WorldWideScience

Sample records for high-resolution brain spect

  1. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  2. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  3. A specially designed cut-off gamma camera for high resolution SPECT of the brain

    International Nuclear Information System (INIS)

    Larsson, S.A.; Bergstrand, G.; Bergstedt, H.; Berg, J.; Flygare, O.; Schnell, P.O.; Anderson, N.; Lagergren, C.

    1984-01-01

    A modern gamma camera system for Single Photon Emission Computed Tomography (SPECT) has been modified in order to optimize examinations of the head. By cutting off a part of the detector housing at one edge, it has been possible to rotate the camera close to the skull, still covering the entire brain and the skull base. The minimum radius of rotation used was thereby reduced, in the mean, from 21.2 cm to 13.0 cm in examination of 18 patients. In combination with an adjustment of the 64 x 64 acquisition matrix to a field of view of 26x26 cm/sup 2/, the spatial resolution improved from 18.6 mm (FWHM) to 12.6 +- 0.3 mm (FWHM) using the conventional LEGP-collimator and to 10.4 +- 0.3 mm (FWHM) using the LEHR-collimator. No other modification than a slight cut of the light guide was made in the internal construction of the camera. Thus, the physical properties of the detector head are not essentially changed from those of a non-modified unit. The improved spatial resolution of the cut-off camera SPECT-system implies certain clinical advantages in studies of the brain, the cerebrospinal fluid (CSF)-space and the skull base

  4. Computer-assisted superimposition of magnetic resonance and high-resolution technetium-99m-HMPAO and thallium-201 SPECT images of the brain

    International Nuclear Information System (INIS)

    Holman, B.L.; Zimmerman, R.E.; Johnson, K.A.; Carvalho, P.A.; Schwartz, R.B.; Loeffler, J.S.; Alexander, E.; Pelizzari, C.A.; Chen, G.T.

    1991-01-01

    A method for registering three-dimensional CT, MR, and PET data sets that require no special patient immobilization or other precise positioning measures was adapted to high-resolution SPECT and MRI and was applied in 14 subjects [five normal volunteers, four patients with dementia (Alzheimer's disease), two patients with recurrent glioblastoma, and three patients with focal lesions (stroke, arachnoid cyst and head trauma)]. T2-weighted axial magnetic resonance images and transaxial 99mTc-HMPAO and 201Tl images acquired with an annular gamma camera were merged using an objective registration (translation, rotation and rescaling) program. In the normal subjects and patients with dementia and focal lesions, focal areas of high uptake corresponded to gray matter structures. Focal lesions observed on MRI corresponded to perfusion defects on SPECT. In the patients who had undergone surgical resection of glioblastoma followed by interstitial brachytherapy, increased 201Tl corresponding to recurrent tumor could be localized from the superimposed images. The method was evaluated by measuring the residuals in all subjects and translational errors due to superimposition of deep structures in the 12 subjects with normal thalamic anatomy and 99mTc-HMPAO uptake. This method for superimposing magnetic resonance and high-resolution SPECT images of the brain is a useful technique for correlating regional function with brain anatomy

  5. Clinical experience with Tc-99m HM-PAO high resolution SPECT of the brain in patients with cerebrovascular accidents

    International Nuclear Information System (INIS)

    Roo, M. de; Mortelmans, L.; Devos, P.; Verbruggen, A.; Wilms, G.; Carton, H.; Wils, V.; Bergh, R. van den

    1989-01-01

    In order to evaluate the diagnostic contribution of brain SPECT imaging with 99m Tc-HMPAO in cerebrovascular disease, we examined 92 stroke cases (144 lesions), 2 hematoma cases and 30 cases with transient neurologic symptoms. Abnormal tracer distribution is visible as zones of either hypoactivity or hyperactivity (border zone hyperemia or luxury perfusion). Remote vascularization changes could also be found (crossed cerebellar diaschisis or ipsilateral cortical perfusion reduction in thalamic or capsula interna lesions). Both X-ray CT and blood flow SPECT have comparable sensitivity in the exploaration of cerebral infarction, with detection in, respectively, 89,5% and 87,5% of the lesions. False negative scintitomographic images are frequently recorded in small lacunar infarcts within the basal ganglia and white matter (capsula interna). Some early infarcts and asymmetry of brain perfusion in patients with transient neurologic symptoms are frequently not detected by CT. An additional advantage of blood flow SPECT is its ability to visualize remote blood flow changes and the changing pattern of vascularization of ischemic lesions and their surrounding areas including hyperemia. (orig.)

  6. Clinical experience with Tc-99m HM-PAO high resolution SPECT of the brain in patients with cerebrovascular accidents

    Energy Technology Data Exchange (ETDEWEB)

    Roo, M. de; Mortelmans, L.; Devos, P.; Verbruggen, A.; Wilms, G.; Carton, H.; Wils, V.; Bergh, R. van den

    1989-01-01

    In order to evaluate the diagnostic contribution of brain SPECT imaging with /sup 99m/Tc-HMPAO in cerebrovascular disease, we examined 92 stroke cases (144 lesions), 2 hematoma cases and 30 cases with transient neurologic symptoms. Abnormal tracer distribution is visible as zones of either hypoactivity or hyperactivity (border zone hyperemia or luxury perfusion). Remote vascularization changes could also be found (crossed cerebellar diaschisis or ipsilateral cortical perfusion reduction in thalamic or capsula interna lesions). Both X-ray CT and blood flow SPECT have comparable sensitivity in the exploaration of cerebral infarction, with detection in, respectively, 89,5% and 87,5% of the lesions. False negative scintitomographic images are frequently recorded in small lacunar infarcts within the basal ganglia and white matter (capsula interna). Some early infarcts and asymmetry of brain perfusion in patients with transient neurologic symptoms are frequently not detected by CT. An additional advantage of blood flow SPECT is its ability to visualize remote blood flow changes and the changing pattern of vascularization of ischemic lesions and their surrounding areas including hyperemia.

  7. Brain SPECT

    International Nuclear Information System (INIS)

    Feistel, H.

    1991-01-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG) [de

  8. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  9. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  10. Brain SPECT in children

    International Nuclear Information System (INIS)

    Guyot, M.; Baulieu, J.L.

    1996-01-01

    Brain SPECT in child involves specific trends regarding the patient cooperation, irradiation, resolution and especially interpretation because of the rapid scintigraphic modifications related to the brain maturation. In a general nuclear medicine department, child brain SPECT represents about 2 % of the activity. The choice indications are the perfusion children: thallium and MIBI in brain tumours, pharmacological and neuropsychological interventions. In the future, brain dedicated detectors and new radiopharmaceuticals will promote the development of brain SPECT in children. (author)

  11. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young; Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung

    2002-01-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0±2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3±4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group

  12. High-resolution brain SPECT imaging in attention deficit hyperactivity disorder children without comorbidity: quantitative analysis using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Oh, Eun Young [Ajou University School of Medicine, Suwon (Korea, Republic of); Chung, Young Ki; Hwang, Isaac; Lee, Jae Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We examined the abnormalities of regional cerebral blood flow(rCBF) in children with attention deficit hyperactivity disorder(ADHD) without comorbidity using statistical parametric mapping(SPM) method. We used the patients with not compatible to DSM-IV diagnostic criteria of ADHD and normal rCBF pattern in visual analysis as normal control children. Tc-99m ECD brain SPECT was performed on 75 patients (M:F=64:11, 10.0{+-}2.5y) with the DSM-IV diagnostic criteria of ADHD and 13 normal control children (M:F=9:4, 10.3{+-}4.1y). Using SPM method, we compared patient group's SPECT images with those of 13 control subjects and measured the extent of the area with significant hypoperfusion(p<0.01) in predefined 34 cerebral regions. Only on area of left temporal lobe showed significant hypoperfusion in ADHD patients without comorbidity (n=75) compared with control subjects(n=13). (n=75, p<0.01, extent threshold=16). rCBF of left temporal area was decreased in ADHD group without comorbidity, such as tic, compared with control group.

  13. High-resolution tomography of positron emitters with clustered pinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Goorden, Marlies C; Beekman, Freek J [Section of Radiation Detection and Medical Imaging, Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)], E-mail: m.c.goorden@tudelft.nl

    2010-03-07

    State-of-the-art small-animal single photon emission computed tomography (SPECT) enables sub-half-mm resolution imaging of radio-labelled molecules. Due to severe photon penetration through pinhole edges, current multi-pinhole SPECT is not suitable for high-resolution imaging of photons with high energies, such as the annihilation photons emitted by positron emitting tracers (511 keV). To deal with this edge penetration, we introduce here clustered multi-pinhole SPECT (CMP): each pinhole in a cluster has a narrow opening angle to reduce photon penetration. Using simulations, CMP is compared with (i) a collimator with traditional pinholes that is currently used for sub-half-mm imaging of SPECT isotopes (U-SPECT-II), and (ii), like (i) but with collimator thickness adapted to image high-energy photons (traditional multi-pinhole SPECT, TMP). At 511 keV, U-SPECT-II is able to resolve the 0.9 mm rods of an iteratively reconstructed Jaszczak-like capillary hot rod phantom, and while TMP only leads to small improvements, CMP can resolve rods as small as 0.7 mm. Using a digital tumour phantom, we show that CMP resolves many details not assessable with standard USPECT-II and TMP collimators. Furthermore, CMP makes it possible to visualize uptake of positron emitting tracers in sub-compartments of a digital mouse striatal brain phantom. This may open up unique possibilities for analysing processes such as those underlying the function of neurotransmitter systems. Additional potential of CMP may include (i) the imaging of other high-energy single-photon emitters (e.g. I-131) and (ii) localized imaging of positron emitting tracers simultaneously with single photon emitters, with an even better resolution than coincidence PET.

  14. Radiopharmaceuticals for brain - SPECT

    International Nuclear Information System (INIS)

    Moretti, J.L.

    1992-01-01

    Perfusion tracers for brain SPECT imaging suitable for regional cerebral blood flow measurement and regional cerebral blood volume determination, with respect to their ability to pass the blood-brain-barrier, are described. Problems related t the use of specific radiotracers to map receptors distribution in the brain are also discussed in this lecture. 9 figs, 6 tabs

  15. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  16. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  17. Usefulness of brain SPECT

    International Nuclear Information System (INIS)

    Raynaud, C.; Rancurel, G.; Kieffer, E.; Ricard, S.; Askienazy, S.; Moretti, J.L.; Bourdoiseau, M.; Rapin, J.; Soussaline, F.

    1983-01-01

    Brain SPECT was not effectively exploited until I-123 isopropyl amphetamine (IAMP), indicator able to penetrate the blood brain barrier, became available. Although the experience of research teams working with IAMP is quite restricted due to the high cost of the indicator, some applications now appear to be worth the cost and in some cases provide data which cannot be obtained with routine techniques, especially in cerebrovascular patients, in epilepsy and some cases of tumor. Brain SPECT appears as an atraumatic test which is useful to establish a functional evaluation of the cerebral parenchyma, and which is a complement to arteriography, X-ray scan and regional cerebral blood flow measurement

  18. Brain SPECT in psychiatry: Delusion or reality?

    International Nuclear Information System (INIS)

    Pavel, D.G.; Davis, G.; Epstein, P.; Kohn, R.; Antonino, F.; Devore-Best, S.; Craita, I.; Liu, P.

    2002-01-01

    Aim: The need for functional information is becoming increasingly evident for proper therapeutic approaches to the treatment and follow up of psychiatric diseases. While data on this subject already exists, there is a general lack of consensus about the use of brain SPECT in this domain and also a considerable negative prejudice due to a number of factors including poor quality imaging and unrealistic expectations. Based on a large group of brain SPECT-s performed over the past 3 years we attempted to sort and refine the indications for SPECT in psychiatry. Materials and Methods: High resolution brain SPECT was performed with triple head gamma camera, super-high resolution fan beam collimator and Tc-HMPAO. A comprehensive semiquantitative color, 3D surface as well as multi-thresholded volume display was routinely used and supplemented by automatic realignment in case of longitudinal follow-up. Results: 470 brain SPECT-s done on 432 patients were all referred by psychiatrists or neuro-psychiatrists for a wide spectrum of psychiatric diseases and ranged in age from 7 to 88 years. The most common primary reasons for referral were : attention deficit hyperactive disorder (ADHD); anxiety; obsessive-compulsive disease, depression (refractory, chronic, bipolar ), impulse control problems; oppositional defiance, post traumatic brain injury; seizures, learning difficulties, pervasive development disorders, memory loss and differential of dementia. Among common denominators were long duration of the disease, unresponsiveness to treatment, worsening of clinical status, and presence of multiple conditions at the same time. The multiparametric display used enabled a comprehensive evaluation of the brain volume which included the hemispheric surfaces; the basal ganglia (striatum) and the thalamus, several components of the limbic and paralimbic systems: anterior and posterior cingulate and their respective subdivisions, insula-s and their subdivisions, apical and mesial

  19. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    International Nuclear Information System (INIS)

    Shokouhi, S; Peterson, T E; Metzler, S D; Wilson, D W

    2009-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.

  20. Brain SPECT. SPECT in der Gehirndiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. (Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik)

    1991-12-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG).

  1. Brain SPECT in childhood

    International Nuclear Information System (INIS)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L.

    2001-01-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  2. State-of-the-art of small animal imaging with high-resolution SPECT

    International Nuclear Information System (INIS)

    Nikolaus, S.; Wirrwar, A.; Antke, C.; Kley, K.; Mueller, H.W.

    2005-01-01

    During the recent years, in vivo imaging of small animals using SPECT has become of growing relevance. Along with the development of dedicated high-resolution small animal SPECT cameras, an increasing number of conventional clinical scanners has been equipped with single or multipinhole collimators. This paper reviews the small animal tomographs, which are operating at present and compares their performance characteristics. Furthermore, we describe the in vivo imaging studies, which have been performed so far with the individual scanners and survey current approaches to optimize molecular imaging with small animal SPECT. (orig.)

  3. Comparison between high-resolution computed tomography and 99mTc-technegas SPECT pulmonary emphysema

    International Nuclear Information System (INIS)

    Nakano, Satoru; Satoh, Katashi; Takahashi, Kazue

    1996-01-01

    Scintigraphy with 99m Tc-technegas was recently introduced for clinical imaging of lung ventilation. This method has been found to be useful in emergencies, to be more suitable for single photon emission computed tomography (SPECT) than other agents used in ventilation scintigraphy, and could reveal abnormalities in ventilation more easily than high resolution computed tomography (HRCT) in pulmonary emphysema. We compared 99m Tc-technegas SPECT with HRCT in six regions: the right upper, middle, and lower lobes, the left upper lobe, the lingula, and the left lower lobe, in 15 patients with pulmonary emphysema. Patients with centrilobular emphysema tended to show stronger changes in upper lobes than in lower lobes on both 99m Tc-technegas SPECT and HRCT. Some regions showed no change on HRCT but various changes on 99m Tc-SPECT. Patients with panlobular emphysema showed severe changes on 99m Tc-SPECT in lower lung fields in which well-demarcated areas of low attenuation were not seen on HRCT. We conclude that 99m Tc-SPECT is useful for detecting early changes and panlobular changes in pulmonary emphysema. (author)

  4. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  5. CBF patterns in different types of headache using 99mTc HMPAO and high resolution SPECT

    International Nuclear Information System (INIS)

    Jones, B.E.; Davies, P.G.; Costa, D.C.; Steiner, T.J.; Rose, F.C.; Jewkes, R.F.; Charing Cross Hospital, London

    1988-01-01

    High resolution SPECT studies have been performed using 99m Tc HMPAO on patients suffering from migraine, cluster headache or chronic tension headache. Reduced uptake of tracer in the right parieto-occipital cortex was seen in 6/8 patients suffering from classical or hemiplegic migraine and 2/10 patients suffering from common migraine. A high uptake of tracer was seen in the temporal muscle of some patients with chronic tension headache. Extracerebral uptake of radioactivity was also seen in the tissue surrounding the brain in a case injected with the HMPAO 45 minutes after it had been prepared and in metastatic skull lesions in patients suffering from cancer of the breast. It is therefore important to use high resolution instrumentation to avoid artifacts when using this technique. (orig.)

  6. Development of a high-resolution detection module for the INSERT SPECT/MRI system

    Energy Technology Data Exchange (ETDEWEB)

    Busca, Paolo; Fiorini, Carlo; Butt, Arslan D; Occhipinti, Michele; Quaglia, Riccardo; Trigilio, Paolo [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Via Golgi 40, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Nemeth, Gabor; Major, Peter; Bukki, Tamas; Nagy, Kalman [Mediso Medical Imaging Systems, Alsotorokvesz 14, H-1022 Budapest (Hungary); Piemonte, Claudio; Ferri, Alessandro; Gola, Alberto [Fondazione Bruno Kessler (FBK), Via Sommarive, 18, 38123 Trento (Italy); Rieger, Jan [MRI.TOOLS GmbH, Robert-Roessle-Str. 10, 13125 Berlin (Germany); Niendorf, Thoralf [MRI.TOOLS GmbH, Robert-Roessle-Str. 10, 13125 Berlin (Germany); Berlin Ultrahigh Field Facility (B.UniversityF.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin (Germany)

    2014-07-29

    A new multi-modality imaging tool is under development in the framework of the INSERT (Integrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus that can be used as an insert for commercially available MRI systems. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes are being developed, one dedicated to preclinical imaging (7 and 9.4 T), the second one dedicated to clinical imaging (3 T).

  7. Development of a high-resolution detection module for the INSERT SPECT/MRI system

    International Nuclear Information System (INIS)

    Busca, Paolo; Fiorini, Carlo; Butt, Arslan D; Occhipinti, Michele; Quaglia, Riccardo; Trigilio, Paolo; Nemeth, Gabor; Major, Peter; Bukki, Tamas; Nagy, Kalman; Piemonte, Claudio; Ferri, Alessandro; Gola, Alberto; Rieger, Jan; Niendorf, Thoralf

    2014-01-01

    A new multi-modality imaging tool is under development in the framework of the INSERT (Integrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus that can be used as an insert for commercially available MRI systems. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes are being developed, one dedicated to preclinical imaging (7 and 9.4 T), the second one dedicated to clinical imaging (3 T).

  8. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  9. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Park, S-J; Yu, A R; Lee, Y-J; Kim, Y-S; Kim, H-J

    2014-01-01

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high-resolution

  10. Anything wrong with brain SPECT? Not really

    International Nuclear Information System (INIS)

    Pavel, D.G.; Davis, G.; Craita, I.; Liu, P.

    2002-01-01

    Aim: Despite increased evidence about the usefulness of Brain SPECT in Neuro-Psychiatry, it continues to represent only a low percentage of Nuclear Medicine procedures. The prevalent perception is that it is an inadequate diagnostic tool, and/or is not changing patient management. There are objective reasons for this, as the lack of awareness by Psychiatrists about the value of SPECT, but most important is the frequently poor quality of images provided. This can be due to inadequate gamma cameras but is mostly due to poor quality software. Materials and Methods: High resolution brain SPECT via triple head gamma camera, super-high resolution fan beam collimator and Tc-HMPAO. A combination of commercial software and local optimization was used for the final displays as well as for realignment of sequential brain SPECT studies. Results: We found out that 6 basic software improvements are needed to generate a final display where features can be clearly distinguished and which can be also easily assimilated by the referring physician. 1) Color scales: simple and efficient tools needed to generate user friendly and semiquantitative color shades as needed. Unfortunately various color scales may be needed depending on printer and paper used. 2): 3 D displays allowing, multiple standardized thresholdings, any number of groupings, differential coloring (with functional meaning) and adequate labeling. Should be completely or at least mostly automatic. 3) Automatic realignment of sequential studies: such programs exist in various forms (free WWW versions, proprietary Beta versions, etc.) but are still not supplied by the gamma camera vendors for general use. Should provide SPECT -SPECT and SPECT MRI options. 4) Localization of structures and slices a) Triangulation of structures and b) Identification of section location. 5) Graphics improvement for generating any number of optimized summary displays to accompany reports. 6) Availability of voxel based quantification software

  11. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    International Nuclear Information System (INIS)

    Chan, Chung; Sinusas, Albert J; Liu, Chi; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased

  12. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-high-resolution pinhole [123I]IBZM SPECT study in rats

    International Nuclear Information System (INIS)

    Crunelle, Cleo L.; Wit, Tim C. de; Bruin, Kora de; Ramakers, Ruud M.; Have, Frans van der; Beekman, Freek J.; Brink, Wim van den; Booij, Jan

    2012-01-01

    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D 2/3 receptor (DRD 2/3 ) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD 2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [ 123 I]IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD 2/3 availability was found following varenicline treatment compared to saline (time⁎treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD 2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals.

  13. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    International Nuclear Information System (INIS)

    Sajedi, Salar; Zeraatkar, Navid; Moji, Vahideh; Farahani, Mohammad Hossein; Sarkar, Saeed; Arabi, Hossein; Teymoorian, Behnoosh; Ghafarian, Pardis; Rahmim, Arman; Reza Ay, Mohammad

    2014-01-01

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  14. Quantitative accuracy of serotonergic neurotransmission imaging with high-resolution 123I SPECT

    International Nuclear Information System (INIS)

    Kuikka, J.T.

    2004-01-01

    Aim: Serotonin transporter (SERT) imaging can be used to study the role of regional abnormalities of neurotransmitter release in various mental disorders and to study the mechanism of action of therapeutic drugs or drugs' abuse. We examine the quantitative accuracy and reproducibility that can be achieved with high-resolution SPECT of serotonergic neurotransmission. Method: Binding potential (BP) of 123 I labeled tracer specific for midbrain SERT was assessed in 20 healthy persons. The effects of scatter, attenuation, partial volume, misregistration and statistical noise were estimated using phantom and human studies. Results: Without any correction, BP was underestimated by 73%. The partial volume error was the major component in this underestimation whereas the most critical error for the reproducibility was misplacement of region of interest (ROI). Conclusion: The proper ROI registration, the use of the multiple head gamma camera with transmission based scatter correction introduce more relevant results. However, due to the small dimensions of the midbrain SERT structures and poor spatial resolution of SPECT, the improvement without the partial volume correction is not great enough to restore the estimate of BP to that of the true one. (orig.) [de

  15. of Hypoxia-Inducible Factor-1α Activity by the Fusion of High-Resolution SPECT and Morphological Imaging Tests

    Directory of Open Access Journals (Sweden)

    Hirofumi Fujii

    2012-01-01

    Full Text Available Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α (HIF activity in tumor tissues in vivo. Methods. We synthesized of 125I-IPOS, a 125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of 125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of 125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtained in vivo SPECT-CT fusion images were compared with ex vivo images of excised tumors. Fusion imaging with MRI was also examined. Results. 125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of 125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of 125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of 125I-IPOS. Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of 125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activity in vivo.

  16. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  17. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    Science.gov (United States)

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  19. SPECT of the brain: Present and future

    International Nuclear Information System (INIS)

    Fazio, F.; Lenzi, G.L.

    1986-01-01

    In both PET and SPECT, most of the studies and the models have been addressed to two organs: brain and heart. So far, brain has certainly been investigated more. The several comparisons between planar scintigraphy and SPECT, between X-ray TCT and SPECT, and also between PET and SPECT, have tended to consider SPECT a cheap but scarcely useful tool for a nuclear medicine section. Again the authors feel that this is due to the fact that SPECT is really a ''physiological tomography'', with little known about its physiology or how it is measured. Thus the present state of the art of SPECT of the brain is characterized by a collection of data and reports on brain imaging and by a slowly growing basic understanding of the utilized modes. The introduction of a new brain-imaging radiopharmaceutical is immediately signaled by its ''first clinical application'' without parallel studies on the kinetics, the metabolic degradation, and the real suitability of the molecule as a tracer for measurement of regional CBF. Only a few attempts seek to narrow this discussion between clinic and biology, and the authors like to emphasize the need for nuclear medicine people to dedicate more time and effort

  20. Brain Network Analysis from High-Resolution EEG Signals

    Science.gov (United States)

    de Vico Fallani, Fabrizio; Babiloni, Fabio

    lattice and a random structure. Such a model has been designated as "small-world" network in analogy with the concept of the small-world phenomenon observed more than 30 years ago in social systems. In a similar way, many types of functional brain networks have been analyzed according to this mathematical approach. In particular, several studies based on different imaging techniques (fMRI, MEG and EEG) have found that the estimated functional networks showed small-world characteristics. In the functional brain connectivity context, these properties have been demonstrated to reflect an optimal architecture for the information processing and propagation among the involved cerebral structures. However, the performance of cognitive and motor tasks as well as the presence of neural diseases has been demonstrated to affect such a small-world topology, as revealed by the significant changes of L and C. Moreover, some functional brain networks have been mostly found to be very unlike the random graphs in their degree-distribution, which gives information about the allocation of the functional links within the connectivity pattern. It was demonstrated that the degree distributions of these networks follow a power-law trend. For this reason those networks are called "scale-free". They still exhibit the small-world phenomenon but tend to contain few nodes that act as highly connected "hubs". Scale-free networks are known to show resistance to failure, facility of synchronization and fast signal processing. Hence, it would be important to see whether the scaling properties of the functional brain networks are altered under various pathologies or experimental tasks. The present Chapter proposes a theoretical graph approach in order to evaluate the functional connectivity patterns obtained from high-resolution EEG signals. In this way, the "Brain Network Analysis" (in analogy with the Social Network Analysis that has emerged as a key technique in modern sociology) represents an

  1. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Krausz, Y.; Yaffe, S.; Atlan, H.; Cohen, D.; Konstantini, S.; Meiner, Z.

    1991-01-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99m Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  2. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    International Nuclear Information System (INIS)

    Umeda, Izumi O.; Tani, Kotaro; Tsuda, Keisuke

    2012-01-01

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111 In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111 In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111 In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  3. Brain SPECT in severs traumatic head injury

    International Nuclear Information System (INIS)

    Beaulieu, F.; Eder, V.; Pottier, J.M.; Baulieu, J.L.; Fournier, P.; Legros, B.; Chiaroni, P.; Dalonneau, M.

    2000-01-01

    The aim of this work was to compare the results of the early brain scintigraphy in traumatic brain injury to the long term neuropsychological behavior. Twenty four patients had an ECD-Tc99m SPECT, within one month after the trauma; scintigraphic abnormalities were evaluated according to a semi-quantitative analysis. The neuropsychological clinical investigation was interpreted by a synthetic approach to evaluate abnormalities related to residual motor deficit, frontal behavior, memory and language disorders. Fourteen patients (58%) had sequela symptoms. SPECT revealed 80 abnormalities and CT scan only 31. Statistical analysis of uptake values showed significantly lower uptake in left basal ganglia and brain stem in patients with sequela memory disorders. We conclude that the brain perfusion scintigraphy is able to detect more lesions than CT and that it could really help to predict the neuropsychological behavior after severe head injury. Traumatology could become in the future a widely accepted indication of perfusion SPECT. (authors)

  4. An accurate and efficient system model of iterative image reconstruction in high-resolution pinhole SPECT for small animal research

    Energy Technology Data Exchange (ETDEWEB)

    Huang, P-C; Hsu, C-H [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Hsiao, I-T [Department Medical Imaging and Radiological Sciences, Chang Gung University, Tao-Yuan, Taiwan (China); Lin, K M [Medical Engineering Research Division, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan (China)], E-mail: cghsu@mx.nthu.edu.tw

    2009-06-15

    Accurate modeling of the photon acquisition process in pinhole SPECT is essential for optimizing resolution. In this work, the authors develop an accurate system model in which pinhole finite aperture and depth-dependent geometric sensitivity are explicitly included. To achieve high-resolution pinhole SPECT, the voxel size is usually set in the range of sub-millimeter so that the total number of image voxels increase accordingly. It is inevitably that a system matrix that models a variety of favorable physical factors will become extremely sophisticated. An efficient implementation for such an accurate system model is proposed in this research. We first use the geometric symmetries to reduce redundant entries in the matrix. Due to the sparseness of the matrix, only non-zero terms are stored. A novel center-to-radius recording rule is also developed to effectively describe the relation between a voxel and its related detectors at every projection angle. The proposed system matrix is also suitable for multi-threaded computing. Finally, the accuracy and effectiveness of the proposed system model is evaluated in a workstation equipped with two Quad-Core Intel X eon processors.

  5. Brain SPECT with Tl-201 DDC

    International Nuclear Information System (INIS)

    Bruine, J.F. de.

    1988-01-01

    The development, animal and human experiments and the first clinical results of a new blood flow tracer thallium-201 diethyldithiocarbamate (Tl-201 DDC) are discussed for functional brain imaging with single-photon emission computed tomography (SPECT). 325 refs.; 43 figs.; 22 tabs

  6. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Science.gov (United States)

    Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2007-11-01

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  7. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo-Variawa, S [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Hey-Cunningham, A J [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Lehnert, W [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kench, P L [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Kassiou, M [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Banati, R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia); Meikle, S R [Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, PO Box 170, Lidcombe, NSW 1825, Sydney (Australia)

    2007-11-21

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm{sup 3} FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm{sup 3}) and 3D reprojection (3DRP) (5.9-9.1 mm{sup 3}). A pilot {sup 18}F-2-fluoro-2-deoxy-d-glucose ([{sup 18}F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  8. Atlas-driven scan planning for high-resolution Micro-SPECT data acquisition based on multi-view photographs : A pilot study

    NARCIS (Netherlands)

    Baiker, M.; Vastenhouw, B.; Branderhorst, W.; Reiber, J.H.C.; Beekman, F.; Lelieveldt, B.P.F.

    2009-01-01

    Highly focused Micro-SPECT scanners enable the acquisition of functional small animal data with very high-resolution. To acquire a maximum of emitted photons from a specific structure of interest and at the same time minimize the required acquisition time, typically only a small subvolume of the

  9. Atlas-driven scan planning for high-resolution micro-SPECT data acquisition based on multi-vew photographs : A pilot study

    NARCIS (Netherlands)

    Baiker, M.; Vastenhouw, B.; Branderhorst, S.W.; Reiber, J.H.C.; Beekman, F.J.; Lelieveld, B.P.F.

    2009-01-01

    Highly focused Micro-SPECT scanners enable the acquisition of functional small animal data with very high-resolution. To acquire a maximum of emitted photons from a specific structure of interest and at the same time minimize the required acquisition time, typically only a small subvolume of the

  10. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  11. Brain pertechnetate SPECT in perinatal asphyxia

    Energy Technology Data Exchange (ETDEWEB)

    Sfakianakis, G.; Curless, R.; Goldberg, R.; Clarke, L.; Saw, C.; Sfakianakis, E.; Bloom, F.; Bauer, C.; Serafini, A.

    1984-01-01

    Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found in all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.

  12. Brain SPECT in neurology: A critical review

    International Nuclear Information System (INIS)

    Bartenstein, P.; Essen Univ.; Weiller, C.; Essen Univ.

    1994-01-01

    SPECT of the brain with radiopharmaceuticals monitoring regional cerebral blood flow, receptor binding and metabolism offers a wide variety of potentially clinically useful applications. These can be found in neuro-oncology, epilepsy, cerebrovascular diseases, extrapyramidal disorders, dementia and the determination of brain death. The evaluation of the benefit of these methods in routine use requires a close cooperation between nuclear medicine physicians and neurologists, not only in the interpretation and analysis of the actual clinical studies, but also in the design and realization of clinically oriented research with large series of patients. (orig.) [de

  13. Multipinhole collimator with 20 apertures for a brain SPECT application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho, E-mail: youngho.seo@ucsf.edu [Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (United States); Huang, Qiu [School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Gullberg, Grant T. [Department of Radiotracer Development and Imaging Technology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702 (United States)

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  14. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Grova, C [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Jannin, P [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Biraben, A [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Buvat, I [INSERM U494, CHU Pitie Salpetriere, Paris (France); Benali, H [INSERM U494, CHU Pitie Salpetriere, Paris (France); Bernard, A M [Service de Medecine Nucleaire, Centre Eugene Marquis, Rennes (France); Scarabin, J M [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Gibaud, B [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France)

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were

  15. Brain perfusion SPECT in dementia syndromes

    International Nuclear Information System (INIS)

    Libus, P.; Stupalova, J.; Kuzelka, I.; Konrad, J.

    2002-01-01

    Aim: Brain perfusion SPECT is used in differential diagnostics of dementia syndromes. First of all the aim is to distinguish vascular dementia from degenerative dementia and to differentiate dementia from delirium, psychiatric syndromes, depression and secondary dementia, which is important in relation to therapy. The purpose of our study was to detect significance of BP SPECT and include it into the diagnostic process in dementia syndromes. Materials and methods: 51 women and 63 men aged 55 - 88 were evaluated in the study. The patients correspond to the general criteria of dementia diagnosis. They were sent to the examination by neurological, internal and psychiatric departments and out-patient departments. All patients were examined by 99mTc ECD SPECT using a double head camera PRISM 200 VP with LEHR collimator. The scintigraphic data were evaluated by the visual and semiquantitative analysis. Results: It was established that most patients in our group had vascular dementia, while Alzheimer's disease was second. In other groups we found out dementia at strategic infarct location, e.g. in gyrus angularis in the dominant hemisphere, frontal temporal lobe dementia and alcoholic dementia. Twenty-four patients had a normal diagnosis. Fifteen of them had a somatic reason of the delirious state and were re-classified into pseudodementia. Nine patients were not diagnostically included and the examination will repeated in four months time. Conclusion: We have found out a good applicability of brain perfusion SPECT in dementia syndromes diagnosis in our work. The best diagnosticable and most specific were the findings in multi-infarct dementia, Alzheimer's disease and frontal temporal lobe dementia. When vascular dementia is concerned we can even distinguish dementia at strategic infarction location, e.g. in thalamus, basal frontal telencefalon, in gyrus angularis of the dominant hemisphere, etc

  16. The clinical use of brain SPECT imaging in neuropsychiatry

    International Nuclear Information System (INIS)

    Amen, Daniel G; Wu, Joseph C; Carmichael, Blake

    2003-01-01

    This article reviews the literature on brain SPECT imaging in brain trauma, dementia, and temporal lobe epilepsy. Brain SPECT allows clinicians the ability to view cerebral areas of healthy, low, and excessive perfusion. This information can be correlated with what is known about the function or dysfunction of each area. SPECT has a number of advantages over other imaging techniques, including wider availability, lower cost, and high quality resolution with multi-headed cameras. There are a number of issues that compromise the effective use of SPECT, including low quality of some imaging cameras, and variability of image rendering and readings (Au)

  17. {sup 99m}Tc-HMPAO Brain SPECT in Seizure Disorder: Comparison Brain SPECT, MRI / CT and EEG

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyung In [Kyunghee University Hospital, Seoul (Korea, Republic of); Im, Ju Hyuk; Choi, Chang Woon; Lee, Dong Soo; Chung, June Key; No, Jae Kyu; Lee, Myung Chul; Koh, Chang Soon [Seoul National University Hospital, Seoul (Korea, Republic of)

    1994-03-15

    We studied 115 patients with seizure who had been performed brain SPECT brain MRI of CT and EEG. To evaluate the pattern of brain SPECT in seizure patients 28 of them had secondary epilepsies, 87 had primary epilepsies. In primary epilepsies, 42 were generalized seizure and 45 were partial seizure. The causes of secondary epilepsies were congenital malformation, cerebromalacia, cerebral infarction ultiple sclerosis, AV-malformation. granuloma and etc, in order. In 28 secondary epilepsies, 25 of them, brain SPECT lesions was concordant with MRI or CT lesions. 3 were disconcordant. The brain SPECT findings of generalized seizure were normal in 22 patients, diffuse irregular decreased perfusion in 8, decreased in frontal cortex in 4. temporal in 5 and frontotemporal in 3. In 45 partial seizure, 19 brain SPECT were concordant with EEG (42.4%).

  18. 99mTc-HMPAO Brain SPECT in Seizure Disorder: Comparison Brain SPECT, MRI / CT and EEG

    International Nuclear Information System (INIS)

    Yang, Hyung In; Im, Ju Hyuk; Choi, Chang Woon; Lee, Dong Soo; Chung, June Key; No, Jae Kyu; Lee, Myung Chul; Koh, Chang Soon

    1994-01-01

    We studied 115 patients with seizure who had been performed brain SPECT brain MRI of CT and EEG. To evaluate the pattern of brain SPECT in seizure patients 28 of them had secondary epilepsies, 87 had primary epilepsies. In primary epilepsies, 42 were generalized seizure and 45 were partial seizure. The causes of secondary epilepsies were congenital malformation, cerebromalacia, cerebral infarction ultiple sclerosis, AV-malformation. granuloma and etc, in order. In 28 secondary epilepsies, 25 of them, brain SPECT lesions was concordant with MRI or CT lesions. 3 were disconcordant. The brain SPECT findings of generalized seizure were normal in 22 patients, diffuse irregular decreased perfusion in 8, decreased in frontal cortex in 4. temporal in 5 and frontotemporal in 3. In 45 partial seizure, 19 brain SPECT were concordant with EEG (42.4%).

  19. Brain lesion analysis using three-dimensional SPECT imaging

    International Nuclear Information System (INIS)

    Shibata, Iekado; Onagi, Atsuo; Kuroki, Takao

    1995-01-01

    A three-headed gamma camera (PRISM 3000) is capable to scan the protocol of early dynamic SPECT and to analyze two radioisotopes at the same time. We have framed three-dimensional brain SPECT images for several brain diseases by using the Application Visualization System (AVS). We carried out volume measurements in brain tumors and/or AVMs by applying this methodology. Thallium-201 and/or 123I-IMP were used for brain SPECT imaging. The dynamic scan protocol was changed in accordance with the given disease. The protocol for brain tumors was derived from a preliminary comparative study with thallium-201 and 123I-IMP that had suggested a disparity in the detection of brain tumors and the differentiation between tumor tissue and normal brain. The three-dimension SPECT image represented the brain tumor or AVM in a striking fashion, and the changes with respect to tumor or AVM after radiosurgery or embolization were understood readily. (author)

  20. 99mTc-HMPAO SPECT in brain death

    International Nuclear Information System (INIS)

    Tsuchida, Tatsuro; Sadato, Norihiro; Nishizawa, Sadahiko

    1993-01-01

    Brain single photon emission computed tomography (SPECT) with 99m Tc-d,l-hexamethyl-propyleneamine oxime (HMPAO) was performed twice in a 78-year-old man clinically diagnosed as brain death according to the standard criteria of the Japanese Ministry of Welfare. The first brain SPECT demonstrated the tracer accumulation in the brain, indicating preserved cerebral blood flow. The second brain SPECT performed 3 days later revealed cessation of the blood flow. In patients with preserved cerebral blood flow, the diagnosis of brain death cannot be made, even if they meet the existing criteria, because previous report noted the recovery in some of those patients. Brain perfusion SPECT plays an important role as a confirmatory test for the diagnosis of brain death. (author)

  1. Determination of hyperactive areas of Cortex Cerebri with using brain SPECT study

    International Nuclear Information System (INIS)

    Stepien, A.; Pawlus, J.; Wasilewska-Radwanska, M.

    2004-01-01

    The aim of this study was the assessment of the ability to apply of SPECT technique to determination of hyperactive areas of cortex cerebri. Analysis included 50 patients (mean aged 44 - 58). Brain SPECT scanning was performed after 1 hour after the intravenous injection of 740 MBq of ethylcisteinate dimmer labeled 99m Technetium (99mTc-ECD) with the use one-head gamma camera with a low-energy, ultra-high resolution collimator. Qualitative and quantitative analysis was performed using specialised software. In 20 cases normal biodistribution of the radiotracer was observed (hyperactive areas in cerebellum and occiput). In patients with psychiatric and neurological disturbances hyperactive areas were visualized in 25 cases in temporal lobes, in 4 cases in parietal lobes and in 1 patient in frontal area and basal ganglia. It is concluded that a number of factors limit the wide-scale use of SPECT, including the sophistication of imaging equipment (single-head cameras are inferior to the newer multihead units) and the experience of the physicians interpreting the scans and utilizing the data. In many diseases physicians do not know which areas of the patient's brain according disorders. Brain SPECT study can be a very useful tool to evaluation of hyperactive areas of cortex cerebri. This technique visualization of cortex cerebri completes standard analysis of disorders of brain activity

  2. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  3. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    Science.gov (United States)

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  4. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images.

    Science.gov (United States)

    Rousseau, Francois; Glenn, Orit A; Iordanova, Bistra; Rodriguez-Carranza, Claudia; Vigneron, Daniel B; Barkovich, James A; Studholme, Colin

    2006-09-01

    This paper describes a novel approach to forming high-resolution MR images of the human fetal brain. It addresses the key problem of fetal motion by proposing a registration-refined compounding of multiple sets of orthogonal fast two-dimensional MRI slices, which are currently acquired for clinical studies, into a single high-resolution MRI volume. A robust multiresolution slice alignment is applied iteratively to the data to correct motion of the fetus that occurs between two-dimensional acquisitions. This is combined with an intensity correction step and a super-resolution reconstruction step, to form a single high isotropic resolution volume of the fetal brain. Experimental validation on synthetic image data with known motion types and underlying anatomy, together with retrospective application to sets of clinical acquisitions, are included. Results indicate that this method promises a unique route to acquiring high-resolution MRI of the fetal brain in vivo allowing comparable quality to that of neonatal MRI. Such data provide a highly valuable window into the process of normal and abnormal brain development, which is directly applicable in a clinical setting.

  5. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  6. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System

    DEFF Research Database (Denmark)

    Beliveau, Vincent; Ganz-Benjaminsen, Melanie; Feng, Ling

    2017-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4...... with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human...... brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system...

  7. Examination of brain function using PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yasuhito; Momose, Toshinitsu; Watanabe, Toshiaki; Oku, Shinya; Nishikawa, Junichi [Tokyo Univ. (Japan). Faculty of Medicine

    1996-12-31

    The purpose of the presentation is to elucidate the unique role of PET (positron emission computed tomography) and SPECT (single photon emission computed tomography) in assessing physiological and biochemical functions of the brain.

  8. The role of brain SPECT in children with epilepsy

    International Nuclear Information System (INIS)

    Liu Xingdang; Liu Yongchang; Lin Xiangtong

    1996-01-01

    The rCBF brain SPECT with 99m Tc-HMPAO was performed in 15 children with interictal epilepsy, and some cases were compared with EEG, X-ray CT and MRI. The results showed that the positive rate of SPECT was the highest (93.33%,), then the EEG (92.31%), and the CT and MRI were the lowest (66.67% and 75%). This study indicated that brain SPECT was an effective method for diagnosis and foci localization in epileptic children, and also was useful to the study of prognosis and relationship between changes of rCBF and progress in clinical pictures

  9. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    Science.gov (United States)

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein

  10. Brain SPECT using dipyridamole for evaluation of vascular reserve

    International Nuclear Information System (INIS)

    Kim, Su Zy; Park, Chan Hee; Yoon, Soo Hwan; Pai, Moon Sun; Yoon, Suk Nam; Cho, Kyung Kee

    1997-01-01

    Baseline and stress brain SPECT studies using CO 2 inhalation, acetazolamide (Diamox R ) and adenosine administrations have been used in the evaluation of cerebral vascular reserve. Recently dipyridamole (Persantine R ) which is one of the pharmacologic myocardial perfusion SPECT agents as a potent vasodilator is suggested as another cerebral vasodilator. IV Diamox R is not available in Korea. Therefore, the purpose of our study was to evaluate dipyridamole in stress brain SPECT in patients with Moya Moya disease. Eight patients with angiographically proven Moya Moya disease were studied. Their ages ranged from 7 to 62 year old. There were 4 males and 4 females. Each patient had a baseline and persantine brain SPECT studies with 1 to 3 days' interval. Dipyridamole was given intravenously at a dose of 0.56 mg/kg over 4 minutes while watching vital signs such as blood pressure, heart rate, and electrocardiogram. Three minutes after the completion of the infusion, 99mTc-ECD (0.2 mCi/Ib body weight) was injected. Brain SPECT was performed 30 minutes later using a tripple head gamma camera equipped with LEHR collimators. A total of 128 projections with an acquisition time of 30 second per projection was obtained and reconstructed by filtered back projections without attenuation correction. The difference between the baseline and persantine studies was analysed by visual and semiquantitavely. During the infusion of persantine, heart rate, blood pressure and side effects such as headache, chest discomfort were similar to the persantine myocardial SPECT studies. Five of eight patients showed a significant decrease in rCBF on persantine brain SPECT in comparison to the baseline study. The remaining three revealed no significant change in rCBF. Our study suggests that the dipyridamole stress brain SPECT is feasible and useful in assessing cerebral blood flow reserve. However we need to evaluate more number of patients in the future

  11. 123I-iomazenil brain receptor SPECT in focal epilepsy. In comparison with 99mTc-HMPAO brain SPECT, MRI and Video/EEG monitoring

    International Nuclear Information System (INIS)

    Xu Hao; Wang Tongge; Huang Li; Michael Cordes

    1998-01-01

    Purpose: To evaluate the clinical value of 123 I-Iomazenil brain receptor SPECT in diagnosis of focal epilepsy in comparison with 99m Tc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Methods 123 I-Iomazenil brain receptor SPECT was performed on 40 patients with focal epilepsy. The results were compared with those obtained by 99m Tc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Results: In 40 patients, the sensitivity of Video/EEG monitoring for localization of epileptogenic area was 95% (38/40). The sensitivity of 123 I-iomazenil brain receptor SPECT, 99m Tc-HMPAO brain SPECT and MRI for localization of epileptogenic area compared with Video/EEG monitoring ('gold standard') was 65.8%(25/38), 55.3%(21/38) and 47.4%(18/38), respectively. The localization of epileptogenic area with 123 I-Iomazenil brain receptor SPECT was in concordance with Video/EEG monitoring in 20 patients, 99m Tc-HMPAO brain SPECT in 15 patients and MRI in 16 patients, respectively. The sensitivity of 123 I-Iomazenil brain receptor SPECT combined with MRI for localization of epileptogenic area was 84.2%(32/38). Conclusions: 123 I-Iomazenil brain receptor SPECT is a useful method in detecting and localizing epileptogenic area. The combination of 123 I-Iomazenil brain receptor SPECT and MRI has a high sensitivity for detecting epileptogenic area

  12. Three-dimensional true FISP for high-resolution imaging of the whole brain

    International Nuclear Information System (INIS)

    Schmitz, B.; Hagen, T.; Reith, W.

    2003-01-01

    While high-resolution T1-weighted sequences, such as three-dimensional magnetization-prepared rapid gradient-echo imaging, are widely available, there is a lack of an equivalent fast high-resolution sequence providing T2 contrast. Using fast high-performance gradient systems we show the feasibility of three-dimensional true fast imaging with steady-state precession (FISP) to fill this gap. We applied a three-dimensional true-FISP protocol with voxel sizes down to 0.5 x 0.5 x 0.5 mm and acquisition times of approximately 8 min on a 1.5-T Sonata (Siemens, Erlangen, Germany) magnetic resonance scanner. The sequence was included into routine brain imaging protocols for patients with cerebrospinal-fluid-related intracranial pathology. Images from 20 patients and 20 healthy volunteers were evaluated by two neuroradiologists with respect to diagnostic image quality and artifacts. All true-FISP scans showed excellent imaging quality free of artifacts in patients and volunteers. They were valuable for the assessment of anatomical and pathologic aspects of the included patients. High-resolution true-FISP imaging is a valuable adjunct for the exploration and neuronavigation of intracranial pathologies especially if cerebrospinal fluid is involved. (orig.)

  13. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  14. In-utero three dimension high resolution fetal brain diffusion tensor imaging.

    Science.gov (United States)

    Jiang, Shuzhou; Xue, Hui; Counsell, Serena; Anjari, Mustafa; Allsop, Joanna; Rutherford, Mary; Rueckert, Daniel; Hajnal, Joseph V

    2007-01-01

    We present a methodology to achieve 3D high resolution in-utero fetal brain DTI that shows excellent ADC as well as promising FA maps. After continuous DTI scanning to acquire a repeated series of parallel slices with 15 diffusion directions, image registration is used to realign the images to correct for fetal motion. Once aligned, the diffusion images are treated as irregularly sampled data where each voxel is associated with an appropriately rotated diffusion direction, and used to estimate the diffusion tensor on a regular grid. The method has been tested successful on eight fetuses and has been validated on adults imaged at 1.5T.

  15. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission.

    Science.gov (United States)

    Wu, Xiaoping; Auerbach, Edward J; Vu, An T; Moeller, Steen; Lenglet, Christophe; Schmitter, Sebastian; Van de Moortele, Pierre-François; Yacoub, Essa; Uğurbil, Kâmil

    2018-03-30

    Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm 2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data. © 2018 International Society for Magnetic Resonance in Medicine.

  16. Digital atlas of the zebra finch (Taeniopygia guttata) brain: a high-resolution photo atlas.

    Science.gov (United States)

    Karten, Harvey J; Brzozowska-Prechtl, Agnieszka; Lovell, Peter V; Tang, Daniel D; Mello, Claudio V; Wang, Haibin; Mitra, Partha P

    2013-11-01

    We describe a set of new comprehensive, high-quality, high-resolution digital images of histological sections from the brain of male zebra finches (Taeniopygia guttata) and make them publicly available through an interactive website (http://zebrafinch.brainarchitecture.org/). These images provide a basis for the production of a dimensionally accurate and detailed digital nonstereotaxic atlas. Nissl- and myelin-stained brain sections are provided in the transverse, sagittal, and horizontal planes, with the transverse plane approximating the more traditional Frankfurt plane. In addition, a separate set of brain sections in this same plane is stained for tyrosine hydroxylase, revealing the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the songbird brain. For a subset of sagittal sections we also prepared a corresponding set of drawings, defining and annotating various nuclei, fields, and fiber tracts that are visible under Nissl and myelin staining. This atlas of the zebra finch brain is expected to become an important tool for birdsong research and comparative studies of brain organization and evolution. Copyright © 2013 Wiley Periodicals, Inc.

  17. Clinical Significance of Brain SPECT in Zipeprol Abusers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dai Ok; Kim, Jae Phil; Kim, Deog Yoon; Yang, Hyung In; Koh, Eun Mi; Kim, Kwang Won; Choi, Young Kil [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1993-03-15

    Drug abuse is widespread in worldwide and has been associated with neurologic complication. Zipeprol is one of drugs which been abused for psychological satisfaction in some adolescents. This agent is non-opioid antitussive agent, which is not legally considered as being capable of creating dependence or abuse liability at therapeutic serum levels. But it has been reported that acute or chronic overdose create neurologic complication such as convulsion as well as dependence. Recently we experienced six zipeprol abusers who admitted due to convulsion and variable neurologic symptoms. The aim of our study was to determine the role of Tc-99m- HMPAO brain SPECT in those patients. EEG and brain CT showed no abnormal finding, but brain SPECT showed focal or multiple perfusion abnormalities in frontal, parietal, occipital cortex, basal ganglia, thalamus and especially at temporal cortex. These results suggest that brain SPECT may be a useful diagnostic tool to evaluate the cerebral dysfunction induced by zipeprol abuse.

  18. Clinical Significance of Brain SPECT in Zipeprol Abusers

    International Nuclear Information System (INIS)

    Cho, Dai Ok; Kim, Jae Phil; Kim, Deog Yoon; Yang, Hyung In; Koh, Eun Mi; Kim, Kwang Won; Choi, Young Kil

    1993-01-01

    Drug abuse is widespread in worldwide and has been associated with neurologic complication. Zipeprol is one of drugs which been abused for psychological satisfaction in some adolescents. This agent is non-opioid antitussive agent, which is not legally considered as being capable of creating dependence or abuse liability at therapeutic serum levels. But it has been reported that acute or chronic overdose create neurologic complication such as convulsion as well as dependence. Recently we experienced six zipeprol abusers who admitted due to convulsion and variable neurologic symptoms. The aim of our study was to determine the role of Tc-99m- HMPAO brain SPECT in those patients. EEG and brain CT showed no abnormal finding, but brain SPECT showed focal or multiple perfusion abnormalities in frontal, parietal, occipital cortex, basal ganglia, thalamus and especially at temporal cortex. These results suggest that brain SPECT may be a useful diagnostic tool to evaluate the cerebral dysfunction induced by zipeprol abuse.

  19. Utility of 99mTc-GHA Brain SPECT in the grading of brain tumors

    International Nuclear Information System (INIS)

    Bhattacharya, Anish; Mittal, B.R.; Kumar, Ashok

    2004-01-01

    Full text: Brain tumors are of diverse histological types, the most common being derived from glial tissue. The clinical management and prognosis of brain tumor patients is dependent on accurate neuro-pathologic diagnosis and grading. Radiological imaging is not always a good modality for assessing the exact nature and grade of a malignant tumor. Magnetic resonance imaging (MRI) has a very high soft tissue resolution and is helpful in classifying the grade of tumor. Radionuclide imaging techniques that can reveal metabolic activity within tumor cells are very helpful in predicting the degree of malignancy. Usefulness of Tl-201 SPECT and FDG PET studies have been widely reported to evaluate malignant lesions by measuring increased regional glucose metabolism and amino acid uptake. 99mTc-GHA (Glucoheptonate), more or less analogous to 18F-FDG, may show increased glucose metabolism and help in grading tumors. This study was carried out to determine the utility of 99mTc-GHA SPECT for grading cerebral gliomas. Nineteen patients (12M, 7F) aged 22 to 51 years (36.1 ± 8.3) diagnosed clinically and radiologically to have a brain tumor were evaluated with 99mTc-GHA brain SPECT. All the patients had undergone CT/ MRI examination prior to the brain SPECT study. No patient had undergone surgery, radiation therapy or chemotherapy before the imaging studies. Brain SPECT was performed twice, i.e 40 min and 3 hours after intravenous administration of 20 mCi of Tc99m-GHA under a dual head SPECT gamma camera (Ecam, Siemens), with a low energy high-resolution collimator. A total of 128 frames of 30 seconds each, 64 per detector, were acquired in 128 x 128 matrix, with 360-degree rotation in step and shoot mode. Reconstruction of the SPECT data was done using standard software. Abnormal concentration of tracer at the tumor site was compared to normal uptake on the contralateral side, and ratios obtained for early (40 min) and delayed (3 hours) uptake of tracer. Retention ratio (RR), a

  20. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    relying on markers. Data-driven motion correction is problematic due to the physiological dynamics. Marker-based tracking is potentially unreliable, and it is extremely hard to validate when the tracking information is correct. The motion estimation is essential for proper motion correction of the PET......This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...

  1. Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models

    Science.gov (United States)

    Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.

    2014-05-01

    Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.

  2. Role of brain SPECT in epilepsy exploration

    International Nuclear Information System (INIS)

    Biraben, A.; Bernard, AM.

    1996-01-01

    The management of epileptic patients is currently developing in relation with the introduction of video EEG and the opening of medical centers dedicated to epilepsy. The role of SPECT is now well established to assess the temporal and spatial dynamic phenomena during seizures. Ictal SPECT has technical and organisational requirements but is a very sensitive method, which appears to be superior to other available imaging techniques. (author)

  3. SPECT for smokers brain perfusion evaluation; SPECT para avaliacao da perfusao cerebral em fumantes

    Energy Technology Data Exchange (ETDEWEB)

    Maliska, C.M.; Martins, E.F.; Barros, D.S.; Lopes, M.M.S.; Lourenco, C.; Goncalves, S.; Goncalves, M.B.; Miranda, M.M.B.G.; Neto, L.M.; Penque, E.; Antonucci, J.B. [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil)

    2002-07-01

    Cigarette smoking increases brain stroke risk, however,five to fifteen years after ceasing this habit, brain perfusion recovers normal pattern. We propose to compare brain perfusion patterns performing brain SPECT scans of smokers and non-smokers. Thirteen volunteers age range 20-30 years old) composed of six non-smokers and seven smokers were studied by brain scans (SPECT).We used ECD- {sup 99m} Tc radiolabelled as recommended by the manufacturer. All patients received 740 MBq of the radiopharmaceutical through intravenous injection, with their eyes opened and their ears unplugged, in a quiet room. We used a one head SPECT camera ( General Electric/ StarCam 4000 and Siemens/ E.Cam) with low-energy ultrahigh resolution collimator. Imaging begin 40 minutes after tracer injection. For reconstruction we used a Butterworth filter.The preliminary results showed brain perfusion deficit areas on five of the smokers while all non- smokers had normal brain perfusion scans. We believe that smoking increases the possibility of brain perfusion deficits. (author)

  4. Accelerated high-resolution 3D magnetic resonance spectroscopic imaging in the brain At 7 T

    International Nuclear Information System (INIS)

    Hangel, G.

    2015-01-01

    With the announcement of the first series of magnetic resonance (MR) scanners with a field strength of 7 Tesla (T) intended for clinical practice, the development of high-performance sequences for higher field strengths has gained importance. Magnetic resonance spectroscopic imaging (MRSI) in the brain currently offers the unique ability to spatially resolve the distribution of multiple metabolites simultaneously. Its big diagnostic potential could be applied to many clinical protocols, for example the assessment of tumour treatment or progress of Multiple Sclerosis. Moving to ultra-high fields like 7 T has the main benefits of increased signal-to-noise ratio (SNR) and improved spectral quality, but brings its own challenges due to stronger field inhomogeneities. Necessary for a robust, flexible and useful MRSI sequence in the brain are high resolutions, shortened measurement times, the possibility for 3D-MRSI and the suppression of spectral contamination by trans-cranial lipids. This thesis addresses these limitations and proposes Hadamard spectroscopic imaging (HSI) as solution for multi-slice MRSI, the application of generalized autocalibrating partially parallel acquisition (GRAPPA) and spiral trajectories for measurement acceleration, non-selective inversion recovery (IR) lipid-suppression as well as combinations of these methods. Further, the optimisation of water suppression for 7 T systems and the acquisition of ultra-high resolution (UHR)-MRSI are discussed. In order to demonstrate the clinical feasibility of these approaches, MRSI measurement results of a glioma patient are presented. The discussion of the obtained results in the context of the state-of-art in 7 T MRSI in the brain, possible future applications as well as potential further improvements of the MRSI sequences conclude this thesis. (author) [de

  5. 99mTc HM-PAO brain perfusion SPECT in brain death

    International Nuclear Information System (INIS)

    Bonetti, M.G.; Ciritella, P.; Valle, G.; Perrone, E.

    1995-01-01

    We have easily carried out and interpreted 99m Tc HM-PAO SPECT in a consecutive series of 40 comatose patients with brain damage, without discontinuing therapy. Brain death was diagnosed in 7 patients, by recognising absence of brain perfusion, as shown by no intracranial radionuclide uptake. In patients in whom perfusion was seen on brain scans, HM-PAO SPECT improved assessment of the extent of injury, which in general was larger than suggested by CT. (orig.)

  6. In vivo quantification by SPECT of [{sup 123}I] ADAM bound to serotonin transporters in the brains of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.-X. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hwang, J.-J. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hsieh, J.-F. [Department of Nuclear Medicine, Chi-Mei Foundation Medical Center, Yungkang City 710, Taiwan (China); Chen, J.-C. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jcchen@ym.edu.tw; Chou, Y.-T. [Institute of Physiology, National Yang-Ming University, Taipei 112, Taiwan (China); Tu, K.-Y. [Department of Nuclear Medicine, Mackey Memorial Hospital, Taipei, Taiwan 104 (China); Wey, S.-P. [Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Taoyuan, Taiwan 333 (China); Ting Gann [Institute of Nuclear Energy Research, Tao- Yuan 335, Taiwan (China)

    2004-11-01

    [{sup 123}I] ADAM showed high affinity, high specificity, and favorable kinetics. The time-activity curve showed that the accumulation of the [{sup 123}I] ADAM in the brain stem reached a maximum between 90 and 100 min postinjection. The microautoradiography provides high-resolution images of the rabbit brain. Our results for the [{sup 123}I] ADAM biodistribution in the rabbit brains demonstrate that this new radioligand is suitable as a selective SPECT imaging agent for SERTs.

  7. In vivo quantification by SPECT of [123I] ADAM bound to serotonin transporters in the brains of rabbits

    International Nuclear Information System (INIS)

    Ye, X.-X.; Hwang, J.-J.; Hsieh, J.-F.; Chen, J.-C.; Chou, Y.-T.; Tu, K.-Y.; Wey, S.-P.; Ting Gann

    2004-01-01

    high affinity, high specificity, and favorable kinetics. The time-activity curve showed that the accumulation of the [ 123 I] ADAM in the brain stem reached a maximum between 90 and 100 min postinjection. The microautoradiography provides high-resolution images of the rabbit brain. Our results for the [ 123 I] ADAM biodistribution in the rabbit brains demonstrate that this new radioligand is suitable as a selective SPECT imaging agent for SERTs

  8. Brain abscess uptake at TI-201 brain SPECT

    International Nuclear Information System (INIS)

    Lee, Won Hyoung; Han, Eun Ji; Yoo, Ie Ryung; Chung, Yong An; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Choi, Yeong Jin

    2007-01-01

    A 22-year-old woman with a history of acute lymphoblastic leukemia was hospitalized for headache and vomiting CT scan showed a well-defined, ring like enhancing mass in the left frontal lobe with surrounding edema and midline shift. Magnetic resonance imaging demonstrated a round homogeneous mass with a ring of enhancement in the left frontal lobe. TI-201 brain SPECT showed increased focal uptake coinciding with the CT and MRI abnormality. Aspiration of the lesion performed through a burr hole yielded many neutrophils, a few lymphocytes and histiocytes with some strands of filamentous microorganism-like material. Modified AFB stained negative for norcardia. Gram stain showed a few white blood cells and no microorganism. Antibiotics were started and produced a good clinical response. After one month, CT scan showed markedly reduction in size and extent was observed

  9. Brain abscess uptake at TI-201 brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Han, Eun Ji; Yoo, Ie Ryung; Chung, Yong An; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Choi, Yeong Jin [The Catholic University of Korea, Seoul (Korea, Republic of)

    2007-08-15

    A 22-year-old woman with a history of acute lymphoblastic leukemia was hospitalized for headache and vomiting CT scan showed a well-defined, ring like enhancing mass in the left frontal lobe with surrounding edema and midline shift. Magnetic resonance imaging demonstrated a round homogeneous mass with a ring of enhancement in the left frontal lobe. TI-201 brain SPECT showed increased focal uptake coinciding with the CT and MRI abnormality. Aspiration of the lesion performed through a burr hole yielded many neutrophils, a few lymphocytes and histiocytes with some strands of filamentous microorganism-like material. Modified AFB stained negative for norcardia. Gram stain showed a few white blood cells and no microorganism. Antibiotics were started and produced a good clinical response. After one month, CT scan showed markedly reduction in size and extent was observed.

  10. Study on a high resolution positron emission tomography scanner for brain study

    International Nuclear Information System (INIS)

    Nohara, N.; Tomitani, T.; Yamamoto, M.; Murayama, H.; Tanaka, E.

    1990-01-01

    The spatial resolution of positron emission tomography (PET) scanners is usually limited by the finite size of crystals such as bismuth germanate (BGO). To attain high resolution as well as high sensitivity, it is essential to use a large number of small BGO crystals arranged in close-packing on circular rings. In developing high resolution PET scanners, however, there are two physical factors limiting the spatial resolution. One is the finite range of positrons before annihilation and the other the deviation from 180 degrees of annihilation photons. The effect of the factors on the spatial resolution has been evaluated for positron-emitting sources as a function of detector ring radius. A high resolution PET scanner has been developed for brain study, aiming to have spatial resolutions as high as less than 4-mm FWHM in tomographic plane and less than 6-mm FWHM in axial direction at the detector ring center. For the goal of the high resolutions a multi-segment type of photomultiplier tubes has been specially designed and developed, which allows one tube to be directly coupled by four BGO crystals. The scanner consists of five detector rings of 47-cm in diameter, using all 1200 BGO crystals each measuring 5 mm x 12 mm x 30 mm. The scanner provides simultaneous 9 images by combination of in-plane and cross-plane, offering a 24-cm dia. x7.4-cm field-of-view. Physical performance of the scanner was investigated. At the ring center, the spatial resolution in the tomographic plane was measured to be 3.5-mm FWHM. The axial resolution was measured to be 5.7-mm FWHM for in-plane and 5.3-mm FWHM for cross-plane. Sensitivity for a 20-cm dia. uniform source was measured to be 9.5 kcps/μCi/ml for in-plane and 15.3 kcps/μCi/ml for cross-plane. (J.P.N.)

  11. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain.

    Science.gov (United States)

    Ella, Arsène; Delgadillo, José A; Chemineau, Philippe; Keller, Matthieu

    2017-02-15

    The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. SPECT I-123 iodoamphetamine brain imaging

    International Nuclear Information System (INIS)

    Tikofsky, R.S.; Liebman, A.; Hellman, R.S.; Collier, B.D.; Voslar, A.M.

    1988-01-01

    SPECT/IMP studies of 100 patients with a presumptive diagnosis of dementia were performed with a rotating gamma camera 15-20 minutes after intravenous injection of 3.5 mCi of IMP. Of these studies, 43 were interpreted as normal for age; 28 demonstrated decreased but not absent activity bilaterally in posterior parietal/occipital regions (consistent with Alzheimer-type dementia); 28 showed unilateral abnormalities in regional cerebral blood flow consistent with cerebrovascular disease; and one had mixed findings. Based on SPECT/IMP results, further diagnostic testing and/or management would be altered for 72% of patients, suggesting that SPECT/IMP provides valuable data, not available on clinical examination, to guide the evaluation and management of demented patients

  13. Brain SPECT in children; Explorations scintigraphiques en neurologie et psychiatrie de l`enfant

    Energy Technology Data Exchange (ETDEWEB)

    Guyot, M. [Hopital Pellegrin, 33 - Bordeaux (France); Baulieu, J.L. [Hopital Bretonneau, 37 - Tours (France)

    1996-12-31

    Brain SPECT in child involves specific trends regarding the patient cooperation, irradiation, resolution and especially interpretation because of the rapid scintigraphic modifications related to the brain maturation. In a general nuclear medicine department, child brain SPECT represents about 2 % of the activity. The choice indications are the perfusion children: thallium and MIBI in brain tumours, pharmacological and neuropsychological interventions. In the future, brain dedicated detectors and new radiopharmaceuticals will promote the development of brain SPECT in children. (author). 18 refs.

  14. Brain SPECT in childhood; Temp cerebrale chez l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F; Saliba, E; Prunier, C; Baulieu, F; Besnard, J C; Guilloteau, D; Baulieu, J L [Hopital Bretonneau, Service de Medecine Nucleaire, Unite Inserm 316, 37 - Tours (France)

    2001-04-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  15. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    Science.gov (United States)

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    .7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei.

    Science.gov (United States)

    Pauli, Wolfgang M; Nili, Amanda N; Tyszka, J Michael

    2018-04-17

    Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T 1 - and T 2 - weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain.

  17. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  18. Preliminary application of brain perfusion SPECT imaging in schizophrenia

    International Nuclear Information System (INIS)

    Wu Zhixing; Guo Chanliu; Li Xingbao; Liang Rongxiang; Zhao Jun; Yan Tingxiu

    1996-01-01

    The clinical value of 99m Tc-ECD brain perfusion SPECT imaging was evaluated in patients with schizophrenia. 32 patients with schizophrenia and 21 normal controls were analyzed with 99m Tc-ECD SPECT. 93.8% (30/32) of the patients showed decreased regional cerebral blood flow (rCBF). There was normal rCBF in controls. In the patient group rCBF decreased significantly in bilateral frontal lobes, left temporal lobe and right basal ganglion. The rCBF of left temporal lobe was significantly lower than that of right temporal lobe. The decreasing rCBF was not significantly related to previous treatment and duration of illness. 99m Tc-ECD SPECT is useful for the study and diagnosis of patients with schizophrenia

  19. A correlation of clinical, MRI and brain SPECT in dementia

    International Nuclear Information System (INIS)

    Shelley, S.; Indirani, M.; Gokhale, S.; Anirudhan, N.; Sivakumar, M.R.; Jaganathan, K.

    2004-01-01

    Background: Dementia is a clinical syndrome characterised by acquired impairment in multiple neuropsycologic and behavior domains including memory, language, speech, visuospatial ability, cognition and mood/personality. Dementia produces deficits in perfusion reflecting decreased metabolic needs. Neuroimaging techniques help in determining whether the cognitive symptoms are organic and in which pattern of cognitive loss the patient may evolve. AIM: To differentiate various types of Dementia, based on the regional perfusion abnormalities seen in Brain SPECT and correlate this with Clinical and MRI findings. Material and methods: Patients suffering from memory impairment and memory loss were referred to our department for Brain SPECT as a part of work up for Dementia. They had undergone a detailed clinical examination, psychometry, mini mental status examination (MMSE), memory/cognitive testing and an MRI. Brain SPECT was done after injecting Tc 99m ECD (Ethylene Cysteinate Dimer ) and imaging after 45 minutes. The images obtained were reconstructed in a conventional way. The various patterns of perfusion abnormalities seen in the SPECT images was studied and correlated with MRI and clinical findings. The patients were thus classified as having Multi Infarct Dementia, Alzheimer's disease, Fronto-Temporal Dementia and Mixed variety. Results: Twenty One Patients were included in our study from February 2003 to February 2004. The mean age of the patients was 73 years ( 37 to 81). 15 were males and 6 were females. Out of 21 patients, 12 had Multi Infarct Dementia, 4 had Alzheimer's disease, 1 had Fronto- Temporal Dementia and 4 had Mixed variety. Conclusion: Brain SPECT aids in substantiating the clinical findings and in correlation with MRI helps in distinguishing various types of Dementia and thus has prognostic implications and helps in instituting early appropriate treatment to the patient. In our study, the majority of the patients have Multi Infarct Dementia

  20. Brain SPECT with 123I-isopropyl amphetamine in epilepsy

    International Nuclear Information System (INIS)

    Biersack, H.J.; Reske, S.N.; Rasche, A.; Reichmann, K.; Winkler, C.

    1983-01-01

    Ten patients were studied with N-isopropyl I-123 p-iodoamphetamine. Single photon emission computed tomography (SPECT) was carried out by hand of a rotating gamma camera system (Gammatome T9000/CGR, high resolution collimator). During 1 rotation (360 0 ) 64 frames (4k matrix) were acquired within 20 min 1 hour after injection of 6.5 mCi I-123 labeled amphetamine. The content of I-124 was less than 2%. After reconstruction of transverse slices coronar and sagittal reconstructions were rapidly performed using an array processor. Nine patients suffered from epilepsy and one from severe migraine. Excellent differentiation between gray and white matter of the cerebral cortex and the basal ganglia was evident in all of the cases. In 2 out of 3 patients with epilepsy and negative CT results SPECT revealed circumscribed areas with increased amphetamine uptake in accordance with the EEG findings. In 4 out of 6 cases with positive CT findings SPECT lesions with diminished amphetamine uptake could be established. One patient with severe migraine showed focal increased amphetamine uptake in accordance with the respective clinical results. (orig.)

  1. Clinical significance of I-123 IMP brain SPECT in children with brain diseases

    International Nuclear Information System (INIS)

    Takishima, Teruo; Machida, Kikuo; Honda, Norinari; Mamiya, Toshio; Takahashi, Taku; Kamano, Tsuyoshi; Hasegawa, Noriko

    1990-01-01

    Single photon emission computed tomography (SPECT) of the brain using N-isopropyl p-I-123-iodoamphetamine (I-123 IMP) was performed in 43 children with suspected brain diseases. Forty-three children (25 males and 18 females), with an age range of 24 days-15 years (mean: 6.6 years), were included in the study. Six patients were subsequently diagnosed as normal. Early SPECT of the brain was performed 30 minutes after intravenous administration of 74-111 MBq (2-3 mCi) I-123 IMP using a rotating gamma camera equipped with a 30-degree slant hole and medium energy collimator. Transverse images were reconstructed by Shepp-Logan filtered back projection method with attenuation correction after spatial filtering using an 8th order Butterworth-Wiener filter. Findings of I-123 IMP SPECT were compared with those of X-ray computed tomography (CT) and electroencephalography (EEG). The results showed that in I-123 IMP SPECT, abnormality was found in 30 out of 37 children with brain diseases. The incidence of abnormal findings in the 37 patients was 81% in I-123 IMP SPECT, 61% in X-ray CT, and 78% in EEG; in both cryptogenic and secondary epilepsy, the incidence of abnormality was higher in I-123 IMP SPECT than in X-ray CT. (70% and 94% vs 50% and 81% respectively), and epileptic foci detected by EEG did not correspond with defects found using I-123 IMP SPECT in 27% of the patients; and in asphyxiated infants, a high incidence of abnormality was observed on both I-123 IMP SPECT (86%) and X-ray CT (86%). In conclusion, I-123 IMP SPECT is a clinically useful examination in children with brain disease. (author)

  2. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    Science.gov (United States)

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  3. The need of appropriate brain SPECT templates for SPM comparisons

    International Nuclear Information System (INIS)

    Morbelli, S.; Altrinetti, V.; Piccardo, A.; Rodriguez, G.; Brugnolo, A.; Nobili, F.; Mignone, A.; Pupi, A.; Koulibaly, P.M.

    2008-01-01

    Statistical parametric mapping (SPM) is used worldwide to compare brain perfusion single photon emission computed tomography (SPECT) data. The default template within the SPM package used for SPECT image normalization includes images of a group of healthy subjects studied with 99m TcHMPAO. Since [ 99m Tc] HMPAO and [ 99m Tc] ECD have shown to distribute differently in SPECT studies, we formulated the hypothesis that comparing set of [ 99m Tc]ECD data normalized by means of a [ 99m Tc]HMPAO template may lead to incorrect results. A customized [ 99m Tc]ECD template was built with SPECT and magnetic resonance imaging (MRI) images of 22 neurologically healthy women. Then, two sets of subjects, i.e. a group of patients with very early Alzheimer's disease (eAD) and a matched control group, studied by means of [ 99m Tc]ECD SPECT, were chosen for comparisons. The same statistical approach (t-test between eAD patients and controls and correlation analysis between brain SPECT and a cognitive score) was applied twice, i.e. after normalization with either the default [ 99m Tc]HMPAO template or the customized [ 99m Tc]ECD template. In the comparison between eAD and controls, a cluster of difference in the posterior-cingulate gyrus of both hemispheres was only highlighted when using the customized [ 99m Tc]ECD template, but was missed when using the default [ 99m Tc]HMPAO template. In the correlation between brain perfusion and a cognitive score, the significant cluster was more significant and far more extended, also including the right superior temporal gyrus, using the customized [ 99m Tc]ECD template than using the default [ 99m Tc]HMPAO template. These data suggest the need of customized, radiopharmaceutical-matched SPECT templates to be used within the SPM package. The present customized [ 99m Tc]ECD template is now freely available on the web. (authors)

  4. Neural basis for brain responses to TV commercials: a high-resolution EEG study.

    Science.gov (United States)

    Astolfi, Laura; De Vico Fallani, F; Cincotti, F; Mattia, D; Bianchi, L; Marciani, M G; Salinari, S; Colosimo, A; Tocci, A; Soranzo, R; Babiloni, F

    2008-12-01

    We investigated brain activity during the observation of TV commercials by tracking the cortical activity and the functional connectivity changes in normal subjects. The aim was to elucidate if the TV commercials that were remembered by the subjects several days after their first observation elicited particular brain activity and connectivity compared with those generated during the observation of TV commercials that were quickly forgotten. High-resolution electroencephalogram (EEG) recordings were performed in a group of healthy subjects and the cortical activity during the observation of TV commercials was evaluated in several regions of interest coincident with the Brodmann areas (BAs). The patterns of cortical connectivity were obtained in the four principal frequency bands, Theta (3-7 Hz), Alpha (8-12 Hz), Beta (13-30 Hz), Gamma (30-40 Hz) and the directed influences between any given pair of the estimated cortical signals were evaluated by use of a multivariate spectral technique known as partial directed coherence. The topology of the cortical networks has been identified with tools derived from graph theory. Results suggest that the cortical activity and connectivity elicited by the viewing of the TV commercials that were remembered by the experimental subjects are markedly different from the brain activity elicited during the observation of the TV commercials that were forgotten. In particular, during the observation of the TV commercials that were remembered, the amount of cortical spectral activity from the frontal areas (BA 8 and 9) and from the parietal areas (BA 5, 7, and 40) is higher compared with the activity elicited by the observation of TV commercials that were forgotten. In addition, network analysis suggests a clear role of the parietal areas as a target of the incoming flow of information from all the other parts of the cortex during the observation of TV commercials that have been remembered. The techniques presented here shed new light on

  5. Technetium SPECT agents for imaging heart and brain

    International Nuclear Information System (INIS)

    Linder, K.E.

    1990-01-01

    One major goal of radiopharmaceutical research has been the development of technetium-based perfusion tracers for SPECT imaging of the heart and brain. The recent clinical introduction of the technetium complexes HM-PAO, ECD and DMG-2MP for brain imaging, and of CDO-MEB and MIBI for heart imaging promises to revolutionize the field of nuclear medicine. All of these agents appear to localize in the target tissue in proportion to blood flow, but their mechanisms of localization and/or retention may differ quite widely. In this talk, a survey of the new technetium SPECT agents will be presented. The inorganic and biological chemistry of these complexes, mechanisms of uptake and retention, QSAR studies, and potential clinical applications are discussed

  6. Evaluation of role of brain SPECT in diagnosis of post stroke dementia

    International Nuclear Information System (INIS)

    Yousepour, G.; Alavi, M.

    2003-01-01

    Post stroke dementia is one of the most common complications of stroke that is preventable and relatively treatable too. The purpose of the study is comparison between the positive findings in the brain CT scan and brain perfusion SPECT. 15 patients who were complicated by dementia after cerebrovascular accident and also 5 patients as a control group enrolled in this study. Brain CT scan and brain SPECT were performed during at most one week after stroke. Abnormal findings in both brain CT scan and SPECT were seen in 46% of patients. Brain CT scan disclosed more abnormal findings compared to brain SPECT (33.3%). While brain SPECT findings were more information than brain CT scan (20%) this study is indicating that brain CT scan and the brain SPECT concomitantly for each other in better diagnosis of post stroke dementia. We did not find any specific diagnostic pattern in brain SPECT of patients suffering from post stroke dementia. The low quality of brain SPECT in spite of uniformity of gamma camera may be suggestive of low quality of Iran produced ECD kit that needs further evaluation

  7. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  8. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    Shibata, Yasushi; Akimoto, Manabu; Matsushita, Akira; Yamamoto, Tetsuya; Takano, Shingo; Matsumura, Akira

    2010-01-01

    123 I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123 I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  9. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible

    International Nuclear Information System (INIS)

    Booij, Jan; Bruin, Kora de; Win, Maartje M.L. de; Lavini, Cristina Mphil; Heeten, Gerard J. den; Habraken, Jan

    2003-01-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand 123 I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [ 123 I]FP-CIT binding ratios of the test/retest studies were 1.7 ± 0.2 and 1.6 ± 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [ 123 I]FP-CIT binding ratios in rats is highly reproducible

  10. Internet-Enabled High-Resolution Brain Mapping and Virtual Microscopy

    OpenAIRE

    Mikula, Shawn; Trotts, Issac; Stone, James M.; Jones, Edward G.

    2007-01-01

    Virtual microscopy involves the conversion of histological sections mounted on glass microscope slides to high resolution digital images. Virtual microscopy offers several advantages over traditional microscopy, including remote viewing and data-sharing, annotation, and various forms of data-mining.

  11. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Science.gov (United States)

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  12. I-123 iodoamphetamine brain SPECT of leukoencephalopathy in dementia

    International Nuclear Information System (INIS)

    Kramer, E.L.; George, A.E.; Sanger, J.J.; De Leon, M.J.

    1987-01-01

    Six elderly patients with dementia underwent I-123 iodoamphetamine (IMP) SPECT and CT or MR imaging of the brain. In five of six, CT or MR imaging showed changes in the temporal lobes consistent with Alzheimer disease (AD). IMP scans in these five showed temporal and parietal defects. In five of six, CT or MR imaging showed white-matter lucencies and/or basal ganglia infarcts. In these, IMP defects corresponded to focal CT abnormalities but were more extensive and also involved structural normal adjacent cortex. IMP demonstrates the deficits of AD and leukoencephalopathy and may help clarify the contribution of small-vessel disease to dementia in the elderly

  13. Development of a new statistical evaluation method for brain SPECT images

    International Nuclear Information System (INIS)

    Kawashima, Ryuta; Sato, Kazunori; Ito, Hiroshi; Koyama, Masamichi; Goto, Ryoui; Yoshioka, Seiro; Ono, Shuichi; Sato, Tachio; Fukuda, Hiroshi

    1996-01-01

    The purpose of this study was to develop a new statistical evaluation method for brain SPECT images. First, we made normal brain image databases using 99m Tc-ECD and SPECT in 10 normal subjects as described previously. Each SPECT images were globally normalized and anatomically standardized to the standard brain shape using Human Brain Atlas (HBA) of Roland et al. and each subject's X-CT. Then, mean and SD images were calculated voxel by voxel. For the next step, 99m Tc-ECD SPECT images of a patient were obtained, and global normalization and anatomical standardization were performed as the same way. Then, a statistical map was calculated as following voxel by voxel; (P-Mean)/SDx10+50, where P, mean and SD indicate voxel value of patient, mean and SD images of normal databases, respectively. We found this statistical map was helpful for clinical diagnosis of brain SPECT studies. (author)

  14. HM-PAO-SPECT of the brain in a new-born child

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, F.; Biersack, H.J.; Bindl, L.

    1988-08-01

    HM-PAO-SPECT of the brain was performed in a 14 days old new-born child. Diencephalon, brain stem and cerebellum showed a relative high tracer accumulation; there was nearly no accumulation in the neocortex.

  15. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space.

    Science.gov (United States)

    Feng, Lei; Jeon, Tina; Yu, Qiaowen; Ouyang, Minhui; Peng, Qinmu; Mishra, Virendra; Pletikos, Mihovil; Sestan, Nenad; Miller, Michael I; Mori, Susumu; Hsiao, Steven; Liu, Shuwei; Huang, Hao

    2017-12-01

    Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.

  16. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  17. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    Minoshima, Satoshi; Maruno, Hirotaka; Yui, Nobuharu

    1993-01-01

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99m Tc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  18. The Track of Brain Activity during the Observation of TV Commercials with the High-Resolution EEG Technology

    Directory of Open Access Journals (Sweden)

    Laura Astolfi

    2009-01-01

    Full Text Available We estimate cortical activity in normal subjects during the observation of TV commercials inserted within a movie by using high-resolution EEG techniques. The brain activity was evaluated in both time and frequency domains by solving the associate inverse problem of EEG with the use of realistic head models. In particular, we recover statistically significant information about cortical areas engaged by particular scenes inserted within the TV commercial proposed with respect to the brain activity estimated while watching a documentary. Results obtained in the population investigated suggest that the statistically significant brain activity during the observation of the TV commercial was mainly concentrated in frontoparietal cortical areas, roughly coincident with the Brodmann areas 8, 9, and 7, in the analyzed population.

  19. Diamox-enhanced brain SPECT in cerebrovascular diseases

    International Nuclear Information System (INIS)

    Choi, Yun Young

    2007-01-01

    Acute event in cerebrovascular disease is the second most common cause of death in Korea following cancer, and it can also cause serious neurologic deficits. Understanding of perfusion status is important for clinical applications in management of patients with cerebrovascular diseases, and then the attacks of ischemic neurologic symptoms and the risk of acute events can be reduced. Therefore, the normal vascular anatomy of brain, various clinical applications of acetazolamide-enhanced brain perfusion SPECT, including meaning and role of assessment of vascular reserve in carotid stenosis before procedure, in pediatric Moyamoya disease before and after operation, in prediction of development of hyperperfusion syndrome before procedure, and in prediction of vasospasm and of prognosis in subarachnoid hemorrhage were reviewed in this paper

  20. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury

    OpenAIRE

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-01-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [123I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand...

  1. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, Elke R. [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Maderwald, Stefan [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Linn, Jennifer; Bochmann, Katja [LMU Munich, Department of Neuroradiology, Munich (Germany); Dassinger, Benjamin [Medical University Innsbruck, Department of Neuroradiology, Innsbruck (Austria); Justus-Liebig-University Giessen, Department of Neuroradiology, Giessen (Germany); Forsting, Michael [University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital, University Duisburg-Essen, Departments of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2014-03-15

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  2. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    International Nuclear Information System (INIS)

    Gizewski, Elke R.; Maderwald, Stefan; Linn, Jennifer; Bochmann, Katja; Dassinger, Benjamin; Forsting, Michael; Ladd, Mark E.

    2014-01-01

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures. (orig.)

  3. Implementation and performance of an optical motion tracking system for high resolution brain PET imaging

    Science.gov (United States)

    Lopresti, B. J.; Russo, A.; Jones, W. F.; Fisher, T.; Crouch, D. G.; Altenburger, D. E.; Townsend, D. W.

    1999-12-01

    Head motion during PET scanning is widely regarded as a source of image degradation and resolution loss. Recent improvements in the spatial resolution of state-of-the-art tomographs may be compromised by patient motion during scanning, as these high resolution data will be increasingly susceptible to smaller movements of the head. The authors have developed an opto-electronic motion tracking system based on commercially-available technology that is capable of very accurate real-time measurements of the position and orientation of the patient's head. These positions are transformed to the reference frame of the PET scanner, and could potentially be used to provide motion correction of list-mode emission data on an event-by-event basis.

  4. 99mTc-HMPAO Brain SPECT in Patients with Post-Traumatic Organic Mental Disorder

    International Nuclear Information System (INIS)

    Lee, Kang Wook; Lee, Dong Jin; Shong, Min Ho; Kang, Min Hee; Ghi, Ick Sung; Shin, Young Tai; Ro, Heung Kyu

    1994-01-01

    It is well known that 99m Tc-HMPAO brain SPECT can reflect the functional lesions better than X-ray computerized tomography(CT) and magnetic resonance imaging(MRI) in the cerebral disorders. In order to evaluate the clinical utilities of 99m Tc-HMPAO brain SPECT in patients with post-traumatic chronic organic mental disorder(OMD). We included 28 patients diagnosed as OMD in department of psychiatry after traumatic head injury. And we compared the results of 99m Tc-HMPAO SPECT with those of MRI, EEG and MINI mental status examination(MMSE). The results were as follows 1) All patients diagnosed as OMD showed diffuse or focal decreased cerebral perfusion on 99m Tc-HMPAO SPECT. 2) Most frequent lesion on brain 99m Tc-HMPAO SPECT was decreased perfusion on both frontal lobe. And most frequent lesion on brain 99m Tc-HMPAO SPECT was decreased perfusion on both frontal lobe. And most frequent lesion on brain 99m Tc-HMPAO SPECT showing normal brain MRI result was also decreased both frontal perfusion. 3) Eight of 28 patients showed focal brain MRI lesions(4 small frontal hygroma, 3 small cerebral infarction and 1 cerebellar encephalomalacia) which were not detected in brain 99m Tc-HMPAO SPECT. 4) The patients showing less than 20 points on MMSE disclosed abnormal results of EEG more frequently than those disclosing more than 20 points. In conclusion, we think that 99m Tc-HMPAO brain SPECT is sensitive method to detect functional lesions of the brains in patients with chronic post-traumatic organic mental disorder.

  5. Comparison of brain perfusion SPECT and MRI findings in children with neuronal ceroid-lipofuscinosis and in their families

    International Nuclear Information System (INIS)

    Sayit, E.; Yorulmaz, I; Gumuser, F.G.; Dirik, E.; Bekis, R.; Kaya, G.; Durak, H.

    2002-01-01

    Neuronal ceroid-lipofuscinoses (NCL) are among the progressive encephalopathies of childhood that are inherited in an autosomal recessive manner. In this study we specifically aimed to investigate any white-matter changes in the carriers (parents) and the healthy siblings of individuals with neuronal ceroid lipofuscinosis disease and whether we may be able to predict the occurrence of any neurological symptoms in healthy children in the future thus enabling early management. Since the NCLs are genetically determined diseases, we investigated fifteen individuals in three families that had diseased children of the juvenile type, with brain perfusion SPECT and MRI. Brain perfusion SPECT was performed after administering 222-555 MBq (6-15 mCi) Tc-99m hexamethyl-propylene amine oxime (HMPAO) intravenously in a dimmed and quiet room. Imaging was performed at least one hour after injection, with a three headed gamma camera equipped with high resolution collimators. A Metz filter (FWHM: 11 mm) was used for processing. Cranial MRI was performed with an imager operating at 1.5 Tesla. Spin-echo T1- and T2-weighted and FLAIR slices were obtained for each individual. In all of the five diseased children we observed pathologic findings both on MRI and Tc-99m HMPAO SPECT. The findings on MRI were mainly features of cerebral and cerebellar atrophy and the observations on Tc-99m HMPAO SPECT were regional perfusion abnormalities. We observed some structural abnormalities on MRI in four of the parents and two of the four healthy siblings. We also noted perfusion abnormalities on Tc-99m HMPAO SPECT in two of the parents and two of the healthy siblings. Because the disease is inherited in an autosomal recessive manner, the parents and the healthy siblings were not supposed to exhibit any demonstrable brain lesions, but the brain perfusion SPECT and MRI examinations clearly revealed multiple lesions in some of the parents and healthy siblings. Detailed neurological examinations of these

  6. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2014-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain. PMID:24367107

  7. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    OpenAIRE

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2013-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bu...

  8. Evaluation of general-purpose collimators against high-resolution collimators with resolution recovery with a view to reducing radiation dose in myocardial perfusion SPECT: A preliminary phantom study.

    Science.gov (United States)

    Armstrong, Ian S; Saint, Kimberley J; Tonge, Christine M; Arumugam, Parthiban

    2017-04-01

    There is a growing focus on reducing radiation dose to patients undergoing myocardial perfusion imaging. This preliminary phantom study aims to evaluate the use of general-purpose collimators with resolution recovery (RR) to allow a reduction in patient radiation dose. Images of a cardiac torso phantom with inferior and anterior wall defects were acquired on a GE Infinia and Siemens Symbia T6 using both high-resolution and general-purpose collimators. Imaging time, a surrogate for administered activity, was reduced between 35% and 40% with general-purpose collimators to match the counts acquired with high-resolution collimators. Images were reconstructed with RR with and without attenuation correction. Two pixel sizes were also investigated. Defect contrast was measured. Defect contrast on general-purpose images was superior or comparable to the high-resolution collimators on both systems despite the reduced imaging time. Infinia general-purpose images required a smaller pixel size to be used to maintain defect contrast, while Symbia T6 general-purpose images did not require a change in pixel size to that used for standard myocardial perfusion SPECT. This study suggests that general-purpose collimators with RR offer a potential for substantial dose reductions while providing similar or better image quality to images acquired using high-resolution collimators.

  9. Evaluation of distance-dependent resolution compensation in brain SPECT

    International Nuclear Information System (INIS)

    Badger, D.P.; Barnden, L.R.

    2010-01-01

    Full text: Conventional SPECT reconstruction assumes that the volume of response for each collimator hole is a cylinder, but due to the finite depth of the holes, the volume of response is actually cone shaped. This leads to a loss of resolution as the distance from the collimator face is increased. If distance-dependent resolution compensation (DRC) is incorporated into an iterative reconstruction algorithm, then some of the lost resolution can be recovered (T Yokoi, H Shinohara and H Onishi. 2002, Ann Nuc Med, 16, 11-18). ORC has recently been included in some commercial reconstruction software, and the aim of this study was to assess whether the significantly increased reconstruction processing time can be justified for clinical or for research purposes. HMPAO brain scans from 104 healthy subjects were reconstructed using iterative OSEM, with and without ORC. A voxel based iterative sensitivity (VBIS) technique was used for gain correction in the scans. A Statistical Parametric Mapping (SPM) analysis found the statistical strength of the SPECT aging effect increased when the non-DRC image set was compared to the images with ORC, probably due to improvement in the imaging of partial volume effects when the interhemispheric fissure and sulci enlarge with age (L Barnden, S Behin Ain, R Kwiatek, R Casse and L Yelland. 2005, Nuc Med Comm, 26, 497-503). It was concluded that the use of ORC is justified for research purposes, but may not be for routine clinical use. (author)

  10. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  11. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  12. Detection of tumor recurrence using technetium99m-tetrofosmin brain SPECT in patients with previously irradiated brain tumors

    International Nuclear Information System (INIS)

    Llamas A; Reyes A; Uribe, L F; Martinez T

    2004-01-01

    Objective: to assess the clinical utility of brain SPECT with Tc-99m Tetrofosmin to differentiate between tumor recurrence and radionecrosis in patients with primary brain tumors previously treated with external beam radiotherapy. Materials and methods: thirteen patients with clinical or radiological suspicion of tumor recurrence were studied with brain SPECT using 20-mCi of Tc-99m Tetrofosmin. Obtained images were interpreted by consensus between two experienced observers and subsequently classified as positive or negative for tumor viability. Results were compared to those of conventional diagnostic imaging techniques. Diagnostic test values and 95% confidence intervals were quantified. Results: SPECT results included 7 true-positives, 5 true-negatives and 1 false negative result. Conclusions: Tc-99m Tetrofosmin brain SPECT night be a useful alternative to diagnose recurrent brain tumors, especially with non-conclusive clinical and radiological findings

  13. The braingraph.org database of high resolution structural connectomes and the brain graph tools.

    Science.gov (United States)

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2017-10-01

    Based on the data of the NIH-funded Human Connectome Project, we have computed structural connectomes of 426 human subjects in five different resolutions of 83, 129, 234, 463 and 1015 nodes and several edge weights. The graphs are given in anatomically annotated GraphML format that facilitates better further processing and visualization. For 96 subjects, the anatomically classified sub-graphs can also be accessed, formed from the vertices corresponding to distinct lobes or even smaller regions of interests of the brain. For example, one can easily download and study the connectomes, restricted to the frontal lobes or just to the left precuneus of 96 subjects using the data. Partially directed connectomes of 423 subjects are also available for download. We also present a GitHub-deposited set of tools, called the Brain Graph Tools, for several processing tasks of the connectomes on the site http://braingraph.org.

  14. Design and evaluation of two multi-pinhole collimators for brain SPECT.

    Science.gov (United States)

    Chen, Ling; Tsui, Benjamin M W; Mok, Greta S P

    2017-10-01

    SPECT is a powerful tool for diagnosing or staging brain diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) but is limited by its inferior resolution and sensitivity. At the same time, pinhole SPECT provides superior resolution and detection efficiency trade-off as compared to the conventional parallel-hole collimator for imaging small field-of-view (FOV), which fits for the case of brain imaging. In this study, we propose to develop and evaluate two multi-pinhole (MPH) collimator designs to improve the imaging of cerebral blood flow and striatum. We set the target resolutions to be 12 and 8 mm, respectively, and the FOV at 200 mm which is large enough to cover the whole brain. The constraints for system optimization include maximum and minimum detector-to-center-of-FOV (CFOV) distances of 344 and 294 mm, respectively, and minimal radius-of-rotation (ROR) of 135 mm to accommodate patients' shoulder. According to the targeted FOV, resolutions, and constraints, we determined the pinhole number, ROR, focal length, aperture acceptance angle, and aperture diameter which maximized the system sensitivity. We then assessed the imaging performance of the proposed MPH and standard low-energy high-resolution (LEHR) collimators using analytical simulations of a digital NCAT brain phantom with 99m Tc-HMPAO/ 99m Tc-TRODAT-1 distributions; Monte Carlo simulations of a hot-rod phantom; and a Defrise phantom using GATE v6.1. Projections were generated over 360° and reconstructed using the 3D MPH/LEHR OS-EM methods with up to 720 updates. The normalized mean square error (NMSE) was calculated over the cerebral and striatal regions extracted from the reconstructed images for 99m Tc-HMPAO and 99m Tc-TRODAT-1 simulations, respectively, and average normalized standard deviation (NSD) based on 20 noise realizations was assessed on selected uniform 3D regions as the noise index. Visual assessment and image profiles were applied to the results of Monte Carlo

  15. Classification of brain tumor extracts by high resolution ¹H MRS using partial least squares discriminant analysis

    Directory of Open Access Journals (Sweden)

    A.V. Faria

    2011-02-01

    Full Text Available High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.

  16. Feasibility of a novel design of high resolution parallax-free Compton enhanced PET scanner dedicated to brain research

    CERN Document Server

    Braem, André; Chesi, Enrico Guido; Correia, J G; Garibaldi, F; Joram, C; Mathot, S; Nappi, E; Ribeiro da Silva, M; Schoenahl, F; Séguinot, Jacques; Weilhammer, P; Zaidi, H

    2004-01-01

    A novel concept for a positron emission tomography (PET) camera module is proposed, which provides full 3D reconstruction with high resolution over the total detector volume, free of parallax errors. The key components are a matrix of long scintillator crystals and hybrid photon detectors (HPDs) with matched segmentation and integrated readout electronics. The HPDs read out the two ends of the scintillator package. Both excellent spatial (x, y, z) and energy resolution are obtained. The concept allows enhancing the detection efficiency by reconstructing a significant fraction of events which underwent Compton scattering in the crystals. The proof of concept will first be demonstrated with yttrium orthoaluminate perovskite (YAP):Ce crystals, but the final design will rely on other scintillators more adequate for PET applications (e.g. LSO:Ce or LaBr /sub 3/:Ce). A promising application of the proposed camera module, which is currently under development, is a high resolution 3D brain PET camera with an axial fi...

  17. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion

  18. SPECT brain perfusion findings in mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Abu-Judeh, H.H.; Parker, R.; Aleksic, S.

    2000-01-01

    Background: The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. PATIENTS AND METHODS: This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). RESULTS: Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). CONCLUSIONS: Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than

  19. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Directory of Open Access Journals (Sweden)

    Mohammad Haris

    Full Text Available Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS has been commonly used to detect the glutamate (Glu changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4% was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  20. Diagnostic evaluation of brain SPECT imaging in diseases of nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Yongsheng, Jiang; Chengmo, Zhu; Jixian, Zhang; Weijia, Tian [Shanghai Second Medical Univ. (China). Ruijing Hospital

    1992-11-01

    The dynamic distributions of home made ECD and the Amersham brain SPECT imaging agent 'Ceretec' in normal person as well as their diagnostic use in diseases of nervous system were investigated. Semi-quantitative analysis combined with direct observation was more accurate for the diagnosis. Aside from cerebrovascular diseases, SPECT brain imaging has its unique value for the diagnosis of transient ischemic attack, Alzheimer disease, multiple ischemic dementia and epilepsy etc.

  1. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  2. Herpes simplex encephalitis: increased retention of Tc-99m HMPAO on acetazolamide enhanced brain perfusion SPECT

    International Nuclear Information System (INIS)

    Choi, Yun Young; Kim, Kwon Hyung; Kim, Seung Hyun; Cho, Suk Shin

    1998-01-01

    We present an interesting case of herpes simplex encephalitis, which showed increased upta unilateral temporal cortex on brain perfusion SPECT using Tc-99m HMPAO, but in bilateral tem cortex after acetazolamide administration. A 42-year-old man was admitted via emergency room, due to rapidly progressing hea disorientation and mental changes. On neurologic examination, neck stiffness and Kernig sign noted. CSF examination showed pleocytosis with lymphcyte predominance. MRI showed swelling bilateral temporal lobe with left predominance, suggestive of herpes simplex encephalitis. Baseline/ Acetazolamide brain perfusion SPECT were acquired consecutively at the same position IV administration of 740MBq and additional 1480 MBq of Tc-99m HMPAO respectively. The temporal and inferior frontal cortex showed markedly increased perfusion on the baseline acetazolamide-enhanced SPECT images. The right temporal cortex showed normal uptake on the b SPECT images, and markedly increased uptake after acetazolamide administration, which seemed to the abundant vascularity at the acute inflammation site without marked brain damage. The fo brain perfusion SPECT after 6 months showed perfusion defect in left temporal cortex but norm perfusion in right temporal cortex. Therefore, we can conclude that baseline SPECT is helpful for the prediction of the prognosis acetazolamide SPECT for the evaluation of the extent of herpes simples encephalitis

  3. Presentation of regional cerebral blood flow in amphetamine abusers by 99Tcm-HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Kao, C.H.; Wang, S.J.; Yeh, S.H.

    1994-01-01

    The aim of this study was to describe the effectiveness of 99 Tc m -hexamethylpropyleneamine oxime ( 99 Tc m -HMPAO) brain single photon emission computed tomography (SPECT) in the assessment of the regional cerebral blood flow (rCBF) in amphetamine abusers. Twenty-one amphetamine abusers were included and 99 Tc m -HMPAO brain SPECT performed to evaluate rCBF. The drug-using periods ranged from 1 month to several years. The demonstrated neuropsychogenic symptoms and signs of the abusers were from normal presentation to various neurologic complications. The brain SPECT scans were interpreted visually as either normal or abnormal. The degree of abnormality was classified into mild or severe. The results revealed that (a) most SPECT studies in abusers show small defects (95%, 20/21 cases); 71% (15/21) of cases revealed multiple defects over both hemispheres (classified as severe); 24% (5/21) of the cases had focal defects (classified as mild); and only one case (5%, 1/21) demonstrated a normal SPECT finding; (b) the degree of abnormality on SPECT scans was not related to the dose and duration of drug use or the severity of the neuropsychiatric symptoms and signs. In conclusion, 99 Tc m -HMPAO brain SPECT is a sensitive but not specific test for neuropsychogenic abnormalities associated with amphetamine abuse. (Author)

  4. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Directory of Open Access Journals (Sweden)

    Barbara Palumbo

    2014-06-01

    Full Text Available Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI is discussed.

  5. Utility of combined high-resolution bone SPECT and MRI for the identification of rheumatoid arthritis patients with high-risk for erosive progression

    Energy Technology Data Exchange (ETDEWEB)

    Buchbender, Christian, E-mail: christian.buchbender@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Sewerin, Philipp, E-mail: philipp.sewerin@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Rheumatology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Mattes-György, Katalin, E-mail: katalin.mattes@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Nuclear Medicine, Moorenstr. 5, D-40225 Dusseldorf (Germany); Miese, Falk, E-mail: falk.miese@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Wittsack, Hans-Joerg, E-mail: hans-joerg.wittsack@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Specker, Christof, E-mail: c.specker@kliniken-essen-sued.de [Department of Rheumatology and Clinical Immunology, Kliniken Essen-Sud, Propsteistrasse 2, D-45239 Essen (Germany); Antoch, Gerald, E-mail: antoch@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Müller, Hans-Wilhelm, E-mail: HansW.Mueller@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Nuclear Medicine, Moorenstr. 5, D-40225 Dusseldorf (Germany); Schneider, Matthias, E-mail: matthias.schneider@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Rheumatology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Scherer, Axel, E-mail: scherer@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Moorenstr. 5, D-40225 Dusseldorf (Germany); Ostendorf, Benedikt, E-mail: ostendorf@med.uni-duesseldorf.de [Univ Dusseldorf, Medical Faculty, Department of Rheumatology, Moorenstr. 5, D-40225 Dusseldorf (Germany)

    2013-02-15

    Objectives: To evaluate the utility of sequentially acquired, post hoc fused, magnetic resonance imaging (MRI) and multi-pinhole single photon emission computed tomography (MPH-SPECT) with technetium-99m-labeled disphosphonates (Tc99m-DPD) for the identification of finger joints with later erosive progression in early rheumatoid arthritis (ERA) patients. Methods: Ten consecutive ERA patients prospectively underwent MPH-SPECT and MRI of metacarpophalangeal (MCP) joints prior to and after 6 months methotrexate therapy. Tc99m-DPD uptake was measured at proximal and distal MCP sites using regional analysis. The course of joint pathologies was scored according to the Rheumatoid Arthritis MRI Score (RAMRIS) criteria. Results: The frequency of increased Tc99m-DPD uptake, synovitis and bone marrow edemadecreased under MTX therapy; but the number of bone erosions increased. Joints with progressive and new erosions on follow-up had a higher baseline Tc99m-DPD uptake (2.64 ± 1.23 vs. 1.43 ± 0.91) (p = 0.02). Conclusions: Joints with erosive progression are characterized by an early increased Tc99m-DPD uptake, even in absence of MRI bone pathologies. Tc99m-DPD MPH-SPECT might thus be of additional value to morphological MRI for the identification of RA patients with a high risk for erosive progression.

  6. High-Resolution Longitudinal Screening with Magnetic Resonance Imaging in a Murine Brain Cancer Model

    Directory of Open Access Journals (Sweden)

    Nicholas A. Bock

    2003-11-01

    Full Text Available One of the main limitations of intracranial models of diseases is our present inability to monitor and evaluate the intracranial compartment noninvasively over time. Therefore, there is a growing need for imaging modalities that provide thorough neuropathological evaluations of xenograft and transgenic models of intracranial pathology. In this study, we have established protocols for multiple-mouse magnetic resonance imaging (MRI to follow the growth and behavior of intracranial xenografts of gliomas longitudinally. We successfully obtained weekly images on 16 mice for a total of 5 weeks on a 7-T multiple-mouse MRI. T2- and Ti-weighted imaging with gadolinium enhancement of vascularity was used to detect tumor margins, tumor size, and growth. These experiments, using 3D whole brain images obtained in four mice at once, demonstrate the feasibility of obtaining repeat radiological images in intracranial tumor models and suggest that MRI should be incorporated as a research modality for the investigation of intracranial pathobiology.

  7. Baseline and cognition activated brain SPECT imaging in depression

    International Nuclear Information System (INIS)

    Zhao Jinhua; Lin Xiangtong; Jiang Kaida; Liu Yongchang; Xu Lianqin

    1998-01-01

    Purpose: To evaluate the regional cerebral blood flow (rCBF) abnormalities through the semiquantitative analysis of the baseline and cognition activated rCBF imaging in unmedicated depressed patients. Methods: 27 depressed patients unmedicated by anti-depressants were enrolled. The diagnosis (depression of moderate degree with somatization) was confirmed by the ICD-10 criteria. 15 age matched normal controls were studied under identical conditions. Baseline and cognition activated 99m Tc-ECD SPECT were performed on 21 of the 27 patients with depression and 13 of the 15 normal controls. Baseline 99m Tc-ECD SPECT alone were performed on the rest 6 patients with depression and 2 normal controls. The cognitive activation is achieved by Wisconsin Card Sorting Test (WCST). 1110 MBq of 99m Tc-ECD was administered by intravenous bolus injection 5 minutes after the onset of the WCST. Semi-quantitative analysis was conducted with the 7th, 8th, 9th, 10th, 11th slices of the transaxial imaging. rCBF ratios of every ROI were calculated using the average tissue activity in the region divided by the maximum activity in the cerebellum. Results: 1) The baseline rCBF of left frontal (0.720) and left temporal lobe (0.720) were decreased significantly in depressed patients comparing with those of the control subjects. 2) The activated rCBF of left frontal lobe (0.719) and left temporal lobe (0.690), left parietal lobe (0.701) were decreased evidently than those of the controls. Conclusions: 1) Hypoperfusions of left frontal and left temporal cortexes were identified in patients with depression. 2) The hypoperfusion of left frontal and left temporal cortexes may be the cause of cognition disorder and depressed mood in patients with depression. 3) Cognition activated brain perfusion imaging is helpful for making a more accurate diagnosis of depression

  8. Preoperative localization of epileptic foci with SPECT brain perfusion imaging, electrocorticography, surgery and pathology

    International Nuclear Information System (INIS)

    Jia Shaowei; Xu Wengui; Chen Hongyan; Weng Yongmei; Yang Pinghua

    2002-01-01

    Objective: The value of preoperative localization of epileptic foci with SPECT brain perfusion imaging was investigated. Methods: The study population consisted of 23 patients with intractable partial seizures which was difficult to control with anticonvulsant for long period. In order to preoperatively locate the epileptic foci, double SPECT brain perfusion imaging was performed during interictal and ictal stage. The foci were confirmed with electrocorticography (EcoG), surgery and pathology. Results: The author checked with EcoG the foci shown by SPECT, 23 patients had all typical spike discharge. The regions of radioactivity increase in ictal matched with the abnormal electrical activity areas that EcoG showed. The spike wave originated in the corresponding cerebrum cortex instead of hyperplastic and adherent arachnoid or tumor itself. Conclusions: SPECT brain perfusion imaging contributes to distinguishing location, size, perfusion and functioning of epileptogenic foci, and has some directive function on to making out a treatment programme at preoperation

  9. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  10. Compensation for nonuniform attenuation in SPECT brain imaging

    International Nuclear Information System (INIS)

    Glick, S.J.; King, M.A.; Pan, T.S.; Soares, E.J.

    1996-01-01

    Accurate compensation for photon attenuation is needed to perform quantitative brain single-photon-emission computed tomographic (SPECT) imaging. Bellini's attenuation-compensation method has been used with a nonuniform attenuation map to account for the nonuniform attenuation properties of the head. Simulation studies using a three-dimensional (3-D) digitized anthropomorphic brain phantom were conducted to compare quantitative accuracy of reconstructions obtained with the nonuniform Bellini method to that obtained with the Chang method and to iterative reconstruction using maximum-likelihood expectation maximization (ML-EM). Using the Chang method and assuming the head to be a uniform attenuator gave reconstructions with an average bias of approximately 6-8%, whereas using the Bellini or the iterative ML-EM method with a nonuniform attenuation map gave an average bias of approximately 1%. The computation time required to implement nonuniform attenuation compensation with the Bellini algorithm is approximately equivalent to the time required to perform one iteration of ML-EM. Thus, using the Bellini method with a nonuniform attenuation map provides accurate compensation for photon attenuation within the head, and the method can be implemented in computation times suitable for routine clinical use

  11. Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners.

    Science.gov (United States)

    Luders, Eileen; Cherbuin, Nicolas; Gaser, Christian

    2016-07-01

    Normal aging is known to be accompanied by loss of brain substance. The present study was designed to examine whether the practice of meditation is associated with a reduced brain age. Specific focus was directed at age fifty and beyond, as mid-life is a time when aging processes are known to become more prominent. We applied a recently developed machine learning algorithm trained to identify anatomical correlates of age in the brain translating those into one single score: the BrainAGE index (in years). Using this validated approach based on high-dimensional pattern recognition, we re-analyzed a large sample of 50 long-term meditators and 50 control subjects estimating and comparing their brain ages. We observed that, at age fifty, brains of meditators were estimated to be 7.5years younger than those of controls. In addition, we examined if the brain age estimates change with increasing age. While brain age estimates varied only little in controls, significant changes were detected in meditators: for every additional year over fifty, meditators' brains were estimated to be an additional 1month and 22days younger than their chronological age. Altogether, these findings seem to suggest that meditation is beneficial for brain preservation, effectively protecting against age-related atrophy with a consistently slower rate of brain aging throughout life. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Performance evaluation of a high-resolution brain PET scanner using four-layer MPPC DOI detectors

    Science.gov (United States)

    Watanabe, Mitsuo; Saito, Akinori; Isobe, Takashi; Ote, Kibo; Yamada, Ryoko; Moriya, Takahiro; Omura, Tomohide

    2017-09-01

    A high-resolution positron emission tomography (PET) scanner, dedicated to brain studies, was developed and its performance was evaluated. A four-layer depth of interaction detector was designed containing five detector units axially lined up per layer board. Each of the detector units consists of a finely segmented (1.2 mm) LYSO scintillator array and an 8  ×  8 array of multi-pixel photon counters. Each detector layer has independent front-end and signal processing circuits, and the four detector layers are assembled as a detector module. The new scanner was designed to form a detector ring of 430 mm diameter with 32 detector modules and 168 detector rings with a 1.2 mm pitch. The total crystal number is 655 360. The transaxial and axial field of views (FOVs) are 330 mm in diameter and 201.6 mm, respectively, which are sufficient to measure a whole human brain. The single-event data generated at each detector module were transferred to the data acquisition servers through optical fiber cables. The single-event data from all detector modules were merged and processed to create coincidence event data in on-the-fly software in the data acquisition servers. For image reconstruction, the high-resolution mode (HR-mode) used a 1.2 mm2 crystal segment size and the high-speed mode (HS-mode) used a 4.8 mm2 size by collecting 16 crystal segments of 1.2 mm each to reduce the computational cost. The performance of the brain PET scanner was evaluated. For the intrinsic spatial resolution of the detector module, coincidence response functions of the detector module pair, which faced each other at various angles, were measured by scanning a 0.25 mm diameter 22Na point source. The intrinsic resolutions were obtained with 1.08 mm full width at half-maximum (FWHM) and 1.25 mm FWHM on average at 0 and 22.5 degrees in the first layer pair, respectively. The system spatial resolutions were less than 1.0 mm FWHM throughout the whole FOV, using a

  13. Functional brain imaging with SPECT in normal again and dementia. Methodological, pathophysiological, and diagnostic aspects

    International Nuclear Information System (INIS)

    Waldemar, G.

    1996-03-01

    New developments in instrumentation, radiochemistry, and data analysis, particularly the introduction of 99m Tc-labeled brain-retained tracers for perfusion studies, have opened up a new era of single photon emission computed tomography (SPECT). In this review critical methodological issues relating to the SPECT instrument, the radioactive tracers, the scanning procedure, the data analysis and interpretation of data, and subject selection are discussed together with the changes in regional cerebral blood flow (rCBF) observed in normal aging. An overview is given of the topography and the pathophysiological and diagnostic significance of focal rCBF deficits in Alzheimer's disease and in other dementia disorders, in which SPECT is capable of early or preclinical disease detection. In Alzheimer's disease, the diagnostic sensitivity and specificity of focal rCBF deficits measured with SPECT and brain-retained tracers are very high, in particular when combined with medial temporal lob atrophy on CT. Together with neuropsychological testing, SPECT serves to map the topography of brain dysfunction. Thus, in the clinical setting, SPECT provides information that is supplemental to that obtained in other studies. Future applications include neuroreceptor studies and treatment studies, in which SPECT may serve as a diagnostic aid in the selection of patients and as a potential mean for monitoring treatment effects. Although positron emission tomography is the best characterized tool for addressing some of these clinical and research issues in dementia, only the less expensive and technically simpler SPECT technique will have the potential of being available as a screening diagnostic instrument in the clinical setting. It is concluded that, properly approached, functional brain imaging with SPECT represents an important tool in the diagnosis, management, and research of dementia disorders. (au) 251 refs

  14. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    International Nuclear Information System (INIS)

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123 I brain SPECT obtained by the hybrid SPECT/CT device. We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123 I solution (20.1 kBq/mL) in the gray matter region and with K 2 HPO 4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity

  15. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M. [Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Seelos, K.; Yousry, T. [Department of Neuroradiology, Institute of Diagnostic Radiology, Klinikum Grosshadern, University of Munich (Germany); Exner, H. [Institute for Medical Epidemiology, Klinikum Grosshadern, University of Munich, Munich (Germany); Rosen, B.R. [Department of Radiology, Massachusetts General Hospital, NMR Center, Charlestown, MA (United States)

    1999-09-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.) With 3 figs., 3 tabs., 27 refs.

  16. Echo-planar magnetic resonance imaging (EPI) with high-resolution matrix in intra-axial brain tumors

    International Nuclear Information System (INIS)

    Bruening, R.; Scheidler, J.; Porn, U.; Reiser, M.; Seelos, K.; Yousry, T.; Exner, H.; Rosen, B.R.

    1999-01-01

    The aim of this study was to assess the potential of high-speed interleaved echo-planar imaging (EPI) to achieve diagnostic image quality comparable to T2-weighted imaging in patients with brain tumors. Seventeen patients with intra-axial, supratentorial tumors (10 untreated gliomas, 7 radiated gliomas) were investigated on a 1.5-T scanner. The conventional scan (SE, TR/TE = 2200/80 ms, 18 slices) was acquired in 8 min, 4 s, and EPI (TR/TE = 3000/80 ms, 18 slices) was completed in 25 s. The films were compared in a blinded trail by three radiologists. On the general impression and anatomic display, both sequences were rated to be of similar quality. Artifacts were slightly more pronounced at the skull base and around surgical clips using EPI. Tumor delineation was nearly equivalent using EPI, compared with the T2-weighted sequence. Echo-planar imaging reached diagnostic quality in all patients. Interleaved high-resolution EPI yielded sufficient quality to depict intra-axial, supratentorial brain tumors. Since EPI can be obtained in a small fraction of the time needed for conventional spin echo, in addition to other indications it could be considered to study patients unable to cooperate. (orig.)

  17. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    International Nuclear Information System (INIS)

    Ozsahin, D. Uzun; Bläckberg, L.; Fakhri, G. El; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  18. 99mTc-MIBI-SPECT-studies in the evaluation of brain tumors

    International Nuclear Information System (INIS)

    Ambrus, E.; Pavics, L.; Gruenwald, F.; Barath, B.; Tiszlavicz, L.; Bender, H.; Menzel, C.; Almasi, L.; Lang, J.; Bodosi, M.; Biersack, H.J.; Csernay, L.

    1994-01-01

    Brain SPECT studies were performed 5 and 60 minutes after 99m Tc-MIBI administration in 41 patients with brain tumors confirmed by CT and surgical removal (13 meningeomas, 8 astrocytomas grades I-III, 10 glioblastomas, 10 metastases). 99m Tc-MIBI uptake was found in 32 out of 41 brain tumors. According to the semiquantitative SPECT analysis, the tumor/non tumor radios revealed a statistically significant difference in the early tracer uptake between meningeomas and astrocytomas (+4.73±2.91 vs -1.75±0.75, p 99m Tc-MIBI uptake and its changes with time. We concluded that the combination of an early and late 99m Tc-MIBI brain SPECT may be helpful in the non invasive histological classification of brain tumors and the determination of the grade of theirs malignancy. (orig.) [de

  19. MRI and brain spect findings in patients with unilateral temporal lobe epilepsy and normal CT scan

    Directory of Open Access Journals (Sweden)

    P.G. Carrilho

    1994-06-01

    Full Text Available 26 patients with temporal lobe epilepsy clinically documented by several abnormal interictal surface EEGs with typical unitemporal epileptiform activity and a normal CT scan were studied. Interictal99mTC HMPAO brain SPECT and MRI were performed in all subjects. Abnormalities were shown in 61.5% of MRI (n=16 and 65.4% of SPECT (n=17. Hippocampal atrophy associated to a high signal on T2-weighted MRI slices suggesting mesial temporal sclerosis was the main finding (n=12; 75% of abnormal MRI. MRI correlated well to surface EEG in 50% (n=13. There was also a good correlation between MRI and SPECT in 30.7% (n=8. SPECT and EEG were in agreement in 57.7% (n=l5. MRI, SPECT and EEG were congruent in 26.9% (n=7. These results support the usefulness of interictal brain SPECT and MRI in detecting lateralized abnormalities in temporal lobe epilepsy. On the other hand, in two cases, interictal SPECT correlated poorly with surface EEG. This functional method should not be used isolately in the detection of temporal lobe foci. MRI is more useful than CT as a neuroimaging technique in temporal lobe epilepsy. It may detect small structural lesions and mesial temporal lobe sclerosis which are not easily seen with traditional CT scanning.

  20. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients

    International Nuclear Information System (INIS)

    Guo, Yi; Zhu, Yinghua; Lingala, Sajan Goud; Nayak, Krishna; Lebel, R. Marc; Shiroishi, Mark S.; Law, Meng

    2016-01-01

    Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm 3 , FOV 22 × 22 × 4.2 cm 3 , and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm 3 , and broader coverage 22 × 22 × 19 cm 3 . Temporal resolution was 5 s for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

  1. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  2. Brain MRI and SPECT in the diagnosis of early neurological involvement in Wilson's disease

    International Nuclear Information System (INIS)

    Piga, Mario; Satta, Loredana; Serra, Alessandra; Loi, Gianluigi; Murru, Alessandra; Demelia, Luigi; Sias, Alessandro; Marrosu, Francesco

    2008-01-01

    To evaluate the impact of brain MRI and single-photon emission computed tomography (SPECT) in early detection of central nervous system abnormalities in patients affected by Wilson's disease (WD) with or without neurological involvement. Out of 25 consecutive WD patients, 13 showed hepatic involvement, ten hepatic and neurological manifestations, and twp hepatic, neurological, and psychiatric symptoms, including mainly movement disorders, major depression, and psychosis. Twenty-four healthy, age-gender matched subjects served as controls. All patients underwent brain MRI and 99m Tc-ethyl-cysteinate dimer (ECD) SPECT before starting specific therapy. Voxel-by-voxel analyses were performed using statistical parametric mapping to compare differences in 99m Tc-ECD brain uptake between the two groups. Brain MRI showed T2-weighted hyperintensities in seven patients (28%), six of whom were affected by hepatic and neurological forms. Brain perfusion SPECT showed pathological data in 19 patients (76%), revealing diffuse or focal hypoperfusion in superior frontal (Brodmann area (BA) 6), prefrontal (BA 9), parietal (BA 40), and occipital (BA 18, BA 39) cortices in temporal gyri (BA 37, BA 21) and in caudatus and putamen. Moreover, hepatic involvement was detected in nine subjects; eight presented both hepatic and neurological signs, while two exhibited WD-correlated hepatic, neurological, and psychiatric alterations. All but one patient with abnormal MRI matched with abnormal ECD SPECT. Pathologic MRI findings were obtained in six out of ten patients with hepatic and neurological involvement while abnormal ECD SPECT was revealed in eight patients. Both patients with hepatic, neurological, and psychiatric involvement displayed abnormal ECD SPECT and one displayed an altered MRI. These findings suggest that ECD SPECT might be useful in detecting early brain damage in WD, not only in the perspective of assessing and treating motor impairment but also in evaluating better the

  3. The clinical usefulness of Tc-99m ECD brain SPECT in acute measles encephalitis

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee

    2003-01-01

    Since the prognosis of measles encephalitis is poor, early diagnosis and proper management are very important to improve clinical outcomes. We compared Tc-99m ECD brain SPECT (SPECT) with MR imaging (MRI) for the detection of acute measles encephalitis. Eleven patients (M : F=4 : 7, age range 18 months-14 yrs) with acute measles encephalitis were enrolled in this studies. All of them underwent both MRI and SPECT. The results of SPECT were scored from 0 (normal) to 3 (most severe defect) according to perfusion state. We compared two image modalities for the detection of brain abnormality in acute measles encephalitis. Seven of 11 patients (63.6%) revealed high signal intensity in the white matter on T2WI of MRI, on the other hand all patients (100%) showed hypoperfusion on SPECT. Severe perfusion deficits above score 2 were located with decreasing frequencies in the frontal lobe (81.8%), temporal lobe (72.7%), occipital lobe (27.3%), basal ganglia (27.3%), and parietal lobe (9.1%). We conclude that SPECT is more useful than MRI for the detection of brain involvement in patients with acute measles encephalitis

  4. The clinical usefulness of Tc-99m ECD brain SPECT in acute measles encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seok Tae; Sohn, Myung Hee [School of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2003-08-01

    Since the prognosis of measles encephalitis is poor, early diagnosis and proper management are very important to improve clinical outcomes. We compared Tc-99m ECD brain SPECT (SPECT) with MR imaging (MRI) for the detection of acute measles encephalitis. Eleven patients (M : F=4 : 7, age range 18 months-14 yrs) with acute measles encephalitis were enrolled in this studies. All of them underwent both MRI and SPECT. The results of SPECT were scored from 0 (normal) to 3 (most severe defect) according to perfusion state. We compared two image modalities for the detection of brain abnormality in acute measles encephalitis. Seven of 11 patients (63.6%) revealed high signal intensity in the white matter on T2WI of MRI, on the other hand all patients (100%) showed hypoperfusion on SPECT. Severe perfusion deficits above score 2 were located with decreasing frequencies in the frontal lobe (81.8%), temporal lobe (72.7%), occipital lobe (27.3%), basal ganglia (27.3%), and parietal lobe (9.1%). We conclude that SPECT is more useful than MRI for the detection of brain involvement in patients with acute measles encephalitis.

  5. Are there any determinants of interictal brain SPECT perfusion change in unilateral hippocampal sclerosis?

    International Nuclear Information System (INIS)

    Tepmongkol, S.; Locharernkul, C.; Lerdlum, S.

    2005-01-01

    In localizing ictal onset during pre-surgical evaluation, interictal brain SPECT has been used to determine baseline brain abnormalities in order to compare with ictal SPECT. However, in some patients with hippocampal sclerosis (HS), no baseline perfusion abnormality is seen. In this subgroup of patients, performing interictal SPECT may be considered unnecessary. This study is aimed at determining the factors that may influence the interictal SPECT perfusion change in unilateral HS. Forty-one unilateral HS patients (21 males, 20 females; age 30.3±8.0 years) who had interictal brain perfusion SPECT (more than 24 hours after the seizure) were enrolled. Multiple factors i.e. age, sex, age of epilepsy onset, duration of epilepsy, presence of aura, clinical lateralization, interictal EEG lateralization, and ictal EEG lateralization were used as independent variables to predict hypoperfusion of the temporal lobe ipsilateral to hippocampal sclerosis detected on MRI. Ipsilateral temporal hypoperfusion were observed in 18/41 (43.9%) patients. None of these factors showed significant correlation to the perfusion changes. It was also concluded that age, sex, age of epilepsy onset, duration of epilepsy, presence of aura, clinical lateralization, interictal EEG lateralization, and ictal EEG lateralization cannot be used to predict interictal SPECT perfusion changes at the hippocampal sclerosis region. (author)

  6. 201Tl brain SPECT in differentiating central nervous system lymphoma from toxoplasmosis in AIDS patients

    International Nuclear Information System (INIS)

    Kamata, Noriko; Suzuki, Kenzo; Abe, Katsumi; Yokoyama, Yoshiaki; Ushimi, Hisashi; Terada, Kazushi

    1997-01-01

    In AIDS patients, toxoplasmosis and lymphoma are the leading causes of CNS mass lesions. It is important to make the correct diagnosis expeditiously, since the two diseases require markedly different treatments and have different prognoses. In general, CT and MR imaging have failed to provide specific distinguishing characteristics to differentiate CNS lymphoma from toxoplasmosis, and it is difficult to differentiate these entities clinically. We performed 201 Tl brain SPECT in order to differentiate two diseases. Counts ratio of a lesion to the normal brain (L/N ratio) was elevated in patients of lymphoma compared in patients of toxoplasmosis. 201 Tl brain SPECT is useful to differentiate CNS lymphoma from toxoplasmosis. (author)

  7. Brain Perfusion SPECT Imaging in Sturge - Weber Syndrome : Comparison with MR Imaging

    International Nuclear Information System (INIS)

    Ryu, Jin Sook; Choi, Yun Young; Moon, Dae Hyuk; Yang, Seoung Oh; Ko, Tae Sung; Yoo, Shi Joon; Lee, Hee Kyung

    1996-01-01

    The purpose of this study was evaluate the characteristic perfusion changes in patients with Sturge-Weber syndrome by comparison of the findings of brain MR images and perfusion SPECT images. 99m Tc-HMPAO or 99m Tc-ECD interictal brain SPECTs were performed on 5 pediatric patients with Struge-Weber syndrome within 2 weeks after MR imaging. Brain SPECTs of three patients without calcification showed diminished perfusion in the affected area on MR image. A 3 month-old patient without brain atrophy or calcification demonstrated paradoxical hyperperfusion in the affected hemisphere, and follow-up perfusion SPECT revealed decreased perfusion in the same area. The other patient with advanced calcified lesion and atrophy on MR image showed diffusely decreased perfusion in the affected hemisphere, but a focal area of increased perfusion was also noted in the ipsilateral temporal lobe on SPECT. In conclusion, brain perfusion of the affected area of Sturge-Weber syndrome patients was usually diminished, but early or advanced patients may show paradoxical diffuse or focal hyperperfusion in the affected hemisphere. Further studies are needed for better understanding of these perfusion changes and pathophysiology of Struge-Weber syndrome.

  8. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    Science.gov (United States)

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  9. Validation of a method for accurate and highly reproducible quantification of brain dopamine transporter SPECT studies

    DEFF Research Database (Denmark)

    Jensen, Peter S; Ziebell, Morten; Skouboe, Glenna

    2011-01-01

    In nuclear medicine brain imaging, it is important to delineate regions of interest (ROIs) so that the outcome is both accurate and reproducible. The purpose of this study was to validate a new time-saving algorithm (DATquan) for accurate and reproducible quantification of the striatal dopamine t...... transporter (DAT) with appropriate radioligands and SPECT and without the need for structural brain scanning....

  10. Neuropsychological Correlates of Brain Perfusion SPECT in Patients with Macrophagic Myofasciitis.

    Directory of Open Access Journals (Sweden)

    Axel Van Der Gucht

    Full Text Available Patients with aluminum hydroxide adjuvant-induced macrophagic myofasciitis (MMF complain of arthromyalgias, chronic fatigue and cognitive deficits. This study aimed to characterize brain perfusion in these patients.Brain perfusion SPECT was performed in 76 consecutive patients (aged 49±10 y followed in the Garches-Necker-Mondor-Hendaye reference center for rare neuromuscular diseases. Images were acquired 30 min after intravenous injection of 925 MBq 99mTc-ethylcysteinate dimer (ECD at rest. All patients also underwent a comprehensive battery of neuropsychological tests, within 1.3±5.5 mo from SPECT. Statistical parametric maps (SPM12 were obtained for each test using linear regressions between each performance score and brain perfusion, with adjustment for age, sex, socio-cultural level and time delay between brain SPECT and neuropsychological testing.SPM analysis revealed positive correlation between neuropsychological scores (mostly exploring executive functions and brain perfusion in the posterior associative cortex, including cuneus/precuneus/occipital lingual areas, the periventricular white matter/corpus callosum, and the cerebellum, while negative correlation was found with amygdalo-hippocampal/entorhinal complexes. A positive correlation was also observed between brain perfusion and the posterior associative cortex when the time elapsed since last vaccine injection was investigated.Brain perfusion SPECT showed a pattern of cortical and subcortical changes in accordance with the MMF-associated cognitive disorder previously described. These results provide a neurobiological substrate for brain dysfunction in aluminum hydroxide adjuvant-induced MMF patients.

  11. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Zhaosheng, Luan; Pengyong,; Xiqin, Sun; Wei, Wang; Huisheng, Liu; Wen, Zhou [88 Hospital PLA, Taian, SD (China). Dept. of Nuclear Medicine

    1992-11-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed.

  12. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Pengyong; Sun Xiqin; Wang Wei; Liu Huisheng; Zhou Wen

    1992-01-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed

  13. Preoperative evaluation of brain lesion with 201TI brain SPECT: is it useful to differentiate benign and malignant lesions?

    International Nuclear Information System (INIS)

    Sohn, Hyung Sun; Kim, Euy Neyng; Kim, Sung Hoon; Chung, Yong An; Chung, Soo Kyo; Hong, Yong Gil; Lee, Youn Soo

    2000-01-01

    Thallium-201 ( 201 TI) brain SPECT, which can represent cellular activity of brain lesions, may provide more useful information in differentiating between benign and malignant brain lesions more so than CT or MRI, that merely represents anatomic changes or breakdown of blood brain barrier. We used 201 TI brain SPECT prospectively to evaluate the utility of 201 TI-indices as an indicator of benign or malignant lesions. We studied 28 patients. There were 13 cases of benign lesions (3: nonspecific benign lesion, 3: meningioma, 2: low grade glioma, 1: tuberculoma, central neurocytoma, hemangioblastoma, radiation necrosis, and choroid plexus papilloma) and 15 cases of malignant lesions (6: glioblastoma multiforme, 5: anaplastic glioma, 2: medulloblastoma, 1: metastasis and lymphoma). In all patients, CT and/or MRI were obtained and then 201 TI brain SPECT was obtained with measuring mean 201 TI index and peak 201 TI index. An unpaired t-test was performed to compare the 201 TI-indices and pathologic diagnoses to evaluate the utility of 201 TI-indices as an indicator of benign or malignant lesions. There were no statistically significant difference in 201 TI-indices between benign and malignant brain lesions (P>0.05). These results demonstrated that we could not use 201 TI indices on brain SPECT alone as an indicator of benign or malignant brain lesions

  14. Influence of attenuation correction and reconstruction techniques on the detection of hypoperfused lesions in brain SPECT studies

    International Nuclear Information System (INIS)

    Ghoorun, S.; Groenewald, W.A.; Baete, K.; Nuyts, J.; Dupont, P.

    2004-01-01

    Full text: Aim: To study the influence of attenuation correction and the reconstruction technique on the detection of hypoperfused lesions in brain SPECT imaging, Material and Methods: A simulation experiment was used in which the effects of attenuation and reconstruction were decoupled, A high resolution SPECT phantom was constructed using the BrainWeb database, In this phantom, activity values were assigned to grey and white matter (ratio 4:1) and scaled to obtain counts of the same magnitude as in clinical practice, The true attenuation map was generated by assigning attenuation coefficients to each tissue class (grey and white matter, cerebral spinal fluid, skull, soft and fatty tissue and air) to create a non-uniform attenuation map, The uniform attenuation map was calculated using an attenuation coefficient of 0.15 cm-1, Hypoperfused lesions of varying intensities and sizes were added. The phantom was then projected as typical SPECT projection data, taking into account attenuation and collimator blurring with the addition of Poisson noise, The projection data was reconstructed using four different methods of reconstruction: (1) filtered backprojection (FBP) with the uniform attenuation map; (2) FBP using the true attenuation map; (3) ordered subset expectation maximization (OSEM) (equivalent to 423 iterations) with a uniform attenuation map; and (4) OSEM with a true attenuation map. Different Gaussian postsmooth kernels were applied to the reconstructed images. Results: The analysis of the reconstructed data was performed using figures of merit such as signal to noise ratio (SNR), bias and variance. The results illustrated that uniform attenuation correction offered slight deterioration (less than 2%) with regard to SNR when compared to the ideal attenuation map. which in reality is not known. The iterative techniques produced superior signal to noise ratios (increase of 5 - 20 % depending on the lesion and the postsmooth) in comparison to the FBP methods

  15. Three-dimensional stereotactic surface projection of brain perfusion SPECT improves diagnosis of Alzheimer's disease

    International Nuclear Information System (INIS)

    Honda, Norinari; Machida, Kikuo

    2003-01-01

    Alzheimer's disease (AD) is diagnosed by either inspection of the brain perfusion SPECT, or three-dimensional stereotactic surface display (3D-SSP). The purpose was to compare diagnostic performances of these methods. Sixteen nuclear medicine physicians independently interpreted 99m Tc-ECD SPECT in one session and SPECT with 3D-SSP in another session without clinical information for 50 studies of AD patients and 40 studies of healthy volunteers. Probabilities of AD were reported according to a subjective scale from 0% (normal) to 100% (definite AD). Receiver operating characteristics curves were generated to calculate areas under the receiver operating characteristic (ROC) curves (Az's) for the inspection as well as for an automated diagnosis based on a mean Z value in the bilateral posterior cingulate gyri in a 3D-SSP template. Mean Az for visual interpretation of SPECT alone (0.679±0.058) was significantly smaller than that for visual interpretation of both SPECT and 3D-SSP (0.778±0.060). Az for the automated diagnosis (0.883±0.037) was significantly greater than that for both modes of visual interpretation. 3D-SSP enhanced performance of the nuclear medicine physicians inspecting SPECT. Performance of the automated diagnosis exceeded that of the physicians inspecting SPECT with and without 3D-SSP. (author)

  16. Brain SPECT perfusion in children and adolescents poly drug abusers

    International Nuclear Information System (INIS)

    Ramos, R.R.N.; Etchebehere, E.C.S.C.; Santos, A.O.; Lima, M.C.L.; Ramos, C.D.; Camargo, E.E.; Silva, C.A.M.; Serrat, S.M.

    2002-01-01

    Polydrug abuse in children and adolescents is a major social problem. Aim: The aim of this study was to evaluate brain perfusion in polydrug abuser adolescents with brain SPECT imaging (BSI) using 99m Tc-HMPAO. Materials and Methods: Sixteen male polydrug abuser patients (11 to 18 years) were submitted to BSI. Forty-eight normal individuals (26 males, 22 females; 18 to 31 years) were used as a control group. Images were performed after an intravenous injection of 99m Tc-HMPAO in a dark, quiet room. Images were acquired in a camera-computer system equipped with a fan beam collimator. The images were reconstructed in the transaxial, coronal and sagittal views and submitted to semi-quantitative analysis using the thalami as reference, by placing regions of interest (ROIs) in the cerebral and cerebellar cortices. Patients were also submitted to neuropsychology tests and neurologic examination. Results: Significant hypoperfusion was found in the inferior portion of the frontal lobes (left and right: p<0.0001), temporal lobes (left lateral: p=0.0392; right lateral: p=0.0044; left and right mesial: p<0.0005), right parietal lobe (p=0.025), visual cortex (p=0.0013), pons (p = 0.0002), cerebellar hemispheres (left: p=0.0216; right: p=0.0005) and vermis (p=0.0015). An inverse relationship was observed between the degree of perfusion and the duration of drug abuse in the inferior left frontal lobe (? = -0.55; p=0.0255), superior right frontal lobe (? = -0.51; p=0.043), lateral right temporal lobe (? = -0.58; p=0.0172), mesial left temporal lobe (? -0.52; p=0.0384), left parietal lobe (? = -0.51; p=0.0416), basal ganglia (left: ? = -0.70; p=0.0022; right: ? = -0.65; p=0.0056) and cingulate gyrus (? = -0.66; p=0.0054). A significant correlation was observed between the perfusion of the temporal lobes with the Bender-Koppits test (left and right lateral: p=0.0559). Significant correlation was also noted between the perfusion of the lateral left temporal lobe (p=0.0559), parietal

  17. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    Science.gov (United States)

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  18. Data-driven motion correction in brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.W.

    2002-01-01

    Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of the reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Digital and physical phantom validation was performed to investigate this approach. Noisy projection data simulating at least one fully 3D patient head movement during acquisition were constructed by projecting the digital Huffman brain phantom at various orientations. Motion correction was applied to the reconstructed studies. The importance of including attenuation effects in the estimation of motion and the need for implementing an iterated correction were assessed in the process. Correction success was assessed visually for artifact reduction, and quantitatively using a mean square difference (MSD) measure. Physical Huffman phantom studies with deliberate movements introduced during the acquisition were also acquired and motion corrected. Effective artifact reduction in the simulated corrupt studies was achieved by motion correction. Typically the MSD ratio between the corrected and reference studies compared to the corrupted and reference studies was > 2. Motion correction could be achieved without inclusion of attenuation effects in the motion estimation stage, providing simpler implementation and greater efficiency. Moreover the additional improvement with multiple iterations of the approach was small. Improvement was also observed in the physical phantom data, though the technique appeared limited here by an object symmetry. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Tc-99m ECD brain SPECT in MELAS syndrome and mitochondrial myopathy: comparison with MR findings

    International Nuclear Information System (INIS)

    Park, Sang Joon; Ryu, Young Hoon; Jeon, Tae Joo; Kim, Jai Keun; Nam, Ji Eun; Yoon, Pyeong Ho; Yoon, Choon Sik; Lee, Jong Doo

    1998-01-01

    We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were performed and imaging features were analyzed. MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients

  20. Contribution of ictal- and interictal brain SPECT to the diagnostic work-up of epileptic patients

    International Nuclear Information System (INIS)

    Dondi, M.; Salgarello, M.; Zoboli, S.; Cidda, C.; Nanni, C.; Rubboli, G.; Meletti, S.; Volpi, L.; Tassinari, C.A.

    2002-01-01

    Aim of the study: We aimed at assessing the contribution of brain SPECT to the diagnostic work-up of patients admitted to the Intensive Epilepsy Monitoring Unit (IEMU) by evaluating concordance of SPECT results with clinical diagnosis (DX) at IEMU admittance (Adm-DX) and at hospital discharge (Disch-DX). Materials and methods: 48 consecutive patients were enrolled in this study and submitted to both ictal and inter-ictal brain SPECT, carried out by means of a three-head system. Before ictal studies, patients were video-EEG monitored in the IEMU. 740 MBq of Tc99m ECD were injected during seizures and imaging performed within 45-60 minutes. For interictal studies, injection was given after at least a 24-hours seizure-free interval. Slices were reconstructed along the orbito-meatal line as well as along the temporal cut. Possible epileptic foci were identified by visual comparison of ictal and interictal studies. Clinical data: Out of the 48 cases, 27 were diagnosed as temporal lobe epilepsies (TLE). Of these, 15 had an Adm-DX of lateralization, whereas 12 were not lateralized according to standardized clinical and EEG criteria. Frontal lobe epilepsy (FLE) was diagnosed in 11 patients, another group of 3 was classified as cryptogenetic (CRYP), while the remaining 7 cases did not fall into any of the previous groups (OTH). SPECT results: in TLE, ictal/interictal SPECT results were congruent with Adm-Dx in 13/27 cases (48%) whereas congruence was found with 25 out of 27 (92%) of Disch-DX. In FLE, concordance between SPECT and clinical diagnosis remained unchanged (9/11 in comparison to either Adm-DX or Disch-DX). CRYPT patients had no lateralization at Adm-DX, while Dis-DX was concordant with SPECT in 2/3 cases. The group labeled as OTH showed concordance SPECT with Adm-DX in 0/7 cases, as opposed to 5/7 of Disch-DX. On the whole, SPECT results were concordant with Adm-DX in 34/48 cases (71%) but concordance was much higher with Dis-DX (41/48; 85%). Conclusions: Brain

  1. SPM analysis of cerebrovascular reserve capacity after stimulation with acetazolamide measured by Tc-99m ECD SPECT in normal brain MRI patient

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. H.; Yoon, S. N.; Yoon, J. K.; Cho, C. W. [College of Medicine, Univ. of Ajou, Suwon (Korea, Republic of)

    2003-07-01

    This study was undertaken to evaluate normal response of acetazolamide in normal individuals, whose brain MRI is normal, using SPM99. In total, 10 Tc- 99m ECD brain SPECT were evaluated retrospectively. The half of the patients were male. Their mean age was 47.1 years old with a range of 33-61 years. They all visited our neurology department to evaluate stroke symptom. Their brain MRI was normal. Rest/acetazolamide brain SPECT was perfomed using Tc-99m ECD and the sequential injection and subtraction method. SPECT was acquired using fanbeam collimators and triple-head gamma camera (MultiSPECT III, Siemens medical systems, Inc. Hoffman Estates, III, USA). Chang's attenuation correction was applied their brain SPECT revealed normal rCBF pattern in visual analysis by two nuclear physician and they were diagnosed clinically normal. Using SPM method, we compared rest brain SPECT images with those of acetazolamide brain SPECT and measured the extent of the area with significant perfusion change (P<0.05) in predefined 34 cerebral regions. Acetazolamide brain SPECT showed no significant decreased region in comparison to rest brain SPECT. Only small portion of left mid temporal gyrus revealed increased rCBF on acetazolamide brain SPECT in comparison to rest brain SPECT. It apperas that there is no significant change in rCBF between rest and acetazolamide brain SPECT using Tc-99m ECD. The small number of this study is limitation of our study.

  2. Evaluation of Gilles de la Tourette syndrome with [99mTc] HMPAO Brain SPECT

    International Nuclear Information System (INIS)

    Carreira, LCTF; Santos, A. O; Juarez, B. A; Leite, H. A; Lima, M. C. L; Ramos, C. D; Camargo, E. E

    2002-01-01

    Gilles de la Tourette syndrome (GLTS) is a disorder characterized by tics and several behavioral disturbances. Although GLTS is a relatively common disorder, little is known about its pathophysiology. Previous studies with SPECT and PET were performed in a small number of patients and have shown some discordant data. The aim of this study is to evaluate brain perfusion abnormalities in patients with GLTS and to correlate them with the clinical manifestations of the syndrome. Twenty-eight patients were submitted to brain [99mTc]-HMPAO SPECT. 82 percent of the patients had abnormal studies. The most frequent finding was perfusion abnormalities in the thalami in 16 patients (57 percent) and 85 percent of patients with hyperperfusion of one or both thalami had complex motor tics. This investigation has demonstrated that brain perfusion SPECT is able to identify cortical perfusion abnormalities, associated with clinical symptoms in patients with GLTS. These abnormalities involve the pre-frontal-striatal-thalamic-cortical pathways (Au)

  3. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    Energy Technology Data Exchange (ETDEWEB)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Conte, Giorgio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan (Italy); Boito, Simona; Persico, Nicola [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Department of Obstetrics and Gynaecology ' L. Mangiagalli' , Milan (Italy); Rizzuti, Tommaso [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Pathology Unit, Milan (Italy); Triulzi, Fabio [Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan (Italy); Universita degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan (Italy)

    2018-01-15

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  4. High resolution post-mortem MRI of non-fixed in situ foetal brain in the second trimester of gestation. Normal foetal brain development

    International Nuclear Information System (INIS)

    Scola, Elisa; Palumbo, Giovanni; Avignone, Sabrina; Cinnante, Claudia Maria; Conte, Giorgio; Boito, Simona; Persico, Nicola; Rizzuti, Tommaso; Triulzi, Fabio

    2018-01-01

    To describe normal foetal brain development with high resolution post-mortem MRI (PMMRI) of non-fixed foetal brains. We retrospectively collected PMMRIs of foetuses without intracranial abnormalities and chromosomal aberrations studied after a termination of pregnancy due to extracranial abnormalities or after a spontaneous intrauterine death. PMMRIs were performed on a 3-T scanner without any fixation and without removing the brain from the skull. All PMMRIs were evaluated in consensus by two neuroradiologists. Our analysis included ten PMMRIs (median gestational age (GA): 21 weeks; range: 17-28 weeks). At 19 and 20 weeks of GA, the corticospinal tracts are recognisable in the medulla oblongata, becoming less visible from 21 weeks. Prior to 20 weeks the posterior limb of the internal capsule (PLIC) is more hypointense than surrounding deep grey nuclei; starting from 21 weeks the PLIC becomes isointense, and is hyperintense at 28 weeks. From 19-22 weeks, the cerebral hemispheres show transient layers: marginal zone, cortical plate, subplate, and intermediate, subventricular and germinal zones. PMMRI of non-fixed in situ foetal brains preserves the natural tissue contrast and skull integrity. We assessed foetal brain development in a small cohort of foetuses, focusing on 19-22 weeks of gestation. (orig.)

  5. Global cerebral blood flow changes measured by brain perfusion SPECT immediately after whole brain irradiation

    International Nuclear Information System (INIS)

    Ohtawa, Nobuyuki; Machida, Kikuo; Honda, Norinari; Hosono, Makoto; Takahashi, Takeo

    2003-01-01

    Whole brain irradiation (WBI) is still a major treatment option for patients with metastatic brain tumor despite recent advances in chemotherapy and newer techniques of radiation therapy. Cerebral blood flow (CBF) of changes induced by whole brain radiation is not fully investigated, and the aim of the study was to measure CBF changes non-invasively with brain perfusion SPECT to correlate with treatment effect or prognosis. Total of 106 patients underwent WBI during April 1998 to March 2002. Both brain MRI and brain perfusion SPECT could be performed before (less than 1 week before or less than 10 Gy of WBI) and immediately after (between 1 week before and 2 weeks after the completion of WBI) the therapy in 17 of these patients. They, 10 men and 7 women, all had metastatic brain tumor with age range of 45 to 87 (mean of 61.4) years. Tc-99m brain perfusion agent (HMPAO in 4, ECD in 13) was rapidly administered in a 740-MBq dose to measure global and regional CBF according to Matsuda's method, which based on both Patlak plot and Lassens' linearity correction. Brain MRI was used to measure therapeutic response according to World Health Organization (WHO) classification as complete remission (CR), partial response (PR), no change (NC), and progressive disease (PD). Survival period was measured from the completion of WBI. Mean global CBF was 40.6 and 41.5 ml/100 g/min before and immediately after the WBI, respectively. Four patients increased (greater than 10%) their global mean CBF, 10 unchanged (less than 10% increase or decrease), and 3 decreased after the WBI. The WBI achieved CR in none, PR in 8, NC in 6, and PD in 3 on brain MRI. Change in global mean CBF (mean±SD) was significantly larger in PR (4.3±2.0 ml/100 g/min, p=0.002) and in NC (-0.1±4.5) than in PD (-3.9±6.4, P=0.002, P=0.016, respectively). Survival was not significantly (p>0.05) different among the patients with CR (20 weeks), NC (48 weeks), and PD (21 weeks). Change in global CBF and survival was

  6. Evaluation of {sup 99m}Tc-ECD SPECT for the detection of brain tumor. Comparison with {sup 201}Tl SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Motoo; Sasaki, Yasushi; Kikuchi, Yoshirou; Kaminaga, Tatsuro; Furui, Shigeru [Teikyo Univ., Tokyo (Japan). Faculty of Medicine; Konoeda, Kouichi; Karigome, Masato; Yoshida, Katsuhiko

    1997-01-01

    For the evaluation of brain tumor (n=15), we performed both dynamic and static {sup 99m}Tc-ECD (ECD) SPECT studies. {sup 201}Tl SPECT was also used for comparison with the results of ECD SPECT. Dynamic ECD SPECT was obtained following the injection of 600 MBq of ECD. Five min after the injection of ECD, static ECD SPECT was performed. {sup 201}Tl SPECT was obtained 10 min after the injection of 74 MBq. Abnormal uptake was recognized in 7 of 15 tumors with dynamic ECD; 5 of 7 meningiomas, 1 of 1 glioblastoma and 1 of 1 astrocytoma. However, no abnormal uptake was seen in 3 of 3 benign tumors (1 low grade astrocytoma, 1 hemangioma, 1 craniopharyngioma) and in 2 of 2 brain metastases. In contrast abnormal uptake was seen in 11 of 15 tumors with {sup 201}Tl; 7 of 7 meningiomas, 2 of 2 brain metastases, 1 of 1 glioblastoma and 1 of 1 craniopharyngioma. No abnormal uptake was seen in 3 of 3 benign tumors (1 hemangioma and 2 low grade astrocytomas). Equivocal uptake was seen in 1 low grade astrocytoma with dynamic ECD and {sup 201}Tl. The mechanism of the accumulation of dynamic ECD to brain tumor is unclear. However, it may reflect not only blood flow, but also metabolism. (author)

  7. A study of 99mTc-HM-PAO brain SPECT in the senile parkinson's disease

    International Nuclear Information System (INIS)

    Chen Wenxin; Lin Xiangtong; Song Wenzhong; Liu Yongchang

    1996-01-01

    Thirty-three cases of senile Parkinson's disease (PD) imaged by 99m Tc-HM-PAO brain SPECT were reported. 66.7% of the patients had cortical hypoperfusion and 18.2% showed asymmetrical hypoperfusion in the basal ganglia. Such a finding was not related with the Hoehn-Yahr stage and the laterality of motor symptoms. If complicated with dementia, the SPECT brain imaging showed similar pattern in Alzheimer's disease with diffuse hypoperfusion in cortical area reflecting widespread pathological changes in tremor paralysis

  8. Registration and display of brain SPECT and MRI using external markers

    International Nuclear Information System (INIS)

    Pohjonen, H.; Nikkinen, P.; Sipilae, O.; Launes, J.; Salli, E.; Salonen, O.; Karp, P.; Ylae-Jaeaeski, J.; Katila, T.; Liewendahl, K.

    1996-01-01

    Accurate anatomical localisation of abnormalities observed in brain perfusion single-photon emission computed tomography (SPECT) is difficult, but can be improved by correlating data from SPECT and other tomographic imaging modalities. For this purpose we have developed software to register, analyse and display 99m Tc-hexamethylpropyleneamine oxime SPECT and 1.0 T MRI of the brain. For registration of SPECT and MRI data external skin markers containing 99m Tc (220 kBq) in 50 μl of coconut butter were used. The software is coded in the C programming language, and the X Window system and the OSF/Motif standards are used for graphics and definition of the user interface. The registration algorithm follows a noniterative least-squares method using singular value decomposition of a 3 x 3 covariance matrix. After registration, the image slices of both data sets are shown at identical tomographic levels. The registration error in phantom studies was on average 4 mm. In the two-dimensional display mode the orthogonal cross-sections of the data sets are displayed side by side. In the three-dimensional mode MRI data are displayed as a surface-shaded 3 D reconstruction and SPECT data as cut planes. The usefulness of this method is demonstrated in patients with cerebral infarcts, brain tumour, herpes simplex encephalitis and epilepsy. (orig.). With 9 figs

  9. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy; SPECT cerebral interictal em pacientes com epilepsia do lobo temporal de dificil controle

    Energy Technology Data Exchange (ETDEWEB)

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  10. Brain perfusion SPECT in children with frequent fits

    International Nuclear Information System (INIS)

    Heiskala, H.; Launes, J.; Pihko, H.; Nikkinen, P.; Santavuori, P.

    1993-01-01

    We studied 14 children with frequent fits using 99m Tc-HM-PAO single photon emission computed tomography (SPECT). There were 11 patients with partial secondary generalized epilepsy (PSGE) and 3 with Lennox-Gastaut syndrome (LGS). The typical regional cerebral blood flow (rCBF) finding in PSGE was a single area of abnormally low perfused cortex, and that in LGS, multiple hypoperfused areas. Clinically, the LGS patients were more severely affected. SPECT was more sensitive in detecting abnormalities than EEG, CT or MRI. Extensive impairment of rCBF may thus indicate unfavourable development of intellectual performance and poor seizure control. (author)

  11. 99mTc-HMPAO SPECT of the brain in mild to moderate traumatic brain injury patients: compared with CT--a prospective study.

    Science.gov (United States)

    Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J

    1993-01-01

    Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.

  12. Increased thalamic perfusion as a characteristic finding with brain SPECT in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Mut, F.; Beretta, M.; Nunez, M.; Zamora, R.

    2002-01-01

    Aim: Obsessive-compulsive disorder (OCD) is a relatively frequent psychiatric condition affecting most commonly young patients. Correct diagnosis and follow-up is essential in order to apply effective therapy. However, some common characteristics have been reported with brain SPECT for OCD and depression, with several brain structures belonging to the limbic system involved in both conditions: frontal cortex, cingulate gyrus, caudate nucleus, thalamus and hippocampus, among others. The aim of this study was to investigate quantitative findings of brain SPECT in OCD compared to other psychiatric conditions such as depression and dementia. Material and Methods: We studied 33 patients, 22 women, ages 39.3±10.9 years. Fifteen patients had clinical diagnosis of OCD (8 women, 21∫8 ys.), 13 of bipolar or unipolar depression (11 women, 28±15 ys.) and 5 of senile dementia (3 women, 69±10 ys). All were injected in the basal state with a standard dose of 925 MBq (25 mCi) of 99mTc-ECD. Brain SPECT was performed with a dual-head camera equipped with a high-resolution collimator using 360 0 rotation, 120 angular steps and 15 sec/step in a 64x64 matrix with 1.5 x magnification. Reconstruction of transaxial tomograms was performed using filtered backprojection with a Metz filter. Attenuation correction was applied according to Chang's method. In order to calculate uptake ratios, regions of interest (ROIs) were placed on the right and left frontal cortex (RFron, LFron), anterior or posterior cingulate gyrus (Cing) according to the site of highest uptake recorded, both caudate nucleus (RCau, LCau), thalamus (Thal) and cerebellum (cer). Results: The findings are presented. Conclusion: Cingulate gyrus hyperactivity has been reported in patients with OCD and confirmed in our series, however not significantly different from that observed in depressed patients. The only distinct finding was higher thalamic activity in OCD patients compared to the other groups, suggesting that this

  13. Predictive value of brain SPECT with 99 technetium - MIBI for differentiation of histologic grade brain gliomas

    International Nuclear Information System (INIS)

    León Castellón, Roberto; Martín Escuela, Juan Miguel; López Díaz, Ing. Adlin; Salva Camaño, Silvia; Gómez Viera, DrC. Nelson; San Pedro, Aley Palau; Castro Jiménez, Mayté

    2016-01-01

    Diagnosis and treatment of primary tumors of the nervous system remain difficult and are a challenge to be addressed in a multidisciplinary way. In order to determine the usefulness of brain SPECT 99 Tc MIBI to differentiate histologic grade brain gliomas - Frequently brain tumors - they were studied 68 patients with this technique. A dynamic study first step in AP and lateral view was performed, and a SPECT at 20 minutes post-administration and at 2 hours late views. the post-surgical histological study of injuries was used as control. several imaging parameters such as the absolute activity of 99m Tc-MIBI were calculated both early and late phase, cortex contralateral tumor rates; pituitary tumor; choroid plexus tumor and Reason Late / Early phase tumor index / contralateral cortex tumor volume functional phase, the volume concentration of MIBI activity in the tumor and the retention rate of the radiopharmaceutical. Of the 68 patients studied, 11 were high-grade tumors and 57 low grade. The cortex contralateral tumor in late stage index showed a negative satisfactory sensitivity of 98.6% and specificity 77.1%, positive predictive value (PPV) of 48.2% and (NPV) of 99.8%. The reason late stage / early in the index tumor / contralateral cortex showed values ​​in turn 96.3%, 98.7%, 98.8% and 98.8% sensitivity, specificity, PPV and NPV respectively. The retention rate showed a 99% sensitivity, 89% specificity and PPV, NPV of 95% and 99% respectively. Conclusion: The combination cortex contralateral tumor rate in late stage, the reason late stage / early stage tumor index / contralateral cortex and the retention rate of the radiopharmaceutical are the most useful parameters to predict histologic grade of brain gliomas. (author)

  14. The Performance of Ictal Brain SPECT Localizing for Epileptogenic Zone in Neocortical Epilepsy

    International Nuclear Information System (INIS)

    Kim, Eun Sik; Lee, Dong Soo; Hyun, In Young; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Lee, Sang Kun; Chang, Kee Hyun

    1995-01-01

    The epileptogenic zones should be localized precisely before surgical resection of these zones in intractable epilepsy. The localization is more difficult in patients with neocortical epilepsy than in patients with temporal lobe epilepsy. This study aimed at evaluation of the usefulness of ictal brain perfusion SPECT for the localization of epileptogenic zones in neocortical epilepsy. We compared the performance of ictal SPECT with MRI referring to ictal scalp electroencephalography (sEEG). Ictal 99m Tc-HMPAO SPECT were done in twenty-one patients. Ictal EEG were also obtained during video monitoring. MRI were reviewed. According to the ictal sEEG and semiology, 8 patients were frontal lobe epilepsy, 7 patients were lateral temporal lobe epilepsy, 2 patients were parietal lobe epilepsy, and 4 patients were occipital lobe epilepsy. Ictal SPECT showed hyperperfusion in 14 patients(67%) in the zones which were suspected to be epileptogenic according to ictal EEG and semiology. MRI found morphologic abnormalities in 9 patients(43%). Among the 12 patients, in whom no epileptogenic zones were revealed by MR1, ictal SPECT found zones of hyperperfusion concordant with ictal sEEG in 9 patients(75%). However, no zones of hyperperfusion were found in 4 among 9 patients who were found to have cerebromalacia, abnormal calcification and migration anomaly in MRI. We thought that ictal SPECT was useful for localization of epileptogenic zones in neocortical epilepsy and especially in patients with negative findings in MRI.

  15. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-10-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [(123)I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI.

  16. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    International Nuclear Information System (INIS)

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L.

    1990-01-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT

  17. Functional brain SPECT with 99mTc-HMPAO in the diagnosis of Alzheimer disease

    International Nuclear Information System (INIS)

    Urbanek, J.; Kupka, K.; Samal, M.; Jirak, R.; Obenberger, J.

    1998-01-01

    The explanatory power of perfusion diagrams obtained by the title technique was examined. In addition to the standard reconstruction procedure, a special reorientation procedure aimed at a differentiation of the hippocampus structure was applied. The study gave evidence of a high specificity and sensitivity of brain SPECT in the differential diagnosis of dementias. Multifactorial analysis of all available diagnostic techniques has borne out the dominant position of brain SPECT with 99m Tc-HMPAO, particularly when using special projection onto the hippocampus, and has led to the formulation of an examination algorithm where a combination of SPECT and MRI (and CT) enables DAT to be distinguished from dementias of other etiologies with a probability higher than 90%

  18. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    So, Young [Nuclear Medicne, Seoul National Univ., Seoul (Korea, Republic of); Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June [College of Medicine, Chungnam National Univ., Taejon (Korea, Republic of)

    2002-08-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 {+-} 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 {approx} 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI.

  19. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    International Nuclear Information System (INIS)

    So, Young; Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June

    2002-01-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 ± 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 ∼ 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI

  20. The study of low level laser irradiation therapy on brain infarction with SPECT

    Institute of Scientific and Technical Information of China (English)

    Xiao Xuechang; Jia Shaowei; Zleng Xiyuan

    2000-01-01

    Objective: Effect of rCBF and brain function on ILIB treating brain infarction will be investigated by SPECT brain perfusion imaging. Method: 3 1 patients with brain infarction, 17 patients were treated by ILIB on standard pharmaceutial treatment. SPECT brain perfusion imaging was performed before and after ILIB therapy with comparison of oneself. They were quantified with BFCR% model effect during ILIB in 14 patients were observed. Result: ILIB 30 rnme SPECT showed the improvement of rCBF and cerebral function in 14 patients with brain infarction, and in 17 patients locus were prominence than mirror regions att er ILIB therapy, both are higher singnitficant difference ( t=4.4052, P<0.0001 ), but mirror regions were not singnificant difference before and after ILIB (t=1.6995, P>0.05). BFCR% quantitative results of locus were higher mirror regions, and higher singnificant difference (t=4.5278 p<0.0001 )。 Conclusion: ILIB can improve the rCBF and cerebral function of patients with brain infarction, and provoke function of brain cells. Some new evidence was provided for ILIB treatment of cerebral ischemia

  1. Clinical Utility of '99mTc-HMPAO Brain SPECT Findings in Chronic Head Injury

    International Nuclear Information System (INIS)

    Chung, Jin ll; Chung, Tae Sub; Suh, Jung Ho; Kim, Dong Ik; Lee, Jong Doo; Park, Chang Yoon; Kim, Young Soo

    1992-01-01

    Minima deterioration of cerebral perfusion or microanatomical changes were undetectable on conventional Brain CT or MRI. So evaluation of focal functional changes of the brain parenchyme is essential in chronic head injury patients, who did not show focal anatomical changes on these radiological studies. However, the patients who had longstanding neurologic sequelae following head injury, there had been no available imaging modalities for evaluating these patients precisely. Therefore we tried to detect the focal functional changes on the brain parenchyme using 99m Tc-HMPAO Brain SPECT on the patients of chronic head injuries. Twenty three patients who had suffered from headache, memory dysfunction, personality change and insomnia lasting more than six months following head injury were included in our cases, which showed no anatomical abnormalities on Brain CT or MRI. At first they underwent psychological test whether the symptoms were organic or not. Also we were able to evaluate the cerebral perfusion changes with 99m Tc-HMPAO Brain SPECT in 22 patients among the 23, which five patients were focal and 17 patients were nonfocally diffuse perfusion changes. Thus we can predict the perfusion changes such as local vascular deterioration or functional defects using 99m Tc-HMPAO Brain SPECT in the patients who had suffered from post-traumatic sequelae, which changes were undetectable on Brain CT or MRI.

  2. Analysis of brain SPECT with the statistical parametric mapping package SPM99

    International Nuclear Information System (INIS)

    Barnden, L.R.; Rowe, C.C.

    2000-01-01

    Full text: The Statistical Parametric Mapping (SPM) package of the Welcome Department of Cognitive Neurology permits detection in the brain of different regional uptake in an individual subject or a population of subjects compared to a normal population. SPM does not require a-priori specification of regions of interest. Recently SPM has been upgraded from SPM96 to SPM99. Our aim was to vary brain SPECT processing options in the application of SPM to optimise the final statistical map in three clinical trials. The sensitivity of SPM depends on the fidelity of the preliminary spatial normalisation of each scan to the standard anatomical space defined by a template scan provided with SPM. We generated our own SPECT template and compared spatial normalisation to it and to SPM's internal PET template. We also investigated the effects of scatter subtraction, stripping of scalp activity, reconstruction algorithm, non-linear deformation and derivation of spatial normalisation parameters using co-registered MR. Use of our SPECT template yielded better results than with SPM's PET template. Accuracy of SPECT to MR co-registration was 2.5mm with SPM96 and 1.2mm with SPM99. Stripping of scalp activity improved results with SPM96 but was unnecessary with SPM99. Scatter subtraction increased the sensitivity of SPM. Non-linear deformation additional to linear (affine) transformation only marginally improved the final result. Use of the SPECT template yielded more significant results than those obtained when co registered MR was used to derive the transformation parameters. SPM99 is more robust than SPM96 and optimum SPECT analysis requires a SPECT template. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  3. Brain SPECT in childhood; Temp cerebrale chez l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L. [Hopital Bretonneau, Service de Medecine Nucleaire, Unite Inserm 316, 37 - Tours (France)

    2001-04-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  4. Neuroimaging of post-traumatic higher brain dysfunction using 123I-Iomazenil (IMZ) SPECT

    International Nuclear Information System (INIS)

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2010-01-01

    In patients with mild traumatic brain injury (MTBI), higher brain dysfunctions which consist of cognitive impairments such as memory, attention, performance and social behavioral disturbances could be rarely apparent. However, higher brain dysfunctions should be identified by neuropsychological tests and supported by a social welfare for handicapped patients. Acknowledgement of higher brain dysfunctions after MTBI without obvious brain damages on morphological neuroimagings could be a social issue under controversy. An imaging of cortical neuron damages in patients with higher brain dysfunctions after MTBI was studied by functional neuroimaging using 123 I-Iomazenil (IMZ) single photon emission computed tomography (SPECT). Statistical imaging analyses using 3 dimensional stereotactic surface projections (3D-SSP) for 123 I-IMZ SPECT and 123 I-IMP SPECT as cerebral blood flow (CBF) studies were performed in 11 patients with higher brain dysfunctions after MTBI. In all patients with higher brain dysfunctions defined by neuropsychological tests, cortical neuron damages were observed in bilateral medial frontal lobes, but reduction of CBF in bilateral medial frontal lobes were less obviously showed in 8 patients (apparent in 3 and little in 5). Group comparison of 3D-SSP of 123 I-IMZ SPECT between 11 patients and 18 normal controls demonstrated significant selective loss of cortical neuron in bilateral medial frontal gyrus (MFG). Extent of abnormal pixels on each cortical gyrus using stereotactic extraction estimation (SEE) for 3D-SSP of 123 I-IMZ SPECT confirmed that 8 patients had abnormal pixel extent >10% in bilateral MFG and 5 patients had abnormal pixel extent >10% in bilateral anterior cingulate gyrus. In patients with MTBI, higher brain dysfunctions seems to correlate with selective loss of cortical neuron within bilateral MFG which could be caused by Wallerian degeneration as secondary phenomena after diffuse axonal injury within corpus callosum. Statistical

  5. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  6. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier; Niboyet, Jean

    2007-01-01

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 ± 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 ± 4.2 before ketamine and 31.8 ± 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  7. Automated voxel-based analysis of brain perfusion SPECT for vasospasm after subarachnoid haemorrhage

    International Nuclear Information System (INIS)

    Iwabuchi, S.; Yokouchi, T.; Hayashi, M.; Kimura, H.; Tomiyama, A.; Hirata, Y.; Saito, N.; Harashina, J.; Nakayama, H.; Sato, K.; Aoki, K.; Samejima, H.; Ueda, M.; Terada, H.; Hamazaki, K.

    2008-01-01

    We evaluated regional cerebral blood flow (rCBF) during vasospasm after subarachnoid haemorrhage ISAH) using automated voxel-based analysis of brain perfusion single-photon emission computed tomography (SPELT). Brain perfusion SPECT was performed 7 to 10 days after onset of SAH. Automated voxel-based analysis of SPECT used a Z-score map that was calculated by comparing the patients data with a control database. In cases where computed tomography (CT) scans detected an ischemic region due to vasospasm, automated voxel-based analysis of brain perfusion SPECT revealed dramatically reduced rCBF (Z-score ≤ -4). No patients with mildly or moderately diminished rCBF (Z-score > -3) progressed to cerebral infarction. Some patients with a Z-score < -4 did not progress to cerebral infarction after active treatment with a angioplasty. Three-dimensional images provided detailed anatomical information and helped us to distinguish surgical sequelae from vasospasm. In conclusion, automated voxel-based analysis of brain perfusion SPECT using a Z-score map is helpful in evaluating decreased rCBF due to vasospasm. (author)

  8. Brain scintigraphy (SPECT) using 201thallium in patients with primary tumors of the brain

    International Nuclear Information System (INIS)

    Barzen, G.; Schubert, C.; Richter, W.; Calder, D.; Eichstaedt, H.; Felix, R.; Baerwald, M.

    1992-01-01

    We evaluated the role of thallium 201 Single-Photon-Emission-Computed-Tomography (SPECT) in diagnosis, differential diagnosis and follow-up of 33 patients with primary brain tumors. 27 of 33 lesions were detectable by Tl-201-SPECT because only two of eight low-grade (grade 1 and 2) astrocytomas showed Tl-201 accumulation up to a tumor to nontumor ratio of 2.6. High grade (grade 3 and 4) astrocytomas showed Tl-201 accumulation in the range of 2.2 up to 13.0 and were different from low-grade astrocytomas. Noninvasive grading of astrocytomas is therefore possible, whereas differential diagnosis of oligodendrogliomas and astrocytomas or meningeomas was not possible with Tl-201. In the follow-up of six patients, we could demonstrate, that tumor progression is correlated with increasing and tumor regression with decreasing Tl-201 accumulations. This functional changings proceed morphological findings in CT. But vanishing of Tl-201 accumulation during therapy does not mean vanishing of tumor as could be demonstrated by follow-up. (orig.) [de

  9. Marchiafava-Bignami disease: a case studied with brain magnetic resonance and SPECT

    International Nuclear Information System (INIS)

    Cardozo Oliver, J.; Casas Parera, Ignacio; Libere, G.; Malagold, S.

    2006-01-01

    Objective: To show the correlation between brain magnetic resonance images (MRI) and single-photon-emission computed tomography (SPECT) in a patient with Marchiafava-Bignami (MB) disease. Background: MB disease is a rare disorder associated with chronic alcoholism. It is characterized by symmetric demyelination of corpus callosum (CC) and adjacent white matter. These lesions can be demonstrated both by computed tomography or/and MRI. Scarce information is available about MRI and SPECT according to the research done. Design/methods: A 79-year-old white man with a history of excessive alcohol consumption (predominantly wine) was admitted to our Institute. A decrease in his physical activity was evidenced in the two years prior to admission and in the last twelve months progressive dementia with hallucinations and severe apathy developed. On admission neurologic examination showed papillae pale in both eyes, left hearing loss, action tremor of upper limbs and proximal hyporeflexia with distal arreflexia of all four limbs was observed. Affectation of higher cortical functions was evident. Cerebrospinal fluid was normal and serology for syphilis and HIV were negative. Both renal and hepatic functions were normal. Brain MRI and SPECT were performed. The patient died 70 days after diagnosis of MB disease. Results: MRI scans of the brain showed multiple hyperintense T2-weighted lesions in white matter and basal ganglia. Cortical atrophy, especially in the fronto-temporal areas, and a CC thickness reduction were also observed. Sagittal view showed an irregular cavitation in the genu of the CC, hypointense and hyperintense on T1 and T2-weighted images respectively. The SPECT showed an abnormal low perfusion on both frontal lobes, left temporo-parietal lobes and right basal ganglia. Conclusion: The clinical features and MRI were consistent with the diagnosis of MB disease. MRI and SPECT studies showed the connection between the lesion in the CC and bilateral cortical

  10. Clinical applications of brain spect with N-isopropyl-123I-p-iodoamphetamine

    International Nuclear Information System (INIS)

    Moretti, J.L.; Sergent, A.; Raynaud, C.; Baron, J.C.; Samson, Y.; Lassen, N.; Bourdoiseau, M.

    1985-01-01

    Single-photon emission computed tomography (SPECT) with N-isopropyl- 123 I-p-iodoamphetamine (IAMP-I-123) was used for 250 patients suffering from brain disorders, comprising brain tumours (36), normal-pressure hydrocephalus (NPH) (23), cerebrovascular pathologies (127) and partial epilepsy (64). Brain tumours were found to be hypoactive, whatever the grade and nature. Frontal hypoactivity was found in NPH patients, and IAMP-I-123 perfusion was improved after cerebral spinal fluid (CSF) lumbar drainage, giving a good predictive criterion of clinical outcome after CSF diversion. For cerebrovascular disorders, it was possible to obtain with IAMP-I-123 SPECT larger pictures of hypoactive areas than the pictures of hypodense lesions obtained with X-ray CT scans; other hypoactive areas that could not be observed with CT were also delineated by IAMP-I-123 SPECT. The hypoactive areas found in constituted infarctions can present two types of kinetics - those which are 'persistent' (still present on delayed scans performed 5 h after IAMP-I-123 injection) and those which disappear with time, thereby suggesting hypofunctional parenchyma without tissue impairment. IAMP-I-123 SPECT was proved to be useful in assessing ischaemia, especially in reversible ischaemia patients, by defining the affected arterial territory and guiding complementary arteriographic exploration in view of surgical procedures. IAMP-I-123 SPECT was able to accurately delineate the affected parenchymal areas. It could also be of help in the follow-up of the efficiency of drug therapy and surgery, and it can be regarded as a good predictive criterion for stroke rehabilitation. The results obtained with IAMP-I-123 indicate that the lesional and epileptogenic areas in epileptic patients are hypoactive. The localization of these territories by IAMP-I-123 SPECT correlates well with other, more accurate, neuroradiological and stereotactic techniques. (author)

  11. 99mTc-ECD brain perfusion SPECT in hyperalgesic fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Taieb, David; Cammilleri, Serge; Lussato, David; Laforte, Catherine de; Mundler, Olivier; Niboyet, Jean

    2007-01-01

    Neuro-imaging studies with 99m Tc-HMPAO SPECT in fibromyalgia (FM) patients have reported only limited subcortical hypoperfusion. 99m Tc-ECD SPECT is known to provide better evaluation of areas of high cerebral blood flow and regional metabolic rate. We evaluated a homogeneous group of hyperalgesic patients with FM using 99m Tc-ECD SPECT. The aim of this study was to investigate brain processing associated with spontaneous pain in FM patients. Eighteen hyperalgesic FM women (mean age 49 years, range 25-63 years; American College of Rheumatology criteria) and ten healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). Visual Analogue Scale score for pain was 82±4 at the time of the SPECT study. Compared with control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis, with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. In the present study, performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in the sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective-attentional dimension. As current pharmacological and non-pharmacological therapies act differently on the two components of pain, we hypothesise that SPECT could be a valuable and readily available tool to guide individual therapeutic strategy and provide objective follow-up of pain processing recovery under treatment. (orig.)

  12. {sup 99m}Tc-ECD brain perfusion SPECT in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Taieb, David; Cammilleri, Serge; Lussato, David; Laforte, Catherine de; Mundler, Olivier [Assistance Publique des Hopitaux de Marseille, Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 05 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-01-15

    Neuro-imaging studies with {sup 99m}Tc-HMPAO SPECT in fibromyalgia (FM) patients have reported only limited subcortical hypoperfusion. {sup 99m}Tc-ECD SPECT is known to provide better evaluation of areas of high cerebral blood flow and regional metabolic rate. We evaluated a homogeneous group of hyperalgesic patients with FM using {sup 99m}Tc-ECD SPECT. The aim of this study was to investigate brain processing associated with spontaneous pain in FM patients. Eighteen hyperalgesic FM women (mean age 49 years, range 25-63 years; American College of Rheumatology criteria) and ten healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). Visual Analogue Scale score for pain was 82{+-}4 at the time of the SPECT study. Compared with control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis, with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. In the present study, performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in the sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective-attentional dimension. As current pharmacological and non-pharmacological therapies act differently on the two components of pain, we hypothesise that SPECT could be a valuable and readily available tool to guide individual therapeutic strategy and provide objective follow-up of pain processing recovery under treatment. (orig.)

  13. Dynamic SPECT of the brain using a lipophilic technetium-99m complex, PnAO

    DEFF Research Database (Denmark)

    Holm, S; Andersen, A R; Vorstrup, S

    1985-01-01

    m PnAO was injected i.v. as a bolus of 15 to 25 mCi. The distribution was followed over 10-sec intervals using a highly sensitive, rapidly rotating SPECT (Tomomatic 64) and compared to 133Xe flow maps. Upon arrival of the PnAO bolus to the brain, a high uptake was found in brain tissue with high......The lipophilic 99mTc-labeled oxime propylene amine oxime (PnAO) should, according to recent reports behave like 133Xe in the human brain. This study compares SPECT images of the two tracers in six subjects: four stroke cases, one transitory ischemic attack case and one normal subject. Technetium-99......AO has a high yet incomplete brain extraction yielding a flow dominated initial distribution with limitations mentioned....

  14. Extraosseous accumulation of bone scanning agents in malignant brain tumors. Comparison to semi-quantitative evaluation with 99mTc SPECT/201Tl SPECT and histological findings

    International Nuclear Information System (INIS)

    Suzuki, Aya

    2003-01-01

    Although 201 Tl chloride (Tl) SPECT has been used in the differential diagnosis between recurrence of malignant brain tumor and necrosis after treatment, it is not generally recognized as a definite modality to distinguish them. We conducted a preliminary study using Tl SPECT and 99m Tc-MDP or 99m Tc-HMDP (Tc) SPECT because it has been said that extraosseous accumulation was caused by calcium deposits in necrotic tissues. In our study, for the purposes of clarifying the mechanism of extraosseous uptake and the correlation between extraosseous accumulation of bone-scanning agent and tumor viability in malignant brain tumors, we compared whether Tc uptake was correlated with the histopathological findings and further performed semi-quantitative evaluation between Tc SPECT and Tl SPECT. The correlation coefficients between the ratio of tumor to normal skull count obtained from Tc SPECT (Tc-T/N) and those of tumor to normal brain count (T/N) and to normal scalp count (T/S) both obtained from Tl SPECT were calculated. Using contrast enhanced CT (CE-CT) or contrast enhanced MRI (CE-MRI), 8 of 10 cases showed intensely ring-enhanced tumor with necrotic lesion. Histopathologically, 7 of 8 cases whose tumor had been resected before treatment had necrosis with increased vascularity or bleeding. Of the remaining 2 cases one case, malignant lymphoma had only hypervascularity by biopsy, while the other one was excluded for resection after treatment. Three of these 8 cases whose CE-CT or CE-MRI showed necrotic lesions exhibited Tc and Tl accumulations in the area corresponding to necrosis. In contrast, 2 showed no Tc nor Tl uptake. Tc-T/N had no significant correlation with any of early-, delayed-T/N or T/S. In conclusion, there was no significant correlation between Tc and Tl uptakes by malignant brain tumors in semi-quantitative evaluation. (author)

  15. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Taieb, David; Cammilleri, Serge; Lussato, David; Laforte, Catherine de; Niboyet, Jean; Mundler, Olivier

    2007-01-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  16. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)]. E-mail: eric.guedj@ap-hm.fr; Taieb, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Cammilleri, Serge [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Lussato, David [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Laforte, Catherine de [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France); Niboyet, Jean [Unite d' Etude et de Traitement de la Douleur, Clinique La Phoceanne, Marseille (France); Mundler, Olivier [Service Central de Biophysique et de Medecine Nucleaire, AP-HM Timone, Marseille (France)

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 (p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  17. Brain perfusion spect imaging with sup 99m Tc-HM-PAO in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wenzhong, Song; Xiangtong, Lin [Shanghai Medical Univ. (China). Huashan Hospital

    1991-02-01

    Forty patients with Parkinson's disease were studied using {sup 99m}Tc-HM-PAO brain perfusion SPECT. 62.5% (25 cases) showed abnormal blood perfusion. Among them 55% showed local decreased blood perfusion of cerebral cortex, 22% showed asymmetric decreased blood perfusion in basal gaglia, 10% showed decreased uptake of tracer in cerebellum. The pathophysiologic basis of the abnormality of brain blood perfusion were briefly discussed.

  18. Brain SPECT with iodine-123-amphetamine in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Boettger, I.G.; Ludolph, A.C.; Elger, C.E.; Lottes, G.

    1988-01-01

    The study of 17 patients with ALS by 123 I-amphetamine (BIMP) SPECT revealed reduced CBF/amphetamine uptake correlation with the clinical status and course of the disease. ALS appears to involve fronto-temporal structures/functions in the early stage finally leading to generalization with the exclusion of the cerebellum. Thus, in ALS an involvement of also other than only motor cerebral structures/functions, which may be reversible, has to be considered. (orig.)

  19. Comparison of Tc-99m ECD brain SPECT between patients with delayed development and cerebral palsy

    International Nuclear Information System (INIS)

    Cho, I.; Chun, K.; Won, K.; Lee, H.; Jang, S.; Lee, J.

    2002-01-01

    Purpose: In previous study, thalamic or cerebellar hypoperfusion were reported in patients with cerebral palsy. This study was performed to evaluate cerebral perfusion abnormalities using Tc-99m ECD brain SPECT in patients with delayed motor development. Methods: Nineteen patients (9 boys, 10 girls, mean age 25.5 months) with delayed development underwent brain SPECT after injection of 185∼370 MBq of Tc-99m ECD. The imaging was obtained between 30 minutes and 1hr after injection. The patients were divided clinically as follows, patients with delayed development (n=5) and patients with cerebral palsy (n=14) who has delayed development and abnormal movement. The clinical subtypes of cerebral palsy were spastic quadriplegia (n=5), spastic diplegia (n=6) and spastic hemiplegia (n=3). In each group, decrease of cerebral perfusion was evaluated visually as mild, moderate and severe and quantitation of cerebral perfusion after Lassen's correction was also obtained. Results: SPECT findings showed normal or mildly decreased thalamic perfusion in patients with delayed development and severe decrease of thalamic or cerebellar perfusion in patients with spastic quadriplegia. In patients with spastic diplegia, mild decrease of perfusion was observed in thalamus. In quantified data, thalamic perfusion was lowest in patients with spastic quadriplegia and highest in patients with delayed development, but there were no statistically significant differences. Conclusion: Brain SPECT with Tc-99m ECD has a role in the detection of perfusion abnormalities in patients with delayed development and cerebral palsy

  20. Technetium-99mTc-HMPAO brain SPECT in antiphospholipid syndrome - preliminary data

    International Nuclear Information System (INIS)

    Romanowicz, G.; Lass, P.; Koseda-Dragan, M.; Nowicki, R.; Krajka-Lauer, J.

    2000-01-01

    Background: Antiphospholipid syndrome (APS) is defined as the presence of repeated episodes of arterial or venous thrombosis, recurrent spontaneous abortions and throbocytopenia in patients with elevated antiphospholipid antibodies. An important feature of APS are cerebrovascular disorders of thrombotic origin. The aim of the study was to assess cerebral blood flow changes utilising brain SPECT HMPAO scanning. METHODS: Brain SPECT 99mTc-HMPAO scanning was performed in 20 patients with APS: 12 with systemic lupus erythematosus, 4 with Sneddon's syndrome, 2 with Sjoegren's syndrome, 2 with primary APS. 30 healthy volunteers served as a control group. RESULTS: 19 studies were abnormal, 1 normal. Abnormalities consisted of multifocal perfusion deficits and diffuse decrease of regional blood flow. The average number of focal perfusion deficits was 4.8±1.7. In 7 patients diffuse hypoperfusion of frontal lobes was seen, in 1 patient additionally hypoperfusion of temporal and occipital lobes. There was a correlation between the number of focal perfusion deficits and cognitive impairment in this group of patients. Correlation between SPECT images and clinical data was moderate in cerebellar syndrome and paresis, weak in persistent headache and vertigo. CONCLUSIONS: Those results indicate the high utility of CBF brain SPECT scanning in antiphospholipid syndrome. (author)

  1. Early and delayed Tc-99m ECD brain SPECT in SLE patients with CNS involvement

    International Nuclear Information System (INIS)

    Kikukawa, Kaoru; Toyama, Hiroshi; Katayama, Masao

    2000-01-01

    We compared early and delayed Tc-99m ECD SPECT scans in 32 SLE patients (Group 1, definite neuropsychiatric disorders; Group 2, minor neurologic symptoms or normal) with those of normal controls by visual inspection and semi-quantitative evaluation. With visual interpretation, 13 out of 14 patients in Group 1 (93%) and 7 out of 18 patients in Group 2 (39%) had diffuse uneven decrease in early scans. Seven patients in Group 2 (39%) who had normal early scans demonstrated focal decrease in the medial frontal lobe in delayed scans. With cerebral region to cerebellar ratios, in early scans, the medial frontal lobe in Group 1 and Group 2 was significantly lower than in normal controls, and lateral frontal lobe and occipital lobes in Group 1 were significantly lower than in normal controls. Nevertheless, in delayed scans, every cortical region except for the parietal lode in Groups 1 and 2 was significantly lower than in normal controls. The retention rates in all regions in SLE patients were significantly lower than in normal controls. No case showed SPECT improvement on follow-up studies in either group in spite of clinical improvement. Delayed Tc-99m ECD brain SPECT of high sensitivity might be useful in detecting CNS involvement. Although the SPECT findings did not correlate with the neuropsychiatric symptoms, early and delayed Tc-99m ECD SPECT seems to provide useful objective diagnostic information in SLE patients. (author)

  2. Differential diagnosis in patients with ring-like thallium-201 uptake in brain SPECT

    International Nuclear Information System (INIS)

    Kinuya, Keiko; Ohashi, Masahiro; Itoh, Syotaro

    2002-01-01

    This study was performed to investigate lesions with ring-like thallium-201 ( 201 Tl) uptake and to determine whether SPECT provides any information in differential diagnosis. A total of 244 201 Tl SPECT images were reviewed. In each study, early (15 min postinjection) and late (3 hr) brain SPECT images were obtained with 111 MBq of 201 Tl. The early uptake ratio (ER; lesion to normal brain average count ratio) and the late uptake ratio (LR) and the L/E ratio (ratio of LR to ER) were calculated. Ring-like uptake was observed in pre-therapeutic 26 SPECT images, including ten glioblastoma multiformes (ER, 3.45±0.64; LR, 2.74±0.54; L/E ratio 0.80±0.13), five meningiomas (6.48±2.34; 4.41±1.41; 0.72±0.19), four metastatic lung cancers (3.47±1.23; 2.40±0.98; 0.70±0.14), four brain abscesses (2.48±1.06; 1.59±0.30; 0.78±0.15), one invasive lesion of squamous cell carcinoma from the ethmoid sinus (1.54; 1.52; 0.99), one medulloblastoma (3.53; 3.52; 1.00) and one hematoma (3.32; 2.36; 0.71). The ER of meningioma was significantly higher than those of glioblastoma multiforme (p 201 Tl SPECT has still difficulty in differentiating abscess from brain tumor. (author)

  3. [99mTc]/[123I] Simultaneous dual-isotope brain striatum phantom SPECT study: preparing for simultaneous [99mTc]TRODAT-1/[123I]-IBZM pre- and post-synaptic dopamine imaging

    International Nuclear Information System (INIS)

    Kao, PF; Hsu, HT; Tzen, KY; Wey, SP

    2004-01-01

    Introduction: The brain dopamine transporters (DAT) and dopamine D2 receptors are implicated in all kinds of movement disorders. Both sites are also targets for drug treatment, Therefore, brain dopamine system is important in both basic and clinical neurological researches. Kung HF et al. developed [ 99m Tc]TRODAT-l for DAT and [ 123 I]IBZM for D2 receptor SPECT imaging in living human brain. In this work, the possibility of doing [ 99m Tc]TRODAT-1/[ 123 I]IBZM simultaneous dual-isotope SPECT for both DAT/D2 receptor imaging was studied. The SPECT acquisition protocol, the percent of 99m Tc/ 123 I energy cross contamination, and the reproducibility of striatal /background ratios were studied with a striatal phantom to confirm the accuracy of 99m Tc/ 123 I dual-isotope simultaneous SPECT technique. Materials and Methods: In each set of experiment, the 4 striatum (target) chambers and the rest of the brain (background) were filled with solutions containing 99m Tc only, 123 I only, and both isotopes. Several sets of experiment with different target/background ratios were tested. For SPECT image acquisition, a triple-head gamma camera equipp with high resolution fan-beam collimators (Siemens Multi-SPECT3). Energy window settings of a 15% centered window at 140KeV for 99m Tc and a 10% asymmetric window with a lower bound at 159KeV for 123 I were used. After filtered backprojection and Chang's attenuation correction, regions of interest were defined at the bilateral basal ganglia and occipital areas. The reproducibility of counting activity and the different target/background ratios from each isotope were observed. Results: The results of the study revealed that the energy crossed contaminations from I-123 into Tc- 99m and vice verse were 22±12.4 % and 0.4±1.0 %, respectively. The correlation of striatum/background ratios between single isotope and simultaneous was excellent (R2 = 0.99). The success of this simultaneous dual-isotope SPECT technique is suggestive of the

  4. Brain SPECT with /sup 123/I-isopropyl amphetamine in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H.J.; Reske, S.N.; Rasche, A.; Reichmann, K.; Winkler, C.; Froescher, W.; Kluenenberg, H.

    1983-04-01

    Ten patients were studied with N-isopropyl I-123 p-iodoamphetamine. Single photon emission computed tomography (SPECT) was carried out by hand of a rotating gamma camera system (Gammatome T9000/CGR, high resolution collimator). During 1 rotation (360/sup 0/) 64 frames (4k matrix) were acquired within 20 min 1 hour after injection of 6.5 mCi I-123 labeled amphetamine. The content of I-124 was less than 2%. After reconstruction of transverse slices coronar and sagittal reconstructions were rapidly performed using an array processor. Nine patients suffered from epilepsy and one from severe migraine. Excellent differentiation between gray and white matter of the cerebral cortex and the basal ganglia was evident in all of the cases. In 2 out of 3 patients with epilepsy and negative CT results SPECT revealed circumscribed areas with increased amphetamine uptake in accordance with the EEG findings. In 4 out of 6 cases with positive CT findings SPECT lesions with diminished amphetamine uptake could be established. One patient with severe migraine showed focal increased amphetamine uptake in accordance with the respective clinical results.

  5. SPECT perfusion brain scintigraphy in dementia: early diagnostic and differential diagnostic

    International Nuclear Information System (INIS)

    Klisarova, A.

    2003-01-01

    The present review discusses the role of Single Photon Emission Computer Tomography (SPECT) and Positron Emission Tomography (PET) for the early detection and the differential diagnosis of the different types of dementia. The usefulness of the functional imaging is particularly emphasized in the detection of the early changes occurring in Alzheimer's diseases. The early diagnosis is a crucial factor for the treatment in the phase of reversible changes. The correlation between the severity of the diseases and the degree of hypoperfusion of the functional neuroimaging is also subject to review. SPECT and PET are of particular importance for the differential diagnosis of the various kinds of dementia. The imaging models are defined for the different stages of diseases. The functional imaging together with the clinical tests increase the diagnostic accuracy in Alzheimer's disease. The review presents the relation between the development of Alzheimer's disease and some risk factors. The review confirms the usefulness of SPECT and PET in the early diagnosis of Alzheimer's disease and the differential diagnosis of the different types of dementia which proves the SPECT appropriateness in the routine clinical practice. The brain structures are more advantageous than the other methods of visualisation (CT and MRI) for the detection of the functional disorders in the brain cortex in a number of diseases of the central nervous system. (author)

  6. Brain SPECT of chronic fatigue syndrome (CFS): a blinded visual analysis

    International Nuclear Information System (INIS)

    Casse, R.; Chew, G.; Barnden, L.; DelFante, P.; Burnet, R.; Kwiatek, R.; Chew, J.; Behin-Ain, S.; Unger, S.

    2002-01-01

    Full text: Chronic fatigue syndrome (CFS) is a debilitating and complex disorder characterised by profound fatigue and neuropsychiatric dysfunction. Previous studies with cerebral perfusion SPECT (rCBF) scans have yielded conflicting results. Most were performed with inhomogeneous patient populations and the findings were not based on a blinded visual analysis. To address this, HMPAO SPECT on a triple head gamma camera was performed on a group of 59 subjects. This group included 32 subjects (16-61 years, 24F and 8M) with moderate CFS based on the Fukuda criteria not on medication and not depressed and 27 normal volunteers (20-56 years, 16F and 11 M). Two blinded reviewers (RC and GC) separately assessed the SPECT studies. 28 brain structures were scored as either definitely abnormal(1), possibly abnormal(2) or normal(3-5). Abnormal results were only found in the temporal lobes and brainstem. The results (Sensitivity/Specificity) based on scores 1 or 2, show that that abnormal score yielded acceptable specificity but low sensitivity. Scores 1 or 2 improved sensitivity but reduced the specificity. This shows that visual analysis of brain SPECT is not a reliable discriminant test for CFS, although quantitative analysis with statistical parametric mapping (SPM) has demonstrated significant abnormalities. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Tc-99m-bicisate (ECD)-brain-SPECT in rapidly progressive dementia

    International Nuclear Information System (INIS)

    Marienhagen, J.; Eilles, C.; Weingaertner, U.; Blaha, L.; Zerr, I.; Poser, S.

    1999-01-01

    We present a 61-year-old male patient with progressive dementia. A brain SPECT with Tc-99m-bicisate was performed for confirmation of clinically suspected Alzheimer-dementia. At the time of the SPECT-investigation marked apraxia and aphasia besides severe dementia were present. Electrophysiological as well as anatomical neuroimaging findings showed non-diagnostic alterations. SPECT revealed distinct perfusion defects, which made Alzheimer Dementia unlikely. The further course of the patient was determined by rapidly progressive deterioration with development of akinetic mutism. Thereafter, increased levels of neuron-specific enolase as well as 14-3-3 proteins were found in the cerebro-spinal fluid (CSF). The patient finally died with signs of cerebral decortication. Due to the clinical course and the CSF-findings the patient's final diagnosis was Creutzfeld-Jakob-disease, nevertheless no autopsy was performed. The presented case report underscores the clinical utility of perfusion brain SPECT in the differential diagnosis of dementias. (orig.) [de

  8. Functional brain imaging study in patients with anxiety disorders using SPECT

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Liu Hongbiao; Li Huichun

    2005-01-01

    Objective: To evaluate the changes of brain function in patients with anxiety disorders. Methods: Regional cerebral perfusion was investigated using SPECT in 65 patients with anxiety disorders dragnosed according to the fourth edition of the diagnostic and statistical manual of mental disorder (DSMTD) criteria and in a matched control group of 21 healthy volunteers. 65 cases of the patients were further divided into: drug treated group (31 patients) and non-drug treated group (34 patients). The mean ages of the patients and the controls were (39.2±26.1) and (34.4±9.7) years, respectively. The severity of the anxiety was assessed using the 17-item Hamilton Anxiety scale (mean: 24.8±5.5 and 24.7±7.5, respectively). After administration of 740-925 MBq 99 Tc m -ethylene cysteinate direct (ECD) brain SPECT image study was performed. For the semi- quantitative analysis of the data, the ratios of the mean counts/pixel in the different cerebral regions of interest (ROI) to that of cerebellum were calculated respectively as a regional perfusion index (RPI). Some patients had a repeated SPECT after three months of treatment. Results: 93.8% (61/65) patients had relative hypoperfusions in some cerebral regions. Compared with the control group, the patients had a significant decrease of regional cerebral blood flow (rCBF) in the bilateral frontal lobes, paralimbic system, temporal lobes and basal ganglia. The course of disease had negatively correlated with the changes of rCBF in both groups of patients. Follow-up SPECT study demonstrated increased rCBF related with the symptomatic improvement. Conclusions: Patients with anxiety disorders had profound dysfunction of the frontal and temporal cortices, and was closely related to the symptom and therapy. 99 Tc m -ECD brain SPECT may offer the most accurate assessment of response to therapy. . (authors)

  9. Cerebral blood flow of the non-affected brain in patients with malignant brain tumors as studied by SPECT

    International Nuclear Information System (INIS)

    Araki, Yuzo; Imao, Yukinori; Hirata, Toshifumi; Ando, Takashi; Sakai, Noboru; Yamada, Hiroshi

    1990-01-01

    In 40 patients (age range, 20-69 years) receiving radiation and chemotherapy for brain tumors, the mean cerebral blood flow (mCBF) in the non-affected area has been examined by single photon emission CT (SPECT) with Xe-133. Forty volunteers (age range, 25-82 years) served as controls. Although mCBF during external irradiation was transiently increased, it was significantly decreased at 3 months after beginning of external irradiation compared with that in the control group. Factors responsible for the decrease in mCBF were radiation doses, lesion volume, the degree of cerebral atrophy, and age; this was more pronounced when chemotherapy such as ACNU was combined with radiation. A decreased mCBF was independent of intraoperative radiation combined with external radiation and either local or whole brain irradiation. SPECT with Xe-133 was useful in determining minute changes in cerebral blood flow that precedes parenchymal brain damage. (N.K.)

  10. Tc-99m-bicisate (ECD)-brain-SPECT in rapidly progressive dementia; Hirn-SPECT mit Tc-99m-Bicisat (ECD) bei rasch progredientem dementiellen Syndrom

    Energy Technology Data Exchange (ETDEWEB)

    Marienhagen, J.; Eilles, C. [Regensburg Univ. (Germany). Abt. fuer Nuklearmedizin; Weingaertner, U.; Blaha, L. [Bezirkskrankenhaus Mainkofen (Germany). Psychiatrische Klinik; Zerr, I.; Poser, S. [Goettingen Univ. (Germany). Klinik und Poliklinik fuer Neurologie

    1999-07-01

    We present a 61-year-old male patient with progressive dementia. A brain SPECT with Tc-99m-bicisate was performed for confirmation of clinically suspected Alzheimer-dementia. At the time of the SPECT-investigation marked apraxia and aphasia besides severe dementia were present. Electrophysiological as well as anatomical neuroimaging findings showed non-diagnostic alterations. SPECT revealed distinct perfusion defects, which made Alzheimer Dementia unlikely. The further course of the patient was determined by rapidly progressive deterioration with development of akinetic mutism. Thereafter, increased levels of neuron-specific enolase as well as 14-3-3 proteins were found in the cerebro-spinal fluid (CSF). The patient finally died with signs of cerebral decortication. Due to the clinical course and the CSF-findings the patient's final diagnosis was Creutzfeld-Jakob-disease, nevertheless no autopsy was performed. The presented case report underscores the clinical utility of perfusion brain SPECT in the differential diagnosis of dementias. (orig.) [German] Wir berichten ueber einen 61jaehrigen Patienten mit progredientem dementiellen Syndrom, der unter der Verdachtsdiagnose einer Demenz vom Alzheimer-Typ (DAT) zur Hirn-SPECT-Untersuchung mit TC-99m-Bicisat (ECD) vorgestellt wurde. Zum Untersuchungszeitpunkt bestanden neben dem Vollbild einer Demenz eine ausgepraegte Apraxie und Aphasie bei unspezifischen Veraenderungen im EEG sowie der neuroradiologischen Bildgebung. In der Hirn-SPECT-Untersuchung fanden sich fuer eine DAT untypische ausgedehnte, vorwiegend rechtshemisphaerische Perfusionsstoerungen. Im weiteren Verlauf rasche Progredienz des Krankheitsbildes mit Entwicklung eines akinetischen Mutismus sowie Nachweis erhoehter Werte der neuronspezifischen Enolase und des 14-3-3-Proteins im Liquor. Der Patient verstarb schliesslich unter dem Bild einer Decortication. Aufgrund des klinischen Verlaufs sowie der Liquorbefunde wurde, da eine autoptische Befundsicherung

  11. Analysis of Regional Cerebral Blood Flow Using 99mTc-HMPAO Brain SPECT in Senile Dementia of Alzheimer Type

    International Nuclear Information System (INIS)

    Lee, Myung Hae; Lee, Myung Chul; Koh, Chang Soon; Roh, Jae Kyu; Woo, Chong In

    1988-01-01

    99m Tc-HMPAO brain SPECT studies were performed in 11 patients with Alzheimer's disease, 7 patients with psychological depression and 12 normal controls. Changes of regional cerebral blood flow was semiquantitatively analyzed and the results were as follows. 1) In 11 patients with Alzheimer's disease, significant reduction of regional cerebral blood flow was found In both temporoparietal areas. 2) Relative perfusion between cerebral hemispheres was rather symmetrical in patient with Alzheimer's disease. 3) All patients with depression showed normal SPECT findings. As for conclusion, 99m Tc-HMPAO brain SPECT seemed to be a valuable method for clinical assessment and management of patients with Alzheimer's disease.

  12. Quantitative SPECT reconstruction for brain distribution with a non-uniform attenuation using a regularizing method

    International Nuclear Information System (INIS)

    Soussaline, F.; Bidaut, L.; Raynaud, C.; Le Coq, G.

    1983-06-01

    An analytical solution to the SPECT reconstruction problem, where the actual attenuation effect can be included, was developped using a regularizing iterative method (RIM). The potential of this approach in quantitative brain studies when using a tracer for cerebrovascular disorders is now under evaluation. Mathematical simulations for a distributed activity in the brain surrounded by the skull and physical phantom studies were performed, using a rotating camera based SPECT system, allowing the calibration of the system and the evaluation of the adapted method to be used. On the simulation studies, the contrast obtained along a profile, was less than 5%, the standard deviation 8% and the quantitative accuracy 13%, for a uniform emission distribution of mean = 100 per pixel and a double attenuation coefficient of μ = 0.115 cm -1 and 0.5 cm -1 . Clinical data obtained after injection of 123 I (AMPI) were reconstructed using the RIM without and with cerebrovascular diseases or lesion defects. Contour finding techniques were used for the delineation of the brain and the skull, and measured attenuation coefficients were assumed within these two regions. Using volumes of interest, selected on homogeneous regions on an hemisphere and reported symetrically, the statistical uncertainty for 300 K events in the tomogram was found to be 12%, the index of symetry was of 4% for normal distribution. These results suggest that quantitative SPECT reconstruction for brain distribution is feasible, and that combined with an adapted tracer and an adequate model physiopathological parameters could be extracted

  13. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Lee, Byung In; Kim, Ok Joon; Kim, Min Jung; Jeon, Jeong Dong

    1999-01-01

    Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

  14. Differential diagnosis in patients with ring-like thallium-201 uptake in brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kinuya, Keiko; Ohashi, Masahiro; Itoh, Syotaro [Tonami General Hospital, Toyama (Japan)] (and others)

    2002-09-01

    This study was performed to investigate lesions with ring-like thallium-201 ({sup 201}Tl) uptake and to determine whether SPECT provides any information in differential diagnosis. A total of 244 {sup 201}Tl SPECT images were reviewed. In each study, early (15 min postinjection) and late (3 hr) brain SPECT images were obtained with 111 MBq of {sup 201}Tl. The early uptake ratio (ER; lesion to normal brain average count ratio) and the late uptake ratio (LR) and the L/E ratio (ratio of LR to ER) were calculated. Ring-like uptake was observed in pre-therapeutic 26 SPECT images, including ten glioblastoma multiformes (ER, 3.45{+-}0.64; LR, 2.74{+-}0.54; L/E ratio 0.80{+-}0.13), five meningiomas (6.48{+-}2.34; 4.41{+-}1.41; 0.72{+-}0.19), four metastatic lung cancers (3.47{+-}1.23; 2.40{+-}0.98; 0.70{+-}0.14), four brain abscesses (2.48{+-}1.06; 1.59{+-}0.30; 0.78{+-}0.15), one invasive lesion of squamous cell carcinoma from the ethmoid sinus (1.54; 1.52; 0.99), one medulloblastoma (3.53; 3.52; 1.00) and one hematoma (3.32; 2.36; 0.71). The ER of meningioma was significantly higher than those of glioblastoma multiforme (p<0.0005), metastatic lung cancer (p<0.005) and brain abscess (p<0.0005). There were no significant differences among these three entities. The LR of meningioma was significantly higher than those of glioblastoma multiforme (p<0.005), metastatic lung cancer (p<0.005) and brain abscess (p<0.0001). The LR of brain abscess was significantly lower than that of glioblastoma multiforme (p<0.05). The L/E ratio could not differentiate these four entities. High ER and high LR in a lesion with ring-like uptake is likely an indicator of meningioma. The LR of brain abscess was significantly lower than that of glioblastoma multiforme, but {sup 201}Tl SPECT has still difficulty in differentiating abscess from brain tumor. (author)

  15. Demonstration of cerebral abnormalities in cocaine abusers with SPECT perfusion brain scans

    International Nuclear Information System (INIS)

    Nagel, J.S.; Tumeh, S.S.; English, R.J.; Moore, M.; Lee, V.W.; Holman, L.B.

    1989-01-01

    This paper reports I-123 isopropyl iodoamphetamine (IMP) single-photon emission CT (SPECT) brain scans performed on cocaine users to investigate the effects of cocaine on the cerebral perfusion in a manner similar to previous CT, angiographic and positron-emission tomographic (PET) studies. Ten asymptomatic or mildly symptomatic cocaine users, two users with major neurovascular complications, and five normal subjects were studied with IMP SPECT. Rotating-brain images of the cerebral IMP uptake were displayed by using a distance-weighted surface-projection technique and were visually analyzed for focal cortical perfusion deficits. Eleven cocaine users had multiple scattered cortical IMP defects. Frontal lobe defects were most prominent. One user had confluent defects resembling swiss cheese. Concurrent CT scans available in nine patients were negative in seven and showed infarcts in two. No similar focal findings were visible in normals

  16. Brain perfusion SPECT and EEG findings in Rett syndrome

    International Nuclear Information System (INIS)

    Lappalainen, R.; Liewendahl, K.; Nikkinen, P.; Sainio, K.; Riikonen, R.S.

    1997-01-01

    Thirteen patients (mean age 8.4 + 5.3 years) with Rett syndrome (RS) were studied with EEG and 99m Tc-HMPAO SPECT. Eleven patients had background abnormalities and 10 patients paroxysmal activity in EEG. Hypoperfusion of varying severity was detected in 11 patients, 7 patients having multiple lesions. Bifrontal hypoperfusion, observed in 6 patients, was the most distinctive finding. Hypoperfusion was observed also in other cortical regions, except for the occipital lobes. There was no correlation between severity of the background abnormality or presence of paroxysmal activity in EEG and grade of hypoperfusion. There was, however, an association between the severity of hypoperfusion and early manifestation of symptoms in patients with RS. Whether this early-onset group of patients represents a different disease entity or only reflects disease variability the basic pathology being the same, is a possibility that deserves further clarification. (au) 37 refs

  17. Brain perfusion SPECT imaging before and during the acetazolamide test using sup 99m Tc-HMPAO

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Higashi, Sotaro; Kinuya, Keiko; Tsuji, Shiro; Sumiya, Hisashi; Hisada, Kinichi; Yamashita, Junkoh (Kanazawa Univ. (Japan). School of Medicine)

    1990-05-01

    A new method using brain perfusion {sup 99m}Tc-HMPAO SPECT imaging was developed for evaluating cerebral perfusion reserve by the acetazolamide test with a short period. The first SPECT study was carried out for 13.5 min to obtain SPECT images at the resting state after 3 min postinjection of 555 MBq (15 mCi) of {sup 99m}Tc-HMPAO. At the same time as the start of the first SPECT study, 1 g of acetazolamide was intravenously injected. Immediately after the stop of the 1st SPECT study, 925 MBq (25 mCi) of {sup 99m}Tc-HMPAO from the same vial as in the first study was additionally injected. Three minutes later the second SPECT study was carried out for 10 min. After reconstruction the tomographic images in the first study were subtracted from the images in the second study to obtain those during the acetazolamide test after correction of the time differences in data acquisition between the two studies. This subtraction technique gives independent brain perfusion SPECT images before and during the acetazolamide test. Besides, the regional flow changes during the test were quantitatively analyzed. In conclusion this method seems to be practically useful for evaluating regional brain perfusion before and during drug treatments as a consecutive study with a short period of approximately 30 min. (author).

  18. Clinical significance of brain SPECT abnormalities of thalami and cerebellum in cerebral palsy with normal MRI

    International Nuclear Information System (INIS)

    Park, C. H.; Lim, S. Y.; Lee, I. Y.; Kim, O. H.; Bai, M. S.; Kim, S. J.; Yoon, S. N.; Cho, C. W.

    1997-01-01

    The cerebral palsy(CP) encephalopathies are often of uncertain etiology and various functional image findings comparing with anatomical image findings have been reported. However, only a few have mentioned its clinical implications. The purpose of our report is to compare clinical severity and functional SPECT abnormalities of thalami and cerebellum in CP patients with normal MRI. Thirty six CP patients with bilateral spastic palsy who had normal MRI and brain SPECT were studied from July 1996 to September 1997. The patients' age at the time of SPECT was 22.84±17.69 months. The patients were divided into two groups according to motor quotient(MQ); moderate defect (>50MQ : n=27 MQ=22.78±10.36), mild defect ( 2 test. Brain SPECT was performed following IV administration of 0.05-0.1 mCi/kg (minimum 2.0 mCi) of Tc-99m ECD and chloral hydrate sedation (50-80 mg/kg p.o) using a triple head system (MS 3, Siemens). Interpretation of brain SPECT was visual analysis: severe decrease is defined when the defect is moderate to marked and mild decrease in rCBF as mild. Seven of 36 (19.4%) showed unilateral or bilateral moderate decrease in rCBF in thalami, 20(55.6%) showed mild decrease, and 9(25.0%) showed no decreased rCBF. All 7 who had moderate thalamic defect reveled moderate motor defect clinically. Ten of 36(27.9%) revealed unilateral or bilateral moderate rCBF defect, 23 (63.9%) depicted mild defect, and 3(8.3%) showed no defect. Sixteen with moderate thalamic rCBF defect showed moderate motor defect in 15 patients. There was statistically significant (p=0.02605) relationship between rCBF defect and motor defect in our CP patients. In conclusion, brain SPECT appears sensitive, non-invasive tool in the evaluation as well as in the prognostication of bilateral spastic cerebral palsy patients and deserves further study using larger number of patients

  19. Clinical significance of brain SPECT abnormalities of thalami and cerebellum in cerebral palsy with normal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. H.; Lim, S. Y.; Lee, I. Y.; Kim, O. H.; Bai, M. S.; Kim, S. J.; Yoon, S. N.; Cho, C. W. [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1997-07-01

    The cerebral palsy(CP) encephalopathies are often of uncertain etiology and various functional image findings comparing with anatomical image findings have been reported. However, only a few have mentioned its clinical implications. The purpose of our report is to compare clinical severity and functional SPECT abnormalities of thalami and cerebellum in CP patients with normal MRI. Thirty six CP patients with bilateral spastic palsy who had normal MRI and brain SPECT were studied from July 1996 to September 1997. The patients' age at the time of SPECT was 22.84{+-}17.69 months. The patients were divided into two groups according to motor quotient(MQ); moderate defect (>50MQ : n=27 MQ=22.78{+-}10.36), mild defect (<50MQ : n=9, MQ=66.11{+-}13.87). The degree of rCBF decrease between the two groups was evaluated by {chi}{sup 2} test. Brain SPECT was performed following IV administration of 0.05-0.1 mCi/kg (minimum 2.0 mCi) of Tc-99m ECD and chloral hydrate sedation (50-80 mg/kg p.o) using a triple head system (MS 3, Siemens). Interpretation of brain SPECT was visual analysis: severe decrease is defined when the defect is moderate to marked and mild decrease in rCBF as mild. Seven of 36 (19.4%) showed unilateral or bilateral moderate decrease in rCBF in thalami, 20(55.6%) showed mild decrease, and 9(25.0%) showed no decreased rCBF. All 7 who had moderate thalamic defect reveled moderate motor defect clinically. Ten of 36(27.9%) revealed unilateral or bilateral moderate rCBF defect, 23 (63.9%) depicted mild defect, and 3(8.3%) showed no defect. Sixteen with moderate thalamic rCBF defect showed moderate motor defect in 15 patients. There was statistically significant (p=0.02605) relationship between rCBF defect and motor defect in our CP patients. In conclusion, brain SPECT appears sensitive, non-invasive tool in the evaluation as well as in the prognostication of bilateral spastic cerebral palsy patients and deserves further study using larger number of patients.

  20. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    International Nuclear Information System (INIS)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2002-01-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia

  1. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [Catholic University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia.

  2. Construction of McSPECT II - a clinical brain SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.; Jin, Y.; Liu, J. [Rush-Presbyterian-St. Luke`s Medical Center, Chicago, IL (United States)] [and others

    1994-05-01

    Since reported the design concept and system configuration of the McSPECT II last year, we have settled the design details and moved on to the construction phase. The major components being developed in this phase are: detector, collimator, electronics, interfaces, acquisition and processing software, and gantry systems. To provide adequate number of angular sampling (= views), we have increased the number of transverse detector elements to 120 NaI(Tl) bar-detectors in the new cylindrical detector system. These bar-detector are housed in 24 detector modules. Since we have developed a new light-guide and implemented a new 2-step centriod position calculation, the intrinsic performance of the detector modules has been substantially improved. These improvements lead to a simpler position estimation which yields < 4 mm FWHM spatial resolution in the 12 cm axial FOV. The imaging volume is 21 cm (dia.) x 12.8 (axial) cm. The number of collimator units (= rays) is increased to 100 to achieve high linear sampling density (2.3 mm) and sampling resolution ({approximately}5.6 mm). The collimator is still being manufacture. The electronics, acquisition, and processing systems are all in the final phases of debugging through simulated testing. The electronics is divided into 24 independent channels, one for each module. A 10-bit 1.0{mu}s ADC is connected to each of the 72 PMTs. A Pentium based PC performs real-time position calculation in 20 {mu}s/event. After de-randomizing, we expect 50 K/sec count-rate performance with little loss. Linearity and energy corrections are being implemented, in a separate calibration procedure, to yield <0.5 mm non-linearity and {approximately}10% energy resolution at 140 keV. The gantry construction is moving along well but slowly. The large (27.5 cm) aperture and the adjustable orientation of the gantry plane promise easy operation and patient comfort. The system construction should be completed soon to allow imaging studies to be performed.

  3. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo; Lee, Jae Sung

    2002-01-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5±3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis

  4. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  5. A new method for brain functional study using Tc-99m HMPAO SPECT

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Ohtake, Tohru; Watanabe, Toshiaki; Iio, Masahiro

    1989-01-01

    The distribution of 99m Tc-HMPAO in brain is in proportion to regional cerebral blood flow (rCBF) and can be interpreted as functional mapping. To evaluate local changes in CBF during neuropsychological testing, we developed a new subtraction method using HMPAO and SPECT. With patients resting, 15 mCi of HMPAO was injected and the first acquisition was performed, lasting a total of 10 minutes. Soon after the end of the first scan, patients were requested to undergo Buschke's memory test or to repeat words or numbers (repetition test). During the task, an additional 15 mCi of HMPAO was injected using the same position as in the first scan, and a second acquisition was started. A functional image was made by subtracting the image in the first scan from that in the second. In two patients with transient global amnesia and two normal controls, Buschke's memory test was performed in combination with SPECT. A relative increase in activity was seen in the thalamus, subthalamic area, hippocampus, and some cortial areas, apparently reflecting local functional change induced by the memory task. In two patients with moderate Alzheimer's disease with severe memory loss, no increase was detected in these areas. In one patient with aphasia, the repetition test with SPECT was correlated with the WADA test and dichotic listening test, and good agreement was obtained. In conclusion, our new SPECT technique is useful in detecting alterations in rCBF during mental activity and can be applied to neurophysiological studies. (author)

  6. Ophthalmoplegic migraine with reversible thalamic ischemia by Tc-99m ethylcysteinate dimer brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho; Shin, Dong Jin; Kang, Sung Soo [Gachon Medical School, Gil Medical Center, Inchon (Korea, Republic of)

    1999-07-01

    Two patients presented with ophthalmoplegic migraine (OM) underwent EEG, Brain-MRI, cerebral angiography, and Tc-99m ECD SPECT during an attack. Follow-up SPECT was performed after neurologic symptoms resolved. In both cases, SPECT during an attack of ophthalmoplegia and headache demonstrated a significantly decreased regional cerebral blood flow in the thalamus to the side of ophthalmoplegia, which was normalized on the follow-up SPECT during a symptom free recovery phase (Lesion to Non-lesion thalamic ratio=1.19 to 0.96 and 1.16 to 0.98, respectively). The other roentgenographic and laboratory findings were normal. These findings are suggestive the ischemia in the perforators of PCA results in third nerve palsy because the portion of oculomotor nerve behind the cavernous sinus derives its blood supply from small perforating branches of the basilar and PCA. Matched ictal hypoperfusion of the thalamus to the site of ophthalmoplegic migraine is suggestive of the ischemic neuropathy as an etiology of OM.

  7. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  8. Brain perfusion SPECT and FDG PET findings in a patient with ballism associated with hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Kyun; Kim, Sang Jin [Pusan Paik Hospital, Pusan (Korea, Republic of)

    2007-07-01

    Ballism is a very rare presentation in association with hyperthyroidism. We describe a 22-year-old lady with episodes of recurrent ballism and hyperthyroidism. A 22-year-old lady was admitted to Neurology department because of sudden development of vigorous involuntary movement and dysarthria. She was diagnosed as hyperthyroidism at the age 12 and treated irregularly. She arrived at the emergency room because of sudden onset of involuntary movement. Computed tomography (CT) scan and Magnetic Resonance Imaging (MRI) of brain was normal. Serum levels of thyroid hormone were increased (Free T4 3.15 ng/dl; normal range 0.93-1.71 ng/dl), whereas thyroid-stimulating hormone (TSH) was undetectable. The thyroid gland was diffusely enlarged and exophthalmos was found. She had been given antithyroid medication from local clinic but medicated irregularly. Technetium thyroid scan reveals diffusely enlarged thyroid with increased radioactivity. Radioiodine uptake in 24 hours was 71 %. Brain perfusion SPECT using Tc-99m ECD reveals asymmetrical perfusion pattern in basal ganglia. Brain PET using F-18 FDG reveals increased metabolism at both caudate nucleus and putamen. She was treated with radioiodine and involuntary movement was improved. There is only few report on ballism associated with hyperthyroidism and no report on functional brain imaging. Brain perfusion SPECT and FDG PET may give useful information about functional status of brain in patients with ballism associated with hyperthyroidism in case of normal anatomical finding on CT/MRI.

  9. Brain perfusion SPECT and FDG PET findings in a patient with ballism associated with hyperthyroidism

    International Nuclear Information System (INIS)

    Bae, Sang Kyun; Kim, Sang Jin

    2007-01-01

    Ballism is a very rare presentation in association with hyperthyroidism. We describe a 22-year-old lady with episodes of recurrent ballism and hyperthyroidism. A 22-year-old lady was admitted to Neurology department because of sudden development of vigorous involuntary movement and dysarthria. She was diagnosed as hyperthyroidism at the age 12 and treated irregularly. She arrived at the emergency room because of sudden onset of involuntary movement. Computed tomography (CT) scan and Magnetic Resonance Imaging (MRI) of brain was normal. Serum levels of thyroid hormone were increased (Free T4 3.15 ng/dl; normal range 0.93-1.71 ng/dl), whereas thyroid-stimulating hormone (TSH) was undetectable. The thyroid gland was diffusely enlarged and exophthalmos was found. She had been given antithyroid medication from local clinic but medicated irregularly. Technetium thyroid scan reveals diffusely enlarged thyroid with increased radioactivity. Radioiodine uptake in 24 hours was 71 %. Brain perfusion SPECT using Tc-99m ECD reveals asymmetrical perfusion pattern in basal ganglia. Brain PET using F-18 FDG reveals increased metabolism at both caudate nucleus and putamen. She was treated with radioiodine and involuntary movement was improved. There is only few report on ballism associated with hyperthyroidism and no report on functional brain imaging. Brain perfusion SPECT and FDG PET may give useful information about functional status of brain in patients with ballism associated with hyperthyroidism in case of normal anatomical finding on CT/MRI

  10. Hypoperfusion in baseline and cognitively activated brain SPECT imaging of adult and elderly patients with depression

    International Nuclear Information System (INIS)

    Zhao Jinhua; Lin Xiangtong; Jiang Kaida; Ang Qiuqing; Shi Shenxun; Xue Fangping

    2000-01-01

    Objective: To evaluate the rCBF abnormalities of the baseline and cognitively activated rCBF imaging in unmedicated adult and elderly patients with depression. Methods: The subjects were divided into four groups: depressed adults, normal adult controls, depressed elders and normal elderly controls. All depressed patients were unmedicated and the diagnoses (depression of moderate degree with accompanying somatization) were confirmed by the ICD-10 criteria. Age range of the 39 depressed adult patients was 17 - 55 years. 17 age-matched normal adult controls (age range 21 - 50 years) were studied under identical conditions. The age range of 18 depressed elderly patients was 62 - 76 years. 21 age-matched normal elderly controls (age range 60 - 72 years) were studied under identical conditions. Baseline and cognitively activated 99 Tc m -ECD SPECT were performed on 25 of the 39 adult patients with depression and 17 normal adult controls. Baseline 99 Tc m -ECD SPECT only was performed on the remaining 14 patients with depression. Baseline and cognitively activated 99 Tc m -ECD SPECT were performed on 12 of the 18 elderly patients with depression and 18 of the 21 normal elderly controls. Baseline 99 Tc m -ECD SPECT only was performed on the remaining elderly patients and 3 normal elderly controls. Results: 1) The characteristic abnormalities of baseline and cognitively activated brain SPECT imaging of depression in adults: the baseline rCBF values of frontal and temporal lobe decreased significantly and the activated rCBF values of frontal, temporal lobe decreased more evidently than that in the baseline imaging and additionally decreased activated rCBF values in parietal lobe were found. 2) The characteristic abnormalities of baseline and cognitively activated brain SPECT imaging of elderly patients with depression: the baseline rCBF values of frontal, temporal lobe and right basal ganglia decreased significantly and the activated rCBF values of frontal, temporal, right

  11. Comparison of Tc-99m HM-PAO SPECT brain scan and x-ray CT in the detection of brain metastases

    International Nuclear Information System (INIS)

    Abdel-Dayem, H.M.; Sadek, S.; Sahwell, A.; Kubasek, H.; El-Sayed, M.; Ziada, G.; Mobarak, L.; Al-Huda, F.; Omar, Y.T.

    1986-01-01

    Tc-99m HM-PAO imaging was compared with x-ray CT in 14 patients with known or suspected brain metastases. Both studies were done within 3 days of each other. Static and single photon emission CT (SPECT) images were acquired after intravenous injection of 13 mCi of Tc-99m HM-PAO. All 14 patients underwent static and SPECT Tc-99m HM-PAO imaging and x-ray CT. Studies were positive in 7, 12, and 10 patients, respectively, by static, SPECT, and x-ray CT imaging, and negative in 7, 2, and 2. The number of lesions identified was 0 (static imaging), 32 (SPECT), and 26(x-ray CT). There were no ''suspicious'' studies by any modality. This study indicates that Tc-99m HM-PAO SPECT cerebral blood flow imaging is more sensitive than x-ray CT for detecting brain metastases, that biplane imaging is not sensitive and SPECT is essential, and that for Tc-99m HM-PAO SPECT brain imaging to regain its importance with respect to x-ray CT, acquisition time must be 10 minutes or less and determination of percentage brain uptake of the injected dose, and of regional distribution, is necessary

  12. Comparison of acetazolamide-enhanced brain SPECT using Tc-99m ECD with cerebral angiography in patients with cerebrovascular disease

    International Nuclear Information System (INIS)

    Choi, Y. Y.; Moon, D. H.; Ryu, J. S.; Yang, S. H.; Lee, H. K.; Lee, J. H.; Kim, J. S.; Kim, K. A.

    1997-01-01

    Cerebral vascular reserve can be assessed by development of collateral channels (DCC) on cerebral angiography(CA) or vasoreactivity (VR) on acetazolamide-enhanced brain SPECT (ACZ-SPECT). The purpose of this study was to compare Tc-99m ECD ACZ-SPECT with CA in the evaluation of vascular reserve in patients (pts) with cerebrovascular disease(CVD). Twenty seven patients with CVD, including TIA (n=13), infarction (n=11) and asymptomatic pts (AS, n=3), underwent CA and ACZ-SPECT. Basal and ACZ-SPECT was obtained consecutively, and image subtraction was performed. On CA, degree of DCC was scored 0-3 (0: normal, 3: poor) according to parenchymal staining on delayed film. In ACZ-SPECT, decrease of VR was graded 0-3 (0: normal, 3: more than 30% decrease). The correlation between degree of stenosis, DCC and VR were analyzed. 1) Variable degree of VR or DCC was observed in totally occluded or stenotic cerebral arterial territories. 2) In arterial territories with poor DCC, ACZ-SPECT showed poor VR. However, in 5 out of 11 TIA or AS with good DCC, poor VR was observed. These data suggests that 1) cerebral hemodynamic status cannot be assessed by the degree of stenosis on CA alone. 2) DCC may overestimate the cerebral vascular reserve in patients with TIA or AS. 3) ACZ-SPECT plays a complementary role to CA for evaluation of cerebral hemodynamic status in pts with CVD

  13. Importance of brain perfusion SPECT in the diagnosis and prognosis of migraine

    International Nuclear Information System (INIS)

    Colmenter, L.F.; Paz-Araviche, V.; Celedon-Arrieta, P.; Mora, E.; Tavares, A.

    2002-01-01

    Aim: The objective of this investigation was to establish the usefulness of ECD-99mTc brain perfusion SPECT in the evaluation of the diagnosis of functional alterations of Vascular Headaches of migrainous origin and to determine the changes in regional cerebral blood flow (FSCr) during the headache phase. Material and Methods: A population of 21 female patients, 5 controls, of the same age and sex, aged between 20 and 76 years, with clinical evidence of headache with or without aura, with a duration of 8 to 72 hours, pulsating pain, associated to nausea, photophobia, phonophobia, that does not resolve with common analgesics and characterized by increase of the pain with physical activity. Brain perfusion SPECT was practiced on them at the moment of crisis, independent of the presence of aura or pain, and without crisis. ECD-99mTc was administered at a dose of 925 to 1110 MBq. Images were analyzed by the semi quantification method. Results: SPECT detected 13 hypo-captures on the 16 patients studied. With an 81% sensitivity and 100% specificity, with a precision value of 86%. Analysis through X Binomial Aleatory Variable showed a precision of 90% (p= < 0,023) for the isotopic test, with a significance level of 5%. Conclusions: The results of this study confirm that brain SPECT is a neuroimaging technique capable of identifying migrainous patients, being able to reevaluate the type of hypo perfusion that each patient has, during crisis or out of crisis, and correlate the cortical perfusion deficits and the deterioration of neuropsychological functions

  14. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Imabayashi, Etsuko; Kuji, Ichiei; Seto, Akira; Ito, Kimiteru; Kikuta, Daisuke; Yamada, Minoru; Shimano, Yasumasa; Sato, Noriko

    2010-01-01

    Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT) images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM) to SPECT. After linear spatial normalization of brain perfusion SPECT using 99m Tc-ethyl cysteinate dimer ( 99m Tc-ECD) to a Talairach space, high-dimension-warping was done using an original 99m Tc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2) between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C) patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99m Tc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT

  15. Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone

    Directory of Open Access Journals (Sweden)

    Matsuda Hiroshi

    2010-08-01

    Full Text Available Abstract Background Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM to SPECT. Methods After linear spatial normalization of brain perfusion SPECT using 99mTc-ethyl cysteinate dimer (99mTc-ECD to a Talairach space, high-dimension-warping was done using an original 99mTc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2 between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images. Results SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99mTc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution. Conclusions The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT

  16. Analysis of multiple quaternary ammonium compounds in the brain using tandem capillary column separation and high resolution mass spectrometric detection.

    Science.gov (United States)

    Falasca, Sara; Petruzziello, Filomena; Kretz, Robert; Rainer, Gregor; Zhang, Xiaozhe

    2012-06-08

    Endogenous quaternary ammonium compounds are involved in various physiological processes in the central nervous system. In the present study, eleven quaternary ammonium compounds, including acetylcholine, choline, carnitine, acetylcarnitine and seven other acylcarnitines of low polarity, were analyzed from brain extracts using a two dimension capillary liquid chromatography-Fourier transform mass spectrometry method. To deal with their large difference in hydrophobicities, tandem coupling between reversed phase and hydrophilic interaction chromatography columns was used to separate all the targeted quaternary ammonium compounds. Using high accuracy mass spectrometry in selected ion monitoring mode, all the compounds could be detected from each brain sample with high selectivity. The developed method was applied for the relative quantification of these quaternary ammonium compounds in three different brain regions of tree shrews: prefrontal cortex, striatum, and hippocampus. The comparative analysis showed that quaternary ammonium compounds were differentially distributed across the three brain areas. The analytical method proved to be highly sensitive and reliable for simultaneous determination of all the targeted analytes from brain samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Deficits in Regional Cerebral Blood Flow on Brain SPECT Predict Treatment Resistant Depression.

    Science.gov (United States)

    Amen, Daniel G; Taylor, Derek V; Meysami, Somayeh; Raji, Cyrus A

    2018-03-22

    Depression remains an important risk factor for Alzheimer's disease, yet few neuroimaging biomarkers are available to identify treatment response in depression. To analyze and compare functional perfusion neuroimaging in persons with treatment resistant depression (TRD) compared to those experiencing full remission. A total of 951 subjects from a community psychiatry cohort were scanned with perfusion single photon emission computed tomography (SPECT) of the brain in both resting and task related settings. Of these, 78% experienced either full remission (n = 506) or partial remission (n = 237) and 11% were minimally responsive (n = 103) or non-responsive (11%. n = 106). Severity of depression symptoms were used to define these groups with changes in the Beck Depression Inventory prior to and following treatment. Voxel-based analyses of brain SPECT images from full remission compared to the worsening group was conducted with the statistical parametric mapping software, version 8 (SPM 8). Multiple comparisons were accounted for with a false discovery rate (p <  0.001). Persons with depression that worsened following treatment had reduced cerebral perfusion compared to full remission in the multiple regions including the bilateral frontal lobes, right hippocampus, left precuneus, and cerebellar vermis. Such differences were observed on both resting and concentration SPECT scans. Our findings identify imaging-based biomarkers in persons with depression related to treatment response. These findings have implications in understanding both depression to prognosis and its role as a risk factor for dementia.

  18. Clinical Utility of SPECT Neuroimaging in the Diagnosis and Treatment of Traumatic Brain Injury: A Systematic Review

    OpenAIRE

    Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore

    2014-01-01

    PURPOSE: This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). METHODS: After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild,...

  19. Clinical correlative evaluation of an iterative method for reconstruction of brain SPECT images

    International Nuclear Information System (INIS)

    Nobili, Flavio; Vitali, Paolo; Calvini, Piero; Bollati, Francesca; Girtler, Nicola; Delmonte, Marta; Mariani, Giuliano; Rodriguez, Guido

    2001-01-01

    Background: Brain SPECT and PET investigations have showed discrepancies in Alzheimer's disease (AD) when considering data deriving from deeply located structures, such as the mesial temporal lobe. These discrepancies could be due to a variety of factors, including substantial differences in gamma-cameras and underlying technology. Mesial temporal structures are deeply located within the brain and the commonly used Filtered Back-Projection (FBP) technique does not fully take into account either the physical parameters of gamma-cameras or geometry of collimators. In order to overcome these limitations, alternative reconstruction methods have been proposed, such as the iterative method of the Conjugate Gradients with modified matrix (CG). However, the clinical applications of these methods have so far been only anecdotal. The present study was planned to compare perfusional SPECT data as derived from the conventional FBP method and from the iterative CG method, which takes into account the geometrical and physical characteristics of the gamma-camera, by a correlative approach with neuropsychology. Methods: Correlations were compared between perfusion of the hippocampal region, as achieved by both the FBP and the CG reconstruction methods, and a short-memory test (Selective Reminding Test, SRT), specifically addressing one of its function. A brain-dedicated camera (CERASPECT) was used for SPECT studies with 99m Tc-hexamethylpropylene-amine-oxime in 23 consecutive patients (mean age: 74.2±6.5) with mild (Mini-Mental Status Examination score ≥15, mean 20.3±3), probable AD. Counts from a hippocampal region in each hemisphere were referred to the average thalamic counts. Results: Hippocampal perfusion significantly correlated with the MMSE score with similar statistical significance (p<0.01) between the two reconstruction methods. Correlation between hippocampal perfusion and the SRT score was better with the CG method (r=0.50 for both hemispheres, p<0.01) than with

  20. Clinical correlative evaluation of an iterative method for reconstruction of brain SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Nobili, Flavio E-mail: fnobili@smartino.ge.it; Vitali, Paolo; Calvini, Piero; Bollati, Francesca; Girtler, Nicola; Delmonte, Marta; Mariani, Giuliano; Rodriguez, Guido

    2001-08-01

    Background: Brain SPECT and PET investigations have showed discrepancies in Alzheimer's disease (AD) when considering data deriving from deeply located structures, such as the mesial temporal lobe. These discrepancies could be due to a variety of factors, including substantial differences in gamma-cameras and underlying technology. Mesial temporal structures are deeply located within the brain and the commonly used Filtered Back-Projection (FBP) technique does not fully take into account either the physical parameters of gamma-cameras or geometry of collimators. In order to overcome these limitations, alternative reconstruction methods have been proposed, such as the iterative method of the Conjugate Gradients with modified matrix (CG). However, the clinical applications of these methods have so far been only anecdotal. The present study was planned to compare perfusional SPECT data as derived from the conventional FBP method and from the iterative CG method, which takes into account the geometrical and physical characteristics of the gamma-camera, by a correlative approach with neuropsychology. Methods: Correlations were compared between perfusion of the hippocampal region, as achieved by both the FBP and the CG reconstruction methods, and a short-memory test (Selective Reminding Test, SRT), specifically addressing one of its function. A brain-dedicated camera (CERASPECT) was used for SPECT studies with {sup 99m}Tc-hexamethylpropylene-amine-oxime in 23 consecutive patients (mean age: 74.2{+-}6.5) with mild (Mini-Mental Status Examination score {>=}15, mean 20.3{+-}3), probable AD. Counts from a hippocampal region in each hemisphere were referred to the average thalamic counts. Results: Hippocampal perfusion significantly correlated with the MMSE score with similar statistical significance (p<0.01) between the two reconstruction methods. Correlation between hippocampal perfusion and the SRT score was better with the CG method (r=0.50 for both hemispheres, p<0

  1. Towards adapting a normal patient database for SPECT brain perfusion imaging

    International Nuclear Information System (INIS)

    Smith, N D; Soleimani, M; Mitchell, C N; Holmes, R B; Evans, M J; Cade, S C

    2012-01-01

    Single-photon emission computerized tomography (SPECT) is a tool which can be used to image perfusion in the brain. Clinicians can use such images to help diagnose dementias such as Alzheimer's disease. Due to the intrinsic stochasticity in the photon imaging system, some form of statistical comparison of an individual image with a 'normal' patient database gives a clinician additional confidence in interpreting the image. Due to the variations between SPECT camera systems, ideally a normal patient database is required for each individual system. However, cost or ethical considerations often prohibit the collection of such a database for each new camera system. Some method of adapting existing normal patient databases to new camera systems would be beneficial. This paper introduces a method which may be regarded as a 'first-pass' attempt based on 2-norm regularization and a codebook of discrete spatially stationary convolutional kernels. Some preliminary illustrative results are presented, together with discussion on limitations and possible improvements

  2. Increased cerebral blood flow in MELAS shown by Tc-99m HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Peng, N.J.; Tsay, D.G.; Liu, R.S.; Li, J.Y.; Kong, K.W.; Kwok, C.G.; Strauss, H.W.

    2000-01-01

    We report cerebral SPECT studies on two siblings with the syndrome of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Tc-99m HMPAO brain SPECT was performed 8, 19 and 30 days after a stroke-like episode in one case and 10 days after a stroke-like episode, 6 h after a partial seizure and as a follow-up study in the other. Increased blood flow was seen in both these patients with stroke-like episodes due to MELAS. The cause of the increased blood flow is uncertain, but it may be related to the decreased pH created by local increase in lactic acid. (orig.)

  3. Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T

    NARCIS (Netherlands)

    Koopmans, P.J.; Boyacioglu, R.; Barth, M.; Norris, David Gordon

    2012-01-01

    This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power

  4. Brain MRI and SPECT in the diagnosis of early neurological involvement in Wilson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Piga, Mario; Satta, Loredana; Serra, Alessandra; Loi, Gianluigi [Policlinico Universitario, University of Cagliari, Nuclear Medicine, Department of Medical Science, Monserrato, Cagliari (Italy); Murru, Alessandra; Demelia, Luigi [Policlinico Universitario, University of Cagliari, Gastroenterology, Department of Medical Science, Monserrato, Cagliari (Italy); Sias, Alessandro [Policlinico Universitario, University of Cagliari, Radiology, Department of Medical Science, Monserrato, Cagliari (Italy); Marrosu, Francesco [Policlinico Universitario, University of Cagliari, Neurology, Department of Medical Science, Monserrato, Cagliari (Italy)

    2008-04-15

    To evaluate the impact of brain MRI and single-photon emission computed tomography (SPECT) in early detection of central nervous system abnormalities in patients affected by Wilson's disease (WD) with or without neurological involvement. Out of 25 consecutive WD patients, 13 showed hepatic involvement, ten hepatic and neurological manifestations, and twp hepatic, neurological, and psychiatric symptoms, including mainly movement disorders, major depression, and psychosis. Twenty-four healthy, age-gender matched subjects served as controls. All patients underwent brain MRI and {sup 99m}Tc-ethyl-cysteinate dimer (ECD) SPECT before starting specific therapy. Voxel-by-voxel analyses were performed using statistical parametric mapping to compare differences in {sup 99m}Tc-ECD brain uptake between the two groups. Brain MRI showed T2-weighted hyperintensities in seven patients (28%), six of whom were affected by hepatic and neurological forms. Brain perfusion SPECT showed pathological data in 19 patients (76%), revealing diffuse or focal hypoperfusion in superior frontal (Brodmann area (BA) 6), prefrontal (BA 9), parietal (BA 40), and occipital (BA 18, BA 39) cortices in temporal gyri (BA 37, BA 21) and in caudatus and putamen. Moreover, hepatic involvement was detected in nine subjects; eight presented both hepatic and neurological signs, while two exhibited WD-correlated hepatic, neurological, and psychiatric alterations. All but one patient with abnormal MRI matched with abnormal ECD SPECT. Pathologic MRI findings were obtained in six out of ten patients with hepatic and neurological involvement while abnormal ECD SPECT was revealed in eight patients. Both patients with hepatic, neurological, and psychiatric involvement displayed abnormal ECD SPECT and one displayed an altered MRI. These findings suggest that ECD SPECT might be useful in detecting early brain damage in WD, not only in the perspective of assessing and treating motor impairment but also in evaluating

  5. Validation of brain tumour imaging with p-[123I]iodo-l-phenylalanine and SPECT

    International Nuclear Information System (INIS)

    Hellwig, Dirk; Sell, Nadja; Schaefer, Andrea; Kirsch, Carl-Martin; Samnick, Samuel; Ketter, Ralf; Moringlane, Jean R.; Romeike, Bernd F.M.

    2005-01-01

    The aims of this prospective study were to validate single-photon emission computed tomography (SPECT) with p-[ 123 I]iodo-l-phenylalanine (IPA) in brain tumours and to evaluate its potential for the characterisation of indeterminate brain lesions. In 45 patients with indeterminate brain lesions or suspected progression of glioma, amino acid uptake was studied using IPA-SPECT and compared with the final diagnosis established by biopsy or serial imaging. After image fusion of IPA-SPECT and magnetic resonance imaging, the presence of tumour was visually determined by two independent observers. IPA uptake was quantified as the ratio between maximum uptake in the suspicious lesion and mean uptake in unaffected brain. Primary brain tumours were present in 35 cases (12 low-grade and 23 high-grade gliomas). Non-neoplastic brain lesions were confirmed in seven cases (three dysplasias, three inflammatory lesions, one lesion after effective therapy). Visual analysis showed a high concordance between the two observers (kappa=0.90, p<0.001), with sensitivity and specificity of 86% and 100% for the discrimination of primary brain tumours and non-neoplastic lesions. At 30 min p.i., IPA uptake in primary brain tumours was higher than that in non-neoplastic lesions (1.70±0.36 vs 1.14±0.18, p<0.05). Brain metastases showed no increased uptake (1.13±0.22, n=3). The persistent retention of IPA in low-grade gliomas without disruption of the blood-brain barrier was visualised up to 24 h p.i. Low-grade and high-grade gliomas showed equivalent IPA uptake (1.72±0.37 vs 1.67±0.36 at 30 min, p=0.745). IPA shows long and specific retention in gliomas. IPA is a promising and safe radiopharmaceutical for the visualisation of gliomas and the characterisation of indeterminate brain lesions. (orig.)

  6. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    Science.gov (United States)

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis

  7. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    Science.gov (United States)

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  8. The value of rCBF brain SPECT in assessing visual function of patients with honeymoons hemianopia

    International Nuclear Information System (INIS)

    Xie Ruiman; Yao Jingli; Qing Zheng

    1995-01-01

    Comparison of 99m Tc-HMPAO brain SPECT imaging of 8 cases with honeymoons hemianopia (HH) was taken before and after a course of oriented dynamic color photic stimulation (ODCPS). It was suggested that ODCPS in patients with HH was an effective method for increasing visual field and improving visual function. Cerebral metabolic patterns reflected the mechanism of ODCPS effecting the patients with HH. The retinal midbrain-occipital visual path-way may play an important role in mediating the increase of visual field and restoration of visual function. It was also concluded that brain SPECT imaging was an useful method for the studying of brain function

  9. Brain perfusion SPECT correlates with CSF biomarkers in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Habert, Marie-Odile [UMR-S 678, Universite Pierre et Marie Curie-Paris 6, INSERM, Paris (France); CHU Pitie-Salpetriere, AP-HP, Department of Nuclear Medicine, Paris (France); Hopital Pitie-Salpetriere, Department of Nuclear Medicine, Paris (France); Souza, Leonardo Cruz de; Dubois, Bruno; Sarazin, Marie [CHU Pitie-Salpetriere, AP-HP, Research and Resource Memory Centre and INSERM U610, Paris (France); Lamari, Foudil; Jardel, Claude [CHU Pitie-Salpetriere, AP-HP, Department of Metabolic Biochemistry, Paris (France); Daragon, Nelle; Desarnaud, Serge [CHU Pitie-Salpetriere, AP-HP, Department of Nuclear Medicine, Paris (France)

    2010-03-15

    Our aim was to study the correlations between cerebrospinal fluid (CSF) biomarker levels such as {beta}-amyloid 42 (A{beta}{sub 42}), total and phosphorylated tau protein (T-tau and P-tau) and brain perfusion SPECT in Alzheimer's disease (AD) using a voxel-based methodology. Patients (n = 31) with clinical features of AD (n = 25) or amnestic mild cognitive impairment (aMCI) (n = 6) were retrospectively included. All subjects underwent the same clinical, neuropsychological and neuroimaging tests. They had a lumbar puncture and a brain perfusion ({sup 99m}Tc-ECD) SPECT within a time interval of 10 ({+-}26) days. Correlations between CSF biomarker concentrations and perfusion were studied using SPM2 software. Individual normalised regional activity values were extracted from the eligible clusters for calculation of correlation coefficients. No significant correlation was found between A{beta}{sub 42} concentrations and brain perfusion. A significant correlation (p < 0.01, corrected) was found between T-tau or P-tau concentrations and perfusion in the left parietal cortex. Our results suggest a strong correlation between T-tau and P-tau levels and decreased brain perfusion in regions typically affected by neuropathological changes in AD. (orig.)

  10. The Aomori Prefecture Brain Blood Flow SPECT Phantom Study (First information). Comparison between reference image and each facility to aim at grasp of the situation

    International Nuclear Information System (INIS)

    Ishikura, Makihito; Narita, Kazuo; Terayama, Yoshio; Kudou, Sukehiro

    2008-01-01

    As the single photon emission computed tomography (SPECT) image has rather big between-facility and -machine differences, a questionnaire was done to 18 SPECT facilities in Aomori Prefecture in May, 03, 15 of which answered, for the purpose of standardization of the brain blood flow images in the prefecture. The questionnaire concerned the condition of data collection, image display and reconstruction, and quantitative analysis, based on whose results the Phantom Study was then conducted to see the relationship between the average count and Butterworth filter (BWF) cut-off value by comparison of reference and facilities' images. The gamma camera PRISM 200XP, processor Odyssey Fx and low-energy high-resolution (LEHR) collimator were used for the reference image with collection matrix 128 x 128, 3.5 mm pixel size, Ramp reconstruction filter, Chang decay correction (coefficient μ=0.09) and null scattering correction. Used was the Hoffman phantom containing 30-37 MBq of 99m Tc or 8-18 MBq of 123 I. It was found that the fluctuation of cut-off values became small depending on the increase of count and the collection count was low for both nuclides in those facilities, and thus further study of the measure for increasing the collection count was thought necessary. (R.T.)

  11. Brain SPECT with short focal-length cone-beam collimation

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-01-01

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR CRB ) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR CRB , compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR CRB increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR CRB were relatively robust to mismatches

  12. Pattern of labelling of the rat brain stem after intraventricular administration of 3H-leucine; low and high resolution autoradiographic study

    International Nuclear Information System (INIS)

    Jakoubek, B.; Jirmanova, I.; Soukup, T.; Krekule, I.

    1982-01-01

    The pattern of labelling proteins of the periventricular grey matter was studied two hours after intraventricular administration of 3 H-leucine by low- and high-resolution autoradiography. The pattern was investigated by computer-controlled densitometry. The deposition of radioactive proteins in periventricular grey surrounding the mesencephalic part of the aquaeductus Sylvii was compared with that surrounding the fourth ventricle. In the former case, the distribution of grains was in a circular area 500 to 600 μm in diameter; the densitometric tracing revealed a homogeneous distribution of the label; in the latter case, the distribution was nonhomogeneous and was limited by the tissue components forming the wall of the fourth ventricle. A comparison of the intensity of labelling (performed by a combination of low- and high-resolution autoradiography) indicated relatively substantial labelling of proteins of ependymal cells, very sparce labelling of subependymal layers, and very high labelling of neurones adjacent to the subependymal layer. The significance of these findings for the interpretation of studies using intraventricular administration of labelled amino acids for investigating brain macromolecular metabolism is discussed. (author)

  13. Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy.

    Science.gov (United States)

    Pitzalis, Sabrina; Strappini, Francesca; Bultrini, Alessandro; Di Russo, Francesco

    2018-03-13

    Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas. © 2018 Wiley Periodicals, Inc.

  14. Investigating the impact of blood pressure increase to the brain using high resolution serial histology and image processing

    Science.gov (United States)

    Lesage, F.; Castonguay, A.; Tardif, P. L.; Lefebvre, J.; Li, B.

    2015-09-01

    A combined serial OCT/confocal scanner was designed to image large sections of biological tissues at microscopic resolution. Serial imaging of organs embedded in agarose blocks is performed by cutting through tissue using a vibratome which sequentially cuts slices in order to reveal new tissue to image, overcoming limited light penetration encountered in microscopy. Two linear stages allow moving the tissue with respect to the microscope objective, acquiring a 2D grid of volumes (1x1x0.3 mm) with OCT and a 2D grid of images (1x1mm) with the confocal arm. This process is repeated automatically, until the entire sample is imaged. Raw data is then post-processed to re-stitch each individual acquisition and obtain a reconstructed volume of the imaged tissue. This design is being used to investigate correlations between white matter and microvasculature changes with aging and with increase in pulse pressure following transaortic constriction in mice. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of FITC or pre-sacrifice injection of Evans Blue shows microsvasculature properties in the brain with confocal imaging.

  15. Tritiated 2-deoxy-D-glucose: a high-resolution marker for autoradiographic localization of brain metabolism

    International Nuclear Information System (INIS)

    Hammer, R.P. Jr.; Herkenham, M.

    1984-01-01

    The technique for autoradiographic localization of 2-deoxy-D-glucose (2DG) uptake has become a useful method for observing alterations of functional brain activity resulting from experimental manipulation. Autoradiographic resolution is improved using tritiated ([3H]) rather than carbon-14 ([14C)]2DG, due to the lower energy and shorter path of tritium emissions. In addition, lower 2DG uptake by white matter relative to gray matter is exaggerated in the [3H]2DG autoradiographs due to the greater absorption of tritium emissions by lipids. Using [3H]2DG, it is possible to observe differential metabolic labeling in various individual nuclei or portions of nuclei that is unresolvable using [14C]2DG in the awake, normal animal. Heterogeneous patterns of 2DG uptake seen only with [3H]2DG are found in the nucleus accumbens, the anterior portion of the basolateral nucleus of the amygdala, specific nuclei of the inferior olivary complex, various hypothalamic regions, and a region straddling the border of the medial and lateral habenular nuclei. The lamination of differential 2DG uptake in the hippocampus is better localized using [3H]2DG. Autoradiographic resolution of labeled 2DG is further improved when the brain is perfused prior to frozen sectioning, due perhaps to selective fixation and retention of intracellular labeled 2-deoxy-glycogen. A series of [3H]2DG autoradiographs are presented together with views of the Nissl-stained sections that produced the autoradiographs

  16. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo, E-mail: juarezbarbara@hotmail.co [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Radiology; Min, Li Li; Cendes, Fernando [State University of Campinas (UNICAMP), SP (Brazil). School of Medical Sciences. Dept. of Neurology

    2010-04-15

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  17. Diagnosis of Alzheimer's disease using brain SPECT with three-dimensional stereotactic surface projections

    International Nuclear Information System (INIS)

    Hanyu, Haruo; Asano, Tetsuichi; Kogure, Daiji; Abe, Shine; Iwamoto, Toshihiko; Takasaki, Masaru

    2001-01-01

    We compared the diagnostic usefulness of three-dimensional stereotactic surface projection (3D-SSP) with that of standard transaxial images in brain SPECT in patients with Alzheimer's disease (AD). The subjects consisted of 69 patients with AD and 60 patients with non-AD, including vascular dementia, Parkinson's disease with dementia, frontotemporal dementia, other dementing diseases and neuropsychiatric diseases. Standard transaxial section and 3D-SSP SPECT images with N-isopropyl-p-[ 123 I] iodoamphetamine were blindly interpreted by three examiners and were classified into the following three patterns: typical AD, atypical AD, and not indicative AD patterns. The 3D-SSP images demonstrated reductions of cerebral blood flow in the parieto-temporal association cortex and posterior cingulate gyrus more clearly and easily than the standard transaxial images. The diagnostic sensitivity and specificity were 93% and 85% with 3D-SSP and 83% and 82% with standard transaxial section respectively. 3D-SSP was especially useful for early or atypical AD which showed no characteristic perfusion abnormalities on standard transaxial images. These results suggest that SPECT with 3D-SSP provides an sensitive as well as accurate tool for the diagnosis of AD. (author)

  18. Brain SPECT in mesial temporal lobe epilepsy: comparison between visual analysis and SPM (Statistical Parametric Mapping)

    International Nuclear Information System (INIS)

    Amorim, Barbara Juarez; Ramos, Celso Dario; Santos, Allan Oliveira dos; Lima, Mariana da Cunha Lopes de; Camargo, Edwaldo Eduardo; Etchebehere, Elba Cristina Sa de Camargo; Min, Li Li; Cendes, Fernando

    2010-01-01

    Objective: to compare the accuracy of SPM and visual analysis of brain SPECT in patients with mesial temporal lobe epilepsy (MTLE). Method: interictal and ictal SPECTs of 22 patients with MTLE were performed. Visual analysis were performed in interictal (VISUAL(inter)) and ictal (VISUAL(ictal/inter)) studies. SPM analysis consisted of comparing interictal (SPM(inter)) and ictal SPECTs (SPM(ictal)) of each patient to control group and by comparing perfusion of temporal lobes in ictal and interictal studies among themselves (SPM(ictal/inter)). Results: for detection of the epileptogenic focus, the sensitivities were as follows: VISUAL(inter)=68%; VISUAL(ictal/inter)=100%; SPM(inter)=45%; SPM(ictal)=64% and SPM(ictal/inter)=77%. SPM was able to detect more areas of hyperperfusion and hypoperfusion. Conclusion: SPM did not improve the sensitivity to detect epileptogenic focus. However, SPM detected different regions of hypoperfusion and hyperperfusion and is therefore a helpful tool for better understand pathophysiology of seizures in MTLE. (author)

  19. Brain perfusion SPECT with Brodmann areas analysis in differentiating frontotemporal dementia subtypes.

    Science.gov (United States)

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Kapsalaki, Eftychia; Fezoulidis, Ioannis; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2014-01-01

    Despite the known validity of clinical diagnostic criteria, significant overlap of clinical symptoms between Frontotemporal dementia (FTD) subtypes exists in several cases, resulting in great uncertainty of the diagnostic boundaries. We evaluated the perfusion between FTD subtypes using brain perfusion (99m)Tc-HMPAO SPECT with Brodmann areas (BA) mapping. NeuroGam software was applied on single photon emission computed tomographic (SPECT) studies for the semi-quantitative evaluation of perfusion in BA and the comparison with the software's normal database. We studied 91 consecutive FTD patients: 21 with behavioural variants (bvFTD), 39 with language variants (lvFTD) [12 with progressive non-fluent aphasia (PNFA), 27 with semantic dementia (SD)], and 31 patients with progressive supranuclear palsy (PSP)/corticobasal degeneration (CBD). Stepwise logistic regression analyses showed that the BA 28L and 32R could independently differentiate bvFTD from lvFTD, while the BA 8R and 25R could discriminate bvFTD from SD and PNFA, respectively. Additionally, BA 7R and 32R were found to discriminate bvFTD from CBD/PSP. The only BA that could differentiate SD from PNFA was 6L. BA 6R and 20L were found to independently differentiate CBD/PSP from lvFTD. Moreover, BA 20L and 22R could discriminate CBD/PSP from PNFA, while BA 6R, 20L and 45R were found to independently discriminate CBD/PSP from SD. Brain perfusion SPECT with BA mapping can be a useful additional tool in differentiating FTD variants by improving the definition of brain areas that are specifically implicated, resulting in a more accurate differential diagnosis in atypical or uncertain forms of FTD.

  20. A new method for brain functional study using Tc-99m HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Ohtake, Tohru; Watanabe, Toshiaki; Iio, Masahiro (Tokyo Univ. (Japan). Faculty of Medicine)

    1989-04-01

    The distribution of {sup 99m}Tc-HMPAO in brain is in proportion to regional cerebral blood flow (rCBF) and can be interpreted as functional mapping. To evaluate local changes in CBF during neuropsychological testing, we developed a new subtraction method using HMPAO and SPECT. With patients resting, 15 mCi of HMPAO was injected and the first acquisition was performed, lasting a total of 10 minutes. Soon after the end of the first scan, patients were requested to undergo Buschke's memory test or to repeat words or numbers (repetition test). During the task, an additional 15 mCi of HMPAO was injected using the same position as in the first scan, and a second acquisition was started. A functional image was made by subtracting the image in the first scan from that in the second. In two patients with transient global amnesia and two normal controls, Buschke's memory test was performed in combination with SPECT. A relative increase in activity was seen in the thalamus, subthalamic area, hippocampus, and some cortial areas, apparently reflecting local functional change induced by the memory task. In two patients with moderate Alzheimer's disease with severe memory loss, no increase was detected in these areas. In one patient with aphasia, the repetition test with SPECT was correlated with the WADA test and dichotic listening test, and good agreement was obtained. In conclusion, our new SPECT technique is useful in detecting alterations in rCBF during mental activity and can be applied to neurophysiological studies. (author).

  1. Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI.

    Science.gov (United States)

    Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P

    2017-10-01

    Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.

  2. Compressed sensing for high-resolution nonlipid suppressed 1 H FID MRSI of the human brain at 9.4T.

    Science.gov (United States)

    Nassirpour, Sahar; Chang, Paul; Avdievitch, Nikolai; Henning, Anke

    2018-04-29

    The aim of this study was to apply compressed sensing to accelerate the acquisition of high resolution metabolite maps of the human brain using a nonlipid suppressed ultra-short TR and TE 1 H FID MRSI sequence at 9.4T. X-t sparse compressed sensing reconstruction was optimized for nonlipid suppressed 1 H FID MRSI data. Coil-by-coil x-t sparse reconstruction was compared with SENSE x-t sparse and low rank reconstruction. The effect of matrix size and spatial resolution on the achievable acceleration factor was studied. Finally, in vivo metabolite maps with different acceleration factors of 2, 4, 5, and 10 were acquired and compared. Coil-by-coil x-t sparse compressed sensing reconstruction was not able to reliably recover the nonlipid suppressed data, rather a combination of parallel and sparse reconstruction was necessary (SENSE x-t sparse). For acceleration factors of up to 5, both the low-rank and the compressed sensing methods were able to reconstruct the data comparably well (root mean squared errors [RMSEs] ≤ 10.5% for Cre). However, the reconstruction time of the low rank algorithm was drastically longer than compressed sensing. Using the optimized compressed sensing reconstruction, acceleration factors of 4 or 5 could be reached for the MRSI data with a matrix size of 64 × 64. For lower spatial resolutions, an acceleration factor of up to R∼4 was successfully achieved. By tailoring the reconstruction scheme to the nonlipid suppressed data through parameter optimization and performance evaluation, we present high resolution (97 µL voxel size) accelerated in vivo metabolite maps of the human brain acquired at 9.4T within scan times of 3 to 3.75 min. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review.

    Directory of Open Access Journals (Sweden)

    Cyrus A Raji

    Full Text Available PURPOSE: This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT in traumatic brain injury (TBI. METHODS: After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement, PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. RESULTS: We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94% and temporal (77% lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. CONCLUSIONS: This review demonstrates Level IIA evidence (at least one non-randomized controlled trial for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post

  4. Clinical utility of SPECT neuroimaging in the diagnosis and treatment of traumatic brain injury: a systematic review.

    Science.gov (United States)

    Raji, Cyrus A; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G; Henderson, Theodore

    2014-01-01

    This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms.

  5. Clinical brain imaging with isopropyl-iodoamphetamine and SPECT

    International Nuclear Information System (INIS)

    Royal, H.D.; Hill, T.C.; Holman, B.L.

    1985-01-01

    In recent years, fierce competition has developed between the new high technology specialties of ultrasound, nuclear medicine, computerized transmission tomography, and most recently, nuclear magnetic resonance. Conventional brain scintigraphy, once the most common nuclear medicine procedure, has fallen victim to this rivalry despite the fact that routine scintigraphy remains a good diagnostic test. The agony of this defeat initially caused self-doubt among nuclear medicine physicians, but out of this gloom has emerged a number of radionuclide tests which have the potential to revolutionize how clinical neurology/psychiatry is practiced. 109 references

  6. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    International Nuclear Information System (INIS)

    Yoon, S; Dewhirst, M; Oldham, M; Boss, M; Birer, S

    2016-01-01

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm 3 ) ex vivo tissue samples at a resolution of 12.9µm 3 per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10, 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied

  7. Diagnosis of Alzheimer's disease using brain perfusion SPECT and MR imaging: which modality achieves better diagnostic accuracy?

    International Nuclear Information System (INIS)

    Kubota, Takao; Ushijima, Yo; Yamada, Kei; Okuyama, Chio; Kizu, Osamu; Nishimura, Tsunehiko

    2005-01-01

    The purpose of this study was to compare the accuracy of MR imaging and brain perfusion single-photon emission tomography (SPECT) in diagnosing Alzheimer's disease (AD). The transaxial section display of brain perfusion SPECT, three-dimensional stereotactic surface projection (3D-SSP) SPECT image sets, thin-section MR imaging of the hippocampus and perfusion MR imaging were evaluated in 66 subjects comprising 35 AD patients and 31 subjects without AD. SPECT and MR imaging were visually interpreted by two experts and two novices, and the diagnostic ability of each modality was evaluated by receiver operating characteristic (ROC) analysis. In the experts' interpretations, there was no significant difference in the area under the ROC curve (A z ) between 3D-SSP and thin-section MR imaging, whereas the A z of transaxial SPECT display was significantly lower than that of 3D-SSP (3D-SSP: 0.97, thin-section MR imaging: 0.96, transaxial SPECT: 0.91), and the A z of perfusion MR imaging was lowest (0.63). The sensitivity and specificity of each modality were, respectively, 80.0% and 96.8% for 3D-SSP, 77.1% and 96.8% for thin-section MR imaging, 60.0% and 93.5% for transaxial SPECT display and 34.3% and 100% for perfusion MR imaging. In the novices' interpretations, the A z , sensitivity and specificity of 3D-SSP were superior to those of thin-section MR imaging. Thin-section hippocampal MR imaging and 3D-SSP image sets had potentially equivalent value for the diagnosis of AD, and they were superior to transaxial SPECT display and perfusion MR imaging. For avoidance of the effect of interpreters' experience on image evaluation, 3D-SSP appears to be optimal. (orig.)

  8. A quantitative study of brain perfusion patterns of 99mTc-ECD SPECT in children with developmental disabilities

    International Nuclear Information System (INIS)

    Hirano, Keiko; Aiba, Hideo; Oguro, Katsuhiko

    2004-01-01

    The aim of this study was to investigate the relationship between developmental disabilities and brain perfusion patterns. We performed technetium-99m-ethylcysteinate dimer ( 99m Tc-ECD) single photon emission computed tomography (SPECT) in 30 children with neurological disorders using the Patlak plot method. In children without developmental disabilities, the distribution of regional cortical perfusion evolved in relation to brain maturation. At one month of age, there was a predominant uptake in the perirolandic cortex. Radionuclide uptake in both the parietal and occipital cortices became evident by three months. Uptake in the temporal and frontal cortex increased by 6 and 11 months, respectively. Brain perfusion showed a pattern similar to that of adults by two years of age at the latest. In children with developmental disabilities, developmental changes of brain perfusion were delayed compared to normally developing children. Brain SPECT is a useful tool to assess the brain maturation in children with developmental disabilities. (author)

  9. Brain SPECT analysis by 3D-SSP and clinical features of Parkinson's disease

    International Nuclear Information System (INIS)

    Mito, Yasunori; Yoshida, Kazuto; Makino, Kenichi; Yabe, Ichiro; Kikuchi, Seiji; Sasaki, Hidenao; Tashiro, Kunio

    2006-01-01

    The aim of the present study is to investigate the association of symptoms in Parkinson's disease (PD) with cerebral perfusion on single photon emission computed tomography (SPECT). The clinical features of PD were compared with SPECT images of the brain obtained by three-dimensional stereotactic surface projection (3D-SSP) analysis. Thirty-eight patients who had PD without dementia (17 men and 21 women with a mean age of 68.6±4.7 years) were enrolled in this study. Their symptoms were rated using the unified parkinson's disease rating scale (UPDRS). Within a week, all patients were examined by SPECT with I-123, and reconstructed images were analyzed with 3D-SSP using an image-analysis software, iSSP ver. 3.5. Data on brain surface perfusion extracted by 3D-SSP analysis were compared between the PD patients and the normal control group. The same comparisons were made for subgroups of PD patients with severe symptoms, such as tremor, gait disturbance, bradykinesia, and the UPDRS motor score. Cerebral perfusion was decreased at the anterior cingulate cortex and occipital lobe of the PD patients compared with the normal controls. In the subgroups with severe gait disturbance and severe bradykinesia, additional hypoperfusion was seen at the lateral frontal association and lateral temporal association and the medial frontal gyrus, and by the pixel-by-pixel comparison, perfusion was significantly decreased (p<0.05) at the medial frontal gyrus and anterior cingulate cortex compared with the normal control group. In PD patients, severe gait disturbance and bradykinesia may be correlated with hypoperfusion of the medial aspect of the frontal lobe. This suggests that functional disturbance of the supplementary motor area and other parts of the frontal lobe are involved in the development of gait disturbance and bradykinesia in PD. (author)

  10. Thallium brain SPECT and MRI correlation in the evaluation of tumour recurrence versus radiation necrosis

    International Nuclear Information System (INIS)

    Robins, P.D.; Mahoney, D.S.; Mullan, B.P.

    2000-01-01

    Full text: This study compares different methods of determining thallium tumour uptake indices. Correlation with MR was performed to evaluate features that may affect the thallium index (TI) and to improve specificity for differentiation of recurrent tumor from radiation necrosis. 23 patients who had received radiotherapy for a brain neoplasm were included. The TI was determined using three different methods including large and small regions-of-interest (ROI). The concordance between the thallium SPECT and MRI was assessed. The effect of central necrosis on the different thallium indices derived was evaluated. 18 patients were determined to have recurrent tumor and five had inactive disease. The optimal TI cut-off values was statistically delivered and sensitivity and specificity was 78-94% and 80% respectively for cut-off values between 2.0 and 2.6 depending on the method used to calculate the TI. When compared with MRI, the majority of SPECT abnormalities correlated well with location and degree of uptake and enhancement. Seven cases showed central necrosis and the degree of necrosis had less effect on the TI when a small ROI was used in these cases. In conclusion thallium brain SPECT is a sensitive technique for detecting recurrent tumour. When performing semi-quantitative assessment of thallium uptake, a smaller ROI over the most intense area of uptake will reduce the underestimation of the TI in the presence of necrosis and a Tl cut-off value of 2.6 gave optimal accuracy using this method. Correlation with MRI aids in localization, particularly where there is anatomic distortion and enables more accurate analysis of these lesions by avoiding areas of necrosis. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  11. Uptake of SPECT radiopharmaceuticals in neocortical brain cultures

    Energy Technology Data Exchange (ETDEWEB)

    Jong, B.M. de; Royen, E.A. van

    1989-01-01

    The uptake, retention and uptake antagonism of /sup 201/Tl-DDC, /sup 201/Tl-Cl, /sup 123/I-IMP, /sup 99m/Tc-HMPAO and /sup 99m/Tc-O4/sup -/ were compared in rat neocortex cultures. /sup 201/Tl-DDC and /sup 123/I-IP revealed the highest uptake of radioactivity in the cultures. /sup 99m/Tc-HMPAO and /sup 123/I-IMP showed the highest retention of radioactivity within the tissue in washout experiments. Blocking of bioelectric activity by tetrodotoxin did not significantly affect the uptake of the radiopharmaceuticals (RPHA). Inhibition of Na K ATPase by ouabain inhibited the uptake of /sup 201/Tl-Cl (77%) and /sup 201/Tl-DDC (27%). Imipramine showed a significantly stronger inhibitory effect on /sup 123/I-IMP uptake in comparison with the effect on other RPHA. /sup 99m/Tc-O4/sup -/ was not concentrated within the cultured tissue. Under the in vitro conditions used in this study, the various RPHA were characterised by distinct differences in their interaction with cortical brain tissue.

  12. 123I-iodoamphetamine SPECT brain imaging in alternating hemiplegia

    International Nuclear Information System (INIS)

    Zupanc, M.L.; Dobkin, J.A.; Perlman, S.B.

    1991-01-01

    Alternating hemiplegia of childhood is an unusual disorder characterized by early onset (occurring before 18 months of age); repeated attacks of hemiplegia involving both sides of the body; other paroxysmal phenomena, such as tonic stiffening, dystonic posturing, choreoathetoid movements, ocular motor abnormalities, and autonomic disturbances, in association with bouts of hemiplegia or occurring independently; and evidence of mental or neurologic deficits. A girl was examined because of left hemiplegia at the age of 16 months. The patient had begun exhibiting episodes of alternating hemiplegia at approximately 4 months of age. They consisted of tonic stiffening and dystonia of the right or left extremities, lasting from 30 min to several hours and followed by residual hemiparesis. They were invariably accompanied by ocular motor abnormalities. Magnetic resonance imaging, computed tomography, and angiography all were normal. Single proton emission computed tomography brain images during an acute episode of right hemiplegia demonstrated hypoperfusion of the left cerebral hemisphere. Following improvement of the hemiplegia, the patient was re-evaluated. The uptake of the radiotracer in the left hemisphere was increased. The scan did not demonstrate significant asymmetry in cerebral perfusion

  13. A survey of head movement during clinical brain SPECT using an optical tracking system

    International Nuclear Information System (INIS)

    Pandos, G.; Barnden, L.; Lineage, H.; Smith, T.; Unger, S.

    2002-01-01

    Full text: The aim of this study was to survey patient motion during clinical brain SPECT using a commercial motion detection system called Polaris. Polaris is an optical tracker that remotely tracks head position and orientation via a small target attached to the patient. Its accuracy for position measurement is 1mm or 1 degree (deg), 33% moved > 2mm or 2deg and 10% moved > 4mm or 4deg. 65% of subjects moved 3 or more times. Motion in the D and P groups was equally likely to be small (<3mm or <3deg) or large and equally likely to occur early or late during acquisition. Motion in the N, F and C groups was less likely to be large and for N and F more likely to occur late in the acquisition suggesting fatigue was the main cause. The most common large movements were anterior-posterior translations and axial (Z) rotations. Significant head movement is common in brain SPECT, particularly in dementia and psychiatric subjects, and accurate motion correction is desirable to maintain image quality. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  14. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    International Nuclear Information System (INIS)

    Richieri, Raphaelle; Lancon, Christophe; Boyer, Laurent; Farisse, Jean; Colavolpe, Cecile; Mundler, Olivier; Guedj, Eric

    2011-01-01

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of 99m Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  15. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  16. Evaluation of the effects of methylprednisolone pulse therapy in patients with systemic lupus erythematosus with brain involvement by Tc-99m HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.S.; Kao, C.H. [Department of Nuclear Medicine, China Medical University Hospital, Taichung (Taiwan); Huang, W.S. [Department of Nuclear Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei (Taiwan); Chen, J.J.H. [Section of Rheumatology, Department of Internal Medicine, China Medicine University Hospital, Taichung (Taiwan); Chang, C.P. [Division of Allergy, Immunology and Rheumatology, Changhua Christian Hospital, Changhua (Taiwan); Wang, J.J. [Department of Medical Research, Chi-Mei Medical Center, Tainan (Taiwan)

    2004-07-01

    Methylprednisolone pulse therapy (MPT) was introduced to avoid life-threatening complications in patients with systemic lupus erythematosus (SLE) with brain manifestations; however, the efficacy of MPT in SLE patients with brain involvement is still uncertain and needs to be objectively evaluated. We enrolled 15 female SLE patients with neuropsychiatric manifestations in this study. All patients had normal brain MRI and abnormal brain HMPAO-SPECT findings. Follow-up HMPAO-SPECT studies were conducted 2 weeks after MPT. Serum levels of anticardiolipin antibodies (ACA) and anti-ribosomal P antibodies (anti-P) were measured before and after MPT. Before MPT, 7 patients were positive for ACA and 7 patients were positive for anti-P. After MPT, none of the 15 patients demonstrated positive serologic findings or neuropsychiatric manifestations. Based on the follow up brain HMPAO-SPECT images following MPT, 13 patients showed disappearance of the perfusion defects and 2 patients showed partial recovery of rCBF. Brain HMPAO-SPECT imaging is a logical and objective tool for measuring the effects of MPT in SLE patients with brain involvement by determining of changes in rCBF. (orig.)

  17. Brain imaging with 123I-IMP-SPECT in migraine between attacks

    International Nuclear Information System (INIS)

    Schlake, H.P.; Boettger, I.G.G.; Grotemeyer, K.H.; Husstedt, I.W.

    1989-01-01

    123 I-IMP-SPECT brain imaging was performed in patients with classic migraine (n = 5) and migraine accompagnee (n = 18) during the headache-free interval. A regional reduction of tracer uptake into brain was observed in all patients with migraine accompagnee, while in patients with classic migraine only one case showed an area of decreased activity. The most marked alteration was found in a patient with persisting neurological symptoms (complicated migraine). In most cases the areas of decreased tracer uptake corresponded to headache localization as well as to topography of neurologic symptoms during migraine attacks. It may be concluded that migraine attacks occur in connection with exacerbations of preexisting changes of cerebral autoregulation due to endogenous or exogenous factors

  18. Clinical Utility of '9{sup 9m}Tc-HMPAO Brain SPECT Findings in Chronic Head Injury

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jin ll; Chung, Tae Sub; Suh, Jung Ho; Kim, Dong Ik; Lee, Jong Doo; Park, Chang Yoon; Kim, Young Soo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1992-03-15

    Minima deterioration of cerebral perfusion or microanatomical changes were undetectable on conventional Brain CT or MRI. So evaluation of focal functional changes of the brain parenchyme is essential in chronic head injury patients, who did not show focal anatomical changes on these radiological studies. However, the patients who had longstanding neurologic sequelae following head injury, there had been no available imaging modalities for evaluating these patients precisely. Therefore we tried to detect the focal functional changes on the brain parenchyme using {sup 99m}Tc-HMPAO Brain SPECT on the patients of chronic head injuries. Twenty three patients who had suffered from headache, memory dysfunction, personality change and insomnia lasting more than six months following head injury were included in our cases, which showed no anatomical abnormalities on Brain CT or MRI. At first they underwent psychological test whether the symptoms were organic or not. Also we were able to evaluate the cerebral perfusion changes with {sup 99m}Tc-HMPAO Brain SPECT in 22 patients among the 23, which five patients were focal and 17 patients were nonfocally diffuse perfusion changes. Thus we can predict the perfusion changes such as local vascular deterioration or functional defects using {sup 99m}Tc-HMPAO Brain SPECT in the patients who had suffered from post-traumatic sequelae, which changes were undetectable on Brain CT or MRI.

  19. Changes in the peritumoral hypoperfusion area immediately after radiosurgery for metastatic brain tumor. Analysis using 3D-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Masaaki [Toho Univ., Tokyo (Japan). School of Medicine

    2001-09-01

    Sixteen patients with single metastatic brain tumor underwent SPECT using N-isopropyl-p-({sup 123}I) iodoamphetamine ({sup 123}I-IMP) before and after radiosurgery. Influence of treatment was evaluated using three-dimensional SPECT images, threshold-voxel graphs and changes in the volume of the peritumoral hypoperfusion area. A three-detector type scanner, the PRISM3000, was also used. SPECT scanning was performed for 30 minutes after intravenous administration of {sup 123}I-IMP with sequential scans every 1 minutes. The data obtained 16-30 minutes after administration were processed using a low-pass ramp filter, and three-dimensional SPECT images were constructed from these data using the Application Visualization System (AVS). Furthermore, a threshold-voxel graph was plotted and the volume of the peritumoral hypoperfusion area was calculated. SPECT was performed before radiosurgery, and 1 day, 1 week, and 1 month after, and these data were compared. Three-dimensional SPECT presented the area of peritumoral hypoperfusion as a deficit image and changes were evaluated visually. Threshold-voxel graphs were evaluated as follows: changes in voxels with a threshold of 40-50% indicated a hypoperfusion area, and changes in voxels with a threshold of 70-95% indicated a hyperperfusion area in the tumor side hemisphere. The volume of the peritumoral hypoperfusion area was calculated using the voxel difference between the tumor side and normal hemispheres. Our results showed that the peritumoral hypoperfusion area gradually decreased after an initial first-day increase following radiosurgery. Visual three-dimensional SPECT allowed us to monitor both the volume of the peritumoral hypoperfusion area of metastatic brain tumors after radiosurgery by means of a threshold-voxel graph and changes in the peritumoral hypoperfusion area. (author)

  20. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    International Nuclear Information System (INIS)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui

    2007-01-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr ∼ 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1∼9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI

  1. Large cerebral perfusion defects observed in brain perfusion SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients

    Energy Technology Data Exchange (ETDEWEB)

    So, Young; Kim, Hahn Young; Roh, Hong Gee; Han, Seol Heui [Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    Transient global amnesia (TGA) is a memory disorder characterized by an episode of antegrade amnesia and bewilderment which persists for several hours. We analyzed brain perfusion SPECT findings and clinical outcome of patients who suffered from TGA. From September 2005 to August 2007, 12 patients underwent Tc-99m ECD brain perfusion SPECT for neuroimaging of TGA. All patients also underwent MRI and MRA including DWI (MRI). Among them, 10 patients who could be chased more than 6 months were included in this study. Their average age was 60.74.0 yrs (M: F = 2: 8) and the average duration of amnesia was 4.42.2 hrs (1 hr {approx} 7 hrs). Duration from episode of amnesia to SPECT was 4.32.4 days (1{approx}9 days). Precipitating factors could be identified in 6 patients: emotional stress 3, hair dyeing 1, taking a nap 1 and angioplasty 1. SPECT and MRI was visually assessed, No cerebral perfusion defect was observed on SPECT in 3 patients and their clinical outcome was all good. Among 7 patients who had cerebral perfusion defects on SPECT, 3 patients had good clinical outcome, while others did not: one had hypercholesterolemia, another had depression, and 2 patients with cerebral perfusion defects at both temporoparetal cortex was later diagnosed as early Alzheimer's disease (AD) and mild cognitive impairment (MCI). MRI was negative in 6 patients and 3 of them had excellent clinical outcome while other 3 were diagnosed as hypercholesterolemia, early AD and MCI. Among 4 patients with positive MRI, 3 showed good clinical outcome and their MRI showed lesions at medial temporal cortex and/or vertebral artery. One patient with microcalcification at left putamen was diagnosed to have depression. Large cerebral perfusion defects on SPECT may herald psychiatric or neurodegenerative diseases of transient global amnesia patients which usually shows negative MRI.

  2. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7T.

    Science.gov (United States)

    Betts, Matthew J; Acosta-Cabronero, Julio; Cardenas-Blanco, Arturo; Nestor, Peter J; Düzel, Emrah

    2016-09-01

    Quantitative susceptibility mapping (QSM) has recently emerged as a novel magnetic resonance imaging (MRI) method to detect non-haem iron deposition, calcifications, demyelination and vascular lesions in the brain. It has been suggested that QSM is more sensitive than the more conventional quantifiable MRI measure, namely the transverse relaxation rate, R2*. Here, we conducted the first high-resolution, whole-brain, simultaneously acquired, comparative study of the two techniques using 7Tesla MRI. We asked which of the two techniques would be more sensitive to explore global differences in tissue composition in elderly adults relative to young subjects. Both QSM and R2* revealed strong age-related differences in subcortical regions, hippocampus and cortical grey matter, particularly in superior frontal regions, motor/premotor cortices, insula and cerebellar regions. Within the basal ganglia system-but also hippocampus and cerebellar dentate nucleus-, QSM was largely in agreement with R2* with the exception of the globus pallidus. QSM, however, provided superior anatomical contrast and revealed age-related differences in the thalamus and in white matter, which were otherwise largely undetected by R2* measurements. In contrast, in occipital cortex, age-related differences were much greater with R2* compared to QSM. The present study, therefore, demonstrated that in vivo QSM using ultra-high field MRI provides a novel means to characterise age-related differences in the human brain, but also combining QSM and R2* using multi-gradient recalled echo imaging can potentially provide a more complete picture of mineralisation, demyelination and/or vascular alterations in aging and disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging (3D-PLI

    Directory of Open Access Journals (Sweden)

    Markus eAxer

    2011-12-01

    Full Text Available Functional interactions between different brain regions require connecting fiber tracts, the structural basis of the human connectome. To assemble a comprehensive structural understanding of neural network elements from the microscopic to the macroscopic dimensions, a multimodal and multiscale approach has to be envisaged. However, the integration of results from complementary neuroimaging techniques poses a particular challenge. In this paper, we describe a steadily evolving neuroimaging technique referred to as three-dimensional polarized light imaging (3D-PLI. It is based on the birefringence of the myelin sheaths surrounding axons, and enables the high-resolution analysis of myelinated axons constituting the fiber tracts. 3D-PLI provides the mapping of spatial fiber architecture in the postmortem human brain at a sub-millimeter resolution, i.e. at the mesoscale. The fundamental data structure gained by 3D-PLI is a comprehensive 3D vector field description of fibers and fiber tract orientations – the basis for subsequent tractography. To demonstrate how 3D-PLI can contribute to unravel and assemble the human connectome, a multiscale approach with the same technology was pursued. Two complementary state-of-the-art polarimeters providing different sampling grids (pixel sizes of 100 μm and 1.6 μm were used. To exemplarily highlight the potential of this approach, fiber orientation maps and 3D fiber models were reconstructed in selected regions of the brain (e.g., Corpus callosum, Internal capsule, Pons. The results demonstrate that 3D-PLI is an ideal tool to serve as an interface between the microscopic and macroscopic levels of organization of the human connectome.

  4. Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae, E-mail: miaepark@bwh.harvard.edu; Kijewski, Marie Foley; Lyon, Morgan C.; Horky, Laura; Moore, Stephen C. [Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keijzers, Ronnie; Keijzers, Mark [Nuclear Fields USA, Des Plaines, Illinois 60018 (United States)

    2016-08-15

    Purpose: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. Methods: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize the lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 μCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom

  5. Cerebrovascular disease in newborn infants: report of three cases with clinical follow-up and brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Ribeiro, Maria Valeriana L. de; Ciasca, Sylvia Maria; Vale-Cavalcanti, Mariza; Etchebehere, Elba C.S.C.; Camargo, Edwaldo E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas

    1999-07-01

    The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases. (author)

  6. Cerebrovascular disease in newborn infants: report of three cases with clinical follow-up and brain SPECT imaging

    International Nuclear Information System (INIS)

    Moura-Ribeiro, Maria Valeriana L. de; Ciasca, Sylvia Maria; Vale-Cavalcanti, Mariza; Etchebehere, Elba C.S.C.; Camargo, Edwaldo E.

    1999-01-01

    The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases. (author)

  7. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    International Nuclear Information System (INIS)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H.

    2005-01-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported

  8. Evaluation of brain perfusion SPECT imaging using 99mTc-ECD

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi; Kinuya, Keiko; Higashi, Sotaro; Kawasaki, Yasuhiro; Sumiya, Hisashi; Shuke, Noriyuki; Hisada, Kinichi; Yamashita, Junkoh; Yamaguchi, Nariyoshi

    1991-01-01

    Fundamental and clinical evaluation was performed on 99m Tc-ethyl cysteinate dimer ( 99m Tc-ECD), that is a new agent for brain perfusion SPECT. Radiochemical purity reaches a plateau of approximately 98% at 30 min after reconstruction and remains stable up to 24 hours later. A biodistribution study showed approximately 5% injected dose in the brain, very slow brain washout of 5.6% per hour on the average, and rapid washout from the other organ mainly through the urinary system. Brain ECD distribution was determined within 2 min postinjection and remained stable for up to 1 hour. Three hours later, slight but significant changes in brain distribution were observed, that were relative reduction of cerebral cortical activity and gray to white matter activity ratio, and relative elevation of white matter and thalamic activities. Comparative studies of ECD images with 123 I-iodoamphetamine (IMP) and 99m Tc-d, l-hexa-methylpro-pyleneamine oxime (HMPAO) images revealed that radioactivity contrast between affected and unaffected areas was less prominent in ECD than in IMP in cerebral and cerebellar cortical lesions, more prominent in ECD than in IMP in striatal and thalamic lesions, and somewhat more prominent in ECD than in HMPAO in both lesions. Imaging around 1 hour postinjection seems to be more appropriate than immediate postinjection imaging because of the clearance of the extracranial radioactivity and somewhat better radioactivity contrast between affected and unaffected areas. (author)

  9. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    International Nuclear Information System (INIS)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0±4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22±0.09>0.87±0.22 p 1.02±0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  10. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0{+-}4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22{+-}0.09>0.87{+-}0.22 p<0.01). The lenticular nuclear uptake ratio in SAC method was higher than that of STD method (1.26{+-}0.15>1.02{+-}0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  11. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  12. Evaluation of linear registration algorithms for brain SPECT and the errors due to hypoperfusion lesions

    International Nuclear Information System (INIS)

    Radau, Perry E.; Slomka, Piotr J.; Julin, Per; Svensson, Leif; Wahlund, Lars-Olof

    2001-01-01

    The semiquantitative analysis of perfusion single-photon emission computed tomography (SPECT) images requires a reproducible, objective method. Automated spatial standardization (registration) of images is a prerequisite to this goal. A source of registration error is the presence of hypoperfusion defects, which was evaluated in this study with simulated lesions. The brain perfusion images measured by 99m Tc-HMPAO SPECT from 21 patients with probable Alzheimer's disease and 35 control subjects were retrospectively analyzed. An automatic segmentation method was developed to remove external activity. Three registration methods, robust least squares, normalized mutual information (NMI), and count difference were implemented and the effects of simulated defects were compared. The tested registration methods required segmentation of the cerebrum from external activity, and the automatic and manual methods differed by a three-dimensional displacement of 1.4±1.1 mm. NMI registration proved to be least adversely effected by simulated defects with 3 mm average displacement caused by severe defects. The error in quantifying the patient-template parietal ratio due to misregistration was 2.0% for large defects (70% hypoperfusion) and 0.5% for smaller defects (85% hypoperfusion)

  13. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W.

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  14. SPECT Perfusion Imaging Demonstrates Improvement of Traumatic Brain Injury With Transcranial Near-infrared Laser Phototherapy.

    Science.gov (United States)

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.

  15. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  16. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    Science.gov (United States)

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-03-19

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.

  17. Imaging of mild traumatic brain injury using 57Co and 99mTc HMPAO SPECT as compared to other diagnostic procedures.

    Science.gov (United States)

    Audenaert, Kurt; Jansen, Hugo M L; Otte, Andreas; Peremans, Kathelijne; Vervaet, Myriam; Crombez, Roger; de Ridder, Leo; van Heeringen, Cees; Thirot, Joel; Dierckx, Rudi; Korf, Jaap

    2003-10-01

    Traumatic brain injury (TBI) is usually assessed with the Glasgow Coma Scale (GCS), CT and EEG. TBI can result from either the primary mechanical impact or secondary (ischemic) brain damage, in which calcium (Ca) plays a pivotal role. This study was undertaken to compare the applicability of SPECT using 57Co as a Ca-tracer in patients with mild traumatic brain injury. 8 patients with mild TBI (GCS 15) were clinically examined and studied with EEG, neuropsychological testing (NPT) and SPECT within 2 days post-TBI. After i.v.-administration of 37 MBq (1 mCi) 57Co (effective radiation dose 0.34 mSv x MBq(-1); 1.24 rem x mCi(-1); physical half-life 270 days, biological half-life 37.6 h), single-headed SPECT (12 h pi) was performed, consecutively followed by standard 925 MBq (25 mCi) Tc-99m HMPAO SPECT. In 6 of the 8 patients, baseline NPT and SPECT showed focal abnormalities in the affected frontal and temporal brain regions, which were in good topographical accordance. CT and EEG did not detect (structural) lesions in any of these cases. Single-headed 57Co-SPECT is able to show the site and extent of brain damage in patients with mild TBI, even in the absence of structural lesions. It may confirm and localize NPT findings. The predictive value of 57Co-SPECT should be assessed in larger patient series.

  18. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    Energy Technology Data Exchange (ETDEWEB)

    Richieri, Raphaelle; Lancon, Christophe [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); Boyer, Laurent [La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Department of Public Health, Marseille (France); Farisse, Jean [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); Colavolpe, Cecile; Mundler, Olivier [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Guedj, Eric [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Hopital de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France)

    2011-09-15

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of {sup 99m}Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p < 0.001, uncorrected). Of the patients, 18 (54.5%) were responders to rTMS and 15 were non-responders (45.5%). There were no statistically significant differences in demographic and clinical characteristics (p > 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  19. The relative contributions of scatter and attenuation corrections toward improved brain SPECT quantification

    International Nuclear Information System (INIS)

    Stodilka, Robert Z.; Msaki, Peter; Prato, Frank S.; Nicholson, Richard L.; Kemp, B.J.

    1998-01-01

    Mounting evidence indicates that scatter and attenuation are major confounds to objective diagnosis of brain disease by quantitative SPECT. There is considerable debate, however, as to the relative importance of scatter correction (SC) and attenuation correction (AC), and how they should be implemented. The efficacy of SC and AC for 99m Tc brain SPECT was evaluated using a two-compartment fully tissue-equivalent anthropomorphic head phantom. Four correction schemes were implemented: uniform broad-beam AC, non-uniform broad-beam AC, uniform SC+AC, and non-uniform SC+AC. SC was based on non-stationary deconvolution scatter subtraction, modified to incorporate a priori knowledge of either the head contour (uniform SC) or transmission map (non-uniform SC). The quantitative accuracy of the correction schemes was evaluated in terms of contrast recovery, relative quantification (cortical:cerebellar activity), uniformity ((coefficient of variation of 230 macro-voxels) x100%), and bias (relative to a calibration scan). Our results were: uniform broad-beam (μ=0.12cm -1 ) AC (the most popular correction): 71% contrast recovery, 112% relative quantification, 7.0% uniformity, +23% bias. Non-uniform broad-beam (soft tissue μ=0.12cm -1 ) AC: 73%, 114%, 6.0%, +21%, respectively. Uniform SC+AC: 90%, 99%, 4.9%, +12%, respectively. Non-uniform SC+AC: 93%, 101%, 4.0%, +10%, respectively. SC and AC achieved the best quantification; however, non-uniform corrections produce only small improvements over their uniform counterparts. SC+AC was found to be superior to AC; this advantage is distinct and consistent across all four quantification indices. (author)

  20. Comparison of different references for brain perfusion SPECT quantification in clinical routine

    International Nuclear Information System (INIS)

    Olivera J, P.; Acton, P.; Costa, D.

    1997-01-01

    Full text: We used 40 brain perfusion SPECT studies from the INM, UCL database to investigate the performance of several references (denominators) in the calculation of perfusion ratios with single photon emission tomography (S PET) within a routine clinical service. According to clinical diagnosis and previous SPECT findings 4 groups were identified composed of: 10 controls (C, 23 to 84 y old); 10 myalgic-encephalomyelitis / chronic fatigue syndrome (ME/CFS, 22 to 61 y old); 10 major depression (MD, 24 to 68 y old); and 10 temporal lobe epilepsy (TLE, 19 to 39 y old). Routine protocols for processing were used and the analysis was blind to group classification. Brain perfusion ratios were calculated using 7 different references: hemi cerebellum with higher counts (Cer), total counts in a 4 pixel slice through the basal ganglia slice (BG), average counts per pixel in the visual cortex (VC), average counts per pixel in the white matter (WM), total acquired counts (TAC), total reconstructed counts (TRC) and maximum counts per pixel in the entire study (MAXX). Unpaired test to compare different diagnostic groups, coefficient of variation (CV) to assess the reliability to each references followed by ANOVA were the statistical test used. The lowest mean CV's were found with VC (4.8%) and TRC (5.1%), with all the others significantly higher (p<0.0001). The range of CV's for Cer was the lowest (3.7% to 5.9%). Consistent differentiation between diagnostic groups and controls was only obtained with Cer. In conclusion, it appears that for clinical routine services Cer is the most reliable reference, exception made for all diseases affecting the cerebellum. In these cases TRC or VC should be preferred. (authors)

  1. Brain 99Tcm-ECD SPECT imaging in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Ye Xiaojuan; He Gangqiang

    2010-01-01

    Purpose Obsessive-compulsive disorder (OCD) is a chronic anxiety disorder of unknown aetiology. The purpose of the study is to evaluate the changes of brain function in patients with OCD. Methods: Regional cerebral perfusion was investigated using SPECT in 25 patients with OCD. The mean ages of the patients were 29.04 (1 8-46) years old. The clinical symptom consists of repeating thinking (suspect, worry, nervous) and repeating action (checking, washing, counting, making telephone calls) principally. After administration of 740-925 MBq (20-25 mCi) 99mTc-ECD a single photon emission tomography study was performed and then transaxial, sagittal and coronal slices were obtained. For the semiquantitative analysis of the data Results: 92 per cent of patients (23125) had relative hypoperfusions in some cerebral regions. The patients had a significant decrease of rCBF in the frontal lobes, temporal lobes, basal ganglia, thalamus, and cingulate gyrus. There were no correlation between the change of rCBF and age of age or course of disease. But there were some correlation with clinical symptom. Conclusion: Obsessive-compulsive disorder (OCD) has been linked to a dysfunction of brain orbitofrontal-striatum-pallidum-thalamus networks that were confirmed by PET SPECT functional imaging studies. These study indicated hypoperfusion in frontal lobes, basal ganglion, thalamus in OCD patients, and suggests a reduced serotonergic input into the fronto-subcortical circuits in OCD, thereby diminishing the inhibitory regulation of serotonin on these circuits. According to our results, patients with OCD had profound dysfunction of the frontal and temporal cortices, and basal ganglia. These may reflect a fundamental feature of clinical neuropathophysiology in OCD, and support previous findings about dysfunction of frontal-subcortical circuits in this disorder. (authors)

  2. Clinical Evaluation of Brain Perfusion SPECT with Brodmann Areas Mapping in Early Diagnosis of Alzheimer's Disease.

    Science.gov (United States)

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Fezoulidis, Ioannis; Kapsalaki, Eftychia; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2015-01-01

    Early diagnosis of Alzheimer's disease (AD) based on clinical criteria alone may be problematic, while current and future treatments should be administered earlier in order to be more effective. Thus, various disease biomarkers could be used for early detection of AD. We evaluated brain perfusion with 99mTc-HMPAO single photon emission computed tomography (SPECT) and Brodmann areas (BAs) mapping in mild AD using an automated software (NeuroGam) for the semi-quantitative evaluation of perfusion in BAs and the comparison with the software's normal database. We studied 34 consecutive patients with mild AD: 9 men, 25 women, mean age 70.9 ± 8.1 years, mean Mini-Mental State Examination 22.6 ± 2.5. BAs 25L, 25R, 38L, 38R, 28L, 28R, 36L, and 36R had the lower mean perfusion values, while BAs 31L, 31R, 19R, 18L, 18R, 17L, and 17R had the higher mean values. Compared with healthy subjects of the same age, perfusion values in BAs 25L, 25R, 28R, 28L, 36L, and 36R had the greatest deviations from the healthy sample, while the lowest deviations were found in BAs 32L, 32R, 19R, 24L, 17L, 17R, 18L, and 18R. A percentage of ≥94% of patients had perfusion values more than -2SDs below the mean of healthy subjects in BAs 38R, 38L, 36L, 36R, 23L, 23R, 22L, 44L, 28L, 28R, 25L, and 25R. The corresponding proportion was less than 38% for BAs 11L, 19R, 32L, 32R, 18L, 18R, 24L, and 17R. In conclusion, brain SPECT studies with automated perfusion mapping could be useful as an ancillary tool in daily practice, revealing perfusion impairments in early AD.

  3. SPECT imaging with the serotonin transporter radiotracer [123I]p ZIENT in nonhuman primate brain

    International Nuclear Information System (INIS)

    Cosgrove, Kelly P.; Staley, Julie K.; Baldwin, Ronald M.; Bois, Frederic; Plisson, Christophe; Al-Tikriti, Mohammed S.; Seibyl, John P.; Goodman, Mark M.; Tamagnan, Gilles D.

    2010-01-01

    Introduction: Serotonin dysfunction has been linked to a variety of psychiatric diseases; however, an adequate SPECT radioligand to probe the serotonin transporter system has not been successfully developed. The purpose of this study was to characterize and determine the in vivo selectivity of iodine-123-labeled 2β-carbomethoxy-3β-(4'-((Z)-2-iodoethenyl)phenyl)nortropane, [ 123 I]p ZIENT, in nonhuman primate brain. Methods: Two ovariohysterectomized female baboons participated in nine studies (one bolus and eight bolus to constant infusion at a ratio of 9.0 h) to evaluate [ 123 I]p ZIENT. To evaluate the selectivity of [ 123 I]p ZIENT, the serotonin transporter blockers fenfluramine (1.5, 2.5 mg/kg) and citalopram (5 mg/kg), the dopamine transporter blocker methylphenidate (0.5 mg/kg) and the norepinephrine transporter blocker nisoxetine (1 mg/kg) were given at 8 h post-radiotracer injection. Results: In the bolus to constant infusion studies, equilibrium was established by 4-8 h. [ 123 I]p ZIENT was 93% and 90% protein bound in the two baboons and there was no detection of lipophilic radiolabeled metabolites entering the brain. In the high-density serotonin transporter regions (diencephalon and brainstem), fenfluramine and citalopram resulted in 35-71% and 129-151% displacement, respectively, whereas methylphenidate and nisoxetine did not produce significant changes ( 123 I]p ZIENT is a favorable compound for in vivo SPECT imaging of serotonin transporters with negligible binding to norepinephrine and dopamine transporters.

  4. The relationship between BMI and striatal dopamine transporter with 99Tcm-TRODAT-1 brain SPECT

    International Nuclear Information System (INIS)

    Lu Rongbin; Liu Xingdang; Liu Congjin; Wang Yuankai; Zhang Guangming; Tang Jie; Chen Zhengqing; Luo Shineng

    2011-01-01

    Objective: To assess the relationship between the BMI and the brain DAT, and the influence of BMI on the brain SPECT imaging with 99 Tc m -TRODAT-1. Methods: MRI and 99 Tc m -TRODAT-1SPECT imaging were performed in 31 healthy volunteers (16 males and 15 females), and then the three-dimensional reconstruction of SPECT images were completed. Based on the MRI images, right striatum (RST) and the left striatum (LST) were drawn as ROI on the 4 most clearly consecutive transverse slices.The cerebellum (CB) was taken as the background reference area and the corresponding uptake ratios of ST/CB, LST/CB and RST/CB were calculated. The Pearson correlation tests for radio-uptake ratios (ST/CB, LST/CB, RST/CB), BMI and age were performed, Then multiple linear regression analysis using ST/CB as dependent variable and BMI and age as independent variables was performed. SPSS 15.0 was used in data analysis. Results: The ST imaging was symmetrical. The radioactivity was higher in the ST front area than that of the back area. The average uptake ratios of ST/CB, LST/CB, RST/CB were 1.71±0.16,1.70±0.16 and 1.72±0.17 respectively, in which the three ratios of the female were 1.74±0.18, 1.71±0.19 and 1.76±0.19 respectively and those of the male were 1.68±0.14, 1.68±0.13 and 1.69±0.15 respectively. ST/CB, LST/CB and RST/CB were negatively correlated with patients' BMI (r = -0.53, -0.57, -0.47, all P<0.05). The ST/CB was negatively correlated with patients' age (r=-0.39, P=0.03). The multiple linear regression analysis showed that the BMI was significant independent variable (β=-0.53, t= -3.36, P=0.002). Conclusions: The ST DAT level may decrease as patients' BMI and age increase. Females' DAT level is slightly higher than males'. For ST DAT imaging, age, gender and BMI should be all taken into consideration. (authors)

  5. Voxel-by-voxel analysis of ECD-brain SPECT can separate penumbra from irreversibly damaged tissue at the acute phase of stroke

    International Nuclear Information System (INIS)

    Darcourt, J.; Migneco, O.; David, O.; Bussiere, F.; Mahagne, M.H.; Dunac, A.; Baron, J.C.

    2002-01-01

    Aim. At the acute phase of ischemic stroke, the target of treatment is still salvageable hypoperfused cerebral tissue; so called penumbra. We tested the possibility of separating on early ECD brain SPECT penumbral voxels (P) from irreversibly damaged damaged tissue (IDT). We used ECD which is not only a perfusion tracer but also a metabolic marker. Materials and methods. We prospectively studied 18 patients who underwent ECD-SPECT within the 12 hours following a first-ever acute middle cerebral artery stroke. Neurological evaluation was performed using the Orgogozo's scale at admission and 3 months later in order to calculate and evolution index (IE%) (Martinez-Vila et al.). SPECT data were obtained using a triple head camera equipped with fan beam collimators one hour after injection of 1000 MBq of 99mTc-ECD. On reconstructed images gray matter voxels were automatically segmented. Contralateral healthy hemisphere was used as reference leading to the identification of 3 cortical voxel types: normal (N-SPECT) above 80%; penumbra (P-SPECT) between 80% and 40% and IDT (IDT-SPECT) below 40%. 10 patients also underwent a T2 weighted 3D MRI study at 3 months. Cortical voxels with hypersignal served as reference for IDT (IDT-MRI) the others were considered normal (N-MRI). SPECT and MRI data were co-registered. Therefore each voxel belonged to one of 6 categories (3 SPECT x 2 MRI). Results. (1) The SPECT thresholds were validated on the MRI subgroup. 99% of the N-SPECT voxels were normal on late MRI. 84% of IDT-SPECT voxels corresponded to IDT-MRI. 89% of P-SPECT voxels were normal on late MRI and 11% corresponded to IDT on late MRI. Other categories of voxels (N-SPECT IDT-MRI and IDT-SPECT N-MRI) represented less than 5%. (2) Percentages of each voxel SPECT type was correlated with the EI% on the entire population (Spearman test). P-SPECT extent correlated with EI% improvement (p<0.001) and IDT-SPECT with EI% worsening (p<0.001). Conclusion. Analysis of ECD cortical

  6. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    International Nuclear Information System (INIS)

    Angelis, Georgios I.; Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-01-01

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  7. Technetium-99m-ECD SPECT in antiphospholipid antibody syndrome: a drastic improvement in brain perfusion by antiplatelet therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tokumaru, Sunao; Yoshikai, Tomonori; Uchino, Akira; Kudo, Sho [Dept. of Radiology, Saga Medical School (Japan); Matsui, Makoto; Kuroda, Yasuo [Dept. of Neurology, Saga Medical School (Japan)

    2001-12-01

    We present a case of antiphospholipid antibody syndrome (APS) with repeated transient ischemic attacks (TIAs). Magnetic resonance imaging showed multiple cerebral infarcts and ischemic changes in the cerebral white matter. Cerebral angiographies showed no abnormalities. Technetium-99m-ethyl cysteinate dimer (Tc-99m-ECD) brain SPECT showed multiple decreased perfusion areas, which were more extensive than the lesions demonstrated on MRI. After treatment with an antiplatelet agent, the patient subsequently recovered from the TIAs. Although no interval changes were observed by MRI after therapy, follow-up Tc-99m-ECD SPECT revealed a marked improvement in brain perfusion. This is the first imaging report of remarkable post-therapy improvement in brain perfusion in APS cases. (orig.)

  8. Technetium-99m-ECD SPECT in antiphospholipid antibody syndrome: a drastic improvement in brain perfusion by antiplatelet therapy

    International Nuclear Information System (INIS)

    Tokumaru, Sunao; Yoshikai, Tomonori; Uchino, Akira; Kudo, Sho; Matsui, Makoto; Kuroda, Yasuo

    2001-01-01

    We present a case of antiphospholipid antibody syndrome (APS) with repeated transient ischemic attacks (TIAs). Magnetic resonance imaging showed multiple cerebral infarcts and ischemic changes in the cerebral white matter. Cerebral angiographies showed no abnormalities. Technetium-99m-ethyl cysteinate dimer (Tc-99m-ECD) brain SPECT showed multiple decreased perfusion areas, which were more extensive than the lesions demonstrated on MRI. After treatment with an antiplatelet agent, the patient subsequently recovered from the TIAs. Although no interval changes were observed by MRI after therapy, follow-up Tc-99m-ECD SPECT revealed a marked improvement in brain perfusion. This is the first imaging report of remarkable post-therapy improvement in brain perfusion in APS cases. (orig.)

  9. Types of traumatic brain injury and regional cerebral blood flow assessed by [sup 99m]Tc-HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Iwao; Yamaura, Akira; Isobe, Katsumi [Chiba Univ. (Japan). School of Medicine

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with [sup 99m]technetium-hexamethyl propyleneamine oxime (HMPAO). Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated: (1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, (2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and (3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient. (author).

  10. Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.

    Science.gov (United States)

    Yamakami, I; Yamaura, A; Isobe, K

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.

  11. Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Yamakami, Iwao; Yamaura, Akira; Isobe, Katsumi

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99m technetium-hexamethyl propyleneamine oxime (HMPAO). Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated: 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient. (author)

  12. Evaluation of the monoamine uptake site ligand [123I]methyl 3β-(4-iodophenyl)-tropane-2β-carboxylate ([123I]β-CIT) in non-human primates: pharmacokinetics, biodistribution and SPECT brain imaging coregistered with MRI

    International Nuclear Information System (INIS)

    Baldwin, R.M.; Zea-Ponce, Yolanda; Zoghbi, S.S.

    1993-01-01

    The in vivo properties of a new radioiodinated probe of the dopamine and serotonin transporter, [ 123 )I] methyl 3β-(4-iodophenyl)tropane-2β - carboxylate ([ 123 I]β-CIT) were evaluated in baboons and vervet monkeys. The labeled product was prepared by reaction of the tributylstannyl precursor with [ 123 I] NaI in the presence of peracetic acid followed by high pressure liquid chromatography (HPLC) purification. After intravenous administration, whole brain activity peaked at 6-10% injected dose within 1 h post injection (p.i.) and washed out in a biphasic manner with clearance half-lives of 1-2 and 7-35 h for the rapid and slow components, respectively. Excretion occurred primarily through the hepatobiliary route, with about 30% of the injected dose appearing in the GI tract after 5 h. Estimates of radiation absorbed dose gave 0.01, 0.1, 0.2 and 0.03 mGy/MBq to the brain, gall bladder wall, lower large intestine wall and urinary bladder wall, respectively. High resolution SPECT imaging in a baboon demonstrated high uptake of tracer in the region of the striatum in the hypothalamus and in a midbrain region comprising raphe, substantia nigra and superior colliculus with regional brain uptakes measured at 210 min p.i. of [ 123 I]β-CIT. The anatomical locations of the regions on the SPECT image were confirmed by coregistration with MRI. Plasma metabolites and pharmacokinetics were analyzed in baboons and vervets by ethyl acetate extraction and HPLC. [ 123 I]β-CIT promises to be a useful marker for SPECT study of the monoamine uptake system in primate brain. (Author)

  13. Diagnosis of ischemic cerebrovascular diseases with 99mTc-HMPAO brain SPECT using upright stress test

    International Nuclear Information System (INIS)

    Chen Shaoliang; Xiu Yan; Sun Xiaoguang

    1998-01-01

    Purpose: To evaluate the value of upright brain SPECT stress test, the authors performed 99m Tc-HMPAO brain SPECT in association with measurement of blood pressure in both upright and supine positions. Methods: The authors studied 5 patients with unilateral stenosis occlusion of the internal carotid (Group A), 8 patients with orthostatic hypotension (group B) and 7 normal controls. 370 MBq 99m Tc-HMPAO was injected immediately after uprighting from a supine position. then the first SPECT scan were performed. After the first SPECT, another 555 MBq of 99m Tc-HMPAO were administered while the patients remained on original supine position. Results: Semiquantitive analysis showed that the asymmetric ratios between upright and supine positions in group A changed significantly. In group B, showed postural cerebral hypoperfusion in the bilateral frontal areas, the mean count ratio of the frontal to cerebellar area between the upright and supine positions also significantly changed. In the normal group, there were no significantly changes during the upright test. Conclusions: The upright stress test is useful for detecting not only silent cerebral hypoperfusion, but also orthostatic hypoperfusion

  14. Evaluation of brain tumors by simultaneous dual isotope SPECT with 201Tl-chloride and 99mTc-MIBI

    International Nuclear Information System (INIS)

    Nagai, Hidemasa; Yamasaki, Toshiki; Yamamoto, Yoshiaki; Takada, Daikei; Miyazaki, Takeshi; Sugimoto, Keiji; Matsumoto, Yoshifumi; Akiyama, Yasuhiko; Moritake, Kouzo

    2004-01-01

    Single photon emission computed tomography (SPECT) is useful for detecting brain tumors. In this study, we evaluated the utility of simultaneous dual SPECT with 201 Tl-Chloride (Tl) and 99m Tc-MIBI (MIBI) for diagnosis of brain tumors. We evaluated 20 cases, including 2 glioblastomas, 7 anaplastic astrocytomas, 2 oligodendrogliomas, 2 anaplastic ependymomas, 2 medulloblastomas, 2 meningiomas, 1 malignant meningioma, 1 pituitary adenoma, and 1 craniopharyngioma. We analyzed the uptake ratio (T/N ratio) of tracers in both Tl and MIBI at max counts/pixels ratio in the region of interest. The T/N ratios in early and delayed images were described as early ratios (ER) and delay ratios (DR), respectively. The retention index (RI) was calculated as the DR/ER ratio. Significant correlations were found between ER and DR for both Tl (DR=0.797 x ER+0.359, r=0.871), and MIBI (DR=0.961 x ER-0.191, r=0.784). Next, we analyzed the correlations between Tl and MIBI SPECT, for ER, DR, and RI. ER values for the two were strongly correlated (r=0.791), DR values were weakly correlated (r=0.556), and RI exhibited no correlation between them (r=0.328). There were no correlations between tumor volume and T/N ratio for the two (ER-Tl; r=0.0095, DR-Tl; r=0.0050, ER-MIBI; r=0.036, DR-MIBI; r=0.254). Lastly no correlation was found between RI-Tl and RI-MIBI (r=0.328). We discuss the difference in the mechanism of accumulation of two tracers and the significance of simultaneous dual SPECT using them for the differential diagnosis of pituitary tumors, regrowth of oligodendrogliomas, and multi-drug resistance of chemotherapy. Dual SPECT with Tl and MIBI appears to be useful for the diagnosis of brain tumor. (author)

  15. Validity of in vivo [123I]beta-CIT SPECT in detecting MDMA-induced neurotoxicity in rats

    NARCIS (Netherlands)

    de Win, Maartje M. L.; de Jeu, Rogier A. M.; de Bruin, Kora; Habraken, Jan B. A.; Reneman, Liesbeth; Booij, Jan; den Heeten, Gerard J.

    2004-01-01

    This study investigated the ability of a high-resolution pinhole single-photon emission computed tomography (SPECT) system, with [(123)I]beta-CIT as a radiotracer, to detect 3,4-methelenedioxymethamphetamine (MDMA, 'Ecstasy')-induced loss of serotonin transporters (SERTs) in the living rat brain. In

  16. Analysis of Regional Cerebral Blood Flow Using {sup 99m}Tc-HMPAO Brain SPECT in Senile Dementia of Alzheimer Type

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Hae; Lee, Myung Chul; Koh, Chang Soon; Roh, Jae Kyu; Woo, Chong In [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1988-03-15

    {sup 99m}Tc-HMPAO brain SPECT studies were performed in 11 patients with Alzheimer's disease, 7 patients with psychological depression and 12 normal controls. Changes of regional cerebral blood flow was semiquantitatively analyzed and the results were as follows. 1) In 11 patients with Alzheimer's disease, significant reduction of regional cerebral blood flow was found In both temporoparietal areas. 2) Relative perfusion between cerebral hemispheres was rather symmetrical in patient with Alzheimer's disease. 3) All patients with depression showed normal SPECT findings. As for conclusion, {sup 99m}Tc-HMPAO brain SPECT seemed to be a valuable method for clinical assessment and management of patients with Alzheimer's disease.

  17. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  18. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  19. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  20. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  1. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  2. Advance prediction of mild cognitive impairment (MCI) using 99mTc-ECD SPECT brain blood flow imaging

    International Nuclear Information System (INIS)

    Kawasaki, Yohsuke

    2008-01-01

    Mild Cognitive Impairment (MCI) is considered as a precursor state of Alzheimer disease (AD). Single photon emission computed tomography (SPECT) brain blood flow imaging was investigated in MCI and it's relevance to the prognosis of MCI was evaluated in an attempt define the characteristics of brain blood flow imaging of MCI (amnestic MCI; aMCI) converting to AD. Ninety-two patients over 60 years old with amnesia were studied. 99m Tc-ethyl cysteinate dimer (ECD) SPECT brain blood flow examinations of the subject under drug-free conditions were conducted and imaging was analyzed according to the first clinical diagnosis. Patients given a diagnosis of MCI on the first clinical diagnosis, were examined again after 2 years and the SPECT imaging before 2 years previously was classified and analyzed. Of them, there were 35 MCI patients, converting of 13 AD patients (37.1%; aMCI), 10 MCI patients (28.6%; non-converter), 4 depression patients (11.4%; Depression type MCI (dMCI)), 1 Geriatric psychosis patient, but 7 patients dropped out. In the aMCI group, relative hypoperfusion was recognized in the posterior cingulate and the precuneus. In the dMCI group, relative hypoperfusion was recognized in the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate. In the non-converter group, relative hypoperfusion was recognized in the basal forebrain. The hypoperfusion of the precuneus in aMCI, and the hypoperfusion of the right frontal lobe (DLPFC, dorsal-anterior cingulate) in dMCI were characteristic brain blood-flow abnormalities. We believe 99m Tc-ECD SPECT brain blood flow imaging to be useful in the diagnosis of aMCI and in the early detection of depression. (author)

  3. Reduced brain perfusion in basal forebrain associated with cognitive decline in Alzheimer's diseases: a Tc-99m HMPAO SPECT study

    International Nuclear Information System (INIS)

    Lee, M.C.; Kang, H.; Kang, E.; Lee, J.S.; Lee, D.S.; Lee, D.W.; Cho, M.J.

    2002-01-01

    Aim: Reduction of regional cerebral blood flow (rCBF) in various cerebral regions and decline of cognitive function have been reported in Alzheimer's disease (AD) patients. The aim of this study was to identify the brain areas showing correlation between longitudinal changes of rCBFs and decline of general mental function, measured by Mini-Mental State Examination (MMSE) in probable Alzheimer's disease patients. Materials and Methods: Nine probable AD patients according to NINCDS-ADRDA criteria and DSM-IV were studied with Tc-99m HMPAO SPECT at an initial point and at the follow-up after a period of average 1.8 year. MMSE score was obtained in both occasions (average MMSE 16.4 at initial study; average MMSE = 8.1 at follow-up). Single SPECT was performed in 30 age-matched normal controls. Each SPECT image was normalized to the cerebellar activity. Using statistical parametric mapping (SPM99), correlation was analyzed between individual changes in rCBF of two SPECT scans and the MMSE scores at the time of each study in AD patients. In addition, the SPECT images of the initial study and the follow-up study were compared with SPECT images of the age-matched normal group respectively. Results: Significant correlation between longitudinal changes of rCBFs and MMSE scores was found in left basal forebrain region including substantia innominata (x, y, z = -24, 16, -23; P < .05, corrected). Within a short follow-up period of 1.8 years, cerebral hypoperfusion extended to various cortical regions from bilateral temporo-parietal to bilateral frontal regions and cingulate cortex, compared to normal controls. Conclusion: The decline of cognitive function in individual AD patients was correlated with rCBF reduction in left basal forebrain. This finding supports the cholinergic hypothesis of AD since hypoperfusion in basal forebrain region might indicate deterioration of cholinergic neurons in nucleus basalis of Meynert or substantia innominata

  4. Brain SPECT of chronic fatigue syndrome (CFS): SPM analysis of two age groups

    International Nuclear Information System (INIS)

    Barnden, L.; Casse, R.; Kwiatek, R.; Kitchener, M.; DelFante, P.; Burnet, R.; Behin-Ain, S.; Unger, S.

    2002-01-01

    Full text: Chronic fatigue syndrome (CFS) is a complex disorder characterised by profound fatigue and neuropsychiatric dysfunction. Previous studies with cerebral perfusion SPECT (rCBF) scans were performed with inhomogeneous patient populations and were not analysed with Statistical Parametric Mapping (SPM). We have used SPM to study subjects with moderate CFS based on the Fukuda criteria, who were not on medication and not depressed, compared to age matched control subjects. An apparent bimodal age distribution has been observed in CFS. Subjects were therefore divided into two age groups: 16-35 or under 35 (17 CFS, 11 control) and 36-61 or over 35 (15 CFS, 15 control). HMPAO brain SPECT was acquired on a 3-head camera. After lower window scatter subtraction, reconstruction with attenuation correction (mu=0.15/cm) and editing of facial activity, scans were spatially normalised (affine + 2x3x2 nonlinear) to SPM's anatomical space. SPM statistical analysis yielded the location, amplitude and corrected p-value of significant focal rCBF deficits. They were: for under 35, left lateral temporal lobe (13%, 0.004), the left insular region (15%, 0.006) and the right lentiform nucleus (15%, 0.01); and for over 35 the left lentiform nucleus (18%, 0.01). Counts at the most significant voxel in the under 35 age group permitted separation of the CFS and control groups with sensitivity 94% and specificity 100%. We are acquiring more controls to better define the age and sex dependence of rCBF in CFS. Analysis of associated clinical variables will be used to investigate the observed differences between the two age groups. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  5. Brain SPECT study of detrusor overactivity and healthy men in urine withholding

    International Nuclear Information System (INIS)

    Yin Yafu; Li Xuena; Li Yaming; Noriyuki Shuke; Atsutaka Okizaki; Junichi Sato; Tamio Aburano

    2009-01-01

    The aim of the study is to identify the brain areas, which control the bladder storage by 99 Tc m -HMPAO SPECT with Neurological Statistical Image Analysis Software (NEUROSTAT). SPECT were performed on twenty-five patients with some storage symptoms of lower urinary tract, among which nineteen patients were with detrusor overactivity (DO) (Group II) and six patients were with normal detrusor function (Group III), and fifteen healthy volunteers (Group I). All the subjects were male and right-handed, and were scanned twice under two conditions: resting state and urine withholding state. NEUROSTAT was adopted to analyze the difference in rCBF between groups and states. The results were displayed on Z-score images at a significance threshold of P<0.05 with correction for multiple comparisons. No region reached significant threshold in comparison of Group II and III in resting state. There were significant increases in tracer activity in bilateral inferior frontal gyri and the right middle temporal gyrus in urine withholding state as compared with resting state in Group I and III (P<0.05 with correction for multiple comparisons, the corresponding Z value was more than 4.476 for Group I, more than 4.414 for Group III). Among the regions,the right inferior frontal gyrus was distinctly prominent at both Z-score and the extent. In Group II, only the left middle temporal gyrus and middle frontal gyrus were activated significantly in urine withholding state as compared with resting (P<0.05 with correction for multiple comparisons, the corresponding Z value was more than 4.35). The results indicated that bilateral inferior frontal gyri and the right middle temporal gyrus associated with the control of bladder storage.Especially, the right inferior frontal gyrus played a more important role in cerebral control of bladder storage, inhibiting the contraction of detrusor in urine storage. (authors)

  6. High-resolution 1H magnetic resonance spectroscopy imaging at 1.5 and 3 Tesla of the human brain: development of techniques and applications for patients with primary brain tumors and multiple sclerosis

    International Nuclear Information System (INIS)

    Stadlbauer, A.

    2004-05-01

    The aim of this work was to develop several strategies and software-packages for the evaluation of in-vivo-data of the human brain, which were acquired with high-resolution 1H-MRSI at 1.5 and 3 T. Several studies involving phantoms, volunteers and patients were performed. Quality assurance studies were conducted in order to evaluate the reproducibility of the applied MR-techniques at both field strengths. A qualitative comparison-study between MRSI-data from a 1.5 T clinical MR-scanner and a 3 T research MR-scanner showed the advantages of the more advanced MRSI sequences and higher field strength (3 T). A study involving patients with primary brain tumours (gliomas) was performed in cooperation with the Department of Neurosurgery (University of Erlangen-Nuremberg). The methods developed in the course of this study, such as the integration of MRS-data into a stereotactic-system, the segmentation of metabolic maps and the correlation with histopathological findings represent a package of vital information for diagnostics and therapy of primary brain tumors, neurodegenerative disorders or epilepsy. In the course of two pilot-studies in cooperation with the MR-Centre of Excellence (Medical University of Vienna) the advantages of high-resolution 3D in-vivo-1H-MRSI at 3T were qualitatively evaluated via measurements on patients with brain tumors and multiple sclerosis (MS). It was demonstrated that 1H-MRSI may be valuable for the diagnosis, follow-up and prediction of 'seizures' with MS-patients. In conclusion, this work contains an overview of potential and advantages of in-vivo-1H-MRS-methods at 1.5 and 3 T for the clinical diagnosis and treatment of patients with gliomas and MS. (author)

  7. Effects of hole tapering on cone-beam collimation for brain SPECT imaging

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Kijewski, Marie Foley; Moore, Stephen C.

    2006-01-01

    New collimator manufacturing technologies, such as photoetching, electrical discharge machining, and stereolithography, expand the range of possible cone-beam collimator configurations. For example, it might now be possible for brain SPECT to make a short-focusing cone-beam collimator with tapered holes that increase in size with distance from the collimator surface; conventional lead-casting techniques produce holes of constant size and, consequently, varying septal thicknesses. Moreover, the changes in hole shape and loss of close packing due to focusing leads to thicker septa in the collimator periphery, especially for shorter focal lengths. We investigated the potential advantages of new cone-beam collimator manufacturing processes, and proposed a new design for very short focal-length collimators for brain SPECT imaging. We compared three cone-beam collimators, a conventional collimator manufactured using casting techniques (CC), a novel collimator with uniform hole sizes on the collimator surface and constant hole size through the collimator thickness (FC), and a novel collimator with uniform hole sizes and tapered holes (TC). We determined the resolution of each collimator analytically for focal lengths ranging from 20-50 cm, and adjusted the entrance hole sizes of FC and TC to equalize resolution of all collimators. Sensitivity was calculated at several locations by Monte Carlo simulation. Sensitivity was higher at all points for TC and FC than for CC, and higher for TC than for FC. The differences in sensitivity were larger for shorter focal lengths. For a point on the focal line at 10 cm in front of the collimator entrance surface, the sensitivity gain for TC compared to CC was 7% and 45% for focal lengths of 50 and 20 cm, respectively. The sensitivity gain for a 20-cm focal length, compared to CC, averaged over all locations, was 44% for TC and 23% for FC. We have shown that the new collimator designs made possible by new manufacturing techniques will

  8. Clinical value of scatter correction for interictal brain 99m Tc-HMPAO SPECT in mesial temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Sanchez Catasus, C.; Morales, L.; Aguila, A.

    2002-01-01

    Aim: It is well known that some patients with temporal lobe epilepsy (TLE) show normal perfusion during interictal SPECT study. The aim of this research was to evaluate if the scatter radiation has some influence on this kind of result. Materials and Methods: We studied 15 patients with TLE by clinical diagnosis and by video-EEG monitoring with surface electrodes (11 left TLE, 4 right TLE), which showed normal perfusion during interictal brain 99m Tc-HMPAO SPECT. The SPECT data were reconstructed by filtered backprojection without scatter correction (A). The same SPECT data were reconstructed after the projections were corrected by dual energy window method of scatter correction (B). Attenuation was corrected in all cases using first order Chang Method. For A and B images groups, cerebellum perfusion ratios were calculated on irregular regions of interest (ROI) drawn on anterior (ATL), lateral (LTL), mesial (MTL) and whole temporal lobe (WTL). To evaluate the influence of scatter radiation, the cerebellum perfusion ratios of each subject were compared with a normal database of 10 normal subjects, with and without scatter correction, using z-score analysis. Results: In group A, the z-score was less than 2 in all cases. In group B, the z-score was more than 2 in 6 cases, 4 in MTL (3 left, 1 right) and 2 in left LTL, which were coincident with the EEG localization. All images of group B showed better contrast than images of group A. Conclusions: These results suggest that scatter correction could improve the sensitivity of interictal brain SPECT to identify epileptic focus in patients with TLE

  9. Effects of partial volume correction on discrimination between very early Alzheimer's dementia and controls using brain perfusion SPECT

    International Nuclear Information System (INIS)

    Kanetaka, Hidekazu; Matsuda, Hiroshi; Ohnishi, Takashi; Imabayashi, Etsuko; Tanaka, Fumiko; Asada, Takashi; Yamashita, Fumio; Nakano, Seigo; Takasaki, Masaru

    2004-01-01

    We assessed the accuracy of brain perfusion single-photon emission computed tomography (SPECT) in discriminating between patients with probable Alzheimer's disease (AD) at the very early stage and age-matched controls before and after partial volume correction (PVC). Three-dimensional MRI was used for PVC. We randomly divided the subjects into two groups. The first group, comprising 30 patients and 30 healthy volunteers, was used to identify the brain area with the most significant decrease in regional cerebral blood flow (rCBF) in patients compared with normal controls based on the voxel-based analysis of a group comparison. The second group, comprising 31 patients and 31 healthy volunteers, was used to study the improvement in diagnostic accuracy provided by PVC. A Z score map for a SPECT image of a subject was obtained by comparison with mean and standard deviation SPECT images of the healthy volunteers for each voxel after anatomical standardization and voxel normalization to global mean or cerebellar values using the following equation: Z score = ([control mean]-[individual value])/(control SD). Analysis of receiver operating characteristics curves for a Z score discriminating AD and controls in the posterior cingulate gyrus, where a significant decrease in rCBF was identified in the first group, showed that the PVC significantly enhanced the accuracy of the SPECT diagnosis of very early AD from 73.9% to 83.7% with global mean normalization. The PVC mildly enhanced the accuracy from 73.1% to 76.3% with cerebellar normalization. This result suggests that early diagnosis of AD requires PVC in a SPECT study. (orig.)

  10. Statistics that learn: can logistic discriminant analysis improve diagnosis in brain SPECT?

    International Nuclear Information System (INIS)

    Behin-Ain, S.; Barnden, L.; Kwiatek, R.; Del Fante, P.; Casse, R.; Burnet, R.; Chew, G.; Kitchener, M.; Boundy, K.; Unger, S.

    2002-01-01

    Full text: Logistic discriminant analysis (LDA) is a statistical technique capable of discriminating individuals within a diseased group against normals. It also enables classification of various diseases within a group of patients. This technique provides a quantitative, automated and non-subjective clinical diagnostic tool. Based on a population known to have the disease and a normal control group, an algorithm was developed and trained to identify regions in the human brain responsible for the disease in question. The algorithm outputs a statistical map representing diseased or normal probability on a voxel or cluster basis from which an index is generated for each subject. The algorithm also generates a set of coefficients which is used to generate an index for the purpose of classification of new subjects. The results are comparable and complement those of Statistical Parametric Mapping (SPM) which employs a more common linear discriminant technique. The results are presented for brain SPECT studies of two diseases: chronic fatigue syndrome (CFS) and fibromyalgia (FM). A 100% specificity and 94% sensitivity is achieved for the CFS study (similar to SPM results) and for the FM study 82% specificity and 94% sensitivity is achieved with corresponding SPM results showing 90% specificity and 82% sensitivity. The results encourages application of LDA for discrimination of new single subjects as well as of diseased and normal groups. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  11. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using {sup 99m}Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus.

  12. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    International Nuclear Information System (INIS)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using 99m Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus

  13. Region of interest evaluation of SPECT image reconstruction methods using a realistic brain phantom

    International Nuclear Information System (INIS)

    Xia, Weishi; Glick, S.J.; Soares, E.J.

    1996-01-01

    A realistic numerical brain phantom, developed by Zubal et al, was used for a region-of-interest evaluation of the accuracy and noise variance of the following SPECT reconstruction methods: (1) Maximum-Likelihood reconstruction using the Expectation-Maximization (ML-EM) algorithm; (2) an EM algorithm using ordered-subsets (OS-EM); (3) a re-scaled block iterative EM algorithm (RBI-EM); and (4) a filtered backprojection algorithm that uses a combination of the Bellini method for attenuation compensation and an iterative spatial blurring correction method using the frequency-distance principle (FDP). The Zubal phantom was made from segmented MRI slices of the brain, so that neuro-anatomical structures are well defined and indexed. Small regions-of-interest (ROIs) from the white matter, grey matter in the center of the brain and grey matter from the peripheral area of the brain were selected for the evaluation. Photon attenuation and distance-dependent collimator blurring were modeled. Multiple independent noise realizations were generated for two different count levels. The simulation study showed that the ROI bias measured for the EM-based algorithms decreased as the iteration number increased, and that the OS-EM and RBI-EM algorithms (16 and 64 subsets were used) achieved the equivalent accuracy of the ML-EM algorithm at about the same noise variance, with much fewer number of iterations. The Bellini-FDP restoration algorithm converged fast and required less computation per iteration. The ML-EM algorithm had a slightly better ROI bias vs. variance trade-off than the other algorithms

  14. Follow-up of pain processing recovery after ketamine in hyperalgesic fibromyalgia patients using brain perfusion ECD-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Laforte, Catherine de; Mundler, Olivier [Assistance Publique des Hopitaux de Marseille, Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille, Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-12-15

    The aim of this study was to determine whether the follow-up of pain processing recovery in hyperalgesic fibromyalgia (FM) could be objectively evaluated with brain perfusion ethyl cysteinate dimer single photon computerized tomography (ECD-SPECT) after administration of ketamine. We enrolled 17 hyperalgesic FM women patients (48.5 {+-} 11 years, range 25-63). After treatment with subcutaneous ketamine, 11 patients were considered as 'good responders', with a decrease in pain intensity, evaluated by visual analog scale (VAS), greater than 50%. On the other hand, six patients were considered as 'poor responders'. A voxel-based analysis of regional cerebral blood flow (rCBF) was conducted (p{sub voxel} < 0.001uc), in the two subgroups of patients, before and after treatment, in comparison to a group of ten healthy subjects, matched for age and gender. In comparison to baseline brain SPECT, midbrain rCBF showed a greater increase after ketamine in the responder group than in the nonresponder group (p{sub cluster} = 0.016c). In agreement with the clinical response, the change in midbrain rCBF after ketamine was highly correlated with the reduction of VAS pain score (r = 0.7182; p = 0.0041). This prospective study suggests that blockade of facilitatory descending modulation of pain with ketamine can be evaluated in the periaqueductal grey with brain perfusion SPECT. (orig.)

  15. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury.

    Science.gov (United States)

    Romero, Kristoffer; Lobaugh, Nancy J; Black, Sandra E; Ehrlich, Lisa; Feinstein, Anthony

    2015-01-30

    The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. N-isopropyl I-123 p-iodoamphetamine brain scintigraphy with SPECT in Creutzfeldt-Jakob disease

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Ohtake, Tohru; Watanabe, Toshiaki; Yoshikawa, Kohki; Iio, Masahiro

    1988-10-01

    Two patients of clinically diagnosed Creutzfeldt-Jakob disease (CJD) were examined with N-Isopropyl I-123 p-Iodoamphetamine (IMP) SPECT, MRI and XCT. Both patient has myoclonus and severe conscious disturbance with periodic synchronized discharge (PSD) on EEG. SPECT images were obtained using GE400AC/T. Regional IMP uptake was determined by calculating the ratio of each cortical regional to cerebellar IMP uptake (cortico-cerebellar ratio: CCR) and compared with that of five normal controls. In both case, CCR was remarkably decreased in all cortical areas, although XCT or MRI shows no abnormality except slight cortical atrophy. It suggests that metabolic and functional changes proceed morphological abnormality seen on XCT or MRI. In one case of CJD, serial studies of SPECT and XCT were performed after three months of interval. CCR in second study was higher than in first study, while XCT revealed remarkable brain atrophy including cerebrum, pons and cerebellum. It can be interpreted as regional differences of disease process. In conclusion, I-123 IMP-SPECT is useful for the earlier detection of lesions in CJD.

  17. N-isopropyl I-123 p-iodoamphetamine brain scintigraphy with SPECT in Creutzfeldt-Jakob disease

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Ohtake, Tohru; Watanabe, Toshiaki; Yoshikawa, Kohki; Iio, Masahiro

    1988-01-01

    Two patients of clinically diagnosed Creutzfeldt-Jakob disease (CJD) were examined with N-Isopropyl I-123 p-Iodoamphetamine (IMP) SPECT, MRI and XCT. Both patient has myoclonus and severe conscious disturbance with periodic synchronized discharge (PSD) on EEG. SPECT images were obtained using GE400AC/T. Regional IMP uptake was determined by calculating the ratio of each cortical regional to cerebellar IMP uptake [cortico-cerebellar ratio: CCR] and compared with that of five normal controls. In both case, CCR was remarkably decreased in all cortical areas, although XCT or MRI shows no abnormality except slight cortical atrophy. It suggests that metabolic and functional changes proceed morphological abnormality seen on XCT or MRI. In one case of CJD, serial studies of SPECT and XCT were performed after three months of interval. CCR in second study was higher than in first study, while XCT revealed remarkable brain atrophy including cerebrum, pons and cerebellum. It can be interpreted as regional differences of disease process. In conclusion, I-123 IMP-SPECT is useful for the earlier detection of lesions in CJD. (author)

  18. High-resolution imaging of brain 5-HT{sub 1B} receptors in the rhesus monkey using [{sup 11}C]P943

    Energy Technology Data Exchange (ETDEWEB)

    Nabulsi, Nabeel; Huang Yiyun; Weinzimmer, David; Ropchan, Jim; Frost, James J. [Yale PET Center, Department of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520-8048 (United States); McCarthy, Timothy [Pfizer Global R and D, Groton, CT 06340 (United States); Carson, Richard E.; Ding Yushin [Yale PET Center, Department of Diagnostic Radiology and Psychiatry, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520-8048 (United States)

    2010-02-15

    The serotonin 5-HT{sub 1B} receptors regulate the release of serotonin and are involved in various disease states, including depression and schizophrenia. The goal of the study was to evaluate a high affinity and high selectivity antagonist, [{sup 11}C]P943, as a positron emission tomography (PET) tracer for imaging the 5-HT{sub 1B} receptor. [{sup 11}C]P943 was synthesized via N-methylation of the precursor with [{sup 11}C]methyl iodide or [{sup 11}C]methyl triflate using automated modules. The average radiochemical yield was approx. 10% with radiochemical purity of >99% and specific activity of 8.8{+-}3.6 mCi/nmol at the end-of-synthesis (n=37). PET imaging was performed in non-human primates with a high-resolution research tomograph scanner with a bolus/infusion paradigm. Binding potential (BP{sub ND}) was calculated using the equilibrium ratios of regions to cerebellum. The tracer uptake was highest in the globus pallidus and occipital cortex, moderate in basal ganglia and thalamus, and lowest in the cerebellum, which is consistent with the known brain distribution of 5-HT{sub 1B} receptors. Infusion of tracer at different specific activities (by adding various amount of unlabeled P943) reduced BP{sub ND} values in a dose-dependent manner, demonstrating the saturability of the tracer binding. Blocking studies with GR127935 (2 mg/kg iv), a selective 5-HT{sub 1B}/5-HT{sub 1D} antagonist, resulted in reduction of BP{sub ND} values by 42-95% across regions; for an example, in occipital region from 0.71 to 0.03, indicating a complete blockade. These results demonstrate the saturability and specificity of [{sup 11}C]P943 for 5-HT{sub 1B} receptors, suggesting its suitability as a PET radiotracer for in vivo evaluations of the 5-HT{sub 1B} receptor system in humans.

  19. Evaluating acute effects of Electro Convulsive Therapy (ECT) on brain perfusion with Tc-99m HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Ozguven, M.; Ozturk, E.; Gunalp, B.; Ozgen, F.; Bayhan, H.

    1992-01-01

    Regional cerebral blood flow (rCBF) was measured by Tc-99m HMPAO brain perfusion SPECT in 10 schizophrenes (8 male, 2 female) undergoing electro convulsive therapy (ECT) and the results were compared to those of baseline studies performed 3 days prior to the ECT application to evaluate its acute effect on brain perfusion. ECT caused a redistribution in the tracers uptake. There was a global increase in the rCBF and the uptake became more pronounced in the basal ganglia (left: 44.4+-1.9%, right: 43.1+-19%) and to a degree in the parietal (left: 26.5+-4.1%, right: 25+-3.4%) and temporal (left: 22.9+-4.3%, right: 22.3+-3.6%) cortices. When evaluating the effects of ECT on rCBF, factors like the used perfusion agent, the injection and rCBF measurement times, clinical status of the patient, duration of the illness, used therapeutic agents and variations in the ECT application should be taken into consideration because the obtained data may reflect either the ictal or post-ictal changes on rCBF and is specific to the group of patients undergoing the study

  20. Perfusion impairments on brain SPECT in patients with infantile autism and nonautistic pervasive developmental disorders: comparison with MR findings

    International Nuclear Information System (INIS)

    Ryu, Young Hoon; Lee, Jong Doo; Yoon, Pyeong Ho; Kim, Dong Ik; Jeon, Tae Joo; Shin, Yee Jin; Lee, Byung Hee; Shin, Hyung Cheol

    1998-01-01

    Neuroimaging findings of autism has been the subjects of continuing investigation. Because previous study had not demonstrated consistent and specific neuroimaging findings of autism and most studies comprised adults and school-aged children, we performed a retrospective review in search of common functional and structural abnormalities in pre-school aged autistic children using Tc-99m ECD brain SPECT and MRI and compared them with age-matched children with nonautistic pervasive developmental disorders (PDD). 58 children between 3 and 8 years of age infantile autism (n=37) and non-autistic PDD (n=21) were performed Tc-99m ECD brain SPECT and MRI. Diagnosis of autism and non-autistic PDD was based on the criteria of DSM-IV and Childhood Autism Rating Scale (CARS). Of the 37 autistic patients, 32 revealed decreased perfusion of cerebellar hemisphere, followed by hypoperfusion of thalami (n=30), parietal cortex (n=16), temporal cortex (n=12). Of those 21 PDD patients, 14 patients showed hypoperfusion of the thalami and 10 patients showed temporal hypoperfusion. However, cerebellar hemispheric (n=8) and parietal (n=1) hypoperfusion was infrequently seen. All autistic and nonautistic PDD patients had normal MRI scan. Cerebellar hemispheric and parietal hypoperfusion on brain SPECT showed statistically significant correlation with CARS. Cerebellar hemispheric and parietal hypoperfusion is significantly frequently noted in autistic patients although they had normal MRI and SPECT may be useful and more sensitive modality in reflecting pathophysiology of autism as evidenced by previous MRI and postmortem studies. Thalamic and temporal hypoperfusion can be seen in both autistic and nonautistic patients and further studies are necessary to determine the significance of the thalamic hypoperfusion

  1. Perfusion impairments on brain SPECT in patients with infantile autism and nonautistic pervasive developmental disorders: comparison with MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Hoon; Lee, Jong Doo; Yoon, Pyeong Ho; Kim, Dong Ik; Jeon, Tae Joo; Shin, Yee Jin; Lee, Byung Hee; Shin, Hyung Cheol [College of Medecine, Soonchunhyang Univ., Chonan (Korea, Republic of)

    1998-07-01

    Neuroimaging findings of autism has been the subjects of continuing investigation. Because previous study had not demonstrated consistent and specific neuroimaging findings of autism and most studies comprised adults and school-aged children, we performed a retrospective review in search of common functional and structural abnormalities in pre-school aged autistic children using Tc-99m ECD brain SPECT and MRI and compared them with age-matched children with nonautistic pervasive developmental disorders (PDD). 58 children between 3 and 8 years of age infantile autism (n=37) and non-autistic PDD (n=21) were performed Tc-99m ECD brain SPECT and MRI. Diagnosis of autism and non-autistic PDD was based on the criteria of DSM-IV and Childhood Autism Rating Scale (CARS). Of the 37 autistic patients, 32 revealed decreased perfusion of cerebellar hemisphere, followed by hypoperfusion of thalami (n=30), parietal cortex (n=16), temporal cortex (n=12). Of those 21 PDD patients, 14 patients showed hypoperfusion of the thalami and 10 patients showed temporal hypoperfusion. However, cerebellar hemispheric (n=8) and parietal (n=1) hypoperfusion was infrequently seen. All autistic and nonautistic PDD patients had normal MRI scan. Cerebellar hemispheric and parietal hypoperfusion on brain SPECT showed statistically significant correlation with CARS. Cerebellar hemispheric and parietal hypoperfusion is significantly frequently noted in autistic patients although they had normal MRI and SPECT may be useful and more sensitive modality in reflecting pathophysiology of autism as evidenced by previous MRI and postmortem studies. Thalamic and temporal hypoperfusion can be seen in both autistic and nonautistic patients and further studies are necessary to determine the significance of the thalamic hypoperfusion.

  2. The study of ictal brain SPECT during seizures induced by clonidine and sleep-deprivation in patients with epilepsy

    International Nuclear Information System (INIS)

    Wang Xiaohui; Chen Xuehong; Wang Zhengjiang; Liu Jiangyan; Feng Jianzhong; Ye Jiang; Zhao Li

    2010-01-01

    Objective: To evaluate the feasibility and clinical value of combined clonidine and sleep-deprivation induced seizures for ictal brain SPECT imaging in patients with epilepsy. Methods: Fifty-two epilepsy patients were given oral clonidine plus sleep-deprivation to induce seizures with video-electroencephalogram (VEEG) monitoring. Forty-seven patients were selected as control group, whose seizures were induced by sleep-deprivation only. 99 Tc m -ethylcysteinate dimer (ECD) was injected within 30 s since a clinical sign and/or a typical EEG discharge of epilepsy was recognized. Brain SPECT was performed 30 min after 99 Tc m -ECD injection. χ 2 -test was performed by using software SPSS 10.0. Results: One to two hr after oral intake of clonidine plus sleep-deprivation, 75% (39/52) patients were induced seizures, including 92.3% (36/39) with subclinical seizures and 7.7% (3/39) with clinical seizures. Ictal brain SPECT localized the lesions with high uptake of 99 Tc m -ECD in 37 (94.9%) patients. In control group, 38.3% (18/47) were induced epileptic seizures, including 77.8% (14/18) with subclinical seizures and 22.2% (4/18) with clinical seizures. The induction rate of epileptic seizures in clonidine plus sleep-deprivation group was significantly higher than that of control group (χ 2 = 13.614, P 2 = 1.253, P>0.05). Conclusions: The combination of oral intake of clonidine and sleep-deprivation could increase the induction rate of epileptic seizures and it is effective for epilepsy SPECT imaging. (authors)

  3. Contrasted study on the opening degree of blood-brain barriier after radiation therapy with SPECT and MRI

    International Nuclear Information System (INIS)

    Zhang Qing; Sun Aihua; Hu Yun; Zhang Li; Ye Hengguang

    2004-01-01

    The blood-brain barrier(BBB) is the largest barrier responsible for preventing direct contact between chemotherapeutic drugs in blood and tumors in brain, the permeability of BBB incease at different degree after brain irradiation in clinical brain tumors radiotherapy. Methods: In our study, 26 patients with metastatic brain tumors(21 cases in pr/mary lung carcinoma, 5 cases in breast carcinoma) were accepted the full brain irradiation. The detructive effects of radiation on the BBB were determined by the 99mTc-DTPA SPECT and the concentration ratio of methotrexate(MTX) in cerebrospinal fluid(CSF) and blood, the brain MRI before and after radiotherapy were retrospective contrasted study with SPECT. Results: the degree of destructive effect on the BBB was directly proportional to radiation doses. After a dose of 20Gy radiation to brain, the permeability of BBB inceased markedly(P<0.01). But in cases the dexamethasone(DXM) was administrated to decease the brain edema during radiotherapy, the permeability inceased less than that in patients without DXM(P<0.05). Conclutions: After 20Gy irradiation, the BBB would gradually open. At this time, chemotherapy is the best choice to improving the therapeutic effect. Dexamethasone was found to cause the decease in BBB permeability but no significant remission of brain edema. So, if the combination of radiotherapy and chemotherapy in treatment of metastatic brain tumors will be plan, the dexamethasone may be not used in expecting to deceasing the side effect and that no affecting the therapeutic effect. (authors)

  4. NeuroSPECT assessment of ischemic penumbra in acute brain infarct: control of intra-arterial thrombolysis

    International Nuclear Information System (INIS)

    Mena, F.J.; Mena, I.; Contreras, I.; Soto, F.; Ducci, H.; Fruns, M.

    2002-01-01

    Introduction: Brain infarct is the most common cause of incapacity in adults, the second cause of dementia and the 2nd or 3rd cause of death. Acute brain infarct is a medical emergency potentially reversible if treated with thrombolysis in the first hours of evolution. Thrombolysis is now an approved and efficacious method of treatment for acute ischemic stroke. During the first 3 hours of evolution, intravenous administration of plasminogen activator (tPA) can be performed. The window of time of treatment is expanded to 6 hours with the intra-arterial super selective route for thrombolysis. Aim: The aim of this study was to define levels of reversible ischemia (penumbra) demonstrated by statistically evaluated HMPAO Tc99m NeuroSPECT performed before and after intra-arterial thrombolysis in the treatment of acute infarct. Materials and Methods: 21 patients were treated during the first 6 hours of evolution of an acute ischemic stroke with the following protocol. 1) Admission, and complete neurological evaluation. 2) Brain CT scan to rule hemorrhage or established infarct. 3) I.V injection of 1100MBq Tc99m HMPAO (Ceretec tm) 4) Conventional cerebral angiography and intra-arterial thrombolysis and/or angioplasty/stenting if necessary. 5) NeuroSPECT assessment of ischemic penumbra. 6) Control at 24 hrs with NeuroSPECT. NeuroSPECT image acquisition is performed immediately following arterial thrombolysis with a dual Head Camera, SHR collimators and conventional protocol. Image processing was performed using the Segami Software, as previously reported in Alasbimn Journal2 (7): April 2000. http://www.alasbimnjournal.cl. The analysis consists of 1) Tallairach brain volume normalization. 2) Voxel by voxel comparison of the individual brain cortex uptake normalized to the maximum in the cortex with a normal database of 24 age-matched controls. Results: The results are expressed in standard deviations (S.D.) below the normal mean. Normal mean is 72% + 6. Only voxels between

  5. 99Tcm-Neurolite brain SPECT imaging as an outcome predictor after brain trauma: initial experience

    International Nuclear Information System (INIS)

    Howarth, D.M.; Lan, L.; Booth, G.; Christie, J.; Bookalil, A.; Pollack, M.; Pacey, D.

    1999-01-01

    Full text: The aim of this study was to use semi-quantitative 99 Tc m -ethylene cysteine dimer (Neurolite) cerebral blood flow (CBF) SPET brain imaging to assess its role in predicting outcome after brain trauma. Twelve adult patients (9 males, 3 females) who sustained moderate to severe brain trauma were studied by CBF/SPET within 4 weeks of the injury (scan A) and again after 1 year (scan B). Clinical assessment was also performed at these times and included extensive neuropsychometric testing. Patients received 800-850 MBq 99 Tc m -Neurolite intravenously, and were imaged using a triple-headed gamma camera with LEUHR fan beam collimators. Processing, filtering, reconstruction and data set selection were identical for scans A and B. Semi-quantitative analysis was performed using 25 regions of interest in the cerebral cortex and deep structures in 2 coronal, 2 sagittal and 3 oblique planes. Normalized mean counts per pixel for the whole brain, and regional brain ratios were calculated. Scans A and B were compared and correlated to the clinical outcome data. Two patients with minimal CBF abnormalities made full recoveries. The remaining 10 had moderate to severe focal CBF defects, which showed no significant improvement at 12 months. Of these patients, 2 had moderate disability, 3 had severe to moderate disability and 2 had severe disability at 12 months. Patients with persisting focal abnormal CBF showed persisting neurological deficits. Neurolite brain CBF imaging is a useful method of predicting outcome after moderate to severe head injury

  6. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  7. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Kaya, G.C.; Pekcanlar, A.; Bekis, R.; Ada, E.; Miral, S.; Emiroglu, N.; Durak, H.

    2002-01-01

    Attention deficit hyperactivity disorder (ADHD) is a developmental, neurobehavioral syndrome with an onset in childhood. The aim of this study was to investigate the existence of regional perfusion changes in ADHD by means of Tc-99m HMPAO brain SPECT. Thirteen children with a diagnosis of ADHD and 7 healthy, age-matched controls were included in this study. Hypoperfusion was observed on the right temporal cortex in 9, and on the left temporal cortex in 3 children. The distribution of the lesions showed right lateral temporal cortex involvement in 3, right medial temporal cortex in 9 and left medial temporal cortex in 8 children. Asymmetric perfusion was seen on the caudate nucleus in 4, on the thalamus in 3 and on the frontal cortex in 6 children. There was a significant difference between children with ADHD and controls in right medial temporal cortex: cerebellum and right lateral temporal cortex: cerebellum ratios. Hypoperfusion in the right medial temporal cortex was significantly and inversely correlated with Du Paul teachers' questionnaire rating scale (r=-0.71, p=0.006). It has been postulated that difficulty in self regulating response to stimuli in ADHD is mediated by underfunctioning of the orbital frontal cortex and subsequent connection to the limbic system. Decreased temporal cortex perfusion may dysfunction of the limbic system or the orbito-frontal-limbic axis. (author)

  8. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, G C; Pekcanlar, A; Bekis, R; Ada, E; Miral, S; Emiroglu, N; Durak, H [Dokuz Eylul Univ., Izmir (Turkey). School of Medicine

    2002-12-01

    Attention deficit hyperactivity disorder (ADHD) is a developmental, neurobehavioral syndrome with an onset in childhood. The aim of this study was to investigate the existence of regional perfusion changes in ADHD by means of Tc-99m HMPAO brain SPECT. Thirteen children with a diagnosis of ADHD and 7 healthy, age-matched controls were included in this study. Hypoperfusion was observed on the right temporal cortex in 9, and on the left temporal cortex in 3 children. The distribution of the lesions showed right lateral temporal cortex involvement in 3, right medial temporal cortex in 9 and left medial temporal cortex in 8 children. Asymmetric perfusion was seen on the caudate nucleus in 4, on the thalamus in 3 and on the frontal cortex in 6 children. There was a significant difference between children with ADHD and controls in right medial temporal cortex: cerebellum and right lateral temporal cortex: cerebellum ratios. Hypoperfusion in the right medial temporal cortex was significantly and inversely correlated with Du Paul teachers' questionnaire rating scale (r=-0.71, p=0.006). It has been postulated that difficulty in self regulating response to stimuli in ADHD is mediated by underfunctioning of the orbital frontal cortex and subsequent connection to the limbic system. Decreased temporal cortex perfusion may dysfunction of the limbic system or the orbito-frontal-limbic axis. (author)

  9. Dependency of energy and spatial distributions of photons on edge of object in brain SPECT

    CERN Document Server

    Deloar, H M; Kudomi, N; Kim, K M; Aoi, T; Iida, H

    2003-01-01

    Accurate mu maps are important for quantitative image reconstruction in SPECT. The Compton scatter energy window (CSW) technique has been proposed to define the outline of objects. In this technique, a lower energy window image is acquired in addition to the main photo-peak energy window. The image of the lower energy window is used to estimate the edge of the scanned object to produce a constant attenuation map. The aim of this study was to investigate the dependency of CSW on the spatial and energy distribution of radioisotope to predict the edges of objects. Two particular cases of brain study were considered, namely uniform distribution and non-uniform distribution using Monte Carlo simulation and experiments with uniform cylindrical phantom and hotspot phantom. The phantoms were filled with water and a radioactive solution of sup 9 sup 9 sup m Tc. For each phantom, 20%, 30%, 40% and 50% thresholds of the mean profile were applied to estimate E sub w sub t , the energy window for minimum difference betwee...

  10. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, G.C.; Pekcanlar, A.; Bekis, R.; Ada, E.; Miral, S.; Emiroglu, N.; Durak, H. [Dokuz Eylul Univ., Izmir (Turkey). School of Medicine

    2002-12-01

    Attention deficit hyperactivity disorder (ADHD) is a developmental, neurobehavioral syndrome with an onset in childhood. The aim of this study was to investigate the existence of regional perfusion changes in ADHD by means of Tc-99m HMPAO brain SPECT. Thirteen children with a diagnosis of ADHD and 7 healthy, age-matched controls were included in this study. Hypoperfusion was observed on the right temporal cortex in 9, and on the left temporal cortex in 3 children. The distribution of the lesions showed right lateral temporal cortex involvement in 3, right medial temporal cortex in 9 and left medial temporal cortex in 8 children. Asymmetric perfusion was seen on the caudate nucleus in 4, on the thalamus in 3 and on the frontal cortex in 6 children. There was a significant difference between children with ADHD and controls in right medial temporal cortex: cerebellum and right lateral temporal cortex: cerebellum ratios. Hypoperfusion in the right medial temporal cortex was significantly and inversely correlated with Du Paul teachers' questionnaire rating scale (r=-0.71, p=0.006). It has been postulated that difficulty in self regulating response to stimuli in ADHD is mediated by underfunctioning of the orbital frontal cortex and subsequent connection to the limbic system. Decreased temporal cortex perfusion may dysfunction of the limbic system or the orbito-frontal-limbic axis. (author)

  11. Clinical relevance of n-isopropyl-(/sup 123/I)p-iodoamphetamine (IMP) SPECT brain imaging

    International Nuclear Information System (INIS)

    Podreka, I.; Holl, K.; Dal Bianco, P.; Goldenberg, G.; Wimberger, D.; Auff, E.; Brucke, T.

    1986-01-01

    SPECT studies of the brain were performed by means of N-isopropyl-(/sup 123/I)p-iodoamphertamine and a double head rotating scintillation camera. Energy spectra showed an increase of scattered radiation proportional to the geometrical resolution of the used Tc-collimators. This is due to the higher lead content and thin septa (septum-penetration of high energy photons of /sup 123/I, scattering in the crystal) of HRES or UHRES collimators. A LEAP collimator (14 mm FWHM resolution in the reconstructed image) is the most suitable one (sufficient resolution - relatively low scatter-fraction) for /sup 123/I labeled tracers. With a multiple window technique scatter correction was performed. The width and position of the scatter windows were estimated in phantom studies. Further steps of data processing (prereconstructional filtering, analytical attenuation compensation), leading to an improvement of the final set of cross sections, are described. Clinical cases (Alzheimers, Huntingtons, Parkinson disease, Moya Moya, stroke and partial complex seizures) and stimulation (acoustic memory tasks, visual stimulations) studies in normal volunteers are presented, and results are compared with PET-data known from recent literature

  12. Neuropsychological functions and rCBF SPECT in Parkinson's disease patients considered candidates for deep brain stimulation

    International Nuclear Information System (INIS)

    Paschali, Anna; Lakiotis, Velissarios; Vassilakos, Paulos; Messinis, Lambros; Lyros, Epameinondas; Papathanasopoulos, Panagiotis; Constantoyannis, Costas; Kefalopoulou, Zinovia

    2009-01-01

    In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H and Y) scale. During all assessments patients were ''on'' standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings. (orig.)

  13. Neuropsychological functions and rCBF SPECT in Parkinson's disease patients considered candidates for deep brain stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Paschali, Anna; Lakiotis, Velissarios; Vassilakos, Paulos [University of Patras Medical School, Department of Nuclear Medicine, Patras (Greece); Messinis, Lambros; Lyros, Epameinondas; Papathanasopoulos, Panagiotis [University of Patras Medical School, Department of Neurology, Neuropsychology Section, Patras (Greece); Constantoyannis, Costas; Kefalopoulou, Zinovia [University of Patras Medical School, Department of Neurosurgery, Patras (Greece)

    2009-11-15

    In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H and Y) scale. During all assessments patients were ''on'' standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings. (orig.)

  14. Clinical Comparison of 99mTc Exametazime and 123I Ioflupane SPECT in Patients with Chronic Mild Traumatic Brain Injury

    OpenAIRE

    Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy

    2014-01-01

    BACKGROUND: This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. METHODS AND FINDINGS: Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to m...

  15. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2

    DEFF Research Database (Denmark)

    Van Laere, Koen; Varrone, Andrea; Booij, Jan

    2010-01-01

    receptor SPECT or PET studies, and to achieve a high quality standard of dopamine D2 receptor imaging, which will increase the impact of this technique in neurological practice.The present document is an update of the first guidelines for SPECT using D2 receptor ligands labelled with (123)I [1......The guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The aims of the guidelines are to assist nuclear medicine practitioners in making recommendations, performing, interpreting and reporting the results of clinical dopamine D2......] and was guided by the views of the Society of Nuclear Medicine Brain Imaging Council [2], and the individual experience of experts in European countries. The guidelines intend to present information specifically adapted to European practice. The information provided should be taken in the context of local...

  16. Analysis of metabolic change by Tl-201 SPECT in brain tumors treated with stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Sugo, Nobuo [Toho Univ., Tokyo (Japan). School of Medicine

    1996-03-01

    The time course for changes in Tl-201 uptake and tumor size was studied correlatively. A total of 24 cases of brain tumors was enrolled in the study. Three detector type scanner, PRISM 3000 was used. SPECT scanning was started 10 min after intravenous administration of 111 MBq of Tl-201, and sequentially repeated every 1 min for 16 min. Tl-201 radioactivity was counted in two regions of interest (ROI). One was an area encircling the tumor, and the other, an area in the contralateral hemisphere that served as control. Tl index (TI) was calculated by this formula: TI=T-C/C, where T is the count in the tumor and C, the count in the control area. The size of a given tumor was represented by its maximum diameter as determined by CT or MRI. The TI and the tumor size were compared before and after radiosurgery. In all cases, a decrease in TI was seen earlier than a reduction in tumor size. Among malignant tumors, the TI decrease took place as early as one week, and rapidly reached the lowest level. On the other hand, in benign tumors, it took as long as 6 to 12 months for the decrease of the TI to be evident; the subsequent was very slow. The difference between malignant and benign tumors of the brain is attributed to the fact that high dose irradiation of the malignant, radiosensitive tumors causes deep disturbances in cell metabolism that lead to cell death. By contrast, irradiation of a benign tumor with low radiosensitivity does not affect the cellular metabolism, but injures the vascular wall, leading to gradual stenosis or obliteration of the vessels in the tumor. These data strongly suggest that the rapid and marked decrease of malignant tumors after stereotactic radiosurgery is the result of a direct injury to the malignant cells, and that the rather slow and insufficient diminution of benign tumors can be attributed to diminished blood supply to the tumor. (author)

  17. The Performance of Ictal Brain SPECT for Localizing Epileptogenic Foci in Temporal Lobe epilepsies

    International Nuclear Information System (INIS)

    Kim, Eun Sil; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Koh, Chang Soon; Chang, Kee Hyun; Lee, Sang Kun; Chung, Chun Kee

    1995-01-01

    Anterior temporal lobectomy has become a widely used respective surgery in patients with medically intractable temporal lobe epilepsies. Prerequisites of this resection include the accurate localization of the epileptogenic focus and the determination that the proposed resection would not result in unacceptable postoperative memory or language deficits. The purpose of this study was to evaluate the performance of ictal SPECT compared to MRI findings for localization of epileptogenic foci in this group of patients. 11 patients who had been anterior temporal oral lobectomy were evaluated with ictal 99m Tc-HMPAO SPECT and MRI. MRI showed 8/11(73%) concordant lesion to the side of surgery and ictal SPECT also showed 8/11(73%) concordant hyperperfusion. In 3 cases with incorrect or nonlocalizing findings of MRI, ictal SPECT showed concordant hyperperfusion. In 2 cases confirmed by pre-resectional invasive EEG, MRI showed bilateral and contralateral lesion but ictal SPECT showed concordant hyperperfusion. 3 delayed injection of ictal SPECT showed discordant hyperperfusion. Thus, ictal SPECT was a useful method for localizing epileptogenic foci in temporal lobe epilepsies and appeared complementay to MRI.

  18. Tc-99m ECD brain SPECT in MELAS syndrome: comparison with MR finding

    International Nuclear Information System (INIS)

    Park, Sang Joon; Ryu, Young Hoon; Yoon, Pyeong Ho; Jeon, Tae Joo; Kim, Jai Keun; Nam, Ji Eun; Lee, Jong Doo; Lee, Byung Hee; Shin, Hyung Cheol

    1998-01-01

    The purpose of this study was to evaluate SPECT findings of MELAS syndrome and mitochondrial myopathy and correlate them with MR findings in search of specific imaging features and to assess the role of SPECT in MELAS syndrome. Five patients (four females and one male; age range, 1 to 25 years) who presented with repeated stroke-like episodes or seizures or developmental delay or were asymptomatic but had elevated lactic acid in CSF and serum were evaluated with conventional noncontrast MR imaging and SPECT. MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly on the parietal (4/5) and occipital lobes (4/5) and in the basal ganglias (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased uptake of Tc-99m ECD on parietal (5/5) and occipital (4/5) and temporal (2/5) and frontal (1/5) lobe and basal ganglia (2/5) and thalami (2/5). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion is noted on left parietal area and bilateral thalami. Comparison of the numbers of abnormal findings revealed that decreased perfusion seen on SPECT were more numerous than anatomical abnormalities seen on MRI. SPECT may be a sensitive method for pathophysiological study of metabolic disturbances in MELAS. Moreover, in patients with mitochondrial myopathy without clinical encephalopathy, SPECT may play a role in evaluating subclinical encephalopathy even with normal conventional MR findings

  19. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.

    Science.gov (United States)

    Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W

    1994-02-01

    The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.

  20. Usefulness of {sup 99m}Tc-ECD brain SPECT in acute onset pediatric CNS diseases. In comparison with CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Teisuke; Chikatsu, Hiroko; Nishiyama, Hiromune; Endo, Hiroko; Kono, Tatsuo; Iimura, Fumitoshi; Kuwashima, Shigeko; Saiki, Natoru; Fujioka, Mutsuhisa [Dokkyo Univ., Mibu, Tochigi (Japan). School of Medicine

    2001-07-01

    The purpose of this study was to assess the usefulness of regional cerebral blood flow (rCBF) measured by {sup 99m}Tc-L, L-ethyl cysteinate dimer (ECD) brain SPECT in the acute onset type of pediatric central nervous system (CNS) diseases. Thirteen children (7 girls, 6 boys, 4 month-12 years of age) who were diagnosed with 9 cases of viral encephalitis, two cases of febrile convulsion and one each of migraine and metabolic disorder underwent {sup 99m}Tc-ECD brain SPECT, CT and/or MRI within one week interval. The incidence of abnormal findings in the 13 patients was 96.4% (30/31) on {sup 99m}Tc-ECD brain SPECT, 17.6% (3/17) on CT and 63.6% (14/22) on MRI. The positive detection rate of {sup 99m}Tc-ECD brain SPECT was statistically (P<0.01 by a {chi}{sup 2} and/or Fisher's exact probability test) higher than those of CT and MRI. And the changes in rCBF were demonstrated. {sup 99m}Tc-ECD brain SPECT is a useful examination for the diagnosis and follow up management in patients with the acute onset type of pediatric CNS diseases. (author)

  1. Effects of scatter and attenuation corrections on phantom and clinical brain SPECT

    International Nuclear Information System (INIS)

    Prando, S.; Robilotta, C.C.R.; Oliveira, M.A.; Alves, T.C.; Busatto Filho, G.

    2002-01-01

    Aim: The present work evaluated the effects of combinations of scatter and attenuation corrections on the analysis of brain SPECT. Materials and Methods: We studied images of the 3D Hoffman brain phantom and from a group of 20 depressive patients with confirmed cardiac insufficiency (CI) and 14 matched healthy controls (HC). Data were acquired with a Sophy-DST/SMV-GE dual-head camera after venous injection of 1110MBq 99m Tc-HMPAO. Two energy windows, 15% on 140keV and 30% centered on 108keV of the Compton distribution, were used to obtain corresponding sets of 128x128x128 projections. Tomograms were reconstructed using OSEM (2 iterations, 8 sub-sets) and Metz filter (order 8, 4 pixels FWHM psf) and FBP with Butterworth filter (order 10, frequency 0.7 Nyquist). Ten combinations of Jaszczak correction (factors 0.3, 0.4 and 0.5) and the 1st order Chang correction (u=0.12cm -1 and 0.159cm -1 ) were applied on the phantom data. In all the phantom images, contrast and signal-noise ratio between 3 ROIs (ventricle, occipital and thalamus) and cerebellum, as well as the ratio between activities in gray and white matters, were calculated and compared with the expected values. The patients images were corrected with k=0.5 and u=0.159cm -1 and reconstructed with OSEM and Metz filter. The images were inspected visually and blood flow comparisons between the CI and the HC groups were performed using Statistical Parametric Mapping (SPM). Results: The best results in the analysis of the contrast and activities ratio were obtained with k=0.5 and u=0.159cm -1 . The results of the activities ratio obtained with OSEM e Metz filter are similar to those published by Laere et al.[J.Nucl.Med 2000;41:2051-2062]. The method of correction using effective attenuation coefficient produced results visually acceptable, but inadequate for the quantitative evaluation. The results of signal-noise ratio are better with OSEM than FBP reconstruction method. The corrections in the CI patients studies

  2. Evaluation of the effects of rehabilitation exercise on cerebral infarction with 99Tcm-ECD SPECT brain imaging

    International Nuclear Information System (INIS)

    Jiang Ningyi; Lu Xianping; Liu Xingguang; Xiao Xiuhong; Xu Jianxing

    2003-01-01

    Objective: To investigate the therapeutic effects of motor therapy on hemiplegia with SPECT brain perfusion imaging. Methods: The study population consisted of 59 patients with cerebral infarction, and all patients were treated with motor therapy. Among them, 30 cases were assigned to undertake single bridging exercise and 29 cases passive exercise. SPECT brain perfusion imaging was performed before and after motor therapy under the same condition, and the regional cerebral blood flow (rCBF) changes were compared and analysed with visual and semi-quantitative methods; in addition, the relationship between rCBF changes and scores of Fugl-Meyer or Barthel index were also analysed. Results: After motor therapy, various degrees of radioactivity increase were compared with the pretreatment radioactivity hypoperfusion in patients with cerebral infarction, and showed that motor therapy could evidently improve rCBF of regional hypoperfusion. The posttreatment rCBF was higher than the pretreatment level (P<0.01), and the rCBF of group of single bridging was higher than that of passive exercise group. And the changes of rCBF were all significant after motor therapy. In addition, the variation of the rCBF after motor therapy was positively correlated with the variation of Fugl-Meyer and Barthel score. Conclusions: SPECT brain perfusion imaging can serve as a useful method for evaluating the effectiveness of motor therapy in cerebral infarction rehabilitation. The single bridging exercise and the passive exercise are both beneficial to brain rehabilitation, but the former improves the rCBF in lesions better than the later does

  3. Brain areas involved in acupuncture needling sensation of de qi: a single-photon emission computed tomography (SPECT) study.

    Science.gov (United States)

    Chen, Jia-Rong; Li, Gan-Long; Zhang, Gui-Feng; Huang, Yong; Wang, Shu-Xia; Lu, Na

    2012-12-01

    De qi is a sensory response elicited by acupuncture stimulation. According to traditional Chinese medicine (TCM), de qi is essential for clinical efficacy. However, the understanding of the neurobiological basis of de qi is still limited. To investigate the relationship between brain activation and de qi by taking a single-photon emission computed tomography (SPECT) scan while applying acupuncture at TE5. A total of 24 volunteers were randomly divided into 4 groups, and received verum or sham acupuncture at true acupuncture point TE5 or a nearby sham point according to grouping. All subjects then received a (99m)Tc-ethylcysteinate dimer (ECD) SPECT scan. All six subjects in the verum acupuncture at true acupuncture point group experienced de qi sensation; in contrast, all six subjects in the sham acupuncture at the sham point group responded with nothing other than non-sensation. Compared to the scan results from subjects who experienced non-sensation, SPECT scans from subjects with de qi sensation demonstrated significant activated points mainly located in brodmann areas 6, 8, 19, 21, 28, 33, 35, 37, 47, the parahippocampal gyrus, lentiform nucleus, claustrum and red nucleus; deactivated points were seen in brodmann areas 9 and 25. Verum acupuncture at true acupuncture points is more likely to elicit de qi sensation. De qi sensations mainly resulted in brain area activations, but not deactivations. These brain areas are related to the curative effect of Te5. The acupuncture needle sensations of de qi and sharp pain are associated with different patterns of activations and deactivations in the brain.

  4. Assessment of vascularity and permeability in brain tumor using SPECT and [sup 99m]Tc-DTPA-human serum albumin in relation to [sup 201]Tl SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawara, Jyoji; Fukuoka, Seiji; Takahashi, Shuhei; Takahashi, Masaaki; Satoh, Katsuyasu; Suematsu, Katsumi; Nakamura, Jun-ichi (Nakamura Memorial Hospital, Sapporo (Japan))

    1994-02-01

    Single photon emission computed tomography (SPECT) using technetium-99m-DTPA-human serum albumin ([sup 99m]Tc-HSA-D) and thallium-201 chloride ([sup 201]Tl) was simultaneously performed on 25 patients with brain tumors; 10 with brain metastasis, 8 with astrocytoma (Gr. 3) and 7 with meningioma. The early image was obtained 10 minutes after [sup 99m]Tc-HSA-D (740 MBq) injection, and the delayed image was taken 5 hours after the injection. HSA-D index, based on the ratio of [sup 99m]Tc-HSA-D uptake in the tumor versus the cortical area, was calculated on each image, and compared with Tl index (tumor/contralateral cerebrum ratio). HSA-D delayed index was significantly greater than HSA-D early index in all tumor types (p<0.05 by the Wilcoxon ranked sign test). Linear correlation between HSA-D early index and HSA-D delayed index was significant in astrocytoma (GR. 3) (p<0.01) and meningioma (p<0.001), and a linear correlation between HSA-D delayed index and Tl index was significant in astrocytoma (Gr. 3) (p<0.05). It is concluded that HSA-D early index and delayed index could reflect tumor vascularity and permeability, respectively, and provide supplementary information for Tl index. (author).

  5. 201Tl/99mTc-MIBI SPECT to evaluate therapy effect of BNCT with BSH and BPA for malignant brain tumor

    International Nuclear Information System (INIS)

    Shibata, Yasushi; Katayama, Wataru; Yamamoto, Tetsuya; Nakai, Kei; Endo, Kiyoshi; Matsuda, Masahide; Matsushita, Akira; Matsumura, Akira

    2006-01-01

    201 Tl/ 99m Tc-MIBI SPECT are imaging modalities to evaluate the malignancy and viability of brain tumor. We reviewed these SPECT findings before and after BNCT, and evaluated the usefulness of SPECT. The study includes total 11 patients admitted in our hospital between 1999 and 2005, 8 with glioblastoma, 2 with anaplastic astrocytoma and 2 with anaplastic oligodendroglioma. SPECT was taken with multidetector SPECT at 15 minutes and 3 hours after intravenous injection of Tl 74 MBq or MIBI 740 MBq. Region of interests were set on tumor and contralateral white matter and radioactivity ratios were calculated as Tl, MIBI indexes. For patients with no residual tumor in MRI, Tl/MIBI indexes were low. For patients with large residual tumor the indexes were high. For the patients with recurrent tumor the indexes were very high. Tl/MIBI indexes before BNCT correlated with survival and progression-free period after BNCT. SPECT indexes decreased after BNCT. For 8 patients with recurrent tumor, the indexes increased. Tl and MIBI SPECT are valuable to evaluate malignancy, viability, survival and recurrence of malignant glioma in BNCT. (author)

  6. Brain SPECT in the pre-surgical evaluation of epileptic patients

    International Nuclear Information System (INIS)

    Buchpiguel, C.A.; Cukiert, A.; Hironaka, F.H.; Cerri, G.G.; Magalhaes, A.E.A.; Marino Junior, R.

    1992-01-01

    Fifteen adult epileptic patients were studied pre-operatively using a rotational scintillation camera interfaced to a dedicated computer. The tomographic images were obtained 15 minutes after intravenous injection of 99 m Tc-HMPAO. All had MRI scanning and intensive EEG monitoring which generally included seizure recording. Five patients had progressive lesions (3 meningiomas, 2 astrocytomas). In 10 patients, neuroradiological studies did not show the presence of progressive lesions (2 normal scans and 8 cases with inactive lesions). Two patients with meningioma showed hypoperfusion at the lesion site while the third patient had a marked hypoperfusion which might correlate with the clinical diagnosis of epilepsia partialis continua. In the astrocytoma patients SPECT scans showed hypoperfusion at the lesion site. Data obtained from the 10 patients without progressive CNS lesions showed: in 4, SPECT findings correlated well with the anatomical findings; in 5 instances, SPECT was able to disclose additional functional deficits; in one case, there was no SPECT correlate of a discrete anatomical lesion. In 5 of these cases with no progressive lesions (n=10) SPECT findings were useful as a complementary tool in determining the clinical or surgical management of these patients. Despite the small number and heterogeneity of the present sample, SPECT seems to be an useful tool as part of the clinical workup of epileptic who are candidates for epilepsy surgery. (author)

  7. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in dementia

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Yoshikawa, Kohki; Ohtake, Tohru; Watanabe, Toshiaki; Iwata, Makoto; Shimizu, Teruo; Iio, Masahiro

    1988-01-01

    Six patients of Alzheimer's disease (AD), two patients of Pick disease (PD) and two patients of Creutzfeldt-Jakob disease (CJD) were studied with N-Isopropyl I-123 p-Iodoamphetamine (IMP) with SPECT. The pattern of IMP uptake in these demented groups were compared with that in five agematched normal controls and correlated with MRI and XCT. In all AD cases, SPECT revealed focal reduction of IMP uptake in frontal (6/6), parietal (6/6) and temporal (6/6) cortex, although MRI and XCT were normal. In both PD case, SPECT showed focal reduction of IMP uptake in frontal (1/2) and temporal (2/2) cortex with moderate labor atrophy on MRI and XCT. In both CJD case, SPECT showed diffuse reduction of IMP uptake in cerebral cortex in spite of no abnormality on MRI and XCT. These findings suggest that SPECT can detect earlier diseased process of AD and CJD than MRI or XCT and that SPECT may be helpful for the differential diagnosis of non-vascular dementia. (author)

  8. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in dementia

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Yoshikawa, Kohki; Ohtake, Tohru; Watanabe, Toshiaki; Iwata, Makoto; Shimizu, Teruo; Iio, Masahiro

    1988-12-01

    Six patients of Alzheimer's disease (AD), two patients of Pick disease (PD) and two patients of Creutzfeldt-Jakob disease (CJD) were studied with N-Isopropyl I-123 p-Iodoamphetamine (IMP) with SPECT. The pattern of IMP uptake in these demented groups were compared with that in five agematched normal controls and correlated with MRI and XCT. In all AD cases, SPECT revealed focal reduction of IMP uptake in frontal (6/6), parietal (6/6) and temporal (6/6) cortex, although MRI and XCT were normal. In both PD case, SPECT showed focal reduction of IMP uptake in frontal (1/2) and temporal (2/2) cortex with moderate labor atrophy on MRI and XCT. In both CJD case, SPECT showed diffuse reduction of IMP uptake in cerebral cortex in spite of no abnormality on MRI and XCT. These findings suggest that SPECT can detect earlier diseased process of AD and CJD than MRI or XCT and that SPECT may be helpful for the differential diagnosis of non-vascular dementia.

  9. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  10. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  11. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  12. Ictal 99mTc-ECD brain SPECT imaging: localization of seizure foci and correlation with semiology in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Kang, Do Young; Ryu, Jin Sook; Lee, Hee Kyung; Ma, Hyeo Il; Lee, Sang Ahm; Lee, Jung Kyo; Kang, Joong Koo

    1997-01-01

    The purpose of this study was to evaluate the usefulness of ictal 99m Tc-ECD brain SPECT in temporal lobe epilepsy (TLE) patients for presurgical localization of seizure foci, and to correlate ictal SPECT patterns with the semiology of seizure. ictal 99m Tc-ECD Brain SPECT was performed in 23 TLE patients whose MRI showed unilateral hippocampal atrophy (18 patients), other focal temporal lesions (4 patients) and normal finding (1 patient). Under CCTV monitoring, injection was done during ictal period in all patients with the mean delay of 38.5±17.3 sec (mean seizure duration : 90.5±35.9 sec). Ictal 99m Tc-ECD Brain SPECT was visually analysed by three blinded observers. All patients underwent temporal lobectomy with a minimum 3 months follow-up (range 3-29 months) ; all had good post-surgical seizure control (Engel's calssification class I). Ictal 99m Tc-ECD Brain SPECT showed unilateral temporal hyperperfusion concordant with epileptic foci in 22/23 (95.7%), whereas non-lateralization in 1/23 (4.3%). The hyperperfusion of the ipsilateral basal ganglia was present in 72.7% (16/22) of patients with dystonic/tonic posture of the contralateral hand. The contralateral cerebellar hyperperfusion was observed in the 7/22 (32%). The group with secondary generalized tonic clonic seizure (GTC) had brain stem and bilateral thalamic hyperperfusion in 4/7 (57.1%) while the group without secondary GTC had the same hyperperfusion in 1/16 (6.3%). There was statistically significant difference in brain stem and bilateral thalamic perfusion between two groups. Ictal 99m Tc-ECD Brain SPECT is a useful modality in pre-surgical localization of the epileptic foci and well correlated with the semiology of seizure

  13. Serial 99mTc-HMPAO Brain SPECT for Assessing Perfusion Improvement after DEAS in Moyamoya Patients

    International Nuclear Information System (INIS)

    Lee, Kyung Han; Lee, Sang Hyung; Yeo, Jeong Seok; Kwark, Chul Eun; Chung, June Key; Lee, Myoung Chul; Cho, Byoung Kyu; Koh, Chang Soon

    1994-01-01

    Encephalo-duro-arterio-synangiosis (EDAS) is a relatively new surgical procedure for treatment of childhood moyamoya disease. We assessed regional cerebral perfusion in moyamoya patients before (1.3 mo) and after (6.8 mo) EDAS with 99m Tc-HMPAO brain SPECT. A total of 21 EDAS operations in 17 moyamoya patients was included. Preoperative CT or MRI showed cerebral infarction in 14 patients and carotid angiography showed Suzuki grade 1 to V stenosis in 6%, 9%, 62%, 12% and 12% of the hemispheres respectively. Preoperative SPECT showed regional hypoperfusion in all patients, bilateral frontal and temporal loves being the most frequently involved site. 4 X 4 pixel sized ROIs were applied on the frontotemmporal cortex in 3 slice averaged transverse tomographic images. An index of regional perfusion was measured as; PI (%)=average FT activity/average cerebellar activity X 100 Pre-EDAS ipsilateral PI ranged from 23.7 to 98.4% (mean:74.3 ± 17%) and increased significantly after operation (81.4 ± 17%, p 90, 0.5) (p<0.001). The amount of perfusion improvement (PI) showed significant correlation with CI (r-0.42, p=0.04). PI did not, however, correlate with the amount of neovascularization assessed angiographically in 8 patients. Serial HMPAO SPECT is an useful noninvasive study for assessing perfusion improvement after EDAS in childhood moyamoya patients.

  14. Practical aspects of data-driven motion correction approach for brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.; Barnden, L.

    2002-01-01

    Full text: Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of a partial reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Phantom validation was performed to explore practical aspects of this approach. Noisy projection datasets simulating a patient undergoing at least one fully 3D movement during acquisition were compiled from various projections of the digital Hoffman brain phantom. Motion correction was then applied to the reconstructed studies. Correction success was assessed visually and quantitatively. Resilience with respect to subset order and missing data in the reconstruction and updating stages, detector geometry considerations, and the need for implementing an iterated correction were assessed in the process. Effective correction of the corrupted studies was achieved. Visually, artifactual regions in the reconstructed slices were suppressed and/or removed. Typically the ratio of mean square difference between the corrected and reference studies compared to that between the corrupted and reference studies was > 2. Although components of the motions are missed using a single-head implementation, improvement was still evident in the correction. The need for multiple iterations in the approach was small due to the bulk of misalignment errors being corrected in the first pass. Dispersion of subsets for reconstructing and updating the partial reconstruction appears to give optimal correction. Further validation is underway using triple-head physical phantom data. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Quantification of GABAA receptors in the rat brain with [123I]Iomazenil SPECT from factor analysis-denoised images

    International Nuclear Information System (INIS)

    Tsartsalis, Stergios; Moulin-Sallanon, Marcelle; Dumas, Noé; Tournier, Benjamin B.; Ghezzi, Catherine; Charnay, Yves; Ginovart, Nathalie; Millet, Philippe

    2014-01-01

    Purpose: In vivo imaging of GABA A receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [ 123 I]Iomazenil, an antagonist of the GABA A receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained. Methods: Five male Sprague–Dawley rats were used for [ 123 I]Iomazenil brain SPECT scans. Binding parameters were obtained with a one-tissue compartment model (1TC), a constrained two-tissue compartment model (2TC c ), the two-step Simplified Reference Tissue Model (SRTM2), Logan graphical analysis and analysis of delayed-activity images. In addition, we employed factor analysis (FA) to deal with noise in data. Results: BP ND obtained with SRTM2, Logan graphical analysis and delayed-activity analysis was highly correlated with BP F values obtained with 2TC c (r = 0.954 and 0.945 respectively, p c and SRTM2 in raw and FA-denoised images (r = 0.961 and 0.909 respectively, p ND values from raw images while scans of only 70 min are sufficient from FA-denoised images. These images are also associated with significantly lower standard errors of 2TC c and SRTM2 BP values. Conclusion: Reference tissue methods such as SRTM2 and Logan graphical analysis can provide equally reliable BP ND values from rat brain [ 123 I]Iomazenil SPECT. Acquisitions, however, can be much less time-consuming either with analysis of delayed activity obtained from a 20-minute scan 50 min after tracer injection or with FA-denoising of images

  16. The early diagnostic value of oral acetazolamide load combined with SPECT rCBF imaging in patients with transient ischemia attack in brain

    International Nuclear Information System (INIS)

    Liu Xintong; Zheng Zhiping; Qiao Suixian; Tang Anwu

    2001-01-01

    Objective: In order to assess the diagnostic value of acetazolamide (ACZ) combined with rCBF-SPECT imaging in patients with transient ischemia attack (TIA). Methods: SPECT imaging was performed before and after oral ACZ with visual and semiquantitative analysis of the images. Blood gas analysis was done before and after ACZ administration either. Results: After ACZ loading, in normal group, 99 Tc m -ECD was distributed symmetrically on correspondent parts of the brain and rCBF was generally increased. The blood pH was decreased and blood PCO 2 was increased, respectively in TIA group, the positive rate of hypoperfusion foci on SPECT images were increased from 5/6 to 6/6 in symptomatic patients and from 60% to 92% in asymptomatic patients. The total positive rate was 93%. Conclusion: Oral ACZ before SPECT imaging is a simple, reliable way for early diagnosis in patients with TIA

  17. [Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain].

    Science.gov (United States)

    Fiedler, E; Platsch, G; Schwarz, A; Schmiedehausen, K; Tomandl, B; Huk, W; Rupprecht, Th; Rahn, N; Kuwert, T

    2003-10-01

    Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. PATIENTS, MATERIAL AND METHOD: In 32 patients regional cerebral blood flow was measured using (99m)Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.

  18. Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain

    International Nuclear Information System (INIS)

    Fiedler, E.; Platsch, G.; Schwarz, A.; Schmiedehausen, K.; Kuwert, T.; Tomandl, B.; Huk, W.; Rupprecht, Th.; Rahn, N.

    2003-01-01

    Aim: Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. Patients, material and method: In 32 patients regional cerebral blood flow was measured using 99m Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3 D-T1 w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. Results: The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). Conclusion: The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use. (orig.) [de

  19. Correlation with neuropsychological assessment and SPM analysis of brain perfusion SPECT in patients with progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Jae Woo

    2004-01-01

    Progressive supranuclear palsy (PSP) is a degenerative condition of unknown aetiology that produces an akinetic-rigid form of parkinsonism characterised by early falls, dementia and abnormalities of extraocular movements. The patterns of decreased regional cerebral blood flow and cognitive impairment in PSP compared with normal control have been insufficiently investigated and a limited number of studies have been performed. We evaluated clinical symptoms, functional neuroimaging study using Tc-99m HMPAO SPECT and neuropsychological profiles in patients with PSP. Eleven patients with PSP diagnosed by the clinical criteria of National Institute of Neurological Disorders and Stroke and the Society for PSP (NINDS-SPSP) (mean age: 70.5±5.6 years, educational period: 4.5±4.7 years) and age-matched 10 healthy control subjects (mean age: 68.1±4.5 years, educational period: 6.5±4.1 years) participated in this study were participated. All patients were given a neurologic examination, brain MRI and cerebral perfusion SPECT using Tc-99m HMPAO. We concomittently evaluated several cognitive profiles using the Seoul Neuropsychological Screening Battery. SPM analysis of the SPECT image showed significant perfusion deficits in the left inferior frontal gyrus, left caudate nucleus, left middle frontal gyrus and cingulate gyrus in the patients with PSP compared with age-matched healthy control (uncorrected p<0.01). On neuropsychological assessment, cognitive deficits on verbal and visual memory, word fluency and frontal executive functions were prominent in most patients with PSP compared with healthy control subjects. Our findings suggest that measurement of regional cerebral blood flow by perfusion SPECT and voxel-based SPM analysis with neuropsychological assessment are useful to understanding the correlation between perfusion deficits and abnormal cognitive profiles in patients with PSP

  20. Correlation with neuropsychological assessment and SPM analysis of brain perfusion SPECT in patients with progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Kim, Jae Woo [School of Medicine, Dong-A University, Busan (Korea, Republic of)

    2004-07-01

    Progressive supranuclear palsy (PSP) is a degenerative condition of unknown aetiology that produces an akinetic-rigid form of parkinsonism characterised by early falls, dementia and abnormalities of extraocular movements. The patterns of decreased regional cerebral blood flow and cognitive impairment in PSP compared with normal control have been insufficiently investigated and a limited number of studies have been performed. We evaluated clinical symptoms, functional neuroimaging study using Tc-99m HMPAO SPECT and neuropsychological profiles in patients with PSP. Eleven patients with PSP diagnosed by the clinical criteria of National Institute of Neurological Disorders and Stroke and the Society for PSP (NINDS-SPSP) (mean age: 70.5{+-}5.6 years, educational period: 4.5{+-}4.7 years) and age-matched 10 healthy control subjects (mean age: 68.1{+-}4.5 years, educational period: 6.5{+-}4.1 years) participated in this study were participated. All patients were given a neurologic examination, brain MRI and cerebral perfusion SPECT using Tc-99m HMPAO. We concomittently evaluated several cognitive profiles using the Seoul Neuropsychological Screening Battery. SPM analysis of the SPECT image showed significant perfusion deficits in the left inferior frontal gyrus, left caudate nucleus, left middle frontal gyrus and cingulate gyrus in the patients with PSP compared with age-matched healthy control (uncorrected p<0.01). On neuropsychological assessment, cognitive deficits on verbal and visual memory, word fluency and frontal executive functions were prominent in most patients with PSP compared with healthy control subjects. Our findings suggest that measurement of regional cerebral blood flow by perfusion SPECT and voxel-based SPM analysis with neuropsychological assessment are useful to understanding the correlation between perfusion deficits and abnormal cognitive profiles in patients with PSP.

  1. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  2. Parieto-occipital hypoaccumulation of 123I-IMP in the brain SPECT associated with maternal inheritance of diabetes mellitus

    International Nuclear Information System (INIS)

    Suzuki, Yoshihiko; Atsumi, Yoshihito; Hosokawa, Kazuhiro; Shimada, Akira; Asahina, Takayuki; Matsuoka, Kempei; Hata, Takashi; Taniyama, Matsuo.

    1997-01-01

    To determine the latent effect of diabetes inheritance on central nervous system, thirty diabetic patients were examined (14 male, 16 female). Seventeen patients had a mother with diabetes, and the other thirteen had non-diabetic mothers. They were previously determined to not have the 3243 mitochondrial tRNA mutation in peripheral leukocytes. Patients were tested for parieto-occipital hypoaccumulation of 123 I-IMP of brain SPECT, a characteristic neurofinding of mitochondrial diabetes mellitus due to the 3243 tRNA mutation. Seven (41.2%) out of 17 subjects with material inheritance had the parieto-occipital abnormality, whereas one (7.7%) out of 13 subjects with non-maternal inheritance had the abnormality. Seventeen (94.4%) out of 18 patients diabetes due to mitochondrial tRNA mutation at position 3243 showed the abnormality. Our results suggest that the material inheritance of diabetes is associated with the hypoaccumulation of 123 I-IMP of brain SPECT. We speculate that, because the patients with maternal inheritance might have subclinical mitochondrial dysfunction due to unknown mitochondrial DNA abnormalities, the mitochondrial DNA abnormality might cause their subclinical brain damage in the parieto-occipital area. (author)

  3. Design, Synthesis, and Preliminary Evaluation of SPECT Probes for Imaging β-Amyloid in Alzheimer's Disease Affected Brain.

    Science.gov (United States)

    Okumura, Yuki; Maya, Yoshifumi; Onishi, Takako; Shoyama, Yoshinari; Izawa, Akihiro; Nakamura, Daisaku; Tanifuji, Shigeyuki; Tanaka, Akihiro; Arano, Yasushi; Matsumoto, Hiroki

    2018-04-06

    In this study, we synthesized of a series of 2-phenyl- and 2-pyridyl-imidazo[1,2- a]pyridine derivatives and examine their suitability as novel probes for single-photon emission computed tomography (SPECT)-based imaging of β-amyloid (Aβ). Among the 11 evaluated compounds, 10 showed moderate affinity to Aβ(1-42) aggregates, exhibiting half-maximal inhibitory concentrations (IC 50 ) of 14.7 ± 6.07-87.6 ± 39.8 nM. In vitro autoradiography indicated that 123 I-labeled triazole-substituted derivatives displayed highly selective binding to Aβ plaques in the hippocampal region of Alzheimer's disease (AD)-affected brain. Moreover, biodistribution studies performed on normal rats demonstrated that all 123 I-labeled probes featured high initial uptake into the brain followed by a rapid washout and were thus well suited for imaging Aβ plaques, with the highest selectivity observed for a 1 H-1,2,3-triazole-substituted 2-pyridyl-imidazopyridine derivative, [ 123 I]ABC577. This compound showed good kinetics in rat brain as well as moderate in vivo stability in rats and is thus a promising SPECT imaging probe for AD in clinical settings.

  4. Brain spect in the pre-surgical evaluation of epileptic patients preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos A. Buchpiguel

    1992-03-01

    Full Text Available Pre-surgical evaluation of epileptic patients consists of neurological examination, intensive electroencephalographic (EEG monitoring and anatomical studies (CT and MRI. Functional methods such as PET and SPECT imaging are now used more frequently. We have studied pre-operatively 15 adult epileptic patients (8 female, 7 male using a rotational scintillation camera interfaced to a dedicated computer. The tomographic images were obtained 15 minutes after intravenous injection of 99mTc_HMPAO. All had MRI scanning and intensive EEG monitoring which generally included seizure recording. Five patients had progressive lesions (3 meningiomas, 2 astrocytomas. In 10 patients, neuroradiological studies did not show the presence of progressive lesions (2 normal scans and 8 cases with inactive lesions. Two patients with meningioma showed hypoperfusion at the lesion site while the third patient had a marked hyperperfusion which might correlate with the clinical diagnosis of epilepsia partialis continua. In the astrocytoma patients SPECT scans showed hypoperfusion at the lesion site. Data obtained from the 10 patients without progressive CNS lesions showed: (a in 4, SPECT findings correlated well with the anatomical findings; (b in 5 instances, SPECT was able to disclose additional functional deficits; (c in one case, there was no SPECT correlate of a discrete anatomical lesion. In 5 of these cases with no progressive lesions (n=10 SPECT findings were useful as a complementary tool in determining the clinical or surgical management of these patients. Despite the small number and hete-rogenicity of the present sample, SPECT seems to be an useful tool as part of the clinical workup of epileptic patients who are candidates for epilepsy surgery.

  5. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    Science.gov (United States)

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  6. SPM analysis of brain perfusion SPECT and F-18 FDG PET in the Korean autosomal dominant nocturnal frontal lobe epilepsy family

    International Nuclear Information System (INIS)

    Won, Kyoung Sook; Zeon, Seok Kil

    2004-01-01

    This study attempted to investigate the specific pattern of brain perfusion and glucose metabolism in the Korean autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) family. Using Tc-99m ECD brain perfusion SPECT. we assessed brain perfusion in 6 patients at interictal period and 5 patients at ictal period. Interictal F-18 FDG PET was performed on 6 affected family members. The scans were statistically analyzed by using statistical parametric mapping (SPM99). The data of the affected family members were compared to those of the control subjects. Interictal F-18 FDG PET SPM group analysis showed decreased glucose metabolism over the left middle and superior frontal gyri and the left central regions including the anterior parietal lobe. There was a less pronounced decrease in glucose uptake in the right anterior superior frontal gyrus. Interictal brain perfusion SPECT SPM group analysis showed similar pattern of decreased perfusion compared to those of interictal F-18 FDG PET. Ictal brain perfusion SPECT SPM group analysis revealed increased perfusion over the left pre-and postcentral gyri and less pronounced increased perfusion in the right postcentral gyrus. lnterictal F -18 PET and brain perfusion SPECT SPM group analysis suggest that major abnormalities of ADNFLE family are in the left frontal lobe. These findings may be helpful to elucidate the pathophysiological mechanism of this rare disease entity

  7. SPM analysis of brain perfusion SPECT and F-18 FDG PET in the Korean autosomal dominant nocturnal frontal lobe epilepsy family

    Energy Technology Data Exchange (ETDEWEB)

    Won, Kyoung Sook; Zeon, Seok Kil [Keimyung University Dongsan Medical Center, Daegu (Korea, Republic of)

    2004-07-01

    This study attempted to investigate the specific pattern of brain perfusion and glucose metabolism in the Korean autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) family. Using Tc-99m ECD brain perfusion SPECT. we assessed brain perfusion in 6 patients at interictal period and 5 patients at ictal period. Interictal F-18 FDG PET was performed on 6 affected family members. The scans were statistically analyzed by using statistical parametric mapping (SPM99). The data of the affected family members were compared to those of the control subjects. Interictal F-18 FDG PET SPM group analysis showed decreased glucose metabolism over the left middle and superior frontal gyri and the left central regions including the anterior parietal lobe. There was a less pronounced decrease in glucose uptake in the right anterior superior frontal gyrus. Interictal brain perfusion SPECT SPM group analysis showed similar pattern of decreased perfusion compared to those of interictal F-18 FDG PET. Ictal brain perfusion SPECT SPM group analysis revealed increased perfusion over the left pre-and postcentral gyri and less pronounced increased perfusion in the right postcentral gyrus. lnterictal F -18 PET and brain perfusion SPECT SPM group analysis suggest that major abnormalities of ADNFLE family are in the left frontal lobe. These findings may be helpful to elucidate the pathophysiological mechanism of this rare disease entity.

  8. Voxel-based statistical analysis of cerebral blood flow using Tc-99m ECD brain SPECT in patients with traumatic brain injury: group and individual analyses.

    Science.gov (United States)

    Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran

    2006-06-01

    Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.

  9. Technical Note: Development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis

    International Nuclear Information System (INIS)

    Negus, Ian S.; Holmes, Robin B.; Thorne, Gareth C.; Saunders, Margaret; Jordan, Kirsty C.; Nash, David A.

    2016-01-01

    Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain by adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding 99m Tc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable for

  10. Technical Note: Development of a 3D printed subresolution sandwich phantom for validation of brain SPECT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Negus, Ian S.; Holmes, Robin B.; Thorne, Gareth C.; Saunders, Margaret [Department of Medical Physics and Bioengineering, University Hospitals Bristol NHS Foundation Trust, Bristol BS28HW (United Kingdom); Jordan, Kirsty C. [Department of Biomedical Engineering, University of Strathclyde, Glasgow G11XQ (United Kingdom); Nash, David A. [Department of Medical Physics, Portsmouth Hospitals NHS Trust, Portsmouth PO63LY (United Kingdom)

    2016-09-15

    Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain by adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding {sup 99m}Tc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable

  11. Evaluation of newborns with brain disease using 123I-IMP SPECT

    International Nuclear Information System (INIS)

    Oshima, Motoo; Yasukochi, Hiroshi; Suzuki, Chizuko; Sasaki, Junko; Kitoh, Osamu.

    1993-01-01

    Eleven newborns with suspected cerebral disease were evaluated using 123 I-IMP SPECT. In a normal subject, high uptake was shown in the sensorimotor cortex, thalamus, midbrain-brainstem, and cerebellar vermis. Decreased perfusion was also noted in the frontal lobe. In hypoxic ischemic encephalopathy (HIE), diffuse decreased uptake which showed no redistribution in the white matter was seen in two patients. These two patients had a poor prognosis. In one of the other 4 patients with HIE, persistent defect in parasagittal area was recognized and the patient also had a poor prognosis. In one of two patients with tuberous sclerosis, 123 I-IMP SPECT showed high uptake in the area of increased density shown in CT. Thus, 123 I-IMP SPECT of newborn has characteristic findings different from the adult. This tracer also might have a prognostic value of clinical improvement following HIE. (author)

  12. Evaluation of newborns with brain disease using [sup 123]I-IMP SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Motoo; Yasukochi, Hiroshi (Teikyo Univ., Tokyo (Japan). Faculty of Medicine); Suzuki, Chizuko; Sasaki, Junko; Kitoh, Osamu

    1993-07-01

    Eleven newborns with suspected cerebral disease were evaluated using [sup 123]I-IMP SPECT. In a normal subject, high uptake was shown in the sensorimotor cortex, thalamus, midbrain-brainstem, and cerebellar vermis. Decreased perfusion was also noted in the frontal lobe. In hypoxic ischemic encephalopathy (HIE), diffuse decreased uptake which showed no redistribution in the white matter was seen in two patients. These two patients had a poor prognosis. In one of the other 4 patients with HIE, persistent defect in parasagittal area was recognized and the patient also had a poor prognosis. In one of two patients with tuberous sclerosis, [sup 123]I-IMP SPECT showed high uptake in the area of increased density shown in CT. Thus, [sup 123]I-IMP SPECT of newborn has characteristic findings different from the adult. This tracer also might have a prognostic value of clinical improvement following HIE. (author).

  13. Brain SPECT by intraarterial infusion of 99mTc-HMPAO for assessing the cerebral distribution of carotid artery infusions in patient with brain tumor

    International Nuclear Information System (INIS)

    Kosuda, Shigeru; Kusano, Shoichi; Aoki, Shigeki

    1993-01-01

    In order to assess the cerebral distribution of intracarotid chemotherapy, 17 postoperative patients with brain tumor underwent brain SPECT obtrained by intraarterial infusion of 18.5 MBq of 99m Tc-d,l,-hexamethylpropyleneamine oxime ( 99m Tc-HMPAO). Injection methods were continuous (5.0 ml/min) or pulsatile infusion with supra- or infraophthalmic catheterization. The findings obtained by brain SPECT were frequently different from those of angiography and/or DSA. In supraophthalmic catheterization with continuous infusion, only 2 of 10 studies (20%) had homogeneous distribution and 5 of them (50%) had maldistribution of 99m Tc-HMPAO which appears in association with laminar flow effect. The remaining 3 studies showed localized distribution (two: tumor localization, one: healthy brain localization). On the other hand, all of 5 studies with pulsatile infusion had homogeneous distribution of 99m Tc-HMPAO. In infraophthalmic catheterization, all but one of 5 studies had homogeneous distribution with continuous infusion. These results suggest that pulsatile infusion may be effective in eliminating maldistribution of 99m Tc-HMPAO in supraophthalmic catheterization. In conclusion, we are convinced that 99m Tc-HMPAO is a useful intraarterial agent for assessing cerebral distribution of intracarotid chemotherpay. (author)

  14. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A.; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  15. 99mTc-ECD brain SPECT in patients with Moyamoya disease: a reflection of cerebral perfusion status at tissue level in the disease process

    International Nuclear Information System (INIS)

    Kashyap, Raghava; Mittal, Bhagwant Rai; Sunil, Hejjaji Venkataramarao; Bhattacharya, Anish; Singh, Baljinder; Mukherjee, Kanchan Kumar; Gupta, Sunil Kumar

    2011-01-01

    Moyamoya disease is a rare, progressive cerebrovascular disorder caused by intracranial stenosis of the circle of Willis, resulting in successive ischemic events. Computed tomography (CT) and magnetic resonance imaging (MRI) play a major role in diagnosis. The aim of the study was to describe the spectrum of findings on brain SPECT in patients with Moyamoya disease and to compare the findings with other investigations. 99m Tc-ECD SPECT scans of seventeen patients (7 children and 10 adults) were analysed to study the brain perfusion. Features of Moyamoya disease were detected on DSA in 11 patients, CTA in one, MR angiography in one patient. Brain perfusion SPECT analysis showed unilateral perfusion defects in 11 patients, normal perfusion in 2 and bilateral defects in 4 patients. No perfusion defects despite bilateral vascular changes were noted in one patient. Cerebral infarcts were detected on MRI unilaterally in three subjects while multiple infarcts were identified in one. 99m Tc-ECD Brain SPECT showed perfusion defects that were more extensive compared to those detected on MRI. Post acetazolamide studies for assessment of cerebrovascular reserve were done in three patients. Two of them showed good cerebrovascular reserve (>1). Follow-up studies post-surgical procedures (Myo-dura synangiosis) done in two patients showed partial resolution of perfusion defects in the involved areas. Brain perfusion scintigraphy is an important adjunct in evaluation of patients with Moyamoya disease yielding information about the direct end results of the pathology in the vessels and also prognostic information. (author)

  16. Follow-up of pain processing recovery after ketamine in hyperalgesic fibromyalgia patients using brain perfusion ECD-SPECT

    International Nuclear Information System (INIS)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Laforte, Catherine de; Mundler, Olivier; Niboyet, Jean

    2007-01-01

    The aim of this study was to determine whether the follow-up of pain processing recovery in hyperalgesic fibromyalgia (FM) could be objectively evaluated with brain perfusion ethyl cysteinate dimer single photon computerized tomography (ECD-SPECT) after administration of ketamine. We enrolled 17 hyperalgesic FM women patients (48.5 ± 11 years, range 25-63). After treatment with subcutaneous ketamine, 11 patients were considered as ''good responders'', with a decrease in pain intensity, evaluated by visual analog scale (VAS), greater than 50%. On the other hand, six patients were considered as ''poor responders''. A voxel-based analysis of regional cerebral blood flow (rCBF) was conducted (p voxel cluster = 0.016c). In agreement with the clinical response, the change in midbrain rCBF after ketamine was highly correlated with the reduction of VAS pain score (r = 0.7182; p = 0.0041). This prospective study suggests that blockade of facilitatory descending modulation of pain with ketamine can be evaluated in the periaqueductal grey with brain perfusion SPECT. (orig.)

  17. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    International Nuclear Information System (INIS)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo; Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro; Kato, Rikio

    2005-01-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99m Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I AC μb with Chang's attenuation correction factor. The scatter component image is estimated by convolving I AC μb with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99m Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  18. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  19. The study on regional brain blood flow in the patients with Parkinson's disease using 99Tcm-ECD SPECT

    International Nuclear Information System (INIS)

    Sun Da; Ye Xiaojuan; Zhan Hongwei; Xu Wei; Bao Chengkan

    2010-01-01

    Purpose The aim of this study is to evaluate the changes of brain blood floe in patients with Parkinson's disease (PD) and to investigate the clinical characteristics of the patients with PD correlate with rCBF. Methods: Regional cerebral perfusion was investigated using SPECT in 34 patients with PD . The mean ages of the patients were 56.61±11.04 Years old. The course of disease in most patients was from 1 to over 20 years. Results: 94.1 per cent of patients (32/3) had a significant decrease of rCBF in the basal ganglia, frontal lobes, temporal lobes and thalamus. Parietal and occipital cortex were involved in some patients. The decrease of rCBF in the basal ganglia is unilateral in most patients with PD. There were over 3 brain regions that Conclusion: According to our results, patients with PD had decreased rCBF in the basal ganglia, frontal and temporal cortices. These may reflect a fundamental feature of clinical neuropathophysiology in PD. 99 Tc m -ECD SPECT imaging is helpful to the diagnosis of PD and may help investigate the potential pathophysiology of PD. (authors)

  20. SPECT imaging of dopamine and serotonin transporters with [[sup 123]I][beta]-CIT. Binding kinetics in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Bruecke, T; Asenbaum, S; Frassine, H; Podreka, I [Vienna Univ. (Austria). Neurologische Klinik; Kornhuber, J [Wuerzburg Univ. (Germany); Angelberger, P [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1993-01-01

    Single photon emission computerized tomography (SPECT) studies in non-human primates have previously shown that the cocaine derivative [[sup 123]I]-2-[beta]-carbomethoxy-3-[beta]-(4-iodophenyl)-tropane ([[sup 123]I][beta]-CIT) labels dopamine transporters in the striatum and serotonin transporters in the hypothalamus-midbrain area. Here, we report on the regional kinetic uptake of [[sup 123]I][beta]-CIT in the brain of 4 normal volunteers and 2 patients with Parkinson's disease. In healthy subjects striatal activity increased slowly to reach peak values at about 20 hours post injection. In the hypothalamus-midbrain area peak activities were observed at about 4 hours with a slow decrease thereafter. Low activity was observed in cortical and cerebellar areas. The striatal to cerebellar ratio was about 4 after 5 hours and 9 after 20 hours. In 2 patients with idiopathic Parkinson's disease striatal activity was markedly decreased while the activity in hypothalamus-midbrain areas was only diminished. Uptake into cortical and cerebellar areas appeared to be unchanged in Parkinson's disease. Consequently, in Parkinson's disease the striatal to cerebellar ratio was decreased to values around 2.5 after 20 hours. These preliminary methodological studies suggest that [[sup 123]I][beta]-CIT is a useful SPECT ligand for studying dopamine and possibly also serotonin transporters in the living human brain.

  1. Hemodynamic and metabolic state of hyperfixation with 99mTc-HMPAO brain SPECT in subacute stroke

    International Nuclear Information System (INIS)

    Cho, Ihnho; Hayashida, Kohei; Imakita, Satoshi; Kume, Norihiko; Fukuchi, Kazuki

    2000-01-01

    By means of positron emission tomography (PET), we investigated the hemodynamic and metabolic state of the hyperfixation identified as the increased accumulation with 99m Tc-d, l-hexamethylpropyleneamine oxime (HMPAO) by single photon emission computed tomography (SPECT) in patients with subacute stroke. We studied four patients with subacute stroke having hyperfixed areas evaluated with CBF, CMRO 2 , OEF and CBV by PET. The hyperfixation rate with 99m Tc-HMPAO was obtained by comparing the surplus rate with standardized CBF. The OEF and CMRO 2 values in the hyperfixed areas of 4 patients were significantly lower than those in normal 5 controls (p 99m Tc-HMPAO in the infarct area revealing a mismatch between CMRO 2 and CBF meant relative luxury perfusion. The hyperfixation rate determined by 99m Tc-HMPAO brain SPECT correlated with CBV in the PET study. We can conclude that one of the main factors which caused hyperfixation was vasodilatation as well as the blood brain barrier disruption and the neovascularization. (author)

  2. Relationship between brain perfusion SPECT and MMSE score in dementia of Alzheimer's type: a statistical parametric mapping analysis

    International Nuclear Information System (INIS)

    Kang, Hye Jin; Kang, Eun Joo; Lee, Jae Sung

    2002-01-01

    The aim of this study was to identify the brain areas in which reductions of regional cerebral blood flow (rCBF) were correlated with decline of general mental function, measured by Mini-Mental State Examination (MMSE). Tc-99m HMPAO brain SPECT was performed in 9 probable AD patients at the initial and follow-up periods of 1.8 years (average) after the first study. MMSE scores were also measured in both occasions. The mean MMSE score of the initial study 16.4 (range: 5-24) and the mean MMSE score of the follow-up was 8.1 (range: 0-17). Each SPECT image was normalized to the cerebellar activity and a correlation analysis was performed between the level of rCBF in AD patients and the MMSE scores by voxel-based analysis using SPM99 software. Significant correlation was found between the blood-flow decrease in left inferior prefrontal region(BA 47) and left middle temporal region (BA 21) and the MMSE score changes. Additional areas such as anterior and posterior cingulate cortices, precuneus, and bilateral superior and middle prefrontal regions showed and similar trends. A relationship was found between reduction of regional cerebral blood flow in left prefrontal and temporal areas and decline of cognitive function in Alzheimer's diseases (AD) patients. This voxel-based analysis is useful in evaluating the progress of cognitive function in Alzheimer's disease

  3. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    Science.gov (United States)

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  4. Regional Cerebral Blood-Flow with 99mTc-ECD Brain Perfusion SPECT in Landau-Kleffner Syndrome: Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Reza Nemati

    2014-01-01

    Full Text Available Landau-Kleffner syndrome (LKS is a rare childhood disorder characterized by acquired aphasia and epilepsy. 99mTc-ECD SPECT imaging was performed in two right-handed children with LKS. A relative decrease in perfusion was found in the left frontal-temporal cortices of both patients as well as in the left and right parietal cortices of one patient with aphasia, without clinical epilepsy. The degree of regional cerebral perfusion impairment did not correlate with the severity of the clinical and EEG abnormalities, but the area of hypoperfusion was compatible with the speech area of the brain. Overall, although asymmetrical temporoparietal perfusion appears as a common finding in LKS, SPECT findings in LKS alone cannot elucidate the pathogenic features of the disorder in the brain. Here, we present two cases of LKS in which we investigated SPECT perfusion scans.

  5. Does supplementation of contrast MR imaging with thallium-201 brain SPECT improve differentiation between benign and malignant ring-like contrast-enhanced cerebral lesions?

    International Nuclear Information System (INIS)

    Kita, Tamotsu; Hayashi, Katsumi; Yamamoto, Masayoshi; Kawauchi, Toshio; Sakata, Ikuko; Iwasaki, Yoshie; Kosuda, Shigeru

    2007-01-01

    The objective of this study was to determine whether thallium-201 ( 201 Tl) brain single photon emission computed tomography (SPECT) could supplement magnetic resonance (MR) imaging diagnostic information by visual comparison of two separate data sets from patients with ring-like contrast-enhanced cerebral lesions. A combination of MR imaging and 201 Tl brain SPECT sets obtained from 13 patients (10 men, 3 women) ranging in age from 26 years to 86 years (mean 61.0 years) were retrospectively reviewed. A total of 12 patients had a solitary lesion, and the others had multiple lesions. All but two intracranial foci were pathologically confirmed. The final diagnoses were six glioblastomas, two cerebral metastases from lung cancer, and one each of abscess, resolving hematoma, primary central nervous system lymphoma, toxoplasmosis, and radiation necrosis. The two separate image formats (MR images and SPECT) were shown to ten readers with practical experience. All of the MR images for each patient were shown to each reader first. After interpreting them, the readers were shown the SPECT images. Images were scored in terms of how benign or malignant the foci were on a 5-point scale from ''definitely benign'' to ''definitely malignant.'' The improvement in the performance of all ten readers was from 67.7% to 93.8% in mean accuracy (P=0.0028) and from 0.730 to 0.971 in mean Az value (P=0.0069) after they were shown the 201 Tl brain SPECT images. 201 Tl brain SPECT should substantially increase confidence in the diagnosis of intracranial lesions with ring-like contrast enhancement when MR imaging does not permit differentiation between benign and malignant disease. (author)

  6. Tc-99m ECD brain SPECT in patients with traumatic brain injury: evaluating distribution of hypoperfusion and assessment of cognitive and behavioral impairment in relation to thalamic hypoperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ah; Lim, Seok Tae; Sohn, Myung Hee [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2000-12-01

    We evaluated the distribution of hypoperfusion in patients with traumatic brain injury (TBI) and the relationship of thalamic hypoperfusion to severity of cognitive and behavioral sequelae. Tc-99m ECD SPECT and MRI were performed in 103 patients (M/F=81/22, mean age 34.7{+-} 15.4 yrs) from 0.5 to 55 months (mean 10.3 months) after TBI. The patients were divided into three groups showing no abnormalities (G1), focal (G2) and diffuse injury (G3) on MRI. Psychometric tests assessed 11 cognitive or behavioral items. In all patients, we evaluated the distribution of hypoperfused areas in SPECT, and in 57/103 patients, neuropsychological (NP) abnormalities in patients with thalamic hypoperfusion were compared with those of patients without thalamic hypoperfusion. The perfusion dificits were most frequently located in the frontal lobe (G1, 42.3%: G2 34.5%: G3 33.3%), temporal lobe (24{approx}26%) thalami (21{approx}22.4%), parietal and occipital lobe ({<=}10%). Numbers of NP abnormalities in the cases of cortical hypoperfusion with or without concomitant thalamic hypoperfusion were following: the former 4.7{+-}1.5 and the latter 3.2{+-}1.4 in G1, 5.0{+-}1.1 and 4.8{+-}1.2 in G2, 6.8{+-}1.8 and 6.3{+-}1.1 in G3, respectively. This difference according to thalamic hypoperfusion was significant in G1 (p=0.002), but was not significant in G2 or G3. SPECT in patients with TBI had demonstrated hypoperfusion mostly involving the frontal, temporal and thalami. In normal group on MRI, frontal hypoperfusion was more prominent than that of any other group, Furthermore in this group, SPECT could predict severity of NP outcome by concomitant thalamic hypoperfusion with cerebral cortical abnormalities.

  7. Tc-99m ECD brain SPECT in patients with traumatic brain injury: evaluating distribution of hypoperfusion and assessment of cognitive and behavioral impairment in relation to thalamic hypoperfusion

    International Nuclear Information System (INIS)

    Park, Soon Ah; Lim, Seok Tae; Sohn, Myung Hee

    2000-01-01

    We evaluated the distribution of hypoperfusion in patients with traumatic brain injury (TBI) and the relationship of thalamic hypoperfusion to severity of cognitive and behavioral sequelae. Tc-99m ECD SPECT and MRI were performed in 103 patients (M/F=81/22, mean age 34.7± 15.4 yrs) from 0.5 to 55 months (mean 10.3 months) after TBI. The patients were divided into three groups showing no abnormalities (G1), focal (G2) and diffuse injury (G3) on MRI. Psychometric tests assessed 11 cognitive or behavioral items. In all patients, we evaluated the distribution of hypoperfused areas in SPECT, and in 57/103 patients, neuropsychological (NP) abnormalities in patients with thalamic hypoperfusion were compared with those of patients without thalamic hypoperfusion. The perfusion dificits were most frequently located in the frontal lobe (G1, 42.3%: G2 34.5%: G3 33.3%), temporal lobe (24∼26%) thalami (21∼22.4%), parietal and occipital lobe (≤10%). Numbers of NP abnormalities in the cases of cortical hypoperfusion with or without concomitant thalamic hypoperfusion were following: the former 4.7±1.5 and the latter 3.2±1.4 in G1, 5.0±1.1 and 4.8±1.2 in G2, 6.8±1.8 and 6.3±1.1 in G3, respectively. This difference according to thalamic hypoperfusion was significant in G1 (p=0.002), but was not significant in G2 or G3. SPECT in patients with TBI had demonstrated hypoperfusion mostly involving the frontal, temporal and thalami. In normal group on MRI, frontal hypoperfusion was more prominent than that of any other group, Furthermore in this group, SPECT could predict severity of NP outcome by concomitant thalamic hypoperfusion with cerebral cortical abnormalities

  8. Brain perfusion SPECT analysis : New insights in mild cognitive impairment and neuromyelitis optica

    NARCIS (Netherlands)

    Sánchez Catasùs, Carlos Alfredo

    2018-01-01

    Het doel van dit proefschrift was om aan te tonen dat hersenperfusie SPECT kan helpen bij het verhelderen van belangrijke vragen met betrekking tot het prodromale “Mild Cognitive Impairment” (MCI) stadium van de ziekte van Alzheimer (AD) en recidiverende Neuromyelitis Optica (NMO). Dit is niet

  9. Mechanism study of recovery from aphasia with 99Tcm-ECD SPECT brain imaging after oral reading test

    International Nuclear Information System (INIS)

    Chen Jian; Xu Hao; Wang Hong; Chen Zhuoming; Wu Qiulian

    2007-01-01

    Objective: There may be two mechanisms for recovery from aphasia----repair of dam- aged left hemisphere language network and(or) activation of compensatory areas in right hemisphere. It is, however, still controversial on which mechanism plays a more important role. The goal of this study was to compare the regional cerebral blood flow (rCBF) between baseline and during oral reading in aphasic patients who had shown definite recovery from a focal lesion in left hemisphere. It also aimed at exploring the role of the two hemispheres in recovery from aphasia, thus providing theoretic basis for rehabilitation therapy. Methods: Baseline and oral reading 99 Tc m -ethylcysteinate dimer (ECD) brain SPECT imaging were performed in 7 patients with aphasia separately in one-day interval. Semi-quantitative analysis of rCBF was conducted on 26 symmetrical ROIs in bilateral hemispheres on the transverse slices. The rCBF was estimated by the ratio of the counts per pixel of each ROI to the average counts per pixel of the whole encephalon. The change in blood flow was represented by the difference in rCBF between oral reading and baseline. Results: The activated perfusion pattern of brain region was different in all 7 aphasic patients. In 5 of the 7 patients, whose reading capacity were relatively preserved, the brain perfusion pattern was mainly left lateralized, while the other two patients who had poor performance in reading showed bilateral activation foci with fight-sided dominance. Conclusion: Oral reading activated SPECT brain imaging may be a useful tool for monitoring the progress of speech recovery in the treatment of aphasic patients. (authors)

  10. Structural and metabolic changes in the traumatically injured rat brain. High-resolution in vivo proton magnetic resonance spectroscopy at 7 T

    International Nuclear Information System (INIS)

    Li, Jing; Zhao, Can; Rao, Jia-Sheng; Yang, Fei-Xiang; Yang, Zhao-Yang; Wang, Zhan-Jing; Lei, Jian-Feng; Li, Xiao-Guang

    2017-01-01

    The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy ( 1 H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and 1 H MRS parameters were observed between day 1 and day 3. Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair. (orig.)

  11. Structural and metabolic changes in the traumatically injured rat brain. High-resolution in vivo proton magnetic resonance spectroscopy at 7 T

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Zhao, Can; Rao, Jia-Sheng [Beihang University, Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beijing (China); Yang, Fei-Xiang; Yang, Zhao-Yang [Capital Medical University, Department of Neurobiology, School of Basic Medical Sciences, Beijing (China); Wang, Zhan-Jing; Lei, Jian-Feng [Capital Medical University, Medical Experiment and Test Center, Beijing (China); Li, Xiao-Guang [Beihang University, Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beijing (China); Capital Medical University, Department of Neurobiology, School of Basic Medical Sciences, Beijing (China)

    2017-12-15

    The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy ({sup 1}H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and {sup 1}H MRS parameters were observed between day 1 and day 3. Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair. (orig.)

  12. Comparative value of brain perfusion SPECT and [{sup 123}I]MIBG myocardial scintigraphy in distinguishing between dementia with Lewy bodies and Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Shimizu, Soichiro; Hirao, Kentaro; Kanetaka, Hidekazu; Iwamoto, Toshihiko [Tokyo Medical University, Department of Geriatric Medicine, Tokyo (Japan); Chikamori, Taishiro; Usui, Yasuhiro; Yamashina, Akira [Tokyo Medical University, 2. Department of Internal Medicine, Tokyo (Japan); Koizumi, Kiyoshi; Abe, Kimihiko [Tokyo Medical University, Department of Radiology, Tokyo (Japan)

    2006-03-15

    Both decreased occipital perfusion on brain single-photon emission computed tomography (SPECT) and reduction in cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) uptake are characteristic features of dementia with Lewy bodies (DLB), and potentially support the clinical diagnosis of DLB. The aim of this study was to compare the diagnostic value of these two methods for differentiation of DLB from Alzheimer's disease (AD). The study population comprised 19 patients with probable DLB and 39 patients with probable AD who underwent both SPECT with N-isopropyl-p-[{sup 123}I]iodoamphetamine and MIBG myocardial scintigraphy. Objective and quantitative measurement of perfusion in the medial occipital lobe, including the cuneus and lingual gyrus, was performed by the use of three-dimensional stereotactic surface projections. Medial occipital perfusion was significantly decreased in the DLB group compared with the AD group. The mean heart/mediastinum ratios of MIBG uptake were significantly lower in the DLB group than in the AD group. Although SPECT failed to demonstrate significant hypoperfusion in the medial occipital lobe in five patients with DLB, marked reduction of MIBG uptake was found in all patients with DLB. Receiver operating characteristic analysis revealed that MIBG myocardial scintigraphy enabled more accurate discrimination between DLB and AD than was possible with perfusion SPECT. MIBG myocardial scintigraphy may improve the sensitivity in the detection of DLB. In particular, this method may provide a powerful differential diagnostic tool when it is difficult to distinguish cases of DLB from AD using brain perfusion SPECT. (orig.)