WorldWideScience

Sample records for high-resolution analytical techniques

  1. Studies on Pt–Mo phases using analytical techniques with high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Topic, M., E-mail: mtopic@tlabs.ac.za [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Khumalo, Z. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); University of Cape Town, Physics Department, Private Bag X3, Rondebosch 7701 (South Africa); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, CPUT, Belville (South Africa)

    2014-01-01

    Pt–Mo coated system annealed at 1050 °C for 24 h was investigated using several analytical techniques with high resolution (SEM/EDX, μ-PIXE, RBS and XRD). These techniques provide structural and compositional data throughout the material depth and probing area. The results depend on the applied beam, its energy and size. They contribute to a better understanding of thermal annealing effects on the solid-state phase transformation and morphological changes in Pt–Mo coatings. The results indicate the presence of Pt- and Mo-solid solutions and two Pt–Mo phases (PtMo and Pt{sub 2}Mo{sub 3}), changes in the coating morphology, such as increased surface roughness and formation of “lace morphology”, as well as an increase in coating thickness.

  2. High resolution techniques using scanning proton microprobe (SPM)

    International Nuclear Information System (INIS)

    Cholewa, M.; Saint, A.; Prawer, S.; Laird, J.S.; Legge, G.J.F.; Bardos, R.A.; Moorhead, G.F.; Taylor, G.N.; Stuart, S.A.; Howard, J.

    1994-01-01

    The very high resolution (down to 50 nm) achieved with low beam currents (fA) in a scanning ion microprobe have lead to many nondestructive techniques of microanalysis. This paper discusses recent developments and applications in the use of 3-D STIM (scanning transmission ion microscopy) Tomography, channeling STIM and IBIC (ion beam induced charge). (orig.)

  3. Novel techniques in VUV high-resolution spectroscopy

    NARCIS (Netherlands)

    Ubachs, W.M.G.; Salumbides, E.J.; Eikema, K.S.E.; de Oliveira, N.; Nahon, L.

    2014-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies.

  4. The high resolution shear wave seismic reflection technique

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1991-04-01

    This report presents the state-of-the-art of the high resolution S-wave reflection technique. Published and unpublished literature has been reviewed and discussions have been held with experts. Result is to confirm that the proposed theoretical and practical basis for identifying aquifer systems using both P- and S-wave reflections is sound. Knowledge of S-wave velocity and P-wave velocity is a powerful tool for assessing the fluid characteristics of subsurface layers. Material properties and lateral changes in material properties such as change from clay to sand, can be inferred from careful dual evaluation of P and S-wave records. The high resolution S-wave reflection technique has seen its greatest application to date as part of geotechnical studies for building foundations in the Far East. Information from this type of study has been evaluated and will be incorporated in field studies. In particular, useful information regarding S-wave sources, noise suppression and recording procedures will be incorporated within the field studies. Case histories indicate that the best type of site for demonstrating the power of the high resolution S-wave technique will be in unconsolidated soil without excessive structural complexities. More complex sites can form the basis for subsequent research after the basic principles of the technique can be established under relatively uncomplicated conditions

  5. Advanced analytical techniques

    International Nuclear Information System (INIS)

    Mrochek, J.E.; Shumate, S.E.; Genung, R.K.; Bahner, C.T.; Lee, N.E.; Dinsmore, S.R.

    1976-01-01

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  6. Analytical method for high resolution liquid chromatography for quality control French Macaw

    International Nuclear Information System (INIS)

    Garcia Penna, Caridad M; Torres Amaro, Leonid; Menendez Castillo, Rosa; Sanchez, Esther; Martinez Espinosa, Vivian; Gonzalez, Maria Lidia; Rodriguez, Carlos

    2007-01-01

    Was developed and validated an analytical method for high resolution liquid chromatography applicable to quality control of drugs dry French Macaw (Senna alata L. Roxb.) With ultraviolet detection at 340 nm. The method for high resolution liquid chromatography used to quantify the sennosides A and B, main components, was validated and proved to be specific, linear, precise and accurate. (Author)

  7. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    Science.gov (United States)

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  8. Visual analytics of inherently noisy crowdsourced data on ultra high resolution displays

    Science.gov (United States)

    Huynh, Andrew; Ponto, Kevin; Lin, Albert Yu-Min; Kuester, Falko

    The increasing prevalence of distributed human microtasking, crowdsourcing, has followed the exponential increase in data collection capabilities. The large scale and distributed nature of these microtasks produce overwhelming amounts of information that is inherently noisy due to the nature of human input. Furthermore, these inputs create a constantly changing dataset with additional information added on a daily basis. Methods to quickly visualize, filter, and understand this information over temporal and geospatial constraints is key to the success of crowdsourcing. This paper present novel methods to visually analyze geospatial data collected through crowdsourcing on top of remote sensing satellite imagery. An ultra high resolution tiled display system is used to explore the relationship between human and satellite remote sensing data at scale. A case study is provided that evaluates the presented technique in the context of an archaeological field expedition. A team in the field communicated in real-time with and was guided by researchers in the remote visual analytics laboratory, swiftly sifting through incoming crowdsourced data to identify target locations that were identified as viable archaeological sites.

  9. Extension of the analytical window for characterizing aromatic compounds in oils using a comprehensive suite of high-resolution mass spectrometry techniques and double bond equivalence versus carbon number plot

    Science.gov (United States)

    Cho, Yunju; Birdwell, Justin E.; Hur, Manhoi; Lee, Joonhee; Kim, Byungjoo; Kim, Sunghwan

    2017-01-01

    In this study, comprehensive two-dimensional (2D) gas chromatography–mass spectrometry (GC–MS), atmospheric pressure photoionization (APPI) quadrupole-Orbitrap mass spectrometry (MS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to study the aromatic fractions of crude oil and oil shale pyrolysates (shale oils). The collected data were compared and combined in the double bond equivalence (DBE) versus carbon number plot to obtain a more complete understanding of the composition of the oil fractions. The numbers of peaks observed by each technique followed the order 2D GC–MS plots of DBE and carbon number showed an extended range of higher values relative to the other methods. For the aromatic fraction of an oil shale pyrolysate generated by the Fischer assay, only a few nitrogen-containing compounds were observed by 2D GC–MS but a large number of these compounds were detected by Orbitrap MS and FT-ICR MS. This comparison clearly shows that the data obtained from these three techniques can be combined to more completely characterize oil composition. The data obtained by Orbitrap MS and FT-ICR MS agreed well with one another, and the combined DBE versus carbon number plot provided more complete coverage of compounds present in the fractions. In addition, the chemical structure information provided by 2D GC–MS could be matched with the chemical formulas in the DBE versus carbon number plots, providing information not available in ultrahigh-resolution MS results. It was therefore concluded that the combination of 2D GC–MS, Orbitrap MS, and FT-ICR MS in the DBE versus carbon number space facilitates structural assignment of heavy oil components.

  10. High Resolution Radar Imaging using Coherent MultiBand Processing Techniques

    NARCIS (Netherlands)

    Dorp, Ph. van; Ebeling, R.P.; Huizing, A.G.

    2010-01-01

    High resolution radar imaging techniques can be used in ballistic missile defence systems to determine the type of ballistic missile during the boost phase (threat typing) and to discriminate different parts of a ballistic missile after the boost phase. The applied radar imaging technique is 2D

  11. Arc arrays: studies of high resolution techniques for multibeam bathymetric applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Schenke, H.W.

    . This geometry is tested using the Bartlett method for varying arc and linear arrays of 30 - elements. We also examine `high resolution techniques' such as the Maximum LIkelihood (ML) method and the Maximum Entropy (ME) methods (different orders), for 16-element...

  12. Ship Classification with High Resolution TerraSAR-X Imagery Based on Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Zhi Zhao

    2013-01-01

    Full Text Available Ship surveillance using space-borne synthetic aperture radar (SAR, taking advantages of high resolution over wide swaths and all-weather working capability, has attracted worldwide attention. Recent activity in this field has concentrated mainly on the study of ship detection, but the classification is largely still open. In this paper, we propose a novel ship classification scheme based on analytic hierarchy process (AHP in order to achieve better performance. The main idea is to apply AHP on both feature selection and classification decision. On one hand, the AHP based feature selection constructs a selection decision problem based on several feature evaluation measures (e.g., discriminability, stability, and information measure and provides objective criteria to make comprehensive decisions for their combinations quantitatively. On the other hand, we take the selected feature sets as the input of KNN classifiers and fuse the multiple classification results based on AHP, in which the feature sets’ confidence is taken into account when the AHP based classification decision is made. We analyze the proposed classification scheme and demonstrate its results on a ship dataset that comes from TerraSAR-X SAR images.

  13. Analytical method by high resolution liquid chromatography for the determination of carbamazepine in human plasma

    International Nuclear Information System (INIS)

    Jimenez Aleman, Narda M; Calero Carbonell, Jorge E; Padron Yaquis, Alejandro S; Izquierdo Lozano, Julio C

    2007-01-01

    One of the requirements to develop the studies of bioavailability and bioequivalence is to have analytic methodologies validated for the work with samples in biological fluids. A method was developed by high resolution liquid chromatography for the determination of carbamazepine in human plasma. A mixture of hydrogen phosphate of sodium: acetonitrile (65:35) adjusted to pH= 3.3 with phosphoric acid, flow of 1.2 mL/min and ultraviolet detection at 210 nm, was used as mobile phase. Propylparabene was used as an internal standard. According to the established regulations for the validation of the methods in biological fluids, the following parameters were studied: stability of the samples, lineality, specificity, precision, accuracy and limit of detection and quantification. The method proved to be specific and sensitive with a detection and quantification limit of 0.9 and 1.0 ng, respectively. The method was lineal, precise and exact in the range of concentrations of 1. 07 at 12.67 μg/mL. The mean recovery was not statistically different from 100.0 %. The analito in the proposed biological matrix remained in the studied period. The methodology described in this work is applied in our case to the study that evaluates the bioavailability and bioequivalence of a Cuban formulation of carbamazepine in healthy volunteers. (Author)

  14. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  15. Visualization of intracranial vessel anatomy using high resolution MRI and a simple image fusion technique

    International Nuclear Information System (INIS)

    Nasel, C.

    2005-01-01

    A new technique for fusion and 3D viewing of high resolution magnetic resonance (MR) angiography and morphological MR sequences is reported. Scanning and image fusion was possible within 20 min on a standard 1.5 T MR-scanner. The procedure was successfully performed in 10 consecutive cases with excellent visualization of wall and luminal aspects of the intracranial segments of the internal carotid artery, the vertebrobasilar system and the anterior, middle and posterior cerebral artery

  16. Visualization of intracranial vessel anatomy using high resolution MRI and a simple image fusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Nasel, C. [Division of Neuroradiology, Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, A-1090 Vienna (Austria)]. E-mail: christian.nasel@perfusion.at

    2005-04-01

    A new technique for fusion and 3D viewing of high resolution magnetic resonance (MR) angiography and morphological MR sequences is reported. Scanning and image fusion was possible within 20 min on a standard 1.5 T MR-scanner. The procedure was successfully performed in 10 consecutive cases with excellent visualization of wall and luminal aspects of the intracranial segments of the internal carotid artery, the vertebrobasilar system and the anterior, middle and posterior cerebral artery.

  17. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    Science.gov (United States)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  18. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  19. Analytical system availability techniques

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Verbeek, P.H.J.; Thomson, W.R.

    1987-01-01

    Analytical techniques are presented to assess the probability distributions and related statistical parameters of loss of production from equipment networks subject to random failures and repairs. The techniques are based on a theoretical model for system availability, which was further developed

  20. A data model and database for high-resolution pathology analytical image informatics

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2011-01-01

    Full Text Available Background: The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. Context: This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS, and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs. Aims: (1 Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2 Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. Settings and Design: The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole

  1. A data model and database for high-resolution pathology analytical image informatics.

    Science.gov (United States)

    Wang, Fusheng; Kong, Jun; Cooper, Lee; Pan, Tony; Kurc, Tahsin; Chen, Wenjin; Sharma, Ashish; Niedermayr, Cristobal; Oh, Tae W; Brat, Daniel; Farris, Alton B; Foran, David J; Saltz, Joel

    2011-01-01

    The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS), and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs). (1) Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2) Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole slides and TMAs within several minutes. Hence, it is becoming

  2. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  3. The coupling of high-speed high resolution experimental data and LES through data assimilation techniques

    Science.gov (United States)

    Harris, S.; Labahn, J. W.; Frank, J. H.; Ihme, M.

    2017-11-01

    Data assimilation techniques can be integrated with time-resolved numerical simulations to improve predictions of transient phenomena. In this study, optimal interpolation and nudging are employed for assimilating high-speed high-resolution measurements obtained for an inert jet into high-fidelity large-eddy simulations. This experimental data set was chosen as it provides both high spacial and temporal resolution for the three-component velocity field in the shear layer of the jet. Our first objective is to investigate the impact that data assimilation has on the resulting flow field for this inert jet. This is accomplished by determining the region influenced by the data assimilation and corresponding effect on the instantaneous flow structures. The second objective is to determine optimal weightings for two data assimilation techniques. The third objective is to investigate how the frequency at which the data is assimilated affects the overall predictions. Graduate Research Assistant, Department of Mechanical Engineering.

  4. Analysis and analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Batuecas Rodriguez, T [Department of Chemistry and Isotopes, Junta de Energia Nuclear, Madrid (Spain)

    1967-01-01

    The technology associated with the use of organic coolants in nuclear reactors depends to a large extent on the determination and control of their physical and chemical properties, and particularly on the viability, speed, sensitivity, precision and accuracy (depending on the intended usage) of the methods employed in detection and analytical determination. This has led to the study and development of numerous techniques, some specially designed for the extreme conditions involved in working with the types of product in question and others adapted from existing techniques. In the specific case of polyphenyl and hydropolyphenyl mixtures, which have been the principal subjects of study to date and offer greatest promise, the analytical problems are broadly as follows: Composition of initial product or virgin coolant composition of macro components and amounts of organic and inorganic impurities; Coolant during and after operation. Determination of gases and organic compounds produced by pyrolysis and radiolysis (degradation and polymerization products); Control of systems for purifying and regenerating the coolant after use. Dissolved pressurization gases; Detection of intermediate products during decomposition; these are generally very unstable (free radicals); Degree of fouling and film formation. Tests to determine potential formation of films; Corrosion of structural elements and canning materials; Health and safety. Toxicity, inflammability and impurities that can be activated. Although some of the above problems are closely interrelated and entail similar techniques, they vary as to degree of difficulty. Another question is the difficulty of distinguishing clearly between techniques for determining physical and physico-chemical properties, on one hand, and analytical techniques on the other. Any classification is therefore somewhat arbitrary (for example, in the case of dosimetry and techniques for determining mean molecular weights or electrical conductivity

  5. A high-resolution neutron spectra unfolding method using the Genetic Algorithm technique

    CERN Document Server

    Mukherjee, B

    2002-01-01

    The Bonner sphere spectrometers (BSS) are commonly used to determine the neutron spectra within various nuclear facilities. Sophisticated mathematical tools are used to unfold the neutron energy distribution from the output data of the BSS. This paper highlights a novel high-resolution neutron spectra-unfolding method using the Genetic Algorithm (GA) technique. The GA imitates the biological evolution process prevailing in the nature to solve complex optimisation problems. The GA method was utilised to evaluate the neutron energy distribution, average energy, fluence and equivalent dose rates at important work places of a DIDO class research reactor and a high-energy superconducting heavy ion cyclotron. The spectrometer was calibrated with a sup 2 sup 4 sup 1 Am/Be (alpha,n) neutron standard source. The results of the GA method agreed satisfactorily with the results obtained by using the well-known BUNKI neutron spectra unfolding code.

  6. MR imaging of the pulmonary vasculature: Cine and high-resolution techniques

    International Nuclear Information System (INIS)

    Gefter, W.B.; Hatabu, H.; Kressel, H.Y.; Axel, L.; Lenkinski, R.E.; Schiebler, M.L.; Dougherty, L.; Douglas, P.S.; Reichek, N.

    1987-01-01

    Pulmonary vessels were evaluated on 43 cine examinations (12 normals, 31 with cardiopulmonary diseases) at 1.5 T (General Electric). Arteries and veins could be differentiated by characteristic intensity fluctuations in 90%. Abnormal patterns were observed with elevated left atrial pressure, pulmonary hypertension, pulmonic stenosis, and mitral regurgitation. A small arteriovenous malformation was identified. Approaches to high-resolution imaging included surface coils, 24-cm field of view, and 256 x 256 matrix. Spin-echo (SE) sequences gated in systole or diastole, and GRASS with and without breath-holding were evaluated. Surface-coil SE diastolic images (4 NEX) visualized sixth- and seventh-generation vessels. Breath-hold GRASS showed fifth- and sixth-generation vessels without respiratory artifact. These are promising techniques for displaying the pulmonary circulation

  7. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  8. High resolution imaging of particle interactions in a large bubble chamber using holographic techniques

    International Nuclear Information System (INIS)

    Akbari, Homaira.

    1988-01-01

    Particle interactions were recorded holographically in a large volume of the 15-foot Bubble Chamber at Fermilab. This cryogenic bubble chamber was filled with a heavy Neon-Hydrogen mixture and was exposed to a wideband neutrino beam with mean energy of 150 GeV. The use of holography in combination with conventional photography provides a powerful tool for direct detection of short-lived particles. Holography gives a high resolution over a large depth of field which can not be achieved with conventional photography. A high-power pulsed ruby laser was used as the holographic light source. Since short pulses of some 50 ns duration at the required energy were found to give rise to boiling during the chamber's expansion, a reduction of the instantaneous power at a given energy was required to suppress this unwanted after-effect. This was achieved by developing a unique technique for stretching the pulses using an electro-optic feedback loop. One hundred thousand holograms were produced during a wide-band neutrino experiment (E-632, 1985) using a dark-field holographic system. Analysis of a sample of holograms shows a resolution of 150 μm was achieved in an ovoidal shape fiducial volume of 0.48 m 3 % of the 14 m 3 total fiducial volume of the chamber

  9. Digital pulse processing techniques for high resolution amplitude measurement of radiation detector

    International Nuclear Information System (INIS)

    Singhai, P.; Roy, A.; Dhara, P.; Chatterjee, S.

    2012-01-01

    The digital pulse processing techniques for high resolution amplitude measurement of radiation detector pulse is an effective replacement of expensive and bulky analog processing as the digital domain offers higher channel density and at the same time it is cheaper. We have demonstrated a prototype digital setup with highspeed sampling ADC with sampling frequency of 80-125 MHz followed by series of IIR filters for pulse shaping in a trigger-less acquisition mode. The IIR filters, peak detection algorithm and the data write-out logic was written on VHDL and implemented on FPGA. We used CAMAC as the read out platform. In conjunction with the full hardware implementation we also used a mixed platform with VME digitizer card with raw-sample read out using C code. The rationale behind this mixed platform is to test out various filter algorithms quickly on C and also to benchmark the performance of the chip level ADCs against the standard commercial digitizer in terms of noise or resolution. The paper describes implementation of both the methods with performance obtained in both the methods. (author)

  10. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Keturakis, Christopher J. [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Ben [Brandeis University, Waltham, MA 02453 (United States); Blenheim, Alex [Department of Mechanical Engineering, Pennsylvania State University, College Park, PA 16802 (United States); Miller, Alfred C.; Pafchek, Rob [Zettlemoyer Center for Surface Studies, Lehigh University, Bethlehem, PA 18015 (United States); Notis, Michael R., E-mail: mrn1@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Wachs, Israel E., E-mail: iew0@lehigh.edu [Operando Molecular Spectroscopy and Catalysis Research Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States)

    2016-07-15

    Highlights: • Five ancient silver alloy coins (225 BCE–244 CE) were analyzed using surface characterization techniques. • Both destructive and non-destructive surface characterization methods were developed. • Alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O corrosion layer. - Abstract: Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE–244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1–3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300–1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu{sub 2}O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu{sub 2}O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu{sub 2}O layer. Depth profiling revealed the presence of K, Na, Cl, and

  11. Analysis of corrosion layers in ancient Roman silver coins with high resolution surface spectroscopic techniques

    International Nuclear Information System (INIS)

    Keturakis, Christopher J.; Notis, Ben; Blenheim, Alex; Miller, Alfred C.; Pafchek, Rob; Notis, Michael R.; Wachs, Israel E.

    2016-01-01

    Highlights: • Five ancient silver alloy coins (225 BCE–244 CE) were analyzed using surface characterization techniques. • Both destructive and non-destructive surface characterization methods were developed. • Alloying with copper, even in small amounts, leads to the formation of an outer Cu 2 O corrosion layer. - Abstract: Determination of the microchemistry of surface corrosion layers on ancient silver alloy coins is important both in terms of understanding the nature of archaeological environmental conditions to which these ancient coins were exposed and also to help in their conservation. In this present study, five ancient silver alloy coins (225 BCE–244 CE) were used as test vehicles to measure their immediate surface microchemistry and evaluate the appropriateness and limitations of High Sensitivity-Low Energy Ion Scattering Spectroscopy (HS-LEIS, 0.3 nm depth analysis), High Resolution-X-ray Photoelectron Spectroscopy (HR-XPS, 1–3 nm depth analysis) and High Resolution-Raman Spectroscopy (HR-Raman, ∼1000 nm depth analysis). Additional information about the deeper corrosion layers, up to ∼300–1000 nm, was provided by dynamic HS-LEIS and HR-Raman spectroscopy. While not archeologically significant, the use of these coins of small commercial value provides data that is more representative of the weaker signals typically obtained from ancient corroded objects, which can be in stark contrast to pristine data often obtained from carefully prepared alloys of known composition. The oldest coins, from 225 to 214 BCE, possessed an outermost surface layer containing Cu 2 O, Na, Al, Pb, and adsorbed hydrocarbons, while the more recent coins, from 98 to 244 CE, contained Cu 2 O, Ag, N, F, Na, Al, S, Cl, and adsorbed hydrocarbons in similar corresponding surface layers. It thus appears that alloying with copper, even in small amounts, leads to the formation of an outer Cu 2 O layer. Depth profiling revealed the presence of K, Na, Cl, and S as key

  12. Background Contamination by Coplanar Polychlorinated Biphenyls (PCBS) in Trace Level High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS) Analytical Procedures

    Science.gov (United States)

    The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for t...

  13. Prepared for the thirtieth annual conference on bioassay analytical and environmental chemistry. Reliable analysis of high resolution gamma spectra

    International Nuclear Information System (INIS)

    Spitz, H.B.; Buschbom, R.; Rieksts, G.A.; Palmer, H.E.

    1985-01-01

    A new method has been developed to reliably analyze pulse height-energy spectra obtained from measurements employing high resolution germanium detectors. The method employs a simple data transformation and smoothing function to calculate background and identify photopeaks and isotopic analysis. This technique is elegant in its simplicity because it avoids dependence upon complex spectrum deconvolution, stripping, or other least-square-fitting techniques which complicate the assessment of measurement reliability. A moving median was chosen for data smoothing because, unlike moving averages, medians are not dominated by extreme data points. Finally, peaks are identified whenever the difference between the background spectrum and the transformed spectrum exceeds a pre-determined number of standard deviations

  14. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    Science.gov (United States)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  15. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  16. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    Directory of Open Access Journals (Sweden)

    Francisco Eugenio

    2017-11-01

    Full Text Available Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2, can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  17. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  18. Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique

    Science.gov (United States)

    Corucci, Linda; Masini, Andrea; Cococcioni, Marco

    2011-01-01

    This paper addresses bathymetry estimation from high resolution multispectral satellite images by proposing an accurate supervised method, based on a neuro-fuzzy approach. The method is applied to two Quickbird images of the same area, acquired in different years and meteorological conditions, and is validated using truth data. Performance is studied in different realistic situations of in situ data availability. The method allows to achieve a mean standard deviation of 36.7 cm for estimated water depths in the range [-18, -1] m. When only data collected along a closed path are used as a training set, a mean STD of 45 cm is obtained. The effect of both meteorological conditions and training set size reduction on the overall performance is also investigated.

  19. The application of computer technique in routine neutron activation analysis using high resolution gamma ray spectrometry

    International Nuclear Information System (INIS)

    Szopa, Z.; Plejewska, M.; Staszelis, J.

    1982-01-01

    A full system of four computer programs for routine - qualitative and quantitative - neutron activation analysis (NAA) using high resolution gamma ray-spectrometry had been elaborated. The structure and possibilities of the ''data flow'' programs i.e. programs DIDPDP and DIDCDC, dedicated for fast and reliable ''off line'' data transfer between the buffer memory of the spectrometric line (9-track magnetic tape) and the fast access memory (disc) of the used computers PDP-11/45 and CYBER-73 had been presented. The structure and organization of the ''data processing'' programs i.e. programs SAWAPS and MAZYG had been presented as well. The utility and reliability of these programs in the case of the large-scale, routine NAA, exampled by analysis of filters with air polutants, had been tested and discussed. Programs are written mainly in FORTRAN. (author)

  20. High resolution X-ray scattering techniques for studying the sliding CDWS distortions, in NbSe sub 3

    CERN Document Server

    Rideau, D; Currat, R; Requardt, H; Nad, F Y; Lorenzo, J E; Brazovskii, S; Detlefs, C; Grübel, G

    2001-01-01

    The phase gradient in a sliding-charge density wave (CDW), which is observable as a longitudinal shift, q propor to partial deriv phi/partial deriv x, of the CDW satellite peak position, is due to the conversion free-electrons CDW-condensate, at the current electrodes. Using high resolution X-ray scattering techniques and time-resolved techniques, we monitor, on thin NbSe sub 3 whiskers, the shift, q(x), and its relaxation, q(t), upon switching off the current.

  1. Minimal exposure technique in the Cambridge University 600kV high resolution electron microscope

    International Nuclear Information System (INIS)

    Fryer, J.R.; Cleaver, J.R.A.; Smith, D.J.

    1980-01-01

    Radiation damage due to the incident electron beam imposes a fundamental limitation on the information obtainable by electron microscopy about organic materials; it is desirable therefore that exposure of the specimen to the electron beam should be restricted to the actual period during which the image is being recorded. A description is given of methods employed in the observation of the organic aromatic hydrocarbons quaterrylene, ovalene and coronene with the Cambridge University 600kV high resolution electron microscope (HREM). In particular, the condenser-objective mode of operation of this microscope lends itself to the use of an area-defining aperture below the second condenser lens conjugate with the specimen. Furthermore, operation at the higher accelerating voltage of this instrument could be anticipated to reduce the rate of damage, depending on the dominant beam-specimen interaction, whilst the increased width of the first broad band of the contrast transfer function of this microscope at the optimum defocus may overcome the reported resolution limitation of current 100kV microscopes for the observation of related materials. (author)

  2. Decay studies of Sr isotpes with high resolution and total absorption techniques

    CERN Document Server

    Perez-Cerdan, Ana-Belen

    2012-04-03

    High Resolution measurements The beta/EC decay of 77,78Sr and 76,78Rb have been studied in this work. Measurements were carried out of the energies and intensities of the emitted gamma-rays and conversion electrons as well as gamma-gamma and gamma-X-ray coincidences in the decays of 77,78Sr, which have extended our knowledge of their decay schemes including spin and parity assignments to the levels populated in the daughter nucleus, 77Rb and 78Rb respectively. For the decay of 78Sr, 16 new levels and 44 new gamma-ray transitions have been identified. The very much improved experimental knowledge of the 78Rb levels populated in the decay and the strong link between the parent and the daughter states has allowed us to infer some possible level configurations by comparison with HF+BCS calculations using the SG2 Skyrme force. For the decay of 77Sr, 9 new levels and 15 new gamma-ray transitions have been identified. The levels in the low energy part of the level scheme have been discussed in terms of HF+BCS+QRPA c...

  3. Comparison of infrared spectroscopy techniques: developing an efficient method for high resolution analysis of sediment properties from long records

    Science.gov (United States)

    Hahn, Annette; Rosén, Peter; Kliem, Pierre; Ohlendorf, Christian; Persson, Per; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The analysis of sediment samples in visible to mid-infrared spectra is ideal for high-resolution records. It requires only small amounts (0.01-0.1g dry weight) of sample material and facilitates rapid and cost efficient analysis of a wide variety of biogeochemical properties on minerogenic and organic substances (Kellner et al. 1998). One of these techniques, the Diffuse Reflectance Fourier Transform Infrared Spectrometry (DRIFTS), has already been successfully applied to lake sediment from very different settings and has shown to be a promising technique for high resolution analyses of long sedimentary records on glacial-interglacial timescales (Rosén et al. 2009). However, the DRIFTS technique includes a time-consuming step where sediment samples are mixed with KBr. To assess if alternative and more rapid infrared (IR) techniques can be used, four different IR spectroscopy techniques are compared for core catcher sediment samples from Laguna Potrok Aike - an ICDP site located in southernmost South America. Partial least square (PLS) calibration models were developed using the DRIFTS technique. The correlation coefficients (R) for correlations between DRIFTS-inferred and conventionally measured biogeochemical properties show values of 0.80 for biogenic silica (BSi), 0.95 for total organic carbon (TOC), 0.91 for total nitrogen (TN), and 0.92 for total inorganic carbon (TIC). Good statistical performance was also obtained by using the Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy ATR-FTIRS technique which requires less sample preparation. Two devices were used, the full-sized Bruker Equinox 252 and the smaller and less expensive Bruker Alpha. R for ATR-FTIRS-inferred and conventionally measured biogeochemical properties were 0.87 (BSi), 0.93 (TOC), 0.90 (TN), and 0.91 (TIC) for the Alpha, and 0.78 (TOC), 0.85 (TN), 0.79 (TIC) for the Equinox 252 device. As the penetration depth of the IR beam is frequency dependent, a firm surface contact of

  4. Coherent Pound-Drever-Hall technique for high resolution fiber optic strain sensor at very low light power

    Science.gov (United States)

    Wu, Mengxin; Liu, Qingwen; Chen, Jiageng; He, Zuyuan

    2017-04-01

    Pound-Drever-Hall (PDH) technique has been widely adopted for ultrahigh resolution fiber-optic sensors, but its performance degenerates seriously as the light power drops. To solve this problem, we developed a coherent PDH technique for weak optical signal detection, with which the signal-to-noise ratio (SNR) of demodulated PDH signal is dramatically improved. In the demonstrational experiments, a high resolution fiber-optic sensor using the proposed technique is realized, and n"-order strain resolution at a low light power down to -43 dBm is achieved, which is about 15 dB lower compared with classical PDH technique. The proposed coherent PDH technique has great potentials in longer distance and larger scale sensor networks.

  5. A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Helal, D.; Crochet, M.

    2001-01-01

    In the present work, we propose a frequency-domain interferometric imaging (FII) technique for a better knowledge of the vertical distribution of the atmospheric scatterers detected by MST radars. This is an extension of the dual frequency-domain interferometry (FDI) technique to multiple frequencies. Its objective is to reduce the ambiguity (resulting from the use of only two adjacent frequencies), inherent with the FDI technique. Different methods, commonly used in antenna array processing, are first described within the context of application to the FII technique. These methods are the Fourier-based imaging, the Capon's and the singular value decomposition method used with the MUSIC algorithm. Some preliminary simulations and tests performed on data collected with the middle and upper atmosphere (MU) radar (Shigaraki, Japan) are also presented. This work is a first step in the developments of the FII technique which seems to be very promising.

  6. Comparison of high-resolution ultrasonic resonator technology and Raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems.

    Science.gov (United States)

    Stillhart, Cordula; Kuentz, Martin

    2012-02-05

    Self-emulsifying drug delivery systems (SEDDS) are complex mixtures in which drug quantification can become a challenging task. Thus, a general need exists for novel analytical methods and a particular interest lies in techniques with the potential for process monitoring. This article compares Raman spectroscopy with high-resolution ultrasonic resonator technology (URT) for drug quantification in SEDDS. The model drugs fenofibrate, indomethacin, and probucol were quantitatively assayed in different self-emulsifying formulations. We measured ultrasound velocity and attenuation in the bulk formulation containing drug at different concentrations. The formulations were also studied by Raman spectroscopy. We used both, an in-line immersion probe for the bulk formulation and a multi-fiber sensor for measuring through hard-gelatin capsules that were filled with SEDDS. Each method was assessed by calculating the relative standard error of prediction (RSEP) as well as the limit of quantification (LOQ) and the mean recovery. Raman spectroscopy led to excellent calibration models for the bulk formulation as well as the capsules. The RSEP depended on the SEDDS type with values of 1.5-3.8%, while LOQ was between 0.04 and 0.35% (w/w) for drug quantification in the bulk. Similarly, the analysis of the capsules led to RSEP of 1.9-6.5% and LOQ of 0.01-0.41% (w/w). On the other hand, ultrasound attenuation resulted in RSEP of 2.3-4.4% and LOQ of 0.1-0.6% (w/w). Moreover, ultrasound velocity provided an interesting analytical response in cases where the drug strongly affected the density or compressibility of the SEDDS. We conclude that ultrasonic resonator technology and Raman spectroscopy constitute suitable methods for drug quantification in SEDDS, which is promising for their use as process analytical technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer’s disease

    Science.gov (United States)

    Plascencia-Villa, Germán; Ponce, Arturo; Collingwood, Joanna F.; Arellano-Jiménez, M. Josefina; Zhu, Xiongwei; Rogers, Jack T.; Betancourt, Israel; José-Yacamán, Miguel; Perry, George

    2016-01-01

    Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles. PMID:27121137

  8. Development of Grating Technology for High-Resolution Spectrometers Using Nanofabrication Techniques

    Data.gov (United States)

    National Aeronautics and Space Administration — Several of astronomy's key future science objectives as identified by NASA can be achieved with soft X-ray spectroscopy. This study seeks to develop a new technique...

  9. Techniques for Handling Channeling in High Resolution Fourier Transform Spectra Recorded with Synchrotron Sources

    International Nuclear Information System (INIS)

    Ibrahim, Amr; PredoiCross, Adriana; Teillet, P. M.

    2010-01-01

    Seven different techniques in dealing the problem of channel spectra in Fourier transform Spectroscopy utilizing synchrotron source were examined and compared. Five of these techniques deal with the artifacts (spikes) in the recorded interferogram which in turn result in channel spectra within the spectral domain. Such interferogram editing method include replacing these spikes with zeros, straight line, fitted polynomial curve, rescaled spike and spike reduced with Gauss Function. Another two techniques try to target this issue in the spectral domain instead by either generating a synthetic background simulating the channels or measuring the channels parameters (amplitude, spacing and phase) to use in the spectral fitting program. Results showed spectral domain techniques produces higher quality results in terms of signal to noise and fitting residual. The effect of each method on the line parameters such as position, intensity are air broadening are also measured and discussed.

  10. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    International Nuclear Information System (INIS)

    Matteson, J.L.; Pelling, M.R.; Peterson, L.E.

    1985-08-01

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4 ph/cm -2 -sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  11. Fast high resolution ADC based on the flash type with a special error correcting technique

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Zhong, Liang; Jing-Xi, Cao [Beijing Univ. (China). Inst. of Atomic Energy

    1984-03-01

    A fast 12 bits ADC based on the flash type with a simple special error correcting technique which can effectively compensate the level drift of the discriminators and the droop of the stretcher voltage is described. The DNL is comparable with the Wilkinson's ADC and long term drift is far better than its.

  12. Construction techniques of the high resolution lead / scintillating fibre electromagnetic calorimeter for the KLOE experiment

    International Nuclear Information System (INIS)

    Anelli, M.; Bisogni, G.; Ceccarelli, A.

    1997-07-01

    The electromagnetic calorimeter of the KLOE experiment is a lead-scintillating fibre sampling device. This calorimeter is arranged as a 'barrel', closed at both ends with an 'end-cap'. The barrel consists in 24 modules defining a cylinder, 4.3 long, with 4 m inner diameter. Each end-cap consists of 32 modules running vertically along the chords of the circle inscribed into the barrel. In this paper the calorimeter construction techniques are described

  13. Construction techniques of the high resolution lead / scintillating fibre electromagnetic calorimeter for the KLOE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M; Bisogni, G; Ceccarelli, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy); and others

    1997-07-01

    The electromagnetic calorimeter of the KLOE experiment is a lead-scintillating fibre sampling device. This calorimeter is arranged as a `barrel`, closed at both ends with an `end-cap`. The barrel consists in 24 modules defining a cylinder, 4.3 long, with 4 m inner diameter. Each end-cap consists of 32 modules running vertically along the chords of the circle inscribed into the barrel. In this paper the calorimeter construction techniques are described.

  14. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  15. High-resolution X-ray imaging - a powerful nondestructive technique for applications in semiconductor industry

    International Nuclear Information System (INIS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-01-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy). (orig.)

  16. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    International Nuclear Information System (INIS)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D

    2009-01-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  17. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Lavers, C; Franklin, P; Franklin, P; Plowman, A; Sayers, G; Bol, J; Shepard, D; Fields, D, E-mail: brnc-radarcomms1@nrta.mod.u [Sensors Team, Plymouth University at Britannia Royal Naval College, Dartmouth, Devon (United Kingdom) and Paignton Zoological Park, Paignton, Devon (United Kingdom); Thermal Wave Imaging, Inc., 845 Livernoise St, Ferndale, MI (United States); Buckfast Butterfly and Otter Sanctuary, Buckfast, Devon (United Kingdom)

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  18. A new iterative reconstruction technique for attenuation correction in high-resolution positron emission tomography

    International Nuclear Information System (INIS)

    Knesaurek, K.; Machac, J.; Vallabhajosula, S.; Buchsbaum, M.S.

    1996-01-01

    A new interative reconstruction technique (NIRT) for positron emission computed tomography (PET), which uses transmission data for nonuniform attenuation correction, is described. Utilizing the general inverse problem theory, a cost functional which includes a noise term was derived. The cost functional was minimized using a weighted-least-square maximum a posteriori conjugate gradient (CG) method. The procedure involves a change in the Hessian of the cost function by adding an additional term. Two phantoms were used in a real data acquisition. The first was a cylinder phantom filled with uniformly distributed activity of 74 MBq of fluorine-18. Two different inserts were placed in the phantom. The second was a Hoffman brain phantom filled with uniformly distributed activity of 7.4 MBq of 18 F. Resulting reconstructed images were used to test and compare a new interative reconstruction technique with a standard filtered backprojection (FBP) method. The results confirmed that NIRT, based on the conjugate gradient method, converges rapidly and provides good reconstructed images. In comaprison with standard results obtained by the FBP method, the images reconstructed by NIRT showed better noise properties. The noise was measured as rms% noise and was less, by a factor of 1.75, in images reconstructed by NIRT than in the same images reconstructed by FBP. The distance between the Hoffman brain slice created from the MRI image was 0.526, while the same distance for the Hoffman brain slice reconstructed by NIRT was 0.328. The NIRT method suppressed the propagation of the noise without visible loss of resolution in the reconstructed PET images. (orig.)

  19. Feasibility of the Shallow High Resolution Seismic Reflection Technique for Use at the Hanford Site

    International Nuclear Information System (INIS)

    S.M., Narbutovskih.

    1993-01-01

    Data obtained during site characterization should be useful to assess the need for remediation, to evaluate and design effective remedial plans, and to allow long-term monitoring to discern remediation effectiveness. A valuable environmental tool that incorporates this data is a model that describes groundwater and vadose zone flow and transport characteristics. Data on geology and hydrology combined with information on contaminant sources are incorporated into these conceptual models that delineate the relative significance of the various fluid migration pathways. Downstream these same models also support risk assessment, remediation design, and long-term assessment of remediation effectiveness. Consequently, the building of coherent, accurate vadose zone and groundwater models is fundamental to a successful remediation. Among the important requirements for these models is accurate knowledge of flow domain boundaries and soil characteristics. At the Hanford Site, this knowledge is obtained primarily from borehole data, which provides information only at a point. In the high energy flood and fluvial deposits found at the Hanford Site, it can, at times, be difficult to correlate lithologic horizons between boreholes. Where there is no borehole control, our understanding of the geometry of hydrogeologic boundaries and thus of fluid migration paths is limited. Surface geophysical techniques are generally used to provide a measure of geologic control between boreholes. In particular, the seismic reflection method has the potential to provide the greatest resolution of the subsurface hydrogeology between and beyond boreholes

  20. Analytical method by high resolution liquid chromatography for the stability study of cloratidine syrup 0.1 %

    International Nuclear Information System (INIS)

    Torres Amaro, Leonid; Garcia Penna, Caridad M; Pardo Ruiz, Zenia

    2007-01-01

    A high resolution liquid chromatography method was validated to study the stability of cloratidine syrup 0.1 %. The calibration curve in the range from 13.6 to 3.36 μg/mL was lineal, with a coefficient of correlation equal to 0.99975. The intercept and slope statistical test was not significant. The recovery obtained was 100.2 % in the concentration range studied, and the Cochran and Student (t) tests results were not important. The variation coefficient in the repeatability study was equal to 0.41 % for 10 replications assayed, whereas in the reproducibility Fischer and Student tests were not remarkable. The method proved to be specific, lineal, accurate, and exact. (Author)

  1. High resolution characterization of uranium in sediments by DGT and DET techniques ACA-S-12-2197

    Czech Academy of Sciences Publication Activity Database

    Gregušová, Michaela; Dočekal, Bohumil

    2013-01-01

    Roč. 763, FEB 6 (2013), s. 50-56 ISSN 0003-2670 R&D Projects: GA ČR GAP503/10/2002 Institutional support: RVO:68081715 Keywords : Diffusive gradient in thin films technique * Diffusive equilibrium technique * Uranium * Sediment Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 4.517, year: 2013 http://www.scopus.com/record/display.url?fedsrfIntegrator=COSMADRALI-SCOCIT&origin=fedsrf&view=basic&eid=2-s2.0-84872594514

  2. Analytical chemistry: Principles and techniques

    International Nuclear Information System (INIS)

    Hargis, L.G.

    1988-01-01

    Although this text seems to have been intended for use in a one-semester course in undergraduate analytical chemistry, it includes the range of topics usually encountered in a two-semester introductory course in chemical analysis. The material is arranged logically for use in a two-semester course: the first 12 chapters contain the subjects most often covered in the first term, and the next 10 chapters pertain to the second (instrumental) term. Overall breadth and level of treatment are standards for an undergraduate text of this sort, and the only major omission is that of kinetic methods (which is a common omission in analytical texts). In the first 12 chapters coverage of the basic material is quite good. The emphasis on the underlying principles of the techniques rather than on specifics and design of instrumentation is welcomed. This text may be more useful for the instrumental portion of an analytical chemistry course than for the solution chemistry segment. The instrumental analysis portion is appropriate for an introductory textbook

  3. Nuclear analytical techniques in medicine

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future

  4. Nuclear analytical techniques in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R.

    1988-01-01

    This book acquaints one with the fundamental principles and the instrumentation relevant to analytical technique based on atomic and nuclear physics, as well as present and future biomedical applications. Besides providing a theoretical description of the physical phenomena, a large part of the book is devoted to applications in the medical and biological field, particularly in hematology, forensic medicine and environmental science. This volume reviews methods such as the possibility of carrying out rapid multi-element analysis of trace elements on biomedical samples, in vitro and in vivo, by XRF-analysis; the ability of the PIXE-microprobe to analyze in detail and to map trace elements in fragments of biomedical samples or inside the cells; the potentiality of in vivo nuclear activation analysis for diagnostic purposes. Finally, techniques are described such as radiation scattering (elastic and inelastic scattering) and attenuation measurements which will undoubtedly see great development in the immediate future.

  5. Imaging of cranial nerves with three-dimensional high resolution diffusion-weighted MR sequence based on SSFP technique

    International Nuclear Information System (INIS)

    Zhang Zhongwei; Chen Yingming; Meng Quanfei

    2008-01-01

    Objective: To depict the normal anatomy of cranial nerves in detail and define the exact relationships between cranial nerves and adjacent structures with three-dimensional high resolution diffusion-weighted MR sequence based on SSFP technique (3D DW-SSFP). Methods: 3D DW- SSFP sequence was performed and axial images were obtained in 12 healthy volunteers Post-processing techniques were used to generate images of cranial nerves, and the images acquired were compared with anatomical sections and diagrams of textbook. Results: In all subjects, 3D DW-SSFP sequence could produce homogeneous images and high contrast between the cranial nerves and other solid structures. The intracranial portions of all cranial nerves except olfactory nerve were identified; the extracranial portions of nerve Ⅱ-Ⅻ were identified in all subjects bilaterally. Conclusion: The 3D DW-SSFP sequence can characterize the normal MR appearance of cranial nerves and its branches and the ability to define the nerves may provide greater sensitivity and specificity in detecting abnormalities of craniofacial structure. (authors)

  6. Optimization of PCR Condition: The First Study of High Resolution Melting Technique for Screening of APOA1 Variance.

    Science.gov (United States)

    Wahyuningsih, Hesty; K Cayami, Ferdy; Bahrudin, Udin; A Sobirin, Mochamad; Ep Mundhofir, Farmaditya; Mh Faradz, Sultana; Hisatome, Ichiro

    2017-03-01

    High resolution melting (HRM) is a post-PCR technique for variant screening and genotyping based on the different melting points of DNA fragments. The advantages of this technique are that it is fast, simple, and efficient and has a high output, particularly for screening of a large number of samples. APOA1 encodes apolipoprotein A1 (apoA1) which is a major component of high density lipoprotein cholesterol (HDL-C). This study aimed to obtain an optimal quantitative polymerase chain reaction (qPCR)-HRM condition for screening of APOA1 variance. Genomic DNA was isolated from a peripheral blood sample using the salting out method. APOA1 was amplified using the RotorGeneQ 5Plex HRM. The PCR product was visualized with the HRM amplification curve and confirmed using gel electrophoresis. The melting profile was confirmed by looking at the melting curve. Five sets of primers covering the translated region of APOA1 exons were designed with expected PCR product size of 100-400 bps. The amplified segments of DNA were amplicons 2, 3, 4A, 4B, and 4C. Amplicons 2, 3 and 4B were optimized at an annealing temperature of 60 °C at 40 PCR cycles. Amplicon 4A was optimized at an annealing temperature of 62 °C at 45 PCR cycles. Amplicon 4C was optimized at an annealing temperature of 63 °C at 50 PCR cycles. In addition to the suitable procedures of DNA isolation and quantification, primer design and an estimated PCR product size, the data of this study showed that appropriate annealing temperature and PCR cycles were important factors in optimization of HRM technique for variant screening in APOA1 .

  7. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques

    International Nuclear Information System (INIS)

    Maldonado, J.; Sole, A.; Puyen, Z.M.; Esteve, I.

    2011-01-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity.

  8. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, J.; Sole, A.; Puyen, Z.M. [Departament de Genetica i Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, Cerdanyola del Valles, Bellaterra (Spain); Esteve, I., E-mail: isabel.esteve@uab.cat [Departament de Genetica i Microbiologia, Facultat de Biociencies, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, Cerdanyola del Valles, Bellaterra (Spain)

    2011-07-15

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-{lambda}scan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity.

  9. Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques.

    Science.gov (United States)

    Maldonado, J; Solé, A; Puyen, Z M; Esteve, I

    2011-07-01

    Lead (Pb) is a metal that is non-essential to any metabolic process and, moreover, highly deleterious to life. In microbial mats - benthic stratified ecosystems - located in coastal areas, phototrophic microorganisms (algae and oxygenic phototrophic bacteria) are the primary producers and they are exposed to pollution by metals. In this paper we describe the search for bioindicators among phototrophic populations of Ebro delta microbial mats, using high-resolution microscopic techniques that we have optimized in previous studies. Confocal laser scanning microscopy coupled to a spectrofluorometric detector (CLSM-λscan) to determine in vivo sensitivity of different cyanobacteria to lead, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM), both coupled to energy dispersive X-ray microanalysis (EDX), to determine the extra- and intracellular sequestration of this metal in cells, were the techniques used for this purpose. Oscillatoria sp. PCC 7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313 tested in this paper could be considered bioindicators for lead pollution, because all of these microorganisms are indigenous, have high tolerance to high concentrations of lead and are able to accumulate this metal externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Experiments made with microcosms demonstrated that Phormidium-like and Lyngbya-like organisms selected themselves at the highest concentrations of lead assayed. In the present study it is shown that all cyanobacteria studied (both in culture and in microcosms) present PP inclusions in their cytoplasm and that these increase in number in lead polluted cultures and microcosms. We believe that the application of these microscopic techniques open up broad prospects for future studies of metal ecotoxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique - a feasibility study

    International Nuclear Information System (INIS)

    AlObaidy, Mamdoh; Ramalho, Miguel; Busireddy, Kiran K.R.; Liu, Baodong; Burke, Lauren M.; Altun, Ersan; Semelka, Richard C.; Dale, Brian M.

    2015-01-01

    To assess the feasibility of high-resolution 3D-gradient-recalled echo (GRE) fat-suppressed T1-weighted images using controlled aliasing acceleration technique (CAIPIRINHA-VIBE), and compare image quality and lesion detection to standard-resolution 3D-GRE images using conventional acceleration technique (GRAPPA-VIBE). Eighty-four patients (41 males, 43 females; age range: 14-90 years, 58.8 ± 15.6 years) underwent abdominal MRI at 1.5 T with CAIPIRINHA-VIBE [spatial resolution, 0.76 ± 0.04 mm] and GRAPPA-VIBE [spatial resolution, 1.17 ± 0.14 mm]. Two readers independently reviewed image quality, presence of artefacts, lesion conspicuity, and lesion detection. Kappa statistic was used to assess interobserver agreement. Wilcoxon signed-rank test was used for image qualitative pairwise comparisons. Logistic regression with post-hoc testing was used to evaluate statistical significance of lesions evaluation. Interobserver agreement ranged between 0.45-0.93. Pre-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and lesion conspicuity with decreased residual aliasing, but more noise enhancement and inferior image quality. Post-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and higher lesion conspicuity, with less respiratory motion and residual aliasing artefacts. Inferior fat-suppression was noticeable on CAIPIRINHA-VIBE sequences (p < 0.001). High in-plane resolution abdominal 3D-GRE fat-suppressed T1-weighted imaging using controlled-aliasing acceleration technique is feasible and yields sharper images compared to standard-resolution images using standard acceleration, with higher post-contrast image quality and trend for improved hepatic lesions detection. (orig.)

  11. High-resolution 3D-GRE imaging of the abdomen using controlled aliasing acceleration technique - a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    AlObaidy, Mamdoh; Ramalho, Miguel; Busireddy, Kiran K.R.; Liu, Baodong; Burke, Lauren M.; Altun, Ersan; Semelka, Richard C. [University of North Carolina at Chapel Hill, Department of Radiology, Chapel Hill, NC (United States); Dale, Brian M. [Siemens Medical Solutions, MR Research and Development, Morrisville, NC (United States)

    2015-12-15

    To assess the feasibility of high-resolution 3D-gradient-recalled echo (GRE) fat-suppressed T1-weighted images using controlled aliasing acceleration technique (CAIPIRINHA-VIBE), and compare image quality and lesion detection to standard-resolution 3D-GRE images using conventional acceleration technique (GRAPPA-VIBE). Eighty-four patients (41 males, 43 females; age range: 14-90 years, 58.8 ± 15.6 years) underwent abdominal MRI at 1.5 T with CAIPIRINHA-VIBE [spatial resolution, 0.76 ± 0.04 mm] and GRAPPA-VIBE [spatial resolution, 1.17 ± 0.14 mm]. Two readers independently reviewed image quality, presence of artefacts, lesion conspicuity, and lesion detection. Kappa statistic was used to assess interobserver agreement. Wilcoxon signed-rank test was used for image qualitative pairwise comparisons. Logistic regression with post-hoc testing was used to evaluate statistical significance of lesions evaluation. Interobserver agreement ranged between 0.45-0.93. Pre-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and lesion conspicuity with decreased residual aliasing, but more noise enhancement and inferior image quality. Post-contrast CAIPIRINHA-VIBE showed significantly (p < 0.001) sharper images and higher lesion conspicuity, with less respiratory motion and residual aliasing artefacts. Inferior fat-suppression was noticeable on CAIPIRINHA-VIBE sequences (p < 0.001). High in-plane resolution abdominal 3D-GRE fat-suppressed T1-weighted imaging using controlled-aliasing acceleration technique is feasible and yields sharper images compared to standard-resolution images using standard acceleration, with higher post-contrast image quality and trend for improved hepatic lesions detection. (orig.)

  12. High resolution diffraction imaging of mercuric iodide: Demonstration of the necessity for alternate crystal processing techniques for highly purified material

    International Nuclear Information System (INIS)

    Steiner, B.; Berg, L. van den; Laor, U.

    1995-01-01

    The overall crystalline lattice uniformity in recently available, highly purified mercuric iodide single crystals has been shown to be impacted by crystal handling techniques that were previously satisfactory. High resolution diffraction imaging of the surface regularity of crystals of various levels of purity and growth orientation shows: (1) that the newer materials have a generally lower level of precipitates, (2) that the incidence of these precipitates is now closely correlated with growth direction, and (3) that the deformation resistance and resulting sensitivity to crystal handling procedures are also closely correlated with these factors in this soft material. As a result, gentler cutting and polishing procedures have been developed and are shown to be effective in preserving overall lattice regularity in the new material. The polishing required to remove residual surface scratches affect the lattice orientation of the softer, precipitate-free regions, while not affecting those regions with detectable levels of precipitates. These results correlate closely with the electrical properties of devices made from these crystals. Mercuric iodide single crystals have proved to be particularly useful for x and γ ray detectors because their room temperature operation allow for simple, efficient, and compact instrumentation

  13. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    Science.gov (United States)

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  14. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    Science.gov (United States)

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. An integrated strategy for in vivo metabolite profiling using high-resolution mass spectrometry based data processing techniques

    International Nuclear Information System (INIS)

    Guo, Jian; Zhang, Minli; Elmore, Charles S.; Vishwanathan, Karthick

    2013-01-01

    Graphical abstract: -- Highlights: •Profiling the metabolites of model compounds in rats using high resolution mass spectrometry based data processing techniques. •Demonstrating an integrated strategy in vivo metabolite profiling using data mining tools. •Unusual metabolites generated via thiazole-ring opening were characterized based on processed LC–MS.data. -- Abstract: An ongoing challenge of drug metabolite profiling is to detect and identify unknown or low-level metabolites in complex biological matrices. Here we present a generic strategy for metabolite detection using multiple accurate-mass-based data processing tools via the analysis of rat samples of two model drug candidates, AZD6280 and AZ12488024. First, the function of isotopic pattern recognition was proved to be highly effective in the detection of metabolites derived from [ 14 C]-AZD6280 that possesses a distinct isotopic pattern. The metabolites revealed using this approach were in excellent qualitative correlation to those observed in radiochromatograms. Second, the effectiveness of accurate mass based untargeted data mining tools such as background subtraction, mass defect filtering, or a data mining package (MZmine) used for metabolomic analysis in detection of metabolites of [ 14 C]-AZ12488024 in rat urine, feces, bile and plasma samples was examined and a total of 33 metabolites of AZ12488024 were detected. Among them, at least 16 metabolites were only detected by the aid of the data mining packages and not via radiochromatograms. New metabolic pathways such as S-oxidation and thiomethylation reactions occurring on the thiazole ring were proposed based on the processed data. The results of these experiments also demonstrated that accurate mass-based mass defect filtering (MDF) and data mining techniques used in metabolomics are complementary and can be valuable tools for delineating low-level metabolites in complex matrices. Furthermore, the application of distinct multiple data

  16. Development of a technique for long-term detection of precursors of strong earthquakes using high-resolution satellite images

    Science.gov (United States)

    Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.

    2012-12-01

    Among a variety of processes involved in seismic activity, the principal process is the accumulation and relaxation of stress in the crust, which takes place at the depth of tens of kilometers. While the Earth's surface bears at most the indirect sings of the accumulation and relaxation of the crust stress, it has long been understood that there is a strong correspondence between the structure of the underlying crust and the landscape. We assume the structure of the lineaments reflects an internal structure of the Earth's crust, and the variation of the lineament number and arrangement reflects the changes in the stress patterns related to the seismic activity. Contrary to the existing assumptions that lineament structure changes only at the geological timescale, we have found that the much faster seismic activity strongly affects the system of lineaments extracted from the high-resolution multispectral satellite images. Previous studies have shown that accumulation of the stress in the crust previous to a strong earthquake is directly related to the number increment and preferential orientation of lineament configuration present in the satellite images of epicenter zones. This effect increases with the earthquake magnitude and can be observed approximately since one month before. To study in details this effect we have developed a software based on a series of algorithms for automatic detection of lineaments. It was found that the Hough transform implemented after the application of discontinuity detection mechanisms like Canny edge detector or directional filters is the most robust technique for detection and characterization of changes in the lineament patterns related to strong earthquakes, which can be used as a robust long-term precursor of earthquakes indicating regions of strong stress accumulation.

  17. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  18. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  19. High Resolution Spatio Temporal Moments Analysis of Solute Migration Captured using Pre-clinical Medical Imaging Techniques

    Science.gov (United States)

    Dogan, M.; Moysey, S. M.; Powell, B. A.; DeVol, T. A.

    2016-12-01

    Advances in medical imaging technologies are continuously expanding the range of applications enabled within the earth sciences. While computed x-ray tomography (CT) scans have traditionally been used for investigating the structure of geologic materials, it is now possible to perform 3D time-lapse imaging of dynamic processes, such as monitoring the infiltration of water into a soil, with sub-millimeter resolution. Likewise, single photon emission computed tomography (SPECT) can provide information on the evolution of solute transport with spatial resolution on the order of a millimeter by tracking the migration of gamma-ray emitting isotopes like 99mTc and 111In. While these imaging techniques are revolutionizing our ability to look within porous media, techniques for the analysis of such rich and large data sets are limited. The spatial and temporal moments of a plume have long been used to provide quantitative measures to describe plume movement in a wide range of settings from the lab to field. Moment analysis can also be used to estimate the hydrologic properties of the porous media. In this research, we investigate the use of moments for analyzing a high resolution 4D SPECT data set collected during a 99mTc transport experiment performed in a heterogeneous column. The 4D nature of the data set makes it amenable to the use of data mining and pattern recognition methods, such as cluster analysis, to identify regions or zones within the data that exhibit abnormal or unexpected behaviors. We then compare anomalous features within the SPECT data to similar features identified within the CT image to relate the flow behavior to pore-scale structures, such as porosity differences and macropores. Such comparisons help to identify whether these features are good predictors of preferential transport. Likewise, we evaluate whether local analysis of moments can be used to infer apparent parameters governing non-conservative transport in a heterogeneous porous media, such

  20. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography

    NARCIS (Netherlands)

    Thimm, B.W.; Hofmann, S.; Schneider, P.; Carretta, R.; Müller, R.

    2012-01-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required

  1. ARPEFS as an analytic technique

    International Nuclear Information System (INIS)

    Schach von Wittenau, A.E.

    1991-04-01

    Two modifications to the ARPEFS technique are introduced. These are studied using p(2 x 2)S/Cu(001) as a model system. The first modification is the obtaining of ARPEFS χ(k) curves at temperatures as low as our equipment will permit. While adding to the difficulty of the experiment, this modification is shown to almost double the signal-to-noise ratio of normal emission p(2 x 2)S/Cu(001) χ(k) curves. This is shown by visual comparison of the raw data and by the improved precision of the extracted structural parameters. The second change is the replacement of manual fitting of the Fourier filtered χ(k) curves by the use of the simplex algorithm for parameter determination. Again using p(2 x 2)S/Cu(001) data, this is shown to result in better agreement between experimental χ(k) curves and curves calculated based on model structures. The improved ARPEFS is then applied to p(2 x 2)S/Ni(111) and (√3 x √3) R30 degree S/Ni(111). For p(2 x 2)S/Cu(001) we find a S-Cu bond length of 2.26 Angstrom, with the S adatom 1.31 Angstrom above the fourfold hollow site. The second Cu layer appears to be corrugated. Analysis of the p(2 x 2)S/Ni(111) data indicates that the S adatom adatom adsorbs onto the FCC threefold hollow site 1.53 Angstrom above the Ni surface. The S-Ni bond length is determined to be 2.13 Angstrom, indicating an outwards shift of the first layer Ni atoms. We are unable to assign a unique structure to (√3 x √3)R30 degree S/Ni(111). An analysis of the strengths and weaknesses of ARPEFS as an experimental and analytic technique is presented, along with a summary of problems still to be addressed

  2. Development of High Resolution Resonance Ionization Mass Spectrometry for Neutron Dosimetry Technique with93Nb(n,n'93mNb Reaction

    Directory of Open Access Journals (Sweden)

    Tomita Hideki

    2016-01-01

    Full Text Available We have proposed an advanced technique to measure the 93mNb yield precisely by Resonance Ionization Mass Spectrometry, instead of conventional characteristic X-ray spectroscopy. 93mNb-selective resonance ionization is achievable by distinguishing the hyperfine splitting of the atomic energy levels between 93Nb and 93mNb at high resolution. In advance of 93mNb detection, we could successfully demonstrate high resolution resonant ionization spectroscopy of stable 93Nb using an all solid-state, narrow-band and tunable Ti:Sapphire laser system operated at 1 kHz repetition rate.

  3. High-resolution MR technique allowing visualization of the course of the inferior alveolar nerve along cystic processes

    Energy Technology Data Exchange (ETDEWEB)

    Kress, B. [Department of Radiology, Bundeswehrkrankenhaus Ulm, Ulm (Germany); Division of Neuroradiology, Department of Neurology, University of Heidelberg, Heidelberg (Germany); Division of Neuroradiology, Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg (Germany); Nissen, S.; Gottschalk, A.; Solbach, T.; Baehren, W. [Department of Radiology, Bundeswehrkrankenhaus Ulm, Ulm (Germany); Anders, L.; Wentzler, C.; Palm, F. [Department of Oro-Maxillo-Facial Surgery, Bundeswehrkrankenhaus Ulm, Ulm (Germany); Sartor, K. [Division of Neuroradiology, Department of Neurology, University of Heidelberg, Heidelberg (Germany)

    2003-07-01

    Magnetic resonance imaging is not established in the preoperative diagnosis of mandibular cystic lesions; therefore, no attempts have been made thus far to evaluate the course of the mandibular neurovascular bundle along the process. However, the radiologist can detect the neurovascular bundle along the cystic lesion by high-resolution MR imaging and convey this information to the maxillofacial surgeon. This reduces the risk of intraoperative damage of the nerve. The examination of the neurovascular bundle can easily be integrated in a tumor MRI protocol of the jaw if the slice orientation is adapted to the course of the mandibular canal. (orig.)

  4. A high-resolution processing technique for improving the energy of weak signal based on matching pursuit

    Directory of Open Access Journals (Sweden)

    Shuyan Wang

    2016-05-01

    Full Text Available This paper proposes a new method to improve the resolution of the seismic signal and to compensate the energy of weak seismic signal based on matching pursuit. With a dictionary of Morlet wavelets, matching pursuit algorithm can decompose a seismic trace into a series of wavelets. We abstract complex-trace attributes from analytical expressions to shrink the search range of amplitude, frequency and phase. In addition, considering the level of correlation between constituent wavelets and average wavelet abstracted from well-seismic calibration, we can obtain the search range of scale which is an important adaptive parameter to control the width of wavelet in time and the bandwidth of frequency. Hence, the efficiency of selection of proper wavelets is improved by making first a preliminary estimate and refining a local selecting range. After removal of noise wavelets, we integrate useful wavelets which should be firstly executed by adaptive spectral whitening technique. This approach can improve the resolutions of seismic signal and enhance the energy of weak wavelets simultaneously. The application results of real seismic data show this method has a good perspective of application.

  5. Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry.

    Science.gov (United States)

    Görgens, Christian; Guddat, Sven; Thomas, Andreas; Wachsmuth, Philipp; Orlovius, Anne-Katrin; Sigmund, Gerd; Thevis, Mario; Schänzer, Wilhelm

    2016-11-30

    So far, in sports drug testing compounds of different classes are processed and measured using different screening procedures. The constantly increasing number of samples in doping analysis, as well as the large number of substances with doping related, pharmacological effects require the development of even more powerful assays than those already employed in sports drug testing, indispensably with reduced sample preparation procedures. The analysis of native urine samples after direct injection provides a promising analytical approach, which thereby possesses a broad applicability to many different compounds and their metabolites, without a time-consuming sample preparation. In this study, a novel multi-target approach based on liquid chromatography and high resolution/high accuracy mass spectrometry is presented to screen for more than 200 analytes of various classes of doping agents far below the required detection limits in sports drug testing. Here, classic groups of drugs as diuretics, stimulants, β 2 -agonists, narcotics and anabolic androgenic steroids as well as various newer target compounds like hypoxia-inducible factor (HIF) stabilizers, selective androgen receptor modulators (SARMs), selective estrogen receptor modulators (SERMs), plasma volume expanders and other doping related compounds, listed in the 2016 WADA prohibited list were implemented. As a main achievement, growth hormone releasing peptides could be implemented, which chemically belong to the group of small peptides (0.99), limit of detection (0.1-25ng/mL; 3'OH-stanozolol glucuronide: 50pg/mL; dextran/HES: 10μg/mL) and matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fat suppression techniques for obtaining high resolution dynamic contrast enhanced bilateral breast MR images at 7 tesla

    DEFF Research Database (Denmark)

    van der Velden, Tijl A; Schmitz, Alexander M Th; Gilhuijs, Kenneth G A

    2016-01-01

    contained 3D T1-weighted gradient echo images obtained with both WSE fat suppression, multi echo Dixon fat suppression, and without fat suppression. Images were acquired at a (0.8mm)(3) or (0.7mm)(3) isotropic resolution with equal field of view and optimized such to obtain a maximal SNR. Image quality...... was scored qualitatively on overall image quality, sharpness of anatomical details, presence of artefacts, inhomogeneous fat suppression and the presence of water-fat shift. A quantitative scoring was obtained from the signal to noise ratio and contrast to noise ratio. RESULTS: WSE scored significantly...... better in terms of overall image quality and the absence of artefacts. No significant difference in contrast to noise ratio was found between the two fat suppression methods. CONCLUSION: When maximizing temporal and spatial resolution of high resolution DCE MRI of the breast, water selective excitation...

  7. Shadow Analysis Technique for Extraction of Building Height using High Resolution Satellite Single Image and Accuracy Assessment

    Science.gov (United States)

    Raju, P. L. N.; Chaudhary, H.; Jha, A. K.

    2014-11-01

    These High resolution satellite data with metadata information is used to extract the height of the building using shadow. Proposed approach divides into two phases 1) rooftop and shadow extraction and 2) height estimation. Firstly the rooftop and shadow region were extracted by manual/ automatic methods using Example - Based and Rule - Based approaches. After feature extraction next step is estimating height of the building by taking rooftop in association with shadow using Ratio Method and by using the relation between sun-satellite geometry. The performance analysis shows the total mean error of height is 0.67 m from ratio method, 1.51 m from Example - Based Approach and 0.96 m from Rule - Based Approach. Analysis concluded that Ratio Method i.e. manual method is best for height estimation but it is time consuming so the automatic Rule Based approach is best for height estimation in comparison to Example Based Approach because it require more knowledge and selection of more training samples as well as slows the processing rate of the method.

  8. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Dong-Xing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Williams, Paul N. [Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL (United Kingdom); Xu, Hua-Cheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Gang [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Luo, Jun, E-mail: esluojun@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Ma, Lena Q. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States)

    2016-10-05

    Highlights: • Two high-resolution diffusive gradients in thin-films samplers were characterized. • For the first time DGT was applied to study the bioavailability of W in soils. • 1D and 2D high resolution profiling of W fluxes across the SWI were obtained. • The apparent diffusion W fluxes across two micro-interfaces were calculated. - Abstract: Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. {sup Ferrihydrite}DGT can measure W at various ionic strengths (0.001–0.5 mol L{sup −1} NaNO{sub 3}) and pH (4–8), while {sup PZ}DGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment—water and hotspot—bulk media interfaces from Lake Taihu were obtained using {sup PZ}DGT coupled with laser ablation ICP–MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.

  9. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    Science.gov (United States)

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.

  10. Comparison of laser fluorimetry, high resolution gamma-ray spectrometry and neutron activation analysis techniques for determination of uranium content in soil samples

    International Nuclear Information System (INIS)

    Ghods, A.; Asgharizadeh, F.; Salimi, B.; Abbasi, A.

    2004-01-01

    Much more concern is given nowadays for exposure of the world population to natural radiation especially to uranium since 57% of that exposure is due to radon-222, which is a member of uranium decay series. Most of the methods used for uranium determination is low concentration require either tedious separation and preconcentration or the accessibility to special instrumentation for detection of uranium at this low level. this study compares three techniques and methods for uranium analysis among different soil sample with variable uranium contents. Two of these techniques, neutron activation analysis and high resolution gamma-ray spectrometry , are non-destructive while the other, laser fluorimetry is done via chemical extraction of uranium. Analysis of standard materials is done also to control the quality and accuracy of the work. In spite of having quite variable ranges of detection limit, results obtained by high resolution gamma-ray spectrometry based on the assumption of having secular equilibrium between uranium and its daughters, which causes deviation whenever this condition was missed. For samples with reasonable uranium content, neutron activation analysis would be a rapid and reliable technique, while for low uranium content laser fluorimetry would be the most appropriate and accurate technique

  11. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  12. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  13. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-02-01

    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  14. A colorimetric DET technique for the high-resolution measurement of two-dimensional alkalinity distributions in sediment porewaters

    DEFF Research Database (Denmark)

    Bennett, William W.; Welsh, David T.; Serriere, Antoine

    2015-01-01

    Measurements of porewater alkalinity are fundamental to the study of organic matter mineralization in sediments, which plays an essential role in the global cycles of carbon and nutrients. A new colorimetric diffusive equilibration in thin film (DET) technique is described for measuring two-dimen...

  15. High-resolution, short-range, in-mine geophysical techniques for the delineation of South African orebodies

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2006-02-28

    Full Text Available ) • Geophysical techniques Ground penetrating radar (GPR) Borehole radar Electrical resistance tomography (ERT) • Case studies Waterval Mine (GPR) Mponeng Gold Mine (Borehole Radar) Western Platinum Mine (ERT) • Conclusion • Future research... equivalent – e.g. electrical resistance tomography (ERT) is based on medical impedance tomography Gold and platinum mining in South Africa An overview Slide 9 © CSIR 2006 www.csir.co.za Gold and platinum mining in South Africa...

  16. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  17. Appendix 1: Analytical Techniques (Online supplementary material ...

    Indian Academy of Sciences (India)

    HP

    Further details of analytical techniques are given in http://www.actlabs.com. Zircon U–Pb dating and trace element analysis. The zircons were separated using standard procedures including crushing (in iron mortar and pestle), sieving (375 to 75 micron), tabling, heavy liquid separation (bromoform and methylene iodide) ...

  18. Hyphenated analytical techniques for materials characterisation

    Science.gov (United States)

    Armstrong, Gordon; Kailas, Lekshmi

    2017-09-01

    This topical review will provide a survey of the current state of the art in ‘hyphenated’ techniques for characterisation of bulk materials, surface, and interfaces, whereby two or more analytical methods investigating different properties are applied simultaneously to the same sample to better characterise the sample than can be achieved by conducting separate analyses in series using different instruments. It is intended for final year undergraduates and recent graduates, who may have some background knowledge of standard analytical techniques, but are not familiar with ‘hyphenated’ techniques or hybrid instrumentation. The review will begin by defining ‘complementary’, ‘hybrid’ and ‘hyphenated’ techniques, as there is not a broad consensus among analytical scientists as to what each term means. The motivating factors driving increased development of hyphenated analytical methods will also be discussed. This introduction will conclude with a brief discussion of gas chromatography-mass spectroscopy and energy dispersive x-ray analysis in electron microscopy as two examples, in the context that combining complementary techniques for chemical analysis were among the earliest examples of hyphenated characterisation methods. The emphasis of the main review will be on techniques which are sufficiently well-established that the instrumentation is commercially available, to examine physical properties including physical, mechanical, electrical and thermal, in addition to variations in composition, rather than methods solely to identify and quantify chemical species. Therefore, the proposed topical review will address three broad categories of techniques that the reader may expect to encounter in a well-equipped materials characterisation laboratory: microscopy based techniques, scanning probe-based techniques, and thermal analysis based techniques. Examples drawn from recent literature, and a concluding case study, will be used to explain the

  19. Hyphenated analytical techniques for materials characterisation

    International Nuclear Information System (INIS)

    Armstrong, Gordon; Kailas, Lekshmi

    2017-01-01

    This topical review will provide a survey of the current state of the art in ‘hyphenated’ techniques for characterisation of bulk materials, surface, and interfaces, whereby two or more analytical methods investigating different properties are applied simultaneously to the same sample to better characterise the sample than can be achieved by conducting separate analyses in series using different instruments. It is intended for final year undergraduates and recent graduates, who may have some background knowledge of standard analytical techniques, but are not familiar with ‘hyphenated’ techniques or hybrid instrumentation. The review will begin by defining ‘complementary’, ‘hybrid’ and ‘hyphenated’ techniques, as there is not a broad consensus among analytical scientists as to what each term means. The motivating factors driving increased development of hyphenated analytical methods will also be discussed. This introduction will conclude with a brief discussion of gas chromatography-mass spectroscopy and energy dispersive x-ray analysis in electron microscopy as two examples, in the context that combining complementary techniques for chemical analysis were among the earliest examples of hyphenated characterisation methods. The emphasis of the main review will be on techniques which are sufficiently well-established that the instrumentation is commercially available, to examine physical properties including physical, mechanical, electrical and thermal, in addition to variations in composition, rather than methods solely to identify and quantify chemical species. Therefore, the proposed topical review will address three broad categories of techniques that the reader may expect to encounter in a well-equipped materials characterisation laboratory: microscopy based techniques, scanning probe-based techniques, and thermal analysis based techniques. Examples drawn from recent literature, and a concluding case study, will be used to explain the

  20. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  1. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    International Nuclear Information System (INIS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-01-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300 s was demonstrated. Also, the system could track an object with a velocity of up to 35 000 μm/s (175 diameters/s), which is significantly faster than swimming micro-organisms

  2. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV Imagery, Based on Structure from Motion (SfM Point Clouds

    Directory of Open Access Journals (Sweden)

    Christopher Watson

    2012-05-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are an exciting new remote sensing tool capable of acquiring high resolution spatial data. Remote sensing with UAVs has the potential to provide imagery at an unprecedented spatial and temporal resolution. The small footprint of UAV imagery, however, makes it necessary to develop automated techniques to geometrically rectify and mosaic the imagery such that larger areas can be monitored. In this paper, we present a technique for geometric correction and mosaicking of UAV photography using feature matching and Structure from Motion (SfM photogrammetric techniques. Images are processed to create three dimensional point clouds, initially in an arbitrary model space. The point clouds are transformed into a real-world coordinate system using either a direct georeferencing technique that uses estimated camera positions or via a Ground Control Point (GCP technique that uses automatically identified GCPs within the point cloud. The point cloud is then used to generate a Digital Terrain Model (DTM required for rectification of the images. Subsequent georeferenced images are then joined together to form a mosaic of the study area. The absolute spatial accuracy of the direct technique was found to be 65–120 cm whilst the GCP technique achieves an accuracy of approximately 10–15 cm.

  3. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography.

    Science.gov (United States)

    Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph

    2012-03-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.

  4. Sequestration and in vivo effect of lead on DE2009 microalga, using high-resolution microscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, Juan [Department of Genetics and Microbiology, Biosciences Faculty, Universitat Autonoma de Barcelona, Edifici C - Campus de la UAB, Bellaterra 08193, Barcelona (Spain); Rios, Asuncion de los [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo, 28006 Madrid (Spain); Esteve, Isabel [Department of Genetics and Microbiology, Biosciences Faculty, Universitat Autonoma de Barcelona, Edifici C - Campus de la UAB, Bellaterra 08193, Barcelona (Spain); Ascaso, Carmen [Instituto de Recursos Naturales, Centro de Ciencias Medioambientales (CSIC), Serrano 115 dpdo, 28006 Madrid (Spain); Puyen, Zully M.; Brambilla, Cecilia [Department of Genetics and Microbiology, Biosciences Faculty, Universitat Autonoma de Barcelona, Edifici C - Campus de la UAB, Bellaterra 08193, Barcelona (Spain); Sole, Antonio, E-mail: antoni.sole@uab.cat [Department of Genetics and Microbiology, Biosciences Faculty, Universitat Autonoma de Barcelona, Edifici C - Campus de la UAB, Bellaterra 08193, Barcelona (Spain)

    2010-11-15

    Algae are primary producers in a wide variety of natural ecosystems, and these microorganisms have been used in bioremediation studies. Nevertheless, very little is known about the in vivo effect of heavy metals on individual living cells. In this paper, we have applied a method based on confocal laser scanning microscopy and lambda scan function (CLSM-{lambda}scan) to determine the effect of lead (Pb), at different concentrations, on the DE2009 microalga. At the same time, we have optimized a method based on CLSM and image-analysis software (CLSM-IA) to determine in vivo biomass of this microorganism. The results obtained by lambda scan function indicated that the pigment peak decreases while the concentration of metal increases at pH 7. On the other hand at pH 4 there is no good correlation between the concentration of metal and the intensity of the emission of fluorescence of the pigment. Also, in some cases a displacement of the Chl a peak towards 680 nm is produced. Total and individual biomass determined by CLSM-IA shows statistically significant differences between unpolluted and 10 mM polluted cultures. Complementary studies using electron microscopy techniques coupled to energy dispersive X-ray microanalysis (EDX) demonstrate that the microalga can sequestrate Pb extra- and intracellularly.

  5. Sequestration and in vivo effect of lead on DE2009 microalga, using high-resolution microscopic techniques

    International Nuclear Information System (INIS)

    Maldonado, Juan; Rios, Asuncion de los; Esteve, Isabel; Ascaso, Carmen; Puyen, Zully M.; Brambilla, Cecilia; Sole, Antonio

    2010-01-01

    Algae are primary producers in a wide variety of natural ecosystems, and these microorganisms have been used in bioremediation studies. Nevertheless, very little is known about the in vivo effect of heavy metals on individual living cells. In this paper, we have applied a method based on confocal laser scanning microscopy and lambda scan function (CLSM-λscan) to determine the effect of lead (Pb), at different concentrations, on the DE2009 microalga. At the same time, we have optimized a method based on CLSM and image-analysis software (CLSM-IA) to determine in vivo biomass of this microorganism. The results obtained by lambda scan function indicated that the pigment peak decreases while the concentration of metal increases at pH 7. On the other hand at pH 4 there is no good correlation between the concentration of metal and the intensity of the emission of fluorescence of the pigment. Also, in some cases a displacement of the Chl a peak towards 680 nm is produced. Total and individual biomass determined by CLSM-IA shows statistically significant differences between unpolluted and 10 mM polluted cultures. Complementary studies using electron microscopy techniques coupled to energy dispersive X-ray microanalysis (EDX) demonstrate that the microalga can sequestrate Pb extra- and intracellularly.

  6. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  7. Nuclear forensics: strategies and analytical techniques

    International Nuclear Information System (INIS)

    Marin, Rafael C.; Sarkis, Jorge E.S.; Pestana, Rafael C.B.

    2013-01-01

    The development of nuclear forensics as a field of science arose in response to international demand for methods to investigate the illicit trafficking of nuclear materials. After being seized, unknown nuclear material is collected and analyzed by a set of analytical methods. The fingerprints of these materials can be identified and further used during the investigations. Data interpretation is an extensive process aiming to validate the hypotheses made by the experts, and can help confirm the origin of seized nuclear materials at the end of the process or investigation. This work presents the set of measures and analytical methods that have been inherited by nuclear forensics from several fields of science. The main characteristics of these methods are evaluated and the analytical techniques employed to determine the fingerprint of nuclear materials are described. (author)

  8. Beam modulation: A novel ToF-technique for high resolution diffraction at the Beamline for European Materials Engineering Research (BEER)

    Science.gov (United States)

    Rouijaa, M.; Kampmann, R.; Šaroun, J.; Fenske, J.; Beran, P.; Müller, M.; Lukáš, P.; Schreyer, A.

    2018-05-01

    The Beamline for European Materials Engineering Research (BEER) is under construction at the European Spallation Source (ESS) in Lund, Sweden. A basic requirement on BEER is to make best use of the long ESS pulse (2.86 ms) for engineering investigations. High-resolution diffraction, however, demands timing resolution up to 0.1% corresponding to a pulse length down to about 70 μs for the case of thermal neutrons (λ ∼ 1.8 Å). Such timing resolution can be achieved by pulse shaping techniques cutting a short section out of the long pulse, and thus paying for resolution by strong loss of intensity. In contrast to this, BEER proposes a novel operation mode called pulse modulation technique based on a new chopper design, which extracts several short pulses out of the long ESS pulse, and hence leads to a remarkable gain of intensity compared to nowadays existing conventional pulse shaping techniques. The potential of the new technique can be used with full advantage for investigating strains and textures of highly symmetric materials. Due to its instrument design and the high brilliance of the ESS pulse, BEER is expected to become the European flagship for engineering research for strain mapping and texture analysis.

  9. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  10. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    Science.gov (United States)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  11. Quality system implementation for nuclear analytical techniques

    International Nuclear Information System (INIS)

    2004-01-01

    techniques. The methodology provided is appropriate for: (a) Analysis of radionuclides as in alpha, beta, and gamma spectrometry for environmental and human-made radioactivity investigations; (b) Analysis of trace, minor and major elements using nuclear and related analytical techniques such as neutron activation analysis, X ray fluorescence, PIXE, etc. This training guidebook can be used by staff of analytical laboratories as a starting kit to better understand the quality assurance and quality control principles as prescribed in the ISO 17025 standard. It follows a logical order related to practical laboratory work rather than the formal clauses as given by the standard. It can be used as a stand alone textbook. However, in some cases, cross-reference is given to the ISO 17025 clauses hence it is recommended to consult the ISO standard for exact wording of specific requirements

  12. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  13. Nuclear analytical techniques in Cuban Sugar Industry

    International Nuclear Information System (INIS)

    Diaz Riso, O.; Griffith Martinez, J.

    1996-01-01

    This paper is a review concerning the applications of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements ) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processes has been performed by means of Instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elements sugar cane soil plant relationship and elemental composition of different types of Cuban sugar (rawr, blanco directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in other applications are given

  14. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    International Nuclear Information System (INIS)

    Westraadt, J.E.; Olivier, E.J.; Neethling, J.H.; Hedström, P.; Odqvist, J.; Xu, X.; Steuwer, A.

    2015-01-01

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we here demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.

  15. A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr

    Energy Technology Data Exchange (ETDEWEB)

    Westraadt, J.E., E-mail: johan.westraadt@nmmu.ac.za [Centre for High Resolution TEM, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031 (South Africa); Olivier, E.J.; Neethling, J.H. [Centre for High Resolution TEM, Nelson Mandela Metropolitan University, University Way, Port Elizabeth 6031 (South Africa); Hedström, P.; Odqvist, J.; Xu, X. [Dept. Materials Science and Engineering, KTH Royal Institute of Technology, Brinellvägen 23, 10044 Stockholm (Sweden); Steuwer, A. [Nelson Mandela Metropolitan University, Gardham Av., Port Elizabeth 6031 (South Africa)

    2015-11-15

    Spinodal decomposition (SD) is an important phenomenon in materials science and engineering. For example, it is considered to be responsible for the 475 °C embrittlement of stainless steels comprising the bcc (ferrite) or bct (martensite) phases. Structural characterization of the evolving minute nano-scale concentration fluctuations during SD in the Fe–Cr system is, however, a notable challenge, and has mainly been considered accessible via atom probe tomography (APT) and small-angle neutron scattering. The standard tool for nanostructure characterization, viz. transmission electron microscopy (TEM), has only been successfully applied to late stages of SD when embrittlement is already severe. However, we here demonstrate that the structural evolution in the early stages of SD in binary Fe–Cr, and alloys based on the binary, are accessible via analytical scanning TEM. An Fe–36 wt% Cr alloy aged at 500 °C for 1, 10 and 100 h is investigated using an aberration-corrected microscope and it is found that highly coherent and interconnected Cr-rich regions develop. The wavelength of decomposition is rather insensitive to the sample thickness and it is quantified to 2, 3 and 6 nm after ageing for 1, 10 and 100 h, which is in reasonable agreement with prior APT analysis. The concentration amplitude is more sensitive to the sample thickness and acquisition parameters but the TEM analysis is in good agreement with APT analysis for the longest ageing time. These findings open up for combinatorial TEM studies where both local crystallography and chemistry is required. - Highlights: • STEM-EELS analysis was successfully applied to resolve early stage SD in Fe–Cr. • Compositional wavelength measured with STEM-EELS compares well to previous ATP studies. • Compositional amplitude measured with STEM-EELS is a function of experimental parameters. • STEM-EELS allows for combinatorial studies of SD using complementary techniques.

  16. Comparison of three-dimensional visualization techniques for depicting the scala vestibuli and scala tympani of the cochlea by using high-resolution MR imaging.

    Science.gov (United States)

    Hans, P; Grant, A J; Laitt, R D; Ramsden, R T; Kassner, A; Jackson, A

    1999-08-01

    Cochlear implantation requires introduction of a stimulating electrode array into the scala vestibuli or scala tympani. Although these structures can be separately identified on many high-resolution scans, it is often difficult to ascertain whether these channels are patent throughout their length. The aim of this study was to determine whether an optimized combination of an imaging protocol and a visualization technique allows routine 3D rendering of the scala vestibuli and scala tympani. A submillimeter T2 fast spin-echo imaging sequence was designed to optimize the performance of 3D visualization methods. The spatial resolution was determined experimentally using primary images and 3D surface and volume renderings from eight healthy subjects. These data were used to develop the imaging sequence and to compare the quality and signal-to-noise dependency of four data visualization algorithms: maximum intensity projection, ray casting with transparent voxels, ray casting with opaque voxels, and isosurface rendering. The ability of these methods to produce 3D renderings of the scala tympani and scala vestibuli was also examined. The imaging technique was used in five patients with sensorineural deafness. Visualization techniques produced optimal results in combination with an isotropic volume imaging sequence. Clinicians preferred the isosurface-rendered images to other 3D visualizations. Both isosurface and ray casting displayed the scala vestibuli and scala tympani throughout their length. Abnormalities were shown in three patients, and in one of these, a focal occlusion of the scala tympani was confirmed at surgery. Three-dimensional images of the scala vestibuli and scala tympani can be routinely produced. The combination of an MR sequence optimized for use with isosurface rendering or ray-casting algorithms can produce 3D images with greater spatial resolution and anatomic detail than has been possible previously.

  17. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  18. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  19. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  20. Nuclear analytical techniques applied to forensic chemistry

    International Nuclear Information System (INIS)

    Nicolau, Veronica; Montoro, Silvia; Pratta, Nora; Giandomenico, Angel Di

    1999-01-01

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author)

  1. Nuclear analytical techniques in Cuban sugar industry

    International Nuclear Information System (INIS)

    Diaz R, O.; Griffith M, J.

    1997-01-01

    This paper is a review concerning the application of Nuclear Analytical Techniques in the Cuban sugar industry. The most complete elemental composition of final molasses (34 elements) and natural zeolites (38) this last one employed as an auxiliary agent in sugar technological processe4s has been performed by means of instrumental Neutron Activation Analysis (INAA) and X-Ray Fluorescence Analysis (XRFA). The trace elemental sugar cane soill-plant relationship and elemental composition of different types of Cuban sugar (raw, blanco-directo and refine) were also studied. As a result, valuable information referred to the possibilities of using these products in animal and human foodstuff so as in the other applications are given. (author). 34 refs., 6 figs., 1 tab

  2. High-Resolution Wellbore Temperature Logging Combined with a Borehole-Scale Heat Budget: Conceptual and Analytical Approaches to Characterize Hydraulically Active Fractures and Groundwater Origin

    Directory of Open Access Journals (Sweden)

    Guillaume Meyzonnat

    2018-01-01

    Full Text Available This work aims to provide an overview of the thermal processes that shape wellbore temperature profiles under static and dynamic conditions. Understanding of the respective influences of advection and conduction heat fluxes is improved through the use of a new heat budget at the borehole scale. Keeping in mind the thermal processes involved, a qualitative interpretation of the temperature profiles allows the occurrence, the position, and the origin of groundwater flowing into wellbores from hydraulically active fractures to be constrained. With the use of a heat budget developed at the borehole scale, temperature logging efficiency has been quantitatively enhanced and allows inflow temperatures to be calculated through the simultaneous use of a flowmeter. Under certain hydraulic or pumping conditions, both inflow intensities and associated temperatures can also be directly modelled from temperature data and the use of the heat budget. Theoretical and applied examples of the heat budget application are provided. Applied examples are shown using high-resolution temperature logging, spinner flow metering, and televiewing for three wells installed in fractured bedrock aquifers in the St-Lawrence Lowlands, Quebec, Canada. Through relatively rapid manipulations, thermal measurements in such cases can be used to detect the intervals or discrete positions of hydraulically active fractures in wellbores, as well as the existence of ambient flows with a high degree of sensitivity, even at very low flows. Heat budget calculations at the borehole scale during pumping indicate that heat advection fluxes rapidly dominate over heat conduction fluxes with the borehole wall. The full characterization of inflow intensities provides information about the distribution of hydraulic properties with depth. The full knowledge of inflow temperatures indicates horizons that are drained from within the aquifer, providing advantageous information on the depth from which

  3. New analytical techniques for cuticle chemical analysis

    International Nuclear Information System (INIS)

    Schulten, H.R.

    1994-01-01

    1) The analytical methodology of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and direct pyrolysis-mass spectrometry (Py-MS) using soft ionization techniques by high electric fields (FL) are briefly described. Recent advances of Py-GC/MS and Py-FIMS for the analyses of complex organic matter such as plant materials, humic substances, dissolved organic matter in water (DOM) and soil organic matter (SOM) in agricultural and forest soils are given to illustrate the potential and limitations of the applied methods. 2) Novel applications of Py-GC/MS and Py-MS in combination with conventional analytical data in an integrated, chemometric approach to investigate the dynamics of plant lipids are reported. This includes multivariate statistical investigations on maturation, senescence, humus genesis, and environmental damages in spruce ecosystems. 3) The focal point is the author's integrated investigations on emission-induced changes of selected conifer plant constituents. Pattern recognition of Py-MS data of desiccated spruce needles provides a method for distinguishing needles damaged in different ways and determining the cause. Spruce needles were collected from both controls and trees treated with sulphur dioxide (acid rain), nitrogen dioxide, and ozone under controlled conditions. Py-MS and chemometric data evaluation are employed to characterize and classify leaves and their epicuticular waxes. Preliminary mass spectrometric evaluations of isolated cuticles of different plants such as spruce, ivy, holly, and philodendron, as well as ivy cuticles treated in vivo with air pollutants such as surfactants and pesticides are given. (orig.)

  4. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  5. MRI of the wrist: Comparison of high resolution pulse sequences and different fat-suppression techniques; Magnetresonanztomographie des Handgelenks - Vergleich hochaufloesender Pulssequenzen und unterschiedlicher Fettsignalunterdrueckungen an Leichenpraeparaten

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, A.; Spieker, A.; Bonel, H.; Glaser, C.; Reiser, M. [Klinikum Grosshadern, Muenchen (Germany). Inst. fuer Radiologische Diagnostik; Schrank, C.; Putz, R. [Muenchen Univ. (Germany). Anatomische Anstalt; Petsch, R. [Siemens AG, Erlangen (Germany). Unternehmensbereich Medizinische Technik

    2000-02-01

    Purpose: To evaluate high resolution sequences with and without fat-suppression techniques for MR imaging of the wrist. Results: The highest homogeneity and the least artifacts were achieved by the T{sub 1}-w SE sequence. For the STIR and PD-FS TSE sequence high rankings were found for the detection of free water. The PD FS sequence had high ranking also for visualization of the SL ligament and the triangular fibrocartilage. The best sequence for the assessment of hyaline cartilage was the FLASH-FS sequence. For detailed analysis of bony structures the CISS sequence performed best. Conclusion: The isolated use of a PD-FS-TSE sequence enables for evaluation of all clinically relevant structures at the wrist. Dedicated questions for hyaline cartilage are answered best by the use of a FLASH 3D-FS sequence. Selective water excitation reduces acquisition time to 60%, nevertheless FS sequences are still diagnostically superior to WE sequences. (orig./AJ) [German] Ziel: Beurteilung der Wertigkeit hochaufloesender MRT-Sequenzen ohne und mit Fettsignalunterdrueckung (FS) und selektiver Wasseranregung (WE) fuer Untersuchungen des Handgelenkes. Ergebnisse: SE-T{sub 1} zeigte die hoechste Signalhomogenitaet bei geringsten Artefakten. Die STIR und PD FS-Sequenz stellten Signal von freiem Wasser am besten dar. Die beste Knorpeldarstellung erreicht die FLASH 3D-FS-Sequenz. Die Kortikalis und die Spongiosa konnten am besten mit der CISS-Sequenz beurteilt werden. Die FS-Sequenzen waren den WE-Sequenzen diagnostisch ueberlegen. Schlussfolgerungen: Mit der PD FS TSE-Sequenz mit verlaengerter Echozeit ist eine gute Beurteilung aller klinisch wichtigen Strukturen moeglich. Die beste Darstellung des hyalinen Knorpels wird mit der FLASH-3D-FS-, des Knochens mit der CISS-Sequenz erreicht. Die selektive Wasseranregung bei FLASH- und DESS-Sequenzen reduziert die Aufnahmezeit, ohne die diagnostische Aussagekraft der FS-Sequenzen zu erreichen. (orig./AJ)

  6. Nuclear analytical techniques for nanotoxicology studies

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Zhao, Y.L.; Chai, Z.F.

    2011-01-01

    With the rapid development of nanotechnology and its applications, a wide variety of nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. The potential interactions of nanomaterials with living systems and the environment have attracted increasing attention from the public, as well as from manufacturers of nanomaterial-based products, academic researchers and policymakers. It is important to consider the environmental, health and safety aspects at an early stage of nanomaterial development and application in order to more effectively identify and manage potential human and environmental health impacts from nanomaterial exposure. This will require research in a range of areas, including detection and characterization, environmental fate and transport, ecotoxicology and toxicology. Nuclear analytical techniques (NATs) can play an important role in such studies due to their intrinsic merits such as high sensitivity, good accuracy, high space resolution, ability to distinguish the endogenous or exogenous sources of materials, and ability of in situ and in vivo analysis. In this paper, the applications of NATs in nanotoxicological and nano-ecotoxicological studies are outlined, and some recent results obtained in our laboratory are reported. (orig.)

  7. High-resolution analysis of 16q22.1 in breast carcinoma using DNA amplifiable probes (multiplex amplifiable probe hybridization technique) and immunohistochemistry.

    Science.gov (United States)

    Rakha, Emad A; Armour, John A L; Pinder, Sarah E; Paish, Claire E; Ellis, Ian O

    2005-05-01

    Loss of the chromosomal material at 16q22.1 is one of the most frequent genetic aberrations found in both lobular and low-grade nonlobular invasive carcinoma of the breast, indicating the presence of a tumour suppressor gene (TSG) at this region in these tumours. However, the TSG (s) at the 16q22.1 in the more frequent nonlobular carcinomas is still unknown. Multiplex Amplifiable Probe Hybridisation (MAPH) is a simple, accurate and a high-resolution technique that provides an alternative approach to DNA copy-number measurement. The aim of our study was to examine the most likely candidate genes at 16q22.1 using MAPH assay combined with protein expression analysis by immunohistochemistry. We identified deletion at 16q22.1 that involves some or all of these genes. We also noticed that the smallest region of deletion at 16q22.1 could be delineated to a 3 Mb region centromeric to the P-cadherin gene. Apart from the correlation between E-cadherin protein expression and its gene copy number, no correlation was detected between the expression of E2F-4, CTCF, TRF2 or P-cadherin with their gene's copy number. In the malignant tissues, no significant loss or decrease of protein expression of any gene other than E-cadherin was seen in association with any specific tumour type. No expression of VE-cadherin or Ksp-cadherin was detected in the normal and/or malignant tissues of the breast in these cases. However, there was a correlation between increased nuclear expression of E2F-4 and tumours with higher histological grade (p = 0.04) and positive lymph node disease (p = 0.02), suggesting that it may have an oncogenic rather than a tumour suppressor role. The malignant breast tissues also showed abnormal cytoplasmic cellular localisation of CTCF, compared to its expression in the normal parenchymal cells. In conclusion, we have demonstrated that MAPH is a potential technique for assessment of genomic imbalances in malignant tissues. Although our results support E-cadherin as the

  8. High resolution ultrasonic densitometer

    International Nuclear Information System (INIS)

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks

  9. Application of on-line analytical processing technique in accelerator

    International Nuclear Information System (INIS)

    Xie Dong; Li Weimin; He Duohui; Liu Gongfa; Xuan Ke

    2005-01-01

    A method of application of the on-line analytical processing technique in accelerator is described, which includes data pre-processing, the process of constructing of data warehouse and on-line analytical processing. (authors)

  10. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    Science.gov (United States)

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  11. Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome.

    Science.gov (United States)

    Chetwynd, Andrew J; David, Arthur; Hill, Elizabeth M; Abdul-Sada, Alaa

    2014-10-01

    Mass spectrometry (MS) profiling techniques are used for analysing metabolites and xenobiotics in biofluids; however, detection of low abundance compounds using conventional MS techniques is poor. To counter this, nanoflow ultra-high-pressure liquid chromatography-nanoelectrospray ionization-time-of-flight MS (nUHPLC-nESI-TOFMS), which has been used primarily for proteomics, offers an innovative prospect for profiling small molecules. Compared to conventional UHPLC-ESI-TOFMS, nUHPLC-nESI-TOFMS enhanced detection limits of a variety of (xeno)metabolites by between 2 and 2000-fold. In addition, this study demonstrates for the first time excellent repeatability and reproducibility for analysis of urine and plasma samples using nUHPLC-nESI-TOFMS, supporting implementation of this platform as a novel approach for high-throughput (xeno)metabolomics. Copyright © 2014 John Wiley & Sons, Ltd.

  12. High-resolution stratigraphy and multiple luminescence dating techniques to reveal the paleoseismic history of the central Dead Sea fault (Yammouneh fault, Lebanon)

    Science.gov (United States)

    Le Béon, Maryline; Tseng, Ya-Chu; Klinger, Yann; Elias, Ata; Kunz, Alexander; Sursock, Alexandre; Daëron, Mathieu; Tapponnier, Paul; Jomaa, Rachid

    2018-07-01

    Continuous sedimentation and detailed stratigraphy are key parameters for a complete paleo-earthquake record. Here, we present a new paleoseismological study across the main strike-slip fault branch of the Dead Sea fault in Lebanon. We aim to expand the current knowledge on local paleoseismicity and seismic behavior of strike-slip plate boundary faults and to explore the limitations of paleoseismology and dating methods. The trench, dug in the Jbab el-Homr basin, reveals a succession of remarkable, very thin (0.1 to 5 cm) palustrine and lacustrine layers, ruptured by at least 17 earthquakes. Absolute ages of 4 samples are obtained from three luminescence-dating techniques targeting fine-grain minerals. Blue-green stimulated luminescence (BGSL) on quartz and post-infrared infrared-stimulated luminescence at 225 °C on polymineral aliquots led to consistent ages, while ages from infrared-stimulated luminescence at 50 °C on polymineral aliquots appeared underestimated. The quartz BGSL ages are 26.9 ± 2.3 ka at 0.50 m depth and 30.8 ± 2.9 ka at 3.65 m depth. During this time period of 3.9 ka ([0; 9.1 ka]), 14 surface-rupturing events occurred with a mean return time of 280 years ([0; 650 years]) and probable clustering. This return time is much shorter than the 1127 ± 135 years return time previously determined at the Yammouneh site, located 30 km south. Although fault segmentation and temporal variations in the earthquake cycle remain possible causes for such different records, we argue that the high-resolution stratigraphy in Jbab is the main factor, enabling us to record small deformations related to smaller-magnitude events that may have been missed in the rougher strata of Yammouneh. Indeed, focusing only on larger events of Jbab, we obtain a mean return time of 720 years ([0; 1670 years]) that is compatible with the Yammouneh record.

  13. The Value of High-Resolution MRI Technique in Patients with Rectal Carcinoma: Pre-Operative Assessment of Mesorectal Fascia Involvement, Circumferential Resection Margin and Local Staging

    International Nuclear Information System (INIS)

    Algebally, Ahmed Mohamed; Mohey, Nesreen; Szmigielski, Wojciech; Yousef, Reda Ramadan Hussein; Kohla, Samah

    2015-01-01

    The purpose of the study was to identify the accuracy of high-resolution MRI in the pre-operative assessment of mesorectal fascia involvement, circumfrential resection margin (CRM) and local staging in patients with rectal carcinoma. The study included 56 patients: 32 male and 24 female. All patients underwent high-resolution MRI and had confirmed histopathological diagnosis of rectal cancer located within 15 cm from the anal verge, followed by surgery. MRI findings were compared with pathological and surgical results. The overall accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MRI-based T-staging were 92.8, 88.8%, 96.5%, 96%, and 90.3%, respectively. The accuracy, sensitivity, specificity, PPV, and NPV of MRI-based assessment of CRM were 94.6%, 84.6%, 97.6%, 91.4, and 94.6%, respectively. The accuracy, sensitivity, specificity, PPV, and NPV of MRI-based N-staging were 82.1%, 75%, 67.3%, 60%, and 86.1%, respectively. Preoperative high-resolution rectal MRI is accurate in predicting tumor stage and CRM involvement. MRI is a precise diagnostic tool to select patients who may benefit from neo-adjuvant therapy and to avoid overtreatment in those patients who can proceed directly to surgery

  14. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  15. Analytical Techniques in the Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Mistarz, Ulrik Hvid; Rand, Kasper Dyrberg

    2016-01-01

    Mass spectrometry (MS) offers the capability to identify, characterize and quantify a target molecule in a complex sample matrix and has developed into a premier analytical tool in drug development science. Through specific MS-based workflows including customized sample preparation, coupling...

  16. Semi-analytic techniques for calculating bubble wall profiles

    International Nuclear Information System (INIS)

    Akula, Sujeet; Balazs, Csaba; White, Graham A.

    2016-01-01

    We present semi-analytic techniques for finding bubble wall profiles during first order phase transitions with multiple scalar fields. Our method involves reducing the problem to an equation with a single field, finding an approximate analytic solution and perturbing around it. The perturbations can be written in a semi-analytic form. We assert that our technique lacks convergence problems and demonstrate the speed of convergence on an example potential. (orig.)

  17. Improved coronary in-stent visualization using a combined high-resolution kernel and a hybrid iterative reconstruction technique at 256-slice cardiac CT—Pilot study

    International Nuclear Information System (INIS)

    Oda, Seitaro; Utsunomiya, Daisuke; Funama, Yoshinori; Takaoka, Hiroko; Katahira, Kazuhiro; Honda, Keiichi; Noda, Katsuo; Oshima, Shuichi; Yamashita, Yasuyuki

    2013-01-01

    Objectives: To investigate the diagnostic performance of 256-slice cardiac CT for the evaluation of the in-stent lumen by using a hybrid iterative reconstruction (HIR) algorithm combined with a high-resolution kernel. Methods: This study included 28 patients with 28 stents who underwent cardiac CT. Three different reconstruction images were obtained with: (1) a standard filtered back projection (FBP) algorithm with a standard cardiac kernel (CB), (2) an FBP algorithm with a high-resolution cardiac kernel (CD), and (3) an HIR algorithm with the CD kernel. We measured image noise and kurtosis and used receiver operating characteristics analysis to evaluate observer performance in the detection of in-stent stenosis. Results: Image noise with FBP plus the CD kernel (80.2 ± 15.5 HU) was significantly higher than with FBP plus the CB kernel (28.8 ± 4.6 HU) and HIR plus the CD kernel (36.1 ± 6.4 HU). There was no significant difference in the image noise between FBP plus the CB kernel and HIR plus the CD kernel. Kurtosis was significantly better with the CD- than the CB kernel. The kurtosis values obtained with the CD kernel were not significantly different between the FBP- and HIR reconstruction algorithms. The areas under the receiver operating characteristics curves with HIR plus the CD kernel were significantly higher than with FBP plus the CB- or the CD kernel. The difference between FBP plus the CB- or the CD kernel was not significant. The average sensitivity, specificity, and positive and negative predictive value for the detection of in-stent stenosis were 83.3, 50.0, 33.3, and 91.6% for FBP plus the CB kernel, 100, 29.6, 40.0, and 100% for FBP plus the CD kernel, and 100, 54.5, 40.0, and 100% for HIR plus the CD kernel. Conclusions: The HIR algorithm combined with the high-resolution kernel significantly improved diagnostic performance in the detection of in-stent stenosis

  18. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  19. Analytical detection techniques for droplet microfluidics—A review

    International Nuclear Information System (INIS)

    Zhu, Ying; Fang, Qun

    2013-01-01

    Graphical abstract: -- Highlights: •This is the first review paper focused on the analytical techniques for droplet-based microfluidics. •We summarized the analytical methods used in droplet-based microfluidic systems. •We discussed the advantage and disadvantage of each method through its application. •We also discuss the future development direction of analytical methods for droplet-based microfluidic systems. -- Abstract: In the last decade, droplet-based microfluidics has undergone rapid progress in the fields of single-cell analysis, digital PCR, protein crystallization and high throughput screening. It has been proved to be a promising platform for performing chemical and biological experiments with ultra-small volumes (picoliter to nanoliter) and ultra-high throughput. The ability to analyze the content in droplet qualitatively and quantitatively is playing an increasing role in the development and application of droplet-based microfluidic systems. In this review, we summarized the analytical detection techniques used in droplet systems and discussed the advantage and disadvantage of each technique through its application. The analytical techniques mentioned in this paper include bright-field microscopy, fluorescence microscopy, laser induced fluorescence, Raman spectroscopy, electrochemistry, capillary electrophoresis, mass spectrometry, nuclear magnetic resonance spectroscopy, absorption detection, chemiluminescence, and sample pretreatment techniques. The importance of analytical detection techniques in enabling new applications is highlighted. We also discuss the future development direction of analytical detection techniques for droplet-based microfluidic systems

  20. Comparison of three techniques for evaluating skin erythemal response for determination of sun protection factors of sunscreens: high resolution laser Doppler imaging, colorimetry and visual scoring.

    Science.gov (United States)

    Wilhelm, K P; Kaspar, K; Funkel, O

    2001-04-01

    Sun protection factor (SPF) measurement is based on the determination of the minimal erythema dose (MED). The ratio of doses required to induce a minimal erythema between product-treated and untreated skin is defined as SPF. The aim of this study was to validate the conventionally used visual scoring with two non-invasive methods: high resolution laser Doppler imaging (HR-LDI) and colorimetry. Another goal was to check whether suberythemal reactions could be detected by means of HR-LDI measurements. Four sunscreens were selected. The measurements were made on the back of 10 subjects. A solar simulator SU 5000 (m.u.t., Wedel, Germany) served as radiation source. For the visual assessment, the erythema was defined according to COLIPA as the first perceptible, clearly defined unambiguous redness of the skin. For the colorimetric determination of the erythema, a Chromameter CR 300 (Minolta, Osaka, Japan) was used. The threshold for the colorimetry was chosen according to the COLIPA recommendation as an increase of the redness parameter delta a* = 2.5. For the non-contact perfusion measurements of skin blood flow, a two-dimensional high resolution laser Doppler imager (HR-LDI) (Lisca, Linköping, Sweden) was used. For the HR-LDI measurements, an optimal threshold perfusion needed to be established. For the HR-LDI measurements basal perfusion +1 standard deviation of all basal measurements was found to be a reliable threshold perfusion corresponding to the minimal erythema. Smaller thresholds, which would be necessary for detection of suberythemal responses, did not provide unambiguous data. All three methods, visual scoring, colorimetry and HR-LDI, produced similar SPFs for the test products with a variability of colorimetry are suitable, reliable and observer-independent methods for MED determination. However, they do not provide greater sensitivity and thus do not result in lower UV dose requirements for testing.

  1. Identification of Microorganisms by Modern Analytical Techniques.

    Science.gov (United States)

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  2. Real-time Continuous Esophageal High-resolution Manometry (HRM) During Laparoscopic Heller Myotomy and Dor Fundoplication for the Treatment of Achalasia. A Promising Novelty in Regards of Perfecting Surgical Technique: Could It Guide Surgical Technique Toward Excellent Results?

    Science.gov (United States)

    Triantafyllou, Tania; Doulami, Georgia; Papailiou, Joanna; Mantides, Apostolos; Zografos, Georgios; Theodorou, Dimitrios

    2016-12-01

    High-resolution manometry (HRM) is the gold-standard diagnostic tool for achalasia of the esophagus. Laparoscopic Heller-Dor technique is the preferred surgical approach with success rate estimated 90%. The use of intraoperative HRM provides real-time estimation of intraluminal esophageal pressures and identifies the exact points of esophageal luminal pressure during laparoscopy. Ten patients with achalasia underwent surgery. All patients preoperatively completed 1 manometric study and Quality of Life questionnaires (EORTC QLQ-C30 version 3.0) with Eckardt scores. We collected intraoperative manometry data and repeated manometric studies, EORTC QLQ-C30, and Eckardt scores postoperatively. Median Eckardt score was decreased from 7.5 to 0.5, mean resting pressure decreased from 51.4 to 11.9 mm Hg, whereas mean residual pressure diminished from 45.9 to 9.5 mm Hg postoperatively. The simultaneous use of HRM during the Heller-Dor technique may lead to an individualized management of the disease.

  3. Development of an analytical strategy based on liquid chromatography-high resolution mass spectrometry for measuring perfluorinated compounds in human breast milk: application to the generation of preliminary data regarding perinatal exposure in France.

    Science.gov (United States)

    Kadar, Hanane; Veyrand, Bruno; Barbarossa, Andrea; Pagliuca, Giampiero; Legrand, Arnaud; Bosher, Cécile; Boquien, Clair-Yves; Durand, Sophie; Monteau, Fabrice; Antignac, Jean-Philippe; Le Bizec, Bruno

    2011-10-01

    Perfluorinated compounds (PFCs) are man-made chemicals for which endocrine disrupting properties and related possible side effects on human health have been reported, particularly in the case of an exposure during the early stages of development, (notably the perinatal period). Existing analytical methods dedicated to PFCs monitoring in food and/or human fluids are currently based on liquid chromatography coupled to tandem mass spectrometry, and were recently demonstrated to present some limitations in terms of sensitivity and/or specificity. An alternative strategy dedicated to the analysis of fourteen PFCs in human breast milk was proposed, based on an effective sample preparation followed by a liquid chromatography coupled to high resolution mass spectrometry measurement (LC-HRMS). This methodology confirmed the high interest for HRMS after negative ionization for such halogenated substances, and finally permitted to reach detection limits around the pg mL(-1) range with an outstanding signal specificity compared to LC-MS/MS. The proposed method was applied to a first set of 30 breast milk samples from French women. The main PFCs detected in all these samples were PFOS and PFOA with respective median values of 74 (range from 24 to 171) and 57 (range from 18 to 102) pg mL(-1), respectively. These exposure data appeared in the same range as other reported values for European countries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Analytical Techniques and the Air Force Logistics Readiness Officer

    National Research Council Canada - National Science Library

    Main, Bryan D

    2008-01-01

    .... Over 500 LROs and supervisors provided inputs. Analysis of survey responses found that Forecasting, Graphical Statistics, and Descriptive Statistics are the analytical techniques valued most by both LROs and their supervisors...

  5. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim; Muller, Hendrik; Adam, Frederick M.; Panda, Saroj K.; Witt, Matthias; Al-Hajji, Adnan A.; Sarathy, Mani

    2015-01-01

    cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated

  6. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  7. Activities at Forschungszentrum Juelich in Safeguards Analytical Techniques and Measurements

    International Nuclear Information System (INIS)

    Duerr, M.; Knott, A.; Middendorp, R.; Niemeyer, I.; Kueppers, S.; Zoriy, M.; Froning, M.; Bosbach, D.

    2015-01-01

    The application of safeguards by the IAEA involves analytical measurements of samples taken during inspections. The development and advancement of analytical techniques with support from the Member States contributes to strengthened and more efficient verification of compliance with non-proliferation obligations. Since recently, a cooperation agreement has been established between Forschungszentrum Juelich and the IAEA in the field of analytical services. The current working areas of Forschungszentrum Juelich are: (i) Production of synthetic micro-particles as calibration standard and reference material for particle analysis, (ii) qualification of the Forschungszentrum Juelich as a member of the IAEA network of analytical laboratories for safeguards (NWAL), and (iii) analysis of impurities in nuclear material samples. With respect to the synthesis of particles, a dedicated setup for the production of uranium particles is being developed, which addresses the urgent need for material tailored for its use in quality assurance and quality control measures for particle analysis of environmental swipe samples. Furthermore, Forschungszentrum Juelich has been nominated as a candidate laboratory for membership in the NWAL network. To this end, analytical capabilities at Forschungszentrum Juelich have been joined to form an analytical service within a dedicated quality management system. Another activity is the establishment of analytical techniques for impurity analysis of uranium-oxide, mainly focusing on inductively coupled mass spectrometry. This contribution will present the activities at Forschungszentrum Juelich in the area of analytical measurements and techniques for nuclear verification. (author)

  8. Implementation of an analytical technique for Samarium

    International Nuclear Information System (INIS)

    Garcia G, N.

    2004-01-01

    Since the Samarium presents the same chemical properties that the plutonium, it has been used as homologous in studies that allow us to know the behavior that the plutonium presents in solution, with the advantage of working with an inactive and not very dangerous element. At the moment studies of sorption of plutonium or samarium are made on some mineral matrices that present certain surface properties. Due to the low concentrations that are used in the studies of sorption of samarium on those reagent substrates, their detection becomes very difficult for the conventional analysis media. The luminescence is a technique that can detect lower concentrations, smaller at 1 X 10 - 2 M, but when fluorofors are used this limit of detection increases in several orders of magnitude. In this work it has been used the arsenazo-III as fluorofor agent since it reacts in a specific way with the samarium, forming a complex that presents a proportional luminescence to the concentration of the present samarium. The advantage of making the quantification of samarium by luminescence is that it can use the same instrumental equipment to determine the speciation of the samarium sipped in the zircon. (Author)

  9. The summit part of Mount Etna revealed by High Resolution DC Electrical Resistivity Tomography coupled with complementary geophysical and soil gas techniques

    Science.gov (United States)

    Finizola, Anthony; Ricci, Tullio; Antoine, Raphael; Delcher, Eric; Peltier, Aline; Bernard, Julien; Brothelande, Elodie; Fargier, Yannick; Fauchard, Cyrille; Foucart, Brice; Gailler, Lydie; Gusset, Rachel; Lazarte, Ivonne; Martin, Erwan; Mézon, Cécile; Portal, Angélie; Poret, Matthieu; Rossi, Matteo

    2016-04-01

    In the framework of the EC FP7 project "MEDiterranean SUpersite Volcanoes", one profile coupling DC electrical resistivity tomography (Pole-Dipole configuration with a remote electrode located between 8-10 km from the middle of the different acquisitions, 64 electrodes and 40 m spacing between the electrodes), self-potential, soil CO2 degassing, Radon measurements and sub-surface (30cm depth) temperature have been performed between June 25th and July 13th 2015. This profile, NE-SW direction, crossed the summit part of Mount Etna. A total 5720m of profile was performed, with a roll along protocol of 1/4 of the dispositive, for each new acquisitions. A total of 6 acquisitions was made to complete the entire profile. For the first time in the world, a multi-electrodes DC ERT profile, of high resolution (40 m of spacing between the electrodes) reached, thanks to a pole-dipole configuration, 900m for the depth of investigation. The ERT profile clearly evidences the hydrothermal system of Mount Etna: the lowest resistivity values are associated with a large scale positive self-potential anomaly, and smaller wavelength anomalies for temperature, CO2 concentration and Radon, in the area where the electrical conductor reach the surface. Structural discontinuities such as the Elliptic crater, was clearly evidenced by a sharp decrease of the self-potential values in the inner part of this crater. The striking result of this profile is the presence of a resistive body located just below the NE crater. This structure displays the highest degassing values of the entire profile. We interpret this resistive body as a consequence of the thermic over-heated plume rising from the top of the shallow feeding system. Indeed, above several hundred of degrees Celsuis, it is impossible to consider rain water infiltration and the presence of a wet hydrothermal system. The consequence would be therefore to obtain this resistive body, centred on the area of main heat transfer. Above this

  10. New Visualization Techniques to Analyze Ultra-High Resolution Four-dimensional Surface Deformation Imagery Collected With Ground-based Tripod LiDAR

    Science.gov (United States)

    Kreylos, O.; Bawden, G. W.; Kellogg, L. H.

    2005-12-01

    We are developing a visualization application to display and interact with very large (tens of millions of points) four-dimensional point position datasets in an immersive environment such that point groups from repeated Tripod LiDAR (Light Detection And Ranging) surveys can be selected, measured, and analyzed for land surface change using 3D~interactions. Ground-based tripod or terrestrial LiDAR (T-LiDAR) can remotely collect ultra-high resolution (centimeter to subcentimeter) and accurate (± 4 mm) digital imagery of the scanned target, and at scanning rates of 2,000 (x, y, z, i) (3D~position~+ intensity) points per second over 7~million points can be collected for a given target in an hour. We developed a multiresolution point set data representation based on octrees to display large T-LiDAR point cloud datasets at the frame rates required for immersive display (between 60 Hz and 120 Hz). Data inside an observer's region of interest is shown in full detail, whereas data outside the field of view or far away from the observer is shown at reduced resolution to provide context. Using 3D input devices at the University of California Davis KeckCAVES, users can navigate large point sets, accurately select related point groups in two or more point sets by sweeping regions of space, and guide the software in deriving positional information from point groups to compute their displacements between surveys. We used this new software application in the KeckCAVES to analyze 4D T-LiDAR imagery from the June~1, 2005 Blue Bird Canyon landslide in Laguna Beach, southern California. Over 50~million (x, y, z, i) data points were collected between 10 and 21~days after the landslide to evaluate T-LiDAR as a natural hazards response tool. The visualization of the T-LiDAR scans within the immediate landslide showed minor readjustments in the weeks following the primarily landslide with no observable continued motion on the primary landslide. Recovery and demolition efforts across the

  11. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  12. A validated analytical method to study the long-term stability of natural and synthetic glucocorticoids in livestock urine using ultra-high performance liquid chromatography coupled to Orbitrap-high resolution mass spectrometry.

    Science.gov (United States)

    De Clercq, Nathalie; Julie, Vanden Bussche; Croubels, Siska; Delahaut, Philippe; Vanhaecke, Lynn

    2013-08-02

    Due to their growth-promoting effects, the use of synthetic glucocorticoids is strictly regulated in the European Union (Council Directive 2003/74/EC). In the frame of the national control plans, which should ensure the absence of residues in food products of animal origin, in recent years, a higher frequency of prednisolone positive bovine urines has been observed. This has raised questions with respect to the stability of natural corticoids in the respective urine samples and their potential to be transformed into synthetic analogs. In this study, a ultra high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) methodology was developed to examine the stability of glucocorticoids in bovine urine under various storage conditions (up to 20 weeks) and to define suitable conditions for sample handling and storage, using an Orbitrap Exactive™. To this end, an extraction procedure was optimized using a Plackett-Burman experimental design to determine the key conditions for optimal extraction of glucocorticoids from urine. Next, the analytical method was successfully validated according to the guidelines of CD 2002/657/EC. Decision limits and detection capabilities for prednisolone, prednisone and methylprednisolone ranged, respectively, from 0.1 to 0.5μgL(-1) and from 0.3 to 0.8μgL(-1). For the natural glucocorticoids limits of detection and limits of quantification for dihydrocortisone, cortisol and cortisone ranged, respectively, from 0.1 to 0.2μgL(-1) and from 0.3 to 0.8μgL(-1). The stability study demonstrated that filter-sterilization of urine, storage at -80°C, and acidic conditions (pH 3) were optimal for preservation of glucocorticoids in urine and able to significantly limit degradation up to 20 weeks. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  14. Investigation of ceramic devices by analytical electron microscopy techniques

    International Nuclear Information System (INIS)

    Shiojiri, M.; Saijo, H.; Isshiki, T.; Kawasaki, M.; Yoshioka, T.; Sato, S.; Nomura, T.

    1999-01-01

    Ceramics are widely used as capacitors and varistors. Their electrical properties depend on the structure, which is deeply influenced not only by the composition of raw materials and additives but also by heating treatments in the production process. This paper reviews our investigations of SrTiO 3 ceramic devices, which have been performed using various microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), cathodoluminescence scanning electron microscopy (CLSEM), field emission SEM (FE-SEM), energy dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and high angle annular dark field (HAADF) imaging method in a FE-(scanning) transmission electron microscope(FE-(S)TEM). (author)

  15. Micro-electrodeposition techniques for the preparation of small actinide counting sources for ultra-high resolution alpha spectrometry by microcalorimetry

    International Nuclear Information System (INIS)

    Plionis, A.A.; Hastings, E.P.; LaMont, S.P.; Dry, D.E.; Bacrania, M.K.; Rabin, M.W.; Rim, J.H.

    2009-01-01

    Special considerations and techniques are desired for the preparation of small actinide counting sources. Counting sources have been prepared on metal disk substrates (planchets) with an active area of only 0.079 mm 2 . This represents a 93.75% reduction in deposition area from standard electrodeposition methods. The actinide distribution upon the smaller planchet must remain thin and uniform to allow alpha particle emissions to escape the counting source with a minimal amount of self-attenuation. This work describes the development of micro-electrodeposition methods and optimization of the technique with respect to deposition time and current density for various planchet sizes. (author)

  16. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  17. Development of analytical techniques for safeguards environmental samples at JAEA

    International Nuclear Information System (INIS)

    Sakurai, Satoshi; Magara, Masaaki; Usuda, Shigekazu; Watanabe, Kazuo; Esaka, Fumitaka; Hirayama, Fumio; Lee, Chi-Gyu; Yasuda, Kenichiro; Inagawa, Jun; Suzuki, Daisuke; Iguchi, Kazunari; Kokubu, Yoko S.; Miyamoto, Yutaka; Ohzu, Akira

    2007-01-01

    JAEA has been developing, under the auspices of the Ministry of Education, Culture, Sports, Science and Technology of Japan, analytical techniques for ultra-trace amounts of nuclear materials in environmental samples in order to contribute to the strengthened safeguards system. Development of essential techniques for bulk and particle analysis, as well as screening, of the environmental swipe samples has been established as ultra-trace analytical methods of uranium and plutonium. In January 2003, JAEA was qualified, including its quality control system, as a member of the JAEA network analytical laboratories for environmental samples. Since 2004, JAEA has conducted the analysis of domestic and the IAEA samples, through which JAEA's analytical capability has been verified and improved. In parallel, advanced techniques have been developed in order to expand the applicability to the samples of various elemental composition and impurities and to improve analytical accuracy and efficiency. This paper summarizes the trace of the technical development in environmental sample analysis at JAEA, and refers to recent trends of research and development in this field. (author)

  18. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  19. Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions

    International Nuclear Information System (INIS)

    Ullrich, J.; Doerner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Schmidt-Boecking, H.

    1994-09-01

    In order to investigate many-particle reaction dynamics in atomic collisions a novel high-resolution technique has been developed, which determines the momentum and the charge state of the slowly recoiling target ions. Using a very cold, thin, and localized supersonic gas jet target a momentum resolution of better than 0.05 a.u. is obtained by measuring the recoil-ion time-of-flight and the recoil-ion trajectory. Because of the very high detection efficiency of nearly 100% this technique is well suited for many-particle coincidence measurements in ionizing collisions. First experimental results for fast ion and electron impact on helium targets are presented. Future applications in atomic collision physics and related areas are discussed. (orig.)

  20. Reference materials for micro-analytical nuclear techniques

    International Nuclear Information System (INIS)

    Valkovic, V.; Zeisler, R.; Bernasconi, G.; Danesi, P.R.

    1994-01-01

    Direct application of many existing reference materials in micro-analytical procedures such as energy dispersive x-ray fluorescence (EDXRF), particle induced x-ray emission spectroscopy (PIXE) and ion probe techniques for the determination of trace elements is often impossible or difficult because: 1) other constituents present in large amounts interfere with the determination; 2) trace components are not sufficiently homogeneously distributed in the sample. Therefore specific natural-matrix reference materials containing very low levels of trace elements and having high degree of homogeneity are required for many micro-analytical procedures. In this report, selection of the types of environmental and biological materials which are suitable for micro-analytical techniques will be discussed. (author)

  1. High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique

    Science.gov (United States)

    Xiao, Lu; Lang, Yichao; Christakos, George

    2018-01-01

    With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.

  2. Improvement of Analytical Technique for Determination of Gold in ...

    African Journals Online (AJOL)

    This article elucidates the improvement of analytical technique for determination of gold in geological matrix. Samples suspected to have gold in them were subjected to neutron flux from the Nigeria Research Reactor (NRR-1), a Miniature Neutron Source Reactor (MNSR). Two geological samples – one sample was ...

  3. SU-F-T-429: Craniospinal Irradiation by VMAT Technique: Impact of FFF Beam and High Resolution MLC On Plan Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T; Sarkar, B; Munshi, A; Mohanti, B [Fortis Memorial Research Institute, Gurgaon, Haryana (India)

    2016-06-15

    Purpose: Objective of this study was to evaluate the impact of using flattening filter free (FFF) beam with 0.5 cm multileaf collimator (MLC) leaves over conventional flattened beam with 1 cm leaf width MLC on the treatment plan quality in cranio-spinal irradiation (CSI). Methods: For five medulloblastoma cases (3 males and 2 females), who were previously treated by volumetric modulated arc therapy (VMAT) technique using conventional flattened beam shaped by 1 cm width MLC leaves, four test plans were generated and compared against the delivered plan. These retrospective plans consisted of four different combinations of flattened and FFF beams from Elekta’s Agility treatment head with 0.5 cm width MLC leaves. Sparing of organs at risks (OAR) in terms of dose to 5%, 50%, 75% and 90% volumes, mean and maximum dose were evaluated. Results: All plans satisfied the planning objective of covering 95% of PTV by at least 95% of prescription dose. Marginal variation of dose spillage was observed between different VMAT plans at very low dose range (1–5 Gy). Variation in dose statistics for PTVs and OARs were within 1% or 1 Gy. Amongst the five plans, the plan with flattened beam with 1 cm MLC had the highest number of MUs, 2.13 times higher than the plan with Agility MLC with FFF beam that had the least number of MUs. No statistically significant difference (p≥0.05) was observed between the reference plan and the retrospectively generated plans in terms of PTV coverage, cold spot, hot spot and organ at risk doses. Conclusion: In the treatment of CSI cases by VMAT technique, FFF beams and/or finer width MLC did not exhibit advantage over the flattened beams or wider MLC in terms of plan quality except for reduction in MUs.

  4. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry.

    Science.gov (United States)

    Séby, F; Gagean, M; Garraud, H; Castetbon, A; Donard, O F X

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the (52)Cr(+) and (53)Cr(+) isotopes. If there was strong interference with m/ z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/ z 53 if digestions were performed with HNO(3)+H(2)O(2). This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH(4)(+)/NH(3) buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient

  5. External scintigraphy in monitoring the behavior of pharmaceutical formulations in vivo I: technique for acquiring high-resolution images of tablets

    International Nuclear Information System (INIS)

    Theodorakis, M.C.; Simpson, D.R.; Leung, D.M.; Devous, M. Sr.

    1983-01-01

    A new method for monitoring tablet disintegration in vivo was developed. In this method, the tablets were labeled with a short-lived radionuclide, technetium 99m, and monitored by a gamma camera. Several innovations were introduced with this method. First, computer reconstruction algorithms were used to enhance the scintigraphic images of the disintegrating tablet in vivo. Second, the use of a four-pinhole collimator to acquire multiple views of the tablet resulted in high count rates and reduced acquisition times of the scintigraphic images. Third, the magnification of the scintigraphic images achieved by pinhole collimation led to significant improvement in resolution. Fourth, the radioinuclide was incorporated into the granulation so that the whole mass of the tablet was uniformly labeled with high levels of activity. This technique allowed the continuous monitoring of the disintegration process of tablets in vivo in experimental animals. Multiple pinhole collimation and the labeling process permitted the acquisition of quality scintigraphic images of the labeled tablet every 30 sec. The resolution of the method was tested in vitro and in vivo

  6. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. II. EXPANDING THE METALLICITY RANGE FOR OLD CLUSTERS AND UPDATED ANALYSIS TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States)

    2017-01-10

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = −0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements.

  7. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  8. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  9. A novel technique combining high-resolution synchrotron x-ray microtomography and x-ray diffraction for characterization of micro particulates

    International Nuclear Information System (INIS)

    Merrifield, David R; Ramachandran, Vasuki; Roberts, Kevin J; Armour, Wesley; Axford, Danny; Basham, Mark; Connolley, Thomas; Evans, Gwyndaf; McAuley, Katherine E; Owen, Robin L; Sandy, James

    2011-01-01

    The processing of solids, such as crystals, is strongly influenced by the surface properties of the material. In recent years the pharmaceutical industry has shown great interest in identifying, or chemically speciating, the molecular components of crystal faces. Formerly, characterization of the molecular identity of crystal faces was restricted to the study of large single crystals. This would have been primarily for structure determination as part of the drug registration process. Diamond Light Source in Oxfordshire is a new synchrotron facility in the UK, having 18 operational beamlines with 4 more in the construction phase. Beamlines at this medium energy light source enable the study of micron-sized objects in great detail. It is well known that x-ray microtomography (XMT) can be used to investigate the external morphology of a crystal whereas x-ray diffraction (XRD) is used to study the molecular orientation, structure and packing within the crystal. The objective of this research is to assess the feasibility of, and thereby develop a new methodology for, characterizing the molecular identity of a particular face of a crystalline particle at a scale of scrutiny of 20–50 µm by combining these two powerful techniques. This work demonstrates the application of XMT and XRD to investigate respectively the shape and crystalline phase/orientation of relevant test crystals. This research has applications in the pharmaceutical industry in that when the exact molecular nature of a particular face is known, the important physico-pharmaceutical properties stemming from that can be better understood. Some initial data are presented and discussed

  10. Elastic properties and strain-to-crack-initiation of calcium phosphate bone cements: Revelations of a high-resolution measurement technique.

    Science.gov (United States)

    Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia

    2017-10-01

    Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Nees, J. A. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Center for Ultra-Fast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Morrison, J. T. [Fellow, National Research Council, Washington, D.C. 20001 (United States); Frische, K. D. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Chowdhury, E. A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Intense Energy Solutions, LLC., Plain City, Ohio 43064 (United States); Roquemore, W. M. [Air Force Research Laboratory, Dayton, Ohio 45433 (United States)

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements

  12. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  13. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  14. High-resolution computer-aided moire

    Science.gov (United States)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  15. Determination of uranium in ground water using different analytical techniques

    International Nuclear Information System (INIS)

    Sahu, S.K.; Maity, Sukanta; Bhangare, R.C.; Pandit, G.G.; Sharma, D.N.

    2014-10-01

    The concern over presence of natural radionuclides like uranium in drinking water is growing recently. The contamination of aquifers with radionuclides depends on number of factors. The geology of an area is the most important factor along with anthropogenic activities like mining, coal ash disposal from thermal power plants, use of phosphate fertilizers etc. Whatever may be the source, the presence of uranium in drinking waters is a matter of great concern for public health. Studies show that uranium is a chemo-toxic and nephrotoxic heavy metal. This chemotoxicity affects the kidneys and bones in particular. Seeing the potential health hazards from natural radionuclides in drinking water, many countries worldwide have adopted the guideline activity concentration for drinking water quality recommended by the WHO (2011). For uranium, WHO has set a limit of 30μgL-1 in drinking water. The geological distribution of uranium and its migration in environment is of interest because the element is having environmental and exposure concerns. It is of great interest to use an analytical technique for uranium analysis in water which is highly sensitive especially at trace levels, specific and precise in presence of other naturally occurring major and trace metals and needs small amount of sample. Various analytical methods based on the use of different techniques have been developed in the past for the determination of uranium in the geological samples. The determination of uranium requires high selectivity due to its strong association with other elements. Several trace level wet chemistry analytical techniques have been reported for uranium determination, but most of these involve tedious and pain staking procedures, high detection limits, interferences etc. Each analytical technique has its own merits and demerits. Comparative assessment by different techniques can provide better quality control and assurance. In present study, uranium was analysed in ground water samples

  16. Linear circuit transfer functions an introduction to fast analytical techniques

    CERN Document Server

    Basso, Christophe P

    2016-01-01

    Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...

  17. Evaluation of analytical techniques to determine matals in Sodium

    International Nuclear Information System (INIS)

    Biancifiori, M.A.; Zappa, G.; Amico, A.

    1985-01-01

    The influence of some instrumental parameters on the analysis of CA, Co, Cr, Cu, Fe, K, Mg, Mn, and Ni in Sodium solutions, by means of Flame Atomic Absorption Spectroscopy (FAAS), is evaluated. The best operating parameters are established and the possibility of application of this analytical technique to the detection of the metallic impurities in Sodium is evaluated, considering the concentration values of nuclear interest

  18. Conference on Nuclear and Conventional Analytical Techniques and their Applications

    International Nuclear Information System (INIS)

    2010-01-01

    Full text : A panoply analytic techniques methods has emerged in recent decades due to the challenges of society in quality of products and the increasing demand of chemical analysis services. The industrial progress which came along with an instrumental perfection of devices with analytical use, led to the development of new techniques more and more advanced in this field. These come as well, to answer the disturbing effects of this industrialization and the wishes of a public increasingly conscious and requiring globally. The leaders in this field of analysis and material characterization are more than ever confronted with problems of identification and quantification of different chemical forms of a multitude of products in varied circles; Industrial pollutants, soil, water, air, food, medicines, ceramics, concrete, plants etc. It was from that perspective that the unifying theme ''geomaterials: characterization to applications '' of the conference on nuclear and conventional analytical techniques and their applications (TANCA 2010) was chosen. It contributes to the debate of these subjects and builds relationships between stakeholders in this field, both technically and practically [fr

  19. Analytical techniques for wine analysis: An African perspective; a review

    International Nuclear Information System (INIS)

    Villiers, André de; Alberts, Phillipus; Tredoux, Andreas G.J.; Nieuwoudt, Hélène H.

    2012-01-01

    Highlights: ► Analytical techniques developed for grape and wine analysis in Africa are reviewed. ► The utility of infrared spectroscopic methods is demonstrated. ► An overview of separation of wine constituents by GC, HPLC, CE is presented. ► Novel LC and GC sample preparation methods for LC and GC are presented. ► Emerging methods for grape and wine analysis in Africa are discussed. - Abstract: Analytical chemistry is playing an ever-increasingly important role in the global wine industry. Chemical analysis of wine is essential in ensuring product safety and conformity to regulatory laws governing the international market, as well as understanding the fundamental aspects of grape and wine production to improve manufacturing processes. Within this field, advanced instrumental analysis methods have been exploited more extensively in recent years. Important advances in instrumental analytical techniques have also found application in the wine industry. This review aims to highlight the most important developments in the field of instrumental wine and grape analysis in the African context. The focus of this overview is specifically on the application of advanced instrumental techniques, including spectroscopic and chromatographic methods. Recent developments in wine and grape analysis and their application in the African context are highlighted, and future trends are discussed in terms of their potential contribution to the industry.

  20. Analytical techniques for wine analysis: An African perspective; a review

    Energy Technology Data Exchange (ETDEWEB)

    Villiers, Andre de, E-mail: ajdevill@sun.ac.za [Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch (South Africa); Alberts, Phillipus [Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch (South Africa); Tredoux, Andreas G.J.; Nieuwoudt, Helene H. [Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch (South Africa)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer Analytical techniques developed for grape and wine analysis in Africa are reviewed. Black-Right-Pointing-Pointer The utility of infrared spectroscopic methods is demonstrated. Black-Right-Pointing-Pointer An overview of separation of wine constituents by GC, HPLC, CE is presented. Black-Right-Pointing-Pointer Novel LC and GC sample preparation methods for LC and GC are presented. Black-Right-Pointing-Pointer Emerging methods for grape and wine analysis in Africa are discussed. - Abstract: Analytical chemistry is playing an ever-increasingly important role in the global wine industry. Chemical analysis of wine is essential in ensuring product safety and conformity to regulatory laws governing the international market, as well as understanding the fundamental aspects of grape and wine production to improve manufacturing processes. Within this field, advanced instrumental analysis methods have been exploited more extensively in recent years. Important advances in instrumental analytical techniques have also found application in the wine industry. This review aims to highlight the most important developments in the field of instrumental wine and grape analysis in the African context. The focus of this overview is specifically on the application of advanced instrumental techniques, including spectroscopic and chromatographic methods. Recent developments in wine and grape analysis and their application in the African context are highlighted, and future trends are discussed in terms of their potential contribution to the industry.

  1. Instrumental analytical techniques in geochemistry: Requirements and applications

    International Nuclear Information System (INIS)

    Willis, J.P.

    1986-01-01

    Geochemists must analyse an extremely wide range of terrestrial and planetary materials. The instrumental techniques necessary to cope with this difficult task are considered. The most important analytical techniques in use by the geochemist today are AAS, ICP-OES, INAA, MSID and XRFS, and the electron microscope for in situ mineral analysis. Some applications of these techniques to solving major problems in geochemistry are discussed. The importance of certified reference materials and of high quality geochemical data are emphasized. It is concluded that the general quality of trace element data has improved over the past 25 years, as a direct result of the application of modern instrumental techniques. Surprisingly, the quality of data reported for certain major elements has deteriorated over that time, when compared with data obtainable by classical chemical methods. Predictions are made concerning the instrumentation needs of the next generation of geochemists. (orig.) [de

  2. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  3. Hurricane Satellite (HURSAT) from Advanced Very High Resolution Radiometer (AVHRR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Huricane Satellite (HURSAT)-Advanced Very High Resolution Radiometer (AVHRR) is used to extend the HURSAT data set such that appling the Objective Dvorak technique...

  4. High-resolution 1H magnetic resonance spectroscopy imaging at 1.5 and 3 Tesla of the human brain: development of techniques and applications for patients with primary brain tumors and multiple sclerosis

    International Nuclear Information System (INIS)

    Stadlbauer, A.

    2004-05-01

    The aim of this work was to develop several strategies and software-packages for the evaluation of in-vivo-data of the human brain, which were acquired with high-resolution 1H-MRSI at 1.5 and 3 T. Several studies involving phantoms, volunteers and patients were performed. Quality assurance studies were conducted in order to evaluate the reproducibility of the applied MR-techniques at both field strengths. A qualitative comparison-study between MRSI-data from a 1.5 T clinical MR-scanner and a 3 T research MR-scanner showed the advantages of the more advanced MRSI sequences and higher field strength (3 T). A study involving patients with primary brain tumours (gliomas) was performed in cooperation with the Department of Neurosurgery (University of Erlangen-Nuremberg). The methods developed in the course of this study, such as the integration of MRS-data into a stereotactic-system, the segmentation of metabolic maps and the correlation with histopathological findings represent a package of vital information for diagnostics and therapy of primary brain tumors, neurodegenerative disorders or epilepsy. In the course of two pilot-studies in cooperation with the MR-Centre of Excellence (Medical University of Vienna) the advantages of high-resolution 3D in-vivo-1H-MRSI at 3T were qualitatively evaluated via measurements on patients with brain tumors and multiple sclerosis (MS). It was demonstrated that 1H-MRSI may be valuable for the diagnosis, follow-up and prediction of 'seizures' with MS-patients. In conclusion, this work contains an overview of potential and advantages of in-vivo-1H-MRS-methods at 1.5 and 3 T for the clinical diagnosis and treatment of patients with gliomas and MS. (author)

  5. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    Science.gov (United States)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  6. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  7. Analytical techniques applied to study cultural heritage objects

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N.

    2015-01-01

    at LAMFI. Completely developed in the LAMFI laboratory this robotic stage enables 5-μm precision of positioning of samples in the external beam line. Due to high resolution it is possible to produce elemental maps of large areas of any kind of samples. This is the unique device for multi-technique analysis on mapping of large areas using ion beams. (author)

  8. Analytical techniques applied to study cultural heritage objects

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N., E-mail: rizzutto@if.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    at LAMFI. Completely developed in the LAMFI laboratory this robotic stage enables 5-μm precision of positioning of samples in the external beam line. Due to high resolution it is possible to produce elemental maps of large areas of any kind of samples. This is the unique device for multi-technique analysis on mapping of large areas using ion beams. (author)

  9. Measurements of angles of the normal auditory ossicles relative to the reference plane and image reconstruction technique for obtaining optimal sections of the ossicles in high-resolution multiplanar reconstruction using a multislice CT scanner

    International Nuclear Information System (INIS)

    Fujii, Naoko; Katada, Kazuhiro; Yoshioka, Satoshi; Takeuchi, Kenji; Takasu, Akihiko; Naito, Kensei

    2005-01-01

    Using high-resolution isotropic volume data obtained by 0.5 mm, 4-row multislice CT, cross-sectional observation of the auditory ossicles is possible from any desired direction without difficulty in high-resolution multiplanar reconstruction (HR-MPR) images, also distortion-free three-dimensional images of the ossicles are generated in three-dimensional CT (3D-CT) images. We measured angles of fifty normal ossicles relative to the reference plane, which has been defined as a plane through the bilateral infraorbital margins to the middle portion of the external auditory canal. Based on the results of angle measurement, four optimal sections of the ossicles for efficient viewing to the ossicular chain were identified. To understand the position of the angle measurement and the four sections, the ossicles and the reference plane were reconstructed in the 3D-CT images. As the result of observation of the ossicles and the reference plane, the malleus was parallel to the incudal long process and perpendicular to the reference plane. As the results of angle measurement, the mean angle of the tympanic portion of the facial nerve relative to the reference plane in the sagittal plane was found to be 17 deg, and the mean angle of the stapedial crura relative to the reference plane in the sagittal plane was found to be 6 deg. The mean angle of the stapes relative to the reference plane in the coronal plane was 44 deg, and the mean angle of the incudal long process relative to the stapes in the coronal plane was 89 deg. In 80% of ears, the stapes extended straight from the incudal long process. Image reconstruction technique for viewing four sections of the ossicles was investigated. Firstly, the image of the malleal head and the incudal short process was identified in the axial plane. Secondly, an image of the malleus along the malleal manubrium was reconstructed in the coronal plane. Thirdly, the image of the incudal long process was seen immediately behind the malletis image

  10. Classification of high-resolution multi-swath hyperspectral data using Landsat 8 surface reflectance data as a calibration target and a novel histogram based unsupervised classification technique to determine natural classes from biophysically relevant fit parameters

    Science.gov (United States)

    McCann, C.; Repasky, K. S.; Morin, M.; Lawrence, R. L.; Powell, S. L.

    2016-12-01

    Compact, cost-effective, flight-based hyperspectral imaging systems can provide scientifically relevant data over large areas for a variety of applications such as ecosystem studies, precision agriculture, and land management. To fully realize this capability, unsupervised classification techniques based on radiometrically-calibrated data that cluster based on biophysical similarity rather than simply spectral similarity are needed. An automated technique to produce high-resolution, large-area, radiometrically-calibrated hyperspectral data sets based on the Landsat surface reflectance data product as a calibration target was developed and applied to three subsequent years of data covering approximately 1850 hectares. The radiometrically-calibrated data allows inter-comparison of the temporal series. Advantages of the radiometric calibration technique include the need for minimal site access, no ancillary instrumentation, and automated processing. Fitting the reflectance spectra of each pixel using a set of biophysically relevant basis functions reduces the data from 80 spectral bands to 9 parameters providing noise reduction and data compression. Examination of histograms of these parameters allows for determination of natural splitting into biophysical similar clusters. This method creates clusters that are similar in terms of biophysical parameters, not simply spectral proximity. Furthermore, this method can be applied to other data sets, such as urban scenes, by developing other physically meaningful basis functions. The ability to use hyperspectral imaging for a variety of important applications requires the development of data processing techniques that can be automated. The radiometric-calibration combined with the histogram based unsupervised classification technique presented here provide one potential avenue for managing big-data associated with hyperspectral imaging.

  11. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  12. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  13. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  14. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  15. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  16. Nuclear analytical techniques and their application to environmental samples

    International Nuclear Information System (INIS)

    Lieser, K.H.

    1986-01-01

    A survey is given on nuclear analytical techniques and their application to environmental samples. Measurement of the inherent radioactivity of elements or radionuclides allows determination of natural radioelements (e.g. Ra), man-made radioelements (e.g. Pu) and radionuclides in the environment. Activation analysis, in particular instrumental neutron activation analysis, is a very reliable and sensitive method for determination of a great number of trace elements in environmental samples, because the most abundant main constituents are not activated. Tracer techniques are very useful for studies of the behaviour and of chemical reactions of trace elements and compounds in the environment. Radioactive sources are mainly applied for excitation of characteristic X-rays (X-ray fluorescence analysis). (author)

  17. Study of trace elements in milk by nuclear analytical techniques

    International Nuclear Information System (INIS)

    Gharib, A.; Rahimi, H.; Pyrovan, H.; Raoffi, N.J.; Taherpoor, H.

    1985-01-01

    This work is part of project with the IAEA in a coordinated program on 'Trace Elements in Human and Bio-environmental Systems' to evaluate their nutritional requierements, interrelations and the role of trace elements in health, metabolism, etc. Cow's milk is regarded to be one of the most important and most nutritious foodstuffs of mankind. Hence, as a first step, an elemental analysis for milk was carried out: a few samples of pasteurized milk and local samples were investigated for essential and toxic trace elements. The secondary aim of the project was the assessment of various analytical techniques involved. AAS, PIXE and NAA are presented here. The latter was applied both instrumentally and radiochemically. Although the results pertaining to the various methods employed are not in good agreement, there is, however, some justification to clarify this internal inconsistency. PIXE analysis is very fast and rather routine, but the technique for trace element analysis needs certain adaptations and improvement. (author)

  18. Non-target metabolomic profiling of the marine microalgae dunaliella tertiolecta after exposure to diuron using complementary high-resolution analytical techniques

    NARCIS (Netherlands)

    Booij, P; Lamoree, M.H.; Sjollema, S.B.; de Voogt, P.; Schollée, J.E.; Vethaak, A.D.; Leonards, P.E.G.

    2014-01-01

    Traditionally, bioassays are used to assess the toxicity of chemicals. Bioassays often focus on one specific mode of action or end point and their responses offer a limited understanding of the health status and underlying pathways of the species under consideration. Metabolomics can be used to

  19. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  20. The use of decision analytic techniques in energy policy decisions

    International Nuclear Information System (INIS)

    Haemaelaeinen, R.P.; Seppaelaeinen, T.O.

    1986-08-01

    The report reviews decision analytic techniques and their applications to energy policy decision making. Decision analysis consists in techniques for structuring the essential elements of a decision problem and mathematical methods for ranking the alternatives from a set of simple judgments. Because modeling subjective judgments is characteristic of decision analysis, the models can incorporate qualitative factors and values, which escape traditional energy modeling. Decision analysis has been applied to choices among energy supply alternatives, siting energy facilities, selecting nuclear waste repositories, selecting research and development projects, risk analysis and prioritizing alternative energy futures. Many applications are done in universities and research institutions, but during the 70's the use of decision analysis has spread both to the public and the private sector. The settings where decision analysis has been applied range from aiding a single decision maker to clarifying opposing points of view. Decision analytic methods have also been linked with energy models. The most valuable result of decision analysis is the clarification of the problem at hand. Political decisions cannot be made solely on the basis of models, but models can be used to gain insight of the decision situation. Models inevitably simplify reality, so they must be regarded only as aids to judgment. So far there has been only one decision analysis of energy policy issues in Finland with actual political decision makers as participants. The experiences of this project and numerous foreign applications do however suggest that the decision analytic approach is useful in energy policy questions. The report presents a number of Finnish energy policy decisions where decision analysis might prove useful. However, the applicability of the methods depends crucially on the actual circumstances at hand

  1. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques.

    Directory of Open Access Journals (Sweden)

    Valentina di Rienzo

    Full Text Available In tomato, resistance to Tomato spotted wilt virus (TSWV is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50-70 TSWV RNA copies and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke and summer (tomato crops, in the same cultivated areas of Southern Italy.

  2. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  3. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  4. Waste minimization in analytical chemistry through innovative sample preparation techniques

    International Nuclear Information System (INIS)

    Smith, L. L.

    1998-01-01

    water samples. In this SPME technique, a fused-silica fiber coated with a polymeric film is exposed to the sample, extraction is allowed to take place, and then the analytes are thermally desorbed for GC analysis. Unlike liquid-liquid extraction or solid-phase extraction, SPME consumes all of the extracted sample in the analysis, significantly reducing the required sample volume

  5. High resolution studies of barium Rydberg states

    International Nuclear Information System (INIS)

    Eliel, E.R.

    1982-01-01

    The subtle structure of Rydberg states of barium with orbital angular momentum 0, 1, 2 and 3 is investigated. Some aspects of atomic theory for a configuration with two valence electrons are reviewed. The Multi Channel Quantum Defect Theory (MQDT) is concisely introduced as a convenient way to describe interactions between Rydberg series. Three high-resolution UV studies are presented. The first two, presenting results on a transition in indium and europium serve as an illustration of the frequency doubling technique. The third study is of hyperfine structure and isotope shifts in low-lying p states in Sr and Ba. An extensive study of the 6snp and 6snf Rydberg states of barium is presented with particular emphasis on the 6snf states. It is shown that the level structure cannot be fully explained with the model introduced earlier. Rather an effective two-body spin-orbit interaction has to be introduced to account for the observed splittings, illustrating that high resolution studies on Rydberg states offer an unique opportunity to determine the importance of such effects. Finally, the 6sns and 6snd series are considered. The hyperfine induced isotope shift in the simple excitation spectra to 6sns 1 S 0 is discussed and attention is paid to series perturbers. It is shown that level mixing parameters can easily be extracted from the experimental data. (Auth.)

  6. Analytical Technique of Selection of Constructive Parameters Pneumatichydraulic Springs

    Directory of Open Access Journals (Sweden)

    A. A. Tsipilev

    2014-01-01

    Full Text Available The article "Technique for Analytical Selection of Design Parameters of Pneumatichydraulic Springs concerns the ride smoothness of high-speed vehicles. Author of article Tsipilev A.A. is an assistant at chair "Multi-purpose Tracked Vehicles and Mobile Robots" of BMSTU. The article represents a synthesis of known information on the springing systems and an analysis of relation between spring design data and running gear. It describes standard units of running gear of vehicle in the context of springing systems. Classification of springing systems is considered. Modernization general policy for existing suspensions and prospects for creation of new ones are given. The article considers a design of various pneumatic-hydraulic springs to be set on domestic tracked vehicles. A developed technique allows us to have elastic characteristics of pneumatic-hydraulic springs of various types using these design data and kinematics of the running gear. The article provides recommendations to calculate characteristics of springing systems. The adequacy analysis of the given technique based on the comparison of real and rated characteristics of the existing suspension is conducted. This article can be useful to the experts dealing with springing systems of wheel and tracked vehicles.

  7. Macro elemental analysis of food samples by nuclear analytical technique

    Science.gov (United States)

    Syahfitri, W. Y. N.; Kurniawati, S.; Adventini, N.; Damastuti, E.; Lestiani, D. D.

    2017-06-01

    Energy-dispersive X-ray fluorescence (EDXRF) spectrometry is a non-destructive, rapid, multi elemental, accurate, and environment friendly analysis compared with other detection methods. Thus, EDXRF spectrometry is applicable for food inspection. The macro elements calcium and potassium constitute important nutrients required by the human body for optimal physiological functions. Therefore, the determination of Ca and K content in various foods needs to be done. The aim of this work is to demonstrate the applicability of EDXRF for food analysis. The analytical performance of non-destructive EDXRF was compared with other analytical techniques; neutron activation analysis and atomic absorption spectrometry. Comparison of methods performed as cross checking results of the analysis and to overcome the limitations of the three methods. Analysis results showed that Ca found in food using EDXRF and AAS were not significantly different with p-value 0.9687, whereas p-value of K between EDXRF and NAA is 0.6575. The correlation between those results was also examined. The Pearson correlations for Ca and K were 0.9871 and 0.9558, respectively. Method validation using SRM NIST 1548a Typical Diet was also applied. The results showed good agreement between methods; therefore EDXRF method can be used as an alternative method for the determination of Ca and K in food samples.

  8. Nuclear Analytical Techniques for Commercial Applications in China

    International Nuclear Information System (INIS)

    Chai, Z.; Zhang, Z.; Feng, S.; Yang, J.; Ouyang, H.; Feng, X.; Mao, X.

    2013-01-01

    Since the establishment of the first Chinese nuclear reactor and accelerator in 1958, the nuclear analytical techniques (NATs) in China have dramatically developed in past half century. Nowadays 10 research nuclear reactors and over 100 small accelerators are available in China. Roughly, about 50 % of the machine time is applied for commercial purpose at the moment. The versatile nuclear analytical methods, mainly NAA, PIXE, XRF, etc., in China have been and are being applied widely and extensively in the following three fields: scientific, training, and commercial. This paper will briefly describe the past experience and present status about NATs for commercial applications. Some practical examples to demonstrate the role of NATs in this aspect will be given as well. Basically, the NATs used for the commercial applications in China can be divided into two types, i.e. off-line and on-line. The former mainly includes instrumental neutron activation analysis (INAA) for compositional determination, particle induced X-ray emission (PIXE) also for compositional analysis, accelerator-based mass-spectrometry (AMS) for analysis of C-14, Be-7, Cl-36 and other long-lived radioactive nuclides, solid state nuclear track detector

  9. Application of multivariate techniques to analytical data on Aegean ceramics

    International Nuclear Information System (INIS)

    Bieber, A.M.; Brooks, D.W.; Harbottle, G.; Sayre, E.V.

    1976-01-01

    The general problems of data collection and handling for multivariate elemental analyses of ancient pottery are considered including such specific questions as the level of analytical precision required, the number and type of elements to be determined and the need for comprehensive multivariate statistical analysis of the collected data in contrast to element by element statistical analysis. The multivariate statistical procedures of clustering in a multidimensional space and determination of the numerical probabilities of specimens belonging to a group through calculation of the Mahalanobis distances for these specimens in multicomponent space are described together with supporting univariate statistical procedures used at Brookhaven. The application of these techniques to the data on Late Bronze Age Aegean pottery (largely previously analysed at Oxford and Brookhaven with some new specimens considered) have resulted in meaningful subdivisions of previously established groups. (author)

  10. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  11. Development of analytical techniques for water and environmental samples (2)

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Chul Hun; Jeon, Chi Wan; Jung, Kang Sup; Song, Kyung Sun; Kim, Sang Yeon [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    The purpose of this study is to develop new analytical methods with good detection limit for toxic inorganic and organic compounds. The analyses of CN, organic acids, particulate materials in environmental samples have been done using several methods such as Ion Chromatography, SPE, SPME, GC/MS, GC/FID, SPLITT (split-flow thin cell fractionation) during the second year of this project. Advantage and disadvantage of several distillation method (by KS, JIS, EPA) for CN analysis in wastewater were investigated. As the results, we proposed new distillation apparatus for CN analysis, which was proved to be simpler, faster and to get better recovery than conventional apparatus. And ion chromatograph/pulsed amperometric detector (IC/PAD) system instead of colorimetry for CN detection was setup to solve matrix interference. And SPE(solid phase extraction) and SPME (solid phase micro extraction) as liquid-solid extraction technique were applied to the analysis of phenols in wastewater. Optimum experimental conditions and factors influencing analytical results were determined. From these results, It could be concluded that C{sub 18} cartridge and polystyrene-divinylbenzene disk in SPE method, polyacrylate fiber in SPME were proper solid phase adsorbent for phenol. Optimum conditions to analyze phenol derivatives simultaneously were established. Also, Continuous SPLITT (Split-flow thin cell) Fractionation (CSF) is a new preparative separation technique that is useful for fractionation of particulate and macromolecular materials. CSF is carried out in a thin ribbon-like channel equipped with two splitters at both inlet and outlet of the channel. In this work, we set up a new CSF system, and tested using polystyrene latex standard particles. And then we fractionated particles contained in air and underground water based on their sedimentation coefficients using CSF. (author). 27 refs., 13 tabs., 31 figs.

  12. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  13. Analytical techniques for thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1988-01-01

    Treatise on Materials Science and Technology, Volume 27: Analytical Techniques for Thin Films covers a set of analytical techniques developed for thin films and interfaces, all based on scattering and excitation phenomena and theories. The book discusses photon beam and X-ray techniques; electron beam techniques; and ion beam techniques. Materials scientists, materials engineers, chemical engineers, and physicists will find the book invaluable.

  14. Quality assurance and quality control of nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cincu, Emanuelathor

    2001-01-01

    Test and analytical laboratories in East and Central European countries need to prove the reliability and credibility of their economic, environmental, medical and legal decisions and their capacity of issuing reliable, verifiable reports. These demands imposed by the European Union aimed at avoiding a possible barrier to trade for the developing countries. In June 1999, in order to help Member States to develop according to EU objectives and the overall situation of the European market, IAEA launched a new co-operation programme designed to help the nuclear analytical laboratories in nuclear institutions and universities of Member States by training in the use of some Nuclear Analytical Techniques (NAT) that include: alpha, beta and gamma-ray spectrometry, radiochemical and neutron activation analysis, total reflection X-ray fluorescence. The Regional IAEA Project, named 'Quality Assurance/Quality Control of Nuclear Analytical Techniques' (NAT) aims at implementing the QA principles via a system of defined consecutive steps leading to a level on which the QA system is self-sustainable for formal accreditation or certification and satisfies the EU technical performance criteria; the requirements are in accordance with the new ISO/IEC 17025 Standard/Dec.1999 'General requirements for the competence of testing and calibration laboratories' - First edition. The Horia Hulubei National Institute for Nuclear Physics and Engineering, IFIN-HH, was admitted for participation in the IAEA Project in June 1999 account taken of its experience in the QA and metrology fields and its performance in the fields of beta and gamma-ray spectrometry, and radiochemical and neutron activation analysis, employed in both basic research and applications for external clients. Two working groups of specialists with the QA and Standardization and Metrology Departments and six analytical groups with the departments of Nuclear Applied Physics, Life Physics and Ionising Radiation Metrology are

  15. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    Energy Technology Data Exchange (ETDEWEB)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Ondra, Peter; Válka, Ivo [Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146 (Czech Republic); Ševčík, Juraj [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic); Chrastina, Jan [Institute of Special Education Studies, Faculty of Education, Palacký University, Žižkovo náměsti 5, Olomouc CZ-77146 (Czech Republic); Maier, Vítězslav, E-mail: vitezslav.maier@upol.cz [Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146 (Czech Republic)

    2015-05-18

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.

  16. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques – a review

    International Nuclear Information System (INIS)

    Znaleziona, Joanna; Ginterová, Pavlína; Petr, Jan; Ondra, Peter; Válka, Ivo; Ševčík, Juraj; Chrastina, Jan; Maier, Vítězslav

    2015-01-01

    Highlights: • Synthetic cannabinoids from analytical point of view. • Determination and identification methods of synthetic cannabinoids in different matrices. • Analytical techniques used from thin layer chromatography to high resolution mass spectrometry. • Detailed survey of gas and liquid chromatography methods for synthetic cannabinoids analysis. - Abstract: Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry

  17. High resolution CT of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Harumi (Kyoto Univ. (Japan). Faculty of Medicine)

    1991-02-01

    The emergence of computed tomography (CT) in the early 1970s has greatly contributed to diagnostic radiology. The brain was the first organ examined with CT, followed by the abdomen. For the chest, CT has also come into use shortly after the introduction in the examination of the thoracic cavity and mediastinum. CT techniques were, however, of limited significance in the evaluation of pulmonary diseases, especially diffuse pulmonary diseases. High-resolution CT (HRCT) has been introduced in clinical investigations of the lung field. This article is designed to present chest radiographic and conventional tomographic interpretations and to introduce findings of HRCT corresponding to the same shadows, with a summation of the significance of HRCT and issues of diagnostic imaging. Materials outlined are tuberculosis, pneumoconiosis, bronchopneumonia, mycoplasma pneumonia, lymphangitic carcinomatosis, sarcoidosis, diffuse panbronchiolitis, interstitial pneumonia, and pulmonary emphysema. Finally, an overview of basic investigations evolved from HRCT is given. (N.K.) 140 refs.

  18. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  19. Study of trace elements in milk by nuclear analytical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gharib, A.; Rahimi, H.; Peyrovan, H.; Raofei, H.N.J.; Taherpour, H. (Atomic Energy Organization of Iran, Teheran. Nuclear Research Centre)

    This work is part of a project with the IAEA, in a coordinated programme on ''trace elements in Human Nutrition and Bio-Environmental Systems'' to evaluate their nutritional requirements, interrelations and the role of trace elements in health, metabolism etc. Cow's milk is regarded as one of the most important and nutritious foodstuffs consumed by people. Hence, as a first step, an elemental analysis for milk was carried out for this purpose so a few samples of pasteurized milk and local samples were investigated for essential and toxic trace elements. The secondary aim of this project was the assessment of various analytical techniques involved. However, in the present work, the methods involved were AAS, PIXE and NAA. The latter method applied, both instrumentally and radiochemically. Although the results pertaining to the various methods employed are not in good agreement, there is however, some justification to clarify this internal inconsistency. The precision for NAA and AAS allows greater degree of acceptance respectively. Although PIXE is very fast and rather routine, the technique of trace element analysis needs certain adaptations and developments.

  20. Voltammetric technique, a panacea for analytical examination of environmental samples

    International Nuclear Information System (INIS)

    Zahir, E.; Mohiuddin, S.; Naqvi, I.I.

    2012-01-01

    Voltammetric methods for trace metal analysis in environmental samples of marine origin like mangrove, sediments and shrimps are generally recommended. Three different electro-analytical techniques i.e. polarography, anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (ADSV) have been used. Cd/sub 2/+, Pb/sub 2/+, Cu/sub 2/+ and Mn/sub 2/+ were determined through ASV, Cr/sub 6/+ was analyzed by ADSV and Fe/sub 2/+, Zn/sub 2/+, Ni/sub 2/+ and Co/sub 2/+ were determined through polarography. Out of which pairs of Fe/sub 2/+Zn/sub 2/+ and Ni/sub 2/+Co/sub 2/+ were determined in two separate runs while Cd/sub 2/+, Pb/sub 2/+, Cu/sub 2/+ were analyzed in single run of ASV. Sensitivity and speciation capabilities of voltammetric methods have been employed. Analysis conditions were optimized that includes selection of supporting electrolyte, pH, working electrodes, sweep rate etc. Stripping voltammetry was adopted for analysis at ultra trace levels. Statistical parameters for analytical method development like selectivity factor, interference, repeatability (0.0065-0.130 macro g/g), reproducibility (0.08125-1.625 macro g/g), detection limits (0.032-5.06 macro g/g), limits of quantification (0.081-12.652 macro g/g), sensitivities (5.636-2.15 nA mL macro g-1) etc. were also determined. The percentage recoveries were found in between 95-105% using certified reference materials. Real samples of complex marine environment from Karachi coastline were also analyzed. The standard addition method was employed where any matrix effect was evidenced. (author)

  1. High-resolution reflection spectroscopy

    International Nuclear Information System (INIS)

    Ducloy, Martial

    1997-01-01

    In this article some recent developments in selective reflection spectroscopy is reviewed and the various ways to extend Doppler free techniques to this spectroscopic field is discussed. Its main feature is to probe atomic gas close to the cell boundaries

  2. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  3. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  4. Characterization of pre-hispanic pigments by modern analytical techniques

    International Nuclear Information System (INIS)

    Ortega A, M.

    2003-01-01

    In this work, the study of mural painting pigments from two archaeological sites (The Great Temple in Mexico city and Cacaxtla) was performed to know their materials composition, identify their structural characteristics and properties by using modern analytical techniques. Blue, ochre, red and black pigments of Mexica culture (1325-1521 a.C. / late Post Classic period); blue, ochre, red, brown, pink, green and white of Olmeca- Xicalanca culture (700-900 a.C. / Epiclassic period) were studied. Data about materials used, technological evolution, mineralogical background, cultural interchange and origin was obtained. Environmental exposition of these paintings since their discovering has produced changes and damage on their materials. Therefore, stability of some pigments has been notorious, ''Maya Blue'' specially presents extraordinary resistance to diluted and concentrated acids and alkalis including boiling condition, acqua regia, solvents, oxidant and reducing agents, moderate heat and biocorrosi6n; for that reason its study was emphasized. ''Maya Blue'' pigment was synthesized in laboratory using the processes described by historic sources (with indigophera suffruticosa leaves and synthetic indigo) up to obtain a stable pigment including acqua regia action. Clay matrix sorbs nearly 0.4 weight percent of organic dye, which cover 79% of palygorskita surface area. (Author)

  5. Applications of nuclear analytical techniques to environmental studies

    International Nuclear Information System (INIS)

    Freitas, M.C.; Marques, A.P.; Reis, M.A.; Pacheco, A.M.G.; Barros, L.I.C.

    2001-01-01

    A few examples of application of nuclear-analytical techniques to biological monitors - natives and transplants - are given herein. Parmelia sulcata Taylor transplants were set up in a heavily industrialized area of Portugal - the Setubal peninsula, about 50 km south of Lisbon - where indigenous lichens are rare. The whole area was 10x15 km around an oil-fired power station, and a 2.5x2.5 km grid was used. In north-western Portugal, native thalli of the same epiphytes (Parmelia spp., mostly Parmelia sulcata Taylor) and bark from olive trees (Olea europaea) were sampled across an area of 50x50 km, using a 10x10 km grid. This area is densely populated and features a blend of rural, urban-industrial and coastal environments, together with the country's second-largest metro area (Porto). All biomonitors have been analyzed by INAA and PIXE. Results were put through nonparametric tests and factor analysis for trend significance and emission sources, respectively

  6. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  7. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  8. Spectral interference of zirconium on 24 analyte elements using CCD based ICP-AES technique

    International Nuclear Information System (INIS)

    Adya, V.C.; Sengupta, Arijit; Godbole, S.V.

    2014-01-01

    In the present studies, the spectral interference of zirconium on different analytical lines of 24 critical analytes using CCD based ICP-AES technique is described. Suitable analytical lines for zirconium were identified along with their detection limits. The sensitivity and the detection limits of analytical channels for different elements in presence of Zr matrix were calculated. Subsequently analytical lines with least interference from Zr and better detection limits were selected for their determinations. (author)

  9. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  10. In situ high-resolution thermal microscopy on integrated circuits.

    Science.gov (United States)

    Zhuo, Guan-Yu; Su, Hai-Ching; Wang, Hsien-Yi; Chan, Ming-Che

    2017-09-04

    The miniaturization of metal tracks in integrated circuits (ICs) can cause abnormal heat dissipation, resulting in electrostatic discharge, overvoltage breakdown, and other unwanted issues. Unfortunately, locating areas of abnormal heat dissipation is limited either by the spatial resolution or imaging acquisition speed of current thermal analytical techniques. A rapid, non-contact approach to the thermal imaging of ICs with sub-μm resolution could help to alleviate this issue. In this work, based on the intensity of the temperature-dependent two-photon fluorescence (TPF) of Rhodamine 6G (R6G) material, we developed a novel fast and non-invasive thermal microscopy with a sub-μm resolution. Its application to the location of hotspots that may evolve into thermally induced defects in ICs was also demonstrated. To the best of our knowledge, this is the first study to present high-resolution 2D thermal microscopic images of ICs, showing the generation, propagation, and distribution of heat during its operation. According to the demonstrated results, this scheme has considerable potential for future in situ hotspot analysis during the optimization stage of IC development.

  11. Degradation of glass artifacts: application of modern surface analytical techniques.

    Science.gov (United States)

    Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred

    2010-06-15

    A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric

  12. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  13. High resolution eddy current microscopy

    Science.gov (United States)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  14. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayana Suvarapu

    2015-01-01

    Full Text Available This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed.

  15. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  16. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  17. High resolution X-ray diffraction studies on unirradiated

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  18. Pattern of interstitial lung disease detected by high resolution ...

    African Journals Online (AJOL)

    Background: Diffuse lung diseases constitute a major cause of morbidity and mortality worldwide. High Resolution Computed Tomography (HRCT) is the recommended imaging technique in the diagnosis, assessment and followup of these diseases. Objectives: To describe the pattern of HRCT findings in patients with ...

  19. Analytical techniques and quality control in biomedical trace element research

    DEFF Research Database (Denmark)

    Heydorn, K.

    1994-01-01

    The small number of analytical results in trace element research calls for special methods of quality control. It is shown that when the analytical methods are in statistical control, only small numbers of duplicate or replicate results are needed to ascertain the absence of systematic errors....../kg. Measurement compatibility is obtained by control of traceability to certified reference materials, (C) 1994 Wiley-Liss, Inc....

  20. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  1. High-resolution CCD imaging alternatives

    Science.gov (United States)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  2. Contactless conductivity detection for analytical techniques — Developments from 2014 to 2016

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Hauser, P.C.

    2017-01-01

    Roč. 38, č. 1 (2017), s. 95-114 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : capacitively coupled contactless conductivity detection * capillary electrophoresis * contactless conductivity detection * analytical techniques * review Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  3. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  4. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  5. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  6. Applied predictive analytics principles and techniques for the professional data analyst

    CERN Document Server

    Abbott, Dean

    2014-01-01

    Learn the art and science of predictive analytics - techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive mode

  7. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  8. In-depth characterization of prebiotic galactooligosaccharides by a combination of analytical techniques

    NARCIS (Netherlands)

    Coulier, L.; Timmermans, J.; Richard, B.; Dool, R. van den; Haaksman, I.; Klarenbeek, B.; Slaghek, T.; Dongen, W. van

    2009-01-01

    A commercial prebiotic galacto-oligosaccharide mixture (Vivinal GOS) was extensively characterized using a combination of analytical techniques. The different techniques were integrated to give complementary information on specific characteristics of the oligosaccharide mixture, ranging from global

  9. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  10. High-Resolution Esophageal Manometry: A Time Motion Study

    Directory of Open Access Journals (Sweden)

    Daniel C Sadowski

    2008-01-01

    Full Text Available INTRODUCTION: High-resolution manometry (HRM of the esophagus is a new technique that provides a more precise assessment of esophageal motility than conventional techniques. Because HRM measures pressure events along the entire length of the esophagus simultaneously, clinical procedure time should be shorter because less catheter manipulation is required. According to manufacturer advertising, the new HRM system is more accurate and up to 50% faster than conventional methods.

  11. Synchrotron radiation based analytical techniques (XAS and XRF)

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2014-01-01

    A brief description of the principles of X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) techniques is given in this article with emphasis on the advantages of using synchrotron radiation-based instrumentation/beamline. XAS technique is described in more detail to emphasize the strength of the technique as a local structural probe. (author)

  12. Challenges of Using Learning Analytics Techniques to Support Mobile Learning

    Science.gov (United States)

    Arrigo, Marco; Fulantelli, Giovanni; Taibi, Davide

    2015-01-01

    Evaluation of Mobile Learning remains an open research issue, especially as regards the activities that take place outside the classroom. In this context, Learning Analytics can provide answers, and offer the appropriate tools to enhance Mobile Learning experiences. In this poster we introduce a task-interaction framework, using learning analytics…

  13. Social Data Analytics Using Tensors and Sparse Techniques

    Science.gov (United States)

    Zhang, Miao

    2014-01-01

    The development of internet and mobile technologies is driving an earthshaking social media revolution. They bring the internet world a huge amount of social media content, such as images, videos, comments, etc. Those massive media content and complicate social structures require the analytic expertise to transform those flood of information into…

  14. Statistical evaluation of recorded knowledge in nuclear and other instrumental analytical techniques

    International Nuclear Information System (INIS)

    Braun, T.

    1987-01-01

    The main points addressed in this study are the following: Statistical distribution patterns of published literature on instrumental analytical techniques 1981-1984; structure of scientific literature and heuristics for identifying active specialities and emerging hot spot research areas in instrumental analytical techniques; growth and growth rates of the literature in some of the identified hot research areas; quality and quantity in instrumental analytical research output. (orig.)

  15. On numerical-analytic techniques for boundary value problems

    Czech Academy of Sciences Publication Activity Database

    Rontó, András; Rontó, M.; Shchobak, N.

    2012-01-01

    Roč. 12, č. 3 (2012), s. 5-10 ISSN 1335-8243 Institutional support: RVO:67985840 Keywords : numerical-analytic method * periodic successive approximations * Lyapunov-Schmidt method Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/aeei.2012.12.issue-3/v10198-012-0035-1/v10198-012-0035-1.xml?format=INT

  16. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  17. A new high-resolution electromagnetic method for subsurface imaging

    Science.gov (United States)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  18. HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger

    A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to

  19. Analytical techniques for the study of polyphenol-protein interactions.

    Science.gov (United States)

    Poklar Ulrih, Nataša

    2017-07-03

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brief insight in computational methods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniques including small-angle X-ray scattering and small-angle neutron scattering, and calorimetric techniques (isothermal titration calorimetry and differential scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  20. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  1. Fluvial sediment transport: Analytical techniques for measuring sediment load

    International Nuclear Information System (INIS)

    2005-07-01

    Sediment transport data are often used for the evaluation of land surface erosion, reservoir sedimentation, ecological habitat quality and coastal sediment budgets. Sediment transport by rivers is usually considered to occur in two major ways: (1) in the flow as a suspended load and (2) along the bed as a bed load. This publication provides guidance on selected techniques for the measurement of particles moving in both modes in the fluvial environment. The relative importance of the transport mode is variable and depends on the hydraulic and sedimentary conditions. The potential user is directed in the selection of an appropriate technique through the presentation of operating principles, application guidelines and estimated costs. Techniques which require laboratory analysis are grab sample, pump sample, depth sample, point integrated and radioactive tracers. Techniques which will continuously record data are optical backscattering, nuclear transmission, single frequency acoustic and laser diffraction

  2. Structural Analysis of Composite Laminates using Analytical and Numerical Techniques

    Directory of Open Access Journals (Sweden)

    Sanghi Divya

    2016-01-01

    Full Text Available A laminated composite material consists of different layers of matrix and fibres. Its properties can vary a lot with each layer’s or ply’s orientation, material property and the number of layers itself. The present paper focuses on a novel approach of incorporating an analytical method to arrive at a preliminary ply layup order of a composite laminate, which acts as a feeder data for the further detailed analysis done on FEA tools. The equations used in our MATLAB are based on analytical study code and supply results that are remarkably close to the final optimized layup found through extensive FEA analysis with a high probabilistic degree. This reduces significant computing time and saves considerable FEA processing to obtain efficient results quickly. The result output by our method also provides the user with the conditions that predicts the successive failure sequence of the composite plies, a result option which is not even available in popular FEM tools. The predicted results are further verified by testing the laminates in the laboratory and the results are found in good agreement.

  3. A semi-analytical iterative technique for solving chemistry problems

    Directory of Open Access Journals (Sweden)

    Majeed Ahmed AL-Jawary

    2017-07-01

    Full Text Available The main aim and contribution of the current paper is to implement a semi-analytical iterative method suggested by Temimi and Ansari in 2011 namely (TAM to solve two chemical problems. An approximate solution obtained by the TAM provides fast convergence. The current chemical problems are the absorption of carbon dioxide into phenyl glycidyl ether and the other system is a chemical kinetics problem. These problems are represented by systems of nonlinear ordinary differential equations that contain boundary conditions and initial conditions. Error analysis of the approximate solutions is studied using the error remainder and the maximal error remainder. Exponential rate for the convergence is observed. For both problems the results of the TAM are compared with other results obtained by previous methods available in the literature. The results demonstrate that the method has many merits such as being derivative-free, and overcoming the difficulty arising in calculating Adomian polynomials to handle the non-linear terms in Adomian Decomposition Method (ADM. It does not require to calculate Lagrange multiplier in Variational Iteration Method (VIM in which the terms of the sequence become complex after several iterations, thus, analytical evaluation of terms becomes very difficult or impossible in VIM. No need to construct a homotopy in Homotopy Perturbation Method (HPM and solve the corresponding algebraic equations. The MATHEMATICA® 9 software was used to evaluate terms in the iterative process.

  4. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  5. New analytical technique for carbon dioxide absorption solvents

    Energy Technology Data Exchange (ETDEWEB)

    Pouryousefi, F.; Idem, R.O. [University of Regina, Regina, SK (Canada). Faculty of Engineering

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  6. Studies of high resolution array processing algorithms for multibeam bathymetric applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Schenke, H.W.

    In this paper a study is initiated to observe the usefulness of directional spectral estimation techniques for underwater bathymetric applications. High resolution techniques like the Maximum Likelihood (ML) method and the Maximum Entropy (ME...

  7. Nuclear analytical techniques with neutron beams at the Univ. of Texas at Austin

    International Nuclear Information System (INIS)

    Uenlue, K.; Wehring, B.W.

    1996-01-01

    Neutron beams produced by nuclear research reactors can be used for analytical chemical analysis by measuring nuclear radiation produced by neutron capture. Prompt gamma activation analysis (PGAA) and neutron depth profiling (NDP) are two such analytical techniques. For the last three decades, these techniques have been applied at a number of research reactors around the world. Within the last 4 yr, we have developed NDP and PGAA facilities at The University of Texas at Austin research reactor, a 1-MW TRIGA Mark II reactor. Brief descriptions of the facilities and summaries of activities for these analytical techniques at the University of Texas at Austin are provided in this paper

  8. Determination of palladium in biological samples applying nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Q.; Sato, Ivone M.; Salvador, Vera L. R.; Saiki, Mitiko

    2008-01-01

    This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy. (author)

  9. PROFIL-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  10. Profil-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  11. High-resolution spectroscopy of gases for industrial applications

    OpenAIRE

    Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission s...

  12. Selected methods of waste monitoring using modern analytical techniques

    International Nuclear Information System (INIS)

    Hlavacek, I.; Hlavackova, I.

    1993-11-01

    Issues of the inspection and control of bituminized and cemented waste are discussed, and some methods of their nondestructive testing are described. Attention is paid to the inspection techniques, non-nuclear spectral techniques in particular, as employed for quality control of the wastes, waste concentrates, spent waste leaching solutions, as well as for the examination of environmental samples (waters and soils) from the surroundings of nuclear power plants. Some leaching tests used abroad for this purpose and practical analyses by the ICP-AES technique are given by way of example. The ICP-MS technique, which is unavailable in the Czech Republic, is routinely employed abroad for alpha nuclide measurements; examples of such analyses are also given. The next topic discussed includes the monitoring of organic acids and complexants to determine the degree of their thermal decomposition during the bituminization of wastes on an industrial line. All of the methods and procedures highlighted can be used as technical support during the monitoring of radioactive waste properties in industrial conditions, in the chemical and radiochemical analyses of wastes and related matter, in the calibration of nondestructive testing instrumentation, in the monitoring of contamination of the surroundings of nuclear facilities, and in trace analysis. (author). 10 tabs., 1 fig., 14 refs

  13. Measuring efficiency in health care: analytic techniques and health policy

    National Research Council Canada - National Science Library

    Smith, Peter C; Street, Andrew; Jacobs, Rowena

    2006-01-01

    ... the efficiency of systems and organisations, including data envelopment analysis and stochastic frontier analysis, and also presents some promising new methodological approaches. Such techniques offer the prospect of many new and fruitful insights into health care performance. Nevertheless, they also pose many practical and methodological c...

  14. Applications of nuclear analytical techniques to the Geology

    International Nuclear Information System (INIS)

    Aspiazu F, J.A.; Lopez M, J.; Ramirez T, J.J.; Montero M, E.; Villasenor S, P.

    2001-01-01

    It is applied the PIXE technique for to measure the ratio Sr/Ca in different stages of the stalactite growth. As the ratio depends of the temperature, information about the variations of atmospheric temperature along thousand of years is obtained. (Author)

  15. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  16. High resolution CT in diffuse lung disease

    International Nuclear Information System (INIS)

    Webb, W.R.

    1995-01-01

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.)

  17. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  18. High resolution CT in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.).

  19. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  20. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  1. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  2. An Analytical Study of Tools and Techniques for Movie Marketing

    Directory of Open Access Journals (Sweden)

    Garima Maik

    2014-08-01

    Full Text Available Abstract. Bollywood or Hindi movie industry is one of the fastest growing sector in the media and entertainment space creating numerous business and employment opportunities. Movies in India are a major source of entertainment for all sects of society. They not only face competition from other movie industries and movies but from other source of entertainment such as adventure sports, amusement parks, theatre and drama, pubs and discothèques. A lot of man power, man hours, creative brains, and money are put in to build a quality feature film. Bollywood is the industry which continuously works towards providing the 7 billion population with something new always. So it is important for the movie and production team to stand out, to grab the due attention of the maximum audience. Movie makers employ various tools and techniques today to market their movies. They leave no stone unturned. They roll out teasers, First look, Theatrical trailer release, Music launch, City tours, Producer’s and director’s interview, Movie premier, Movie release, post release follow up and etc. to pull the viewers to the Cineplex. The audience today which comprises mainly of youth requires photos, videos, meet ups, gossip, debate, collaboration and content creation. These requirements of today’s generation are most fulfilled through digital platforms. However, the traditional media like newspapers, radio, and television are not old school. They reach out to mass audience and play an upper role in effective marketing. This study aims at analysing these tools for their effectiveness. The objectives are fulfilled through a consumer survey. This study will bring out the effectiveness and relational importance of various tools which are employed by movie marketers to generate maximum returns on the investments by using various data reduction techniques like factor analysis and statistical techniques like chi-square test with data visualization using pie charts

  3. Analytical techniques for mechanistic characterization of EUV photoresists

    Science.gov (United States)

    Grzeskowiak, Steven; Narasimhan, Amrit; Murphy, Michael; Ackerman, Christian; Kaminsky, Jake; Brainard, Robert L.; Denbeaux, Greg

    2017-03-01

    Extreme ultraviolet (EUV, 13.5 nm) lithography is the prospective technology for high volume manufacturing by the microelectronics industry. Significant strides towards achieving adequate EUV source power and availability have been made recently, but a limited rate of improvement in photoresist performance still delays the implementation of EUV. Many fundamental questions remain to be answered about the exposure mechanisms of even the relatively well understood chemically amplified EUV photoresists. Moreover, several groups around the world are developing revolutionary metal-based resists whose EUV exposure mechanisms are even less understood. Here, we describe several evaluation techniques to help elucidate mechanistic details of EUV exposure mechanisms of chemically amplified and metal-based resists. EUV absorption coefficients are determined experimentally by measuring the transmission through a resist coated on a silicon nitride membrane. Photochemistry can be evaluated by monitoring small outgassing reaction products to provide insight into photoacid generator or metal-based resist reactivity. Spectroscopic techniques such as thin-film Fourier transform infrared (FTIR) spectroscopy can measure the chemical state of a photoresist system pre- and post-EUV exposure. Additionally, electrolysis can be used to study the interaction between photoresist components and low energy electrons. Collectively, these techniques improve our current understanding of photomechanisms for several EUV photoresist systems, which is needed to develop new, better performing materials needed for high volume manufacturing.

  4. In situ analytical techniques for battery interface analysis.

    Science.gov (United States)

    Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe

    2018-02-05

    Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.

  5. Application of thermo-analytical techniques in nuclear waste management

    International Nuclear Information System (INIS)

    Raje, Naina; Ghonge, Darshana K.; Reddy, A.V.R.

    2015-01-01

    Sodium nitrate solution is the byproduct of nuclear fuel reprocessing plant. It is produced during the neutralization of nitric acid received through purex process and stored in tanks or immobilized in bitumen/cement at site as waste packets. In order to minimize the environmental impact due to these waste packets, it is desirable to reduce nitrate ion to harmless gases like nitrogen. Biodegradation, ion exchange, electrodialysis and chemical treatment are the methods for nitrate reduction in the case of non nuclear industrial waste. Chemical treatment seems to be the most viable process to treat the waste from nuclear reprocessing plant in comparison to the other methods used for the non nuclear industrial waste. During chemical treatment, the nitrate ions can be converted to nitrogen by using a suitable reductant in presence of a catalyst. Formaldehyde has been chosen as the reducing agent for the nitrate - nitrogen conversion and in the process, formaldehyde gets converted to formic acid. In order to optimize the reduction process, it is essential to determine the formaldehyde and formic acid content in the waste feed solution and no direct analytical methodology is available for the same. Present work describes the attempts made to apply evolved gas analysis for understanding the mechanism of conversion of formaldehyde to formic acid. The developed method can be applied for the qualitative/quantitative determination of formaldehyde and formic acid in the waste feed solution. Waste feed samples were received from PSDD, BARC

  6. Analytical Techniques and Pharmacokinetics of Gastrodia elata Blume and Its Constituents.

    Science.gov (United States)

    Wu, Jinyi; Wu, Bingchu; Tang, Chunlan; Zhao, Jinshun

    2017-07-08

    Gastrodia elata Blume ( G. elata ), commonly called Tianma in Chinese, is an important and notable traditional Chinese medicine (TCM), which has been used in China as an anticonvulsant, analgesic, sedative, anti-asthma, anti-immune drug since ancient times. The aim of this review is to provide an overview of the abundant efforts of scientists in developing analytical techniques and performing pharmacokinetic studies of G. elata and its constituents, including sample pretreatment methods, analytical techniques, absorption, distribution, metabolism, excretion (ADME) and influence factors to its pharmacokinetics. Based on the reported pharmacokinetic property data of G. elata and its constituents, it is hoped that more studies will focus on the development of rapid and sensitive analytical techniques, discovering new therapeutic uses and understanding the specific in vivo mechanisms of action of G. elata and its constituents from the pharmacokinetic viewpoint in the near future. The present review discusses analytical techniques and pharmacokinetics of G. elata and its constituents reported from 1985 onwards.

  7. Analytical techniques for measurement of 99Tc in environmental samples

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Three new methods have been developed for measuring 99 Tc in environmental samples. The most sensitive method is isotope dilution mass spectrometry, which allows measurement of about 1 x 10 -12 grams of 99 Tc. Results on analysis of five samples by this method compare very well with values obtained by a second independent method, which involves counting of beta particles from 99 Tc and internal conversion electrons from /sup 97m/Tc. A third method involving electrothermal atomic absorption has also been developed. Although this method is not as sensitive as the first two techniques, the cost per analysis is expected to be considerably less for certain types of samples

  8. Advanced analytical techniques: platform for nano materials science

    International Nuclear Information System (INIS)

    Adams, F.; Van Vaeck, L.; Barrett, R.

    2005-01-01

    This paper reviews a range of instrumental microanalytical techniques for their potential in following the development of nanotechnology. Needs for development in secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), Auger emission spectrometry (AES) laser mass spectrometry, X-ray photon spectroscopy are discussed as well as synchrotron-based methods for analysis. Objectives for development in all these areas for the coming 5 years are defined. Developments of instrumentation in three European synchrotron installations are given as examples of ongoing development in this field

  9. Modern trends: analytical chemistry - techniques and application to biodetection

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    1993-01-01

    Microorganism isolated from specimens are usually identified by conventional bacterial identification procedures of morphological evaluation and cultural techniques. These complex methods of studying organisms are extremely tedious and time consuming. This causes serious problems by delaying the decision concerning the presence of pathogens and therefore the adequate drug therapy. Frequently, the decision about the presence of pathogens has to be made prior to the results of microbiological tests. In order to overcome these conditions, workers explored new instrumental methods for characterization, rapid acquisition, high reproducibility, computer aided data recording and interpretation of microorganisms. This article brief reviews application of these modern instrumental approaches such as Infrared Spectroscopy (IR), Gas Chromatography (GC), Fluorescence Spectroscopy, Bioluminescence, Chemiluminescence, FLow Cytometry, Micro calorimetry, GC-MASS Spectrometry, Electrical Impedance, Bio sensors and Radiometry. These techniques have increased the capacity of doing basic research with a major impact on both the clinical laboratories and industry. The radiometric procedure is being used for research and biological quality control of radiopharmaceuticals in our laboratory at PINSTECH. (author)

  10. Real-time analytics techniques to analyze and visualize streaming data

    CERN Document Server

    Ellis, Byron

    2014-01-01

    Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development,

  11. The demonstration of the auditory ossicles by high resolution CT

    International Nuclear Information System (INIS)

    Lloyd, G.A.S.; Boulay, G.H. du; Phelps, P.D.; Pullicino, P.

    1979-01-01

    The high resolution CT scanning system introduced by EMI in 1978 has added a new dimension to computerised tomography in otology. The apparatus used for this study was an EMI CT 5005 body scanner adapted for head and neck scanning and incorporating a high resolution facility. The latter has proved most advantageous in areas of relatively high differential absorption, so that its application to the demonstration of abnormalities in the petrous temporal bone, and in particular middle ear disease, has been very rewarding. Traumatic ossicular disruptions may now be demonstrated and the high contrast of CT often shows them better than conventional hypocycloidal tomography. The stapes is also better visualised and congenital abnormalities of its superstructure have been recorded. These studies have been achieved with a very acceptable level of radiation to the eye, lens and cornea and the technique is clearly a rival to conventional pluridirectional tomography in the assessment of the petrous temporal bone. With further design improvements high resolution CT could completely replace existing techniques. (orig.) [de

  12. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  13. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  14. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  15. International conference on isotopic and nuclear analytical techniques for health and environment. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Decision makers and stakeholders are becoming increasingly dependent on reliable chemical measurements that serve as a basis for decisions related to health, consumer safety, commerce, environment protection and compliance to regulations. Several millions of analytical results are produced annually, thus consuming appreciable amounts of resources. Reliability of these data is of major concern if cost-benefit figures are applied. Nuclear and isotopic analytical techniques (NATs) have been supported by the IAEA as part of their mandate to foster the peaceful use of nuclear energy for many years. Nuclear analytical laboratories have been installed and upgraded through Technical Co-operation assistance in many Member State laboratories. These techniques, including INAA, XRF, PIXE, stable and radioisotopes, spectrometroscopy, etc. have been applied to a wide range of subjects with varying success. Nuclear analytical techniques, featuring some intrinsic quality control aspects, such as multi-nuclide analysis, frequently serve as 'reference methods' to cross-check critical results. As nuclear properties of elements are targeted, matrix problems seem to be negligible to a great extent. The International Conference on Isotopic and Nuclear Analytical Techniques for Health and Environment was held 10-13 June 2003 in Vienna, Austria. The main purpose of this Conference was to bring together scientists, technologists, representatives of industry and regulatory authorities to exchange information and review the status of current developments and applications of isotopic and nuclear analytical techniques, and to discuss future trends and developments. A further objective is to identify potential opportunities for developing countries for applying isotopic and nuclear analytical techniques in health and environmental studies, and to consider the promotion and transfer of such technology. International developments and trends in health care, nutrition, and environmental monitoring

  16. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  17. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  18. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  19. ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF MELOXICAM IN PHARMACEUTICAL FORMULATIONS AND BIOLOGICAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Aisha Noreen

    2016-06-01

    Full Text Available Meloxicam (MX belongs to the family of oxicams which is the most important group of non steroidal anti-inflammatory drugs (NSAIDs and is widely used for their analgesics and antipyretic activities. It inhibits both COX-I and COX-II enzymes with less gastric and local tissues irritation. A number of analytical techniques have been used for the determination of MX in pharmaceutical as well as in biological fluids. These techniques include titrimetry, spectrometry, chromatography, flow injection spectrometry, fluorescence spectrometry, capillary zone electrophoresis and electrochemical techniques. Many of these techniques have also been used for the simultaneous determination of MX with other compounds. A comprehensive review of these analytical techniques has been done which could be useful for the analytical chemists and quality control pharmacists.

  20. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael

    2018-05-01

    Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Air pollution in Thailand using nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    Leelhaphunt, N.; Chueinta, W.

    1994-01-01

    The methods of neutron activation, both instrumental and radiochemical, and atomic absorption spectrophotometry are used in a study of the concentrations of Al, As, Br, Cd, Cl, Co, Cr, Cu, Fe, Hg, Mn, Sb, Sc, Se, Si, V, Zn and Pb in airborne particulate matter collected from 7 permanent and 9 temporary air quality monitoring stations. The location of the stations are urban residential, suburban residential, mixed (commercial and residential), commercial and industrial areas and near major roads in Bangkok Metropolitan areas. Air sampling is performed once a month for 24 hours continuously using the high volume air sampler (GMW 2000 H) and for 5, 10, and 15 days continuously using an Anderson Air Sampler (SIBATA AN-200). The elements As, Cd and Cu are determined destructively using ion exchange chromatography while Hg and Se are determined by the dry combustion technique. The determination of Pb was done by atomic absorption spectrophotometry. The results of Pb concentrations in airborne particulate matters, collected during 1987 to 1991, were reported by the Office of the National Environment Board. Levels of Pb content were found to be lower than the National Ambient Air Quality Standards. (author). 3 refs, 4 tabs

  2. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  3. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  4. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  5. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  6. Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters.

    NARCIS (Netherlands)

    Sigg, Laura; Black, Frank; Buffle, Jacques; Cao, Jun; Cleven, Rob; Davison, William; Galceran, Josep; Gunkel, Peggy; Kalis, Erwin; Kistler, David; Martin, Michel; Noël, Stéphane; Nur, Yusuf; Odzak, Niksa; Puy, Jaume; Riemsdijk, Willem van; Temminghoff, Erwin; Tercier-Waeber, Mary-Lou; Toepperwien, Stefanie; Town, Raewyn M; Unsworth, Emily R; Warnken, Kent W; Weng, Liping; Xue, Hanbin; Zhang, Hao

    2006-01-01

    Several techniques for speciation analysis of Cu, Zn, Cd, Pb, and Ni are used in freshwater systems and compared with respect to their performance and to the metal species detected. The analytical techniques comprise the following: (i) diffusion gradients in thin-film gels (DGT); (ii) gel integrated

  7. An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy

    Science.gov (United States)

    Collis, Peter

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…

  8. Assessing the Value of Structured Analytic Techniques in the U.S. Intelligence Community

    Science.gov (United States)

    2016-01-01

    Analytic Techniques, and Why Do Analysts Use Them? SATs are methods of organizing and stimulating thinking about intelligence problems. These methods... thinking ; and imaginative thinking techniques encourage new perspectives, insights, and alternative scenarios. Among the many SATs in use today, the...more transparent, so that other analysts and customers can bet - ter understand how the judgments were reached. SATs also facilitate group involvement

  9. Application of metabonomic analytical techniques in the modernization and toxicology research of traditional Chinese medicine.

    Science.gov (United States)

    Lao, Yong-Min; Jiang, Jian-Guo; Yan, Lu

    2009-08-01

    In the recent years, a wide range of metabonomic analytical techniques are widely used in the modern research of traditional Chinese medicine (TCM). At the same time, the international community has attached increasing importance to TCM toxicity problems. Thus, many studies have been implemented to investigate the toxicity mechanisms of TCM. Among these studies, many metabonomic-based methods have been implemented to facilitate TCM toxicity investigation. At present, the most prevailing methods for TCM toxicity research are mainly single analysis techniques using only one analytical means. These techniques include nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS), etc.; with these techniques, some favourable outcomes have been gained in the toxic reaction studies of TCM, such as the action target organs assay, the establishment of action pattern, the elucidation of action mechanism and the exploration of action material foundation. However, every analytical technique has its advantages and drawbacks, no existing analytical technique can be versatile. Multi-analysed techniques can partially overcome the shortcomings of single-analysed techniques. Combination of GC-MS and LC-MS metabolic profiling approaches has unravelled the pathological outcomes of aristolochic acid-induced nephrotoxicity, which can not be achieved by single-analysed techniques. It is believed that with the further development of metabonomic analytical techniques, especially multi-analysed techniques, metabonomics will greatly promote TCM toxicity research and be beneficial to the modernization of TCM in terms of extending the application of modern means in the TCM safety assessment, assisting the formulation of TCM safety norms and establishing the international standards indicators.

  10. A Novel Analytic Technique for the Service Station Reliability in a Discrete-Time Repairable Queue

    Directory of Open Access Journals (Sweden)

    Renbin Liu

    2013-01-01

    Full Text Available This paper presents a decomposition technique for the service station reliability in a discrete-time repairable GeomX/G/1 queueing system, in which the server takes exhaustive service and multiple adaptive delayed vacation discipline. Using such a novel analytic technique, some important reliability indices and reliability relation equations of the service station are derived. Furthermore, the structures of the service station indices are also found. Finally, special cases and numerical examples validate the derived results and show that our analytic technique is applicable to reliability analysis of some complex discrete-time repairable bulk arrival queueing systems.

  11. Evaluating empirical/analytical techniques to predict structural integrity of pipe containing surface flaws

    International Nuclear Information System (INIS)

    Reuter, W.G.; Server, W.L.

    1982-01-01

    Data from flat-plate specimens containing either triangular-, ellipsoidal- or rectangular-shaped surface flaws were evaluated by several potential analytical techniques. These techniques were modified as needed to predict conditions for initiation of subcritical crack growth, for the defect to penetrate the 6.4 mm (0.25 in.) wall thickness, and for instability (plastic or unstable). The modified analytical techniques developed from the plate specimens were then used to make predictions which are compared with test results obtained from pipe specimens containing triangular-shaped surface flaws

  12. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  14. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  15. Toward greener analytical techniques for the absolute quantification of peptides in pharmaceutical and biological samples.

    Science.gov (United States)

    Van Eeckhaut, Ann; Mangelings, Debby

    2015-09-10

    Peptide-based biopharmaceuticals represent one of the fastest growing classes of new drug molecules. New reaction types included in the synthesis strategies to reduce the rapid metabolism of peptides, along with the availability of new formulation and delivery technologies, resulted in an increased marketing of peptide drug products. In this regard, the development of analytical methods for quantification of peptides in pharmaceutical and biological samples is of utmost importance. From the sample preparation step to their analysis by means of chromatographic or electrophoretic methods, many difficulties should be tackled to analyze them. Recent developments in analytical techniques emphasize more and more on the use of green analytical techniques. This review will discuss the progresses in and challenges observed during green analytical method development for the quantification of peptides in pharmaceutical and biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. An analytical simulation technique for cone-beam CT and pinhole SPECT

    International Nuclear Information System (INIS)

    Zhang Xuezhu; Qi Yujin

    2011-01-01

    This study was aimed at developing an efficient simulation technique with an ordinary PC. The work involved derivation of mathematical operators, analytic phantom generations, and effective analytical projectors developing for cone-beam CT and pinhole SPECT imaging. The computer simulations based on the analytical projectors were developed by ray-tracing method for cone-beam CT and voxel-driven method for pinhole SPECT of degrading blurring. The 3D Shepp-Logan, Jaszczak and Defrise phantoms were used for simulation evaluations and image reconstructions. The reconstructed phantom images were of good accuracy with the phantoms. The results showed that the analytical simulation technique is an efficient tool for studying cone-beam CT and pinhole SPECT imaging. (authors)

  17. Development of analytical techniques in support of waste and effluent characterization

    International Nuclear Information System (INIS)

    Reed, W.J.

    1991-01-01

    The Analytical Services Group within Sellafield Technical Department has been established for >40 yr and employs >150 analysts. The group operates >400 analytical methods across a wide range of techniques and has a yearly workload of ∼250,000 determinations. The group operates under a quality system based on statistical process control that has achieved national recognition through the accreditation of its mass spectrometry and radiochemical services to the standard of national testing laboratories. The group offers services ranging from the characterization of highly active wastes to trace elemental and radiochemical measurements in environmental, biological, and effluent streams. The group has vast experience in the management of analytical services to tight time scales and has pioneered developments not only in analytical instrumentation, but also in the adaptation of equipment to radioactive environments and the design of dedicated analytical facilities

  18. High resolution extremity CT for biomechanics modeling

    International Nuclear Information System (INIS)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-01-01

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling

  19. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  20. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  1. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  2. Laboratory of High resolution gamma spectrometry

    International Nuclear Information System (INIS)

    Mendez G, A.; Giber F, J.; Rivas C, I.; Reyes A, B.

    1992-01-01

    The Department of Nuclear Experimentation of the Nuclear Systems Management requests the collaboration of the Engineering unit for the supervision of the execution of the work of the High resolution Gamma spectrometry and low bottom laboratory, using the hut of the sub critic reactor of the Nuclear Center of Mexico. This laboratory has the purpose of determining the activity of special materials irradiated in nuclear power plants. In this report the architecture development, concepts, materials and diagrams for the realization of this type of work are presented. (Author)

  3. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  4. Devising an endoluminal bimodal probe which combines autofluorescence and reflectance spectroscopy with high resolution MRI for early stage colorectal cancer diagnosis: technique, feasibility and preliminary in-vivo (rabbit) results

    Science.gov (United States)

    Ramgolam, A.; Sablong, R.; Bou-Saïd, B.; Bouvard, S.; Saint-Jalmes, H.; Beuf, O.

    2011-07-01

    Conventional white light endoscopy (WLE) is the most widespread technique used today for colorectal cancer diagnosis and is considered as the gold standard when coupled to biopsy and histology. However for early stage colorectal cancer diagnosis, which is very often characterised by flat adenomas, the use of WLE is quite difficult due to subtle or quasiinvisible morphological changes of the colonic lining. Figures worldwide point out that diagnosing colorectal cancer in its early stages would significantly reduce the death toll all while increasing the 5-year survival rate. Several techniques are currently being investigated in the scope of providing new tools that would allow such a diagnostic or assist actual techniques in so doing. We hereby present a novel technique where High spatial Resolution MRI (HR-MRI) is coupled to optical spectroscopy (autofluorescence and reflectance) in a bimodal endoluminal probe to extract morphological data and biochemical information respectively. The design and conception of the endoluminal probe along with the preliminary results obtained with an organic phantom and in-vivo (rabbit) are presented and discussed.

  5. Analytical techniques

    International Nuclear Information System (INIS)

    Alexander, G.V.; McAnulty, L.T.

    1976-01-01

    Optical emission spectroscopy was conducted on 20,000 biological specimens for metallic trace elements. Determinations of 13 C in biological tissues were made by charged particle activation, and carrier-free 123 I was isolated from proton irradiated 124 Te

  6. Industrial and environmental applications of nuclear analytical techniques. Report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The IAEA has programme the utilisation of nuclear analytical techniques (NATs), in particular for industrial and environmental applications. A major purpose is to help the developing Member States apply their analytical capabilities optimally for socio-economic progress and development. A large number of institutions in Europe, Africa, Latin America and Asia have established X ray fluorescence (XRF) and gamma ray measurement techniques and facilities for neutron activation analysis (NAA) have been initiated in institutions in these regions. Moreover, there is a growing interest among many institutes in applying more advanced analytical techniques, such as particle induced X ray emission (PIXE) and microanalytical techniques based on X ray emission induced by conventional sources or synchrotron radiation to the analysis of environmental and biological materials and industrial products. In order to define new areas of application of NATs and to extend the range of these techniques, a number of initiatives have recently been taken. It includes a workshop on industrial and environmental applications of nuclear analytical techniques, organized by the IAEA in Vienna, 7-11 September 1998. The main objectives of the workshop were as follows: (1) to review recent applications of NATs in industrial and environmental studies; (2) to identify emerging trends in methodologies and applications of NATs; (3) to demonstrate analytical capabilities of selected NATs. The following topics were reviewed during the workshop: (1) XRF and accelerator based analytical techniques; (2) portable XRF systems and their applications in industry, mineral prospecting and processing, (3) portable gamma ray spectrometers; and (4) NAA and its applications in industry and environmental studies. Micro-XRF and micro-PIXE methods and their applications in the above fields were also discussed, including aspects of synchrotron radiation induced X ray emission.

  7. Industrial and environmental applications of nuclear analytical techniques. Report of a workshop

    International Nuclear Information System (INIS)

    1999-11-01

    The IAEA has programme the utilisation of nuclear analytical techniques (NATs), in particular for industrial and environmental applications. A major purpose is to help the developing Member States apply their analytical capabilities optimally for socio-economic progress and development. A large number of institutions in Europe, Africa, Latin America and Asia have established X ray fluorescence (XRF) and gamma ray measurement techniques and facilities for neutron activation analysis (NAA) have been initiated in institutions in these regions. Moreover, there is a growing interest among many institutes in applying more advanced analytical techniques, such as particle induced X ray emission (PIXE) and microanalytical techniques based on X ray emission induced by conventional sources or synchrotron radiation to the analysis of environmental and biological materials and industrial products. In order to define new areas of application of NATs and to extend the range of these techniques, a number of initiatives have recently been taken. It includes a workshop on industrial and environmental applications of nuclear analytical techniques, organized by the IAEA in Vienna, 7-11 September 1998. The main objectives of the workshop were as follows: (1) to review recent applications of NATs in industrial and environmental studies; (2) to identify emerging trends in methodologies and applications of NATs; (3) to demonstrate analytical capabilities of selected NATs. The following topics were reviewed during the workshop: (1) XRF and accelerator based analytical techniques; (2) portable XRF systems and their applications in industry, mineral prospecting and processing, (3) portable gamma ray spectrometers; and (4) NAA and its applications in industry and environmental studies. Micro-XRF and micro-PIXE methods and their applications in the above fields were also discussed, including aspects of synchrotron radiation induced X ray emission

  8. Neutron spin echo and high resolution inelastic spectroscopy

    International Nuclear Information System (INIS)

    Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-01-01

    The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently

  9. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  10. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  11. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  12. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  14. High resolution upgrade of the ATF damping ring BPM system

    International Nuclear Information System (INIS)

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.

    2008-01-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R and D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented

  15. High-resolution CT of lymphoid interstitial pneumonia

    International Nuclear Information System (INIS)

    Vilgrain, V.; Frija, J.; Yana, C.; Couderc, L.J.; David, M.; Clauvel, J.P.; Laval-Jeantet, M.

    1989-01-01

    Three patients with lymphoid interstitial pneumonia (two HIV 1+ patients with chronic lymphadenopathic syndromes and one with a not-characterized autoimmune disease) have been studied with high-resolution computed tomography (HR-CT). This technique reveals septal lines, small reticulonodular opacities, polyhedral micronodular opacities, 'ground-glass' opacities and a dense, subpleural, curved broken line in one patient. The lesions dominate in the bases of the lungs. They are not characteristic for lymphoid interstitial pneumonia. If a patient presents with a chronic lymphadenopathic syndrome, the diagnosis of an opportunistic infection should not be automatically made, since the syndrome can be caused by lymphoid interstitial pneumonia [fr

  16. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  17. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    Energy Technology Data Exchange (ETDEWEB)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Moll, Michael [CERN, Organisation europénne pour la recherche nucléaire, CH-1211 Genéve 23 (Switzerland); Santos, Raúl Montero [SGIker Laser Facility, UPV/EHU, Sarriena, s/n - 48940 Leioa-Bizkaia (Spain); Moya, David [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Pinto, Rogelio Palomo [Departamento de Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla (Spain); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  18. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  19. Peculiar velocity effects in high-resolution microwave background experiments

    International Nuclear Information System (INIS)

    Challinor, Anthony; Leeuwen, Floor van

    2002-01-01

    We investigate the impact of peculiar velocity effects due to the motion of the solar system relative to the cosmic microwave background (CMB) on high resolution CMB experiments. It is well known that on the largest angular scales the combined effects of Doppler shifts and aberration are important; the lowest Legendre multipoles of total intensity receive power from the large CMB monopole in transforming from the CMB frame. On small angular scales aberration dominates and is shown here to lead to significant distortions of the total intensity and polarization multipoles in transforming from the rest frame of the CMB to the frame of the solar system. We provide convenient analytic results for the distortions as series expansions in the relative velocity of the two frames, but at the highest resolutions a numerical quadrature is required. Although many of the high resolution multipoles themselves are severely distorted by the frame transformations, we show that their statistical properties distort by only an insignificant amount. Therefore, the cosmological parameter estimation is insensitive to the transformation from the CMB frame (where theoretical predictions are calculated) to the rest frame of the experiment

  20. Role of thermo-analytical techniques in compositional characterization of nuclear materials

    International Nuclear Information System (INIS)

    Raje, Naina

    2015-01-01

    The study of heat effects on different materials has a long history. Extraction of metals from the ores, pottery production, glasses making etc. are the examples, where the performance of products obtained from raw materials depends on the processing temperatures. Concrete, pottery, bricks etc., are severely damaged due to uncontrolled high temperatures. Therefore, the heating of raw materials in controlled manner is of pivotal importance to get products of the desired quality. Thermo-analytical techniques provide the information on the effect of heat under controlled heating conditions. In thermo-analytical techniques, physical properties of materials are measured as a function of temperature. Simultaneous thermo-analytical techniques are beneficial in comparison to any single thermo-analytical technique. Simultaneous techniques refer to the measurement of two or more signals on the same sample at the same time in the same instrument. Nowadays, simultaneous thermo-analytical technique are extensively in use for the analysis of materials. Ammonium diuranate (ADU) and magnesium diuranate (MDU), also known as yellowcake, are intermediate precursors in fuel fabrication process, with stringent specifications along with the need to understand its thermal behavior. In the processing of lowgrade ores, higher levels of impurities are being encountered in the leach solution that affects the properties of ADU/MDU. In order to meet the fuel specifications, quality assurance of these nuclear materials is essential. Current studies describe the application of simultaneous Thermogravimetry (TG) - differential thermal analysis (DTA) - evolved gas analysis (EGA) techniques for the compositional characterization of ADU/MDU with respect to the impurities present in the matrices

  1. Application of advanced nuclear and instrumental analytical techniques for characterisation of environmental materials

    International Nuclear Information System (INIS)

    Sudersanan, M.; Pawaskar, P.B.; Kayasth, S.R.; Kumar, S.C.

    2002-01-01

    Full text: Increasing realisation about the toxic effects of metal ions in environmental materials has given an impetus to research on analytical techniques for their characterization. The large number of analytes present at very low levels has necessitated the use of sensitive, selective and element specific techniques for their characterization. The concern about precision and accuracy on such analysis, which have socio-economic bearing, has emphasized the use of Certified Reference Materials and the use of multi-technique approach for the unambiguous characterization of analytes. The recent work carried out at Analytical Chemistry Division, BARC on these aspects is presented in this paper. Increasing use of fossil fuels has led to the generation of large quantities of fly ash which pose problems of safe disposal. The utilization of these materials for land filling is an attractive option but the presence of trace amounts of toxic metals like mercury, arsenic, lead etc may cause environmental problems. In view of the inhomogeneous nature of the material, efficient sample processing is an important factor, in addition to the validation of the results by the use of proper standards. Analysis was carried out on flyash samples received as reference materials and also as samples from commercial sources using a combination of both nuclear techniques like INAA and RNAA as well as other techniques like AAS, ICPAES, cold vapour AAS for mercury and hydride generation technique for arsenic. Similar analysis using nuclear techniques was employed for the characterization of air particulates. Biological materials often serve as sensitive indicator materials for pollution measurements. They are also employed for studies on the uptake of toxic metals like U, Th, Cd, Pb, Hg etc. The presence of large amounts of organic materials in them necessitate an appropriate sample dissolution procedure. In view of the possibility of loss of certain analytes like Cd, Hg, As, by high

  2. Proceedings of the workshop on high resolution computed microtomography (CMT)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A high resolution jet analysis for LEP

    International Nuclear Information System (INIS)

    Hariri, S.

    1992-11-01

    A high resolution multijet analysis of hadronic events produced in e + e - annihilation at a C.M.S. energy of 91.2 GeV is described. Hadronic events produced in e + e - annihilations are generated using the Monte Carlo program JETSET7.3 with its two options: Matrix Element (M.E.) and Parton Showers (P.S.). The shower option is used with its default parameter values while the M.E. option is used with an invariant mass cut Y CUT =0.01 instead of 0.02. This choice ensures a better continuity in the evolution of the event shape variables. (K.A.) 3 refs.; 26 figs.; 1 tab

  5. High Resolution Displays Using NCAP Liquid Crystals

    Science.gov (United States)

    Macknick, A. Brian; Jones, Phil; White, Larry

    1989-07-01

    Nematic curvilinear aligned phase (NCAP) liquid crystals have been found useful for high information content video displays. NCAP materials are liquid crystals which have been encapsulated in a polymer matrix and which have a light transmission which is variable with applied electric fields. Because NCAP materials do not require polarizers, their on-state transmission is substantially better than twisted nematic cells. All dimensional tolerances are locked in during the encapsulation process and hence there are no critical sealing or spacing issues. By controlling the polymer/liquid crystal morphology, switching speeds of NCAP materials have been significantly improved over twisted nematic systems. Recent work has combined active matrix addressing with NCAP materials. Active matrices, such as thin film transistors, have given displays of high resolution. The paper will discuss the advantages of NCAP materials specifically designed for operation at video rates on transistor arrays; applications for both backlit and projection displays will be discussed.

  6. High resolution VUV facility at INDUS-1

    International Nuclear Information System (INIS)

    Krishnamurty, G.; Saraswathy, P.; Rao, P.M.R.; Mishra, A.P.; Kartha, V.B.

    1993-01-01

    Synchrotron radiation (SR) generated in the electron storage rings is an unique source for the study of atomic and molecular spectroscopy especially in the vacuum ultra violet region. Realizing the potential of this light source, efforts are in progress to develop a beamline facility at INDUS-1 to carry out high resolution atomic and molecular spectroscopy. This beam line consists of a fore-optic which is a combination of three cylindrical mirrors. The mirrors are so chosen that SR beam having a 60 mrad (horizontal) x 6 mrad (vertical) divergence is focussed onto a slit of a 6.65 metre off-plane spectrometer in Eagle Mount equipped with horizontal slit and vertical dispersion. The design of the various components of the beam line is completed. It is decided to build the spectrometer as per the requirements of the user community. Details of the various aspects of the beam line will be presented. (author). 3 figs

  7. High-resolution CT of airway reactivity

    International Nuclear Information System (INIS)

    Herold, C.J.; Brown, R.H.; Hirshman, C.A.; Mitzner, W.; Zerhouni, E.A.

    1990-01-01

    Assessment of airway reactivity has generally been limited to experimental nonimaging models. This authors of this paper used high-resolution CT (HRCT) to evaluate airway reactivity and to calculate airway resistance (Raw) compared with lung resistance (RL). Ten anesthetized and ventilated dogs were investigated with HRCT (10 contiguous 2-mm sections through the lower lung lobes) during control state, following aerosol histamine challenge, and following posthistamine hyperinflation. The HRCT scans were digitized, and areas of 10 airways per dog (diameter, 1-10 mm) were measured with a computer edging process. Changes in airway area and Raw (calculated by 1/[area] 2 ) were measured. RL was assessed separately, following the same protocol. Data were analyzed by use of a paired t-test with significance at p < .05

  8. High resolution crystal calorimetry at LHC

    International Nuclear Information System (INIS)

    Schneegans, M.; Ferrere, D.; Lebeau, M.; Vivargent, M.

    1991-01-01

    The search for Higgs bosons above Lep200 reach could be one of the main tasks of the future pp and ee colliders. In the intermediate mass region, and in particular in the range 80-140 GeV/c 2 , only the 2-photon decay mode of a Higgs produced inclusively or in association with a W, gives a good chance of observation. A 'dedicated' very high resolution calorimeter with photon angle reconstruction and pion identification capability should detect a Higgs signal with high probability. A crystal calorimeter can be considered as a conservative approach to such a detector, since a large design and operation experience already exists. The extensive R and D needed for finding a dense, fast and radiation hard crystal, is under way. Guide-lines for designing an optimum calorimeter for LHC are discussed and preliminary configurations are given. (author) 7 refs., 3 figs., 2 tabs

  9. High resolution tomography using analog coding

    International Nuclear Information System (INIS)

    Brownell, G.L.; Burnham, C.A.; Chesler, D.A.

    1985-01-01

    As part of a 30-year program in the development of positron instrumentation, the authors have developed a high resolution bismuth germanate (BGO) ring tomography (PCR) employing 360 detectors and 90 photomultiplier tubes for one plane. The detectors are shaped as trapezoid and are 4 mm wide at the front end. When assembled, they form an essentially continuous cylindrical detector. Light from a scintillation in the detector is viewed through a cylindrical light pipe by the photomultiplier tubes. By use of an analog coding scheme, the detector emitting light is identified from the phototube signals. In effect, each phototube can identify four crystals. PCR is designed as a static device and does not use interpolative motion. This results in considerable advantage when performing dynamic studies. PCR is the positron tomography analog of the γ-camera widely used in nuclear medicine

  10. High-resolution CT of otosclerosis

    International Nuclear Information System (INIS)

    Dewen, Yang; Kodama, Takao; Tono, Tetsuya; Ochiai, Reiji; Kiyomizu, Kensuke; Suzuki, Yukiko; Yano, Takanori; Watanabe, Katsushi

    1997-01-01

    High-resolution CT (HRCT) scans of thirty-two patients (60 ears) with the clinical diagnosis of fenestral otosclerosis were evaluated retrospectively. HRCT was performed with 1-mm-thick targeted sections and 1-mm (36 ears) or 0.5-mm (10 ears) intervals in the semiaxial projection. Seven patients (14 ears) underwent helical scanning with a 1-mm slice thickness and 1-mm/sec table speed. Forty-five ears (75%) were found to have one or more otospongiotic or otosclerotic foci on HRCT. In most instances (30 ears), the otospongiotic foci were found in the region of the fissula ante fenestram. No significant correlations between CT findings and air conduction threshold were observed. We found a significant relationship between lesions of the labyrinthine capsule and sensorineural hearing loss. We conclude that HRCT is a valuable modality for diagnosing otosclerosis, especially when otospongiotic focus is detected. (author)

  11. High resolution CT in pulmonary sarcoidosis

    International Nuclear Information System (INIS)

    Spina, Juan C.; Curros, Marisela L.; Gomez, M.; Gonzalez, A.; Chacon, Carolina; Guerendiain, G.

    2000-01-01

    Objectives: To establish the particular advantages of High Resolution CT (HRCT) for the diagnosis of pulmonary sarcoidosis. Material and Methods: A series of fourteen patients, (4 men and 10 women; mean age 44,5 years) with thoracic sarcoidosis. All patients were studied using HRCT and diagnosis was confirmed for each case. Confidence intervals were obtained for different disease manifestations. Results: The most common findings were: lymph node enlargement (n=14 patients), pulmonary nodules (n=13), thickening of septa (n=6), peribronquial vascular thickening (n=5) pulmonary pseudo mass (n=5) and signs of fibrosis (n=4). The stage most commonly observed was stage II. It is worth noting that no cases of pleural effusion or cavitations of pulmonary lesions were observed. Conclusions: In this series, confidence interval overlapping for lymph node enlargement, single pulmonary nodules and septum thickening, allows to infer that their presence in a young adult, with few clinical symptoms, forces to rule out first the possibility of sarcoidosis. (author)

  12. High resolution infrared spectroscopy of symbiotic stars

    International Nuclear Information System (INIS)

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  13. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  14. A Visual Analytics Technique for Identifying Heat Spots in Transportation Networks

    Directory of Open Access Journals (Sweden)

    Marian Sorin Nistor

    2016-12-01

    Full Text Available The decision takers of the public transportation system, as part of urban critical infrastructures, need to increase the system resilience. For doing so, we identified analysis tools for biological networks as an adequate basis for visual analytics in that domain. In the paper at hand we therefore translate such methods for transportation systems and show the benefits by applying them on the Munich subway network. Here, visual analytics is used to identify vulnerable stations from different perspectives. The applied technique is presented step by step. Furthermore, the key challenges in applying this technique on transportation systems are identified. Finally, we propose the implementation of the presented features in a management cockpit to integrate the visual analytics mantra for an adequate decision support on transportation systems.

  15. Pre-concentration technique for reduction in "Analytical instrument requirement and analysis"

    Science.gov (United States)

    Pal, Sangita; Singha, Mousumi; Meena, Sher Singh

    2018-04-01

    Availability of analytical instruments for a methodical detection of known and unknown effluents imposes a serious hindrance in qualification and quantification. Several analytical instruments such as Elemental analyzer, ICP-MS, ICP-AES, EDXRF, ion chromatography, Electro-analytical instruments which are not only expensive but also time consuming, required maintenance, damaged essential parts replacement which are of serious concern. Move over for field study and instant detection installation of these instruments are not convenient to each and every place. Therefore, technique such as pre-concentration of metal ions especially for lean stream elaborated and justified. Chelation/sequestration is the key of immobilization technique which is simple, user friendly, most effective, least expensive, time efficient; easy to carry (10g - 20g vial) to experimental field/site has been demonstrated.

  16. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics

    Science.gov (United States)

    Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir

    2016-01-01

    Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903

  17. Application gives the technique the analytic tree in the evaluation the effectiveness programs to radiological protection

    International Nuclear Information System (INIS)

    Perez Gonzalez, F.; Perez Velazquez, R.S.; Fornet Rodriguez, O.; Mustelier Hechevarria, A.; Miller Clemente, A.

    1998-01-01

    In the work we develop the IAEA recommendations in the application the analytic tree as instrument for the evaluation the effectiveness the occupational radiological protection programs. Is reflected like it has been assimilated and converted that technique in daily work istruments in the evaluation process the security conditions in the institutions that apply the nuclear techniques with a view to its autorization on the part of the regulatory organ

  18. Nuclear analytical techniques for on-line elemental analysis in industry

    International Nuclear Information System (INIS)

    1988-06-01

    This report is the result of an advisory group meeting held in Espoo, Finland, 1-5 June, 1987. The purpose of the meeting was to assess the present status and development of nuclear analytical techniques used for industrial process control. The report gives an overview of the different nuclear techniques used for process control and the most important applications. A separate abstract was prepared for each of the 7 papers presented at the meeting. Refs, figs and tabs

  19. D2B, a new high resolution neutron powder diffractometer at ILL Grenoble

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1987-01-01

    Applications of high resolution neutron powder diffraction to materials science have grown rapidly in the past 10 years, with the development of Rietveld methods of profile refinement, and new high resolution diffractometers and multidetectors. Materials studied range from catalysts to zeolites, and from battery electrodes to prestressed superconducting wires. Although the techniques have now been adapted for X-ray and synchrotron radiation, neutron powder diffraction retains unique advantages. In this paper we describe the design and first test measurements on the latest high resolution powder diffractometer D2B at ILL Grenoble. A review of the applications is published in Chemica Scripta (1986). (author) 9 refs., 6 figs., 2 tabs

  20. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references

  1. Analytical and numerical techniques for predicting the interfacial stresses of wavy carbon nanotube/polymer composites

    NARCIS (Netherlands)

    Yazdchi, K.; Salehi, M.; Shokrieh, M.M.

    2009-01-01

    By introducing a new simplified 3D representative volume element for wavy carbon nanotubes, an analytical model is developed to study the stress transfer in single-walled carbon nanotube-reinforced polymer composites. Based on the pull-out modeling technique, the effects of waviness, aspect ratio,

  2. A review of analytical techniques for the determination of carbon-14 in environmental samples

    International Nuclear Information System (INIS)

    Milton, G.M.; Brown, R.M.

    1993-11-01

    This report contains a brief summary of analytical techniques commonly used for the determination of radiocarbon in a variety of environmental samples. Details of the applicable procedures developed and tested in the Environmental Research Branch at Chalk River Laboratories are appended

  3. Application of nuclear analytical techniques to investigate trace element content in foodstuffs

    International Nuclear Information System (INIS)

    Gharib, A.

    1985-01-01

    The study performed as a joint project with the IAEA includes those foodstuffs which are being used widely in Iran. It was investigated their nutritional requirements, interrelations and the role of their trace elements in metabolism. Various analytical techniques was assessed and compared. The methods involved in the study were ASS, PIXE and NAA (instrumental and radiochemical)

  4. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  5. High-resolution ultrasonography in assessing temporomandibular joint disc position.

    Science.gov (United States)

    Talmaceanu, Daniel; Lenghel, Lavinia Manuela; Bolog, Nicolae; Popa Stanila, Roxana; Buduru, Smaranda; Leucuta, Daniel Corneliu; Rotar, Horatiu; Baciut, Mihaela; Baciut, Grigore

    2018-02-04

    The purpose of this study was to determine the diagnostic value of high-resolution ultrasonography (US) in temporomandibular joint (TMJ) disc displacements. A number of 74 patients (148 TMJs) with signs and symptoms of TMJ disorders, according to the Research Diagnostic Criteria for Temporomandibular Disorders, were included in this study. All patients received US and magnetic resonance imaging (MRI) of both TMJs 1 to 5 days after the clinical examination. MRI examinations were performed using 1.5 T MRI equipment (Siemens Avanto, Siemens, Erlangen). Ultrasonographic examination was performed on a Hitachi EUB 8500 (Hitachi Medical Corp., Tokyo, Japan) scanner with L 54 M6.5-13 MHz linear transducer. MRI depicted 68 (45.95%) normal joints, 47 (31.76%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 34 (22.97%) with degenerative changes. US detected 78 (52.7%) normal joints, 37 (25%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 21 (14.19%) with degenerative changes. Compared to MRI, US showed a sensitivity of 93.1%, specificity of 87.88%, accuracy of 90.32%, a positive predictive value of 87.1% and a negative predictive value of 93.55% for overall diagnosis of disc displacement. The Youden index was 0.81. Based on our results, high-resolution ultrasonography showed high sensitivity, specificity and accuracy in the diagnosis of TMJ disc displacement. It could be a valuable imaging technique in assessing TMJ disc position. The diagnostic value of high-resolution ultrasonography depends strictly on the examiner's skills and on the equipment used.

  6. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    International Nuclear Information System (INIS)

    Snigireva, I; Snigirev, A

    2013-01-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals

  7. Novel strategy for the determination of illegal adulterants in health foods and herbal medicines using high-performance liquid chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Wang, Zhe; Wu, Caisheng; Wang, Gangli; Zhang, Qingsheng; Zhang, Jinlan

    2015-03-01

    The detection, confirmation, and quantification of multiple illegal adulterants in health foods and herbal medicines by using a single analytical method are a challenge. This paper reports on a new strategy to meet this challenge by employing high-performance liquid chromatography coupled with high-resolution mass spectrometry and a mass spectral tree similarity filter technique. This analytical method can rapidly collect high-resolution, high-accuracy, optionally multistage mass data for compounds in samples. After a preliminary screening by retention time and high-resolution mass spectral data, known illegal adulterants can be detected. The mass spectral tree similarity filter technique has been applied to rapidly confirm these adulterants and simultaneously discover unknown ones. By using full-scan mass spectra as stem and data-dependent subsequent stage mass spectra to form branches, mass spectrometry data from detected compounds are converted into mass spectral trees. The known or unknown illegal adulterants in the samples are confirmed or discovered based on the similarity between their mass spectral trees and those of the references in a library, and they are finally quantified against standard curves. This new strategy has been tested by using 50 samples, and the illegal adulterants were rapidly and effectively detected, confirmed and quantified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analytical techniques for the determination of radiochemical purity of radiopharmaceuticals prepared from kits. Pt. III

    International Nuclear Information System (INIS)

    McLean, J.R.; Rockwell, L.J.; Welsh, W.J.

    1982-01-01

    The evaluation of efficacy of commercially available kits used for the preparation of radiopharmaceuticals is one aspect of the Radiation Protection Bureau's radiopharmaceutical quality control program. This report describes some of the analytical methodology employed in the program. The techniques may be of interest to hospital radiopharmacy personnel since many of the tests can be performed rapidly and with a minimum of special equipment, thus enabling the confirmation of radiopharmaceutical purity prior to patient administration. Manufacturers of kits may also be interested in learning of the analytical methods used in the assessment of their products

  9. Analytical techniques for the determination of radiochemical purity of radiopharmaceuticals prepared from kits

    International Nuclear Information System (INIS)

    McLean, J.R.; Rockwell, L.J.; Welsh, W.J.

    1977-01-01

    The evaluation of efficacy of commercially available kits used for the preparation of radiopharmaceuticals is one aspect of the Radiation Protection Bureau's radiopharmaceutical quality control program. This report describes some of the analytical methodology employed in the program. The techniques may be of interest to hospital radiopharmacy personnel as many of the tests can be performed rapidly and with a minimum of special equipment, thus enabling the confirmation of radiopharmaceutical purity prior to patient administration. Manufacturers of kits may also be interested in learning of the analytical methods used in the assessment of their products. (auth)

  10. High-Resolution Characterization of UMo Alloy Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools that can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.

  11. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  12. International conference on isotopic and nuclear analytical techniques for health and environment. Unedited papers

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA has been supporting nuclear and isotopic analytical techniques as part of its mandate to foster the peaceful uses of nuclear energy for many years. Nuclear analytical laboratories have been installed and upgraded through technical co-operation assistance in many laboratories of Member States. These techniques, including INAA, CRF, PIXE, stable isotopes and radioisotopes, α, β, γ spectrometry, Moessbauer spectrometry, etc., have been applied to a wide range of subjects with varying success. Nuclear analytical techniques, featuring some intrinsic quality control aspects, such as multi-nuclide analysis, frequently serve as 'reference methods' to crosscheck critical results. As nuclear properties of elements are targeted, matrix problems seem to be negligible. In light of its continued commitment and support, the IAEA organized the International Conference on Isotopic and Nuclear Analytical Techniques for Health and Environment. Out of 220 from 61 countries who applied for participation, 155 official participants and five observers from 47 countries were in attendance, with 67 from 32 developing countries and 21 from international organizations, including the World Health Organization. Eleven plenary sessions were held. Also conducted was a panel discussion on Human Capacity Development Needs in the Areas of Analytical Quality Control Services (AQCS), Radiochemistry and Nutrition. The scientific sessions were divided into several topics, which reflect some of the important activities of the IAEA's Department of Nuclear Sciences and Applications (NA): - Isotopic and nuclear techniques (general); - Metrology and quality assurance in nuclear measurements; - Nuclear analytical techniques for environmental monitoring; - Radioecology; - Environmental monitoring; - Radiological safety of food and water; - Methodological aspects of stable isotope techniques in health and environment; - Applications of isotopic techniques in health and environment; - New

  13. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  14. High resolution computed tomography of positron emitters

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Cahoon, J.L.; Huesman, R.H.; Jackson, H.G.

    1976-10-01

    High resolution computed transaxial radionuclide tomography has been performed on phantoms containing positron-emitting isotopes. The imaging system consisted of two opposing groups of eight NaI(Tl) crystals 8 mm x 30 mm x 50 mm deep and the phantoms were rotated to measure coincident events along 8960 projection integrals as they would be measured by a 280-crystal ring system now under construction. The spatial resolution in the reconstructed images is 7.5 mm FWHM at the center of the ring and approximately 11 mm FWHM at a radius of 10 cm. We present measurements of imaging and background rates under various operating conditions. Based on these measurements, the full 280-crystal system will image 10,000 events per sec with 400 μCi in a section 1 cm thick and 20 cm in diameter. We show that 1.5 million events are sufficient to reliably image 3.5-mm hot spots with 14-mm center-to-center spacing and isolated 9-mm diameter cold spots in phantoms 15 to 20 cm in diameter

  15. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  16. High resolution CT of temporal bone trauma

    International Nuclear Information System (INIS)

    Youn, Eun Kyung

    1986-01-01

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  17. High resolution SETI: Experiences and prospects

    Science.gov (United States)

    Horowitz, Paul; Clubok, Ken

    Megachannel spectroscopy with sub-Hertz resolution constitutes an attractive strategy for a microwave search for extraterrestrial intelligence (SETI), assuming the transmission of a narrowband radiofrequency beacon. Such resolution matches the properties of the interstellar medium, and the necessary Doppler corrections provide a high degree of interference rejection. We have constructed a frequency-agile receiver with an FFT-based 8 megachannel digital spectrum analyzer, on-line signal recognition, and multithreshold archiving. We are using it to conduct a meridian transit search of the northern sky at the Harvard-Smithsonian 26-m antenna, with a second identical system scheduled to begin observations in Argentina this month. Successive 400 kHz spectra, at 0.05 Hz resolution, are searched for features characteristic of an intentional narrowband beacon transmission. These spectra are centered on guessable frequencies (such as λ21 cm), referenced successively to the local standard of rest, the galactic barycenter, and the cosmic blackbody rest frame. This search has rejected interference admirably, but is greatly limited both in total frequency coverage and sensitivity to signals other than carriers. We summarize five years of high resolution SETI at Harvard, in the context of answering the questions "How useful is narrowband SETI, how serious are its limitations, what can be done to circumvent them, and in what direction should SETI evolve?" Increasingly powerful signal processing hardware, combined with ever-higher memory densities, are particularly relevant, permitting the construction of compact and affordable gigachannel spectrum analyzers covering hundreds of megahertz of instantaneous bandwidth.

  18. High resolution simultaneous measurements of airborne radionuclides

    International Nuclear Information System (INIS)

    Abe, T.; Yamaguchi, Y.; Tanaka, K.; Komura, K.

    2006-01-01

    High resolution (2-3 hrs) simultaneous measurements of airborne radionuclides, 212 Pb, 210 Pb and 7 Be, have been performed by using extremely low background Ge detectors at Ogoya Underground Laboratory. We have measured above radionuclides at three monitoring points viz, 1) Low Level Radioactivity Laboratory (LLRL) Kanazawa University, 2) Shishiku Plateau (640 m MSL) located about 8 km from LLRL to investigate vertical difference of activity levels, and 3) Hegura Island (10 m MSL) located about 50 km from Noto Peninsula in the Sea of Japan to evaluate the influences of Asian continent or mainland of Japan on the variation to the activity levels. Variations of short-lived 212 Pb concentration showed noticeable time lags between at LLRL and at Shishiku Plateau. These time lags might be caused by change of height of a planetary boundary layer. On the contrary, variations of long-lived 210 Pb and 7 Be showed simultaneity at three locations because of homogeneity of these concentrations all over the area. (author)

  19. Computing the PSF with high-resolution reconstruction technique

    Science.gov (United States)

    Su, Xiaofeng; Chen, FanSheng; Yang, Xue; Xue, Yulong; Dong, YucCui

    2016-05-01

    Point spread function (PSF) is a very important indicator of the imaging system; it can describe the filtering characteristics of the imaging system. The image is fuzzy when the PSF is not very well and vice versa. In the remote sensing image process, the image could be restored by using the PSF of the image system to get a clearer picture. So, to measure the PSF of the system is very necessary. Usually we can use the knife edge method, line spread function (LSF) method and streak plate method to get the modulation transfer function (MTF), and then use the relationship of the parameters to calculate the PSF of the system. In the knife edge method, the non-uniformity (NU) of the detector would lead an unstable precision of the edge angle; using the streak plate could get a more stable MTF, but it is only at one frequency point in one direction, so it is not very helpful to get a high-precision PSF. In this paper, we used the image of the point target directly and combined with the energy concentration to calculate the PSF. First we make a point matrix target board and make sure the point can image to a sub-pixel position at the detector array; then we use the center of gravity to locate the point targets image to get the energy concentration; then we fusion the targets image together by using the characteristics of sub-pixel and get a stable PSF of the system. Finally we use the simulation results to confirm the accuracy of the method.

  20. Characterization of ceramic archaeological by high resolution X ray microtomography

    International Nuclear Information System (INIS)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya; Carvalho, Daniele D.; Gaspar, Maria D.

    2013-01-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  1. Characterization of ceramic archaeological by high resolution X ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya, E-mail: alecastro@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Carvalho, Daniele D.; Gaspar, Maria D. [Museu Nacional (MN/UFRJ), RJ (Brazil). Centro de Tecnologia

    2013-07-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  2. MR-Venography Using High Resolution True-FISP

    Energy Technology Data Exchange (ETDEWEB)

    Spuentrup, E. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Beth Israel Deaconess Medical Center, Boston, MA (United States). Dept. of Medicine; Harvard Medical School, Boston, MA (United States); Buecker, A.; Guenther, R.W. [Technische Hochschule Aachen (Germany). Klinik fuer Radiologische Diagnostik; Stuber, M. [Beth Israel Deaconess Medical Center, Boston, MA (United States). Dept. of Medicine; Harvard Medical School, Boston, MA (United States); Philips Med. Syst., Best (Netherlands)

    2001-08-01

    A new fast MR-venography approach using a high resolution True-FISP imaging sequence was investigated in 20 patients suffering from 23 deep vein thromboses. Diagnosis was proven by X-ray venography, CT or ultrasound examination. The presented technique allowed for clear thrombus visualization with a high contrast to the surrounding blood pool even in calf veins. Acquisition time was less than 10 minutes for imaging the pelvis and the legs. No contrast media was needed. The presented high resolution True-FISP MR-veography is a promising non-invasive, fast MR-venography approach for detection of deep venous thrombosis. (orig.) [German] Eine neue schnelle, oertlich hochaufgeloeste MR-Phlebographietechnik mit einer axialen True-FISP Bildgebungssequenz wurde an 20 Patienten mit 23 nach-gewiesenen tiefen Beinvenenthrombosen untersucht. Die Befunde wurden mit einer konventionellen Roentgenphlebographie, einer CT oder einer Sonographie gesichert. Die vorgestellte Technik erlaubte in allen Faellen eine Thrombusdarstellung mit hohem Kontrast zum umgebenden venoesen Blut, wobei aufgrund der hohen Ortsaufloesung auch die Unterschenkelvenen beurteilt werden konnten. Die Datenaufnahmezeit zur Untersuchung des Beckens und der Beine betrug weniger als 10 Minuten. Kontrastmittel wurde nicht benoetigt. Die vorgestellte MR-Phlebographietechnik unter Verwendung einer oertlich hochauf-geloesten True-FISP Sequenz ist eine neue, vielversprechende, nicht-invasive Technik zur Diagnostik der tiefen Bein- und Beckenvenenthrombose. (orig.)

  3. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  4. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  5. Advances in high-resolution mass spectrometry based on metabolomics studies for food--a review.

    Science.gov (United States)

    Rubert, Josep; Zachariasova, Milena; Hajslova, Jana

    2015-01-01

    Food authenticity becomes a necessity for global food policies, since food placed in the market without fail has to be authentic. It has always been a challenge, since in the past minor components, called also markers, have been mainly monitored by chromatographic methods in order to authenticate the food. Nevertheless, nowadays, advanced analytical methods have allowed food fingerprints to be achieved. At the same time they have been also combined with chemometrics, which uses statistical methods in order to verify food and to provide maximum information by analysing chemical data. These sophisticated methods based on different separation techniques or stand alone have been recently coupled to high-resolution mass spectrometry (HRMS) in order to verify the authenticity of food. The new generation of HRMS detectors have experienced significant advances in resolving power, sensitivity, robustness, extended dynamic range, easier mass calibration and tandem mass capabilities, making HRMS more attractive and useful to the food metabolomics community, therefore becoming a reliable tool for food authenticity. The purpose of this review is to summarise and describe the most recent metabolomics approaches in the area of food metabolomics, and to discuss the strengths and drawbacks of the HRMS analytical platforms combined with chemometrics.

  6. High-resolution proton NMR spectroscopy of cerebrospinal fluid: methodological issues and potential clinical applications

    International Nuclear Information System (INIS)

    Kriat, M.; Nicoli, F.; Vion-Dury, J.; Confort-Gouny, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.; Dano, P.; Grisoli, F.

    1991-01-01

    High resolution proton nuclear magnetic resonance (NMR) spectroscopy is a new analytical technique which allows to readily identify and quantitate a variety of key metabolites in cerebrospinal fluid (CSF) in relation to normal and pathological brain activity. Proton NMR spectroscopy can be performed on native CSF, with or without addition of exchange reagent (NH 4 Cl). The analysis of native CSF provides qualitative information (identification) of metabolites or xenobiotics present in the fluid. Alternately, CSF can be lyophilized and dissolved in deuterated water. This concentration offers 2 advantages: additional compounds are detected and a precise quantification of all CSF metabolites can be obtained. Both protocols require a very small volume of CFS (1-2 ml). The high informational content available on the NMR spectra of CSF, the ease-of-use of NMR spectroscopy and its cost effectiveness concur to predict that this analytical approach will keep developing to completement the array of existing tests which are already routinely performed on CSF. 6 figs [fr

  7. Processing method for high resolution monochromator

    International Nuclear Information System (INIS)

    Kiriyama, Koji; Mitsui, Takaya

    2006-12-01

    A processing method for high resolution monochromator (HRM) has been developed at Japanese Atomic Energy Agency/Quantum Beam Science Directorate/Synchrotron Radiation Research unit at SPring-8. For manufacturing a HRM, a sophisticated slicing machine and X-ray diffractometer have been installed for shaping a crystal ingot and orienting precisely the surface of a crystal ingot, respectively. The specification of the slicing machine is following; Maximum size of a diamond blade is φ 350mm in diameter, φ 38.1mm in the spindle diameter, and 2mm in thickness. A large crystal such as an ingot with 100mm in diameter, 200mm in length can be cut. Thin crystal samples such as a wafer can be also cut using by another sample holder. Working distance of a main shaft with the direction perpendicular to working table in the machine is 350mm at maximum. Smallest resolution of the main shaft with directions of front-and-back and top-and-bottom are 0.001mm read by a digital encoder. 2mm/min can set for cutting samples in the forward direction. For orienting crystal faces relative to the blade direction adjustment, a one-circle goniometer and 2-circle segment are equipped on the working table in the machine. A rotation and a tilt of the stage can be done by manual operation. Digital encoder in a turn stage is furnished and has angle resolution of less than 0.01 degrees. In addition, a hand drill as a supporting device for detailed processing of crystal is prepared. Then, an ideal crystal face can be cut from crystal samples within an accuracy of about 0.01 degrees. By installation of these devices, a high energy resolution monochromator crystal for inelastic x-ray scattering and a beam collimator are got in hand and are expected to be used for nanotechnology studies. (author)

  8. Zeolites - a high resolution electron microscopy study

    International Nuclear Information System (INIS)

    Alfredsson, V.

    1994-10-01

    High resolution transmission electron microscopy (HRTEM) has been used to investigate a number of zeolites (EMT, FAU, LTL, MFI and MOR) and a member of the mesoporous M41S family. The electron optical artefact, manifested as a dark spot in the projected centre of the large zeolite channels, caused by insufficient transfer of certain reflections in the objective lens has been explained. The artefact severely hinders observation of materials confined in the zeolite channels and cavities. It is shown how to circumvent the artefact problem and how to image confined materials in spite of disturbance caused by the artefact. Image processing by means of a Wiener filter has been applied for removal of the artefact. The detailed surface structure of FAU has been investigated. Comparison of experimental micrographs with images simulated using different surface models indicates that the surface can be terminated in different ways depending on synthesis methods. The dealuminated form of FAU (USY) is covered by an amorphous region. Platinum incorporated in FAU has a preponderance to aggregate in the (111) twin planes, probably due to a local difference in cage structure with more spacious cages. It is shown that platinum is intra-zeolitic as opposed to being located on the external surface of the zeolite crystal. This could be deduced from tomography of ultra-thin sections among observations. HRTEM studies of the mesoporous MCM-41 show that the pores have a hexagonal shape and also supports the mechanistic model proposed which involves a cooperative formation of a mesophase including the silicate species as well as the surfactant. 66 refs, 24 figs

  9. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  10. Toward high-resolution optoelectronic retinal prosthesis

    Science.gov (United States)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  11. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  12. High resolution micro ultrasonic machining for trimming 3D microstructures

    International Nuclear Information System (INIS)

    Viswanath, Anupam; Li, Tao; Gianchandani, Yogesh

    2014-01-01

    This paper reports on the evaluation of a high resolution micro ultrasonic machining (HR-µUSM) process suitable for post fabrication trimming of complex 3D microstructures made from fused silica. Unlike conventional USM, the HR-µUSM process aims for low machining rates, providing high resolution and high surface quality. The machining rate is reduced by keeping the micro-tool tip at a fixed distance from the workpiece and vibrating it at a small amplitude. The surface roughness is improved by an appropriate selection of abrasive particles. Fluidic modeling is performed to study interaction among the vibrating micro-tool tip, workpiece, and the slurry. Using 304 stainless steel (SS304) tool tips of 50 µm diameter, the machining performance of the HR-µUSM process is characterized on flat fused silica substrates. The depths and surface finish of machined features are evaluated as functions of slurry concentrations, separation between the micro-tool and workpiece, and machining time. Under the selected conditions, the HR-µUSM process achieves machining rates as low as 10 nm s −1  averaged over the first minute of machining of a flat virgin sample. This corresponds to a mass removal rate of ≈20 ng min −1 . The average surface roughness, S a , achieved is as low as 30 nm. Analytical and numerical modeling are used to explain the typical profile of the machined features as well as machining rates. The process is used to demonstrate trimming of hemispherical 3D shells made of fused silica. (paper)

  13. Assessment of analytical techniques for characterization of crystalline clopidogrel forms in patent applications

    Directory of Open Access Journals (Sweden)

    Luiz Marcelo Lira

    2014-04-01

    Full Text Available The aim of this study was to evaluate two important aspects of patent applications of crystalline forms of drugs: (i the physicochemical characterization of the crystalline forms; and (ii the procedure for preparing crystals of the blockbuster drug clopidogrel. To this end, searches were conducted using online patent databases. The results showed that: (i the majority of patent applications for clopidogrel crystalline forms failed to comply with proposed Brazilian Patent Office guidelines. This was primarily due to insufficient number of analytical techniques evaluating the crystalline phase. In addition, some patent applications lacked assessment of chemical/crystallography purity; (ii use of more than two analytical techniques is important; and (iii the crystallization procedure for clopidogrel bisulfate form II were irreproducible based on the procedure given in the patent application.

  14. Proceedings of the national seminar on recent developments in electro analytical techniques: souvenir and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    In view of deliberations on 'Recent Developments in Electro Analytical Techniques' with special emphasis on batteries, fuel cells, biosensors, chemical sensors modified electrodes, nano electrodes, electrode synthesis and co-ordination compounds, go a long way in creating the necessary awareness and enthusiasm amongst students, young scholars and industrialists to lay their attention on the subject. Papers relevant to INIS are indexed separately

  15. Quantitative determination of the intensities of known components in spectra obtained from surface analytical techniques

    International Nuclear Information System (INIS)

    Nelson, G.C.

    1984-01-01

    Linear least-squares methods have been used to quantitatively decompose experimental data obtained from surface analytical techniques into its separate components. The mathematical procedure for accomplishing this is described and examples are given of the use of this method with data obtained from Auger electron spectroscopy [both N(E) and derivative], x-ray photoelectron spectroscopy, and low energy ion scattering spectroscopy. The requirements on the quality of the data are discussed

  16. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  17. High-resolution chemical composition of geothermal scalings from Hungary: Preliminary results

    Science.gov (United States)

    Boch, Ronny; Dietzel, Martin; Deák, József; Leis, Albrecht; Mindszenty, Andrea; Demeny, Attila

    2015-04-01

    Geothermal fluids originating from several hundreds to thousands meters depth mostly hold a high potential for secondary mineral precipitation (scaling) due to high total dissolved solid contents at elevated temperature and pressure conditions. The precipitation of e.g. carbonates, sulfates, sulfides, and silica has shown to cause severe problems in geothermal heat and electric power production, when clogging of drill-holes, downhole pumps, pipes and heat exchangers occurs (e.g. deep geothermal doublet systems). Ongoing scaling reduces the efficiency in energy extraction and might even question the abandonment of installations in worst cases. In an attempt to study scaling processes both temporally and spatially we collected mineral precipitates from selected sites in Hungary (Bükfürdo, Szechenyi, Szentes, Igal, Hajduszoboszlo). The samples of up to 8 cm thickness were recovered from different positions of the geothermal systems and precipitated from waters of various temperatures (40-120 °C) and variable overall chemical composition. Most of these scalings show fine lamination patterns representing mineral deposition from weeks up to 45 years at our study sites. Solid-fluid interaction over time captured in the samples are investigated applying high-resolution analytical techniques such as laser-ablation mass-spectrometry and electron microprobe, micromill-sampling for stable isotope analysis, and micro-XRD combined with hydrogeochemical modeling. A detailed investigation of the processes determining the formation and growth of precipitates can help to elucidate the short-term versus long-term geothermal performance with regard to anthropogenic and natural reservoir and production dynamics. Changes in fluid chemistry, temperature, pressure, pH, degassing rate (CO2) and flow rate are reflected by the mineralogical, chemical and isotopic composition of the precipitates. Consequently, this high-resolution approach is intended as a contribution to decipher the

  18. Development and evaluation of analytical techniques for total chlorine in used oils and oil fuels

    International Nuclear Information System (INIS)

    Gaskill, A. Jr.; Estes, E.D.; Hardison, D.L.; Friedman, P.H.

    1990-01-01

    A current EPA regulation prohibits the sale for burning in nonindustrial boilers of used oils and oil fuels. This paper discusses how analytical techniques for determining total chlorine were evaluated to provide regulatory agencies and the regulated community with appropriate chlorine test methods. The techniques evaluated included oxygen bomb combustion followed by chemical titration or ion chromatography, instrumental microcoulometry, field test kits, and instrumental furnace/specific ion electrode determinator, a device based on the Beilstein reaction, and x-ray fluorescence spectrometry. These techniques were subjected to interlaboratory testing to estimate their precision, accuracy, and sensitivity. Virgin and used crankcase oils, hydraulic and metalworking oils, oil fuels and oil fuel blends with used oils were tested. The bomb techniques, one of the test kits, microcoulometry and all but one x-ray analyzer were found to be suitable for this application. The chlorine furnace and the Beilstein device were found to be inapplicable at the levels of interest

  19. A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems

    Directory of Open Access Journals (Sweden)

    Sarfaraz Nawaz

    2017-07-01

    Full Text Available In this paper, a novel analytical technique is proposed to determine the optimal size and location of shunt capacitor units in radial distribution systems. An objective function is formulated to reduce real power loss, to improve the voltage profile and to increase annual cost savings. A new constant, the Loss Sensitivity Constant (LSC, is proposed here. The value of LSC decides the location and size of candidate buses. The technique is demonstrated on an IEEE-33 bus system at different load levels and the 130-bus distribution system of Jamawa Ramgarh village, Jaipur city. The obtained results are compared with the latest optimization techniques to show the effectiveness and robustness of the proposed technique.

  20. Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds.

    Science.gov (United States)

    Liu, X; Abd El-Aty, A M; Shim, J-H

    2011-10-01

    Nigella sativa L. (black cumin), commonly known as black seed, is a member of the Ranunculaceae family. This seed is used as a natural remedy in many Middle Eastern and Far Eastern countries. Extracts prepared from N. sativa have, for centuries, been used for medical purposes. Thus far, the organic compounds in N. sativa, including alkaloids, steroids, carbohydrates, flavonoids, fatty acids, etc. have been fairly well characterized. Herein, we summarize some new extraction techniques, including microwave assisted extraction (MAE) and supercritical extraction techniques (SFE), in addition to the classical method of hydrodistillation (HD), which have been employed for isolation and various analytical techniques used for the identification of secondary metabolites in black seed. We believe that some compounds contained in N. sativa remain to be identified, and that high-throughput screening could help to identify new compounds. A study addressing environmentally-friendly techniques that have minimal or no environmental effects is currently underway in our laboratory.

  1. Application of the partitive analytical forecasting (PAF) technique to the United States controlled thermonuclear research effort

    International Nuclear Information System (INIS)

    Nichols, S.P.

    1975-01-01

    The Partitive Analytical Forecasting (PAF) technique is applied to the overall long-term program plans for the Division of Controlled Thermonuclear Research (DCTR) of the United States Energy Research and Development Administration (ERDA). As part of the PAF technique, the Graphical Evaluation and Review Technique (GERTS) IIIZ computer code is used to perform simulations on a logic network describing the DCTR long-term program plan. Logic networks describing the tokamak, mirror, and theta-pinch developments are simulated individually and then together to form an overall DCTR program network. The results of the simulation of the overall network using various funding schemes and strategies are presented. An economic sensitivity analysis is provided for the tokamak logic networks. An analysis is also performed of the fusion-fission hybrid concept in the context of the present DCTR goals. The results mentioned above as well as the PAF technique itself are evaluated, and recommendations for further research are discussed

  2. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  3. Application of the Oslo method to high resolution gamma spectra

    Science.gov (United States)

    Simon, A.; Guttormsen, M.; Larsen, A. C.; Beausang, C. W.; Humby, P.

    2015-10-01

    Hauser-Feshbach statistical model is a widely used tool for calculation of the reaction cross section, in particular for astrophysical processes. The HF model requires as an input an optical potential, gamma-strength function (GSF) and level density (LD) to properly model the statistical properties of the nucleus. The Oslo method is a well established technique to extract GSFs and LDs from experimental data, typically used for gamma-spectra obtained with scintillation detectors. Here, the first application of the Oslo method to high-resolution data obtained using the Ge detectors of the STARLITER setup at TAMU is discussed. The GSFs and LDs extracted from (p,d) and (p,t) reactions on 152154 ,Sm targets will be presented.

  4. High-resolution electron microscopy and its applications.

    Science.gov (United States)

    Li, F H

    1987-12-01

    A review of research on high-resolution electron microscopy (HREM) carried out at the Institute of Physics, the Chinese Academy of Sciences, is presented. Apart from the direct observation of crystal and quasicrystal defects for some alloys, oxides, minerals, etc., and the structure determination for some minute crystals, an approximate image-contrast theory named pseudo-weak-phase object approximation (PWPOA), which shows the image contrast change with crystal thickness, is described. Within the framework of PWPOA, the image contrast of lithium ions in the crystal of R-Li2Ti3O7 has been observed. The usefulness of diffraction analysis techniques such as the direct method and Patterson method in HREM is discussed. Image deconvolution and resolution enhancement for weak-phase objects by use of the direct method are illustrated. In addition, preliminary results of image restoration for thick crystals are given.

  5. A high resolution gridded ionization chamber for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Vitale, E.R.

    1988-01-01

    This paper describes some techniques used in the design of high resolution gridded ionisation chambers for measurements of absolute activity of radionuclides. Details of the geometry of the system and its electrodes are presented; their shape and the spacing between the grid wire was studied with the help of an electrolytic tank. The experimental spectra obtained with an Am 241 source using Ar + 10% methane as a flow gas show a total resolution of 39,07 KeV in very good agreement with the best results available in the literature. An application of the methods developed was used in the design ans construction of a proportional counter provided with three sequential grids disposed in such a way that the pulses from the first stage had their amplitude multiplied by the two further stages. Multiplication factors of the order of 10 sup(3) were obtained but higher values are expected. (author)

  6. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  7. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  8. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  9. Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review.

    Science.gov (United States)

    Pasin, Daniel; Cawley, Adam; Bidny, Sergei; Fu, Shanlin

    2017-10-01

    The proliferation of new psychoactive substances (NPS) in recent years has resulted in the development of numerous analytical methods for the detection and identification of known and unknown NPS derivatives. High-resolution mass spectrometry (HRMS) has been identified as the method of choice for broad screening of NPS in a wide range of analytical contexts because of its ability to measure accurate masses using data-independent acquisition (DIA) techniques. Additionally, it has shown promise for non-targeted screening strategies that have been developed in order to detect and identify novel analogues without the need for certified reference materials (CRMs) or comprehensive mass spectral libraries. This paper reviews the applications of HRMS for the analysis of NPS in forensic drug chemistry and analytical toxicology. It provides an overview of the sample preparation procedures in addition to data acquisition, instrumental analysis, and data processing techniques. Furthermore, it gives an overview of the current state of non-targeted screening strategies with discussion on future directions and perspectives of this technique. Graphical Abstract Missing the bullseye - a graphical respresentation of non-targeted screening. Image courtesy of Christian Alonzo.

  10. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control.

    Science.gov (United States)

    Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna

    2012-05-01

    Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.

  11. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    International Nuclear Information System (INIS)

    Necemer, Marijan; Kump, Peter; Scancar, Janez; Jacimovic, Radojko; Simcic, Jurij; Pelicon, Primoz; Budnar, Milos; Jeran, Zvonka; Pongrac, Paula; Regvar, Marjana; Vogel-Mikus, Katarina

    2008-01-01

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry-EDXRF, total reflection X-ray fluorescence spectrometry-TXRF and micro-proton induced X-ray emission-micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast, sensitive and

  12. Método analítico por cromatografía líquida de alta resolución para la determinación de carbamazepina en plasma humano Analytical method by high resolution liquid chromatography for the determination of carbamazepine in human plasma

    Directory of Open Access Journals (Sweden)

    Narda M. Jiménez Alemán

    2007-04-01

    Full Text Available Entre los requisitos para desarrollar los estudios de biodisponibilidad y bioequivalencia se encuentra contar con metodologías analíticas validadas para el trabajo con muestras en fluidos biológicos. Se desarrolló un método por cromatografía líquida de alta resolución para la determinación de carbamazepina en plasma humano, se utilizó como fase móvil una mezcla de hidrógeno fosfato de sodio: acetonitrilo (65:35 ajustada a pH= 3,3 con ácido fosfórico, flujo de 1,2 mL/min y detección ultravioleta a 210 nm. Se empleó propilparabeno como estándar interno. Conforme con las regulaciones establecidas para la validación de métodos en fluidos biológicos se estudiaron los parámetros siguientes: estabilidad de las muestras, linealidad, especificidad, precisión, exactitud y límite de detección y cuantificación. El método resultó específico y sensible con un límite de detección y cuantificación de 0,9 y 1,0 ng, respectivamente. El método fue lineal, preciso y exacto en el rango de concentraciones de 1,07 a 12,67 µg/mL. La recuperación media no fue estadísticamente diferente del 100,0 %. El analito en la matriz biológica propuesta permaneció en el periodo estudiado. La metodología descrita en este trabajo se aplica en nuestro caso al estudio que evalúa la biodisponibilidad y bioequivalencia de una formulación cubana de carbamazepina en voluntarios sanos.One of the requirements to develop the studies of bioavailability and bioequivalence is to have analytic methodologies validated for the work with samples in biological fluids. A method was developed by high resolution liquid chromatography for the determination of carbamazepine in human plasma. A mixture of hydrogen phosphate of sodium: acetonitrile (65:35 adjusted to pH= 3.3 with phosphoric acid, flow of 1.2 mL/min and ultraviolet detection at 210 nm, was used as mobile phase. Propylparabene was used as an internal standard. According to the established regulations for

  13. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  14. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  15. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  16. An alternative technique for the implementation of an analytical approximation for transients with temperature feedback

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Silva, Adilson C. da; Goncalves, Alessandro C.; Martinez, Aquilino S.

    2009-01-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting neutron density variation during the operation of a nuclear reactor. Although different approximate solutions for the system of point kinetics equations with temperature feedback may be found in literature, some of them do not present an explicit dependence in time, which makes the computing implementation difficult and, as a result, its applicability in practical cases. The present paper uses the polynomial adjustment technique to overcome this problem in the analytical approximation as proposed by Nahla. In a systematic comparison with other existing approximations it is concluded that the method is adequate, presenting small deviations in relation to the reference values obtained from the reference numerical method. (author)

  17. An alternative technique for the implementation of an analytical approximation for transients with temperature feedback

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro, Nilopolis, RJ (Brazil)], e-mail: dpalmaster@gmail.com; Silva, Adilson C. da; Goncalves, Alessandro C.; Martinez, Aquilino S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: asilva@con.ufrj.br, e-mail: agoncalves@con.ufrj.br, e-mail: aquilino@lmp.ufrj.br

    2009-07-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting neutron density variation during the operation of a nuclear reactor. Although different approximate solutions for the system of point kinetics equations with temperature feedback may be found in literature, some of them do not present an explicit dependence in time, which makes the computing implementation difficult and, as a result, its applicability in practical cases. The present paper uses the polynomial adjustment technique to overcome this problem in the analytical approximation as proposed by Nahla. In a systematic comparison with other existing approximations it is concluded that the method is adequate, presenting small deviations in relation to the reference values obtained from the reference numerical method. (author)

  18. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Perina, V.; Mach, R.

    1998-01-01

    Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600 C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration. (orig.)

  19. Improved automatic optic nerve radius estimation from high resolution MRI

    Science.gov (United States)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2017-02-01

    The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.

  20. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  1. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  2. High resolution x-ray CMT: Reconstruction methods

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.K.

    1997-02-01

    This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited for high accuracy, tomographic reconstruction codes.

  3. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  4. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  5. Analytical techniques and method validation for the measurement of selected semivolatile and nonvolatile organofluorochemicals in air.

    Science.gov (United States)

    Reagen, William K; Lindstrom, Kent R; Thompson, Kathy L; Flaherty, John M

    2004-09-01

    The widespread use of semi- and nonvolatile organofluorochemicals in industrial facilities, concern about their persistence, and relatively recent advancements in liquid chromatography/mass spectrometry (LC/MS) technology have led to the development of new analytical methods to assess potential worker exposure to airborne organofluorochemicals. Techniques were evaluated for the determination of 19 organofluorochemicals and for total fluorine in ambient air samples. Due to the potential biphasic nature of most of these fluorochemicals when airborne, Occupational Safety and Health Administration (OSHA) versatile sampler (OVS) tubes were used to simultaneously trap fluorochemical particulates and vapors from workplace air. Analytical methods were developed for OVS air samples to quantitatively analyze for total fluorine using oxygen bomb combustion/ion selective electrode and for 17 organofluorochemicals using LC/MS and gas chromatography/mass spectrometry (GC/MS). The experimental design for this validation was based on the National Institute of Occupational Safety and Health (NIOSH) Guidelines for Air Sampling and Analytical Method Development and Evaluation, with some revisions of the experimental design. The study design incorporated experiments to determine analytical recovery and stability, sampler capacity, the effect of some environmental parameters on recoveries, storage stability, limits of detection, precision, and accuracy. Fluorochemical mixtures were spiked onto each OVS tube over a range of 0.06-6 microg for each of 12 compounds analyzed by LC/MS and 0.3-30 microg for 5 compounds analyzed by GC/MS. These ranges allowed reliable quantitation at 0.001-0.1 mg/m3 in general for LC/MS analytes and 0.005-0.5 mg/m3 for GC/MS analytes when 60 L of air are sampled. The organofluorochemical exposure guideline (EG) is currently 0.1 mg/m3 for many analytes, with one exception being ammonium perfluorooctanoate (EG is 0.01 mg/m3). Total fluorine results may be used

  6. Technical meeting on commercial applications of nuclear analytical techniques. Meeting report

    International Nuclear Information System (INIS)

    2004-01-01

    This report summarizes the findings of the Technical Meeting on the Commercial Applications of Nuclear Analytical Techniques held in Vienna on 23-26 November 2004, where an assessment was initiated of the world capacity and market potentials for neutron activation analysis and nuclear spectroscopy, including an estimation of economic revenues. Industry and governmental agencies were identified as stakeholders for these laboratories. Examples are given of potential benefits of these techniques to the stakeholders. The potentials for commercial applications of neutron activation analysis and nuclear spectroscopy (measurement of alpha, beta and gamma ray emitting radionuclides) are addressed. First estimates are given of the worldwide capacity of these laboratories, suggestions and examples are given for potential markets and the typical organizational and technical constraints are discussed. Two case studies of commercial neutron activation analysis laboratories at a small and a medium-size reactor are given in the 'individual contributions' section of this document. An assessment of other nuclear analytical techniques such as X ray Fluorescence Spectrometry, Particle Induced X ray Emission Spectrometry or Ion Beam Analysis Spectrometry has been completed after a comprehensive collection of background information

  7. Applied research on air pollution using nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    1994-01-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which will run from 1992-1996, and will build upon the experience gained by the Agency from the laboratory support that it has been providing for several years to BAPMoN - the Background Air Pollution Monitoring Network programme organized under the auspices of the World Meterological Organization. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XFR, and PIXE for the analysis of toxic and other trace elements in suspended particulate matter (including air filter samples), rainwater and fog-water samples, and in biological indicators of air pollution (e.g. lichens and mosses). The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for practically-oriented research and monitoring studies on air pollution ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural areas). This document reports the discussions held during the first Research Co-ordination Meeting (RCM) for the CRP which took place at the IAEA Headquarters in Vienna. Refs, figs and tabs

  8. An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    M. Bishehniasar

    2017-01-01

    Full Text Available The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs. The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE. Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD method and standard finite difference (SFD technique, which are popular in the literature for solving engineering problems.

  9. Technical meeting on commercial applications of nuclear analytical techniques. Meeting report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarizes the findings of the Technical Meeting on the Commercial Applications of Nuclear Analytical Techniques held in Vienna on 23-26 November 2004, where an assessment was initiated of the world capacity and market potentials for neutron activation analysis and nuclear spectroscopy, including an estimation of economic revenues. Industry and governmental agencies were identified as stakeholders for these laboratories. Examples are given of potential benefits of these techniques to the stakeholders. The potentials for commercial applications of neutron activation analysis and nuclear spectroscopy (measurement of alpha, beta and gamma ray emitting radionuclides) are addressed. First estimates are given of the worldwide capacity of these laboratories, suggestions and examples are given for potential markets and the typical organizational and technical constraints are discussed. Two case studies of commercial neutron activation analysis laboratories at a small and a medium-size reactor are given in the 'individual contributions' section of this document. An assessment of other nuclear analytical techniques such as X ray Fluorescence Spectrometry, Particle Induced X ray Emission Spectrometry or Ion Beam Analysis Spectrometry has been completed after a comprehensive collection of background information.

  10. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    Science.gov (United States)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  11. Commissioning of the laboratory of Atucha II NPP. Implementation and optimization of analytical techniques, quality aspects

    International Nuclear Information System (INIS)

    Schoenbrod, Betina; Quispe, Benjamin; Cattaneo, Alberto; Rodriguez, Ivanna; Chocron, Mauricio; Farias, Silvia

    2012-09-01

    Atucha II NPP is a Pressurized Vessel Heavy Water Reactor (PVHWR) of 740 MWe designed by SIEMENSKWU. After some years of delay, this NPP is in advanced construction state, being the beginning of commercial operation expected for 2013. Nucleoelectrica Argentina (N.A.S.A.) is the company in charge of the finalization of this project and the future operation of the plant. The Comision Nacional de Energia Atomica (C.N.E.A.) is the R and D nuclear institution in the country that, among many other topics, provides technical support to the stations. The Commissioning Chemistry Division of CNAII is in charge of the commissioning of the demineralization water plant and the organization of the chemical laboratory. The water plant started operating successfully in July 2010 and is providing the plant with nuclear grade purity water. Currently, in the conventional ('cold') laboratory several activities are taking place. On one hand, analytical techniques for the future operation of the plant are being tested and optimized. On the other hand, the laboratory is participating in the cleaning and conservation of the different components of the plant, providing technical support and the necessary analysis. To define the analytical techniques for the normal operation of the plant, the parameters to be measured and their range were established in the Chemistry Manual. The necessary equipment and reagents were bought. In this work, a summary of the analytical techniques that are being implemented and optimized is presented. Common anions (chloride, sulfate, fluoride, bromide and nitrate) are analyzed by ion chromatography. Cations, mainly sodium, are determined by absorption spectrometry. A UV-Vis spectrometer is used to determine silicates, iron, ammonia, DQO, total solids, true color and turbidity. TOC measurements are performed with a TOC analyzer. To optimize the methods, several parameters are evaluated: linearity, detection and quantification limits, precision and

  12. Recent Trends in Microextraction Techniques Employed in Analytical and Bioanalytical Sample Preparation

    Directory of Open Access Journals (Sweden)

    Abuzar Kabir

    2017-12-01

    Full Text Available Sample preparation has been recognized as a major step in the chemical analysis workflow. As such, substantial efforts have been made in recent years to simplify the overall sample preparation process. Major focusses of these efforts have included miniaturization of the extraction device; minimizing/eliminating toxic and hazardous organic solvent consumption; eliminating sample pre-treatment and post-treatment steps; reducing the sample volume requirement; reducing extraction equilibrium time, maximizing extraction efficiency etc. All these improved attributes are congruent with the Green Analytical Chemistry (GAC principles. Classical sample preparation techniques such as solid phase extraction (SPE and liquid-liquid extraction (LLE are being rapidly replaced with emerging miniaturized and environmentally friendly techniques such as Solid Phase Micro Extraction (SPME, Stir bar Sorptive Extraction (SBSE, Micro Extraction by Packed Sorbent (MEPS, Fabric Phase Sorptive Extraction (FPSE, and Dispersive Liquid-Liquid Micro Extraction (DLLME. In addition to the development of many new generic extraction sorbents in recent years, a large number of molecularly imprinted polymers (MIPs created using different template molecules have also enriched the large cache of microextraction sorbents. Application of nanoparticles as high-performance extraction sorbents has undoubtedly elevated the extraction efficiency and method sensitivity of modern chromatographic analyses to a new level. Combining magnetic nanoparticles with many microextraction sorbents has opened up new possibilities to extract target analytes from sample matrices containing high volumes of matrix interferents. The aim of the current review is to critically audit the progress of microextraction techniques in recent years, which has indisputably transformed the analytical chemistry practices, from biological and therapeutic drug monitoring to the environmental field; from foods to phyto

  13. Analytical techniques for determination and control of silica content in the water in thermal power plants

    Directory of Open Access Journals (Sweden)

    Ignjatović Nataša R.

    2015-01-01

    Full Text Available Ultrapure water with minimum contents of impurities is used for the preparation of steam in thermal power plants. More recently it has been found that the corrosion process is also influenced by sodium ions, chloride ions, and all forms of silicon in water. At higher temperatures and under high pressure the less soluble compounds of silicon are extracted, which form deposits on the walls of the boiler, the piping system and the turbine blades. Silicon is found in water in the form of different types (species which are characterized by specific physical and chemical properties. Distinctions can be made between highly reactive species of ionic (silicate anions and molecular forms (silicic acid and relatively inert types (suspended, colloidal, and polymerized silicon. The determination of various forms of silicon in water is a complex analytical task. This paper covers relevant research in the field of silicon specification analysis. Maintaining the unchanged, original composition of silicon species during various stages of analysis (sample collection, storage, and conservation has been given special attention. A large number of methods and procedures have been developed for the analysis of species of silicon, including chromatographic, spectroscopic and electrochemical techniques and combinations thereof. The techniques used for determining both the total amount and individual forms of silicon have been singled out. There is also an overview of the coupled techniques used most frequently in practice by using the methodology which involves preliminary separation of species and then individual specification. The paper offers an overview of analytical properties, advantages and disadvantages of the most representative analytical methods developed specifically for the analysis of silicon species in ultrapure water. The most important studies focusing on the silicon species in water have been highlighted and presented in detail. The determination of

  14. Atomic and nuclear analytical methods. XRF, Moessbauer, XPS, NAA and ion-beam spectroscopic techniques

    International Nuclear Information System (INIS)

    Verma, H.R.

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories. (orig.)

  15. Nuclear analytical techniques applied to characterization of atmospheric aerosols in Amazon Region

    International Nuclear Information System (INIS)

    Gerab, Fabio; Artaxo, Paulo

    1996-01-01

    This work presents the atmospheric aerosols characterization that exist in different regions of Amazon basin. The biogenic aerosol emission by forest, as well as the atmospheric emissions of particulate materials due to biomass burning, were analyzed. Samples of aerosol particles were collected during three years in two different locations of Amazon region using Stacked Unit Filters. In order to study these samples some analytical nuclear techniques were used. The high concentrations of aerosols as a result of biomass burning process were observed in the period of june-september

  16. Wireless network development for the automatic registration of parameters in laboratories of nuclear analytical techniques

    International Nuclear Information System (INIS)

    Tincopa, Jean Pierre; Baltuano, Oscar; Bedregal, Patricia

    2015-01-01

    This paper presents in detail the development of a low-cost wireless network for automatic recording of temperature and relative humidity parameters in the laboratory of nuclear analytical techniques. This prototype has a DHT22 sensor which gives us both parameters with high precision and are automatically read and displayed by a ATmega328P microcontroller. This data is then transmitted through transceivers Xbee Pro S2B forming a mesh network for real time storage using an RTC (Real Time Clock). We present the experimental results obtained in its implementation. (author)

  17. High resolution spectrometry for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gabor, G; Schimmerling, W; Greiner, D; Bieser, F; Lindstrom, P [California Univ., Berkeley (USA). Lawrence Berkeley Lab.

    1975-12-01

    Several techniques are discussed for velocity and energy spectrometry of relativistic heavy ions with good resolution. A foil telescope with chevron channel plate detectors is described. A test of this telescope was performed using 2.1 GeV/A C/sup 6 +/ ions, and a time-of-flight resolution of 160 ps was measured. Qualitative information on the effect of foil thickness was also obtained.

  18. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  19. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  20. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  1. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  2. Evaluation of available analytical techniques for monitoring the quality of space station potable water

    Science.gov (United States)

    Geer, Richard D.

    1989-01-01

    To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.

  3. High-resolution stratigraphy with strontium isotopes.

    Science.gov (United States)

    Depaolo, D J; Ingram, B L

    1985-02-22

    The isotopic ratio of strontium-87 to strontium-86 shows no detectable variation in present-day ocean water but changes slowly over millions of years. The strontium contained in carbonate shells of marine organisms records the ratio of strontium-87 to strontium-86 of the oceans at the time that the shells form. Sedimentary rocks composed of accumulated fossil carbonate shells can be dated and correlated with the use of high precision measurements of the ratio of strontium-87 to strontium-86 with a resolution that is similar to that of other techniques used in age correlation. This method may prove valuable for many geological, paleontological, paleooceanographic, and geochemical problems.

  4. Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2014-01-01

    Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.

  5. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity.

    Science.gov (United States)

    Murnick, Daniel E; Dogru, Ozgur; Ilkmen, Erhan

    2008-07-01

    We show a new ultrasensitive laser-based analytical technique, intracavity optogalvanic spectroscopy, allowing extremely high sensitivity for detection of (14)C-labeled carbon dioxide. Capable of replacing large accelerator mass spectrometers, the technique quantifies attomoles of (14)C in submicrogram samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity and detection via impedance variations, limits of detection near 10(-15) (14)C/(12)C ratios are obtained. Using a 15-W (14)CO2 laser, a linear calibration with samples from 10(-15) to >1.5 x 10(-12) in (14)C/(12)C ratios, as determined by accelerator mass spectrometry, is demonstrated. Possible applications include microdosing studies in drug development, individualized subtherapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon. The method can also be applied to detection of other trace entities.

  6. Determination of Rare Earth Elements in Thai Monazite by Inductively Coupled Plasma and Nuclear Analytical techniques

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Ratanapra, Dusadee; Sukharn, Sumalee; Laoharojanaphand, Sirinart

    2003-10-01

    The inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the determination of individual rare-earth elements (REE) was evaluated by comparison with instrumental neutron activation analysis (INAA) and x-ray fluorescence spectrometry (XRF). The accuracy and precision of INAA and ICP-AES were evaluated by using standard reference material IGS-36, a monazite concentrate. For INAA, the results were close to the certified value while ICP-AES were in good agreement except for some low concentration rare earth. The techniques were applied for the analysis of some rare earth elements in two Thai monazite samples preparing as the in-house reference material for the Rare Earth Research and Development Center, Chemistry Division, Office of Atoms for Peace. The analytical results obtained by these techniques were in good agreement with each other

  7. In Situ Analytical Characterization of Contaminated Sites Using Nuclear Spectrometry Techniques. Review of Methodologies and Measurements

    International Nuclear Information System (INIS)

    2017-01-01

    Past and current human activities can result in the contamination of sites by radionuclides and heavy metals. The sources of contamination are various. The most important sources for radionuclide release include global fallout from nuclear testing, nuclear and radiological accidents, waste production from nuclear facilities, and activities involving naturally occurring radioactive material (NORM). Contamination of the environment by heavy metals mainly originates from industrial applications and mineralogical background concentration. Contamination of sites by radionuclides and heavy metals can present a risk to people and the environment. Therefore, the estimation of the contamination level and the identification of the source constitute important information for the national authorities with the responsibility to protect people and the environment from adverse health effects. In situ analytical techniques based on nuclear spectrometry are important tools for the characterization of contaminated sites. Much progress has been made in the design and implementation of portable systems for efficient and effective monitoring of radioactivity and heavy metals in the environment directly on-site. Accordingly, the IAEA organized a Technical Meeting to review the current status and trends of various applications of in situ nuclear spectrometry techniques for analytical characterization of contaminated sites and to support Member States in their national environmental monitoring programmes applying portable instrumentation. This publication represents a comprehensive review of the in situ gamma ray spectrometry and field portable X ray fluorescence analysis techniques for the characterization of contaminated sites. It includes papers on the use of these techniques, which provide useful background information for conducting similar studies, in the following Member States: Argentina, Australia, Brazil, Czech Republic, Egypt, France, Greece, Hungary, Italy, Lithuania

  8. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  9. Impact of accelerator-based analytical techniques on the knowledge and conservation of cultural heritage

    International Nuclear Information System (INIS)

    Dran, Jean Claude

    2001-01-01

    A large set of modern analytical techniques is currently applied to get a better insight on art and archaeological objects as well as to contribute to their conservation and restoration. Because of the precious and sometimes unique character of the works, non-destructive techniques and even those requiring no (or only minute) sampling, are preferred. From this standpoint, ion beam analysis (IBA) constitutes one of the best choices, since it combines quite good analytical performance and non-destructiveness. For over 10 years, an IBA facility has been installed in the Research Laboratory of the Museums of France. Until now it is the only facility of this kind entirely devoted to the study of cultural heritage. A special set-up, namely an external beam line, has been developed which permits the in-air analysis of large or fragile works of art without sampling. This facility is used for both short investigations at the request of museum curators and extensive research works in art history and archaeology. Numerous examples will be given to highlight the impact of this tool on cultural heritage. (author)

  10. Contribution of analytical techniques coupled to the knowledge of the uranium speciation in natural conditions

    International Nuclear Information System (INIS)

    Petit, J.

    2009-06-01

    To understand the transport mechanisms and the radionuclides behaviour in the bio-geosphere is necessary to evaluate healthy and environmental risks of nuclear industry. These mechanisms are monitored by radioelements speciation, namely the distribution between their different physico-chemical forms in the environment. From this perspective, this PhD thesis deals with uranium speciation in a natural background. A detailed summary of uranium biogeochemistry has been written, which enables to restrict the PhD issue to uranium complexation with oxalic acid, a hydrophilic organic acid with good binding properties, ubiquitous in soil waters. Analytical conditions have been established by means of speciation diagrams. The speciation diagrams building by means of literature stability constants has allowed to define the analytical conditions of complex formation. The chosen analytical technique is the hyphenation of a separative technique (liquid chromatography LC or capillary electrophoresis CE) with mass spectrometry (ICPMS). The studied complexes presence in the synthetic samples has been confirmed with UV/visible spectrophotometry. LC-ICPMS analyses have proved the lability of the uranyl-organic acid complexes, namely their tendency to dissociate during analysis, which prevents from studying uranium speciation. CE-ICPMS study of labile complexes from a metal-ligand system has been made possible by employing affinity capillary electrophoresis, which enables to determine stability constants and electrophoretic mobilities. This PhD thesis has allowed to compare the different mathematical treatments of binding isotherm and to take into account ionic strength and real ligand concentration. Affinity CE has been applied successfully to lanthanum-oxalate (model system) and uranium-oxalate systems. The obtained results have been applied to a real system (situated in Le Bouchet). This shows the contribution of the developed method to the modelling of uranium speciation. (author)

  11. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  12. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages.

    Science.gov (United States)

    La Barbera, Giorgia; Capriotti, Anna Laura; Cavaliere, Chiara; Montone, Carmela Maria; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-10-01

    The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy

    International Nuclear Information System (INIS)

    Jordanov, Valentin T.; Knoll, Glenn F.

    1994-01-01

    Techniques have been developed for the synthesis of pulse shapes using fast digital schemes in place of the traditional analog methods of pulse shaping. Efficient recursive algorithms have been developed that allow real time implementation of a shaper that can produce either trapezoidal or triangular pulse shapes. Other recursive techniques are presented which allow a synthesis of finite cusp-like shapes. Preliminary experimental tests show potential advantages of using these techniques in high resolution, high count rate pulse spectroscopy. ((orig.))

  14. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  15. Development and evaluation of analytical techniques for total chlorine in burner fuels

    International Nuclear Information System (INIS)

    Gaskill, A. Jr.; Estes, E.D.; Hardison, D.L.; Friedman, P.H.

    1987-01-01

    A current EPA regulation prohibits the sale for burning in non-industrial boilers of used oils and oil fuels contaminated above specified levels with certain metals and total chlorine. When burned as fuel in a small boiler, the contaminants may be emitted to the ambient air at hazardous levels. This regulation establishes a rebuttable presumption that used oil containing more than 1,000 ppm total chlorine has been mixed with halogenated solvents and is a hazardous waste. Rebutting the presumption requires the seller of the oil to prove that this chlorine is not due to halogenated solvents or other hazardous halogenated organics. If the rebuttal is successful, the oil can be sold as fuel up to a level of 4000 ppm total chlorine. Analytical techniques for determination of total chlorine were evaluated or developed to provide regulatory agencies and the regulated community with appropriate chlorine test methods. The techniques evaluated included chemical titrations following oxygen bomb combustion, disposable field test kits, instrumental microcoulometry, and x-ray fluorescence spectrometry. These candidate techniques were subjected to interlaboratory testing to estimate their precision, accuracy, sensitivity, and susceptibility to matrix effects. Information on ease of use and analysis costs was also collected. Based on this pilot study, test methods will be written for the most promising techniques and subjected to a formal collaborative study to generate precision and accuracy data for each method. These methods are to be proposed in the Federal Register as mandatory for compliance with the existing used oil regulation

  16. High-resolution subgrid models: background, grid generation, and implementation

    Science.gov (United States)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  17. High resolution gas volume change sensor

    International Nuclear Information System (INIS)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  18. High resolution transmission imaging without lenses

    International Nuclear Information System (INIS)

    Rodenburg, J M; Hurst, A C; Maiden, A

    2010-01-01

    The whole history of transmission imaging has been dominated by the lens, whether used in visible-light optics, electron optics or X-ray optics. Lenses can be thought of as a very efficient method of processing a wave front scattered from an object into an image of that object. An alternative approach is to undertake this image-formation process using a computational technique. The crudest scattering experiment is to simply record the intensity of a diffraction pattern. Recent progress in so-called diffractive imaging has shown that it is possible to recover the phase of a scattered wavefield from its diffraction pattern alone, as long as the object (or the illumination on the object) is of finite extent. In this paper we present results from a very efficient phase retrieval method which can image infinitely large fields of view. It may have important applications in improving resolution in electron microscopy, or at least allowing low specification microscopes to achieve resolution comparable to state-of-the-art machines.

  19. Machine vision-based high-resolution weed mapping and patch-sprayer performance simulation

    NARCIS (Netherlands)

    Tang, L.; Tian, L.F.; Steward, B.L.

    1999-01-01

    An experimental machine vision-based patch-sprayer was developed. This sprayer was primarily designed to do real-time weed density estimation and variable herbicide application rate control. However, the sprayer also had the capability to do high-resolution weed mapping if proper mapping techniques

  20. High resolution FISH on super-stretched flow-sorted plant chromosomes.

    NARCIS (Netherlands)

    Valárik, M.; Bartos, J.; Kovarova, P.; Kubalakova, M.; Jong, de J.H.S.G.M.; Dolezel, J.

    2004-01-01

    A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for

  1. 'In vivo' and high resolution spectroscopy in solids by NMR: an instrument for transgenic plants study

    International Nuclear Information System (INIS)

    Colnago, L.A.; Herrmann, P.S.P.; Bernardes Filho, R.

    1995-01-01

    This work has developed a study on transgenic plants using two different techniques of nuclear magnetic resonance, in vivo NMR and high resolution NMR. In order to understand the gene mutations and characterize the plants constituents, NMR spectral data were analysed and discussed, then the results were presented

  2. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Science.gov (United States)

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM)

  3. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  4. Development of Signal Processing Algorithms for High Resolution Airborne Millimeter Wave FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    For airborne earth observation applications, there is a special interest in lightweight, cost effective, imaging sensors of high resolution. The combination of Frequency Modulated Continuous Wave (FMCW) technology and Synthetic Aperture Radar (SAR) techniques can lead to such a sensor. In this

  5. Simple analytical technique for liquid scintillation counting of environmental carbon-14 using gel suspension method

    International Nuclear Information System (INIS)

    Okai, Tomio; Wakabayashi, Genichiro; Nagao, Kenjiro; Matoba, Masaru; Ohura, Hirotaka; Momoshima, Noriyuki; Kawamura, Hidehisa

    2000-01-01

    A simple analytical technique for liquid scintillation counting of environmental 14 C was developed. Commercially available gelling agent, N-lauroyl-L -glutamic -α,γ-dibutylamide, was used for the gel-formation of the samples (gel suspension method) and for the subsequent liquid scintillation counting of 14 C in the form of CaCO 3 . Our procedure for sample preparation is much simpler than that of the conventional methods and requires no special equipment. Self absorption, stability and reproducibility of gel suspension samples were investigated in order to evaluate the characteristics of the gel suspension method for 14 C activity measurement. The self absorption factor is about 70% and slightly decrease as CaCO 3 weight increase. This is considered to be mainly due to the absorption of β-rays and scintillation light by the CaCO 3 sample itself. No change of the counting rate for the gel suspension sample was observed for more than 2 years after the sample preparation. Four samples were used for checking the reproducibility of the sample preparation method. The same values were obtained for the counting rate of 24 C activity within the counting error. No change of the counting rate was observed for the 're-gelated' sample. These results show that the gel suspension method is appropriate for the 14 C activity measurement by the liquid scintillation counting method and useful for a long-term preservation of the sample for repeated measurement. The above analytical technique was applied to actual environmental samples in Fukuoka prefecture, Japan. Results obtained were comparable with those by other researchers and appear to be reasonable. Therefore, the newly developed technique is useful for the routine monitoring of environmental 14 C. (author)

  6. Uncovering category specificity of genital sexual arousal in women: The critical role of analytic technique.

    Science.gov (United States)

    Pulverman, Carey S; Hixon, J Gregory; Meston, Cindy M

    2015-10-01

    Based on analytic techniques that collapse data into a single average value, it has been reported that women lack category specificity and show genital sexual arousal to a large range of sexual stimuli including those that both match and do not match their self-reported sexual interests. These findings may be a methodological artifact of the way in which data are analyzed. This study examined whether using an analytic technique that models data over time would yield different results. Across two studies, heterosexual (N = 19) and lesbian (N = 14) women viewed erotic films featuring heterosexual, lesbian, and gay male couples, respectively, as their physiological sexual arousal was assessed with vaginal photoplethysmography. Data analysis with traditional methods comparing average genital arousal between films failed to detect specificity of genital arousal for either group. When data were analyzed with smoothing regression splines and a within-subjects approach, both heterosexual and lesbian women demonstrated different patterns of genital sexual arousal to the different types of erotic films, suggesting that sophisticated statistical techniques may be necessary to more fully understand women's genital sexual arousal response. Heterosexual women showed category-specific genital sexual arousal. Lesbian women showed higher arousal to the heterosexual film than the other films. However, within subjects, lesbian women showed significantly different arousal responses suggesting that lesbian women's genital arousal discriminates between different categories of stimuli at the individual level. Implications for the future use of vaginal photoplethysmography as a diagnostic tool of sexual preferences in clinical and forensic settings are discussed. © 2015 Society for Psychophysiological Research.

  7. Vanishing lung syndrome: the importance of the high-resolution CT in its diagnostic

    International Nuclear Information System (INIS)

    Rodriguez Cerezo, M.I.; Porres Azcona, E.; Pina Insausti, L.; Inchusta Sarasibar, M.I.; Mellado Rodriguez, M.

    1995-01-01

    Vanishing lung syndrome, also referred to as idiopathic giant bullions emphysema is a dissolver that has yet to be fully characterized. It is considered a different entry from classic pulmonary emphysema. It is characterized by the presence of large bullae associated with some type of emphysema. High-resolution CT is the best imaging technique to identify the underlying type of emphysema and it helps to determine the viability of the nonbullous lung. We present the case of an asymptomatic patient in whom the diagnosis was suspected on the basis of plain chest X ray and was confirmed by high-resolution CT. 13 refs

  8. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  9. An interferometer for high-resolution optical surveillance from geostationary orbit

    Science.gov (United States)

    Bonino, L.; Bresciani, F.; Piasini, G.; Flebus, C.; Lecat, J.-H.; Roose, S.; Pisani, M.; Cabral, A.; Rebordão, J.; Proença, C.; Costal, J.; Lima, P. U.; Loix, N.; Musso, F.

    2017-11-01

    The activities described in this paper have been developed in the frame of the EUCLID CEPA 9 RTP 9.9 "High Resolution Optical Satellite Sensor" project of the WEAO Research Cell. They have been focused on the definition of an interferometric instrument optimised for the high-resolution optical surveillance from geostationary orbit (GEO) by means of the synthetic aperture technique, and on the definition and development of the related enabling technologies. In this paper we describe the industrial team, the selected mission specifications and overview of the whole design and manufacturing activities performed.

  10. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  11. A flexible coil array for high resolution magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Kriegl, R.

    2015-01-01

    Magnetic resonance imaging (MRI), among other imaging techniques, has become a major backbone of modern medical diagnostics. MRI enables the non-invasive combined, identification of anatomical structures, functional and chemical properties, especially in soft tissues. Nonetheless, applications requiring very high spatial and/or temporal resolution are often limited by the available signal-to-noise ratio (SNR) in MR experiments. Since first clinical applications, image quality in MRI has been constantly improved by applying one or several of the following strategies: increasing the static magnetic field strength, improvement of the radiofrequency (RF) detection system, development of specialized acquisition sequences and optimization of image reconstruction techniques. This work is concerned with the development of highly sensitive RF detection systems for biomedical ultra-high field MRI. In particular, auto-resonant RF coils based on transmission line technology are investigated. These resonators may be fabricated on flexible substrate which enables form-fitting of the RF detector to the target anatomy, leading to a significant SNR gain. The main objective of this work is the development of a flexible RF coil array for high-resolution MRI on a human whole-body 7 T MR scanner. With coil arrays, the intrinsically high SNR of small surface coils may be exploited for an extended field of view. Further, parallel imaging techniques are accessible with RF array technology, allowing acceleration of the image acquisition. Secondly, in this PhD project a novel design for transmission line resonators is developed, that brings an additional degree of freedom in geometric design and enables the fabrication of large multi-turn resonators for high field MR applications. This thesis describes the development, successful implementation and evaluation of novel, mechanically flexible RF devices by analytical and 3D electromagnetic simulations, in bench measurements and in MRI

  12. High-resolution CT of the lungs: Anatomic-pathologic correlation

    International Nuclear Information System (INIS)

    Stein, M.G.; Webb, W.R.; Finkbeiner, W.; Gamsu, G.

    1986-01-01

    The interpretation of thin-section (1.5-mm), high-resolution CT scans of the lungs has been limited by lack of direct radiologic and pathologic correlation. The author scanned fresh inflated isolated lungs from ten healthy and five diseased subjects using thin-section, high-resolution techniques. The lungs were then fixed by inflation with endobronchial Formalin. Gough sections (1 mm thick) were obtained at the same levels as the CT scans. In healthy subjects, secondary lobules were identified by the presence of visible interlobular septa and central arterioles. In some patients with disease, septal thickening was visible. In patients with honeycombing cystic areas of destroyed lung were seen, along with areas of fibrosis. Emphysema was well evaluated. Thin-section, high-resolution CT can define lung architecture and may resolve mild changes of the interstitium

  13. Computer simulation of high resolution transmission electron micrographs: theory and analysis

    International Nuclear Information System (INIS)

    Kilaas, R.

    1985-03-01

    Computer simulation of electron micrographs is an invaluable aid in their proper interpretation and in defining optimum conditions for obtaining images experimentally. Since modern instruments are capable of atomic resolution, simulation techniques employing high precision are required. This thesis makes contributions to four specific areas of this field. First, the validity of a new method for simulating high resolution electron microscope images has been critically examined. Second, three different methods for computing scattering amplitudes in High Resolution Transmission Electron Microscopy (HRTEM) have been investigated as to their ability to include upper Laue layer (ULL) interaction. Third, a new method for computing scattering amplitudes in high resolution transmission electron microscopy has been examined. Fourth, the effect of a surface layer of amorphous silicon dioxide on images of crystalline silicon has been investigated for a range of crystal thicknesses varying from zero to 2 1/2 times that of the surface layer

  14. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Beta Autoradiography. An analytical technique to investigate radionuclides contamination on surface

    International Nuclear Information System (INIS)

    Ficher, P.; Goutelard, F.; Siitari-Kauppi, M.

    2012-01-01

    In decommissioning of old buildings and after disposal of nuclear facilities (materials, glove boxes,...), the inventory of the radioactive contamination of various building materials needs to be obtained in order to fix the working condition for dismantling. The challenge of this study was to classify different building materials of a whole research laboratory that was dedicated to research on organic molecules labeled with H-3 and C-14. The problem of waste classification is essential for safety treatment of waste and also for its cost. The analytical technique of beta autoradiography particularly well known for biological researches has been tested to investigate radionuclides contamination on surface. This technique is mainly interesting for beta and alpha emitters but also sensitive to gamma radiation. The first step of this technique is the deposit of a film on the surface of material to be analyzed. Films can be deposited on the ground or also fixed on the walls or even on the ceiling. The film is a plastic sheet covered with an emulsion containing photostimulable crystals and Eu that is activated when the film is exposed on radioactive source. The exposed films are then scanned with the Cyclone Plus equipment to get a digitized image. This image represents the radioactivity of the surface studied. The possibility to re-use the films is very important to investigate a large area. This autoradiography technique has retained our attention for its sensitivity and moreover the possibility of 2-dimensional investigation has been found as a real advantage. However it remains now as a qualitative technique and new studies must be launched to prove its quantitative potentialities. The high spatial resolution was not as important as in biological observation, and the mm resolution is totally sufficient

  16. Facility and application of nuclear and supplementary analytical techniques at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh; Ho Manh Dung; Nguyen Thanh Binh

    2006-01-01

    The main applications of the nuclear and supplementary analytical techniques (N and SATs) in the Dalat Nuclear Research Institute (DNRI) and the facilities for the techniques are presented. The NATs in DNRI include the neutron activation analysis (NAA) with instrumental, radiochemical and prompt gamma methods (INAA, RNAA, PGNAA), the X-ray fluorescence analysis (XRFA) and the low-level counting and spectrometry. The sample irradiation sites for NAA, the automatic and manual pneumatic transfer systems, were installed at channels 7-1 and 13-2 and rotary rack on the Dalat research reactor. An ORTEC automatic sample changer (model ASC2) for γ-ray counting was equipped. A computer software for NAA based on the k 0 -standardization method for calculation of elemental concentration was developed. The low-level counting and spectrometry techniques have been setup. The devices required for sampling, sample preparation and data processing have also been equipped. The applications of N and SATs for determination of elemental composition, particularly important in providing data so-called trace elements, radionuclides and multi-element have been enlarged for objects of geology, archaeology, bio-agriculture, health-nutrition and environment. The implementation a quality system for N and SATs has been planned and initiated. (author)

  17. Development of an analytical theory to describe the PNAR and CIPN nondestructive assay techniques

    International Nuclear Information System (INIS)

    Bolind, Alan Michael

    2014-01-01

    Highlights: • Neutron albedo is modeled by a discrete and iterative reflection process. • The theory enables the PNAR and CIPN NDA techniques to be compared quantitatively. • Improvements to the data analysis and to the CIPN instrument design are suggested. • A correction to translate real no-reflection PNAR data into ideal data is provided. - Abstract: This paper develops an analytical theory to describe how neutron albedo (reflection) increases the multiplication of neutrons by a used fuel assembly. With this theory, the two nondestructive assay (NDA) techniques of Passive Neutron Albedo Reactivity (PNAR) and Californium-252 Interrogation with Prompt Neutron Detection (CIPN) can be compared directly. Specifically, the theory derives expressions for the PNAR and CIPN metrics in terms of the physical properties of the used fuel assembly, such as the neutron multiplications and fate probabilities. The theory thus clarifies the interpretation of these two NDA techniques and suggests ways to improve both the design of the NDA instruments and the algorithms for analyzing the measurement results

  18. Complementarities of nuclear-based analytical techniques for the characterization of thin film technological materials

    International Nuclear Information System (INIS)

    Bamford, Samuel; Kregsamer, Peter; Fazinic, Stjepko; Jaksic, Milko; Wegrzynek, Dariusz; Chinea-Cano, Ernesto; Markowicz, Andrzej

    2007-01-01

    Two thin film technological materials (A/B) from the aerospace industry have been characterized for their elemental composition, for the purpose of determining their purity and trace element distribution. The results contribute to the assessment of the materials' suitability as part of a spacecraft's thermal hardware. Analysis was done using a combination of PIXE/RBS and energy dispersive X-ray fluorescence (EDXRF) analytical techniques. Samples of the materials were analyzed with PIXE/RBS system using 2 MeV proton beam from a 1 MV Tandetron accelerator and also with separate EDXRF systems employing Am-241 and Mo-secondary target as excitation sources. PIXE/RBS measurements enabled identification of the elemental composition and elucidation of the layer structure of the materials. From the PIXE/RBS results, Am-241-excited EDXRF technique was selected for quantitative determination of indium (In) and tin (Sn) by their K-X-rays, after reasonable absorption corrections. A comparison has been made of the results obtained from EDXRF and PIXE/RBS. Material A has been found to be a thin film with three layers, while material B is a thin film comprised of four layers. Thicknesses and compositions (including trace elements) of all layers have been determined. The limitation of EDXRF in the analysis of inhomogeneously distributed elements was overcome by using PIXE/RBS as an appropriate complimentary technique

  19. A mechanical microcompressor for high resolution imaging of motile specimens.

    Science.gov (United States)

    Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris

    2015-10-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  1. High resolution shear wave reflection surveying for hydrogeological investigations

    International Nuclear Information System (INIS)

    Johnson, W.J.; Clark, J.C.

    1992-08-01

    The high resolution S-wave method has been developed to be a powerful tool in mapping subsurface lithology and in conducting groundwater investigations. The research has demonstrated that the resolution obtainable using S-waves in a Coastal Plain environment is more than double than that obtained using conventional reflection, which already offers a higher resolution than any other surface method. Where the mapping of thin clay layers functioning as aquitards or thin sand layers functioning as aquifers are critical to the understanding of groundwater flow, S-wave reflections offer unparalleled possibilities for nondestructive exploration. The field experiment at Cooke Crossroads, South Carolina enabled the detection and mapping of beds in the thickness range of one to three feet. The S-wave reflection technique, in combination with conventional P-wave reflection, has potential to directly detect confined and unconfined aquifers. This is a breakthrough technology that still requires additional research before it can be applied on a commercial basis. Aquifer systems were interpreted from the test data at Cooke Crossroads consistent with theoretical model. Additional research is need in assessing the theoretical response of P- and S-waves to subsurface interfaces within unconsolidated sediments of varying moisture content and lithology. More theoretical modeling and in situ testing are needed to bring our knowledge of these phenomena to the level that oil and gas researchers have done for fluids in sandstones

  2. High resolution production water footprints of the United States

    Science.gov (United States)

    Marston, L.; Yufei, A.; Konar, M.; Mekonnen, M.; Hoekstra, A. Y.

    2017-12-01

    The United States is the largest producer and consumer of goods and services in the world. Rainfall, surface water supplies, and groundwater aquifers represent a fundamental input to this economic production. Despite the importance of water resources to economic activity, we do not have consistent information on water use for specific locations and economic sectors. A national, high-resolution database of water use by sector would provide insight into US utilization and dependence on water resources for economic production. To this end, we calculate the water footprint of over 500 food, energy, mining, services, and manufacturing industries and goods produced in the US. To do this, we employ a data intensive approach that integrates water footprint and input-output techniques into a novel methodological framework. This approach enables us to present the most detailed and comprehensive water footprint analysis of any country to date. This study broadly contributes to our understanding of water in the US economy, enables supply chain managers to assess direct and indirect water dependencies, and provides opportunities to reduce water use through benchmarking.

  3. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  4. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  5. Coded aperture subreflector array for high resolution radar imaging

    Science.gov (United States)

    Lynch, Jonathan J.; Herrault, Florian; Kona, Keerti; Virbila, Gabriel; McGuire, Chuck; Wetzel, Mike; Fung, Helen; Prophet, Eric

    2017-05-01

    HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL's Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.

  6. Observations of silicon carbide by high resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Smith, D.J.; Jepps, N.W.; Page, T.F.

    1978-01-01

    High resolution transmission electron microscopy techniques, principally involving direct lattice imaging, have been used as part of a study of the crystallography and phase transformation mechanics of silicon carbide polytypes. In particular, the 3C (cubic) and 6H (hexagonal) polytypes have been examined together with partially transformed structural mixtures. Although direct observation of two-dimensional atomic structures was not possible at an operating voltage of 100 kV, considerable microstructural information has been obtained by careful choice of the experimental conditions. In particular, tilted beam observations of the 0.25 nm lattice fringes have been made in the 3C polytype for two different brace 111 brace plane arrays in order to study the dimensions and coherency of finely-twinned regions together with brace 0006 brace and brace 1 0 bar1 2 brace lattice images in the 6H polytype which allow the detailed stacking operations to be resolved. Lower resolution lattice images formed with axial illumination have also been used to study the nature of the 3C → 6H transformation and results are presented showing that the transformation interface may originate with fine twinning of the 3C structure followed by growth of the resultant 6H regions. Observations have been made of the detailed stepped structure of this interface together with the stacking fault distribution in the resultant 6H material. (author)

  7. Determination of alpha-naphthol by an oscillating chemical reaction using the analyte pulse perturbation technique

    International Nuclear Information System (INIS)

    Yang Wu; Sun Kanjun; Lv Weilian; Bo Lili; He Xiaoyan; Suo Nan; Gao Jinzhang

    2005-01-01

    An analytical method for the determination of alpha-naphthol (α-NP) is proposed by the sequential perturbation caused by different amounts of alpha-naphthol on the oscillating chemical system involving the Cu(II)-catalyzed oscillating reaction between hydrogen peroxide and sodium thiocyanate in an alkaline medium with the aid of continuous-flow stirred tank reactor (CSTR). The method relies on the linear relationship between the changes in the oscillation amplitude of the chemical system and the concentration of alpha-naphthol. The use of the analyte pulse perturbation technique permits sequential determinations in the same oscillating system owing to the expeditiousness with which the steady state is regained after each perturbation. The calibration curve obeys a linear equation very well when the concentration of alpha-naphthol is over the range 0.034-530 umol/L (r = 0.9991). Influences of temperature, injection points, flow rate and reaction variables on the oscillating system are investigated in detail and the possible mechanism of action of alpha-naphthol to the chemical oscillating system is also discussed. The method has been successfully used for the determination of α-naphthol in carbaryl hydrolysates

  8. Hazardous Waste Landfill Siting using GIS Technique and Analytical Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Ozeair Abessi

    2010-07-01

    Full Text Available Disposal of large amount of generated hazardous waste in power plants, has always received communities' and authori¬ties attentions. In this paper using site screening method and Analytical Hierarchy Process (AHP a sophisticated approach for siting hazardous waste landfill in large areas is presented. This approach demonstrates how the evaluation criteria such as physical, socio-economical, technical, environmental and their regulatory sub criteria can be introduced into an over layer technique to screen some limited appropriate zones in the area. Then, in order to find the optimal site amongst the primary screened site utilizing a Multiple Criteria Decision Making (MCDM method for hierarchy computations of the process is recommended. Using the introduced method an accurate siting procedure for environmental planning of the landfills in an area would be enabled. In the study this approach was utilized for disposal of hazardous wastes of Shahid Rajaee thermal power plant located in Qazvin province west central part of Iran. As a result of this study 10 suitable zones were screened in the area at first, then using analytical hierarchy process a site near the power plant were chosen as the optimal site for landfilling of the hazardous wastes in Qazvin province.

  9. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  10. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV

    International Nuclear Information System (INIS)

    Caballero S, B.

    2013-01-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  11. Role of nuclear analytical probe techniques in biological trace element research

    International Nuclear Information System (INIS)

    Jones, K.W.; Pounds, J.G.

    1985-01-01

    Many biomedical experiments require the qualitative and quantitative localization of trace elements with high sensitivity and good spatial resolution. The feasibility of measuring the chemical form of the elements, the time course of trace elements metabolism, and of conducting experiments in living biological systems are also important requirements for biological trace element research. Nuclear analytical techniques that employ ion or photon beams have grown in importance in the past decade and have led to several new experimental approaches. Some of the important features of these methods are reviewed here along with their role in trace element research, and examples of their use are given to illustrate potential for new research directions. It is emphasized that the effective application of these methods necessitates a closely integrated multidisciplinary scientific team. 21 refs., 4 figs., 1 tab

  12. An Analytical Technique to Determine the Potential for Moisture Accumulation in Deactivated Structures

    International Nuclear Information System (INIS)

    MINICHAN, RL

    2004-01-01

    This paper describes an analytical technique developed to predict an order of magnitude volume of moisture accumulation in massive structures after deactivation. This work was done to support deactivation of a Department of Energy nuclear materials processing facility. The structure is a four-story, concrete building with a rectangular footprint that is approximately 250m long by 37m wide by 22m high. Its walls are 1.2m thick. The building will be supplied with unconditioned ventilation air after deactivation. The objective of the work was to provide a cost effective engineering evaluation to determine if the un-conditioned ventilation air would result in condensate accumulating inside the building under study. The analysis described is a simple representation of a complex problem. The modeling method is discussed in sufficient detail to allow its application to the study of similar structures

  13. Use of the analytical tree technique to develop a radiological protection program

    International Nuclear Information System (INIS)

    Domenech N, H.; Jova S, L.

    1996-01-01

    The results obtained by the Cuban Center for Radiological Protection and Hygiene by using an analytical tree technique to develop its general operational radiation protection program are presented. By the application of this method, some factors such as the organization of the radiation protection services, the provision of administrative requirements, the existing general laboratories requirements, the viability of resources and the current documentation was evaluated. Main components were considered such as: complete normative and regulatory documentation; automatic radiological protection data management; scope of 'on the-job'and radiological protection training for the personnel; previous radiological appraisal for the safety performance of the works and application of dose constrains for the personnel and the public. The detailed development of the program allowed to identify the basic aims to be achieved in its maintenance and improvement. (authors). 3 refs

  14. Development of statistical and analytical techniques for use in national quality control schemes for steroid hormones

    International Nuclear Information System (INIS)

    Wilson, D.W.; Gaskell, S.J.; Fahmy, D.R.; Joyce, B.G.; Groom, G.V.; Griffiths, K.; Kemp, K.W.; Nix, A.B.J.; Rowlands, R.J.

    1979-01-01

    Adopting the rationale that the improvement of intra-laboratory performance of immunometric assays will enable the assessment of national QC schemes to become more meaningful, the group of participating laboratories has developed statistical and analytical techniques for the improvement of accuracy, precision and monitoring of error for the determination of steroid hormones. These developments are now described and their relevance to NQC schemes discussed. Attention has been focussed on some of the factors necessary for improving standards of quality in immunometric assays and their relevance to laboratories participating in NQC schemes as described. These have included the 'accuracy', precision and robustness of assay procedures as well as improved methods for internal quality control. (Auth.)

  15. Production of candidate natural matrix reference materials for micro-analytical techniques

    International Nuclear Information System (INIS)

    Zeisler, R.; Fajgelj, A.; Zeiller, E.

    2002-01-01

    Homogeneity is considered to be the most vital prerequisite for a certified reference material (CRM); more stringent requirements exist for the analysis of small subsamples. Many of the natural matrix CRMs are prepared from bulk samples by grinding and milling them to a certain particle size, which is expected to provide a more homogenous material; however recommended sample sizes for biological and environmental reference materials are found to be more than 100 mg. Since the milling of materials is costly and has some drawbacks, natural materials that already occur as small particles such as air particulate matter, certain sediments, and cellular biological materials may form the basis of the required reference materials. The nature of these materials, i.e. naturally occurring particles, may provide ideal model reference material. We describe here the production of the materials and preliminary tests, the evaluation for the micro-analytical techniques

  16. Investigation of different types of filters for atmospheric trace elements analysis by three analytical techniques

    International Nuclear Information System (INIS)

    Ali, A.E.; Bacso, J.

    1996-01-01

    Different atmospheric aerosol samples were collected on three types of filters. Disks of both loaded and clean areas of each kind of filter were investigated by XRF, PIXE and Scanning Electron Microscope (SEM) methods. The blank concentration values of the elements Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br and Pb in the three types of filters are discussed. It is found that for trace elemental analysis, the Nuclepore membrane filters are the most suitable for sampling. These have much lower blank element concentration values than the glass fibres and ash free filters. It was found also that the PIXE method is a more reliable analytical technique for atmospheric aerosol particles than the other methods. (author). 20 refs., 3 figs., 3 tabs

  17. Preparation of uranium targets and application of analytical techniques for its evaluation

    International Nuclear Information System (INIS)

    Luna Z, D.

    1994-01-01

    The objective of this work is to establish a method to produce uranium targets. The method selected for this purpose was the molecular plating. The first part of this work is devoted to the proper selection of an analytical technique to evaluate the different steps of the molecular plating method. Neutron Activation Analysis was chosen, because its high sensitivity and can be adapted easily to follow the whole procedure. The second part presents the experimental procedure and the study of the different parameters involved in the molecular plating and the evaluation of its uniformity was made using plastic track detectors. The results obtained are presented and a procedure is suggested to produce uranium targets. (Author)

  18. A Forward-Looking High-Resolution GPR System

    National Research Council Canada - National Science Library

    Kositsky, Joel; Milanfar, Peyman

    1999-01-01

    A high-resolution ground penetrating radar (GPR) system was designed to help define the optimal radar parameters needed for the efficient standoff detection of buried and surface-laid antitank mines...

  19. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  20. Impact of high resolution land surface initialization in Indian summer ...

    Indian Academy of Sciences (India)

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years ... surface initialization using a regional climate model. ...... ization of the snow field in a cloud model; J. Clim. Appl.