at local, regional and circum-Arctic scales, the main factor limiting robust SOC mapping efforts is the scarcity of soil pedon data from across the entire environmental space. For the Abisko region, past SOC and permafrost dynamics indicate that most of the SOC is barely 2000 years old and very dynamic. Future research needs to investigate the geomorphic response of permafrost degradation and the fate of

  4. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  5. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  6. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  7. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  8. Using High-Resolution Swath Mapping Data and Other Underway Geophysical Measurements Collected during Transit Cruises of RV Isabu to Map Deep Sea Floor of the Pacific and Indian Oceans

    Science.gov (United States)

    Hong, G. H.; Lee, S. M.; Kim, D. J.; Lee, Y. H.; Kim, S. S.

    2017-12-01

    Detail images of the seafloor are often the first collection of clues that set one towards a path that leads to a new discovery. The mapping of unchartered seafloor is like exploring the surface of an unknown planet for the first time. The launch of new global-ocean-class RV Isabu operated by Korea Institute of Ocean Science and Technology (KIOST) in November 2016 has reinvigorated the ongoing open ocean research in Korea. The location of the KIOST research vessels can be found at http://www.kiost.net/. Here we present a new collaborative research and education program which utilizes onboard measurements taken during the transit cruises. The measurements include high-resolution swath mapping bathymetric data, underway geophysical measurements (3.5 kHz subbottom profile, sea surface gravity and magnetic field) which are gathered semi-automatically during a scientific operation. The acquisition of data alone is not sufficient for meaningful scientific knowledge as the initial measurements must be cleaned and processed during or after the cruise. As in any scientific endeavor, planning is important. Prior to the cruise, preliminary study will be carried out by carefully examining the previously collected data from various global databases. Whenever possible, a small offset will be made of the ship track lines crossing the region so that important new measurements can be obtained systematically over the years. We anticipate that the program will not only contribute to fill the gap in the high-resolution bathymetry in some part of the Indian Ocean and Pacific. The processed and analyzed data will be available to other scientific communities for further understanding via download from KIOST website.

  9. A comparative study of map use

    DEFF Research Database (Denmark)

    Bouvin, Niels Olof; Brodersen, Ann Christina; Bødker, Susanne

    2006-01-01

    We present a study comparing the handling of three kinds of maps, each on a physical device: a paper map, a tablet-PC based map, and a cellular phone based one. Six groups of users were asked to locate eight landmarks, looking out a window, and using a particular map. We have begun analyzing video...

  10. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation.

    Science.gov (United States)

    Belaghzal, Houda; Dekker, Job; Gibcus, Johan H

    2017-07-01

    Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis

    Directory of Open Access Journals (Sweden)

    F. Xu

    2017-08-01

    Full Text Available The determination of area-averaged evapotranspiration (ET at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC sites and four groups of large-aperture scintillometers (LASs, were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this

  12. Use of a high resolution melting (HRM assay to compare gag, pol, and env diversity in adults with different stages of HIV infection.

    Directory of Open Access Journals (Sweden)

    Matthew M Cousins

    Full Text Available Cross-sectional assessment of HIV incidence relies on laboratory methods to discriminate between recent and non-recent HIV infection. Because HIV diversifies over time in infected individuals, HIV diversity may serve as a biomarker for assessing HIV incidence. We used a high resolution melting (HRM diversity assay to compare HIV diversity in adults with different stages of HIV infection. This assay provides a single numeric HRM score that reflects the level of genetic diversity of HIV in a sample from an infected individual.HIV diversity was measured in 203 adults: 20 with acute HIV infection (RNA positive, antibody negative, 116 with recent HIV infection (tested a median of 189 days after a previous negative HIV test, range 14-540 days, and 67 with non-recent HIV infection (HIV infected >2 years. HRM scores were generated for two regions in gag, one region in pol, and three regions in env.Median HRM scores were higher in non-recent infection than in recent infection for all six regions tested. In multivariate models, higher HRM scores in three of the six regions were independently associated with non-recent HIV infection.The HRM diversity assay provides a simple, scalable method for measuring HIV diversity. HRM scores, which reflect the genetic diversity in a viral population, may be useful biomarkers for evaluation of HIV incidence, particularly if multiple regions of the HIV genome are examined.

  13. Comparative Proteomic Profile of the Human Umbilical Cord Blood Exosomes between Normal and Preeclampsia Pregnancies with High-Resolution Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ruizhe Jia

    2015-07-01

    Full Text Available Background/Aims: Exosomes are extracellular vesicles that are involved in several biological processes. The roles of proteins from human umbilical cord blood exosomes in the pathogenesis of preeclampsia remains poorly understood. Methods: In this study, we used high-resolution LC-MS/MS technologies to construct a comparative proteomic profiling of human umbilical cord blood exosomes between normal and preeclamptic pregnancies. Results: A total of 221 proteins were detected in human umbilical cord blood exosomes, with 14 upregulated and 15 downregulated proteins were definitively identified between preeclamptic and control pregnancies. Further bioinformatics analysis (Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that these differentially expressed proteins correlate with enzyme regulator activity, binding, extracellular region, cell part, biological regulation, cellular process and complement and coagulation cascades occurring during pathological changes of preeclampsia. Conclusion: Our results show significantly altered expression profiles of proteins in human umbilical cord blood exosomes between normal and preeclampsia pregnancies. These proteins may be involved in the etiology of preeclampsia.

  14. Use of a high resolution melting (HRM) assay to compare gag, pol, and env diversity in adults with different stages of HIV infection.

    Science.gov (United States)

    Cousins, Matthew M; Laeyendecker, Oliver; Beauchamp, Geetha; Brookmeyer, Ronald; Towler, William I; Hudelson, Sarah E; Khaki, Leila; Koblin, Beryl; Chesney, Margaret; Moore, Richard D; Kelen, Gabor D; Coates, Thomas; Celum, Connie; Buchbinder, Susan P; Seage, George R; Quinn, Thomas C; Donnell, Deborah; Eshleman, Susan H

    2011-01-01

    Cross-sectional assessment of HIV incidence relies on laboratory methods to discriminate between recent and non-recent HIV infection. Because HIV diversifies over time in infected individuals, HIV diversity may serve as a biomarker for assessing HIV incidence. We used a high resolution melting (HRM) diversity assay to compare HIV diversity in adults with different stages of HIV infection. This assay provides a single numeric HRM score that reflects the level of genetic diversity of HIV in a sample from an infected individual. HIV diversity was measured in 203 adults: 20 with acute HIV infection (RNA positive, antibody negative), 116 with recent HIV infection (tested a median of 189 days after a previous negative HIV test, range 14-540 days), and 67 with non-recent HIV infection (HIV infected >2 years). HRM scores were generated for two regions in gag, one region in pol, and three regions in env. Median HRM scores were higher in non-recent infection than in recent infection for all six regions tested. In multivariate models, higher HRM scores in three of the six regions were independently associated with non-recent HIV infection. The HRM diversity assay provides a simple, scalable method for measuring HIV diversity. HRM scores, which reflect the genetic diversity in a viral population, may be useful biomarkers for evaluation of HIV incidence, particularly if multiple regions of the HIV genome are examined.

  15. Characteristics of carotid atherosclerotic plaques of chronic lipid apheresis patients as assessed by In Vivo High-Resolution CMR - a comparative analysis

    Directory of Open Access Journals (Sweden)

    Grimm Jochen M

    2012-11-01

    Full Text Available Abstract Background Components of carotid atherosclerotic plaques can reliably be identified and quantified using high resolution in vivo 3-Tesla CMR. It is suspected that lipid apheresis therapy in addition to lowering serum lipid levels also has an influence on development and progression of atherosclerotic plaques. The purpose of this study was to evaluate the influence of chronic lipid apheresis (LA on the composition of atherosclerotic carotid plaques. Methods 32 arteries of 16 patients during chronic LA-therapy with carotid plaques and stenosis of 1–80% were matched according to degree of stenosis with 32 patients, who had recently suffered an ischemic stroke. Of these patients only the asymptomatic carotid artery was analyzed. All patients underwent black-blood 3 T CMR of the carotids using parallel imaging and dedicated surface coils. Cardiovascular risk factors were recorded. Morphology and composition of carotid plaques were evaluated. For statistical evaluation Fisher’s Exact and unpaired t-test were used. A p-value Results Patients in the LA-group were younger (63.5 vs. 73.9. years, p2, p Conclusion Results of this study suggest that, despite a severer risk profile for cardiovascular complications in LA-patients, chronic LA is associated with significantly lower lipid content in carotid plaques compared to plaques of patients without LA with similar degrees of stenosis, which is characteristic of clinically stable plaques.

  16. Diagnostic accuracy of transabdominal high-resolution US for staging gallbladder cancer and differential diagnosis of neoplastic polyps compared with EUS.

    Science.gov (United States)

    Lee, Jeong Sub; Kim, Jung Hoon; Kim, Yong Jae; Ryu, Ji Kon; Kim, Yong-Tae; Lee, Jae Young; Han, Joon Koo

    2017-07-01

    To compare the diagnostic accuracy of transabdominal high-resolution ultrasound (HRUS) for staging gallbladder cancer and differential diagnosis of neoplastic polyps compared with endoscopic ultrasound (EUS) and pathology. Among 125 patients who underwent both HRUS and EUS, we included 29 pathologically proven cancers (T1 = 7, T2 = 19, T3 = 3) including 15 polypoid cancers and 50 surgically proven polyps (neoplastic = 30, non-neoplastic = 20). We reviewed formal reports and assessed the accuracy of HRUS and EUS for diagnosing cancer as well as the differential diagnosis of neoplastic polyps. Statistical analyses were performed using chi-square tests. The sensitivity, specificity, PPV, and NPV for gallbladder cancer were 82.7 %, 44.4 %, 82.7 %, and 44 % using HRUS and 86.2 %, 22.2 %, 78.1 %, and 33.3 % using EUS. HRUS and EUS correctly diagnosed the stage in 13 and 12 patients. The sensitivity, specificity, PPV, and NPV for neoplastic polyps were 80 %, 80 %, 86 %, and 73 % using HRUS and 73 %, 85 %, 88 %, and 69 % using EUS. Single polyps (8/20 vs. 21/30), larger (1.0 ± 0.28 cm vs. 1.9 ± 0.85 cm) polyps, and older age (52.5 ± 13.2 vs. 66.1 ± 10.3 years) were common in neoplastic polyps (p diagnostic accuracy for GB cancer compared with EUS. • HRUS and EUS showed similar diagnostic accuracy for differentiating neoplastic polyps. • Single, larger polyps and older age were common in neoplastic polyps. • HRUS is less invasive compared with EUS.

  17. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    Science.gov (United States)

    Rogiers, Bart; Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  18. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    Directory of Open Access Journals (Sweden)

    Bart Rogiers

    Full Text Available Cone penetration testing (CPT is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  19. Ovarian cancer survival population differences: a "high resolution study" comparing Philippine residents, and Filipino-Americans and Caucasians living in the US.

    Science.gov (United States)

    Redaniel, Maria Theresa M; Laudico, Adriano; Mirasol-Lumague, Maria Rica; Gondos, Adam; Uy, Gemma Leonora; Toral, Jean Ann; Benavides, Doris; Brenner, Hermann

    2009-09-24

    In contrast to most other forms of cancer, data from some developing and developed countries show surprisingly similar survival rates for ovarian cancer. We aimed to compare ovarian cancer survival in Philippine residents, Filipino-Americans and Caucasians living in the US, using a high resolution approach, taking potential differences in prognostic factors into account. Using databases from the SEER 13 and from the Manila and Rizal Cancer Registries, age-adjusted five-year absolute and relative survival estimates were computed using the period analysis method and compared between Filipino-American ovarian cancer patients with cancer patients from the Philippines and Caucasians in the US. Cox proportional hazards modelling was used to determine factors affecting survival differences. Despite more favorable distribution of age and cancer morphology and similar stage distribution, 5-year absolute and relative survival were lower in Philippine residents (Absolute survival, AS, 44%, Standard Error, SE, 2.9 and Relative survival, RS, 49.7%, SE, 3.7) than in Filipino-Americans (AS, 51.3%, SE, 3.1 and RS, 54.1%, SE, 3.4). After adjustment for these and additional covariates, strong excess risk of death for Philippine residents was found (Relative Risk, RR, 2.45, 95% confidence interval, 95% CI, 1.99-3.01). In contrast, no significant differences were found between Filipino-Americans and Caucasians living in the US. Multivariate analyses disclosed strong survival disadvantages of Philippine residents compared to Filipino-American patients, for which differences in access to health care might have played an important role. Survival is no worse among Filipino-Americans than among Caucasians living in the US.

  20. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Science.gov (United States)

    Forkuor, Gerald; Hounkpatin, Ozias K L; Welp, Gerhard; Thiel, Michael

    2017-01-01

    Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness

  1. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Directory of Open Access Journals (Sweden)

    Gerald Forkuor

    Full Text Available Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat, terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC, soil organic carbon (SOC and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR, random forest regression (RFR, support vector machine (SVM, stochastic gradient boosting (SGB-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices

  2. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  3. High-resolution computed tomography findings of influenza virus pneumonia. A comparative study between seasonal and novel (H1N1) influenza virus pneumonia

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Kunihiro, Yoshie; Matsunaga, Naofumi; Hasegawa, Shunji; Ichiyama, Takashi; Emoto, Takuya; Suda, Hiroki

    2012-01-01

    The purpose of this study was to evaluate the high-resolution computed tomography (HRCT) findings of novel influenza virus (n-IFV) pneumonia and compare them with the findings for seasonal (s-IFV) pneumonia. We evaluated 29 cases of pure IFV pneumonia that occurred between 1990 and 2010. We evaluated the existence, extent, and patterns of HRCT findings and compared these features between s-IFV and n-IFV. Consolidation was less frequent in s-IFV than in n-IFV (40.0 vs. 84.2%, respectively; p=0.014). Consolidation with a loss of volume was frequent in n-IFV (62.5%). There was no significant difference in the occurrence of ground-glass opacity (GGO) between s-IFV and n-IFV (100 vs. 84.2%, respectively). GGO with reticular opacities was more frequent in s-IFV than in n-IFV (70.0 vs. 25.0%, respectively; p=0.024). The frequency of nodules was not significantly different between the two groups. The mosaic pattern was more frequent in s-IFV than in n-IFV patients (80.0 vs. 15.8%, respectively; p=0.0007). Mucoid impaction was more frequent in patients with n-IFV than with s-IFV (52.6 vs. 10.0%, respectively; p=0.025). Consolidation and mucoid impaction were more frequent in n-IFV, whereas GGO with reticular opacities and a mosaic pattern occurred more frequently in s-IFV; otherwise, there were no significant differences between the two groups. (author)

  4. Distal radius plate of CFR-PEEK has minimal effect compared to titanium plates on bone parameters in high-resolution peripheral quantitative computed tomography: a pilot study.

    Science.gov (United States)

    de Jong, Joost J A; Lataster, Arno; van Rietbergen, Bert; Arts, Jacobus J; Geusens, Piet P; van den Bergh, Joop P W; Willems, Paul C

    2017-02-27

    Carbon-fiber-reinforced poly-ether-ether-ketone (CFR-PEEK) has superior radiolucency compared to other orthopedic implant materials, e.g. titanium or stainless steel, thus allowing metal-artifact-free postoperative monitoring by computed tomography (CT). Recently, high-resolution peripheral quantitative CT (HRpQCT) proved to be a promising technique to monitor the recovery of volumetric bone mineral density (vBMD), micro-architecture and biomechanical parameters in stable conservatively treated distal radius fractures. When using HRpQCT to monitor unstable distal radius fractures that require volar distal radius plating for fixation, radiolucent CFR-PEEK plates may be a better alternative to currently used titanium plates to allow for reliable assessment. In this pilot study, we assessed the effect of a volar distal radius plate made from CFR-PEEK on bone parameters obtained from HRpQCT in comparison to two titanium plates. Plates were instrumented in separate cadaveric human fore-arms (n = 3). After instrumentation and after removal of the plates duplicate HRpQCT scans were made of the region covered by the plate. HRpQCT images were visually checked for artifacts. vBMD, micro-architectural and biomechanical parameters were calculated, and compared between the uninstrumented and instrumented radii. No visible image artifacts were observed in the CFR-PEEK plate instrumented radius, and errors in bone parameters ranged from -3.2 to 2.6%. In the radii instrumented with the titanium plates, severe image artifacts were observed and errors in bone parameters ranged between -30.2 and 67.0%. We recommend using CFR-PEEK plates in longitudinal in vivo studies that monitor the healing process of unstable distal radius fractures treated operatively by plating or bone graft ingrowth.

  5. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  6. Verification of small-scale water vapor features in VAS imagery using high resolution MAMS imagery. [VISSR Atmospheric Sounder - Multispectral Atmospheric Mapping Sensor

    Science.gov (United States)

    Menzel, Paul W.; Jedlovec, Gary; Wilson, Gregory

    1986-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS), a modification of NASA's Airborne Thematic Mapper, is described, and radiances from the MAMS and the VISSR Atmospheric Sounder (VAS) are compared which were collected simultaneously on May 18, 1985. Thermal emission from the earth atmosphere system in eight visible and three infrared spectral bands (12.3, 11.2 and 6.5 microns) are measured by the MAMS at up to 50 m horizontal resolution, and the infrared bands are similar to three of the VAS infrared bands. Similar radiometric performance was found for the two systems, though the MAMS showed somewhat less attenuation from water vapor than VAS because its spectral bands are shifted to shorter wavelengths away from the absorption band center.

  7. Screening for copy-number alterations and loss of heterozygosity in chronic lymphocytic leukemia--a comparative study of four differently designed, high resolution microarray platforms

    DEFF Research Database (Denmark)

    Gunnarsson, R.; Staaf, J.; Jansson, M.

    2008-01-01

    Screening for gene copy-number alterations (CNAs) has improved by applying genome-wide microarrays, where SNP arrays also allow analysis of loss of heterozygozity (LOH). We here analyzed 10 chronic lymphocytic leukemia (CLL) samples using four different high-resolution platforms: BAC arrays (32K)...

  8. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young; Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung

    2002-01-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0±2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3±4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group

  9. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young [Ajou University School of Medicine, Suwon (Korea, Republic of); Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0{+-}2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3{+-}4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group.

  10. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  11. High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds.

    Science.gov (United States)

    Qiu, Yongfu; Guo, Jianping; Jing, Shengli; Zhu, Lili; He, Guangcun

    2010-11-01

    Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive insect pests of rice. Exploring resistance genes from diverse germplasms and incorporating them into cultivated varieties are critical for controlling this insect. The rice variety Swarnalata was reported to carry a resistance gene (designated Bph6), which has not yet been assigned to a chromosome location and the resistance mechanism is still unknown. In this study, we identified and mapped this gene using the F(2) and backcrossing populations and characterized its resistance in indica 9311 and japonica Nipponbare using near isogenic lines (NILs). In analysis of 9311/Swarnalata F(2) population, the Bph6 gene was located on the long arm of chromosome 4 between the SSR markers RM6997 and RM5742. The gene was further mapped precisely to a 25-kb region delimited between the STS markers Y19 and Y9; and the distance between these markers is 25-kb in Nipponbare genome. The Bph6 explained 77.5% of the phenotypic variance of BPH resistance in F(2) population and 84.9% in BC(2)F(2) population. Allele from Swarnalata significantly increased resistance to the BPH, resulted in a reduced damage score. In characterization of Bph6-mediated resistance, the BPH insects showed significant preference between NIL-9311 and 9311 in 3 h and between NIL-NIP and Nipponbare in 120 h after release. BPH growth and development were inhibited, and the insect's survival rates were lower on Bph6-NIL plants, compared with the parents 9311 and Nipponbare. The results indicate that the Bph6 exerted prolonged antixenotic and antibiotic effects in Bph6-NIL plants, and NIL-9311 plants showed a quicker and stronger effect toward BPH than NIL-NIP plants.

  12. Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems.

    Science.gov (United States)

    van Houdt, Petra J; Agarwal, Harsh K; van Buuren, Laurens D; Heijmink, Stijn W T P J; Haack, Søren; van der Poel, Henk G; Ghobadi, Ghazaleh; Pos, Floris J; Peeters, Johannes M; Choyke, Peter L; van der Heide, Uulke A

    2018-03-01

    To evaluate the performance of a multi-echo spin-echo sequence with k-t undersampling scheme (k-t T 2 ) in prostate cancer. Phantom experiments were performed at five systems to estimate the bias, short-term repeatability, and reproducibility across all systems expressed with the within-subject coefficient of variation (wCV). Monthly measurements were performed on two systems for long-term repeatability estimation. To evaluate clinical repeatability, two T 2 maps (voxel size 0.8 × 0.8 × 3 mm 3 ; 5 min) were acquired at separate visits on one system for 13 prostate cancer patients. Repeatability was assessed per patient in relation to spatial resolution. T 2 values were compared for tumor, peripheral zone, and transition zone. Phantom measurements showed a small bias (median = -0.9 ms) and good short-term repeatability (median wCV = 0.5%). Long-term repeatability was 0.9 and 1.1% and reproducibility between systems was 1.7%. The median bias observed in patients was -1.1 ms. At voxel level, the median wCV was 15%, dropping to 4% for structures of 0.5 cm 3 . The median tumor T 2 values (79 ms) were significantly lower (P < 0.001) than in the peripheral zone (149 ms), but overlapped with the transition zone (91 ms). Reproducible T 2 mapping of the prostate is feasible with good spatial resolution in a clinically reasonable scan time, allowing reliable measurement of T 2 in structures as small as 0.5 cm 3 . Magn Reson Med 79:1586-1594, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Earth mapping - aerial or satellite imagery comparative analysis

    Science.gov (United States)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  14. Potential of High-Resolution Satellite Imagery for Mapping Distribution and Evaluating Ecological Characteristics of Tree Species at the Angkor Monument, Cambodia

    Directory of Open Access Journals (Sweden)

    Tomita Mizuki

    2015-01-01

    Full Text Available Large trees play several vital roles in the Angkor monuments landscape. They protect biodiversity, enhance the tourism experience, and provide various ecosystem services to local residents. A clear understanding of forest composition and distribution of individual species, as well as timely monitoring of changes, is necessary for conservation of these trees. using traditional field work, obtaining this sort of data is time-consuming and labour-intensive. This research investigates classification of very high resolution remote sensing data as a tool for efficient analyses. QuickBird satellite imagery was used to clarify the tree species community in and around Preah Khan temple, to elucidate differences in ecological traits among the three dominant species (Dipterocarpus alatus, Lagerstroemia calyculata and Tetrameles nudiflora, and to identify crowns of the dominant species.

  15. A Tool for Creating Regionally Calibrated High-Resolution Land Cover Data Sets for the West African Sahel: Using Machine Learning to Scale Up Hand-Classified Maps in a Data-Sparse Environment

    Science.gov (United States)

    Van Gordon, M.; Van Gordon, S.; Min, A.; Sullivan, J.; Weiner, Z.; Tappan, G. G.

    2017-12-01

    Using support vector machine (SVM) learning and high-accuracy hand-classified maps, we have developed a publicly available land cover classification tool for the West African Sahel. Our classifier produces high-resolution and regionally calibrated land cover maps for the Sahel, representing a significant contribution to the data available for this region. Global land cover products are unreliable for the Sahel, and accurate land cover data for the region are sparse. To address this gap, the U.S. Geological Survey and the Regional Center for Agriculture, Hydrology and Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region via hand-classification of Landsat images. This method produces highly accurate maps, but the time and labor required constrain the spatial and temporal resolution of the data products. By using these hand-classified maps alongside SVM techniques, we successfully increase the resolution of the land cover maps by 1-2 orders of magnitude, from 2km-decadal resolution to 30m-annual resolution. These high-resolution regionally calibrated land cover datasets, along with the classifier we developed to produce them, lay the foundation for major advances in studies of land surface processes in the region. These datasets will provide more accurate inputs for food security modeling, hydrologic modeling, analyses of land cover change and climate change adaptation efforts. The land cover classification tool we have developed will be publicly available for use in creating additional West Africa land cover datasets with future remote sensing data and can be adapted for use in other parts of the world.

  16. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year

    Directory of Open Access Journals (Sweden)

    R. Bindschadler

    2011-07-01

    Full Text Available Two ice-dynamic transitions of the Antarctic ice sheet – the boundary of grounded ice features and the freely-floating boundary – are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74 % abuts to floating ice shelves or outlet glaciers, 19 % is adjacent to open or sea-ice covered ocean, and 7 % of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma accuracies of the grounded ice boundary vary an order of magnitude ranging from ±52 m for the land and open-ocean terminating segments to ±502 m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma uncertainties of surface elevations of ±3.6, ±9.6, ±11.4, ±30 and ±100 m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2 ± 71.3 m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line

  17. Getting around Antarctica: New High-Resolution Mappings of the Grounded and Freely-Floating Boundaries of the Antarctic Ice Sheet Created for the International Polar Year

    Science.gov (United States)

    Bindschadler, R.; Choi, H.; Wichlacz, A.; Bingham, R.; Bohlander, J.; Brunt, K.; Corr, H.; Drews, R.; Fricker, H.; Hall, M.; hide

    2011-01-01

    Two ice-dynamic transitions of the Antarctic ice sheet - the boundary of grounded ice features and the freely-floating boundary - are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74% abuts to floating ice shelves or outlet glaciers, 19% is adjacent to open or sea-ice covered ocean, and 7% of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma) accuracies of the grounded ice boundary vary an order of magnitude ranging from +/- 52m for the land and open-ocean terminating segments to +/- 502m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma) uncertainties of surface elevations of +/-3.6, +/-9.6, +/-11.4, +/-30 and +/-100m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2+/-71.3m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line from the grounded ice

  18. High Resolution Decision Maps for Urban Planning: A Combined Analysis of Urban Flooding and Thermal Stress Potential In Asia and Europe

    Directory of Open Access Journals (Sweden)

    Boogaard Floris

    2017-01-01

    Full Text Available Urban flooding and thermal stress have become key issues for many cities around the world. With the continuing effects of climate change, these two issues will become more acute and will add to the serious problems already experienced in dense urban areas. Therefore, the sectors of public health and disaster management are in the need of tools that can assess the vulnerability to floods and thermal stress. The present paper deals with the combination of innovative tools to address this challenge. Three cities in different climatic regions with various urban contexts have been selected as the pilot areas to demonstrate these tools. These cities are Tainan (Taiwan, Ayutthaya (Thailand and Groningen (Netherlands. For these cities, flood maps and heat stress maps were developed and used for the comparison analysis. The flood maps produced indicate vulnerable low-lying areas, whereas thermal stress maps indicate open, unshaded areas where high Physiological Equivalent Temperature (PET values (thermal comfort can be expected. The work to date indicates the potential of combining two different kinds of maps to identify and analyse the problem areas. These maps could be further improved and used by urban planners and other stakeholders to assess the resilience and well-being of cities. The work presented shows that the combined analysis of such maps also has a strong potential to be used for the analysis of other challenges in urban dense areas such as air and water pollution, immobility and noise disturbance.

  19. A high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for GH and TK

    Energy Technology Data Exchange (ETDEWEB)

    Foster, J.W.; Schafer, A.J.; Critcher, R. [Univ. of Cambridge (United Kingdom)] [and others

    1996-04-15

    We have constructed a whole genome radiation hybrid (WG-RH) map across a region of human chromosome 17q, from growth hormone (GH) to thymidine kinase (TK). A panel of 128 WG-RH hybrid cell lines generated by X-irradiation and fusion has been tested for the retention of 39 sequence-tagged site (STS) markers by the polymerase chain reaction. This genome mapping technique has allowed the integration of existing VNTR and microsatellite markers with additional new markers and existing STS markers previously mapped to this region by other means. The WG-RH map includes eight expressed sequence tag (EST) and three anonymous markers developed for this study, together with 23 anonymous microsatellites and five existing ESTs. Analysis of these data resulted in a high-density comprehensive map across this region of the genome. A subset of these markers has been used to produce a framework map consisting of 20 loci ordered with odds greater than 1000:1. The markers are of sufficient density to build a YAC contig across this region based on marker content. We have developed sequence tags for both ends of a 2.1-Mb YAC and mapped these using the WG-RH panel, allowing a direct comparison of cRay{sub 6000} to physical distance. 31 refs., 3 figs., 2 tabs.

  20. Shallow-water Benthic Habitats of the Northwestern Hawaiian Islands from Aggregated Habitat Cover Maps Derived from High Resolution IKONOS Satellite Imagery (Draft)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water, aggregated cover maps were produced by combining as many as four or more detailed habitat types into general cover categories. The original detailed...

  1. Aggregated Habitat Cover Maps Depicting the Shallow-water Benthic Habitats of the Northwestern Hawaiian Islands Derived from High Resolution IKONOS Satellite Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water, aggregated cover maps were produced by combining as many as four or more detailed habitat types into general cover categories. The original detailed...

  2. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    Science.gov (United States)

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. 3D geometry and kinematic evolution of the Wadi Mayh sheath fold, Oman, using detailed mapping from high-resolution photography

    Science.gov (United States)

    Cornish, Sam; Searle, Mike

    2017-08-01

    The Wadi Mayh sheath fold in north-eastern Oman is one of the largest and best-exposed sheath folds known, and presents a unique opportunity to better understand this somewhat enigmatic style of deformation. We undertook high-resolution photographic surveying along Wadi Mayh to document the sheath fold in 61 georeferenced panoramic photomerges. Here we present ten such images that provide a structural interpretation of the sheath fold and surrounding structure. We resolve this structure in a simplified three-dimensional model and in two orthogonal cross sections, and propose a kinematic evolution to explain the geometry. The Wadi Mayh sheath fold is the most prominent example within what we suggest is a composite sequence of sheath folds, which is itself enclosed within a SSW-closing recumbent syncline at the base of the major Saih Hatat nappe. Sheath folding is accommodated within Permian Saiq Formation limestones showing carpholite assemblages (6-8 kbar; 275-375 °C). A major discontinuity separates this sequence from enveloping older rock units. The sequence formed during progressive top-to-north, ductile shearing as the overlying nappe migrated northwards with respect to the underthrusting Hulw unit. This process occurred during SSW-directed exhumation of partially subducted continental crust in NE Oman, approximately 15 Ma after obduction of the Oman ophiolite initiated.

  4. Use of high-resolution imagery acquired from an unmanned aircraft system for fluvial mapping and estimating water-surface velocity in rivers

    Science.gov (United States)

    Kinzel, P. J.; Bauer, M.; Feller, M.; Holmquist-Johnson, C.; Preston, T.

    2013-12-01

    The use of unmanned aircraft systems (UAS) for environmental monitoring in the United States is anticipated to increase in the coming years as the Federal Aviation Administration (FAA) further develops guidelines to permit their integration into the National Airspace System. The U.S. Geological Survey's (USGS) National Unmanned Aircraft Systems Project Office routinely obtains Certificates of Authorization from the FAA for utilizing UAS technology for a variety of natural resource applications for the U.S. Department of the Interior (DOI). We evaluated the use of a small UAS along two reaches of the Platte River near Overton Nebraska, USA, to determine the accuracy of the system for mapping the extent and elevation of emergent sandbars and to test the ability of a hovering UAS to identify and track tracers to estimate water-surface velocity. The UAS used in our study is the Honeywell Tarantula Hawk RQ16 (T-Hawk), developed for the U.S. Army as a reconnaissance and surveillance platform. The T-Hawk has been recently modified by USGS, and certified for airworthiness by the DOI - Office of Aviation Services, to accommodate a higher-resolution imaging payload than was originally deployed with the system. The T-Hawk is currently outfitted with a Canon PowerShot SX230 HS with a 12.1 megapixel resolution and intervalometer to record images at a user defined time step. To increase the accuracy of photogrammetric products, orthoimagery and DEMs using structure-from-motion (SFM) software, we utilized ground control points in the study reaches and acquired imagery using flight lines at various altitudes (200-400 feet above ground level) and oriented both parallel and perpendicular to the river. Our results show that the mean error in the elevations derived from SFM in the upstream reach was 17 centimeters and horizontal accuracy was 6 centimeters when compared to 4 randomly distributed targets surveyed on emergent sandbars. In addition to the targets, multiple transects were

  5. Development of a high-resolution binational vegetation map of the Santa Cruz River riparian corridor and surrounding watershed, southern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Wallace, Cynthia S.A.; Villarreal, Miguel L.; Norman, Laura M.

    2011-01-01

    This report summarizes the development of a binational vegetation map developed for the Santa Cruz Watershed, which straddles the southern border of Arizona and the northern border of Sonora, Mexico. The map was created as an environmental input to the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM) that is being created by the U.S. Geological Survey for the watershed. The SCWEPM is a map-based multicriteria evaluation tool that allows stakeholders to explore tradeoffs between valued ecosystem services at multiple scales within a participatory decision-making process. Maps related to vegetation type and are needed for use in modeling wildlife habitat and other ecosystem services. Although detailed vegetation maps existed for the U.S. side of the border, there was a lack of consistent data for the Santa Cruz Watershed in Mexico. We produced a binational vegetation classification of the Santa Cruz River riparian habitat and watershed vegetation based on NatureServe Terrestrial Ecological Systems (TES) units using Classification And Regression Tree (CART) modeling. Environmental layers used as predictor data were derived from a seasonal set of Landsat Thematic Mapper (TM) images (spring, summer, and fall) and from a 30-meter digital-elevation-model (DEM) grid. Because both sources of environmental data are seamless across the international border, they are particularly suited to this binational modeling effort. Training data were compiled from existing field data for the riparian corridor and data collected by the NM-GAP (New Mexico Gap Analysis Project) team for the original Southwest Regional Gap Analysis Project (SWReGAP) modeling effort. Additional training data were collected from core areas of the SWReGAP classification itself, allowing the extrapolation of the SWReGAP mapping into the Mexican portion of the watershed without collecting additional training data.

  6. Mechanisms for Superconductivity in Cuprates compared with results from the Generalized MacMillan-Rowell Analysis of High Resolution Laser- ARPES

    Science.gov (United States)

    Varma, Chandra; Choi, Han-Yong; Zhang, Wentao; Zhou, Xingjiang

    2012-02-01

    The spectra of fluctuations and their coupling to fermions has been deduced from extensive high resolution laser ARPES in several BISCCO samples and quantitatively analyzed. We ask the question whether some of the theories for superconductivity in Cuprates are consistent or inconsistent with the frequency and the momentum dependence of the deductions. We find that any fluctuation spectra, for example that of Antiferromagnetic Fluctuations, whose frequency dependence depends significantly on momentum dependence are excluded. We consider the quantum-critical spectra of the loop-current order observed in under-doped cuprates and its coupling to fermions and find it consistent with the data.

  7. High resolution satellite imagery : from spies to pipeline management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, S. [Canadian Geomatic Solutions Ltd., Calgary, AB (Canada); Farrell, M. [TransCanada Transmission, Calgary, AB (Canada)

    2000-07-01

    The launch of Space Imaging's IKONOS satellite in September 1999 has opened the door for corridor applications. The technology has been successfully implemented by TransCanada PipeLines in mapping over 1500 km of their mainline. IKONOS is the world's first commercial high resolution satellite which collects data at 1-meter black/white and 4-meter multi-spectral. Its use is regulated by the U.S. government. It is the best source of high resolution satellite image data. Other sources include the Indian Space Agency's IRS-1 C/D satellite and the Russian SPIN-2 which provides less reliable coverage. In addition, two more high resolution satellites may be launched this year to provide imagery every day of the year. IKONOS scenes as narrow as 5 km can be purchased. TransCanada conducted a pilot study to determine if high resolution satellite imagery is as effective as ortho-photos for identifying population structures within a buffer of TransCanada's east line right-of-way. The study examined three unique segments where residential, commercial, industrial and public features were compared. It was determined that IKONOS imagery is as good as digital ortho-photos for updating structures from low to very high density areas. The satellite imagery was also logistically easier than ortho-photos to acquire. This will be even more evident when the IKONOS image archives begins to grow. 4 tabs., 3 figs.

  8. High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique

    Science.gov (United States)

    Xiao, Lu; Lang, Yichao; Christakos, George

    2018-01-01

    With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.

  9. High-resolution low-frequency fluctuation map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating.

    Science.gov (United States)

    Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-07-01

    A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works.

  10. Detection of time-varying structures by large deformation diffeomorphic metric mapping to aid reading of high-resolution CT images of the lung.

    Directory of Open Access Journals (Sweden)

    Ryo Sakamoto

    Full Text Available OBJECTIVES: To evaluate the accuracy of advanced non-linear registration of serial lung Computed Tomography (CT images using Large Deformation Diffeomorphic Metric Mapping (LDDMM. METHODS: FIFTEEN CASES OF LUNG CANCER WITH SERIAL LUNG CT IMAGES (INTERVAL: 62.2±26.9 days were used. After affine transformation, three dimensional, non-linear volume registration was conducted using LDDMM with or without cascading elasticity control. Registration accuracy was evaluated by measuring the displacement of landmarks placed on vessel bifurcations for each lung segment. Subtraction images and Jacobian color maps, calculated from the transformation matrix derived from image warping, were generated, which were used to evaluate time-course changes of the tumors. RESULTS: The average displacement of landmarks was 0.02±0.16 mm and 0.12±0.60 mm for proximal and distal landmarks after LDDMM transformation with cascading elasticity control, which was significantly smaller than 3.11±2.47 mm and 3.99±3.05 mm, respectively, after affine transformation. Emerged or vanished nodules were visualized on subtraction images, and enlarging or shrinking nodules were displayed on Jacobian maps enabled by highly accurate registration of the nodules using LDDMM. However, some residual misalignments were observed, even with non-linear transformation when substantial changes existed between the image pairs. CONCLUSIONS: LDDMM provides accurate registration of serial lung CT images, and temporal subtraction images with Jacobian maps help radiologists to find changes in pulmonary nodules.

  11. Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hanslian, David; Hošek, Jiří

    2015-01-01

    Roč. 77, May (2015), s. 291-299 ISSN 0960-1481 Institutional support: RVO:68378289 Keywords : wind resource map * wind field modelling * wind measurements * wind climatology * Czech Republic * WAsP Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.404, year: 2015 http://www.sciencedirect.com/science/article/pii/S0960148114008398#

  12. High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot.

    Science.gov (United States)

    Xu, Ling; Zhang, Yan; Shao, Siquan; Chen, Wei; Tan, Jing; Zhu, Mang; Zhong, Tao; Fan, Xingming; Xu, Mingliang

    2014-08-31

    Gray leaf spot (GLS) caused by Cercospora zeae-maydis (Czm) or Cercospora zeina (Cz) is a devastating maize disease and results in substantial yield reductions worldwide. GLS resistance is a quantitatively inherited trait. The development and cultivation of GLS-resistant maize hybrids are the most cost-effective and efficient ways to control this disease. We previously detected a major GLS resistance QTL, qRgls2, in bin 5.03-04, which spans the whole centromere of chromosome 5 encompassing a physical distance of ~110-Mb. With advanced backcross populations derived from the cross between the resistant Y32 and susceptible Q11 inbred lines, a sequential recombinant-derived progeny testing strategy was adapted to fine map qRgls2. We narrowed the region of qRgls2 from an initial ~110-Mb to an interval of ~1-Mb, flanked by the markers G346 and DD11. qRgls2 showed predominantly additive genetic effects and significantly increased the resistance percentage by 20.6 to 24.6% across multiple generations. A total of 15 genes were predicted in the mapped region according to the 5b.60 annotation of the maize B73 genome v2. Two pieces of the mapped qRgls2 region shared collinearity with two distant segments on maize chromosome 4. qRgls2, a major QTL involved in GLS resistance, was mapped to a ~1-Mb region close to the centromere of chromosome 5. There are 15 predicted genes in the mapped region. It is assumed that qRgls2 could be widely used to improve maize resistance to GLS.

  13. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  14. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    Science.gov (United States)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation

  15. High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus.

    Science.gov (United States)

    Chapman, Natalie H; Bonnet, Julien; Grivet, Laurent; Lynn, James; Graham, Neil; Smith, Rebecca; Sun, Guiping; Walley, Peter G; Poole, Mervin; Causse, Mathilde; King, Graham J; Baxter, Charles; Seymour, Graham B

    2012-08-01

    Fruit firmness in tomato (Solanum lycopersicum) is determined by a number of factors including cell wall structure, turgor, and cuticle properties. Firmness is a complex polygenic trait involving the coregulation of many genes and has proved especially challenging to unravel. In this study, a quantitative trait locus (QTL) for fruit firmness was mapped to tomato chromosome 2 using the Zamir Solanum pennellii interspecific introgression lines (ILs) and fine-mapped in a population consisting of 7,500 F2 and F3 lines from IL 2-3 and IL 2-4. This firmness QTL contained five distinct subpeaks, Fir(s.p.)QTL2.1 to Fir(s.p.)QTL2.5, and an effect on a distal region of IL 2-4 that was nonoverlapping with IL 2-3. All these effects were located within an 8.6-Mb region. Using genetic markers, each subpeak within this combinatorial locus was mapped to a physical location within the genome, and an ethylene response factor (ERF) underlying Fir(s.p.)QTL2.2 and a region containing three pectin methylesterase (PME) genes underlying Fir(s.p.)QTL2.5 were nominated as QTL candidate genes. Statistical models used to explain the observed variability between lines indicated that these candidates and the nonoverlapping portion of IL 2-4 were sufficient to account for the majority of the fruit firmness effects. Quantitative reverse transcription-polymerase chain reaction was used to quantify the expression of each candidate gene. ERF showed increased expression associated with soft fruit texture in the mapping population. In contrast, PME expression was tightly linked with firm fruit texture. Analysis of a range of recombinant lines revealed evidence for an epistatic interaction that was associated with this combinatorial locus.

  16. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available Cotton (Gossypium hirsutum L. is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  17. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Zhen; Li, Junwen; Muhammad, Jamshed; Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  18. High-resolution mapping of two-dimensional lattice distortions in ion-implanted crystals from X-ray diffractometry data

    International Nuclear Information System (INIS)

    Nikulin, A.Y.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W.; Hashizume, H.; Cookson, D.

    1996-01-01

    The triple-crystal synchrotron X-ray diffractometry data described in Nikulin, Stevenson, Hashizume, Wilkins, Foran, Cookson and Garrett (J. Appl. Cryst. 28, 57-60 (1995)) has been analyzed to map out two-dimensional (2D) lattice distortions in silicon (111) crystals implanted with B + ions of 100 keV energy through a periodic SiO 2 strip pattern. The lateral periodic structure produced a series of satellite reflections associated with the 111 Bragg peak. The 2D reconstruction incorporates the use of the Petrashen-Chukhovskii method, which retrieves the phases of the Bragg waves for these satellite reflections, together with that for the fundamental. The finite Fourier series is then synthesized with the relative phases determined. Localized distortions perpendicular to the surface arising from deposited B + ions in near-surface layers of the crystal are clearly displayed with spatial resolutions of 0.016 and 0.265 μm in the depth and lateral directions respectively. For a sample with the oxide layer removed from the surface, two equally plausible strain maps have been obtained by assigning relative phases to eleven satellites using a sequential trial method and a minimum-energy method. Failed map reconstructions for the oxide-covered sample are discussed in terms of the non-unique solutions of the Petrashen-Chukhovskii phase-recovery algorithm and the ambiguous phases determined for the satellites. 16 refs., 8 figs

  19. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  20. Comparing the Dry Season In-Situ Leaf Area Index (LAI Derived from High-Resolution RapidEye Imagery with MODIS LAI in a Namibian Savanna

    Directory of Open Access Journals (Sweden)

    Manuel J. Mayr

    2015-04-01

    Full Text Available The Leaf Area Index (LAI is one of the most frequently applied measures to characterize vegetation and its dynamics and functions with remote sensing. Satellite missions, such as NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS operationally produce global datasets of LAI. Due to their role as an input to large-scale modeling activities, evaluation and verification of such datasets are of high importance. In this context, savannas appear to be underrepresented with regards to their heterogeneous appearance (e.g., tree/grass-ratio, seasonality. Here, we aim to examine the LAI in a heterogeneous savanna ecosystem located in Namibia’s Owamboland during the dry season. Ground measurements of LAI are used to derive a high-resolution LAI model with RapidEye satellite data. This model is related to the corresponding MODIS LAI/FPAR (Fraction of Absorbed Photosynthetically Active Radiation scene (MOD15A2 in order to evaluate its performance at the intended annual minimum during the dry season. Based on a field survey we first assessed vegetation patterns from species composition and elevation for 109 sites. Secondly, we measured in situ LAI to quantitatively estimate the available vegetation (mean = 0.28. Green LAI samples were then empirically modeled (LAImodel with high resolution RapidEye imagery derived Difference Vegetation Index (DVI using a linear regression (R2 = 0.71. As indicated by several measures of model performance, the comparison with MOD15A2 revealed moderate consistency mostly due to overestimation by the aggregated LAImodel. Model constraints aside, this study may point to important issues for MOD15A2 in savannas concerning the underlying MODIS Land Cover product (MCD12Q1 and a potential adjustment by means of the MODIS Burned Area product (MCD45A1.

  1. A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis.

    Science.gov (United States)

    Finkers-Tomczak, Anna; Danan, Sarah; van Dijk, Thijs; Beyene, Amelework; Bouwman, Liesbeth; Overmars, Hein; van Eck, Herman; Goverse, Aska; Bakker, Jaap; Bakker, Erin

    2009-06-01

    The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class.

  2. Environmental Risk Assessment Based on High-Resolution Spatial Maps of Potentially Toxic Elements Sampled on Stream Sediments of Santiago, Cape Verde

    Directory of Open Access Journals (Sweden)

    Marina M. S. Cabral Pinto

    2014-10-01

    Full Text Available Geochemical mapping is the base knowledge to identify the regions of the planet with critical contents of potentially toxic elements from either natural or anthropogenic sources. Sediments, soils and waters are the vehicles which link the inorganic environment to life through the supply of essential macro and micro nutrients. The chemical composition of surface geological materials may cause metabolic changes which may favor the occurrence of endemic diseases in humans. In order to better understand the relationships between environmental geochemistry and public health, we present environmental risk maps of some harmful elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn in the stream sediments of Santiago, Cape Verde, identifying the potentially harmful areas in this island. The Estimated Background Values (EBV of Cd, Co, Cr, Ni and V were found to be above the Canadian guidelines for any type of use of stream sediments and also above the target values of the Dutch and United States guidelines. The Probably Effect Concentrations (PEC, above which harmful effects are likely in sediment dwelling organisms, were found for Cr and Ni. Some associations between the geological formations of the island and the composition of stream sediments were identified and confirmed by descriptive statistics and by Principal Component Analysis (PCA. The EBV spatial distribution of the metals and the results of PCA allowed us to establish relationships between the EBV maps and the geological formations. The first two PCA modes indicate that heavy metals in Santiago stream sediments are mainly originated from weathering of underlying bedrocks. The first metal association (Co, V, Cr, and Mn; first PCA mode consists of elements enriched in basic rocks and compatible elements. The second association of variables (Zn and Cd as opposed to Ni; second PCA mode appears to be strongly controlled by the composition of alkaline volcanic rocks and pyroclastic rocks. So, the

  3. High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on Porous Bassanite

    Science.gov (United States)

    Bedford, John D.; Faulkner, Daniel R.; Leclère, Henri; Wheeler, John

    2018-02-01

    Porous rock deformation has important implications for fluid flow in a range of crustal settings as compaction can increase fluid pressure and alter permeability. The onset of inelastic strain for porous materials is typically defined by a yield curve plotted in differential stress (Q) versus effective mean stress (P) space. Empirical studies have shown that these curves are broadly elliptical in shape. Here conventional triaxial experiments are first performed to document (a) the yield curve of porous bassanite (porosity ≈ 27-28%), a material formed from the dehydration of gypsum, and (b) the postyield behavior, assuming that P and Q track along the yield surface as inelastic deformation accumulates. The data reveal that after initial yield, the yield surface cannot be perfectly elliptical and must evolve significantly as inelastic strain is accumulated. To investigate this further, a novel stress-probing methodology is developed to map precisely the yield curve shape and subsequent evolution for a single sample. These measurements confirm that the high-pressure side of the curve is partly composed of a near-vertical limb. Yield curve evolution is shown to be dependent on the nature of the loading path. Bassanite compacted under differential stress develops a heterogeneous microstructure and has a yield curve with a peak that is almost double that of an equal porosity sample that has been compacted hydrostatically. The dramatic effect of different loading histories on the strength of porous bassanite highlights the importance of understanding the associated microstructural controls on the nature of inelastic deformation in porous rock.

  4. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters.

    Science.gov (United States)

    Cremer, Marion; Schmid, Volker J; Kraus, Felix; Markaki, Yolanda; Hellmann, Ines; Maiser, Andreas; Leonhardt, Heinrich; John, Sam; Stamatoyannopoulos, John; Cremer, Thomas

    2017-08-07

    The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed

  5. Characterizing Volcanic Processes using Near-bottom, High Resolution Magnetic Mapping of the Caldera and Inner Crater of the Kick'em Jenny Submarine Volcano

    Science.gov (United States)

    Ruchala, T. L.; Chen, M.; Tominaga, M.; Carey, S.

    2016-12-01

    Kick'em Jenny (KEJ) is an active submarine volcano located in the Lesser Antilles subduction zone, 7.5 km north of the Caribbean island Grenada. KEJ, known as one of the most explosive volcanoes in Caribbean, erupted 12 times since 1939 with recent eruptions in 2001 and possibly in 2015. Multiple generations of submarine landslides and canyons have been observed in which some of them can be attributed to past eruptions. The structure of KEJ can be characterized as a 1300 m high conical profile with its summit crater located around 180 m in depth. Active hydrothermal venting and dominantly CO2 composition gas seepage take place inside this 250m diameter crater, with the most activity occurring primarily within a small ( 70 x 110 m) depression zone (inner crater). In order to characterize the subsurface structure and decipher the processes of this volcanic system, the Nautilus NA054 expedition in 2014 deployed the underwater Remotely Operated Vehicle (ROV) Hercules to conduct near-bottom geological observations and magnetometry surveys transecting KEJ's caldera. Raw magnetic data was corrected for vehicle induced magnetic noise, then merged with ROV to ship navigation at 1 HZ. To extract crustal magnetic signatures, the reduced magnetic data was further corrected for external variations such as the International Geomagnetic Reference Field and diurnal variations using data from the nearby San Juan Observatory. We produced a preliminary magnetic anomaly map of KEJ's caldera for subsequent inversion and forward modeling to delineate in situ magnetic source distribution in understanding volcanic processes. We integrated the magnetic characterization of the KEJ craters with shipboard multibeam, ROV visual descriptions, and photomosaics. Initial observations show the distribution of short wavelength scale highly magnetized source centered at the north western part of the inner crater. Although locations of gas seeps are ubiquitous over the inner crater area along ROV

  6. Using Water Depth Sensors and High-resolution Topographic Mapping to Inform Wetland Management at a Globally Important Stopover Site for Migratory Shorebirds

    Science.gov (United States)

    Schaffer-Smith, D.; Swenson, J. J.; Reiter, M. E.; Isola, J. E.

    2017-12-01

    Over 50% of western hemisphere shorebird species are in decline due to ongoing habitat loss and habitat degradation. Wetland dependent shorebirds prefer shallowly flooded habitats (water depth managed to optimize shallow areas. In-situ water depth measurements and microtopography data coupled with satellite image analysis can assist in understanding habitat suitability patterns at broad spatial scales. We generated detailed bathymetry, and estimated spatial daily water depths, the proportion of wetland area providing flooded habitat within the optimal depth range, and the volume of water present in 23 managed wetlands in the Sacramento Valley of California, a globally important shorebird stopover site. Using 30 years of satellite imagery, we estimated suitable habitat extent across the landscape under a range of climate conditions. While spring shorebird abundance has historically peaked in early April, we found that maximum optimal habitat extent occurred after mid-April. More than 50% of monitored wetlands provided limited optimal habitat (fleeting; only 4 wetlands provided at least 10 consecutive days with >5% optimal habitat during the peak of migration. Wetlands with a higher percent clay content and lower topographic variability were more likely to provide a greater extent and duration of suitable habitat. We estimated that even in a relatively wet El-Nino year as little as 0.01%, to 10.72% of managed herbaceous wetlands in the Sacramento Valley provided optimal habitat for shorebirds at the peak of migration in early April. In an extreme drought year, optimal habitat decreased by 80% compared to a wet year Changes in the timing of wetland irrigation and drawdown schedules and the design of future wetland restoration projects could increase the extent and duration of optimal flooded habitat for migratory shorebirds, without significant increases in overall water use requirements.

  7. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  8. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  9. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  10. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  11. YouGenMap: a web platform for dynamic multi-comparative mapping and visualization of genetic maps

    Science.gov (United States)

    Keith Batesole; Kokulapalan Wimalanathan; Lin Liu; Fan Zhang; Craig S. Echt; Chun Liang

    2014-01-01

    Comparative genetic maps are used in examination of genome organization, detection of conserved gene order, and exploration of marker order variations. YouGenMap is an open-source web tool that offers dynamic comparative mapping capability of users' own genetic mapping between 2 or more map sets. Users' genetic map data and optional gene annotations are...

  12. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  13. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  14. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    Science.gov (United States)

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  15. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  16. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers

    Science.gov (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.

    2015-12-01

    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  17. Landslide detection using very high-resolution satellite imageries

    Science.gov (United States)

    Suga, Yuzo; Konishi, Tomohisa

    2012-10-01

    The heavy rain induced by the 12th typhoon caused landslide disaster at Kii Peninsula in the middle part of Japan. We propose a quick response method for landslide disaster mapping using very high resolution (VHR) satellite imageries. Especially, Synthetic Aperture Radar (SAR) is effective because it has the capability of all weather and day/night observation. In this study, multi-temporal COSMO-SkyMed imageries were used to detect the landslide areas. It was difficult to detect the landslide areas using only backscatter change pattern derived from pre- and post-disaster COSMOSkyMed imageries. Thus, the authors adopted a correlation analysis which the moving window was selected for the correlation coefficient calculation. Low value of the correlation coefficient reflects land cover change between pre- and post-disaster imageries. This analysis is effective for the detection of landslides using SAR data. The detected landslide areas were compared with the area detected by EROS-B high resolution optical image. In addition, we have developed 3D viewing system for geospatial visualizing of the damaged area using these satellite image data with digital elevation model. The 3D viewing system has the performance of geographic measurement with respect to elevation height, area and volume calculation, and cross section drawing including landscape viewing and image layer construction using a mobile personal computer with interactive operation. As the result, it was verified that a quick response for the detection of landslide disaster at the initial stage could be effectively performed using optical and SAR very high resolution satellite data by means of 3D viewing system.

  18. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  19. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  20. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  1. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  2. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  3. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    Science.gov (United States)

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  5. a comparative survey on mind mapping tools

    Directory of Open Access Journals (Sweden)

    Avgoustos A. TSINAKOS

    2009-07-01

    Full Text Available Mind Mapping is an important technique that improves the way you takes notes, and enhances your creative problem solving. By using Mind Maps, you can quickly identify and understand the structure of a subject and the way that pieces of information fit together, as well as recording the raw facts contained in normal notes. It can also be used as complementary tools for knowledge construction and sharing. Their suitability as a pedagogical tool for education, e-learning and training, increases their importance. Also, in a world of information overload and businesses struggling to keep up with the place of change, knowledge workers need effective tools to organize, analyze, brainstorm and collaborate on ideas. In resent years, a wide variety of mind mapping software tools have been developed. An often question that comes up, due to this plethora of software tools, is “which is the best mind mapping software?” Anyone who gives you an immediate answer either knows you and your mind mapping activities very well or their answer in not worth a lot. The “best” depends so much on how you use mind maps. In this paper we are trying to investigate different user profiles and to identify various axes for comparison among mind mapping tools that are suitable for a specific user profile, describe each axis and then analyze each tool.

  6. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    Science.gov (United States)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  7. Comparative study of fixation density maps

    NARCIS (Netherlands)

    Engelke, U.; Liu, H.; Wang, Junle; Callet, Le P.; Heynderickx, I.E.J.; Zepernick, H.-J.; Maeder, A.

    2013-01-01

    Fixation density maps (FDM) created from eye tracking experiments are widely used in image processing applications. The FDM are assumed to be reliable ground truths of human visual attention and as such, one expects a high similarity between FDM created in different laboratories. So far, no studies

  8. The performance of atmospheric pressure gas chromatography-tandem mass spectrometry compared to gas chromatography-high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples.

    Science.gov (United States)

    Ten Dam, Guillaume; Pussente, Igor Cabreira; Scholl, Georges; Eppe, Gauthier; Schaechtele, Alexander; van Leeuwen, Stefan

    2016-12-16

    Recently, gas chromatography tandem mass spectrometry (GC-MS/MS) has been added in European Union (EU) legislation as an alternative to magnetic sector high resolution mass spectrometry (HRMS) for the analysis of dioxins and dioxin like polychlorinated biphenyls (dl-PCB) in food and feed. In this study the performance of APGC-MS/MS compared to GC-HRMS is investigated and compared with EU legislation. The study includes the legislative parameters, relative intermediate precision standard deviation (S Rw ,rel), trueness, sensitivity, linear range and ion ratio tolerance. In addition, over 200 real samples of large variety and spanning several orders of magnitude in concentration were analyzed by both techniques and the selectivity was evaluated by comparing chromatograms. The S Rw ,rel and trueness were evaluated using (in-house) reference samples and fulfill to EU legislation, though the S Rw ,rel was better with GC-HRMS. The sensitivity was considerably better than of GC-HRMS while the linear range was similar. Ion ratios were mostly within the tolerable range of ±15%. A (temporary unresolved) systematic deviation in ion ratio was observed for several congeners, yet this did not lead to exceeding of the maximum ion ratio limits. The APGC-MS/MS results for the non-dioxin-like-PCBs (ndl-PCBs) were negatively biased, particularly for PCB138 and 153 in contaminated samples. The selectivity of APGC-MS/MS was lower for several matrices. Particularly for contaminated samples, interfering peaks were observed in the APGC chromatograms of the native compounds (dioxins) and labeled internal standards (PCBs). These can lead to biased results and ultimately to false positive samples. It was concluded that the determination of dioxins and PCBs using APGC-MS/MS meets the requirements set by the European Commission. However, due to generally better selectivity and S Rw ,rel, GC-HRMS is the preferred method for monitoring purposes. Copyright © 2016 Elsevier B.V. All rights

  9. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  10. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  11. Improvement in the detection of locoregional recurrence in head and neck malignancies: F-18 fluorodeoxyglucose-positron emission tomography/computed tomography compared to high-resolution contrast-enhanced computed tomography and endoscopic examination.

    Science.gov (United States)

    Rangaswamy, Balasubramanya; Fardanesh, M Reza; Genden, Eric M; Park, Eunice E; Fatterpekar, Girish; Patel, Zara; Kim, Jongho; Som, Peter M; Kostakoglu, Lale

    2013-11-01

    To compare the diagnostic efficacy of positron emission tomography (PET) with F-18 fluorodeoxyglucose (FDG-PET)/computed tomography (CT) to that of contrast-enhanced high-resolution CT (HRCT) and assess the value of a combinatorial approach in detection of recurrent squamous cell cancer of the head and neck (HNC) and to assess the efficacy of FDG-PET/CT with and without HRCT in comparison to standard-of-care follow-up--physical examination (PE) and endoscopy (E)--in determination of locally recurrent HNC. Retrospective study. A total of 103 patients with HNC underwent FDG-PET/CT and neck HRCT. There were two groups of patients: Group A had an FDG-PET study acquired with low-dose CT, and group B had an FDG-PET study acquired with HRCT. The PET data obtained with or without HRCT were compared on a lesion and patient basis with the results of the PE/E. On a lesion basis, both groups combined had higher sensitivity and negative predictive value (NPV) than the HRCT. Specificity and positive predictive value (PPV) for group B were higher than for group A. On a patient basis, both groups combined had a higher sensitivity and NPV than PE/E, respectively, although specificity of PE/E was higher than that of either group. PET data obtained with either protocol directly influenced treatment. HRCT increases the specificity and PPV of PET/CT when acquired simultaneously with PET. FDG-PET/CT acquired with either LDCT or HRCT has higher accuracy than HRCT alone and increases the sensitivity and NPV of PE/E. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  12. High-Resolution Near Real-Time Drought Monitoring in South Asia

    Science.gov (United States)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  13. High-resolution CT of airway reactivity

    International Nuclear Information System (INIS)

    Herold, C.J.; Brown, R.H.; Hirshman, C.A.; Mitzner, W.; Zerhouni, E.A.

    1990-01-01

    Assessment of airway reactivity has generally been limited to experimental nonimaging models. This authors of this paper used high-resolution CT (HRCT) to evaluate airway reactivity and to calculate airway resistance (Raw) compared with lung resistance (RL). Ten anesthetized and ventilated dogs were investigated with HRCT (10 contiguous 2-mm sections through the lower lung lobes) during control state, following aerosol histamine challenge, and following posthistamine hyperinflation. The HRCT scans were digitized, and areas of 10 airways per dog (diameter, 1-10 mm) were measured with a computer edging process. Changes in airway area and Raw (calculated by 1/[area] 2 ) were measured. RL was assessed separately, following the same protocol. Data were analyzed by use of a paired t-test with significance at p < .05

  14. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  15. WE-G-204-05: Relative Object Detectability Evaluation of a New High Resolution A-Se Direct Detection System Compared to Indirect Micro-Angiographic Fluoroscopic (MAF) Detectors

    International Nuclear Information System (INIS)

    Russ, M; Nagesh, S Setlur; Ionita, C; Bednarek, D; Rudin, S; Scott, C; Karim, K

    2015-01-01

    Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken of the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an

  16. WE-G-204-05: Relative Object Detectability Evaluation of a New High Resolution A-Se Direct Detection System Compared to Indirect Micro-Angiographic Fluoroscopic (MAF) Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Russ, M; Nagesh, S Setlur; Ionita, C; Bednarek, D; Rudin, S [Toshiba Stroke and Vascular Research Center, University at Buffalo (SUNY), Buffalo, NY (United States); Scott, C; Karim, K [University of Waterloo, Waterloo, ON (Canada)

    2015-06-15

    Purpose: To evaluate the task specific imaging performance of a new 25µm pixel pitch, 1000µm thick amorphous selenium direct detection system with CMOS readout for typical angiographic exposure parameters using the relative object detectability (ROD) metric. Methods: The ROD metric uses a simulated object function weighted at each spatial frequency by the detectors’ detective quantum efficiency (DQE), which is an intrinsic performance metric. For this study, the simulated objects were aluminum spheres of varying diameter (0.05–0.6mm). The weighted object function is then integrated over the full range of detectable frequencies inherent to each detector, and a ratio is taken of the resulting value for two detectors. The DQE for the 25µm detector was obtained from a simulation of a proposed a-Se detector using an exposure of 200µR for a 50keV x-ray beam. This a-Se detector was compared to two microangiographic fluoroscope (MAF) detectors [the MAF-CCD with pixel size of 35µm and Nyquist frequency of 14.2 cycles/mm and the MAF-CMOS with pixel size of 75µm and Nyquist frequency of 6.6 cycles/mm] and a standard flat-panel detector (FPD with pixel size of 194µm and Nyquist frequency of 2.5cycles/mm). Results: ROD calculations indicated vastly superior performance by the a-Se detector in imaging small aluminum spheres. For the 50µm diameter sphere, the ROD values for the a-Se detector compared to the MAF-CCD, the MAF-CMOS, and the FPD were 7.3, 9.3 and 58, respectively. Detector performance in the low frequency regime was dictated by each detector’s DQE(0) value. Conclusion: The a-Se with CMOS readout is unique and appears to have distinctive advantages of incomparable high resolution, low noise, no readout lag, and expandable design. The a-Se direct detection system will be a powerful imaging tool in angiography, with potential break-through applications in diagnosis and treatment of neuro-vascular disease. Supported by NIH Grant: 2R01EB002873 and an

  17. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging- From animal anatomy to in vivo imaging in humans

    Directory of Open Access Journals (Sweden)

    Coraline D. Metzger

    2013-05-01

    Full Text Available The thalamus, a crucial node in the well-described cortico-striatal-thalamo-cortical circuits, has been the focus of functional and structural imaging studies investigating human emotion, cognition and memory. Invasive work in animals and post-mortem investigations have revealed the rich cytoarchitectonics and functional specificity of the thalamus. Given current restrictions in the spatial resolution of non-invasive imaging modalities, there is, however, a translational gap between functional and structural information on these circuits in humans and animals as well as between histological and cellular evidence and their relationship to psychological functioning.With the advance of higher field strengths for MR approaches, better spatial resolution is now available promising to overcome this conceptual problem.We here review these two levels, which exist for both neuroscientific and clinical investigations, and then focus on current attempts to overcome conceptual boundaries of these observations with the help of high-resolution imaging.

  18. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  19. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  20. High Resolution Reconstruction of the Ionosphere for SAR Applications

    Science.gov (United States)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  1. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  2. Comparing several boson mappings with the shell model

    International Nuclear Information System (INIS)

    Menezes, D.P.; Yoshinaga, Naotaka; Bonatsos, D.

    1990-01-01

    Boson mappings are an essential step in establishing a connection between the successful phenomenological interacting boson model and the shell model. The boson mapping developed by Bonatsos, Klein and Li is applied to a single j-shell and the resulting energy levels and E2 transitions are shown for a pairing plus quadrupole-quadrupole Hamiltonian. The results are compared to the exact shell model calculation, as well as to these obtained through use of the Otsuka-Arima-Iachello mapping and the Zirnbauer-Brink mapping. In all cases good results are obtained for the spherical and near-vibrational cases

  3. A comparative map viewer integrating genetic maps for Brassica and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Erwin Timothy A

    2007-07-01

    Full Text Available Abstract Background Molecular genetic maps provide a means to link heritable traits with underlying genome sequence variation. Several genetic maps have been constructed for Brassica species, yet to date, there has been no simple means to compare this information or to associate mapped traits with the genome sequence of the related model plant, Arabidopsis. Description We have developed a comparative genetic map database for the viewing, comparison and analysis of Brassica and Arabidopsis genetic, physical and trait map information. This web-based tool allows users to view and compare genetic and physical maps, search for traits and markers, and compare genetic linkage groups within and between the amphidiploid and diploid Brassica genomes. The inclusion of Arabidopsis data enables comparison between Brassica maps that share no common markers. Analysis of conserved syntenic blocks between Arabidopsis and collated Brassica genetic maps validates the application of this system. This tool is freely available over the internet on http://bioinformatics.pbcbasc.latrobe.edu.au/cmap. Conclusion This database enables users to interrogate the relationship between Brassica genetic maps and the sequenced genome of A. thaliana, permitting the comparison of genetic linkage groups and mapped traits and the rapid identification of candidate genes.

  4. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    Science.gov (United States)

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  5. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  6. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  7. High resolution CT of temporal bone trauma

    International Nuclear Information System (INIS)

    Youn, Eun Kyung

    1986-01-01

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  8. High-resolution CCD imaging alternatives

    Science.gov (United States)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  9. Manual segmentation of the fornix, fimbria, and alveus on high-resolution 3T MRI: Application via fully-automated mapping of the human memory circuit white and grey matter in healthy and pathological aging.

    Science.gov (United States)

    Amaral, Robert S C; Park, Min Tae M; Devenyi, Gabriel A; Lynn, Vivian; Pipitone, Jon; Winterburn, Julie; Chavez, Sofia; Schira, Mark; Lobaugh, Nancy J; Voineskos, Aristotle N; Pruessner, Jens C; Chakravarty, M Mallar

    2018-04-15

    Recently, much attention has been focused on the definition and structure of the hippocampus and its subfields, while the projections from the hippocampus have been relatively understudied. Here, we derive a reliable protocol for manual segmentation of hippocampal white matter regions (alveus, fimbria, and fornix) using high-resolution magnetic resonance images that are complementary to our previous definitions of the hippocampal subfields, both of which are freely available at https://github.com/cobralab/atlases. Our segmentation methods demonstrated high inter- and intra-rater reliability, were validated as inputs in automated segmentation, and were used to analyze the trajectory of these regions in both healthy aging (OASIS), and Alzheimer's disease (AD) and mild cognitive impairment (MCI; using ADNI). We observed significant bilateral decreases in the fornix in healthy aging while the alveus and cornu ammonis (CA) 1 were well preserved (all p's<0.006). MCI and AD demonstrated significant decreases in fimbriae and fornices. Many hippocampal subfields exhibited decreased volume in both MCI and AD, yet no significant differences were found between MCI and AD cohorts themselves. Our results suggest a neuroprotective or compensatory role for the alveus and CA1 in healthy aging and suggest that an improved understanding of the volumetric trajectories of these structures is required. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  11. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  12. High resolution color imagery for orthomaps and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fricker, Peter [Leica Geosystems GIS and Mapping, LLC (Switzerland); Gallo, M. Guillermo [Leica Geosystems GIS and Mapping, LLC (United States)

    2005-07-01

    The ADS40 Airborne Digital Pushbroom Sensor is currently the only commercial sensor capable of acquiring color and false color strip images in the low decimeter range at the same high resolution as the black and white stereo images. This high resolution of 12,000 pixels across the entire swath and 100% forward overlap in the image strips result in high quality DSM's, True Ortho's and at the same time allow unbiased remote sensing applications due to color strip images unchanged by pan-sharpening. The paper gives details on how the pushbroom sensor achieves these seemingly difficult technical challenges. It describes how a variety of mapping applications benefit from this sensor, a sensor which acts as a satellite pushbroom sensor within the airborne environment. (author)

  13. SRS station 16.3: high-resolution applications

    CERN Document Server

    Murphy, B M; Golshan, M; Moore, M; Reid, J; Kowalski, G

    2001-01-01

    Station 16.3 is a high-resolution X-ray diffraction beamline at Daresbury Laboratory Synchrotron Radiation Source. The data presented demonstrate the high-resolution available on the station utilising the recently commissioned four-reflection Si 1 1 1 monochromator and three-reflection Si 1 1 1 analyser. For comparison, a reciprocal space map of the two-bounce Si 1 1 1 monochromator and two-bounce analyser is also shown. Operation of the station is illustrated with examples for silicon, and for diamond. Lattice parameter variations were measured with accuracies in the part per million range and lattice tilts at the arc second level (DuMond, Phys. Rev. 52 (1937) 872).

  14. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  15. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  16. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    Science.gov (United States)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  17. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  18. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, Guillem; Levin, Craig S [Molecular Imaging Program at Stanford, Department of Radiology, Stanford, CA (United States)], E-mail: cslevin@stanford.edu

    2009-09-07

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of {gamma}-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains.

  19. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    Science.gov (United States)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential

  20. High-resolution mapping of time since disturbance and forest carbon flux from remote sensing and inventory data to assess harvest, fire, and beetle disturbance legacies in the Pacific Northwest

    Directory of Open Access Journals (Sweden)

    H. Gu

    2016-11-01

    Full Text Available Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbances have highly diverse impacts on forest carbon dynamics, making them a challenge to quantify and report. Time since disturbance is a key intermediate determinant that aids the assessment of disturbance-driven carbon emissions and removals legacies. We propose a new methodology of quantifying time since disturbance and carbon flux across forested landscapes in the Pacific Northwest (PNW at a fine scale (30 m by combining remote sensing (RS-based disturbance year, disturbance type, and above-ground biomass with forest inventory data. When a recent disturbance is detected, time since disturbance can be directly determined by combining three RS-derived disturbance products, or time since the last stand clearing can be inferred from a RS-derived 30 m biomass map and field inventory-derived species-specific biomass accumulation curves. Net ecosystem productivity (NEP is further mapped based on carbon stock and flux trajectories derived from the Carnegie-Ames-Stanford Approach (CASA model in our prior work that described how NEP changes with time following harvest, fire, or bark beetle disturbances of varying severity. Uncertainties from biomass map and forest inventory data were propagated by probabilistic sampling to provide a statistical distribution of stand age and NEP for each forest pixel. We mapped mean, standard deviation, and statistical distribution of stand age and NEP at 30 m in the PNW region. Our map indicated a net ecosystem productivity of 5.9 Tg C yr−1 for forestlands circa 2010 in the study area, with net uptake in relatively mature (> 24 years old forests (13.6 Tg C yr−1 overwhelming net negative NEP from tracts that had recent harvests (−6.4 Tg C yr−1, fires (−0.5 Tg C yr−1, and bark beetle

  1. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  2. Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA

    Science.gov (United States)

    Wenli Huang; Anu Swatantran; Kristofer Johnson; Laura Duncanson; Hao Tang; Jarlath O' Neil Dunne; George Hurtt; Ralph Dubayah

    2015-01-01

    Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-...

  3. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  4. High resolution CT in diffuse lung disease

    International Nuclear Information System (INIS)

    Webb, W.R.

    1995-01-01

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.)

  5. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  6. High resolution CT in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.).

  7. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  8. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  9. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  10. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  11. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  12. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  13. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  14. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  15. High resolution functional photoacoustic tomography of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoqi; Yao, Lei; Xi, Lei; Jiang, Huabei, E-mail: hjiang@bme.ufl.edu [Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Heldermon, Coy D. [Department of Medicine, University of Florida, Gainesville, Florida 32611 (United States)

    2015-09-15

    Purpose: To evaluate the feasibility of functional photoacoustic tomography (fPAT) for high resolution detection and characterization of breast cancer and to demonstrate for the first time quantitative hemoglobin concentration and oxygen saturation images of breasts that were formed with model-based reconstruction of tomographic photoacoustic data. Methods: The study was HIPAA compliant and was approved by the university institutional review board. Written informed consents were obtained from all the participants. Ten cases, including six cancer and four healthy (mean age = 50 yr; age range = 41–66 yr), were examined. Functional images of breast tissue including absolute total hemoglobin concentration (Hb{sub T}) and oxygen saturation (StO{sub 2}%) were obtained by fPAT and cross validated with magnetic resonance imaging (MRI) readings and/or histopathology. Results: Hb{sub T} and StO{sub 2}% maps from all six pathology-confirmed cancer cases (60%) show clear detection of tumor, while MR images indicate clear detection of tumor for five of six cancer cases; one small tumor was read as near-complete-resolution by MRI. The average Hb{sub T} and StO{sub 2}% value of suspicious lesion area for the cancer cases was 61.6 ± 18.9 μM/l and 67.5% ± 5.2% compared to 25.6 ± 7.4 μM/l and 65.2% ± 3.8% for background normal tissue. Conclusions: fPAT has the potential to be a significant add-on in breast cancer detection and characterization as it provides submillimeter resolution functional images of breast lesions.

  16. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  17. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  18. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Javier Marcello

    2016-09-01

    Full Text Available The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas. In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%. Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations

  19. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  20. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  1. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    images of interior structure to ~20 m, and to map dielectric properties (related to internal composition) to better than 200 m throughout. This is comparable in detail to modern 3D medical ultrasound, although we emphasize that the techniques are somewhat different. An interior mass distribution is obtained through spacecraft tracking, using data acquired during the close, quiet radar orbits. This is aligned with the radar-based images of the interior, and the shape model, to contribute to the multi-dimensional 3D global view. High-resolution visible imaging provides boundary conditions and geologic context to these interior views. An infrared spectroscopy and imaging campaign upon arrival reveals the time-evolving activity of the nucleus and the structure and composition of the inner coma, and the definition of surface units. CORE is designed to obtain a total view of a comet, from the coma to the active and evolving surface to the deep interior. Its primary science goal is to obtain clear images of internal structure and dielectric composition. These will reveal how the comet was formed, what it is made of, and how it 'works'. By making global yet detailed connections from interior to exterior, this knowledge will be an important complement to the Rosetta mission, and will lay the foundation for comet nucleus sample return by revealing the areas of shallow depth to 'bedrock', and relating accessible deposits to their originating provenances within the nucleus.

  2. Comparing the performance of various digital soil mapping approaches to map physical soil properties

    Science.gov (United States)

    Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2015-04-01

    Spatial information on physical soil properties is intensely expected, in order to support environmental related and land use management decisions. One of the most widely used properties to characterize soils physically is particle size distribution (PSD), which determines soil water management and cultivability. According to their size, different particles can be categorized as clay, silt, or sand. The size intervals are defined by national or international textural classification systems. The relative percentage of sand, silt, and clay in the soil constitutes textural classes, which are also specified miscellaneously in various national and/or specialty systems. The most commonly used is the classification system of the United States Department of Agriculture (USDA). Soil texture information is essential input data in meteorological, hydrological and agricultural prediction modelling. Although Hungary has a great deal of legacy soil maps and other relevant soil information, it often occurs, that maps do not exist on a certain characteristic with the required thematic and/or spatial representation. The recent developments in digital soil mapping (DSM), however, provide wide opportunities for the elaboration of object specific soil maps (OSSM) with predefined parameters (resolution, accuracy, reliability etc.). Due to the simultaneous richness of available Hungarian legacy soil data, spatial inference methods and auxiliary environmental information, there is a high versatility of possible approaches for the compilation of a given soil map. This suggests the opportunity of optimization. For the creation of an OSSM one might intend to identify the optimum set of soil data, method and auxiliary co-variables optimized for the resources (data costs, computation requirements etc.). We started comprehensive analysis of the effects of the various DSM components on the accuracy of the output maps on pilot areas. The aim of this study is to compare and evaluate different

  3. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  4. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  5. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  6. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  7. High-resolution computer-aided moire

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  8. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  9. Laboratory of High resolution gamma spectrometry

    International Nuclear Information System (INIS)

    Mendez G, A.; Giber F, J.; Rivas C, I.; Reyes A, B.

    1992-01-01

    The Department of Nuclear Experimentation of the Nuclear Systems Management requests the collaboration of the Engineering unit for the supervision of the execution of the work of the High resolution Gamma spectrometry and low bottom laboratory, using the hut of the sub critic reactor of the Nuclear Center of Mexico. This laboratory has the purpose of determining the activity of special materials irradiated in nuclear power plants. In this report the architecture development, concepts, materials and diagrams for the realization of this type of work are presented. (Author)

  10. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  11. Tridimensional Regression for Comparing and Mapping 3D Anatomical Structures

    Directory of Open Access Journals (Sweden)

    Kendra K. Schmid

    2012-01-01

    Full Text Available Shape analysis is useful for a wide variety of disciplines and has many applications. There are many approaches to shape analysis, one of which focuses on the analysis of shapes that are represented by the coordinates of predefined landmarks on the object. This paper discusses Tridimensional Regression, a technique that can be used for mapping images and shapes that are represented by sets of three-dimensional landmark coordinates, for comparing and mapping 3D anatomical structures. The degree of similarity between shapes can be quantified using the tridimensional coefficient of determination (2. An experiment was conducted to evaluate the effectiveness of this technique to correctly match the image of a face with another image of the same face. These results were compared to the 2 values obtained when only two dimensions are used and show that using three dimensions increases the ability to correctly match and discriminate between faces.

  12. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme im