WorldWideScience

Sample records for high-reliable real-time communication

  1. High reliable and Real-time Data Communication Network Technology for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jeong, K. I.; Lee, J. K.; Choi, Y. R.; Lee, J. C.; Choi, Y. S.; Cho, J. W.; Hong, S. B.; Jung, J. E.; Koo, I. S.

    2008-03-01

    As advanced digital Instrumentation and Control (I and C) system of NPP(Nuclear Power Plant) are being introduced to replace analog systems, a Data Communication Network(DCN) is becoming the important system for transmitting the data generated by I and C systems in NPP. In order to apply the DCNs to NPP I and C design, DCNs should conform to applicable acceptance criteria and meet the reliability and safety goals of the system. As response time is impacted by the selected protocol, network topology, network performance, and the network configuration of I and C system, DCNs should transmit a data within time constraints and response time required by I and C systems to satisfy response time requirements of I and C system. To meet these requirements, the DCNs of NPP I and C should be a high reliable and real-time system. With respect to high reliable and real-time system, several reports and techniques having influences upon the reliability and real-time requirements of DCNs are surveyed and analyzed

  2. Development of high-reliable real-time communication network protocol for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Sang; Kim, Young Sik [Korea National University of Education, Chongwon (Korea); No, Hee Chon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    In this research, we first define protocol subsets for SMART(System-integrated Modular Advanced Reactor) communication network based on the requirement of SMART MMIS transmission delay and traffic requirements and OSI(Open System Interconnection) 7 layers' network protocol functions. Also, current industrial purpose LAN protocols are analyzed and the applicability of commercialized protocols are checked. For the suitability test, we have applied approximated SMART data traffic and maximum allowable transmission delay requirement. With the simulation results, we conclude that IEEE 802.5 and FDDI which is an ANSI standard, is the most suitable for SMART. We further analyzed the FDDI and token ring protocols for SMART and nuclear plant network environment including IEEE 802.4, IEEE 802.5, and ARCnet. The most suitable protocol for SMART is FDDI and FDDI MAC and RMT protocol specifications have been verified with LOTOS and the verification results show that FDDI MAC and RMT satisfy the reachability and liveness, but does not show deadlock and livelock. Therefore, we conclude that FDDI MAC and RMT is highly reliable protocol for SMART MMIS network. After that, we consider the stacking fault of IEEE 802.5 token ring protocol and propose a fault tolerant MAM(Modified Active Monitor) protocol. The simulation results show that the MAM protocol improves lower priority traffic service rate when stacking fault occurs. Therefore, proposed MAM protocol can be applied to SMART communication network for high reliability and hard real-time communication purpose in data acquisition and inter channel network. (author). 37 refs., 79 figs., 39 tabs.

  3. X-real-time executive (X-RTE) an ultra-high reliable real-time executive for safety critical systems

    International Nuclear Information System (INIS)

    Suresh Babu, R.M.

    1995-01-01

    With growing number of application of computers in safety critical systems of nuclear plants there has been a need to assure high quality and reliability of the software used in these systems. One way to assure software quality is to use qualified software components. Since the safety systems and control systems are real-time systems there is a need for a real-time supervisory software to guarantee temporal response of the system. This report describes one such software package, called X-Real-Time Executive (or X-RTE), which was developed in Reactor Control Division, BARC. The report describes all the capabilities and unique features of X-RTE and compares it with a commercially available operating system. The features of X-RTE include pre-emptive scheduling, process synchronization, inter-process communication, multi-processor support, temporal support, debug facility, high portability, high reliability, high quality, and extensive documentation. Examples have been used very liberally to illustrate the underlying concepts. Besides, the report provides a brief description about the methods used, during the software development, to assure high quality and reliability of X-RTE. (author). refs., 11 figs., tabs

  4. Research of real-time communication software

    Science.gov (United States)

    Li, Maotang; Guo, Jingbo; Liu, Yuzhong; Li, Jiahong

    2003-11-01

    Real-time communication has been playing an increasingly important role in our work, life and ocean monitor. With the rapid progress of computer and communication technique as well as the miniaturization of communication system, it is needed to develop the adaptable and reliable real-time communication software in the ocean monitor system. This paper involves the real-time communication software research based on the point-to-point satellite intercommunication system. The object-oriented design method is adopted, which can transmit and receive video data and audio data as well as engineering data by satellite channel. In the real-time communication software, some software modules are developed, which can realize the point-to-point satellite intercommunication in the ocean monitor system. There are three advantages for the real-time communication software. One is that the real-time communication software increases the reliability of the point-to-point satellite intercommunication system working. Second is that some optional parameters are intercalated, which greatly increases the flexibility of the system working. Third is that some hardware is substituted by the real-time communication software, which not only decrease the expense of the system and promotes the miniaturization of communication system, but also aggrandizes the agility of the system.

  5. Highly reliable computer network for real time system

    International Nuclear Information System (INIS)

    Mohammed, F.A.; Omar, A.A.; Ayad, N.M.A.; Madkour, M.A.I.; Ibrahim, M.K.

    1988-01-01

    Many of computer networks have been studied different trends regarding the network architecture and the various protocols that govern data transfers and guarantee a reliable communication among all a hierarchical network structure has been proposed to provide a simple and inexpensive way for the realization of a reliable real-time computer network. In such architecture all computers in the same level are connected to a common serial channel through intelligent nodes that collectively control data transfers over the serial channel. This level of computer network can be considered as a local area computer network (LACN) that can be used in nuclear power plant control system since it has geographically dispersed subsystems. network expansion would be straight the common channel for each added computer (HOST). All the nodes are designed around a microprocessor chip to provide the required intelligence. The node can be divided into two sections namely a common section that interfaces with serial data channel and a private section to interface with the host computer. This part would naturally tend to have some variations in the hardware details to match the requirements of individual host computers. fig 7

  6. Interactive real-time media streaming with reliable communication

    Science.gov (United States)

    Pan, Xunyu; Free, Kevin M.

    2014-02-01

    different spot in the media file, will be reflected in all media streams. These techniques are designed to allow users at different locations to simultaneously view a full length HD video and interactively control the media streaming session. To create a sustainable media stream with high quality, our system supports UDP packet loss recovery at high transmission speed using custom File- Buffers. Traditional real-time streaming protocols such as Real-time Transport Protocol/RTP Control Protocol (RTP/RTCP) provide no such error recovery mechanism. Finally, the system also features an Instant Messenger that allows users to perform social interactions with one another while they enjoy a media file. The ultimate goal of the application is to offer users a hassle free way to watch a media file over long distances without having to upload any personal information into a third party database. Moreover, the users can communicate with each other and stream media directly from one mobile device to another while maintaining an independence from traditional sign up required by most streaming services.

  7. Reliable Wireless Broadcast with Linear Network Coding for Multipoint-to-Multipoint Real-Time Communications

    Science.gov (United States)

    Kondo, Yoshihisa; Yomo, Hiroyuki; Yamaguchi, Shinji; Davis, Peter; Miura, Ryu; Obana, Sadao; Sampei, Seiichi

    This paper proposes multipoint-to-multipoint (MPtoMP) real-time broadcast transmission using network coding for ad-hoc networks like video game networks. We aim to achieve highly reliable MPtoMP broadcasting using IEEE 802.11 media access control (MAC) that does not include a retransmission mechanism. When each node detects packets from the other nodes in a sequence, the correctly detected packets are network-encoded, and the encoded packet is broadcasted in the next sequence as a piggy-back for its native packet. To prevent increase of overhead in each packet due to piggy-back packet transmission, network coding vector for each node is exchanged between all nodes in the negotiation phase. Each user keeps using the same coding vector generated in the negotiation phase, and only coding information that represents which user signal is included in the network coding process is transmitted along with the piggy-back packet. Our simulation results show that the proposed method can provide higher reliability than other schemes using multi point relay (MPR) or redundant transmissions such as forward error correction (FEC). We also implement the proposed method in a wireless testbed, and show that the proposed method achieves high reliability in a real-world environment with a practical degree of complexity when installed on current wireless devices.

  8. Multivariate performance reliability prediction in real-time

    International Nuclear Information System (INIS)

    Lu, S.; Lu, H.; Kolarik, W.J.

    2001-01-01

    This paper presents a technique for predicting system performance reliability in real-time considering multiple failure modes. The technique includes on-line multivariate monitoring and forecasting of selected performance measures and conditional performance reliability estimates. The performance measures across time are treated as a multivariate time series. A state-space approach is used to model the multivariate time series. Recursive forecasting is performed by adopting Kalman filtering. The predicted mean vectors and covariance matrix of performance measures are used for the assessment of system survival/reliability with respect to the conditional performance reliability. The technique and modeling protocol discussed in this paper provide a means to forecast and evaluate the performance of an individual system in a dynamic environment in real-time. The paper also presents an example to demonstrate the technique

  9. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  10. Real-time communication for distributed plasma control systems

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)], E-mail: adriano.luchetta@igi.cnr.it; Barbalace, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C. [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Corso Stati Uniti 4, Padova 35127 (Italy)

    2008-04-15

    Real-time control applications will benefit in the near future from the enhanced performance provided by multi-core processor architectures. Nevertheless real-time communication will continue to be critical in distributed plasma control systems where the plant under control typically is distributed over a wide area. At RFX-mod real-time communication is crucial for hard real-time plasma control, due to the distributed architecture of the system, which consists of several VMEbus stations. The system runs under VxWorks and uses Gigabit Ethernet for sub-millisecond real-time communication. To optimize communication in the system, a set of detailed measurements has been carried out on the target platforms (Motorola MVME5100 and MVME5500) using either the VxWorks User Datagram Protocol (UDP) stack or raw communication based on the data link layer. Measurements have been carried out also under Linux, using its UDP stack or, in alternative, RTnet, an open source hard real-time network protocol stack. RTnet runs under Xenomai or RTAI, two popular real-time extensions based on the Linux kernel. The paper reports on the measurements carried out and compares the results, showing that the performance obtained by using open source code is suitable for sub-millisecond real-time communication in plasma control.

  11. Real Time Grid Reliability Management 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joe; Eto, Joe; Lesieutre, Bernard; Lewis, Nancy Jo; Parashar, Manu

    2008-07-07

    The increased need to manage California?s electricity grid in real time is a result of the ongoing transition from a system operated by vertically-integrated utilities serving native loads to one operated by an independent system operator supporting competitive energy markets. During this transition period, the traditional approach to reliability management -- construction of new transmission lines -- has not been pursued due to unresolved issues related to the financing and recovery of transmission project costs. In the absence of investments in new transmission infrastructure, the best strategy for managing reliability is to equip system operators with better real-time information about actual operating margins so that they can better understand and manage the risk of operating closer to the edge. A companion strategy is to address known deficiencies in offline modeling tools that are needed to ground the use of improved real-time tools. This project: (1) developed and conducted first-ever demonstrations of two prototype real-time software tools for voltage security assessment and phasor monitoring; and (2) prepared a scoping study on improving load and generator response models. Additional funding through two separate subsequent work authorizations has already been provided to build upon the work initiated in this project.

  12. An In-Home Digital Network Architecture for Real-Time and Non-Real-Time Communication

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Hattink, Tjalling

    2002-01-01

    This paper describes an in-home digital network architecture that supports both real-time and non-real-time communication. The architecture deploys a distributed token mechanism to schedule communication streams and to offer guaranteed quality-ofservice. Essentially, the token mechanism prevents

  13. Real-time transfer and display of radiography image

    International Nuclear Information System (INIS)

    Liu Ximing; Wu Zhifang; Miao Jicheng

    2000-01-01

    The information process network of cobalt-60 container inspection system is a local area network based on PC. The system requires reliable transfer of radiography image between collection station and process station and the real-time display of radiography image on process station. Due to the very high data acquisition rate, in order to realize the real-time transfer and display of radiography image, 100 M Ethernet technology and network process communication technology are adopted in the system. Windows Sockets is the most common process communication technology up to now. Several kinds of process communication way under Windows Sockets technology are compared and tested. Finally the author realized 1 Mbyte/s' inerrant image transfer and real-time display with blocked datagram transfer technology

  14. Dynamic Cognitive Self-Organized TDMA for Medium Access Control in Real-Time Vehicle to Vehicle Communications

    Directory of Open Access Journals (Sweden)

    Mario Manzano

    2013-01-01

    Full Text Available The emergence of intelligent transport systems has brought out a new set of requirements on wireless communication. To cope with these requirements, several proposals are currently under discussion. In this highly mobile environment, the design of a prompt, efficient, flexible, and reliable medium access control, able to cover the specific constraints of the named real-time communications applications, is still unsolved. This paper presents the original proposal integrating Non-Cooperative Cognitive Time Division Multiple Access (NCC-TDMA based on Cognitive Radio (CR techniques to obtain a mechanism which complies with the requirements of real-time communications. Though the proposed MAC uses a slotted channel, it can be adapted to operate on the physical layer of different standards. The authors’ analysis considers the IEEE WAVE and 802.11p as the standards of reference. The mechanism also offers other advantages, such as avoiding signalling and the adaptation capacity to channel conditions and interferences. The solution is applied to the problem of units merging a convoy. Comparison results between NCC-TDMA and Slotted-Aloha are included.

  15. Scheduling for energy and reliability management on multiprocessor real-time systems

    Science.gov (United States)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  16. MAC-Level Communication Time Modeling and Analysis for Real-Time WSNs

    Directory of Open Access Journals (Sweden)

    STANGACIU, V.

    2016-02-01

    Full Text Available Low-level communication protocols and their timing behavior are essential to developing wireless sensor networks (WSNs able to provide the support and operating guarantees required by many current real-time applications. Nevertheless, this aspect still remains an issue in the state-of-the-art. In this paper we provide a detailed analysis of a recently proposed MAC-level communication timing model and demonstrate its usability in designing real-time protocols. The results of a large set of measurements are also presented and discussed here, in direct relation to the main time parameters of the analyzed model.

  17. OR.NET RT: how service-oriented medical device architecture meets real-time communication.

    Science.gov (United States)

    Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank

    2018-02-23

    Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).

  18. Scheduling and Communication Synthesis for Distributed Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2000-01-01

    on aspects of scheduling and communication for embedded real-time systems. Special emphasis has been placed on the impact of the communication infrastructure and protocol on the overall system performance. The scheduling and communication strategies proposed are based on an abstract graph representation...

  19. A study on the real-time reliability of on-board equipment of train control system

    Science.gov (United States)

    Zhang, Yong; Li, Shiwei

    2018-05-01

    Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.

  20. Real-Time Reliability Verification for UAV Flight Control System Supporting Airworthiness Certification.

    Science.gov (United States)

    Xu, Haiyang; Wang, Ping

    2016-01-01

    In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control system and comply with the airworthiness certification standard, we proposed a model-based integration framework for modeling and verification of time property. Combining with the advantages of MARTE, this framework uses class diagram to create the static model of software system, and utilizes state chart to create the dynamic model. In term of the defined transformation rules, the MARTE model could be transformed to formal integrated model, and the different part of the model could also be verified by using existing formal tools. For the real-time specifications of software system, we also proposed a generating algorithm for temporal logic formula, which could automatically extract real-time property from time-sensitive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of UAV to check its real-time property. The results showed that the framework could be used to create the system model, as well as precisely analyze and verify the real-time reliability of UAV flight control system.

  1. Real-Time Communication in Wireless Home Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.

    This paper describes a medium access protocol for real-time communication in wireless networks. Medium access is controlled by a scheduler, which utilizes a pre-emptive earliest deadline first (PEDF) scheduling algorithm. The scheduler prevents collisions in the network, where normally only

  2. Analysis of several digital network technologies for hard real-time communications in nuclear plant

    International Nuclear Information System (INIS)

    Song, Ki Sang; No, Hee Chun

    1999-01-01

    Applying digital network technology for advanced nuclear plant requires deterministic communication for tight safety requirements, timely and reliable data delivery for operation critical and mission-critical characteristics of nuclear plant. Communication protocols, such as IEEE 802/4 Tiken Bus, IEEE 802/5 Token Ring, FDDI, and ARCnet, which have deterministic communication capability are partially applied to several nuclear power plants. Although digital communication technologies have many advantages, it is necessary to consider the noise immunity form electromagnetic interference (EMI), electrical interference, impulse noise, and heat noise before selecting specific digital network technology for nuclear plant. In this paper, we consider the token frame loss and data frame loss rate due to the link error event, frame size, and link data rate in different protocols, and evaluate the possibility of failure to meet the hard real-time requirement in nuclear plant. (author). 11 refs., 3 figs., 4 tabs

  3. CIB: An Improved Communication Architecture for Real-Time Monitoring of Aerospace Materials, Instruments, and Sensors on the ISS

    Directory of Open Access Journals (Sweden)

    Michael J. Krasowski

    2013-01-01

    Full Text Available The Communications Interface Board (CIB is an improved communications architecture that was demonstrated on the International Space Station (ISS. ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.

  4. Analysis and Synthesis of Communication-Intensive Heterogeneous Real-Time Systems

    DEFF Research Database (Denmark)

    Pop, Paul

    2003-01-01

    Embedded computer systems are now everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded computer systems. An important class of embedded computer systems is that of real-time systems, which have to fulfill strict timing...... requirements. As realtime systems become more complex, they are often implemented using distributed heterogeneous architectures. The main objective of this thesis is to develop analysis and synthesis methods for communication-intensive heterogeneous hard real-time systems. The systems are heterogeneous...... is the synthesis of the communication infrastructure, which has a significant impact on the overall system performance and cost. To reduce the time-to-market of products, the design of real-time systems seldom starts from scratch. Typically, designers start from an already existing system, running certain...

  5. A GPS-based Real-time Road Traffic Monitoring System

    Science.gov (United States)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  6. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  7. IoT real time data acquisition using MQTT protocol

    Science.gov (United States)

    Atmoko, R. A.; Riantini, R.; Hasin, M. K.

    2017-05-01

    The Internet of Things (IoT) provides ease to monitor and to gain sensor data through the Internet [1]. The need of high quality data is increasing to the extent that data monitoring and acquisition system in real time is required, such as smart city or telediagnostic in medical areas [2]. Therefore, an appropriate communication protocol is required to resolve these problems. Lately, researchers have developed a lot of communication protocols for IoT, of which each has advantages and disadvantages. This study proposes the utilization of MQTT as a communication protocol, which is one of data communication protocols for IoT. This study used temperature and humidity sensors because the physical parameters are often needed as parameters of environment condition [3]. Data acquisition was done in real-time and stored in MySQL database. This study is also completed by interface web-based and mobile for online monitoring. This result of this study is the enhancement of data quality and reliability using MQTT protocol.

  8. Software engineering aspects of real-time programming concepts

    Science.gov (United States)

    Schoitsch, Erwin

    1986-08-01

    Real-time programming is a discipline of great importance not only in process control, but also in fields like communication, office automation, interactive databases, interactive graphics and operating systems development. General concepts of concurrent programming and constructs for process-synchronization are discussed in detail. Tasking and synchronization concepts, methods of process communication, interrupt and timeout handling in systems based on semaphores, signals, conditional critical regions or on real-time languages like Concurrent PASCAL, MODULA, CHILL and ADA are explained and compared with each other. The second part deals with structuring and modularization of technical processes to build reliable and maintainable real time systems. Software-quality and software engineering aspects are considered throughout the paper.

  9. Real-time visual communication to aid disaster recovery in a multi-segment hybrid wireless networking system

    Science.gov (United States)

    Al Hadhrami, Tawfik; Wang, Qi; Grecos, Christos

    2012-06-01

    When natural disasters or other large-scale incidents occur, obtaining accurate and timely information on the developing situation is vital to effective disaster recovery operations. High-quality video streams and high-resolution images, if available in real time, would provide an invaluable source of current situation reports to the incident management team. Meanwhile, a disaster often causes significant damage to the communications infrastructure. Therefore, another essential requirement for disaster management is the ability to rapidly deploy a flexible incident area communication network. Such a network would facilitate the transmission of real-time video streams and still images from the disrupted area to remote command and control locations. In this paper, a comprehensive end-to-end video/image transmission system between an incident area and a remote control centre is proposed and implemented, and its performance is experimentally investigated. In this study a hybrid multi-segment communication network is designed that seamlessly integrates terrestrial wireless mesh networks (WMNs), distributed wireless visual sensor networks, an airborne platform with video camera balloons, and a Digital Video Broadcasting- Satellite (DVB-S) system. By carefully integrating all of these rapidly deployable, interworking and collaborative networking technologies, we can fully exploit the joint benefits provided by WMNs, WSNs, balloon camera networks and DVB-S for real-time video streaming and image delivery in emergency situations among the disaster hit area, the remote control centre and the rescue teams in the field. The whole proposed system is implemented in a proven simulator. Through extensive simulations, the real-time visual communication performance of this integrated system has been numerically evaluated, towards a more in-depth understanding in supporting high-quality visual communications in such a demanding context.

  10. FPGA cluster for high-performance AO real-time control system

    Science.gov (United States)

    Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.

    2006-06-01

    Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.

  11. Managing high-bandwidth real-time data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  12. Analysis of fault tolerance and reliability in distributed real-time system architectures

    International Nuclear Information System (INIS)

    Philippi, Stephan

    2003-01-01

    Safety critical real-time systems are becoming ubiquitous in many areas of our everyday life. Failures of such systems potentially have catastrophic consequences on different scales, in the worst case even the loss of human life. Therefore, safety critical systems have to meet maximum fault tolerance and reliability requirements. As the design of such systems is far from being trivial, this article focuses on concepts to specifically support the early architectural design. In detail, a simulation based approach for the analysis of fault tolerance and reliability in distributed real-time system architectures is presented. With this approach, safety related features can be evaluated in the early development stages and thus prevent costly redesigns in later ones

  13. Flying Real-Time Network to Coordinate Disaster Relief Activities in Urban Areas

    Directory of Open Access Journals (Sweden)

    Matias Micheletto

    2018-05-01

    Full Text Available While there have been important advances within wireless communication technology, the provision of communication support during disaster relief activities remains an open issue. The literature in disaster research reports several major restrictions to conducting first response activities in urban areas, given the limitations of telephone networks and radio systems to provide digital communication in the field. In search-and-rescue operations, the communication requirements are increased, since the first responders need to rely on real-time and reliable communication to perform their activities and coordinate their efforts with other teams. Therefore, these limitations open the door to improvisation during disaster relief efforts. In this paper, we argue that flying ad-hoc networks can provide the communication support needed in these scenarios, and propose a new solution towards that goal. The proposal involves the use of flying witness units, implemented using drones, that act as communication gateways between first responders working at different locations of the affected area. The proposal is named the Flying Real-Time Network, and its feasibility to provide communication in a disaster scenario is shown by presenting both a real-time schedulability analysis of message delivery, as well as simulations of the communication support in a physical scenario inspired by a real incident. The obtained results were highly positive and consistent, therefore this proposal represents a step forward towards the solution of this open issue.

  14. Real-time signal communication between diagnostic and control in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Treutterer, Wolfgang; Neu, Gregor; Raupp, Gerhard; Zehetbauer, Thomas; Zasche, Dieter; Lueddecke, Klaus; Cole, Richard

    2010-01-01

    The ASDEX Upgrade tokamak experiment is equipped with a versatile discharge monitoring and control system. It allows to develop and use advanced control algorithms to investigate plasma physics under well-defined conditions with the objective of optimising plasma performance. The achievable quality depends on the accuracy with which the plasma state can be reconstructed from measurements under real-time conditions. Today's advanced algorithms need physics quantities - scalar entities as well as profiles. These are obtained processing huge numbers of raw measurements with complex diagnostic algorithms. Adequate network communication for the resulting signals is crucial to satisfy real-time requirements, especially when several diagnostic systems cooperate in a feedback control loop. Support for the technology of choice, however, is not easily available for all of the diverse, highly specialised diagnostic systems. We give an overview about the methods that have been explored at ASDEX Upgrade for real-time signal transfer. In particular, we investigated reflective shared memory and Ethernet technologies. Our solution strives to combine their strengths. For fast communication on dedicated computing nodes, reflective shared memory is used. For the majority of diagnostic systems producing large data blocks at moderate rates, Ethernet connections with UDP protocol are employed. Following ASDEX Upgrade's framework concept, a software layer hides the networks used from both diagnostic and control applications.

  15. Real-time signal communication between diagnostic and control in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, Wolfgang, E-mail: Wolfgang.Treutterer@ipp.mpg.d [Max-Planck Institut fuer Plasmaphysik, Garching, EURATOM Association (Germany); Neu, Gregor; Raupp, Gerhard; Zehetbauer, Thomas; Zasche, Dieter [Max-Planck Institut fuer Plasmaphysik, Garching, EURATOM Association (Germany); Lueddecke, Klaus; Cole, Richard [Unlimited Computer Systems, Iffeldorf (Germany)

    2010-07-15

    The ASDEX Upgrade tokamak experiment is equipped with a versatile discharge monitoring and control system. It allows to develop and use advanced control algorithms to investigate plasma physics under well-defined conditions with the objective of optimising plasma performance. The achievable quality depends on the accuracy with which the plasma state can be reconstructed from measurements under real-time conditions. Today's advanced algorithms need physics quantities - scalar entities as well as profiles. These are obtained processing huge numbers of raw measurements with complex diagnostic algorithms. Adequate network communication for the resulting signals is crucial to satisfy real-time requirements, especially when several diagnostic systems cooperate in a feedback control loop. Support for the technology of choice, however, is not easily available for all of the diverse, highly specialised diagnostic systems. We give an overview about the methods that have been explored at ASDEX Upgrade for real-time signal transfer. In particular, we investigated reflective shared memory and Ethernet technologies. Our solution strives to combine their strengths. For fast communication on dedicated computing nodes, reflective shared memory is used. For the majority of diagnostic systems producing large data blocks at moderate rates, Ethernet connections with UDP protocol are employed. Following ASDEX Upgrade's framework concept, a software layer hides the networks used from both diagnostic and control applications.

  16. Flying Real-Time Network to Coordinate Disaster Relief Activities in Urban Areas †

    Science.gov (United States)

    Micheletto, Matias; Orozco, Javier; Mosse, Daniel

    2018-01-01

    While there have been important advances within wireless communication technology, the provision of communication support during disaster relief activities remains an open issue. The literature in disaster research reports several major restrictions to conducting first response activities in urban areas, given the limitations of telephone networks and radio systems to provide digital communication in the field. In search-and-rescue operations, the communication requirements are increased, since the first responders need to rely on real-time and reliable communication to perform their activities and coordinate their efforts with other teams. Therefore, these limitations open the door to improvisation during disaster relief efforts. In this paper, we argue that flying ad-hoc networks can provide the communication support needed in these scenarios, and propose a new solution towards that goal. The proposal involves the use of flying witness units, implemented using drones, that act as communication gateways between first responders working at different locations of the affected area. The proposal is named the Flying Real-Time Network, and its feasibility to provide communication in a disaster scenario is shown by presenting both a real-time schedulability analysis of message delivery, as well as simulations of the communication support in a physical scenario inspired by a real incident. The obtained results were highly positive and consistent, therefore this proposal represents a step forward towards the solution of this open issue. PMID:29789458

  17. Self-Organization in Embedded Real-Time Systems

    CERN Document Server

    Brinkschulte, Uwe; Rettberg, Achim

    2013-01-01

    This book describes the emerging field of self-organizing, multicore, distributed and real-time embedded systems.  Self-organization of both hardware and software can be a key technique to handle the growing complexity of modern computing systems. Distributed systems running hundreds of tasks on dozens of processors, each equipped with multiple cores, requires self-organization principles to ensure efficient and reliable operation. This book addresses various, so-called Self-X features such as self-configuration, self-optimization, self-adaptation, self-healing and self-protection. Presents open components for embedded real-time adaptive and self-organizing applications; Describes innovative techniques in: scheduling, memory management, quality of service, communications supporting organic real-time applications; Covers multi-/many-core embedded systems supporting real-time adaptive systems and power-aware, adaptive hardware and software systems; Includes case studies of open embedded real-time self-organizi...

  18. Reliability modeling of a hard real-time system using the path-space approach

    International Nuclear Information System (INIS)

    Kim, Hagbae

    2000-01-01

    A hard real-time system, such as a fly-by-wire system, fails catastrophically (e.g. losing stability) if its control inputs are not updated by its digital controller computer within a certain timing constraint called the hard deadline. To assess and validate those systems' reliabilities by using a semi-Markov model that explicitly contains the deadline information, we propose a path-space approach deriving the upper and lower bounds of the probability of system failure. These bounds are derived by using only simple parameters, and they are especially suitable for highly reliable systems which should recover quickly. Analytical bounds are derived for both exponential and Wobble failure distributions encountered commonly, which have proven effective through numerical examples, while considering three repair strategies: repair-as-good-as-new, repair-as-good-as-old, and repair-better-than-old

  19. Memory controllers for high-performance and real-time MPSoCs : requirements, architectures, and future trends

    NARCIS (Netherlands)

    Akesson, K.B.; Huang, Po-Chun; Clermidy, F.; Dutoit, D.; Goossens, K.G.W.; Chang, Yuan-Hao; Kuo, Tei-Wei; Vivet, P.; Wingard, D.

    2011-01-01

    Designing memory controllers for complex real-time and high-performance multi-processor systems-on-chip is challenging, since sufficient capacity and (real-time) performance must be provided in a reliable manner at low cost and with low power consumption. This special session contains four

  20. Real-time systems

    OpenAIRE

    Badr, Salah M.; Bruztman, Donald P.; Nelson, Michael L.; Byrnes, Ronald Benton

    1992-01-01

    This paper presents an introduction to the basic issues involved in real-time systems. Both real-time operating sys and real-time programming languages are explored. Concurrent programming and process synchronization and communication are also discussed. The real-time requirements of the Naval Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real-time operating system, real-time programming language, real-time sy...

  1. System Integration for Real-Time Mobile Manipulation

    Directory of Open Access Journals (Sweden)

    Reza Oftadeh

    2014-03-01

    Full Text Available Mobile manipulators are one of the most complicated types of mechatronics systems. The performance of these robots in performing complex manipulation tasks is highly correlated with the synchronization and integration of their low-level components. This paper discusses in detail the mechatronics design of a four wheel steered mobile manipulator. It presents the manipulator's mechanical structure and electrical interfaces, designs low-level software architecture based on embedded PC-based controls, and proposes a systematic solution based on code generation products of MATLAB and Simulink. The remote development environment described here is used to develop real-time controller software and modules for the mobile manipulator under a POSIX-compliant, real-time Linux operating system. Our approach enables developers to reliably design controller modules that meet the hard real-time constraints of the entire low-level system architecture. Moreover, it provides a systematic framework for the development and integration of hardware devices with various communication mediums and protocols, which facilitates the development and integration process of the software controller.

  2. Design of real-time communication system for image recognition based colony picking instrument

    Science.gov (United States)

    Wang, Qun; Zhang, Rongfu; Yan, Hua; Wu, Huamin

    2017-11-01

    In order to aachieve autommated observatiion and pickinng of monocloonal colonies, an overall dessign and realizzation of real-time commmunication system based on High-throoughput monooclonal auto-piicking instrumment is propossed. The real-time commmunication system is commposed of PCC-PLC commuunication systtem and Centrral Control CComputer (CCC)-PLC communicatioon system. Bassed on RS232 synchronous serial communnication methood to develop a set of dedicated shoort-range commmunication prootocol betweenn the PC and PPLC. Furthermmore, the systemm uses SQL SSERVER database to rrealize the dataa interaction between PC andd CCC. Moreoover, the commmunication of CCC and PC, adopted Socket Ethernnet communicaation based on TCP/IP protoccol. TCP full-dduplex data cannnel to ensure real-time data eexchange as well as immprove system reliability andd security. We tested the commmunication syystem using sppecially develooped test software, thee test results show that the sysstem can realizze the communnication in an eefficient, safe aand stable way between PLC, PC andd CCC, keep thhe real-time conntrol to PLC annd colony inforrmation collecttion.

  3. A reliable and real-time aggregation aware data dissemination in a chain-based wireless sensor network

    NARCIS (Netherlands)

    Taghikhaki, Zahra; Meratnia, Nirvana; Havinga, Paul J.M.

    2012-01-01

    Time-critical applications of Wireless Sensor Networks (WSNs) demand timely data delivery for fast identification of out-of-ordinary situations and fast and reliable delivery of notification and warning messages. Due to the low reliable links in WSNs, achieving real-time guarantees and providing

  4. SPEED: A Stateless Protocol for Real-Time Communication in Sensor Networks

    National Research Council Canada - National Science Library

    He, Tian; Stankovic, John A; Lu, Chenyang; Abdelzaher, Tarek

    2003-01-01

    .... End-to-end soft real-time communication is achieved by maintaining a desired delivery speed across the sensor network through a novel combination of feedback control and non-deterministic geographic forwarding...

  5. Development of IT-based data communication network technology

    International Nuclear Information System (INIS)

    Hong, Seok Boong; Jeong, K. I.; Yoo, Y. R.

    2010-10-01

    - Developing broadband high-reliability real-time communications technology for NPP - Developing reliability and performance validation technology for communications network - Developing security technology for NPP communications network - Developing field communications network for harsh environment of NPP - International standard registration(Oct. 28, 2009, IEC 61500

  6. Model Checking Process Algebra of Communicating Resources for Real-time Systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACOR, for real-time systems which deals with resource constrained timed behavior as an improved version of the ACSR algebra. We define PACOR as a Process Algebra of Communicating Resources which allows to express preemptiveness, urgent ness...

  7. Providing Survivable Real-Time Communication Service for Distributed Mission Critical Systems

    National Research Council Canada - National Science Library

    Zhao, Wei; Bettati, Riccardo; Vaidya, Nitin

    2005-01-01

    This document is the final report for Providing Survivable Real-Time Communication Service for Distributed Mission Critical Systems, a Texas A AND M project funded through the DARPA Fault Tolerant Networks Program...

  8. High performance real-time flight simulation at NASA Langley

    Science.gov (United States)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  9. Design considerations for computationally constrained two-way real-time video communication

    Science.gov (United States)

    Bivolarski, Lazar M.; Saunders, Steven E.; Ralston, John D.

    2009-08-01

    Today's video codecs have evolved primarily to meet the requirements of the motion picture and broadcast industries, where high-complexity studio encoding can be utilized to create highly-compressed master copies that are then broadcast one-way for playback using less-expensive, lower-complexity consumer devices for decoding and playback. Related standards activities have largely ignored the computational complexity and bandwidth constraints of wireless or Internet based real-time video communications using devices such as cell phones or webcams. Telecommunications industry efforts to develop and standardize video codecs for applications such as video telephony and video conferencing have not yielded image size, quality, and frame-rate performance that match today's consumer expectations and market requirements for Internet and mobile video services. This paper reviews the constraints and the corresponding video codec requirements imposed by real-time, 2-way mobile video applications. Several promising elements of a new mobile video codec architecture are identified, and more comprehensive computational complexity metrics and video quality metrics are proposed in order to support the design, testing, and standardization of these new mobile video codecs.

  10. Model checking process algebra of communicating resources for real-time systems

    DEFF Research Database (Denmark)

    Boudjadar, Jalil; Kim, Jin Hyun; Larsen, Kim Guldstrand

    2014-01-01

    This paper presents a new process algebra, called PACoR, for real-time systems which deals with resource- constrained timed behavior as an improved version of the ACSR algebra. We define PACoR as a Process Algebra of Communicating Resources which allows to explicitly express preemptiveness...

  11. AIRNET: A real-time comunications network for aircraft

    Science.gov (United States)

    Weaver, Alfred C.; Cain, Brendan G.; Colvin, M. Alexander; Simoncic, Robert

    1990-01-01

    A real-time local area network was developed for use on aircraft and space vehicles. It uses token ring technology to provide high throughput, low latency, and high reliability. The system was implemented on PCs and PC/ATs operating on PCbus, and on Intel 8086/186/286/386s operating on Multibus. A standard IEEE 802.2 logical link control interface was provided to (optional) upper layer software; this permits the controls designer to utilize standard communications protocols (e.g., ISO, TCP/IP) if time permits, or to utilize a very fast link level protocol directly if speed is critical. Both unacknowledged datagram and reliable virtual circuit services are supported. A station operating an 8 MHz Intel 286 as a host can generate a sustained load of 1.8 megabits per second per station, and a 100-byte message can be delivered from the transmitter's user memory to the receiver's user memory, including all operating system and network overhead, in under 4 milliseconds.

  12. [Mobile hospital -real time mobile telehealthcare system with ultrasound and CT van using high-speed satellite communication-].

    Science.gov (United States)

    Takizawa, Masaomi; Miyashita, Toyohisa; Murase, Sumio; Kanda, Hirohito; Karaki, Yoshiaki; Yagi, Kazuo; Ohue, Toru

    2003-01-01

    A real-time telescreening system is developed to detect early diseases for rural area residents using two types of mobile vans with a portable satellite station. The system consists of a satellite communication system with 1.5Mbps of the JCSAT-1B satellite, a spiral CT van, an ultrasound imaging van with two video conference system, a DICOM server and a multicast communication unit. The video image and examination image data are transmitted from the van to hospitals and the university simultaneously. Physician in the hospital observes and interprets exam images from the van and watches the video images of the position of ultrasound transducer on screenee in the van. After the observation images, physician explains a results of the examination by the video conference system. Seventy lung CT screening and 203 ultrasound screening were done from March to June 2002. The trial of this real time screening suggested that rural residents are given better healthcare without visit to the hospital. And it will open the gateway to reduce the medical cost and medical divide between city area and rural area.

  13. Study on highly reliable digital communication technology of reactor nuclear measuring equipment

    International Nuclear Information System (INIS)

    Gu Pengfei; Huang Xiaojin

    2007-01-01

    To meet the need of highly reliable of reactor nuclear measuring equipment, in allusion to the idiographic request of nuclear measuring equipment, the actual technical development and the application in industrial field, we design a kind of redundancy communication net based on PROFIBUS, and a kind of communication interface module based on redundancy PROFIBUS communication, which link the nuclear measuring equipment and PROFIBUS communication net, and also lay a foundation for advanced research. (authors)

  14. Global, real-time ionosphere specification for end-user communication and navigation products

    Science.gov (United States)

    Tobiska, W.; Carlson, H. C.; Schunk, R. W.; Thompson, D. C.; Sojka, J. J.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2010-12-01

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is a developer and producer of commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Using a Kalman filter, the background output from the physics-based Ionosphere Forecast Model (IFM) is adjusted to more accurately represent the actual ionosphere. An improved ionosphere leads to more useful derivative products. For example, SWC runs operational code, using GAIM, to calculate and report the global radio high frequency (HF) signal strengths for 24 world cities. This product is updated every 15 minutes at http://spaceweather.usu.edu and used by amateur radio operators. SWC also developed and provides through Apple iTunes the widely used real-time space weather iPhone app called SpaceWx for public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example. This smart phone app is tip of the “iceberg” of automated systems that provide space weather data; it permits instant understanding of the environment surrounding Earth as it dynamically changes. SpaceWx depends upon a distributed network that connects satellite and ground-based data streams with algorithms to quickly process the measurements into geophysical data, incorporate those

  15. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  16. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-01-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such Sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. The authors plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the 'non-real-time' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response

  17. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-05-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. We plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the ''non-real-time'' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response. 6 refs., 2 tabs

  18. Coexistence of enhanced mobile broadband communications and ultra-reliable low-latency communications in mobile front-haul

    Science.gov (United States)

    Ying, Kai; Kowalski, John M.; Nogami, Toshizo; Yin, Zhanping; Sheng, Jia

    2018-01-01

    5G systems are supposed to support coexistence of multiple services such as ultra reliable low latency communications (URLLC) and enhanced mobile broadband (eMBB) communications. The target of eMBB communications is to meet the high-throughput requirement while URLLC are used for some high priority services. Due to the sporadic nature and low latency requirement, URLLC transmission may pre-empt the resource of eMBB transmission. Our work is to analyze the URLLC impact on eMBB transmission in mobile front-haul. Then, some solutions are proposed to guarantee the reliability/latency requirements for URLLC services and minimize the impact to eMBB services at the same time.

  19. Implementation and Analysis of Real-Time Streaming Protocols.

    Science.gov (United States)

    Santos-González, Iván; Rivero-García, Alexandra; Molina-Gil, Jezabel; Caballero-Gil, Pino

    2017-04-12

    Communication media have become the primary way of interaction thanks to the discovery and innovation of many new technologies. One of the most widely used communication systems today is video streaming, which is constantly evolving. Such communications are a good alternative to face-to-face meetings, and are therefore very useful for coping with many problems caused by distance. However, they suffer from different issues such as bandwidth limitation, network congestion, energy efficiency, cost, reliability and connectivity. Hence, the quality of service and the quality of experience are considered the two most important issues for this type of communication. This work presents a complete comparative study of two of the most used protocols of video streaming, Real Time Streaming Protocol (RTSP) and the Web Real-Time Communication (WebRTC). In addition, this paper proposes two new mobile applications that implement those protocols in Android whose objective is to know how they are influenced by the aspects that most affect the streaming quality of service, which are the connection establishment time and the stream reception time. The new video streaming applications are also compared with the most popular video streaming applications for Android, and the experimental results of the analysis show that the developed WebRTC implementation improves the performance of the most popular video streaming applications with respect to the stream packet delay.

  20. Embedded real-time operating system micro kernel design

    Science.gov (United States)

    Cheng, Xiao-hui; Li, Ming-qiang; Wang, Xin-zheng

    2005-12-01

    Embedded systems usually require a real-time character. Base on an 8051 microcontroller, an embedded real-time operating system micro kernel is proposed consisting of six parts, including a critical section process, task scheduling, interruption handle, semaphore and message mailbox communication, clock managent and memory managent. Distributed CPU and other resources are among tasks rationally according to the importance and urgency. The design proposed here provides the position, definition, function and principle of micro kernel. The kernel runs on the platform of an ATMEL AT89C51 microcontroller. Simulation results prove that the designed micro kernel is stable and reliable and has quick response while operating in an application system.

  1. Platform for Automated Real-Time High Performance Analytics on Medical Image Data.

    Science.gov (United States)

    Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A

    2018-03-01

    Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.

  2. A survey of Tumult, a real-time multi-processor system

    International Nuclear Information System (INIS)

    Jansen, P.G.

    1986-01-01

    Tumult (Twente University MULTi processor system) is the name of an ongoing project aiming at the design and implementation of a modular extendible multiprocessor system. All memory is distributed and processors communicate in parallel via a fast and reliable local switching network instead of a shared bus. A distributed real-time operating system is being designed and implemented, consisting of a multi-tasking subsystem per processor. Processes can communicate via a message passing mechanism. Communication links and processes are dynamically created and disposed by the application. In this article a brief description of the system is given; communication aspects are emphasized. (Auth.)

  3. A reliable information management for real-time systems

    International Nuclear Information System (INIS)

    Nishihara, Takuo; Tomita, Seiji

    1995-01-01

    In this paper, we propose a system configuration suitable for the hard realtime systems in which integrity and durability of information are important. On most hard real-time systems, where response time constraints are critical, the data which program access are volatile, and may be lost in case the systems are down. But for some real-time systems, the value-added intelligent network (IN) systems, e.g., integrity and durability of the stored data are very important. We propose a distributed system configuration for such hard real-time systems, comprised of service control modules and data management modules. The service control modules process transactions and responses based on deadline control, and the data management modules deal the stored data based on information recovery schemes well-restablished in fault real-time systems. (author)

  4. Real-time communication protocols: an overview

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Jansen, P.G.

    2003-01-01

    This paper describes several existing data link layer protocols that provide real-time capabilities on wired networks, focusing on token-ring and Carrier Sense Multiple Access based networks. Existing modifications to provide better real-time capabilities and performance are also described. Finally

  5. A real-time hybrid neuron network for highly parallel cognitive systems.

    Science.gov (United States)

    Christiaanse, Gerrit Jan; Zjajo, Amir; Galuzzi, Carlo; van Leuken, Rene

    2016-08-01

    For comprehensive understanding of how neurons communicate with each other, new tools need to be developed that can accurately mimic the behaviour of such neurons and neuron networks under `real-time' constraints. In this paper, we propose an easily customisable, highly pipelined, neuron network design, which executes optimally scheduled floating-point operations for maximal amount of biophysically plausible neurons per FPGA family type. To reduce the required amount of resources without adverse effect on the calculation latency, a single exponent instance is used for multiple neuron calculation operations. Experimental results indicate that the proposed network design allows the simulation of up to 1188 neurons on Virtex7 (XC7VX550T) device in brain real-time yielding a speed-up of x12.4 compared to the state-of-the art.

  6. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  7. Southern California Seismic Network: New Design and Implementation of Redundant and Reliable Real-time Data Acquisition Systems

    Science.gov (United States)

    Saleh, T.; Rico, H.; Solanki, K.; Hauksson, E.; Friberg, P.

    2005-12-01

    The Southern California Seismic Network (SCSN) handles more than 2500 high-data rate channels from more than 380 seismic stations distributed across southern California. These data are imported real-time from dataloggers, earthworm hubs, and partner networks. The SCSN also exports data to eight different partner networks. Both the imported and exported data are critical for emergency response and scientific research. Previous data acquisition systems were complex and difficult to operate, because they grew in an ad hoc fashion to meet the increasing needs for distributing real-time waveform data. To maximize reliability and redundancy, we apply best practices methods from computer science for implementing the software and hardware configurations for import, export, and acquisition of real-time seismic data. Our approach makes use of failover software designs, methods for dividing labor diligently amongst the network nodes, and state of the art networking redundancy technologies. To facilitate maintenance and daily operations we seek to provide some separation between major functions such as data import, export, acquisition, archiving, real-time processing, and alarming. As an example, we make waveform import and export functions independent by operating them on separate servers. Similarly, two independent servers provide waveform export, allowing data recipients to implement their own redundancy. The data import is handled differently by using one primary server and a live backup server. These data import servers, run fail-over software that allows automatic role switching in case of failure from primary to shadow. Similar to the classic earthworm design, all the acquired waveform data are broadcast onto a private network, which allows multiple machines to acquire and process the data. As we separate data import and export away from acquisition, we are also working on new approaches to separate real-time processing and rapid reliable archiving of real-time data

  8. Realization of Timed Reliable Communication over Off-The-Shelf Wireless Technologies

    DEFF Research Database (Denmark)

    Malinowsky, B.; Groenbaek, Jesper; Schwefel, Hans-Peter

    2013-01-01

    Industrial and safety-critical applications pose strict requirements for timeliness and reliability for the communication solution. Thereby the use of off-the-shelf (OTS) wireless communication technologies can be attractive to achieve low cost and easy deployment. This paper presents and analyse...

  9. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  10. D-MSR: A Distributed Network Management Scheme for Real-Time Monitoring and Process Control Applications in Wireless Industrial Automation

    Science.gov (United States)

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-01-01

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687

  11. D-MSR: a distributed network management scheme for real-time monitoring and process control applications in wireless industrial automation.

    Science.gov (United States)

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-06-27

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.

  12. Timing Analysis of Rate Constrained Traffic for the TTEthernet Communication Protocol

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Pop, Paul; Steiner, Wilfried

    2015-01-01

    Ethernet is a low-cost communication solution offering high transmission speeds. Although its applications extend beyond computer networking, Ethernet is not suitable for real-time and safety-critical systems. To alleviate this, several real-time Ethernet-based communication protocols have been...

  13. Ocean Wireless Networking and Real Time Data Management

    Science.gov (United States)

    Berger, J.; Orcutt, J. A.; Vernon, F. L.; Braun, H. W.; Rajasekar, A.

    2001-12-01

    Recent advances in technology have enabled the exploitation of satellite communications for high-speed (> 64 kbps) duplex communications with oceanographic ships at sea. Furthermore, decreasing costs for high-speed communications have made possible continuous connectivity to the global Internet for delivery of data ashore and communications with scientists and engineers on the ship. Through support from the Office of Naval Research, we have planned a series of tests using the R/V Revelle for real time data delivery of large quantities of underway data (e.g. continuous multibeam profiling) to shore for quality control, archiving, and real-time data availability. The Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics (IGPP) and the San Diego Supercomputer Center (SDSC) were funded by the NSF Information Technology Research (ITR) Program, the California Institute for Telecommunications and Information Technology [Cal-(IT)2] and the Scripps Institution of Oceanography for research entitled: "Exploring the Environment in Time: Wireless Networks & Real-Time Management." We will describe the technology to be used for the real-time seagoing experiment and the planned expansion of the project through support from the ITR grant. The short-term goal is to exercise the communications system aboard ship in various weather conditions and sea states while testing and developing the real-time data quality control and archiving methodology. The long-term goal is to enable continuous observations in the ocean, specifically supporting the goals of the DEOS (Dynamics of Earth and Ocean Systems) observatory program supported through a NSF Major Research Equipment (MRE) program - a permanent presence in the oceans. The impact on scientific work aboard ships, however, is likely to be fundamental. It will be possible to go to sea in the future with limited engineering capability for scientific operations by allowing shore-based quality control of data collected and

  14. A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    Directory of Open Access Journals (Sweden)

    Antonio Skarmeta Gómez

    2012-03-01

    Full Text Available A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data inmany sparse locations during flood events.

  15. Bitmap-Wise Wireless M-Bus Coordination for Sustainable Real Time Energy Management

    Directory of Open Access Journals (Sweden)

    Kwang-il Hwang

    2014-07-01

    Full Text Available Even though WM-Bus is being considered to be the most promising network protocol for smart metering, it is not suitable for a sustainable real-time home energy management system (HEMS, which requires higher reliability and longer lifetime despite real time bi-directional communications. Therefore, in this paper we propose a Bitmap-wise WM-Bus (BWM-Bus, coping well with sustainable real-time HEMS. In particular, the proposed scheme addresses the several problems in WM-Bus for HEMS by introducing novel functions: asynchronous meter trigger, adaptive slot scheduling, and bitmap-wise retransmission request. Through experiments, we demonstrate that BWM-Bus guarantees higher data success ratio with lower data aggregation time, as well as longer lifetime than WM-Bus standard.

  16. The Time Division Multi-Channel Communication Model and the Correlative Protocol Based on Quantum Time Division Multi-Channel Communication

    International Nuclear Information System (INIS)

    Liu Xiao-Hui; Pei Chang-Xing; Nie Min

    2010-01-01

    Based on the classical time division multi-channel communication theory, we present a scheme of quantum time-division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS) and correlative protocol of QTDMC are proposed. The quantum bit error rate (QBER) is analyzed and the QBER simulation test is performed. The scheme shows that the QTDS can carry out multi-user communication through quantum channel, the QBER can also reach the reliability requirement of communication, and the protocol of QTDMC has high practicability and transplantable. The scheme of QTDS may play an important role in the establishment of quantum communication in a large scale in the future. (general)

  17. Real-Time and Real-Fast Performance of General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation of Complex Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Carlos Garre

    2014-01-01

    Full Text Available Physical simulation is a valuable tool in many fields of engineering for the tasks of design, prototyping, and testing. General-purpose operating systems (GPOS are designed for real-fast tasks, such as offline simulation of complex physical models that should finish as soon as possible. Interfacing hardware at a given rate (as in a hardware-in-the-loop test requires instead maximizing time determinism, for which real-time operating systems (RTOS are designed. In this paper, real-fast and real-time performance of RTOS and GPOS are compared when simulating models of high complexity with large time steps. This type of applications is usually present in the automotive industry and requires a good trade-off between real-fast and real-time performance. The performance of an RTOS and a GPOS is compared by running a tire model scalable on the number of degrees-of-freedom and parallel threads. The benchmark shows that the GPOS present better performance in real-fast runs but worse in real-time due to nonexplicit task switches and to the latency associated with interprocess communication (IPC and task switch.

  18. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics.

    Science.gov (United States)

    Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus

    2017-12-01

    Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.

  19. Ultra-Reliable Communication in 5G Wireless Systems

    DEFF Research Database (Denmark)

    Popovski, Petar

    2014-01-01

    —Wireless 5G systems will not only be “4G, but faster”. One of the novel features discussed in relation to 5G is Ultra-Reliable Communication (URC), an operation mode not present in today’s wireless systems. URC refers to provision of certain level of communication service almost 100 % of the time....... Example URC applications include reliable cloud connectivity, critical connections for industrial automation and reliable wireless coordination among vehicles. This paper puts forward a systematic view on URC in 5G wireless systems. It starts by analyzing the fundamental mechanisms that constitute......-term URC (URC-S). The second dimension is represented by the type of reliability impairment that can affect the communication reliability in a given scenario. The main objective of this paper is to create the context for defining and solving the new engineering problems posed by URC in 5G....

  20. Travel Time Reliability in Indiana

    OpenAIRE

    Martchouk, Maria; Mannering, Fred L.; Singh, Lakhwinder

    2010-01-01

    Travel time and travel time reliability are important performance measures for assessing traffic condition and extent of congestion on a roadway. This study first uses a floating car technique to assess travel time and travel time reliability on a number of Indiana highways. Then the study goes on to describe the use of Bluetooth technology to collect real travel time data on a freeway and applies it to obtain two weeks of data on Interstate 69 in Indianapolis. An autoregressive model, estima...

  1. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  2. Reconfiguration of Computation and Communication Resources in Multi-Core Real-Time Embedded Systems

    DEFF Research Database (Denmark)

    Pezzarossa, Luca

    -core platform. Our approach is to associate reconfiguration with operational mode changes where the system, during normal operation, changes a subset of the executing tasks to adapt its behaviour to new conditions. Reconfiguration is therefore used during a mode change to modify the real-time guaranteed services...... of the communication channels between the tasks that are affected by the reconfiguration. This thesis investigates the use of reconfiguration in the context of multicore realtime systems targeting embedded applications. We address the reconfiguration of both the computation and the communication resources of a multi...... by the communication fabric between the cores of the platform. To support this, we present a new network on chip architecture, named Argo 2, that allows instantaneous and time-predictable reconfiguration of the communication channels. Our reconfiguration-capable architecture is prototyped using the existing time...

  3. The hybrid UNIX controller for real-time data acquisition

    International Nuclear Information System (INIS)

    Huesman, R.H.; Klein, G.J.; Fleming, T.K.

    1996-01-01

    The authors describe a hybrid data acquisition architecture integrating a conventional UNIX workstation with CAMAC-based real-time hardware. The system combines the high-level programming simplicity and user interface of a UNIX workstation with the low-level timing control available from conventional real-time hardware. They detail this architecture as it has been implemented for control of the Donner 600-Crystal Positron Tomograph (PET600). Low-level data acquisition is carried out in this system using eight LeCroy 3588 histogrammers, which together after derandomization, acquire events at rates up to 4 MHz, and two dedicated Motorola 6809 microprocessors, which arbitrate fine timing control during acquisition. A SUN Microsystems UNIX workstation is used for high-level control, allowing an easily extensible user interface in an X-Windows environment, as well as real-time communications to the low-level acquisition units. Communication between the high- and low-level units is carried out via a Jorway 73A SCSI-CAMAC crate controller and a serial interface. For this application, the hybrid configuration segments low from high-level control for ease of maintenance and provided a low-cost upgrade from dated high-level control hardware

  4. Timing organization of a real-time multicore processor

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Sparsø, Jens

    2017-01-01

    Real-time systems need a time-predictable computing platform. Computation, communication, and access to shared resources needs to be time-predictable. We use time division multiplexing to statically schedule all computation and communication resources, such as access to main memory or message...... passing over a network-on-chip. We use time-driven communication over an asynchronous network-on-chip to enable time division multiplexing even in a globally asynchronous, locally synchronous multicore architecture. Using time division multiplexing at all levels of the architecture yields in a time...

  5. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    Science.gov (United States)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  6. Development of a Real-Time GPS/Seismic Displacement Meter: Seismic Component and Communications

    Science.gov (United States)

    Vernon, F.; Bock, Y.

    2002-12-01

    In two abstracts, we report on an ongoing effort to develop an Integrated Real-Time GPS/Seismic System for Orange and Western Riverside Counties, California, spanning three major strike-slip faults in southern California (San Andreas, San Jacinto, and Elsinore) and significant populations and civilian infrastructure. The system relying on existing GPS and seismic networks will collect and analyze GPS and seismic data for the purpose of estimating and disseminating real-time positions and total ground displacements (dynamic, as well as static) covering all phases of the seismic cycle, from fractions of seconds to years. Besides its intrinsic scientific use as a real-time displacement meter (transducer), the GPS/Seismic System will be a powerful tool for local and state decision makers for risk mitigation, disaster management, and structural monitoring (dams, bridges, and buildings). Furthermore, the GPS/Seismic System will become an integral part of California's spatial referencing and positioning infrastructure, which is complicated by tectonic motion, seismic displacements, and land subsidence. This development is taking place under the umbrella of the California Spatial Reference Center, in partnership with local (The Counties, Riverside County Flood and Water Conservation District, Southern California Metropolitan Water District), state (Caltrans), and Federal agencies (NGS, NASA, USGS), the geophysics community (SCEC2/SCIGN), and the private sector (RBF Consulting). The project is leveraging considerable funding, resources, and research and development from SCIGN, CSRC and two NSF-funded IT projects at UCSD and SDSU: RoadNet (Real-Time Observatories, Applications and Data Management Network) and the High Performance Wireless Research and Education Network (HPWREN). These two projects are funded to develop both the wireless networks and the integrated, seamless, and transparent information management system that will deliver seismic, geodetic, oceanographic

  7. Design and Analysis of Transport Protocols for Reliable High-Speed Communications

    NARCIS (Netherlands)

    Oláh, A.

    1997-01-01

    The design and analysis of transport protocols for reliable communications constitutes the topic of this dissertation. These transport protocols guarantee the sequenced and complete delivery of user data over networks which may lose, duplicate and reorder packets. Reliable transport services are

  8. Real-Time Communications in Autonomic Networks: System Implementation and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    C. Tselios

    2012-01-01

    Full Text Available This paper describes the design and prototype implementation of a communication platform aiming to provide voice and video communication in a distributed networking environment. Performance considerations and network characteristics have also been taken into account in order to provide the set of properties dictated by the sensitive nature and the real-time characteristics of the targeted application scenarios. The proposed system has been evaluated both by experimental means as well as subjective tests taken by an extensive number of users. The results show that the proposed platform operates seamlessly in two hops, while in the four hops scenario, audio and video are delivered with marginal distortion. The conducted survey indicates that the user experience in terms of Quality of Service has obtained higher scores in the scenario with the two hops.

  9. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    Science.gov (United States)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm

  10. Real-time data access layer for MDSplus

    International Nuclear Information System (INIS)

    Manduchi, G.; Luchetta, A.; Taliercio, C.; Fredian, T.; Stillerman, J.

    2008-01-01

    Recent extensions to MDSplus allow data handling in long discharges and provide a real-time data access and communication layer. The real-time data access layer is an additional component of MDSplus: it is possible to use the traditional MDSplus API during normal operation, and to select a subset of data items to be used in real time. Real-time notification is provided by a communication layer using a publish-subscribe pattern. The notification covers processes sharing the same data items even running on different machines, thus allowing the implementation of distributed control systems. The real-time data access layer has been developed for Windows, Linux, and VxWorks; it is currently being ported to Linux RTAI. In order to quantify the fingerprint of the presented system, the performance of the real-time access layer approach is compared with that of an ad hoc, manually optimized program in a sample real-time application

  11. A curriculum for real-time computer and control systems engineering

    Science.gov (United States)

    Halang, Wolfgang A.

    1990-01-01

    An outline of a syllabus for the education of real-time-systems engineers is given. This comprises the treatment of basic concepts, real-time software engineering, and programming in high-level real-time languages, real-time operating systems with special emphasis on such topics as task scheduling, hardware architectures, and especially distributed automation structures, process interfacing, system reliability and fault-tolerance, and integrated project development support systems. Accompanying course material and laboratory work are outlined, and suggestions for establishing a laboratory with advanced, but low-cost, hardware and software are provided. How the curriculum can be extended into a second semester is discussed, and areas for possible graduate research are listed. The suitable selection of a high-level real-time language and supporting operating system for teaching purposes is considered.

  12. A heterogeneous hierarchical architecture for real-time computing

    Energy Technology Data Exchange (ETDEWEB)

    Skroch, D.A.; Fornaro, R.J.

    1988-12-01

    The need for high-speed data acquisition and control algorithms has prompted continued research in the area of multiprocessor systems and related programming techniques. The result presented here is a unique hardware and software architecture for high-speed real-time computer systems. The implementation of a prototype of this architecture has required the integration of architecture, operating systems and programming languages into a cohesive unit. This report describes a Heterogeneous Hierarchial Architecture for Real-Time (H{sup 2} ART) and system software for program loading and interprocessor communication.

  13. The FERMI-Elettra distributed real-time framework

    International Nuclear Information System (INIS)

    Pivetta, L.; Gaio, G.; Passuello, R.; Scalamera, G.

    2012-01-01

    FERMI-Elettra is a Free Electron Laser (FEL) based on a 1.5 GeV linac. The pulsed operation of the accelerator and the necessity to characterize and control each electron bunch requires synchronous acquisition of the beam diagnostics together with the ability to drive actuators in real-time at the linac repetition rate. The Adeos/Xenomai real-time extensions have been adopted in order to add real-time capabilities to the Linux based control system computers running the Tango software. A software communication protocol based on Gigabit Ethernet and known as Network Reflective Memory (NRM) has been developed to implement a shared memory across the whole control system, allowing computers to communicate in real-time. The NRM architecture, the real-time performance and the integration in the control system are described. (authors)

  14. Space-Time Equalization for High-Speed Wireless Digital Communications Based on Multipath-Incorporating Matched Filtering, Zero Forcing Equalization, and MMSE

    National Research Council Canada - National Science Library

    Zoltowski, Michael D

    2003-01-01

    The project has successfully demonstrated reduced-rank, space-time equalization for high-speed wireless digital communications capable of reliably transmitting multimedia data in support of military...

  15. Research and application of embedded real-time operating system

    Science.gov (United States)

    Zhang, Bo

    2013-03-01

    In this paper, based on the analysis of existing embedded real-time operating system, the architecture of an operating system is designed and implemented. The experimental results show that the design fully complies with the requirements of embedded real-time operating system, can achieve the purposes of reducing the complexity of embedded software design and improving the maintainability, reliability, flexibility. Therefore, this design program has high practical value.

  16. High-rate wireless data communications: An underwater acoustic communications framework at the physical layer

    Directory of Open Access Journals (Sweden)

    Bessios Anthony G.

    1996-01-01

    Full Text Available A variety of signal processing functions are performed by Underwater Acoustic Systems. These include: 1 detection to determine presence or absence of information signals in the presence of noise, or an attempt to describe which of a predetermined finite set of possible messages { m i , i , ... , M } the signal represents; 2 estimation of some parameter θ ˆ associated with the received signal (i.e. range, depth, bearing angle, etc.; 3 classification and source identification; 4 dynamics tracking; 5 navigation (collision avoidance and terminal guidance; 6 countermeasures; and 7 communications. The focus of this paper is acoustic communications. There is a global current need to develop reliable wireless digital communications for the underwater environment, with sufficient performance and efficiency to substitute for costly wired systems. One possible goal is a wireless system implementation that insures underwater terminal mobility. There is also a vital need to improve the performance of the existing systems in terms of data-rate, noise immunity, operational range, and power consumption, since, in practice, portable high-speed, long range, compact, low-power systems are desired. We concede the difficulties associated with acoustic systems and concentrate on the development of robust data transmission methods anticipating the eventual need for real time or near real time video transmission. An overview of the various detection techniques and the general statistical digital communication problem is given based on a statistical decision theory framework. The theoretical formulation of the underwater acoustic data communications problem includes modeling of the stochastic channel to incorporate a variety of impairments and environmental uncertainties, and proposal of new compensation strategies for an efficient and robust receiver design.

  17. Timing system solution for MedAustron; Real-time event and data distribution network

    International Nuclear Information System (INIS)

    Stefanic, R.; Tavcar, R.; Dedic, J.; Gutleber, J.; Moser, R.

    2012-01-01

    MedAustron is an ion beam research and therapy centre under construction in Wiener Neustadt, Austria. The facility features a synchrotron particle accelerator for light ions. The timing system for this class of accelerators has been developed in close collaboration between MedAustron and Cosylab. Mitigating economical and technological risks, we have chosen a proven, widely used Micro Research Finland (MRF) timing equipment and redesigned its FPGA firmware, extending its high-logic services above transport layer, as required by machine specifics. We obtained a generic real-time broadcast network for coordinating actions of a compact, pulse-to-pulse modulation based particle accelerator. High-level services include support for virtual accelerators and a rich selection of event response mechanisms. The system uses a combination of a real-time link for downstream events and a non-real-time link for upstream messaging and non time-critical communication. It comes with National Instruments LabVIEW-based software support, ready to be integrated into PXIe based front-end controllers. This article explains the high level logic services provided by the real-time link, describes the non-real-time interfaces and presents the software configuration mechanisms. (authors)

  18. Real time expert systems

    International Nuclear Information System (INIS)

    Asami, Tohru; Hashimoto, Kazuo; Yamamoto, Seiichi

    1992-01-01

    Recently, aiming at the application to the plant control for nuclear reactors and traffic and communication control, the research and the practical use of the expert system suitable to real time processing have become conspicuous. In this report, the condition for the required function to control the object that dynamically changes within a limited time is presented, and the technical difference between the real time expert system developed so as to satisfy it and the expert system of conventional type is explained with the actual examples and from theoretical aspect. The expert system of conventional type has the technical base in the problem-solving equipment originating in STRIPS. The real time expert system is applied to the fields accompanied by surveillance and control, to which conventional expert system is hard to be applied. The requirement for the real time expert system, the example of the real time expert system, and as the techniques of realizing real time processing, the realization of interruption processing, dispersion processing, and the mechanism of maintaining the consistency of knowledge are explained. (K.I.)

  19. Failure analysis of real-time systems

    International Nuclear Information System (INIS)

    Jalashgar, A.; Stoelen, K.

    1998-01-01

    This paper highlights essential aspects of real-time software systems that are strongly related to the failures and their course of propagation. The significant influence of means-oriented and goal-oriented system views in the description, understanding and analysing of those aspects is elaborated. The importance of performing failure analysis prior to reliability analysis of real-time systems is equally addressed. Problems of software reliability growth models taking the properties of such systems into account are discussed. Finally, the paper presents a preliminary study of a goal-oriented approach to model the static and dynamic characteristics of real-time systems, so that the corresponding analysis can be based on a more descriptive and informative picture of failures, their effects and the possibility of their occurrence. (author)

  20. ERP application of real-time vdc-enabled last planner system for planning reliability improvement

    DEFF Research Database (Denmark)

    Cho, S.; Sørensen, Kristian Birch; Fischer, M.

    2009-01-01

    The Last Planner System (LPS) has since its introduction in 1994 become a widely used method of AEC practitioners for improvement of planning reliability and tracking and monitoring of project progress. However, the observations presented in this paper indicate that the last planners...... and coordinators are in need of a new system that integrates the existing LPS with Virtual Design and Construction (VDC), Enterprise Resource Planning (ERP) systems, and automatic object identification by means of Radio Frequency Identification (RFID) technology. This is because current practice of the LPS...... implementations is guesswork-driven, textual report-generated, hand-updated, and even interpersonal trust-oriented, resulting in less accurate and reliable plans. This research introduces a prototype development of the VREL (VDC + RFID + ERP + LPS) integration to generate a real-time updated cost + physical...

  1. Teaching communication skills in clinical settings: comparing two applications of a comprehensive program with standardized and real patients.

    Science.gov (United States)

    Carvalho, Irene P; Pais, Vanessa G; Silva, Filipa R; Martins, Raquel; Figueiredo-Braga, Margarida; Pedrosa, Raquel; Almeida, Susana S; Correia, Luís; Ribeiro-Silva, Raquel; Castro-Vale, Ivone; Teles, Ana; Mota-Cardoso, Rui

    2014-05-09

    Communication is important for the quality of clinical practice, and programs have been implemented to improve healthcare providers' communication skills. However, the consistency of programs teaching communication skills has received little attention, and debate exists about the application of acquired skills to real patients. This study inspects whether (1) results from a communication program are replicated with different samples, and (2) results with standardized patients apply to interviews with real patients. A structured, nine-month communication program was applied in two consecutive years to two different samples of healthcare professionals (25 in the first year, 20 in the second year). Results were assessed at four different points in time, each year, regarding participants' confidence levels (self-rated), basic communication skills in interviews with standardized patients, and basic communication skills in interviews with real patients. Data were analyzed using GLM Repeated-Measures procedures. Improvements were statistically significant in both years in all measures except in simulated patients' assessment of the 2008 group. Differences between the two samples were non-significant. Differences between interviews with standardized and with real patients were also non-significant. The program's positive outcomes were replicated in different samples, and acquired skills were successfully applied to real-patient interviews. This reinforces this type of program structure as a valuable training tool, with results translating into real situations. It also adds to the reliability of the assessment instruments employed, though these may need adaptation in the case of real patients.

  2. Adequate technologies for wireless real-time dose rate monitoring for off-site emergency management

    International Nuclear Information System (INIS)

    Dielmann, R.; Buerkin, W.

    2003-01-01

    Full text: What are the requirements for off-site gamma dose rate monitoring systems? What are the pros and cons of available communication technologies? This report gives an overview of modern communication techniques and their applicability for reliable real-time data acquisition as basis for off-site nuclear emergency management. The results of three years operating experience with a wireless gamma dose rate monitoring system, installed around the NPPs of KURSK, KALININ and BALAKOVA (Russia) in the year 2000, are shown. (author)

  3. Design and realization of real-time processing system for seismic exploration

    International Nuclear Information System (INIS)

    Zhang Sifeng; Cao Ping; Song Kezhu; Yao Lin

    2010-01-01

    For solving real-time seismic data processing problems, a high-speed, large-capacity and real-time data processing system is designed based on FPGA and ARM. With the advantages of multi-processor, DRPS has the characteristics of high-speed data receiving, large-capacity data storage, protocol analysis, data splicing, data converting from time sequence into channel sequence, no dead time data ping-pong storage, etc. And with the embedded Linux operating system, DRPS has the characteristics of flexibility and reliability. (authors)

  4. Design optimization for security-and safety-critical distributed real-time applications

    DEFF Research Database (Denmark)

    Jiang, Wei; Pop, Paul; Jiang, Ke

    2016-01-01

    requirements on confidentiality of messages, task replication is used to enhance system reliability, and dynamic voltage and frequency scaling is used for energy efficiency of tasks. It is challenging to address these factors simultaneously, e.g., better security protections need more computing resources......In this paper, we are interested in the design of real-time applications with security, safety, timing, and energy requirements. The applications are scheduled with cyclic scheduling, and are mapped on distributed heterogeneous architectures. Cryptographic services are deployed to satisfy security...... and consume more energy, while lower voltages and frequencies may impair schedulability and security, and also lead to reliability degradation. We introduce a vulnerability based method to quantify the security performance of communications on distributed systems. We then focus on determining the appropriate...

  5. Implementing real-time robotic systems using CHIMERA II

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1990-01-01

    A description is given of the CHIMERA II programming environment and operating system, which was developed for implementing real-time robotic systems. Sensor-based robotic systems contain both general- and special-purpose hardware, and thus the development of applications tends to be a time-consuming task. The CHIMERA II environment is designed to reduce the development time by providing a convenient software interface between the hardware and the user. CHIMERA II supports flexible hardware configurations which are based on one or more VME-backplanes. All communication across multiple processors is transparent to the user through an extensive set of interprocessor communication primitives. CHIMERA II also provides a high-performance real-time kernel which supports both deadline and highest-priority-first scheduling. The flexibility of CHIMERA II allows hierarchical models for robot control, such as NASREM, to be implemented with minimal programming time and effort.

  6. Development of real-time on-line vibration testing system for seismic experiments

    International Nuclear Information System (INIS)

    Horiuchi, T.; Nakagawa, M.; Kametani, M.

    1993-01-01

    An on-line vibration testing method is being developed for seismic experiments. This method combines computer simulation and an actuator for vibration testing of structures. A real-time, on-line testing system was developed to improve the method. In the system, the timing of the vibration testing and the computer simulation are the same. This allows time-dependent reaction forces, such as damping force, to be immediately considered in the computer simulation. The real-time system has many requirements, such as complicated matrix calculations within a small time step, and communication with outer devices like sensors and actuators through A/D and D/A converters. These functions arc accomplished by using a newly-developed, real-time controller that employs a parallel processing technique. A small structural model is used to demonstrate the system. The reliability and applicability of the system for seismic experiments can be demonstrated by comparing the results of the system and a shaking table, which are in almost agreement. (author)

  7. Real-time feedback on nonverbal clinical communication. Theoretical framework and clinician acceptance of ambient visual design.

    Science.gov (United States)

    Hartzler, A L; Patel, R A; Czerwinski, M; Pratt, W; Roseway, A; Chandrasekaran, N; Back, A

    2014-01-01

    This article is part of the focus theme of Methods of Information in Medicine on "Pervasive Intelligent Technologies for Health". Effective nonverbal communication between patients and clinicians fosters both the delivery of empathic patient-centered care and positive patient outcomes. Although nonverbal skill training is a recognized need, few efforts to enhance patient-clinician communication provide visual feedback on nonverbal aspects of the clinical encounter. We describe a novel approach that uses social signal processing technology (SSP) to capture nonverbal cues in real time and to display ambient visual feedback on control and affiliation--two primary, yet distinct dimensions of interpersonal nonverbal communication. To examine the design and clinician acceptance of ambient visual feedback on nonverbal communication, we 1) formulated a model of relational communication to ground SSP and 2) conducted a formative user study using mixed methods to explore the design of visual feedback. Based on a model of relational communication, we reviewed interpersonal communication research to map nonverbal cues to signals of affiliation and control evidenced in patient-clinician interaction. Corresponding with our formulation of this theoretical framework, we designed ambient real-time visualizations that reflect variations of affiliation and control. To explore clinicians' acceptance of this visual feedback, we conducted a lab study using the Wizard-of-Oz technique to simulate system use with 16 healthcare professionals. We followed up with seven of those participants through interviews to iterate on the design with a revised visualization that addressed emergent design considerations. Ambient visual feedback on non- verbal communication provides a theoretically grounded and acceptable way to provide clinicians with awareness of their nonverbal communication style. We provide implications for the design of such visual feedback that encourages empathic patient

  8. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  9. Research Directions in Real-Time Systems.

    Science.gov (United States)

    1996-09-01

    This report summarizes a survey of published research in real time systems . Material is presented that provides an overview of the topic, focusing on...communications protocols and scheduling techniques. It is noted that real - time systems deserve special attention separate from other areas because of...formal tools for design and analysis of real - time systems . The early work on applications as well as notable theoretical advances are summarized

  10. Highly Reliable Power and Communication System for Essential Instruments under a Severe Accident of NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S. J.; Choi, B. H.; Jung, S. Y.; Rim, Chun T. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, three survivable strategies to overcome the problems listed above are proposed for the essential instruments under the severe accident of NPPs. First, wire/wireless multi power systems are adopted to the essential instruments for continuous power supply. Second, wire/wireless communication systems are proposed for reliable transmission of measuring information among instruments and operators. Third, a physical protection system such as a harness and a heat isolation box is introduced to ensure operable conditions for the proposed systems. In this paper, a highly reliable strategy, which consists of wire/wireless multi power and communication systems and physical protection system is proposed to ensure the survival of the essential instruments under harsh external conditions. The wire/wireless multi power and communication systems are designed to transfer power and data in spite of the failure of conventional wired systems. The physical protection system provides operable environments to the instruments. Therefore, the proposed system can be considered as a candidate of practical and urgent remedy for NPPs under the severe accident. After the Fukushima nuclear accident, survivability of essential instruments has been emphasized for immediate and accurate response. The essential instruments can measure environment conditions such as temperature, pressure, radioactivity and corium behavior inside nuclear power plants (NPPs) under a severe accident. Access to the inside of NPPs is restricted to human beings because of hazardous environment such as high radioactivity, high temperature and high pressure. Thus, monitoring the inside of NPPs is necessary for avoiding damage from the severe accident. Even though there were a number of instruments in Fukushima Daiichi NPP, they failed to obtain exact monitoring information. According to the details of the Fukushima nuclear accident, following problems can be counted as strong candidates of this instruments

  11. Highly Reliable Power and Communication System for Essential Instruments under a Severe Accident of NPPs

    International Nuclear Information System (INIS)

    Yoo, S. J.; Choi, B. H.; Jung, S. Y.; Rim, Chun T.

    2013-01-01

    In this paper, three survivable strategies to overcome the problems listed above are proposed for the essential instruments under the severe accident of NPPs. First, wire/wireless multi power systems are adopted to the essential instruments for continuous power supply. Second, wire/wireless communication systems are proposed for reliable transmission of measuring information among instruments and operators. Third, a physical protection system such as a harness and a heat isolation box is introduced to ensure operable conditions for the proposed systems. In this paper, a highly reliable strategy, which consists of wire/wireless multi power and communication systems and physical protection system is proposed to ensure the survival of the essential instruments under harsh external conditions. The wire/wireless multi power and communication systems are designed to transfer power and data in spite of the failure of conventional wired systems. The physical protection system provides operable environments to the instruments. Therefore, the proposed system can be considered as a candidate of practical and urgent remedy for NPPs under the severe accident. After the Fukushima nuclear accident, survivability of essential instruments has been emphasized for immediate and accurate response. The essential instruments can measure environment conditions such as temperature, pressure, radioactivity and corium behavior inside nuclear power plants (NPPs) under a severe accident. Access to the inside of NPPs is restricted to human beings because of hazardous environment such as high radioactivity, high temperature and high pressure. Thus, monitoring the inside of NPPs is necessary for avoiding damage from the severe accident. Even though there were a number of instruments in Fukushima Daiichi NPP, they failed to obtain exact monitoring information. According to the details of the Fukushima nuclear accident, following problems can be counted as strong candidates of this instruments

  12. Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities

    International Nuclear Information System (INIS)

    Twogood, R.

    2015-01-01

    There is an important need to develop new generation robust RF communication systems to support wireless communications and instrumentation control in geological repositories and nuclear facilities, such as nuclear power plants. Often these facilities have large metallic structures with electromagnetic (EM) transients from plant equipment. The ambient EMI/RFI harsh environment is responsible for degrading radio link bandwidth. Current communication systems often employ physical cables that are not only expensive to install, but deteriorate over time and are vulnerable to failures. Furthermore, conventional high-power narrowband walkie-talkies sometimes upset other electronics. On the other hand, high-quality reliable wireless communications between operators and automated control systems are critical in these facilities, as wireless sensors become more and more prevalent in these operations. In an effort to develop novel wireless communications systems, Dirac Solutions Inc. (DSI) in collaboration with Lawrence Livermore National Laboratory (LLNL), has developed high-quality ultra-wideband (UWB) hand-held communications systems that have proven to have excellent performance in ships and tunnels. The short pulse UWB RF technology, with bandwidths of many hundreds of MHz's, are non-interfering due to low average power. Furthermore, the UWB link has been shown to be highly reliable in the presence of other interfering signals. The DSI UWB communications systems can be adapted for applications in tunnels and nuclear power facilities for voice, data, and instrumentation control. In this paper we show examples of voice communication in ships with UWB walkie-talkies. We have developed novel modulation and demodulation techniques for short pulse UWB communications. The design is a low-power one and in a compact form. The communication units can be produced inexpensively in large quantities. A major application of these units might be their use by IAEA inspectors and

  13. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David [Los Alamos National Laboratory; Bent, John [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory; Brandt, Scott [UCSC

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long as possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.

  14. Formal Specification and Verification of Real-Time Multi-Agent Systems using Timed-Arc Petri Nets

    OpenAIRE

    QASIM, A.; KAZMI, S. A. R.; FAKHIR, I.

    2015-01-01

    In this study we have formally specified and verified the actions of communicating real-time software agents (RTAgents). Software agents are expected to work autonomously and deal with unfamiliar situations astutely. Achieving cent percent test cases coverage for these agents has always been a problem due to limited resources. Also a high degree of dependability and predictability is expected from real-time software agents. In this research we have used Timed-Arc Petri Net...

  15. Control Strategies for Improving Energy Efficiency and Reliability in Autonomous Microgrids with Communication Constraints

    Directory of Open Access Journals (Sweden)

    Francisco Martins Portelinha Júnior

    2017-09-01

    Full Text Available Microgrids are a feasible path to deploy smart grids, an intelligent and highly automated power system. Their operation demands a dedicated communication infrastructure to manage, control and monitor the intermittent sources of energy and loads. Therefore, smart devices will be connected to support the growth of grid smartness increasing the dependency on communication networks, which consumes a high amount of power. In an energy-limited scenario, one of the main issues is to enhance the power supply time. Therefore, this paper proposes a hybrid methodology for microgrid energy management, integrated with a communication infrastructure to improve and to optimize islanded microgrid operation at maximum energy efficiency. The hybrid methodology applies some control management rules, such as intentional load shedding, priority load management, and communication energy saving. These energy saving rules establish a trade-off between increasing microgrid energy availability and communication system reliability. To achieve a compromised solution, a continuous time Markov chain model describes the impact of energy saving policies into system reliability. The proposed methodology is simulated and tested with the help of the modified IEEE 34 node test-system.

  16. Real Time Structured Light and Applications

    DEFF Research Database (Denmark)

    Wilm, Jakob

    Structured light scanning is a versatile method for 3D shape acquisition. While much faster than most competing measurement techniques, most high-end structured light scans still take in the order of seconds to complete. Low-cost sensors such as Microsoft Kinect and time of flight cameras have made......, increased processing power, and methods presented in this thesis, it is possible to perform structured light scans in real time with 20 depth measurements per second. This offers new opportunities for studying dynamic scenes, quality control, human-computer interaction and more. This thesis discusses...... several aspects of real time structured light systems and presents contributions within calibration, scene coding and motion correction aspects. The problem of reliable and fast calibration of such systems is addressed with a novel calibration scheme utilising radial basis functions [Contribution B...

  17. Teaching communication skills in clinical settings: comparing two applications of a comprehensive program with standardized and real patients

    Science.gov (United States)

    2014-01-01

    Background Communication is important for the quality of clinical practice, and programs have been implemented to improve healthcare providers’ communication skills. However, the consistency of programs teaching communication skills has received little attention, and debate exists about the application of acquired skills to real patients. This study inspects whether (1) results from a communication program are replicated with different samples, and (2) results with standardized patients apply to interviews with real patients. Methods A structured, nine-month communication program was applied in two consecutive years to two different samples of healthcare professionals (25 in the first year, 20 in the second year). Results were assessed at four different points in time, each year, regarding participants’ confidence levels (self-rated), basic communication skills in interviews with standardized patients, and basic communication skills in interviews with real patients. Data were analyzed using GLM Repeated-Measures procedures. Results Improvements were statistically significant in both years in all measures except in simulated patients’ assessment of the 2008 group. Differences between the two samples were non-significant. Differences between interviews with standardized and with real patients were also non-significant. Conclusions The program’s positive outcomes were replicated in different samples, and acquired skills were successfully applied to real-patient interviews. This reinforces this type of program structure as a valuable training tool, with results translating into real situations. It also adds to the reliability of the assessment instruments employed, though these may need adaptation in the case of real patients. PMID:24886341

  18. Real-time applications of neural nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs

  19. Real-time applications of neural nets

    International Nuclear Information System (INIS)

    Spencer, J.E.

    1989-01-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas e.g. improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. In this paper, such issues are considered, examples given and possibilities discussed

  20. Real-time applications of neural nets

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.

    1989-05-01

    Producing, accelerating and colliding very high power, low emittance beams for long periods is a formidable problem in real-time control. As energy has grown exponentially in time so has the complexity of the machines and their control systems. Similar growth rates have occurred in many areas, e.g., improved integrated circuits have been paid for with comparable increases in complexity. However, in this case, reliability, capability and cost have improved due to reduced size, high production and increased integration which allow various kinds of feedback. In contrast, most large complex systems (LCS) are perceived to lack such possibilities because only one copy is made. Neural nets, as a metaphor for LCS, suggest ways to circumvent such limitations. It is argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems. While complimentary to AI, they mesh nicely with characteristics desired for real-time systems. Such issues are considered, examples given and possibilities discussed. 21 refs., 6 figs.

  1. Martian Multimedia: The Agony and Ecstasy of Communicating Real-Time, Authentic Science During the Phoenix Mars Mission

    Science.gov (United States)

    Bitter, C.; Buxner, S. R.

    2009-03-01

    The Phoenix Mars Mission faced robust communication challenges requiring real-time solutions. Managing the message from Mars and ensuring the highest quality of science data and news releases were our top priorities during mission surface operations.

  2. Timing System Solution for MedAustron; Real-time Event and Data Distribution Network

    CERN Document Server

    Štefanič, R; Dedič, J; Gutleber, J; Moser, R

    2011-01-01

    MedAustron is an ion beam research and therapy centre under construction in Wiener Neustadt, Austria. The facility features a synchrotron particle accelerator for light ions. The timing system for this class of accelerators has been developed in close collaboration between MedAustron and Cosylab. Mitigating economical and technological risks, we have chosen a proven, widely used Micro Research Finland (MRF) timing equipment and redesigned its FPGA firmware, extending its high-logic services above transport layer, as required by machine specifics. We obtained a generic real-time broadcast network for coordinating actions of a compact, pulse-to-pulse modulation based particle accelerator. High-level services include support for virtual accelerators and a rich selection of event response mechanisms. The system uses a combination of a real-time link for downstream events and a non-real-time link for upstream messaging and non time-critical communication. It comes with National Instruments LabVI...

  3. Reliability Improved Cooperative Communication over Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-10-01

    Full Text Available With the development of smart devices and connection technologies, Wireless Sensor Networks (WSNs are becoming increasingly intelligent. New or special functions can be obtained by receiving new versions of program codes to upgrade their software systems, forming the so-called smart Internet of Things (IoT. Due to the lossy property of wireless channels, data collection in WSNs still suffers from a long delay, high energy consumption, and many retransmissions. Thanks to wireless software-defined networks (WSDNs, software in sensors can now be updated to help them transmit data cooperatively, thereby achieving more reliable communication. In this paper, a Reliability Improved Cooperative Communication (RICC data collection scheme is proposed to improve the reliability of random-network-coding-based cooperative communications in multi-hop relay WSNs without reducing the network lifetime. In WSNs, sensors in different positions can have different numbers of packets to handle, resulting in the unbalanced energy consumption of the network. In particular, nodes in non-hotspot areas have up to 90% of their original energy remaining when the network dies. To efficiently use the residual energy, in RICC, high data transmission power is adopted in non-hotspot areas to achieve a higher reliability at the cost of large energy consumption, and relatively low transmission power is adopted in hotspot areas to maintain the long network lifetime. Therefore, high reliability and a long network lifetime can be obtained simultaneously. The simulation results show that compared with other scheme, RICC can reduce the end-to-end Message Fail delivering Ratio (MFR by 59.4%–62.8% under the same lifetime with a more balanced energy utilization.

  4. High-speed real-time OFDM transmission based on FPGA

    Science.gov (United States)

    Xiao, Xin; Li, Fan; Yu, Jianjun

    2016-02-01

    In this paper, we review our recent research progresses on real-time orthogonal frequency division multiplexing (OFDM) transmission based on FPGA. We successfully demonstrated four-channel wavelength-division multiplexing (WDM) 256.51Gb/s 16-ary quadrature amplitude modulation (16QAM)-OFDM signal transmission system for short-reach optical amplifier free inter-connection with real-time reception. Four optical carriers are modulated by four different 16QAM-OFDM signals via 10G-class direct modulation lasers (DMLs). We achieved highest capacity real-time reception optical OFDM signal transmission over 2.4-km SMF with the bit-error ratio (BER) under soft-decision forward error correction (SD-FEC) limitation of 2.4×10-2. In order to achieve higher spectrum efficiency (SE), we demonstrate 4-channel high level QAM-OFDM transmission over 20-km SMF-28 with real-time reception. 58.72-Gb/s 256QAM-OFDM and 56.4-Gb/s 128QAM-OFDM signal transmission within 25-GHz grid is achieved with the BER under 2.4×10-2 and real-time reception.

  5. Efficient implementation of real-time programs under the VAX/VMS operating system

    Science.gov (United States)

    Johnson, S. C.

    1985-01-01

    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique.

  6. Real-time measurement and control at Jet. Experiment Control

    International Nuclear Information System (INIS)

    Felton, R.; Zabeo, L.; Sartori, F.; Piccolo, F.; Farthing, J.; Budd, T.; Dorling, S.; McCullen, P.; Harling, J.; Dalley, S.; Goodyear, A.; Stephen, A.; Card, P.; Bright, M.; Lucock, R.; Jones, E.; Griph, S.; Hogben, C.; Beldishevski, M.; Buckley, M.; Davis, J.; Young, I.; Hemming, O.; Wheatley, M.; Heesterman, P.; Lloyd, G.; Walters, M.; Bridge, R.; Leggate, H.; Howell, D.; Zastrow, K.D.; Giroud, C.; Coffey, I.; Hawkes, N.; Stamp, M.; Barnsley, R.; Edlington, T.; Guenther, K.; Gowers, C.; Popovichef, S.; Huber, A.; Ingesson, C.; Joffrin, E.; Mazon, D.; Moreau, D.; Murari, A.; Riva, M.; Barana, O.; Bolzonella, T.; Valisa, M.; Innocente, P.; Zerbini, M.; Bosak, K.; Blum, J.; Vitale, E.; Crisanti, F.; La Luna, E. de; Sanchez, J.

    2004-01-01

    Over the past few ears, the preparation of ITER-relevant plasma scenarios has been the main focus experimental activity on tokamaks. The development of integrated, simultaneous, real-time controls of plasma shape, current, pressure, temperature, radiation, neutron profiles, and also impurities, ELMs (edge localized modes) and MHD are now seen to be essential for further development of quasi-steady state conditions with feedback, or the stabilisation of transient phenomena with event-driven actions. For this thrust, the EFDA JET Real Time Project has developed a set of real-time plasma measurements, experiment control, and communication facilities. The Plasma Diagnostics used for real-time experiments are Far Infra Red interferometry, polarimetry, visible, UV and X-ray spectroscopy, LIDAR, bolometry, neutron and magnetics. Further analysis systems produce integrated results such as temperature profiles on geometry derived from MHD equilibrium solutions. The Actuators include toroidal, poloidal and divertor coils, gas and pellet fuelling, neutral beam injection, radiofrequency (ICRH) waves and microwaves (LH). The Heating/Fuelling Operators can either define a power or gas request waveform or select the real-time instantaneous power/gas request from the Real Time Experiment Central Control (RTCC) system. The Real Time Experiment Control system provides both a high-level, control-programming environment and interlocks with the actuators. A MATLAB facility is being developed for the development of more complex controllers. The plasma measurement, controller and plant control systems communicate in ATM network. The EFDA Real Time project is essential groundwork for future reactors such as ITER. It involves many staff from several institutions. The facility is now frequently used in experiments. (authors)

  7. Reliable Rescue Routing Optimization for Urban Emergency Logistics under Travel Time Uncertainty

    Directory of Open Access Journals (Sweden)

    Qiuping Li

    2018-02-01

    Full Text Available The reliability of rescue routes is critical for urban emergency logistics during disasters. However, studies on reliable rescue routing under stochastic networks are still rare. This paper proposes a multiobjective rescue routing model for urban emergency logistics under travel time reliability. A hybrid metaheuristic integrating ant colony optimization (ACO and tabu search (TS was designed to solve the model. An experiment optimizing rescue routing plans under a real urban storm event, was carried out to validate the proposed model. The experimental results showed how our approach can improve rescue efficiency with high travel time reliability.

  8. ASDEX Upgrade Discharge Control System—A real-time plasma control framework

    International Nuclear Information System (INIS)

    Treutterer, W.; Cole, R.; Lüddecke, K.; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2014-01-01

    Highlights: • The ASDEX Upgrade Discharge Control System (DCS) is a comprehensive control system to conduct fusion experiments. • DCS supports real-time diagnostic integration, adaptable feedback schemes, actuator management and exception handling. • DCS offers workflow management, logging and archiving, self-monitoring and inter-process communication. • DCS is based on a distributed, modular software framework architecture designed for real-time operation. • DCS is composed of re-usable generic but highly customisable components. - Abstract: ASDEX Upgrade is a fusion experiment with a size and complexity to allow extrapolation of technical and physical conditions and requirements to devices like ITER and even beyond. In addressing advanced physics topics it makes extensive use of sophisticated real-time control methods. It comprises real-time diagnostic integration, dynamically adaptable multivariable feedback schemes, actuator management including load distribution schemes and a powerful monitoring and pulse supervision concept based on segment scheduling and exception handling. The Discharge Control System (DCS) supplies all this functionality on base of a modular software framework architecture designed for real-time operation. It provides system-wide services like workflow management, logging and archiving, self-monitoring and inter-process communication on Linux, VxWorks and Solaris operating systems. By default DCS supports distributed computing, and a communication layer allows multi-directional signal transfer and data-driven process synchronisation over shared memory as well as over a number of real-time networks. The entire system is built following the same common design concept combining a rich set of re-usable generic but highly customisable components with a configuration-driven component deployment method. We will give an overview on the architectural concepts as well as on the outstanding capabilities of DCS in the domains of inter

  9. ASDEX Upgrade Discharge Control System—A real-time plasma control framework

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching (Germany); Cole, R.; Lüddecke, K. [Unlimited Computer Systems GmbH, Iffeldorf (Germany); Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstraße 2, 85748 Garching (Germany)

    2014-03-15

    Highlights: • The ASDEX Upgrade Discharge Control System (DCS) is a comprehensive control system to conduct fusion experiments. • DCS supports real-time diagnostic integration, adaptable feedback schemes, actuator management and exception handling. • DCS offers workflow management, logging and archiving, self-monitoring and inter-process communication. • DCS is based on a distributed, modular software framework architecture designed for real-time operation. • DCS is composed of re-usable generic but highly customisable components. - Abstract: ASDEX Upgrade is a fusion experiment with a size and complexity to allow extrapolation of technical and physical conditions and requirements to devices like ITER and even beyond. In addressing advanced physics topics it makes extensive use of sophisticated real-time control methods. It comprises real-time diagnostic integration, dynamically adaptable multivariable feedback schemes, actuator management including load distribution schemes and a powerful monitoring and pulse supervision concept based on segment scheduling and exception handling. The Discharge Control System (DCS) supplies all this functionality on base of a modular software framework architecture designed for real-time operation. It provides system-wide services like workflow management, logging and archiving, self-monitoring and inter-process communication on Linux, VxWorks and Solaris operating systems. By default DCS supports distributed computing, and a communication layer allows multi-directional signal transfer and data-driven process synchronisation over shared memory as well as over a number of real-time networks. The entire system is built following the same common design concept combining a rich set of re-usable generic but highly customisable components with a configuration-driven component deployment method. We will give an overview on the architectural concepts as well as on the outstanding capabilities of DCS in the domains of inter

  10. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  11. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  12. Real-Time Observation of Apathy in Long-Term Care Residents With Dementia: Reliability of the Person-Environment Apathy Rating Scale.

    Science.gov (United States)

    Jao, Ying-Ling; Mogle, Jacqueline; Williams, Kristine; McDermott, Caroline; Behrens, Liza

    2018-04-01

    Apathy is prevalent in individuals with dementia. Lack of responsiveness to environmental stimulation is a key characteristic of apathy. The Person-Environment Apathy Rating (PEAR) scale consists of environment and apathy subscales, which allow for examination of environmental impact on apathy. The interrater reliability of the PEAR scale was examined via real-time observation. The current study included 45 observations of 15 long-term care residents with dementia. Each participant was observed at three time points for 10 minutes each. Two raters observed the participant and surrounding environment and independently rated the participant's apathy and environmental stimulation using the PEAR scale. Weighted Kappa was 0.5 to 0.82 for the PEAR-Environment subscale and 0.5 to 0.8 for the PEAR-Apathy subscale. Overall, with the exception of three items with relatively weak reliability (0.50 to 0.56), the PEAR scale showed moderate to strong interrater reliability (0.63 to 0.82). The results support the use of the PEAR scale to measure environmental stimulation and apathy via real-time observation in long-term care residents with dementia. [Journal of Gerontological Nursing, 44(4), 23-28.]. Copyright 2018, SLACK Incorporated.

  13. SURVEY OF COMMUNICATION LINKS FOR ATCA IN PHYSICS

    CERN Document Server

    Makowski, D; Piotrowski, A; Cichalewski, W; Jalmuzna, W; Koprek, W; Simrock, S

    2009-01-01

    Modern machines used in high energy physics require sophisticated and complex control systems. The complex systems are usually built as distributed systems. Therefore, the connectivity and communication links between distributed subsystems play a crucial role in the control system. The Advanced TelecommunicationComputingArchitecture (ATCA) and Advanced Mezzanine Card (AMC) standards have attracted the attention of physics community because they offer various types of data communication channels with high bandwidth, redundancy, high reliability and availability. The standards allow using different types of communication interfaces like PCIe, Gigabit Ethernet, RapidIO. In real-time systems the data transmission latency is also important. The acquisition of real-time data from hundreds of analogue channels is required for the Low Level Radio Frequency (LLRF) controller of XFEL (X-ray Free Electron Laser) accelerator. The paper presents survey of the communication interfaces of the LLRF controller for XFEL. The d...

  14. Applying MDA to SDR for Space to Model Real-time Issues

    Science.gov (United States)

    Blaser, Tammy M.

    2007-01-01

    NASA space communications systems have the challenge of designing SDRs with highly-constrained Size, Weight and Power (SWaP) resources. A study is being conducted to assess the effectiveness of applying the MDA Platform-Independent Model (PIM) and one or more Platform-Specific Models (PSM) specifically to address NASA space domain real-time issues. This paper will summarize our experiences with applying MDA to SDR for Space to model real-time issues. Real-time issues to be examined, measured, and analyzed are: meeting waveform timing requirements and efficiently applying Real-time Operating System (RTOS) scheduling algorithms, applying safety control measures, and SWaP verification. Real-time waveform algorithms benchmarked with the worst case environment conditions under the heaviest workload will drive the SDR for Space real-time PSM design.

  15. Temporal Proof Methodologies for Real-Time Systems,

    Science.gov (United States)

    1990-09-01

    real time systems that communicate either through shared variables or by message passing and real time issues such as time-outs, process priorities (interrupts) and process scheduling. The authors exhibit two styles for the specification of real - time systems . While the first approach uses bounded versions of temporal operators the second approach allows explicit references to time through a special clock variable. Corresponding to two styles of specification the authors present and compare two fundamentally different proof

  16. Modbus RTU protocol and arduino IO package: A real time implementation of a 3 finger adaptive robot gripper

    Directory of Open Access Journals (Sweden)

    Sadun Amirul Syafiq

    2017-01-01

    Full Text Available Recently, the Modbus RTU protocol has been widely accepted in the application of robotics, communications and industrial control systems due to its simplicity and reliability. With the help of the MATLAB Instrument Control Toolbox, a serial communication between Simulink and a 3 Finger Adaptive Robot Gripper can be realized to demonstrate a grasping functionality. The toolbox includes a “to instrument” and “query instrument” programming blocks that enable the users to create a serial communication with the targeted hardware/robot. Similarly, the Simulink Arduino IO package also offers a real-time feature that enabled it to act as a DAQ device. This paper establishes a real-time robot control by using Modbus RTU and Arduino IO Package for a 3 Finger Adaptive Robot Gripper. The robot communication and grasping performance were successfully implemented and demonstrated. In particular, three (3 different grasping mode via normal, wide and pinch were tested. Moreover, the robot gripper’s feedback data, such as encoder position, motor current and the grasping force were easily measured and acquired in real-time. This certainly essential for future grasping analysis of a 3 Finger Adaptive Robot Gripper.

  17. On Real-Time Systems Using Local Area Networks.

    Science.gov (United States)

    1987-07-01

    87-35 July, 1987 CS-TR-1892 On Real - Time Systems Using Local Area Networks*I VShem-Tov Levi Department of Computer Science Satish K. Tripathit...1892 On Real - Time Systems Using Local Area Networks* Shem-Tov Levi Department of Computer Science Satish K. Tripathit Department of Computer Science...constraints and the clock systems that feed the time to real - time systems . A model for real-time system based on LAN communication is presented in

  18. Some selection criteria for computers in real-time systems for high energy physics

    International Nuclear Information System (INIS)

    Kolpakov, I.F.

    1980-01-01

    The right choice of program source is for the organization of real-time systems of great importance as cost and reliability are decisive factors. Some selection criteria for program sources for high energy physics multiwire chamber spectrometers (MWCS) are considered in this report. MWCS's accept bits of information from event pattens. Large and small computers, microcomputers and intelligent controllers in CAMAC crates are compared with respect to the following characteristics: data exchange speed, number of addresses for peripheral devices, cost of interfacing a peripheral device, sizes of buffer and mass memory, configuration costs, and the mean time between failures (MTBF). The results of comparisons are shown by plots and histograms which allow the selection of program sources according to the above criteria. (Auth.)

  19. Real-time monitoring and control of the oil pipeline networks; Monitoramento e controle inteligentes e em tempo real de redes de escoamento de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Brasileiro, F.; Galvao, C.; Brasileiro, E.; Catao, B.; Souto, C.; Machado, E.; Muniz, M.; Souza, A.; Gomes, A. [Universidade Federal de Campina Grande, PB (Brazil)]. E-mail: fubica@dsc.ufcg.edu.br; Aloise, D. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Oliveira, A.; Gomes, C.; Rolim, T.; Boquimpani, C. [PETROBRAS S.A. (Brazil)

    2003-07-01

    Real-time monitoring and control of complex and large-scale oil pipeline networks is complicated by several requirements, among them: reliability of data acquisition and communication systems; strict time limits between data acquisition and decision of control action; operational constraints of a large number of pipeline devices and multi-objective control, involving economic, operational, environmental and institutional objectives and constraints. The MDTP system was designed for meeting such requirements. A simulation-optimization approach is the strategy adopted for the network state prediction and control. The simulation module is based on the quasi-steady state hydraulics of oil-water flow. The control is centered on the pumping systems, respecting operational constraints of tanks and pipes, without reducing the oil production targets. For real-time control, an optimization scheme generates multiple operational scenarios, the optimum of them being selected by means of a meta-heuristics approach. To meet the strict time limits for deciding the control strategy, a grid computing architecture was adopted, instead of conventional dedicated high-performance computers. (author)

  20. Reliable vehicular broadcast using 5G device-to-device communication

    NARCIS (Netherlands)

    Gholibeigi, Mozhdeh; Sarrionandia, Nora; Karimzadeh Motallebi Azar, Morteza; Baratchi, Mitra; van den Berg, Hans Leo; Heijenk, Geert

    2017-01-01

    With the ever-increasing call for connected vehicles and intelligent transportation applications, vehicular networking have been of significant focus recently. Demands for highly reliable communication challenge the current underlying technology and transformations in vehicular communication are

  1. Reliability issues and solutions for coding social communication performance in classroom settings.

    Science.gov (United States)

    Olswang, Lesley B; Svensson, Liselotte; Coggins, Truman E; Beilinson, Jill S; Donaldson, Amy L

    2006-10-01

    To explore the utility of time-interval analysis for documenting the reliability of coding social communication performance of children in classroom settings. Of particular interest was finding a method for determining whether independent observers could reliably judge both occurrence and duration of ongoing behavioral dimensions for describing social communication performance. Four coders participated in this study. They observed and independently coded 6 social communication behavioral dimensions using handheld computers. The dimensions were mutually exclusive and accounted for all verbal and nonverbal productions during a specified time frame. The technology allowed for coding frequency and duration for each entered code. Data were collected from 20 different 2-min video segments of children in kindergarten through 3rd-grade classrooms. Data were analyzed for interobserver and intraobserver agreements using time-interval sorting and Cohen's kappa. Further, interval size and total observation length were manipulated to determine their influence on reliability. The data revealed interval sorting and kappa to be a suitable method for examining reliability of occurrence and duration of ongoing social communication behavioral dimensions. Nearly all comparisons yielded medium to large kappa values; interval size and length of observation minimally affected results. Implications The analysis procedure described in this research solves a challenge in reliability: comparing coding by independent observers of both occurrence and duration of behaviors. Results indicate the utility of a new coding taxonomy and technology for application in online observations of social communication in a classroom setting.

  2. Near real-time GPS applications for tsunami early warning systems

    Directory of Open Access Journals (Sweden)

    C. Falck

    2010-02-01

    Full Text Available GPS (Global Positioning System technology is widely used for positioning applications. Many of them have high requirements with respect to precision, reliability or fast product delivery, but usually not all at the same time as it is the case for early warning applications. The tasks for the GPS-based components within the GITEWS project (German Indonesian Tsunami Early Warning System, Rudloff et al., 2009 are to support the determination of sea levels (measured onshore and offshore and to detect co-seismic land mass displacements with the lowest possible latency (design goal: first reliable results after 5 min. The completed system was designed to fulfil these tasks in near real-time, rather than for scientific research requirements. The obtained data products (movements of GPS antennas are supporting the warning process in different ways. The measurements from GPS instruments on buoys allow the earliest possible detection or confirmation of tsunami waves on the ocean. Onshore GPS measurements are made collocated with tide gauges or seismological stations and give information about co-seismic land mass movements as recorded, e.g., during the great Sumatra-Andaman earthquake of 2004 (Subarya et al., 2006. This information is important to separate tsunami-caused sea height movements from apparent sea height changes at tide gauge locations (sensor station movement and also as additional information about earthquakes' mechanisms, as this is an essential information to predict a tsunami (Sobolev et al., 2007.

    This article gives an end-to-end overview of the GITEWS GPS-component system, from the GPS sensors (GPS receiver with GPS antenna and auxiliary systems, either onshore or offshore to the early warning centre displays. We describe how the GPS sensors have been installed, how they are operated and the methods used to collect, transfer and process the GPS data in near real-time. This includes the sensor system design, the communication

  3. A digital approach for real time high-rate high-resolution radiation measurements

    International Nuclear Information System (INIS)

    Gerardi, G.; Abbene, L.

    2014-01-01

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  4. A digital approach for real time high-rate high-resolution radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, G.; Abbene, L., E-mail: leonardo.abbene@unipa.it

    2014-12-21

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps)

  5. An advanced real time energy management system for microgrids

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Youssef, Tarek; Gualous, Hamid; Mohammed, Osama

    2016-01-01

    This paper presents an advanced Real-Time Energy Management System (RT-EMS) for Microgrid (MG) systems. The proposed strategy of RT-EMS capitalizes on the power of Genetic Algorithms (GAs) to minimize the energy cost and carbon dioxide emissions while maximizing the power of the available renewable energy resources. MATLAB-dSPACE Real-Time Interface Libraries (MLIB/MTRACE) are used as new tools to run the optimization code in Real-Time Operation (RTO). The communication system is developed based on ZigBee communication network which is designed to work in harsh radio environment where the control system is developed based on Advanced Lead-Lag Compensator (ALLC) which its parameters are tuned online to achieve fast convergence and good tracking response. The proposed RT-EMS along with its control and communication systems is experimentally tested to validate the results obtained from the optimization algorithm in a real MG testbed. The simulation and experimental results using real-world data highlight the effectiveness of the proposed RT-EMS for MGs applications. - Highlights: • Real-time energy management system of a typical MG is developed, and analyzed. • RT-EMS considered the nonlinear cost function and emission constraints. • MLIB/MTRACE libraries in dSPACE are used as new tools to run the optimization code. • The communication system is developed based on a Zigbee communication network. • Control system parameters are tuned online to achieve good tracking response.

  6. Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Liew, Sook-Lei; Rana, Mohit; Cornelsen, Sonja; Fortunato de Barros Filho, Marcos; Birbaumer, Niels; Sitaram, Ranganatha; Cohen, Leonardo G; Soekadar, Surjo R

    2016-08-01

    Two thirds of stroke survivors experience motor impairment resulting in long-term disability. The anatomical substrate is often the disruption of cortico-subcortical pathways. It has been proposed that reestablishment of cortico-subcortical communication relates to functional recovery. In this study, we applied a novel training protocol to augment ipsilesional cortico-subcortical connectivity after stroke. Chronic stroke patients with severe motor impairment were provided online feedback of blood-oxygenation level dependent signal connectivity between cortical and subcortical regions critical for motor function using real-time functional magnetic resonance imaging neurofeedback. In this proof of principle study, 3 out of 4 patients learned to voluntarily modulate cortico-subcortical connectivity as intended. Our results document for the first time the feasibility and safety for patients with chronic stroke and severe motor impairment to self-regulate and augment ipsilesional cortico-subcortical connectivity through neurofeedback using real-time functional magnetic resonance imaging. © The Author(s) 2015.

  7. A real-time sub-μrad laser beam tracking system

    Science.gov (United States)

    Buske, Ivo; Schragner, Ralph; Riede, Wolfgang

    2007-10-01

    We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.

  8. Reliability assessment of fiber optic communication lines depending on external factors and diagnostic errors

    Science.gov (United States)

    Bogachkov, I. V.; Lutchenko, S. S.

    2018-05-01

    The article deals with the method for the assessment of the fiber optic communication lines (FOCL) reliability taking into account the effect of the optical fiber tension, the temperature influence and the built-in diagnostic equipment errors of the first kind. The reliability is assessed in terms of the availability factor using the theory of Markov chains and probabilistic mathematical modeling. To obtain a mathematical model, the following steps are performed: the FOCL state is defined and validated; the state graph and system transitions are described; the system transition of states that occur at a certain point is specified; the real and the observed time of system presence in the considered states are identified. According to the permissible value of the availability factor, it is possible to determine the limiting frequency of FOCL maintenance.

  9. A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility.

    Science.gov (United States)

    Zaballos, Agustín; Navarro, Joan; Martín De Pozuelo, Ramon

    2018-02-28

    Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid's data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  10. Real-time high dynamic range laser scanning microscopy

    Science.gov (United States)

    Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.

    2016-04-01

    In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.

  11. REAL TIME SYSTEM OPERATIONS 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Parashar, Manu; Lewis, Nancy Jo

    2008-08-15

    The Real Time System Operations (RTSO) 2006-2007 project focused on two parallel technical tasks: (1) Real-Time Applications of Phasors for Monitoring, Alarming and Control; and (2) Real-Time Voltage Security Assessment (RTVSA) Prototype Tool. The overall goal of the phasor applications project was to accelerate adoption and foster greater use of new, more accurate, time-synchronized phasor measurements by conducting research and prototyping applications on California ISO's phasor platform - Real-Time Dynamics Monitoring System (RTDMS) -- that provide previously unavailable information on the dynamic stability of the grid. Feasibility assessment studies were conducted on potential application of this technology for small-signal stability monitoring, validating/improving existing stability nomograms, conducting frequency response analysis, and obtaining real-time sensitivity information on key metrics to assess grid stress. Based on study findings, prototype applications for real-time visualization and alarming, small-signal stability monitoring, measurement based sensitivity analysis and frequency response assessment were developed, factory- and field-tested at the California ISO and at BPA. The goal of the RTVSA project was to provide California ISO with a prototype voltage security assessment tool that runs in real time within California ISO?s new reliability and congestion management system. CERTS conducted a technical assessment of appropriate algorithms, developed a prototype incorporating state-of-art algorithms (such as the continuation power flow, direct method, boundary orbiting method, and hyperplanes) into a framework most suitable for an operations environment. Based on study findings, a functional specification was prepared, which the California ISO has since used to procure a production-quality tool that is now a part of a suite of advanced computational tools that is used by California ISO for reliability and congestion management.

  12. Designing fault-tolerant real-time computer systems with diversified bus architecture for nuclear power plants

    International Nuclear Information System (INIS)

    Behera, Rajendra Prasad; Murali, N.; Satya Murty, S.A.V.

    2014-01-01

    Fault-tolerant real-time computer (FT-RTC) systems are widely used to perform safe operation of nuclear power plants (NPP) and safe shutdown in the event of any untoward situation. Design requirements for such systems need high reliability, availability, computational ability for measurement via sensors, control action via actuators, data communication and human interface via keyboard or display. All these attributes of FT-RTC systems are required to be implemented using best known methods such as redundant system design using diversified bus architecture to avoid common cause failure, fail-safe design to avoid unsafe failure and diagnostic features to validate system operation. In this context, the system designer must select efficient as well as highly reliable diversified bus architecture in order to realize fault-tolerant system design. This paper presents a comparative study between CompactPCI bus and Versa Module Eurocard (VME) bus architecture for designing FT-RTC systems with switch over logic system (SOLS) for NPP. (author)

  13. Interdyad Differences in Early Mother-Infant Face-to-Face Communication: Real-Time Dynamics and Developmental Pathways

    Science.gov (United States)

    Lavelli, Manuela; Fogel, Alan

    2013-01-01

    A microgenetic research design with a multiple case study method and a combination of quantitative and qualitative analyses was used to investigate interdyad differences in real-time dynamics and developmental change processes in mother-infant face-to-face communication over the first 3 months of life. Weekly observations of 24 mother-infant dyads…

  14. Reliability of the imaging software in the preoperative planning of the open-wedge high tibial osteotomy.

    Science.gov (United States)

    Lee, Yong Seuk; Kim, Min Kyu; Byun, Hae Won; Kim, Sang Bum; Kim, Jin Goo

    2015-03-01

    The purpose of this study was to verify a recently developed picture-archiving and communications system-photoshop method by comparing reliabilities between real-size paper template and the PACS-photoshop methods in preoperative planning of open-wedge high tibial osteotomy. A prospective case series was conducted, including patients with medial osteoarthritis undergoing open-wedge high tibial osteotomy. In the preoperative planning, the picture-archiving and communications system-photoshop method and real-size paper template method were used simultaneously in all patients. Preoperative hip-knee-ankle angle, height, and angle of the osteotomy were evaluated. The reliability of this newly devised method was evaluated, and the consistency between the two methods was also evaluated using intra-class correlation coefficient. Using the picture-archiving and communications system-photoshop method, the mean correction angle and height of osteotomy gap of rater-1 were 11.7° ± 3.6° and 10.7 ± 3.6 mm, respectively. The mean correction angle and height of osteotomy gap of rater-2 were 12.0 ± 2.6 and 10.8 ± 3.6, respectively. The inter- and intra-rater reliabilities of the correction angle were 0.956 ~ 0.979 and 0.980 ~ 0.992, respectively. The inter- and intra-rater reliabilities of the height of the osteotomy gap were 0.968 ~ 0.985 and 0.971 ~ 0.994, respectively (p photoshop method, mean values of the correction angle and height of the osteotomy gap were 11.9° ± 3.6° and 10.8 ± 3.6 mm, respectively. Consistency between the two methods by comparing the means of the correction angle and the height of the osteotomy gap were 0.985 and 0.985, respectively (p photoshop method enables direct measurement of the height of the osteotomy gap with high reliability.

  15. Real-time systems scheduling fundamentals

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc.  Scheduling is a central problem for these computing/communication systems since responsible of software execution in a timely manner. This book provides state of knowledge in this domain with special emphasis on the key results obtained within the last decade. This book addresses foundations as well as the latest advances and findings in Real-Time Scheduling, giving all references to important papers. But nevertheless the chapters will be short and not overloaded with confusing details.

  16. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Linke Sonja

    2006-01-01

    Full Text Available Abstract Background Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome. Results To evaluate the precision of the icd and IS1111 real-time PCR assays, we performed different PCR runs with independent DNA dilutions of the C. burnetii Nine Mile RSA493 strain. The results showed very low variability, indicating efficient reproducibility of both assays. Using probit analysis, we determined that the minimal number of genome equivalents per reaction that could be detected with a 95% probability was 10 for the icd marker and 6.5 for the IS marker. Plasmid standards with cloned icd and IS1111 fragments were used to establish standard curves which were linear over a range from 10 to 107 starting plasmid copy numbers. We were able to quantify cell numbers of a diluted, heat-inactivated Coxiella isolate with a detection limit of 17 C. burnetii particles per reaction. Real-time PCR targeting both markers was performed with DNA of 75 different C. burnetii isolates originating from all over the world. Using this approach, the number of IS1111 elements in the genome of the Nine Mile strain was determined to be 23, close to 20, the number revealed by genome sequencing. In other isolates, the number of IS1111 elements varied widely (between seven and 110 and seemed to be very high in some isolates. Conclusion We validated TaqMan-based real-time PCR assays targeting the icd and IS1111 markers of C. burnetii. The assays were shown to be specific, highly

  17. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  18. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  19. The Fast Tracker Real Time Processor: high quality real-time tracking at ATLAS

    CERN Document Server

    Stabile, A; The ATLAS collaboration

    2011-01-01

    As the LHC luminosity is ramped up to the design level of 1x1034 cm−2 s−1 and beyond, the high rates, multiplicities, and energies of particles seen by the detectors will pose a unique challenge. Only a tiny fraction of the produced collisions can be stored on tape and immense real-time data reduction is needed. An effective trigger system must maintain high trigger efficiencies for the most important physics and at the same time suppress the enormous QCD backgrounds. This requires massive computing power to minimize the online execution time of complex algorithms. A multi-level trigger is an effective solution for an otherwise impossible problem. The Fast Tracker (FTK)[1], [2] is a proposed upgrade to the current ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK is a dedicated Super Computer based on a mixture of advanced technologies. The architecture broadly employs powerf...

  20. High-resolution near real-time drought monitoring in South Asia

    OpenAIRE

    Aadhar, Saran; Mishra, Vimal

    2017-01-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to m...

  1. Integration of MDSplus in real-time systems

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.

    2006-01-01

    RFX-mod makes extensive usage of real-time systems for feedback control and uses MDSplus to interface them to the main Data Acquisition system. For this purpose, the core of MDSplus has been ported to VxWorks, the operating system used for real-time control in RFX. Using this approach, it is possible to integrate real-time systems, but MDSplus is used only for non-real-time tasks, i.e. those tasks which are executed before and after the pulse and whose performance does not affect the system time constraints. More extensive use of MDSplus in real-time systems is foreseen, and a real-time layer for MDSplus is under development, which will provide access to memory-mapped pulse files, shared by the tasks running on the same CPU. Real-time communication will also be integrated in the MDSplus core to provide support for distributed memory-mapped pulse files

  2. Software coding for reliable data communication in a reactor safety system

    International Nuclear Information System (INIS)

    Maghsoodi, R.

    1978-01-01

    A software coding method is proposed to improve the communication reliability of a microprocessor based fast-reactor safety system. This method which replaces the conventional coding circuitry, applies a program to code the data which is communicated between the processors via their data memories. The system requirements are studied and the suitable codes are suggested. The problems associated with hardware coders, and the advantages of software coding methods are discussed. The product code which proves a faster coding time over the cyclic code is chosen as the final code. Then the improvement of the communication reliability is derived for a processor and its data memory. The result is used to calculate the reliability improvement of the processing channel as the basic unit for the safety system. (author)

  3. Automated real-time software development

    Science.gov (United States)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  4. Distributed, Embedded and Real-time Java Systems

    CERN Document Server

    Wellings, Andy

    2012-01-01

    Research on real-time Java technology has been prolific over the past decade, leading to a large number of corresponding hardware and software solutions, and frameworks for distributed and embedded real-time Java systems.  This book is aimed primarily at researchers in real-time embedded systems, particularly those who wish to understand the current state of the art in using Java in this domain.  Much of the work in real-time distributed, embedded and real-time Java has focused on the Real-time Specification for Java (RTSJ) as the underlying base technology, and consequently many of the Chapters in this book address issues with, or solve problems using, this framework. Describes innovative techniques in: scheduling, memory management, quality of service and communication systems supporting real-time Java applications; Includes coverage of multiprocessor embedded systems and parallel programming; Discusses state-of-the-art resource management for embedded systems, including Java’s real-time garbage collect...

  5. An improved grey model for the prediction of real-time GPS satellite clock bias

    Science.gov (United States)

    Zheng, Z. Y.; Chen, Y. Q.; Lu, X. S.

    2008-07-01

    In real-time GPS precise point positioning (PPP), real-time and reliable satellite clock bias (SCB) prediction is a key to implement real-time GPS PPP. It is difficult to hold the nuisance and inenarrable performance of space-borne GPS satellite atomic clock because of its high-frequency, sensitivity and impressionable, it accords with the property of grey model (GM) theory, i. e. we can look on the variable process of SCB as grey system. Firstly, based on limits of quadratic polynomial (QP) and traditional GM to predict SCB, a modified GM (1,1) is put forward to predict GPS SCB in this paper; and then, taking GPS SCB data for example, we analyzed clock bias prediction with different sample interval, the relationship between GM exponent and prediction accuracy, precision comparison of GM to QP, and concluded the general rule of different type SCB and GM exponent; finally, to test the reliability and validation of the modified GM what we put forward, taking IGS clock bias ephemeris product as reference, we analyzed the prediction precision with the modified GM, It is showed that the modified GM is reliable and validation to predict GPS SCB and can offer high precise SCB prediction for real-time GPS PPP.

  6. Hardware locks for a real-time Java chip multiprocessor

    DEFF Research Database (Denmark)

    Strøm, Torur Biskopstø; Puffitsch, Wolfgang; Schoeberl, Martin

    2016-01-01

    A software locking mechanism commonly protects shared resources for multithreaded applications. This mechanism can, especially in chip-multiprocessor systems, result in a large synchronization overhead. For real-time systems in particular, this overhead increases the worst-case execution time....... This improvement can allow a larger number of real-time tasks to be reliably scheduled on a multiprocessor real-time platform....

  7. Synchronization and fault-masking in redundant real-time systems

    Science.gov (United States)

    Krishna, C. M.; Shin, K. G.; Butler, R. W.

    1983-01-01

    A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration.

  8. Effects of computing time delay on real-time control systems

    Science.gov (United States)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  9. AUTOMATED CONTROL AND REAL-TIME DATA PROCESSING OF WIRE SCANNER/HALO SCRAPER MEASUREMENTS

    International Nuclear Information System (INIS)

    Day, L.A.; Gilpatrick, J.D.

    2001-01-01

    The Low-Energy Demonstration Accelerator (LEDA), assembled and operating at Los Alamos National Laboratory, provides the platform for obtaining measurements of high-power proton beam-halo formation. Control system software and hardware have been integrated and customized to enable the production of real-time beam-halo profiles. The Experimental Physics and Industrial Control System (EPICS) hosted on a VXI platform, Interactive Data Language (IDL) programs hosted on UNIX platforms, and LabVIEW (LV) Virtual Instruments hosted on a PC platform have been integrated and customized to provide real-time, synchronous motor control, data acquisition, and data analysis of data acquired through specialized DSP instrumentation. These modules communicate through EPICS Channel Access (CA) communication protocol extensions to control and manage execution flow ensuring synchronous data acquisition and real-time processing of measurement data. This paper describes the software integration and management scheme implemented to produce these real-time beam profiles

  10. Standardised clients as assessors in a veterinary communication OSCE: a reliability and validity study.

    Science.gov (United States)

    Artemiou, E; Adams, C L; Hecker, K G; Vallevand, A; Violato, C; Coe, J B

    2014-11-22

    In human medicine, standardised patients (SP) have been shown to reliably and accurately assess learners' communication performance in high-stakes certification Objective Structured Clinical Examinations (OSCE), offering a feasible way to reduce the need for recruitment, time commitment and coordination of faculty assessors. In this study, we evaluated the use of standardised clients (SC) as a viable option for assessing veterinary students' communication performance. We designed a four-station, two-track communication skills OSCE. SC assessors used an adapted nine-item Liverpool Undergraduate Communication Assessment Scale (LUCAS). Faculty used a 21-item checklist derived from the Calgary-Cambridge Guide (CCG) and a five-point global rating scale. Participants were second year veterinary students (n=96). For the four stations, intrastation reliability (α) ranged from 0.63 to 0.82 for the LUCAS, and 0.73 to 0.87 for the CCG. The interstation reliability coefficients were 0.85 for the LUCAS and 0.89 for the CGG. The calculated Generalisability (G) coefficients were 0.62 for the LUCAS and 0.60 for the CGG. Supporting construct validity, SC and faculty assessors showed a significant correlation between the LUCAS and CCG total percent scores (r=0.45, PStudy results support that SC assessors offer a reliable and valid approach for assessing veterinary communication OSCE. British Veterinary Association.

  11. Testing of real-time-software

    International Nuclear Information System (INIS)

    Friesland, G.; Ovenhausen, H.

    1975-05-01

    The situation in the area of testing real-time-software is unsatisfactory. During the first phase of the project PROMOTE (prozessorientiertes Modul- und Gesamttestsystem) an analysis of the momentary situation took place, results of which are summarized in the following study about some user interviews and an analysis of relevant literature. 22 users (industry, software-houses, hardware-manufacturers, and institutes) have been interviewed. Discussions were held about reliability of real-time software with special interest to error avoidance, testing, and debugging. Main aims of the analysis of the literature were elaboration of standard terms, comparison of existing test methods and -systems, and the definition of boundaries to related areas. During the further steps of this project some means and techniques will be worked out to systematically test real-time software. (orig.) [de

  12. Adding Timing Requirements to the CODARTS Real-Time Software Design Method

    DEFF Research Database (Denmark)

    Bach, K.R.

    The CODARTS software design method consideres how concurrent, distributed and real-time applications can be designed. Although accounting for the important issues of task and communication, the method does not provide means for expressing the timeliness of the tasks and communication directly...

  13. Real-Time, Interactive Echocardiography Over High-Speed Networks: Feasibility and Functional Requirements

    Science.gov (United States)

    Bobinsky, Eric A.

    1998-01-01

    Real-time, Interactive Echocardiography Over High Speed Networks: Feasibility and Functional Requirements is an experiment in advanced telemedicine being conducted jointly by the NASA Lewis Research Center, the NASA Ames Research Center, and the Cleveland Clinic Foundation. In this project, a patient undergoes an echocardiographic examination in Cleveland while being diagnosed remotely by a cardiologist in California viewing a real-time display of echocardiographic video images transmitted over the broadband NASA Research and Education Network (NREN). The remote cardiologist interactively guides the sonographer administering the procedure through a two-way voice link between the two sites. Echocardiography is a noninvasive medical technique that applies ultrasound imaging to the heart, providing a "motion picture" of the heart in action. Normally, echocardiographic examinations are performed by a sonographer and cardiologist who are located in the same medical facility as the patient. The goal of telemedicine is to allow medical specialists to examine patients located elsewhere, typically in remote or medically underserved geographic areas. For example, a small, rural clinic might have access to an echocardiograph machine but not a cardiologist. By connecting this clinic to a major metropolitan medical facility through a communications network, a minimally trained technician would be able to carry out the procedure under the supervision and guidance of a qualified cardiologist.

  14. A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility

    Science.gov (United States)

    2018-01-01

    Information and communication technologies (ICTs) have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs) to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid’s data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29495599

  15. A Custom Approach for a Flexible, Real-Time and Reliable Software Defined Utility

    Directory of Open Access Journals (Sweden)

    Agustín Zaballos

    2018-02-01

    Full Text Available Information and communication technologies (ICTs have enabled the evolution of traditional electric power distribution networks towards a new paradigm referred to as the smart grid. However, the different elements that compose the ICT plane of a smart grid are usually conceived as isolated systems that typically result in rigid hardware architectures, which are hard to interoperate, manage and adapt to new situations. In the recent years, software-defined systems that take advantage of software and high-speed data network infrastructures have emerged as a promising alternative to classic ad hoc approaches in terms of integration, automation, real-time reconfiguration and resource reusability. The purpose of this paper is to propose the usage of software-defined utilities (SDUs to address the latent deployment and management limitations of smart grids. More specifically, the implementation of a smart grid’s data storage and management system prototype by means of SDUs is introduced, which exhibits the feasibility of this alternative approach. This system features a hybrid cloud architecture able to meet the data storage requirements of electric utilities and adapt itself to their ever-evolving needs. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  16. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    Energy Technology Data Exchange (ETDEWEB)

    Murari, A.; Barana, O. [Consorzio RFX Associazione EURATOM ENEA per la Fusione, Corso Stati Uniti 4, Padua (Italy); Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon (United Kingdom); Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D. [Association EURATOM-CEA, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Albanese, R. [Assoc. Euratom-ENEA-CREATE, Univ. Mediterranea RC (Italy); Arena, P.; Bruno, M. [Assoc. Euratom-ENEA-CREATE, Univ.di Catania (Italy); Ambrosino, G.; Ariola, M. [Assoc. Euratom-ENEA-CREATE, Univ. Napoli Federico Napoli (Italy); Crisanti, F. [Associazone EURATOM ENEA sulla Fusione, C.R. Frascati (Italy); Luna, E. de la; Sanchez, J. [Associacion EURATOM CIEMAT para Fusion, Madrid (Spain)

    2004-07-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  17. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Murari, A.; Barana, O.; Albanese, R.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with internal transport barriers. Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  18. Development of real time diagnostics and feedback algorithms for JET in view of the next step

    International Nuclear Information System (INIS)

    Murari, A.; Barana, O.; Murari, A.; Felton, R.; Zabeo, L.; Piccolo, F.; Sartori, F.; Joffrin, E.; Mazon, D.; Laborde, L.; Moreau, D.; Albanese, R.; Arena, P.; Bruno, M.; Ambrosino, G.; Ariola, M.; Crisanti, F.; Luna, E. de la; Sanchez, J.

    2004-01-01

    Real time control of many plasma parameters will be an essential aspect in the development of reliable high performance operation of Next Step Tokamaks. The main prerequisites for any feedback scheme are the precise real-time determination of the quantities to be controlled, requiring top quality and highly reliable diagnostics, and the availability of robust control algorithms. A new set of real time diagnostics was recently implemented on JET to prove the feasibility of determining, with high accuracy and time resolution, the most important plasma quantities. With regard to feedback algorithms, new model-based controllers were developed to allow a more robust control of several plasma parameters. Both diagnostics and algorithms were successfully used in several experiments, ranging from H-mode plasmas to configuration with ITBs (internal thermal barriers). Since elaboration of computationally heavy measurements is often required, significant attention was devoted to non-algorithmic methods like Digital or Cellular Neural/Nonlinear Networks. The real time hardware and software adopted architectures are also described with particular attention to their relevance to ITER. (authors)

  19. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    Science.gov (United States)

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  20. Real time programming environment for Windows

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, D.R. [LaBelle (Dennis R.), Clifton Park, NY (United States)

    1998-04-01

    This document provides a description of the Real Time Programming Environment (RTProE). RTProE tools allow a programmer to create soft real time projects under general, multi-purpose operating systems. The basic features necessary for real time applications are provided by RTProE, leaving the programmer free to concentrate efforts on his specific project. The current version supports Microsoft Windows{trademark} 95 and NT. The tasks of real time synchronization and communication with other programs are handled by RTProE. RTProE includes a generic method for connecting a graphical user interface (GUI) to allow real time control and interaction with the programmer`s product. Topics covered in this paper include real time performance issues, portability, details of shared memory management, code scheduling, application control, Operating System specific concerns and the use of Computer Aided Software Engineering (CASE) tools. The development of RTProE is an important step in the expansion of the real time programming community. The financial costs associated with using the system are minimal. All source code for RTProE has been made publicly available. Any person with access to a personal computer, Windows 95 or NT, and C or FORTRAN compilers can quickly enter the world of real time modeling and simulation.

  1. Deciding between compensated volume balance and real time transient models for pipeline leak detection system

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Renan Martins [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Div. de Explotacao]. E-mail: renan@cenpes.petrobras.com.br

    2000-07-01

    This paper describes a technical procedure to assess a software based leak detection system (LDS), by deciding between a simpler low cost, less effective product, having a fast installation and tuning, and a complex one with high cost and efficiency, which however takes a long time to be properly installed. This is a common decision among the pipeline operating companies, considering that the majority of the lines are short, with single phase liquid flow (which may include batches), basic communication system and instrumentation. Service companies offer realistic solutions for liquid flow, but usually designed to big pipeline networks, flowing multiple batches and allowing multiple fluid entrances and deliveries. Those solutions are sometimes impractical to short pipelines, due to its high cost, as well as long tuning procedures, complex instrumentation, communication and computer requirements. It is intended to approach here the best solution according to its cost. In a practical sense, it means to differentiate the various LDS techniques. Those techniques are available in a considerable number, and they are still spreading, according to the different scenarios. However, two most known and worldwide implemented techniques hold the majority of the market: the Compensated Volume Balance (CVB), which is less accurate, reliable and robust, but cheaper, simpler and faster to install, and the Real Time Transient Model (RTTM), which is very reliable, accurate and robust, but expensive and complex. This work will describe a way to define whether one can use or not a CVB in a pipeline. (author)

  2. Enhanced Time Out: An Improved Communication Process.

    Science.gov (United States)

    Nelson, Patricia E

    2017-06-01

    An enhanced time out is an improved communication process initiated to prevent such surgical errors as wrong-site, wrong-procedure, or wrong-patient surgery. The enhanced time out at my facility mandates participation from all members of the surgical team and requires designated members to respond to specified time out elements on the surgical safety checklist. The enhanced time out incorporated at my facility expands upon the safety measures from the World Health Organization's surgical safety checklist and ensures that all personnel involved in a surgical intervention perform a final check of relevant information. Initiating the enhanced time out at my facility was intended to improve communication and teamwork among surgical team members and provide a highly reliable safety process to prevent wrong-site, wrong-procedure, and wrong-patient surgery. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  3. Near real time/low latency data collection for climate warming manipulations and an elevated CO2 SPRUCE experiment

    Science.gov (United States)

    Krassovski, M.; Hanson, P. J.; Riggs, J. S.; Nettles, W. R., IV

    2017-12-01

    Climate change studies are one of the most important aspects of modern science and related experiments are getting bigger and more complex. One such experiment is the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE, http://mnspruce.ornl.gov) conducted in in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. This manipulation experiment generates a lot of observational data and requires a reliable onsite data collection system, dependable methods to transfer data to a robust scientific facility, and real-time monitoring capabilities. This presentation shares our experience of establishing near real time/low latency data collection and monitoring system using satellite communication.

  4. Advanced Map For Real-Time Process Control

    Science.gov (United States)

    Shiobara, Yasuhisa; Matsudaira, Takayuki; Sashida, Yoshio; Chikuma, Makoto

    1987-10-01

    MAP, a communications protocol for factory automation proposed by General Motors [1], has been accepted by users throughout the world and is rapidly becoming a user standard. In fact, it is now a LAN standard for factory automation. MAP is intended to interconnect different devices, such as computers and programmable devices, made by different manufacturers, enabling them to exchange information. It is based on the OSI intercomputer com-munications protocol standard under development by the ISO. With progress and standardization, MAP is being investigated for application to process control fields other than factory automation [2]. The transmission response time of the network system and centralized management of data exchanged with various devices for distributed control are import-ant in the case of a real-time process control with programmable controllers, computers, and instruments connected to a LAN system. MAP/EPA and MINI MAP aim at reduced overhead in protocol processing and enhanced transmission response. If applied to real-time process control, a protocol based on point-to-point and request-response transactions limits throughput and transmission response. This paper describes an advanced MAP LAN system applied to real-time process control by adding a new data transmission control that performs multicasting communication voluntarily and periodically in the priority order of data to be exchanged.

  5. High-level synthesis for reduction of WCET in real-time systems

    DEFF Research Database (Denmark)

    Kristensen, Andreas Toftegaard; Pezzarossa, Luca; Sparsø, Jens

    2017-01-01

    . Compared to executing the high-level language code on a processor, HLS can be used to create hardware that accelerates critical parts of the code. When discussing performance in the context or real-time systems, it is the worst-case execution time (WCET) of a task that matters. WCET obviously benefits from...... hardware acceleration, but it may also benefit from a tighter bound on the WCET. This paper explores the use of and integration of accelerators generated using HLS into a time-predictable processor intended for real-time systems. The high-level design tool, Vivado HLS, is used to generate hardware...

  6. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  7. Applicable value of real time interventional ultrasound guidance in family planning reproduction operation

    International Nuclear Information System (INIS)

    Wu Guoping; Zou Dongfang; Sun Jian; Dong Weihua

    2007-01-01

    Objective: To determine the clinical value of real time interventional ultrasound guidance in family planning reproduction operation. Methods: Under the guidance of ultrasound monitoring, 522 cases with high risk and difficult uterine operation were undertaken in our department. Results: The abdominal endoscopic contraceptive uterine operation under real time ultrasound monitoring was carried out for 522 cases in 4 years, with successful rates for high risk pregnancy as 287/289 cases, high risk troublesome withdrawal of contraceptive ring as 129/130 cases and puzzling uterine operation as 103/103 cases. The total successful rate reached 99.42%, without uterine rupture and other complications. Conclusion: The former complex, blind and difficult uterine operations turn to be simple, safe and reliable under the guidance of real time ultrasound. (authors)

  8. Real-time systems scheduling 2 focuses

    CERN Document Server

    Chetto, Maryline

    2014-01-01

    Real-time systems are used in a wide range of applications, including control, sensing, multimedia, etc. Scheduling is a central problem for these computing/communication systems since it is responsible for software execution in a timely manner. This book, the second of two volumes on the subject, brings together knowledge on specific topics and discusses the recent advances for some of them.  It addresses foundations as well as the latest advances and findings in real-time scheduling, giving comprehensive references to important papers, but the chapters are short and not overloaded with co

  9. Ultra-Reliable Communication in a Factory Environment for 5G Wireless Networks

    DEFF Research Database (Denmark)

    Singh, Bikramjit; Lee, Zexian; Tirkkonen, Olav

    2016-01-01

    The focus of this paper on mission-critical Communications in a 5G cellular communication system. Technologies to provide ultra-reliable communication, with 99:999 % availability in a factory environment are studied. We have analysed the feasibility requirements for ultra-reliable communication...... are compared. Last, the importance of multi-hop communication and multi-point coordination schemes are highlighted to improve the reliable communication in presence of interference and clutter. Keywords—5G; mission-critical communications; ultra-reliable communication; availability; reliability...

  10. The Evaluation of Real Time Milk Analyse Result Reliability in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Oto Hanuš

    2016-01-01

    Full Text Available The good result reliability of regular analyzes of milk composition could improve the health monitoring of dairy cows and herd management. The aim of this study was the analysis of measurement of abilities and properties of RT (Real Time system (AfiLab = AfiMilk (NIR measurement unit (near infrared spectroscopy and electrical conductivity (C of milk by conductometry + AfiFarm (calibration and interpretation software for the analysis of individual milk samples (IMSs. There were 2 × 30 IMSs in the experiment. The reference values (RVs of milk components and properties (fat (F, proteins (P, lactose (L, C and the somatic cell count (SCC were determined by conventional (direct and indirect: conductometry (C; infrared spectroscopy 1 with the filter technology and 2 with the Fourier transformations (F, P, L; fluoro-opto-electronic cell counting (SCC in the film on the rotation disc (1 and by flow cytometry (2 methods. AfiLab method (alternative showed less close relationships as compared to the RVs as relationships between reference methods. This was expected. However, these relationships (r were mostly significant: F from .597 to .738 (P ≤ 0.01 and ≤ 0.001; P from .284 to .787 (P > 0.05 and P ≤ 0.001; C .773 (P ≤ 0.001. Correlations (r were not significant (P > 0.05: L from −.013 to .194; SCC from −.148 to −.133. Variability of the RVs explained the following percentages of variability in AfiLab results: F to 54.4 %; P to 61.9 %; L only 3.8 %; C to 59.7 %. Explanatory power (reliability of AfiLab results to the animal is increasing with the regularity of their measurements (principle of real time application. Correlation values r (x minus 1.64 × sd for confidence interval (one-sided at a level of 95 % can be used for an alternative method in assessing the calibration quality. These limits are F 0.564, P 0.784 and C 0.715 and can be essential with the further implementation of this advanced technology of dairy herd management.

  11. Real-time dual-polarization transmission based on hybrid optical wireless communications

    Science.gov (United States)

    Sousa, Artur N.; Alimi, Isiaka A.; Ferreira, Ricardo M.; Shahpari, Ali; Lima, Mário; Monteiro, Paulo P.; Teixeira, António L.

    2018-01-01

    We present experimental work on a gigabit-capable and long-reach hybrid coherent UWDM-PON plus FSO system for supporting different applications over the same fiber infrastructure in the mobile backhaul (MBH) networks. Also, for the first time, we demonstrate a reconfigurable real-time DSP transmission/reception of DP-QPSK signals over standard single-mode fiber (SSMF) and FSO links. The receiver presented is based on a commercial field-programmable gate array (FPGA). The considered communication links are based on 20 UDWDM channels with 625 Mbaud and 2.5 GHz channel spacing. We are able to demonstrate the lowest sampling rate required for digital coherent PON by employing four 1.25 Gsa/s ADCs using an electrical front-end receiver that offers only 1 GHz analog bandwidth. We achieved this by implementing a phase and polarization diversity coherent receiver combined with the DP-QPSK modulation formats. The system performance is estimated in terms of receiver sensitivity. The results show the viability of coherent PON and flexible dual-polarization supported by software-defined transceivers for the MBH.

  12. Real-time Tsunami Inundation Prediction Using High Performance Computers

    Science.gov (United States)

    Oishi, Y.; Imamura, F.; Sugawara, D.

    2014-12-01

    Recently off-shore tsunami observation stations based on cabled ocean bottom pressure gauges are actively being deployed especially in Japan. These cabled systems are designed to provide real-time tsunami data before tsunamis reach coastlines for disaster mitigation purposes. To receive real benefits of these observations, real-time analysis techniques to make an effective use of these data are necessary. A representative study was made by Tsushima et al. (2009) that proposed a method to provide instant tsunami source prediction based on achieving tsunami waveform data. As time passes, the prediction is improved by using updated waveform data. After a tsunami source is predicted, tsunami waveforms are synthesized from pre-computed tsunami Green functions of linear long wave equations. Tsushima et al. (2014) updated the method by combining the tsunami waveform inversion with an instant inversion of coseismic crustal deformation and improved the prediction accuracy and speed in the early stages. For disaster mitigation purposes, real-time predictions of tsunami inundation are also important. In this study, we discuss the possibility of real-time tsunami inundation predictions, which require faster-than-real-time tsunami inundation simulation in addition to instant tsunami source analysis. Although the computational amount is large to solve non-linear shallow water equations for inundation predictions, it has become executable through the recent developments of high performance computing technologies. We conducted parallel computations of tsunami inundation and achieved 6.0 TFLOPS by using 19,000 CPU cores. We employed a leap-frog finite difference method with nested staggered grids of which resolution range from 405 m to 5 m. The resolution ratio of each nested domain was 1/3. Total number of grid points were 13 million, and the time step was 0.1 seconds. Tsunami sources of 2011 Tohoku-oki earthquake were tested. The inundation prediction up to 2 hours after the

  13. PERFORMANCE COMPARISON OF USART COMMUNICATION BETWEEN REAL TIME OPERATING SYSTEM (RTOS AND NATIVE INTERRUPT

    Directory of Open Access Journals (Sweden)

    Novian Habibie

    2016-02-01

    Full Text Available Comunication between microcontrollers is one of the crucial point in embedded sytems. On the other hand, embedded system must be able to run many parallel task simultaneously. To handle this, we need a reliabe system that can do a multitasking without decreasing every task’s performance. The most widely used methods for multitasking in embedded systems are using Interrupt Service Routine (ISR or using Real Time Operating System (RTOS. This research compared perfomance of USART communication on system with RTOS to a system that use interrupt. Experiments run on two identical development board XMega A3BU-Xplained which used intenal sensor (light and temperature and used servo as external component. Perfomance comparison done by counting ping time (elapsing time to transmit data and get a reply as a mark that data has been received and compare it. This experiments divided into two scenarios: (1 system loaded with many tasks, (2 system loaded with few tasks. Result of the experiments show that communication will be faster if system only loaded with few tasks. System with RTOS has won from interrupt in case (1, but lose to interrupt in case (2.

  14. An Asynchronous Time-Division-Multiplexed Network-on-Chip for Real-Time Systems

    DEFF Research Database (Denmark)

    Kasapaki, Evangelia

    is an important part of the T-CREST paltform and used in a number of configurations. The flexible timing organization of Argo combines asynchronous routers with mesochronous NIs, which are connected to individually clocked cores, supporting a GALS system organization. The mesochronous NIs operate at the same......Multi-processor architectures using networks-on-chip (NOCs) for communication are becoming the standard approach in the development of embedded systems and general purpose platforms. Typically, multi-processor platforms follow a globally asynchronous locally synchronous (GALS) timing organization....... This thesis focuses on the design of Argo, a NOC targeted at hard real-time multi-processor platforms with a GALS timing organization. To support real-time communication, NOCs establish end-to-end connections and provide latency and throughput guarantees for these connections. Argo uses time division...

  15. Prototyping Real-Time Control in the SPS

    CERN Document Server

    Andersson, J; Jensen, L; Jones, R; Lamont, M; Wenninger, J; Wijnands, Thijs; CERN. Geneva. AB Department

    2003-01-01

    Real-time control of beam related parameters will be required in the LHC. In order to gain experience of the issues involved in implementing distributed real-time control over large distances, a prototype local orbit feedback system is being developed in the SPS. This will use 6 pickups, each equipped with the full LHC acquisition electronics chain and linked to a real-time communication and feedback system. This reports summarises the .rst tests performed with this system in October 2002, where the data from four pickups was successfully acquired and displayed at 10 Hz in the control room.

  16. Performances and recent evolutions of EMSC Real Time Information services

    Science.gov (United States)

    Mazet-Roux, G.; Godey, S.; Bossu, R.

    2009-04-01

    The EMSC (http://www.emsc-csem.org) operates Real Time Earthquake Information services for the public and the scientific community which aim at providing rapid and reliable information on the seismic-ity of the Euro-Mediterranean region and on significant earthquakes worldwide. These services are based on parametric data rapidly provided by 66 seismological networks which are automatically merged and processed at EMSC. A web page which is updated every minute displays a list and a map of the latest earthquakes as well as additional information like location maps, moment tensors solutions or past regional seismicity. Since 2004, the performances and the popularity of these services have dramatically increased. The number of messages received from the contributors and the number of published events have been multiplied by 2 since 2004 and by 1.6 since 2005 respectively. The web traffic and the numbers of users of the Earthquake Notification Service (ENS) have been multiplied by 15 and 7 respectively. In terms of performances of the ENS, the median dissemination time for Euro-Med events is minutes in 2008. In order to further improve its performances and especially the speed and robustness of the reception of real time data, EMSC has recently implemented a software named QWIDS (Quake Watch Information Distribution System) which provides a quick and robust data exchange system through permanent TCP connections. At the difference with emails that can sometimes be delayed or lost, QWIDS is an actual real time communication system that ensures the data delivery. In terms of hardware, EMSC imple-mented a high availability, dynamic load balancing, redundant and scalable web servers infrastructure, composed of two SUN T2000 and one F5 BIG-IP switch. This will allow coping with constantly increas-ing web traffic and the occurrence of huge peaks of traffic after widely felt earthquakes.

  17. Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework

    CERN Document Server

    Becker, B.; Cicalo J.; Cleymans, C.; de Vaux, G.; Fearick, R.W.; Lindenstruth, V.; Richter, M.; Rorich, D.; Staley, F.; Steinbeck, T.M.; Szostak, A.; Tilsner, H.; Weis, R.; Vilakazi, Z.Z.

    2008-01-01

    The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing several hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ``real-time'' data flow.

  18. Wireless Channel Modeling Perspectives for Ultra-Reliable Communications

    DEFF Research Database (Denmark)

    Eggers, Patrick Claus F.; Popovski, Petar

    2018-01-01

    Ultra-Reliable Communication (URC) is one of the distinctive features of the upcoming 5G wireless communication. The level of reliability, going down to packet error rates (PER) of $10^{-9}$, should be sufficiently convincing in order to remove cables in an industrial setting or provide remote co...

  19. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    We present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The design uses the flexibility of Field Programmable Gate Arrays (FPGAs) and the powerful Associative Memory Chip (ASIC) to achieve real-time performance. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain.

  20. RTX Correction Accuracy and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, L. G.; Raczka, J.; Barrientos, S. E.

    2016-12-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations

  1. A multimodal interface for real-time soldier-robot teaming

    Science.gov (United States)

    Barber, Daniel J.; Howard, Thomas M.; Walter, Matthew R.

    2016-05-01

    Recent research and advances in robotics have led to the development of novel platforms leveraging new sensing capabilities for semantic navigation. As these systems becoming increasingly more robust, they support highly complex commands beyond direct teleoperation and waypoint finding facilitating a transition away from robots as tools to robots as teammates. Supporting future Soldier-Robot teaming requires communication capabilities on par with human-human teams for successful integration of robots. Therefore, as robots increase in functionality, it is equally important that the interface between the Soldier and robot advances as well. Multimodal communication (MMC) enables human-robot teaming through redundancy and levels of communications more robust than single mode interaction. Commercial-off-the-shelf (COTS) technologies released in recent years for smart-phones and gaming provide tools for the creation of portable interfaces incorporating MMC through the use of speech, gestures, and visual displays. However, for multimodal interfaces to be successfully used in the military domain, they must be able to classify speech, gestures, and process natural language in real-time with high accuracy. For the present study, a prototype multimodal interface supporting real-time interactions with an autonomous robot was developed. This device integrated COTS Automated Speech Recognition (ASR), a custom gesture recognition glove, and natural language understanding on a tablet. This paper presents performance results (e.g. response times, accuracy) of the integrated device when commanding an autonomous robot to perform reconnaissance and surveillance activities in an unknown outdoor environment.

  2. Progress in real-time feedback control systems in RFX

    Energy Technology Data Exchange (ETDEWEB)

    Barana, O.; Luchetta, A. E-mail: adriano.luchetta@igi.cnr.it; Manduchi, G.; Taliercio, C

    2004-06-01

    Major modifications of the RFX load assembly and power supplies are in progress to allow extensive active control schemes, such as equilibrium and plasma position control and innovative control of the MHD modes. The digital control system is implemented in VME64 using a distributed architecture. The use of a 'stable' operating system that is likely to survive some generations of processors can help coping with evolution of technology. PowerPC and Pentium processors were thus considered as candidates and tested and the first one has been selected due to the better performance in floating point computation. Wind River VxWorks has been chosen as real-time operating system. 100 Mbit switched Ethernet has been evaluated for real-time communication by using the user datagram protocol (UDP). Measurements have been executed on a prototype system to assess data transfer latency, jitter and reliability and the results confirm that the solution is suitable for the application. The paper describes in detail the reasons for the choice in the hardware components. Results from several tests comparing the performance of different solutions are also provided.

  3. Real-Time Seismic Data from the Bottom Sea

    Directory of Open Access Journals (Sweden)

    Xavier Roset

    2018-04-01

    Full Text Available An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  4. Real-Time Seismic Data from the Bottom Sea.

    Science.gov (United States)

    Roset, Xavier; Trullols, Enric; Artero-Delgado, Carola; Prat, Joana; Del Río, Joaquin; Massana, Immaculada; Carbonell, Montserrat; Barco de la Torre, Jaime; Toma, Daniel Mihai

    2018-04-08

    An anchored marine seismometer, acquiring real-time seismic data, has been built and tested. The system consists of an underwater seismometer, a surface buoy, and a mooring line that connects them. Inductive communication through the mooring line provides an inexpensive, reliable, and flexible solution. Prior to the deployment the dynamics of the system have been simulated numerically in order to find optimal materials, cables, buoys, and connections under critical marine conditions. The seismometer used is a high sensitivity triaxial broadband geophone able to measure low vibrational signals produced by the underwater seismic events. The power to operate the surface buoy is provided by solar panels. Additional batteries are needed for the underwater unit. In this paper we also present the first results and an earthquake detection of a prototype system that demonstrates the feasibility of this concept. The seismometer transmits continuous data at a rate of 1000 bps to a controller equipped with a radio link in the surface buoy. A GPS receiver on the surface buoy has been configured to perform accurate timestamps on the seismic data, which makes it possible to integrate the seismic data from these marine seismometers into the existing seismic network.

  5. Highly-Accelerated Real-Time Cardiac Cine MRI Using k-t SPARSE-SENSE

    Science.gov (United States)

    Feng, Li; Srichai, Monvadi B.; Lim, Ruth P.; Harrison, Alexis; King, Wilson; Adluru, Ganesh; Dibella, Edward VR.; Sodickson, Daniel K.; Otazo, Ricardo; Kim, Daniel

    2012-01-01

    For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (~2.5mm × 2.5mm) and temporal resolution (~40ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular (LV) function. In this work, we present an 8-fold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our 8-fold accelerated real-time cine MRI produced significantly worse qualitative grades (1–5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both 8-fold accelerated real-time cine and breath-hold cine MRI yielded comparable LV function measurements, with coefficient of variation cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function. PMID:22887290

  6. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE.

    Science.gov (United States)

    Feng, Li; Srichai, Monvadi B; Lim, Ruth P; Harrison, Alexis; King, Wilson; Adluru, Ganesh; Dibella, Edward V R; Sodickson, Daniel K; Otazo, Ricardo; Kim, Daniel

    2013-07-01

    For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (∼2.5 × 2.5 mm(2)) and temporal resolution (∼40 ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular function. In this work, we present an eightfold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our eightfold accelerated real-time cine MRI produced significantly worse qualitative grades (1-5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both eightfold accelerated real-time cine and breath-hold cine MRI yielded comparable left ventricular function measurements, with coefficient of variation cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function. Copyright © 2012 Wiley Periodicals, Inc.

  7. Benefits of real-time gas management

    International Nuclear Information System (INIS)

    Nolty, R.; Dolezalek, D. Jr.

    1994-01-01

    In today's competitive gas gathering, processing, storage and transportation business environment, the requirements to do business are continually changing. These changes arise from government regulations such as the amendments to the Clean Air Act concerning the environment and FERC Order 636 concerning business practices. Other changes are due to advances in technology such as electronic flow measurement (EFM) and real-time communications capabilities within the gas industry. Gas gathering, processing, storage and transportation companies must be flexible in adapting to these changes to remain competitive. These dynamic requirements can be met with an open, real-time gas management computer information system. Such a system provides flexible services with a variety of software applications. Allocations, nominations management and gas dispatching are examples of applications that are provided on a real-time basis. By providing real-time services, the gas management system enables operations personnel to make timely adjustments within the current accounting period. Benefits realized from implementing a real-time gas management system include reduced unaccountable gas, reduced imbalance penalties, reduced regulatory violations, improved facility operations and better service to customers. These benefits give a company the competitive edge. This article discusses the applications provided, the benefits from implementing a real-time gas management system, and the definition of such a system

  8. Development of highly reliable power and communication system for essential instruments under severe accidents in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bo Hwan; Jang, Gi Chan; Shin, Sung Min; Kang, Hyun Gook; Rim, Chun Taek [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Soo Ill [I and C Group, Korea Hydro and Nuclear Power Co., Ltd, Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to 627 .deg. C and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

  9. Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

    Directory of Open Access Journals (Sweden)

    Bo Hwan Choi

    2016-10-01

    Full Text Available This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to 627°C and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

  10. Development of highly reliable power and communication system for essential instruments under severe accidents in NPP

    International Nuclear Information System (INIS)

    Choi, Bo Hwan; Jang, Gi Chan; Shin, Sung Min; Kang, Hyun Gook; Rim, Chun Taek; Lee, Soo Ill

    2016-01-01

    This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to 627 .deg. C and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad

  11. High-resolution real-time sonography and MR imaging in assessment of osteocartilaginous exostoses

    International Nuclear Information System (INIS)

    Prayer, L.M.; Kropej, D.H.; Wimberger, D.M.; Wurnig, C.F.; Kramer, J.; Kainberger, F.M.; Braun, O.H.; Ritschl, P.W.; Imhof, H.

    1991-01-01

    High-resolution real-time ultrasonography (US) and MR imaging, using both spin-echo (SE) and gradient-echo (GE) sequences, were performed prospectively in 14 patients with solitary osteocartilaginous exostoses to assess cartilage cap thickness and bursa formation. Results were compared to surgical and histopathologic findings in all cases. Both US and MR imaging were useful in evaluating exostotic cartilage cap thickness, which is supposed to be the most reliable sign of malignant transformation. Hyaline cartilage matrix had distinctive features in US and MR imaging caused by its specific histologic composition. The formation of bursae over the protruding exostoses, which results in pain and clinically could raise the suspicion of growth and malignant transformation, was demonstrated best using GE sequences. MR imaging was thus superior to US in the detection of bursa formation. (orig.)

  12. High-resolution real-time sonography and MR imaging in assessment of osteocartilaginous exostoses

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, L.M.; Kropej, D.H.; Wimberger, D.M.; Wurnig, C.F.; Kramer, J.; Kainberger, F.M.; Braun, O.H.; Ritschl, P.W.; Imhof, H. (Vienna Univ. (Austria). Depts. of Radiology, Orthopedic Surgery, Pathology, and the MR Inst.)

    1991-09-01

    High-resolution real-time ultrasonography (US) and MR imaging, using both spin-echo (SE) and gradient-echo (GE) sequences, were performed prospectively in 14 patients with solitary osteocartilaginous exostoses to assess cartilage cap thickness and bursa formation. Results were compared to surgical and histopathologic findings in all cases. Both US and MR imaging were useful in evaluating exostotic cartilage cap thickness, which is supposed to be the most reliable sign of malignant transformation. Hyaline cartilage matrix had distinctive features in US and MR imaging caused by its specific histologic composition. The formation of bursae over the protruding exostoses, which results in pain and clinically could raise the suspicion of growth and malignant transformation, was demonstrated best using GE sequences. MR imaging was thus superior to US in the detection of bursa formation. (orig.).

  13. Data processing system for real-time control

    International Nuclear Information System (INIS)

    Oasa, K.; Mochizuki, O.; Toyokawa, R.; Yahiro, K.

    1983-01-01

    Real-time control, for large Tokamak JT-60, requires various data processings between diagnostic devices to control system. These processings require to high speed performance so that it aims at giving information necessary for feedback control during discharges. Then, the architecture of this system has hierachical structure of processors. These processors are connected each other by the CAMAC modules and the optical communication network, which is the 5 M bytes/second CAMAC serial highway. This system has two kinds of intelligences for this purpose. One is ACM-PU pairs in some torus hall crates which has a microcomputerized auxiliary controller and a preprocessing unit. Other is real-time processor which has a minicomputer and preprocessing unit. Most of the real-time processing, for example Abel inversion are characteristic to the diagnostic devices. Such a processing is carried out by an ACM-PU pair in the crate dedicated to the diagnostic device. Some processings, however, are also necessary which compute secondary parameters as functions of primary parameters. A typical example is Zeff, which is a function of Te, Ne and bremsstrahluny intensity. The real-time processor is equipped for such secondary processings and transfer the results. Preprocessing unit -PU- attached to ACM and real-time processor contains a signal processor, which executes in parallel such function as move, add and multiply during one micro-instruction cycle of 200 nsec. According to the progress of the experiment, more high speed processing are required, so the authors developed the PU-X module that contains multi signal processors. After a shot, inter-shot-processor which consists of general-purpose computers, gathers data into the database, then analyze them, and improve these processes to more effective

  14. High-Resolution Near Real-Time Drought Monitoring in South Asia

    Science.gov (United States)

    Aadhar, S.; Mishra, V.

    2017-12-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning and management of water resources at the sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. Here we develop a high resolution (0.05 degree) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat waves, cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature (maximum and minimum), which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05˚. We find that the bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub- basin levels.

  15. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  16. The new control system of J-TEXT divertor power supply system using J-TEXT real-time framework

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming; Zheng, Guozhen; Chen, Zhi [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zheng, Wei, E-mail: zhengwei@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yuan, Tao; Li, Yang [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    Highlights: • The most highlight of this paper is the J-TEXT Real-Time Framework (JRTF). JRTF is a flexible real-time software framework which allows users to develop real-time applications rapidly without compromise on the performance. It makes a clear separation between control functions and hard/software administration, developers just need to focus on the control logic and algorithms. • The JRTF based control system can achieve a precise control loop cycle of 1 ms and a jitter under 0.01 ms on Linux operation system. The real-time performance meets the requirement of the real-time control tasks in J-TEXT. • Several days of operation with no faults were already achieved with the system running and in real-time 8 h per day. The stability of the new system is qualified for discharging experiment. - Abstract: The J-TEXT divertor power supply system is designed as a parallel connection, 12-pulse rectifier which is powered by a 100 MVA pulse generator unit. To achieve robust current feedback control, high performance real-time control system is required. The new control system adopts a more powerful software framework named J-TEXT real-time framework (JRTF). JRTF is a flexible real-time software framework designed for the implementation of real-time control systems. A JRTF application contains various Application Blocks (AB) which execute specific functions such as feedback computing and protection. JRTF is compatible with ITER standard PFC (Plant Fast Controller) hardware and ITER CODAC (Control, Data Access and Communication) Core software, so it can be monitored and configured by any EPICS based control system. The hardware of the new control system is upgraded to standard ITER fast controller which are much faster and more reliable than former controllers. This control system is the first application of JRTF, and the result shows that the new control system is running properly and stably. It provides an instance for real-time control schemes in J-TEXT, and

  17. The new control system of J-TEXT divertor power supply system using J-TEXT real-time framework

    International Nuclear Information System (INIS)

    Zhang, Ming; Zheng, Guozhen; Chen, Zhi; Zheng, Wei; Yuan, Tao; Li, Yang

    2016-01-01

    Highlights: • The most highlight of this paper is the J-TEXT Real-Time Framework (JRTF). JRTF is a flexible real-time software framework which allows users to develop real-time applications rapidly without compromise on the performance. It makes a clear separation between control functions and hard/software administration, developers just need to focus on the control logic and algorithms. • The JRTF based control system can achieve a precise control loop cycle of 1 ms and a jitter under 0.01 ms on Linux operation system. The real-time performance meets the requirement of the real-time control tasks in J-TEXT. • Several days of operation with no faults were already achieved with the system running and in real-time 8 h per day. The stability of the new system is qualified for discharging experiment. - Abstract: The J-TEXT divertor power supply system is designed as a parallel connection, 12-pulse rectifier which is powered by a 100 MVA pulse generator unit. To achieve robust current feedback control, high performance real-time control system is required. The new control system adopts a more powerful software framework named J-TEXT real-time framework (JRTF). JRTF is a flexible real-time software framework designed for the implementation of real-time control systems. A JRTF application contains various Application Blocks (AB) which execute specific functions such as feedback computing and protection. JRTF is compatible with ITER standard PFC (Plant Fast Controller) hardware and ITER CODAC (Control, Data Access and Communication) Core software, so it can be monitored and configured by any EPICS based control system. The hardware of the new control system is upgraded to standard ITER fast controller which are much faster and more reliable than former controllers. This control system is the first application of JRTF, and the result shows that the new control system is running properly and stably. It provides an instance for real-time control schemes in J-TEXT, and

  18. Phasor Measurement Unit and Phasor Data Concentrator test with Real Time Digital Simulator

    DEFF Research Database (Denmark)

    Diakos, Konstantinos; Wu, Qiuwei; Nielsen, Arne Hejde

    2014-01-01

    that is able to derive and communicate synchrophasor measurements of different parts of the power network and the development of tests, according to IEEE standards, that evaluate the performance of PMUs and PDCs. The tests are created by using a Real Time Digital Simulation (RTDS) system. The results obtained......The main focus of the electrical engineers nowadays, is to develop a smart grid that is able to monitor, evaluate and control the power system operation. The integration of Intelligent Electronic Devices (IED s) to the power network, is a strong indication of the inclination to lead the power...... network to a more reliable, secure and economic operation. The implementation of these devices though, demands the warranty of a secure operation and high-accuracy performance. This paper describes the procedure of establishing a PMU (Phasor Measurement Unit)–PDC (Phasor Data Concentrator) platform...

  19. Real-time shadows

    CERN Document Server

    Eisemann, Elmar; Assarsson, Ulf; Wimmer, Michael

    2011-01-01

    Important elements of games, movies, and other computer-generated content, shadows are crucial for enhancing realism and providing important visual cues. In recent years, there have been notable improvements in visual quality and speed, making high-quality realistic real-time shadows a reachable goal. Real-Time Shadows is a comprehensive guide to the theory and practice of real-time shadow techniques. It covers a large variety of different effects, including hard, soft, volumetric, and semi-transparent shadows.The book explains the basics as well as many advanced aspects related to the domain

  20. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  1. Real Time In-circuit Condition Monitoring of MOSFET in Power Converters

    Directory of Open Access Journals (Sweden)

    Shakeb A. Khan

    2015-03-01

    Full Text Available Abstract:This paper presents simple and low-cost, real time in-circuit condition monitoring of MOSFET in power electronic converters. Design metrics requirements like low cost, small size, high power factor, low percentage of total harmonic distortion etc. requires the power electronic systems to operate at high frequencies and at high power density. Failures of power converters are attributed largely by aging of power MOSFETs at high switching frequencies. Therefore, real time in-circuit prognostic of MOSFET needs to be done before their selection for power system design. Accelerated aging tests are performed in different circuits to determine the wear out failure of critical components based on their parametric degradation. In this paper, the simple and low-cost test beds are designed for real time in-circuit prognostics of power MOSFETs. The proposed condition monitoring scheme helps in estimating the condition of MOSFETs at their maximum rated operating condition and will aid the system designers to test their reliability and benchmark them before selecting in power converters.

  2. Towards Real-Time Distributed Planning in Multi-Robot Systems

    KAUST Repository

    Abdelkader, Mohamed

    2018-01-01

    of extensive information exchange (communication). The extensive communication between robots can result in decision delays because of which distributed architecture is often impractical for systems with strict real-time constraints, e.g. when decisions have

  3. Reliability and Validity of the Dyadic Observed Communication Scale (DOCS).

    Science.gov (United States)

    Hadley, Wendy; Stewart, Angela; Hunter, Heather L; Affleck, Katelyn; Donenberg, Geri; Diclemente, Ralph; Brown, Larry K

    2013-02-01

    We evaluated the reliability and validity of the Dyadic Observed Communication Scale (DOCS) coding scheme, which was developed to capture a range of communication components between parents and adolescents. Adolescents and their caregivers were recruited from mental health facilities for participation in a large, multi-site family-based HIV prevention intervention study. Seventy-one dyads were randomly selected from the larger study sample and coded using the DOCS at baseline. Preliminary validity and reliability of the DOCS was examined using various methods, such as comparing results to self-report measures and examining interrater reliability. Results suggest that the DOCS is a reliable and valid measure of observed communication among parent-adolescent dyads that captures both verbal and nonverbal communication behaviors that are typical intervention targets. The DOCS is a viable coding scheme for use by researchers and clinicians examining parent-adolescent communication. Coders can be trained to reliably capture individual and dyadic components of communication for parents and adolescents and this complex information can be obtained relatively quickly.

  4. Memory controllers for real-time embedded systems predictable and composable real-time systems

    CERN Document Server

    Akesson, Benny

    2012-01-01

      Verification of real-time requirements in systems-on-chip becomes more complex as more applications are integrated. Predictable and composable systems can manage the increasing complexity using formal verification and simulation.  This book explains the concepts of predictability and composability and shows how to apply them to the design and analysis of a memory controller, which is a key component in any real-time system. This book is generally intended for readers interested in Systems-on-Chips with real-time applications.   It is especially well-suited for readers looking to use SDRAM memories in systems with hard or firm real-time requirements. There is a strong focus on real-time concepts, such as predictability and composability, as well as a brief discussion about memory controller architectures for high-performance computing. Readers will learn step-by-step how to go from an unpredictable SDRAM memory, offering highly variable bandwidth and latency, to a predictable and composable shared memory...

  5. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays proposing four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments...

  6. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    1999-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays proposing four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments....

  7. Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2004-01-01

    We present an approach to static priority preemptive process scheduling for the synthesis of hard real-time distributed embedded systems where communication plays an important role. The communication model is based on a time-triggered protocol. We have developed an analysis for the communication...... delays with four different message scheduling policies over a time-triggered communication channel. Optimization strategies for the synthesis of communication are developed, and the four approaches to message scheduling are compared using extensive experiments....

  8. Reliable 5-min real-time MR technique for left-ventricular-wall motion analysis

    International Nuclear Information System (INIS)

    Katoh, Marcus; Spuentrup, Elmar; Guenther, Rolf W.; Buecker, Arno; Kuehl, Harald P.; Lipke, Claudia S.A.

    2007-01-01

    The aim of this study was to investigate the value of a real-time magnetic resonance imaging (MRI) approach for the assessment of left-ventricular-wall motion in patients with insufficient transthoracic echocardiography in terms of accuracy and temporal expenditure. Twenty-five consecutive patients were examined on a 1.5-Tesla whole-body MR system (ACS-NT, Philips Medical Systems, Best, NL) using a real-time and ECG-gated (the current gold standard) steady-state free-precession (SSFP) sequence. Wall motion was analyzed by three observers by consensus interpretation. In addition, the preparation, scanning, and overall examination times were measured. The assessment of the wall motion demonstrated a close agreement between the two modalities resulting in a mean κ coefficient of 0.8. At the same time, each stage of the examination was significantly shortened using the real-time MR approach. Real-time imaging allows for accurate assessment of left-ventricular-wall motion with the added benefit of decreased examination time. Therefore, it may serve as a cost-efficient alternative in patients with insufficient echocardiography. (orig.)

  9. Building Real-Time Collaborative Applications with a Federated Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Ojanguren-Menendez

    2015-12-01

    Full Text Available Real-time collaboration is being offered by multiple libraries and APIs (Google Drive Real-time API, Microsoft Real-Time Communications API, TogetherJS, ShareJS, rapidly becoming a mainstream option for webservices developers. However, they are offered as centralised services running in a single server, regardless if they are free/open source or proprietary software. After re-engineering Apache Wave (former Google Wave, we can now provide the first decentralised and federated free/open source alternative. The new API allows to develop new real-time collaborative web applications in both JavaScript and Java environments.

  10. Reliable real-time applications - and how to use tests to model and understand

    DEFF Research Database (Denmark)

    Jensen, Peter Krogsgaard

    Test and analysis of real-time applications, where temporal properties are inspected, analyzed, and verified in a model developed from timed traces originating from measured test result on a running application......Test and analysis of real-time applications, where temporal properties are inspected, analyzed, and verified in a model developed from timed traces originating from measured test result on a running application...

  11. Isochronous wireless network for real-time communication in industrial automation

    CERN Document Server

    Trsek, Henning

    2016-01-01

    This dissertation proposes and investigates an isochronous wireless network for industrial control applications with guaranteed latencies and jitter. Based on a requirements analysis of real industrial applications and the characterisation of the wireless channel, the solution approach is developed. It consists of a TDMA-based medium access control, a dynamic resource allocation and the provision of a global time base for the wired and the wireless network. Due to the global time base, the solution approach allows a seamless and synchronous integration into existing wired Real-time Ethernet systems.

  12. Real-Time Communication Networks Onboard Ships

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Nielsen, Kirsten Mølgaard; Jørgensen, N.

    1995-01-01

    This paper describes the ATOMOS communication network project carried out within the EU project ATOMOS, to be used for ISC purposes.......This paper describes the ATOMOS communication network project carried out within the EU project ATOMOS, to be used for ISC purposes....

  13. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Priyanka Kakria

    2015-01-01

    Full Text Available Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts. The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances.

  14. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors.

    Science.gov (United States)

    Kakria, Priyanka; Tripathi, N K; Kitipawang, Peerapong

    2015-01-01

    Online telemedicine systems are useful due to the possibility of timely and efficient healthcare services. These systems are based on advanced wireless and wearable sensor technologies. The rapid growth in technology has remarkably enhanced the scope of remote health monitoring systems. In this paper, a real-time heart monitoring system is developed considering the cost, ease of application, accuracy, and data security. The system is conceptualized to provide an interface between the doctor and the patients for two-way communication. The main purpose of this study is to facilitate the remote cardiac patients in getting latest healthcare services which might not be possible otherwise due to low doctor-to-patient ratio. The developed monitoring system is then evaluated for 40 individuals (aged between 18 and 66 years) using wearable sensors while holding an Android device (i.e., smartphone under supervision of the experts). The performance analysis shows that the proposed system is reliable and helpful due to high speed. The analyses showed that the proposed system is convenient and reliable and ensures data security at low cost. In addition, the developed system is equipped to generate warning messages to the doctor and patient under critical circumstances.

  15. Extremely high resolution corrosion monitoring of pipelines: retrofittable, non-invasive and real-time

    Energy Technology Data Exchange (ETDEWEB)

    Baltzersen, Oeystein; Tveit, Edd [Sensorlink AS, Trondheim (Norway); Verley, Richard [StatoilHydro ASA, Stockholm (Sweden)

    2009-07-01

    The Ultramonit unit is a clamp-on tool (removable) that uses an array of sensors to provide online, real-time, reliable and repeatable high accuracy ultrasonic wall thickness measurements and corrosion monitoring at selected locations along the pipeline. The unit can be installed on new or existing pipelines by diver or ROV. The system is based on the well-established ultrasonic pulse-echo method (A-scan). Special processing methods, and the fact that the unit is fixed to the pipeline, enable detection of changes in wall thickness in the micro-meter range. By utilizing this kind of resolution, it is possible to project corrosion rates in hours or days. The tool is used for calibration of corrosion inhibitor programs, verification and calibration of inspection pig data and general corrosion monitoring of new and existing pipelines. (author)

  16. Addressing Software Engineering Issues in Real-Time Software ...

    African Journals Online (AJOL)

    Addressing Software Engineering Issues in Real-Time Software ... systems, manufacturing process, process control, military, space exploration, and ... but also physical properties such as timeliness, Quality of Service and reliability.

  17. RT-Syn: A real-time software system generator

    Science.gov (United States)

    Setliff, Dorothy E.

    1992-01-01

    This paper presents research into providing highly reusable and maintainable components by using automatic software synthesis techniques. This proposal uses domain knowledge combined with automatic software synthesis techniques to engineer large-scale mission-critical real-time software. The hypothesis centers on a software synthesis architecture that specifically incorporates application-specific (in this case real-time) knowledge. This architecture synthesizes complex system software to meet a behavioral specification and external interaction design constraints. Some examples of these external constraints are communication protocols, precisions, timing, and space limitations. The incorporation of application-specific knowledge facilitates the generation of mathematical software metrics which are used to narrow the design space, thereby making software synthesis tractable. Success has the potential to dramatically reduce mission-critical system life-cycle costs not only by reducing development time, but more importantly facilitating maintenance, modifications, and extensions of complex mission-critical software systems, which are currently dominating life cycle costs.

  18. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    Science.gov (United States)

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Assessing physiotherapists' communication skills for promoting patient autonomy for self-management: reliability and validity of the communication evaluation in rehabilitation tool.

    Science.gov (United States)

    Murray, Aileen; Hall, Amanda; Williams, Geoffrey C; McDonough, Suzanne M; Ntoumanis, Nikos; Taylor, Ian; Jackson, Ben; Copsey, Bethan; Hurley, Deirdre A; Matthews, James

    2018-02-27

    comprehensive user manual to assess how well health care providers use autonomy-supportive communication strategies in real world-clinical settings. This tool has demonstrated good inter-rater reliability and concurrent validity in its initial testing phase. The Communication Evaluation in Rehabilitation Tool can be used in future studies to assess autonomy-supportive communication and undergo further measurement property testing as per our recommendations.

  20. New technique for real-time distortion-invariant multiobject recognition and classification

    Science.gov (United States)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  1. Reviewing real-time performance of nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems

  2. Reviewing real-time performance of nuclear reactor safety systems

    Energy Technology Data Exchange (ETDEWEB)

    Preckshot, G.G. [Lawrence Livermore National Lab., CA (United States)

    1993-08-01

    The purpose of this paper is to recommend regulatory guidance for reviewers examining real-time performance of computer-based safety systems used in nuclear power plants. Three areas of guidance are covered in this report. The first area covers how to determine if, when, and what prototypes should be required of developers to make a convincing demonstration that specific problems have been solved or that performance goals have been met. The second area has recommendations for timing analyses that will prove that the real-time system will meet its safety-imposed deadlines. The third area has description of means for assessing expected or actual real-time performance before, during, and after development is completed. To ensure that the delivered real-time software product meets performance goals, the paper recommends certain types of code-execution and communications scheduling. Technical background is provided in the appendix on methods of timing analysis, scheduling real-time computations, prototyping, real-time software development approaches, modeling and measurement, and real-time operating systems.

  3. Energy-efficient fault tolerance in multiprocessor real-time systems

    Science.gov (United States)

    Guo, Yifeng

    The recent progress in the multiprocessor/multicore systems has important implications for real-time system design and operation. From vehicle navigation to space applications as well as industrial control systems, the trend is to deploy multiple processors in real-time systems: systems with 4 -- 8 processors are common, and it is expected that many-core systems with dozens of processing cores will be available in near future. For such systems, in addition to general temporal requirement common for all real-time systems, two additional operational objectives are seen as critical: energy efficiency and fault tolerance. An intriguing dimension of the problem is that energy efficiency and fault tolerance are typically conflicting objectives, due to the fact that tolerating faults (e.g., permanent/transient) often requires extra resources with high energy consumption potential. In this dissertation, various techniques for energy-efficient fault tolerance in multiprocessor real-time systems have been investigated. First, the Reliability-Aware Power Management (RAPM) framework, which can preserve the system reliability with respect to transient faults when Dynamic Voltage Scaling (DVS) is applied for energy savings, is extended to support parallel real-time applications with precedence constraints. Next, the traditional Standby-Sparing (SS) technique for dual processor systems, which takes both transient and permanent faults into consideration while saving energy, is generalized to support multiprocessor systems with arbitrary number of identical processors. Observing the inefficient usage of slack time in the SS technique, a Preference-Oriented Scheduling Framework is designed to address the problem where tasks are given preferences for being executed as soon as possible (ASAP) or as late as possible (ALAP). A preference-oriented earliest deadline (POED) scheduler is proposed and its application in multiprocessor systems for energy-efficient fault tolerance is

  4. Barriers to Real-Time Medical Direction via Cellular Communication for Prehospital Emergency Care Providers in Gujarat, India.

    Science.gov (United States)

    Lindquist, Benjamin; Strehlow, Matthew C; Rao, G V Ramana; Newberry, Jennifer A

    2016-07-08

    Many low- and middle-income countries depend on emergency medical technicians (EMTs), nurses, midwives, and layperson community health workers with limited training to provide a majority of emergency medical, trauma, and obstetric care in the prehospital setting. To improve timely patient care and expand provider scope of practice, nations leverage cellular phones and call centers for real-time online medical direction. However, there exist several barriers to adequate communication that impact the provision of emergency care. We sought to identify obstacles in the cellular communication process among GVK Emergency Management and Research Institute (GVK EMRI) EMTs in Gujarat, India. A convenience sample of practicing EMTs in Gujarat, India were surveyed regarding the barriers to call initiation and completion. 108 EMTs completed the survey. Overall, ninety-seven (89.8%) EMTs responded that the most common reason they did not initiate a call with the call center physician was insufficient time. Forty-six (42%) EMTs reported that they were unable to call the physician one or more times during a typical workweek (approximately 5-6 twelve-hour shifts/week) due to their hands being occupied performing direct patient care. Fifty-eight (54%) EMTs reported that they were unable to reach the call center physician, despite attempts, at least once a week. This study identified multiple barriers to communication, including insufficient time to call for advice and inability to reach call center physicians. Identification of simple interventions and best practices may improve communication and ensure timely and appropriate prehospital care.

  5. Formal Specification and Verification of Real-Time Multi-Agent Systems using Timed-Arc Petri Nets

    Directory of Open Access Journals (Sweden)

    QASIM, A.

    2015-08-01

    Full Text Available In this study we have formally specified and verified the actions of communicating real-time software agents (RTAgents. Software agents are expected to work autonomously and deal with unfamiliar situations astutely. Achieving cent percent test cases coverage for these agents has always been a problem due to limited resources. Also a high degree of dependability and predictability is expected from real-time software agents. In this research we have used Timed-Arc Petri Net's for formal specification and verification. Formal specification of e-agents has been done in the past using Linear Temporal Logic (LTL but we believe that Timed-Arc Petri Net's being more visually expressive provides a richer framework for such formalism. A case study of Stock Market System (SMS based on Real Time Multi Agent System framework (RTMAS using Timed-Arc Petri Net's is taken to illustrate the proposed modeling approach. The model was verified used AF, AG, EG, and EF fragments of Timed Computational Tree Logic (TCTL via translations to timed automata.

  6. Games and Scenarios for Real-Time System Validation

    DEFF Research Database (Denmark)

    Li, Shuhao

    This thesis presents research on the validation of real-time embedded software systems in the context of model-based development. The thesis proposes scenario-based and game-theoretic approaches to system analysis, verification, synthesis and testing to address the challenges that arise from....... By linking our prototype translators with existing model checker Uppaal and game solver Uppaal-Tiga, we show that these methods contribute to the interaction correctness and timeliness of early system designs. The thesis also shows that testing a real-time reactive system can be viewed as playing a timed...... communicating real-time systems can be modeled and specified with LSC. By translating LSC to timed automata (TAs), we reduce scenario-based model consistency checking and property verification to CTL real-time model checking problems, and reduce scenario-based synthesis to a timed game solving problem...

  7. Real-time haptic cutting of high-resolution soft tissues.

    Science.gov (United States)

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  8. Real-Time Signal Processing for Multiantenna Systems: Algorithms, Optimization, and Implementation on an Experimental Test-Bed

    Directory of Open Access Journals (Sweden)

    Haustein Thomas

    2006-01-01

    Full Text Available A recently realized concept of a reconfigurable hardware test-bed suitable for real-time mobile communication with multiple antennas is presented in this paper. We discuss the reasons and prerequisites for real-time capable MIMO transmission systems which may allow channel adaptive transmission to increase link stability and data throughput. We describe a concept of an efficient implementation of MIMO signal processing using FPGAs and DSPs. We focus on some basic linear and nonlinear MIMO detection and precoding algorithms and their optimization for a DSP target, and a few principal steps for computational performance enhancement are outlined. An experimental verification of several real-time MIMO transmission schemes at high data rates in a typical office scenario is presented and results on the achieved BER and throughput performance are given. The different transmission schemes used either channel state information at both sides of the link or at one side only (transmitter or receiver. Spectral efficiencies of more than 20 bits/s/Hz and a throughput of more than 150 Mbps were shown with a single-carrier transmission. The experimental results clearly show the feasibility of real-time high data rate MIMO techniques with state-of-the-art hardware and that more sophisticated baseband signal processing will be an essential part of future communication systems. A discussion on implementation challenges towards future wireless communication systems supporting higher data rates (1 Gbps and beyond or high mobility concludes the paper.

  9. An assessment of the real-time application capabilities of the SIFT computer system

    Science.gov (United States)

    Butler, R. W.

    1982-01-01

    The real-time capabilities of the SIFT computer system, a highly reliable multicomputer architecture developed to support the flight controls of a relaxed static stability aircraft, are discussed. The SIFT computer system was designed to meet extremely high reliability requirements and to facilitate a formal proof of its correctness. Although SIFT represents a significant achievement in fault-tolerant system research it presents an unusual and restrictive interface to its users. The characteristics of the user interface and its impact on application system design are assessed.

  10. State of the art on fault-tolerant real time distributed systems

    International Nuclear Information System (INIS)

    Levkov, V.

    1992-06-01

    The integration of new computerized functions in power plant, and especially nuclear power plant, control and instrumentation systems implies more and more stringent requirements as to communication system reliability. For if an item of equipment, or even a computer program, can be validated and qualified, no formal qualification procedure is presently imposed on communication networks. This is certainly due to the relative immaturity of these networks, but also to their complexity. It is for this reason that, in the context of preparation for the future PWR 2000 standardized nuclear plants, it would seem appropriate to take a look at fault-tolerant communication systems. Since C and I type applications (in the control room) are divided between several computers and are required to contend with extremely severe time constraints, EDF has undertaken investigation of fault-tolerant, real time distributed systems. This paper summarized the state of the art in the field as it appears from discussion with computer manufacturers, academics and research workers on related projects. The results obtained were then used to determine trends as to ''promising'' solutions. The paper concludes with recommended study programs for the PCC department of EDF/R and DD for the next few years. (author), 9 figs., 10 refs., 2 annexes

  11. Timeliness and Predictability in Real-Time Database Systems

    National Research Council Canada - National Science Library

    Son, Sang H

    1998-01-01

    The confluence of computers, communications, and databases is quickly creating a globally distributed database where many applications require real time access to both temporally accurate and multimedia data...

  12. High speed real-time wavefront processing system for a solid-state laser system

    Science.gov (United States)

    Liu, Yuan; Yang, Ping; Chen, Shanqiu; Ma, Lifang; Xu, Bing

    2008-03-01

    A high speed real-time wavefront processing system for a solid-state laser beam cleanup system has been built. This system consists of a core2 Industrial PC (IPC) using Linux and real-time Linux (RT-Linux) operation system (OS), a PCI image grabber, a D/A card. More often than not, the phase aberrations of the output beam from solid-state lasers vary fast with intracavity thermal effects and environmental influence. To compensate the phase aberrations of solid-state lasers successfully, a high speed real-time wavefront processing system is presented. Compared to former systems, this system can improve the speed efficiently. In the new system, the acquisition of image data, the output of control voltage data and the implementation of reconstructor control algorithm are treated as real-time tasks in kernel-space, the display of wavefront information and man-machine conversation are treated as non real-time tasks in user-space. The parallel processing of real-time tasks in Symmetric Multi Processors (SMP) mode is the main strategy of improving the speed. In this paper, the performance and efficiency of this wavefront processing system are analyzed. The opened-loop experimental results show that the sampling frequency of this system is up to 3300Hz, and this system can well deal with phase aberrations from solid-state lasers.

  13. Performance Improvement of Real-Time System for Plasma Control in RFX-mod

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Soppelsa, A.; Taliercio, C.

    2006-01-01

    The real-time system for plasma control has been used routinely in RFX-mod since commissioning (mid 2005). It is based on a modular hardware/software infrastructure, currently including 7 VME stations, capable of fulfilling the tight system requirements in terms of input/output channels (> 700 / > 250), real-time data flow (> 2 Mbyte/s), computation capability (> 1 GFLOP/s per station), and real-time constraints (application cycle times rd EPS Conf. on Plasma Physics, Rome Italy, June 19 - 23 2006]. The high flexibility of the system has stimulated the development of a large number of control schemes with progressively increasing requests in terms of computation complexity and real-time data flow, demanding, at the same time, strict control on cycle times and system latency. Even though careful optimisation of algorithm implementation and real-time data transmission have been performed, allowing to keep pace, so far, with the increased control requirements, future developments require to evolve the current technology, retaining the basic architecture and concepts. Two system enhancements are envisaged in the near future. The 500 MHz PowerPC-based Single Board Computer currently in use will be substituted with the 1 GHz version, whereas the real-time communication system will increase in bandwidth from 100 Mbit/s to 1 Gbit/s. These improvements will surely enhance the overall system performance, even if it is not possible to quantify a priori the exact performance boost, since other components may limit the performance in the new configuration. The paper reports in detail on the analysis of the bottlenecks of the current architecture. Based on measurements carried out in laboratory, it presents the results achieved with the proposed enhancements in terms of real-time data throughput, cycle times and latency. The paper analyses in detail the effects of the increased computing power on the components of the control system and of the improved bandwidth in real-time

  14. Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng

    2014-04-01

    A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.

  15. Real-time knee adduction moment feedback training using an elliptical trainer.

    Science.gov (United States)

    Kang, Sang Hoon; Lee, Song Joo; Ren, Yupeng; Zhang, Li-Qun

    2014-03-01

    The external knee adduction moment (EKAM) is associated with knee osteoarthritis (OA) in many aspects including presence, progression, and severity of knee OA. Despite of its importance, there is a lack of EKAM estimation methods that can provide patients with knee OA real-time EKAM biofeedback for training and clinical evaluations without using a motion analysis laboratory. A practical real-time EKAM estimation method, which utilizes kinematics measured by a simple six degree-of-freedom goniometer and kinetics measured by a multi-axis force sensor underneath the foot, was developed to provide real-time feedback of the EKAM to the patients during stepping on an elliptical trainer, which can potentially be used to control and alter the EKAM. High reliability (ICC(2,1): 0.9580) of the real-time EKAM estimation method was verified through stepping trials of seven subjects without musculoskeletal disorders. Combined with advantages of elliptical trainers including functional weight-bearing stepping and mitigation of impulsive forces, the real-time EKAM estimation method is expected to help patients with knee OA better control frontal plane knee loading and reduce knee OA development and progression.

  16. Workplace-based assessment of communication skills: A pilot project addressing feasibility, acceptance and reliability

    Science.gov (United States)

    Weyers, Simone; Jemi, Iman; Karger, André; Raski, Bianca; Rotthoff, Thomas; Pentzek, Michael; Mortsiefer, Achim

    2016-01-01

    Background: Imparting communication skills has been given great importance in medical curricula. In addition to standardized assessments, students should communicate with real patients in actual clinical situations during workplace-based assessments and receive structured feedback on their performance. The aim of this project was to pilot a formative testing method for workplace-based assessment. Our investigation centered in particular on whether or not physicians view the method as feasible and how high acceptance is among students. In addition, we assessed the reliability of the method. Method: As part of the project, 16 students held two consultations each with chronically ill patients at the medical practice where they were completing GP training. These consultations were video-recorded. The trained mentoring physician rated the student’s performance and provided feedback immediately following the consultations using the Berlin Global Rating scale (BGR). Two impartial, trained raters also evaluated the videos using BGR. For qualitative and quantitative analysis, information on how physicians and students viewed feasibility and their levels of acceptance was collected in written form in a partially standardized manner. To test for reliability, the test-retest reliability was calculated for both of the overall evaluations given by each rater. The inter-rater reliability was determined for the three evaluations of each individual consultation. Results: The formative assessment method was rated positively by both physicians and students. It is relatively easy to integrate into daily routines. Its significant value lies in the personal, structured and recurring feedback. The two overall scores for each patient consultation given by the two impartial raters correlate moderately. The degree of uniformity among the three raters in respect to the individual consultations is low. Discussion: Within the scope of this pilot project, only a small sample of physicians and

  17. Workplace-based assessment of communication skills: A pilot project addressing feasibility, acceptance and reliability

    Directory of Open Access Journals (Sweden)

    Weyers, Simone

    2016-11-01

    Full Text Available Background: Imparting communication skills has been given great importance in medical curricula. In addition to standardized assessments, students should communicate with real patients in actual clinical situations during workplace-based assessments and receive structured feedback on their performance. The aim of this project was to pilot a formative testing method for workplace-based assessment. Our investigation centered in particular on whether or not physicians view the method as feasible and how high acceptance is among students. In addition, we assessed the reliability of the method.Method: As part of the project, 16 students held two consultations each with chronically ill patients at the medical practice where they were completing GP training. These consultations were video-recorded. The trained mentoring physician rated the student’s performance and provided feedback immediately following the consultations using the Berlin Global Rating scale (BGR. Two impartial, trained raters also evaluated the videos using BGR. For qualitative and quantitative analysis, information on how physicians and students viewed feasibility and their levels of acceptance was collected in written form in a partially standardized manner. To test for reliability, the test-retest reliability was calculated for both of the overall evaluations given by each rater. The inter-rater reliability was determined for the three evaluations of each individual consultation.Results: The formative assessment method was rated positively by both physicians and students. It is relatively easy to integrate into daily routines. Its significant value lies in the personal, structured and recurring feedback. The two overall scores for each patient consultation given by the two impartial raters correlate moderately. The degree of uniformity among the three raters in respect to the individual consultations is low.Discussion: Within the scope of this pilot project, only a small sample

  18. Workplace-based assessment of communication skills: A pilot project addressing feasibility, acceptance and reliability.

    Science.gov (United States)

    Weyers, Simone; Jemi, Iman; Karger, André; Raski, Bianca; Rotthoff, Thomas; Pentzek, Michael; Mortsiefer, Achim

    2016-01-01

    Background: Imparting communication skills has been given great importance in medical curricula. In addition to standardized assessments, students should communicate with real patients in actual clinical situations during workplace-based assessments and receive structured feedback on their performance. The aim of this project was to pilot a formative testing method for workplace-based assessment. Our investigation centered in particular on whether or not physicians view the method as feasible and how high acceptance is among students. In addition, we assessed the reliability of the method. Method: As part of the project, 16 students held two consultations each with chronically ill patients at the medical practice where they were completing GP training. These consultations were video-recorded. The trained mentoring physician rated the student's performance and provided feedback immediately following the consultations using the Berlin Global Rating scale (BGR). Two impartial, trained raters also evaluated the videos using BGR. For qualitative and quantitative analysis, information on how physicians and students viewed feasibility and their levels of acceptance was collected in written form in a partially standardized manner. To test for reliability, the test-retest reliability was calculated for both of the overall evaluations given by each rater. The inter-rater reliability was determined for the three evaluations of each individual consultation. Results: The formative assessment method was rated positively by both physicians and students. It is relatively easy to integrate into daily routines. Its significant value lies in the personal, structured and recurring feedback. The two overall scores for each patient consultation given by the two impartial raters correlate moderately. The degree of uniformity among the three raters in respect to the individual consultations is low. Discussion: Within the scope of this pilot project, only a small sample of physicians and

  19. A distributed real-time Java system based on CSP

    NARCIS (Netherlands)

    Bakkers, André; Hilderink, G.H.; Broenink, Johannes F.

    1999-01-01

    Real-time embedded systems in general require a reliability that is orders of magnitude higher than what is presently obtainable with state of the art C programs. The reason for the poor reliability of present day software is the unavailability of a formalism to design sequential C programs. The use

  20. Learning Organizations in High Reliability Industries

    International Nuclear Information System (INIS)

    Schwalbe, D.; Wächter, C.

    2016-01-01

    Full text: Humans make mistakes. Sometimes we learn from them. In a high reliability organization we have to learn before an error leads to an incident (or even accident). Therefore the “human factor” is most important as most of the time the human is the last line of defense. The “human factor” is more than communication or leadership skills. At the end, it is the personal attitude. This attitude has to be safety minded. And this attitude has to be self-reflected continuously. Moreover, feedback from others is urgently needed to improve one’s personal skills daily and learn from our own experience as well as from others. (author

  1. High-precision real-time 3D shape measurement based on a quad-camera system

    Science.gov (United States)

    Tao, Tianyang; Chen, Qian; Feng, Shijie; Hu, Yan; Zhang, Minliang; Zuo, Chao

    2018-01-01

    Phase-shifting profilometry (PSP) based 3D shape measurement is well established in various applications due to its high accuracy, simple implementation, and robustness to environmental illumination and surface texture. In PSP, higher depth resolution generally requires higher fringe density of projected patterns which, in turn, lead to severe phase ambiguities that must be solved with additional information from phase coding and/or geometric constraints. However, in order to guarantee the reliability of phase unwrapping, available techniques are usually accompanied by increased number of patterns, reduced amplitude of fringe, and complicated post-processing algorithms. In this work, we demonstrate that by using a quad-camera multi-view fringe projection system and carefully arranging the relative spatial positions between the cameras and the projector, it becomes possible to completely eliminate the phase ambiguities in conventional three-step PSP patterns with high-fringe-density without projecting any additional patterns or embedding any auxiliary signals. Benefiting from the position-optimized quad-camera system, stereo phase unwrapping can be efficiently and reliably performed by flexible phase consistency checks. Besides, redundant information of multiple phase consistency checks is fully used through a weighted phase difference scheme to further enhance the reliability of phase unwrapping. This paper explains the 3D measurement principle and the basic design of quad-camera system, and finally demonstrates that in a large measurement volume of 200 mm × 200 mm × 400 mm, the resultant dynamic 3D sensing system can realize real-time 3D reconstruction at 60 frames per second with a depth precision of 50 μm.

  2. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2010-01-01

    Full Text Available Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  3. DESIGN OF A REAL TIME REMOTE VEHICLE LOCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ahmet Emir DİRİK

    2004-02-01

    Full Text Available In this study, a low-cost, real-time vehicle location system is developed. The vehicle location system includes three main modules, i.e. positioning, wireless communication and digital map modules. The positioning module used in location systems computes position of the mobile vehicle. These vehicle location data are transmitted through a wireless communication system to host. The host has a capability to monitor a fleet of vehicles by analyzing data collected from wireless communication system. In this project, mobile vehicle location positions can be computed in a range of 10m position error and by using these position data, its possible to monitor the fleet of mobile vehicles on a digital map in the observation and control center. In this study, vehicle analog mobile radios are used to establish wireless communication system. Thus, there is no need to use satellite or GSM systems for communication and a low-cost and high-performance vehicle location system is realized.

  4. Review of Real-time Electricity Markets for Integrating Distributed Energy Resources and Demand Response

    DEFF Research Database (Denmark)

    Wang, Qi; Zhang, Chunyu; Ding, Yi

    2015-01-01

    The high penetration of both Distributed Energy Resources (DER) and Demand Response (DR) in modern power systems requires a sequence of advanced strategies and technologies for maintaining system reliability and flexibility. Real-time electricity markets (RTM) are the nondiscriminatory transaction...... platforms for providing necessary balancing services, where the market clearing (nodal or zonal prices depending on markets) is very close to real time operations of power systems. One of the primary functions of RTMs in modern power systems is establishing an efficient and effective mechanism for small DER...... and DR to participate in balancing market transactions, while handling their meteorological or intermittent characteristics, facilitating asset utilization, and stimulating their active responses. Consequently, RTMs are dedicated to maintaining the flexibility and reliability of power systems. This paper...

  5. Real-time database for high resolution neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian T.; Rother, Oliver M.; Wimmer-Schweingruber, Robert F.; Heber, Bernd [IEAP, Christian-Albrechts-Universitaet zu Kiel (Germany)

    2008-07-01

    The worldwide network of standardised neutron monitors is, after 50 years, still the state-of-the-art instrumentation to measure spectral variations of the primary cosmic ray component. These measurements are an ideal complement to space based cosmic ray measurements. Data from the approximately 50 IGY and NM64 neutron monitors is stored locally but also available through data collections sites like the World Data Center (WDC) or the IZMIRAN ftp server. The data from the WDC is in a standard format, but only hourly values are available. IZMIRAN collects the data in the best available time resolution, but the data arrives on the ftp server only hours, sometimes days, after the measurements. Also, the high time-resolution measurements of the different stations do not have a common format, a conversion routine for each station is needed before they can be used for scientific analysis. Supported by the 7th framework program of the European Commission, we are setting up a real-time database where high resolution cosmic ray measurements will be stored and accessible immediately after the measurement. Stations that do not have 1-minute resolution measurements will be upgraded to 1-minute or better resolution with an affordable standard registration system, that will submit the measurements to the database via the internet in real-time.

  6. Internet Data Distribution – extending real-time data sharing throughout the Americas

    Directory of Open Access Journals (Sweden)

    T. Yoksas

    2006-01-01

    Full Text Available The Unidata Program Center (Unidata of the University Corporation of Atmospheric Research (UCAR is involved in three international collaborations whose goals are extension of real-time data delivery-to and sharing-of locally held datasets-by educational institutions throughout the Americas. These efforts are based on the use of Unidata's Internet Data Distribution (IDD system which is built on top of its proven Local Data Manager Version 6 (LDM-6 technology. The Unidata IDD is an event-driven network of cooperating Unidata LDM servers that distributes discipline-neutral data products in near real-time over wide-area networks. The IDD, a collaboration of over 150 mostly North American institutions of higher education, has been the primary source of real-time atmospheric science data for the US university community for over a decade,. In addition to providing a highly reliable mechanism for delivering real-time data, the IDD allows users to easily share locally held datasets.

  7. State-based Communication on Time-predictable Multicore Processors

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo; Schoeberl, Martin; Sparsø, Jens

    2016-01-01

    Some real-time systems use a form of task-to-task communication called state-based or sample-based communication that does not impose any flow control among the communicating tasks. The concept is similar to a shared variable, where a reader may read the same value multiple times or may not read...... a given value at all. This paper explores time-predictable implementations of state-based communication in network-on-chip based multicore platforms through five algorithms. With the presented analysis of the implemented algorithms, the communicating tasks of one core can be scheduled independently...... of tasks on other cores. Assuming a specific time-predictable multicore processor, we evaluate how the read and write primitives of the five algorithms contribute to the worst-case execution time of the communicating tasks. Each of the five algorithms has specific capabilities that make them suitable...

  8. MINIX4RT: a real-time operating system based on MINIX

    OpenAIRE

    Pessolani, Pablo Andrés

    2006-01-01

    Tanenbaum's MINIX Operating System was extended with a Real-Time microkernel and services to conform MINIX4RT, a Real-Time Operating System for academic uses that includes more flexible Interprocess Communications facilities supporting basic priority inheritance protocol, a fixed priority scheduler, timer and event driven interrupt management, statistics and Real-Time metrics gathering keeping backward compatibility with standard MINIX versions. Facultad de Informática

  9. Definition of an auxiliary processor dedicated to real-time operating system kernels

    Science.gov (United States)

    Halang, Wolfgang A.

    1988-01-01

    In order to increase the efficiency of process control data processing, it is necessary to enhance the productivity of real time high level languages and to automate the task administration, because presently 60 percent or more of the applications are still programmed in assembly languages. This may be achieved by migrating apt functions for the support of process control oriented languages into the hardware, i.e., by new architectures. Whereas numerous high level languages have already been defined or realized, there are no investigations yet on hardware assisted implementation of real time features. The requirements to be fulfilled by languages and operating systems in hard real time environment are summarized. A comparison of the most prominent languages, viz. Ada, HAL/S, LTR, Pearl, as well as the real time extensions of FORTRAN and PL/1, reveals how existing languages meet these demands and which features still need to be incorporated to enable the development of reliable software with predictable program behavior, thus making it possible to carry out a technical safety approval. Accordingly, Pearl proved to be the closest match to the mentioned requirements.

  10. a Real-Time GIS Platform for High Sour Gas Leakage Simulation, Evaluation and Visualization

    Science.gov (United States)

    Li, M.; Liu, H.; Yang, C.

    2015-07-01

    The development of high-sulfur gas fields, also known as sour gas field, is faced with a series of safety control and emergency management problems. The GIS-based emergency response system is placed high expectations under the consideration of high pressure, high content, complex terrain and highly density population in Sichuan Basin, southwest China. The most researches on high hydrogen sulphide gas dispersion simulation and evaluation are used for environmental impact assessment (EIA) or emergency preparedness planning. This paper introduces a real-time GIS platform for high-sulfur gas emergency response. Combining with real-time data from the leak detection systems and the meteorological monitoring stations, GIS platform provides the functions of simulating, evaluating and displaying of the different spatial-temporal toxic gas distribution patterns and evaluation results. This paper firstly proposes the architecture of Emergency Response/Management System, secondly explains EPA's Gaussian dispersion model CALPUFF simulation workflow under high complex terrain and real-time data, thirdly explains the emergency workflow and spatial analysis functions of computing the accident influencing areas, population and the optimal evacuation routes. Finally, a well blow scenarios is used for verify the system. The study shows that GIS platform which integrates the real-time data and CALPUFF models will be one of the essential operational platforms for high-sulfur gas fields emergency management.

  11. Real-time face and gesture analysis for human-robot interaction

    Science.gov (United States)

    Wallhoff, Frank; Rehrl, Tobias; Mayer, Christoph; Radig, Bernd

    2010-05-01

    Human communication relies on a large number of different communication mechanisms like spoken language, facial expressions, or gestures. Facial expressions and gestures are one of the main nonverbal communication mechanisms and pass large amounts of information between human dialog partners. Therefore, to allow for intuitive human-machine interaction, a real-time capable processing and recognition of facial expressions, hand and head gestures are of great importance. We present a system that is tackling these challenges. The input features for the dynamic head gestures and facial expressions are obtained from a sophisticated three-dimensional model, which is fitted to the user in a real-time capable manner. Applying this model different kinds of information are extracted from the image data and afterwards handed over to a real-time capable data-transferring framework, the so-called Real-Time DataBase (RTDB). In addition to the head and facial-related features, also low-level image features regarding the human hand - optical flow, Hu-moments are stored into the RTDB for the evaluation process of hand gestures. In general, the input of a single camera is sufficient for the parallel evaluation of the different gestures and facial expressions. The real-time capable recognition of the dynamic hand and head gestures are performed via different Hidden Markov Models, which have proven to be a quick and real-time capable classification method. On the other hand, for the facial expressions classical decision trees or more sophisticated support vector machines are used for the classification process. These obtained results of the classification processes are again handed over to the RTDB, where other processes (like a Dialog Management Unit) can easily access them without any blocking effects. In addition, an adjustable amount of history can be stored by the RTDB buffer unit.

  12. Development of embedded real-time and high-speed vision platform

    Science.gov (United States)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  13. The effectiveness of the Geritalk communication skills course: a real-time assessment of skill acquisition and deliberate practice.

    Science.gov (United States)

    Gelfman, Laura P; Lindenberger, Elizabeth; Fernandez, Helen; Goldberg, Gabrielle R; Lim, Betty B; Litrivis, Evgenia; O'Neill, Lynn; Smith, Cardinale B; Kelley, Amy S

    2014-10-01

    Communication skills are critical in Geriatrics and Palliative Medicine because these patients confront complex clinical scenarios. We evaluated the effectiveness of the Geritalk communication skills course by comparing pre- and post-course real-time assessment of the participants leading family meetings. We also evaluated the participants' sustained skills practice. We compare the participants' skill acquisition before and after Geritalk using a direct observation Family Meeting Communication Assessment Tool and assess their deliberate practice at follow-up. First-year Geriatrics or Palliative Medicine fellows at Mount Sinai Medical Center and the James J. Peters Bronx VA Medical Center participated in Geritalk. Pre- and post-course family meeting assessments were compared. An average net gain of 6.8 skills represented a greater than 20% improvement in use of applicable skills. At two month follow-up, most participants reported deliberate practice of fundamental and advanced skills. This intensive training and family meeting assessment offers evidence-based communication skills training. Published by Elsevier Inc.

  14. Communicating Cooperative Robots with Bluetooth

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Son, L.T.; Madsen, Ole Brun

    2001-01-01

    A generic architecture for system of cooperating communicating mobile robots is presented. An overall structure is defined from a modularity viewpoint, where a number of generic modules are identified; low level communication interface, network layer services such as initial and adaptive network...... structuring, routing and capacity management, overall behaviour which includes commitment to overall strategies as well as local behaviour like trajectory planning and navigation. Focus is kept on communication aspects and an example application of establishing a reliable wireless real-time communication...

  15. Real time traffic models, decision support for traffic management

    NARCIS (Netherlands)

    Wismans, Luc Johannes Josephus; de Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various

  16. Real Time Traffic Models, Decision Support for Traffic Management

    NARCIS (Netherlands)

    Wismans, L.; De Romph, E.; Friso, K.; Zantema, K.

    2014-01-01

    Reliable and accurate short-term traffic state prediction can improve the performance of real-time traffic management systems significantly. Using this short-time prediction based on current measurements delivered by advanced surveillance systems will support decision-making processes on various

  17. TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks

    Science.gov (United States)

    Song, W.-Z.; Huang, R.; Shirazi, B.; Husent, R.L.

    2009-01-01

    Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and frame into slots. Parent determines children's frame assigmnent based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. Firstly, given any node, at any time slot, there is at most one active sender in its neighborhood (includ ing itself). Secondly, the packet scheduling with TreelMAC is bufferless, which therefore minimizes the probability of network congestion. Thirdly, the data throughput to gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24 node test bed demonstrate that TreeMAC protocol significantly improves network throughput and energy efficiency, by comparing to the TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC[8]. ?? 2009 IEEE.

  18. DNA microsatellite region for a reliable quantification of soft wheat adulteration in durum wheat-based foodstuffs by real-time PCR.

    Science.gov (United States)

    Sonnante, Gabriella; Montemurro, Cinzia; Morgese, Anita; Sabetta, Wilma; Blanco, Antonio; Pasqualone, Antonella

    2009-11-11

    Italian industrial pasta and durum wheat typical breads must be prepared using exclusively durum wheat semolina. Previously, a microsatellite sequence specific of the wheat D-genome had been chosen for traceability of soft wheat in semolina and bread samples, using qualitative and quantitative Sybr green-based real-time experiments. In this work, we describe an improved method based on the same soft wheat genomic region by means of a quantitative real-time PCR using a dual-labeled probe. Standard curves based on dilutions of 100% soft wheat flour, pasta, or bread were constructed. Durum wheat semolina, pasta, and bread samples were prepared with increasing amounts of soft wheat to verify the accuracy of the method. Results show that reliable quantifications were obtained especially for the samples containing a lower amount of soft wheat DNA, fulfilling the need to verify labeling of pasta and typical durum wheat breads.

  19. Time-Predictable Communication on a Time-Division Multiplexing Network-on-Chip Multicore

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Bo

    This thesis presents time-predictable inter-core communication on a multicore platform with a time-division multiplexing (TDM) network-on-chip (NoC) for hard real-time systems. The thesis is structured as a collection of papers that contribute within the areas of: reconfigurable TDM NoCs, static...... TDM scheduling, and time-predictable inter-core communication. More specifically, the work presented in this thesis investigates the interaction between hardware and software involved in time-predictable inter-core communication on the multicore platform. The thesis presents: a new generation...... of the Argo NoC network interface (NI) that supports instantaneous reconfiguration, a TDM traffic scheduler that generates virtual circuit (VC) configurations for the Argo NoC, and software functions for two types of intercore communication. The new generation of the Argo NoC adds the capability...

  20. Real Time Monitoring and Wear Out of Power Modules

    DEFF Research Database (Denmark)

    Ghimire, Pramod

    the expected lifetime of converters. Real time monitoring of power modules is very important together with a smart control and a driving technique in a converter. This ensures to operate the device within a safe operating area and also to protect from a catastrophic failure. Furthermore, the inherent physical...... and in a mission-profile oriented advanced power cycling test. The measurement technique is implemented in a full scale converter under field oriented test conditions. Initially, a real time measurement technique and it's implementation in a converter are introduced. A full scale converter is also used......Power electronic devices have a wide range of applications from very low to high power at constantly varying load conditions. Irrespective of the harsh operating loads, including both internal and external, an improvement in a performance such as efficiency, power density, reliability and cost...

  1. IPS – A SYSTEM FOR REAL-TIME NAVIGATION AND 3D MODELING

    Directory of Open Access Journals (Sweden)

    D. Grießbach

    2012-07-01

    Full Text Available fdaReliable navigation and 3D modeling is a necessary requirement for any autonomous system in real world scenarios. German Aerospace Center (DLR developed a system providing precise information about local position and orientation of a mobile platform as well as three-dimensional information about its environment in real-time. This system, called Integral Positioning System (IPS can be applied for indoor environments and outdoor environments. To achieve high precision, reliability, integrity and availability a multi-sensor approach was chosen. The important role of sensor data synchronization, system calibration and spatial referencing is emphasized because the data from several sensors has to be fused using a Kalman filter. A hardware operating system (HW-OS is presented, that facilitates the low-level integration of different interfaces. The benefit of this approach is an increased precision of synchronization at the expense of additional engineering costs. It will be shown that the additional effort is leveraged by the new design concept since the HW-OS methodology allows a proven, flexible and fast design process, a high re-usability of common components and consequently a higher reliability within the low-level sensor fusion. Another main focus of the paper is on IPS software. The DLR developed, implemented and tested a flexible and extensible software concept for data grabbing, efficient data handling, data preprocessing (e.g. image rectification being essential for thematic data processing. Standard outputs of IPS are a trajectory of the moving platform and a high density 3D point cloud of the current environment. This information is provided in real-time. Based on these results, information processing on more abstract levels can be executed.

  2. A distributed real-time operating system

    International Nuclear Information System (INIS)

    Tuynman, F.; Hertzberger, L.O.

    1984-07-01

    A distributed real-time operating system, Fados, has been developed for an embedded multi-processor system. The operating system is based on a host target approach and provides for communication between arbitrary processes on host and target machine. The facilities offered are, apart from process communication, access to the file system on the host by programs on the target machine and monitoring and debugging of programs on the target machine from the host. The process communication has been designed in such a way that the possibilities are the same as those offered by the Ada programming language. The operating system is implemented on a MC 68000 based multiprocessor system in combination with a Unix host. (orig.)

  3. Experimental demonstration of real-time adaptively modulated DDO-OFDM systems with a high spectral efficiency up to 5.76bit/s/Hz transmission over SMF links.

    Science.gov (United States)

    Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin

    2014-07-28

    In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.

  4. Combination of High Rate, Real-time GNSS and Accelerometer Observations - Preliminary Results Using a Shake Table and Historic Earthquake Events.

    Science.gov (United States)

    Jackson, Michael; Passmore, Paul; Zimakov, Leonid; Raczka, Jared

    2014-05-01

    One of the fundamental requirements of an Earthquake Early Warning (EEW) system (and other mission critical applications) is to quickly detect and process the information from the strong motion event, i.e. event detection and location, magnitude estimation, and the peak ground motion estimation at the defined targeted site, thus allowing the civil protection authorities to provide pre-programmed emergency response actions: Slow down or stop rapid transit trains and high-speed trains; shutoff of gas pipelines and chemical facilities; stop elevators at the nearest floor; send alarms to hospitals, schools and other civil institutions. An important question associated with the EEW system is: can we measure displacements in real time with sufficient accuracy? Scientific GNSS networks are moving towards a model of real-time data acquisition, storage integrity, and real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies and other mission critical applications, such as volcano monitoring, building, bridge and dam monitoring systems. REF TEK a Division of Trimble has developed the integrated GNSS/Accelerograph system, model 160-09SG, which consists of REF TEK's fourth generation electronics, a 147-01 high-resolution ANSS Class A accelerometer, and Trimble GNSS receiver and antenna capable of real time, on board Precise Point Positioning (PPP) techniques with satellite clock and orbit corrections delivered to the receiver directly via L-band satellite communications. The test we

  5. Ultra-Reliable Communications in Failure-Prone Realistic Networks

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Lauridsen, Mads; Alvarez, Beatriz Soret

    2016-01-01

    We investigate the potential of different diversity and interference management techniques to achieve the required downlink SINR outage probability for ultra-reliable communications. The evaluation is performed in a realistic network deployment based on site-specific data from a European capital....... Micro and macroscopic diversity techniques are proved to be important enablers of ultra-reliable communications. Particularly, it is shown how a 4x4 MIMO scheme with three orders of macroscopic diversity can achieve the required SINR outage performance. Smaller gains are obtained from interference...

  6. Highly-reliable laser diodes and modules for spaceborne applications

    Science.gov (United States)

    Deichsel, E.

    2017-11-01

    Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.

  7. Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication

    Science.gov (United States)

    Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn

    2014-11-01

    Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.

  8. Real-time management (RTM) by cloud computing system dynamics (CCSD) for risk analysis of Fukushima nuclear power plant (NPP) accident

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo Sung [Yonsei Univ., Wonju Gangwon-do (Korea, Republic of). Dept. of Radiation Convergence Engineering; Woo, Tae Ho [Yonsei Univ., Wonju Gangwon-do (Korea, Republic of). Dept. of Radiation Convergence Engineering; The Cyber Univ. of Korea, Seoul (Korea, Republic of). Dept. of Mechanical and Control Engineering

    2017-03-15

    The earthquake and tsunami induced accident of nuclear power plant (NPP) in Fukushima disaster is investigated by the real-time management (RTM) method. This non-linear logic of the safety management is applied to enhance the methodological confidence in the NPP reliability. The case study of the earthquake is modeled for the fast reaction characteristics of the RTM. The system dynamics (SD) modeling simulations and cloud computing are applied for the RTM method where the real time simulation has the fast and effective communication for the accident remediation and prevention. Current tablet computing system can improve the safety standard of the NPP. Finally, the procedure of the cloud computing system dynamics (CCSD) modeling is constructed.

  9. Real-time management (RTM) by cloud computing system dynamics (CCSD) for risk analysis of Fukushima nuclear power plant (NPP) accident

    International Nuclear Information System (INIS)

    Cho, Hyo Sung; Woo, Tae Ho; The Cyber Univ. of Korea, Seoul

    2017-01-01

    The earthquake and tsunami induced accident of nuclear power plant (NPP) in Fukushima disaster is investigated by the real-time management (RTM) method. This non-linear logic of the safety management is applied to enhance the methodological confidence in the NPP reliability. The case study of the earthquake is modeled for the fast reaction characteristics of the RTM. The system dynamics (SD) modeling simulations and cloud computing are applied for the RTM method where the real time simulation has the fast and effective communication for the accident remediation and prevention. Current tablet computing system can improve the safety standard of the NPP. Finally, the procedure of the cloud computing system dynamics (CCSD) modeling is constructed.

  10. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS

  11. A Study on Evaluation Issues of Real-Time Operating System in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2006-07-01

    Control applications such as aircraft, robotics and nuclear power plant have to maintain a very high level of safety, typically defined as the avoidance of unplanned events resulting in hazard. These applications usually operate with hard real-time operating system (RTOS). In this case, hard RTOS software should be reliable and safe. RTOS used in safety-critical I and C system is the base software for the purpose of satisfying the real-time constraints. So, careful evaluation of its safety and functionality is very important. In this paper, we present the case study for RTOSs used in real nuclear power plants (NPP), and suggest the evaluation approach for the RTOS.

  12. A near real-time satellite-based global drought climate data record

    International Nuclear Information System (INIS)

    AghaKouchak, Amir; Nakhjiri, Navid

    2012-01-01

    Reliable drought monitoring requires long-term and continuous precipitation data. High resolution satellite measurements provide valuable precipitation information on a quasi-global scale. However, their short lengths of records limit their applications in drought monitoring. In addition to this limitation, long-term low resolution satellite-based gauge-adjusted data sets such as the Global Precipitation Climatology Project (GPCP) one are not available in near real-time form for timely drought monitoring. This study bridges the gap between low resolution long-term satellite gauge-adjusted data and the emerging high resolution satellite precipitation data sets to create a long-term climate data record of droughts. To accomplish this, a Bayesian correction algorithm is used to combine GPCP data with real-time satellite precipitation data sets for drought monitoring and analysis. The results showed that the combined data sets after the Bayesian correction were a significant improvement compared to the uncorrected data. Furthermore, several recent major droughts such as the 2011 Texas, 2010 Amazon and 2010 Horn of Africa droughts were detected in the combined real-time and long-term satellite observations. This highlights the potential application of satellite precipitation data for regional to global drought monitoring. The final product is a real-time data-driven satellite-based standardized precipitation index that can be used for drought monitoring especially over remote and/or ungauged regions. (letter)

  13. Real-time emergency forecasting technique for situation management systems

    Science.gov (United States)

    Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.

    2018-05-01

    The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.

  14. Real time data acquisition system for the High Current Test Facility proton accelerator

    International Nuclear Information System (INIS)

    Langlais, C.E.; Erickson, P.D.; Caissie, L.P.

    1975-01-01

    A real time data acquisition system was developed to monitor and control the High Current Test Facility Proton Accelerator. It is a PDP-8/E computer system with virtual memory capability that is fully interrupt driven and operates under a real-time, multi-tasking executive. The application package includes mode selection to automatically modify programs and optimize operation under varying conditions. (U.S.)

  15. [Research on the High Efficiency Data Communication Repeater Based on STM32F103].

    Science.gov (United States)

    Zhang, Yahui; Li, Zheng; Chen, Guangfei

    2015-11-01

    To improve the radio frequency (RF) transmission distance of the wireless terminal of the medical internet of things (LOT), to realize the real-time and efficient data communication, the intelligent relay system based on STM32F103 single chip microcomputer (SCM) is proposed. The system used nRF905 chip to achieve the collection, of medical and health information of patients in the 433 MHz band, used SCM to control the serial port to Wi-Fi module to transmit information from 433 MHz to 2.4 GHz wireless Wi-Fi band, and used table look-up algorithm of ready list to improve the efficiency of data communications. The design can realize real-time and efficient data communication. The relay which is easy to use with high practical value can extend the distance and mode of data transmission and achieve real-time transmission of data.

  16. Short-Term and Medium-Term Reliability Evaluation for Power Systems With High Penetration of Wind Power

    DEFF Research Database (Denmark)

    Ding, Yi; Singh, Chanan; Goel, Lalit

    2014-01-01

    reliability evaluation techniques for power systems are well developed. These techniques are more focused on steady-state (time-independent) reliability evaluation and have been successfully applied in power system planning and expansion. In the operational phase, however, they may be too rough......The expanding share of the fluctuating and less predictable wind power generation can introduce complexities in power system reliability evaluation and management. This entails a need for the system operator to assess the system status more accurately for securing real-time balancing. The existing...... an approximation of the time-varying behavior of power systems with high penetration of wind power. This paper proposes a time-varying reliability assessment technique. Time-varying reliability models for wind farms, conventional generating units, and rapid start-up generating units are developed and represented...

  17. Real Time Pricing and the Real Live Firm

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra; Goldman, Charles; Sezgen, Osman; Bharvirkar, Ranjit; Hopper, Nicole

    2004-05-26

    Energy economists have long argued the benefits of real time pricing (RTP) of electricity. Their basis for modeling customers response to short-term fluctuations in electricity prices are based on theories of rational firm behavior, where management strives to minimize operating costs and optimize profit, and labor, capital and energy are potential substitutes in the firm's production function. How well do private firms and public sector institutions operating conditions, knowledge structures, decision-making practices, and external relationships comport with these assumptions and how might this impact price response? We discuss these issues on the basis of interviews with 29 large (over 2 MW) industrial, commercial, and institutional customers in the Niagara Mohawk Power Corporation service territory that have faced day-ahead electricity market prices since 1998. We look at stories interviewees told about why and how they respond to RTP, why some customers report that they can't, and why even if they can, they don't. Some firms respond as theorized, and we describe their load curtailment strategies. About half of our interviewees reported that they were unable to either shift or forego electricity consumption even when prices are high ($0.50/kWh). Reasons customers gave for why they weren't price-responsive include implicit value placed on reliability, pricing structures, lack of flexibility in adjusting production inputs, just-in-time practices, perceived barriers to onsite generation, and insufficient time. We draw these observations into a framework that could help refine economic theory of dynamic pricing by providing real-world descriptions of how firms behave and why.

  18. A Flattened Hierarchical Scheduler for Real-Time Virtual Machines

    OpenAIRE

    Drescher, Michael Stuart

    2015-01-01

    The recent trend of migrating legacy computer systems to a virtualized, cloud-based environment has expanded to real-time systems. Unfortunately, modern hypervisors have no mechanism in place to guarantee the real-time performance of applications running on virtual machines. Past solutions to this problem rely on either spatial or temporal resource partitioning, both of which under-utilize the processing capacity of the host system. Paravirtualized solutions in which the guest communicates it...

  19. Evaluation issues on real-time operating system in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S. [Regulatory Research Div., Korea Inst. of Nuclear Safety (Korea, Republic of)

    2006-07-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  20. Evaluation issues on real-time operating system in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Y. M.; Jeong, C. H.; Koh, J. S.

    2006-01-01

    In the recent few years, using the hard real-time operating system (RTOS) of safety-critical applications has gained increased acceptance in the nuclear safety system. Failure of this software could cause catastrophic consequences for human life. The digital I and C systems of nuclear power plants also have used hard RTOSs which are executing a required mission completely within its deadline. Because the nuclear power plants have to maintain a very high level of safety, the hard RTOS software should be reliable and safe. The RTOS used in safety-critical I and C systems is the base software used for the purpose of satisfying the real-time constraints, So, careful evaluation of its safety and functionality is very important, So far, the nuclear power plants of Korea have adopted commercial off-the-shelf (COTS) RTOS software. But, these days the RTOS embedded in safety grade PLC has been developed by KNICS project controlled by Ministry of Commerce, Industry and Energy of Korea. Whether COTS RTOS or newly developed RTOS, it must be evaluated its safety and reliability. (authors)

  1. Reconfiguration in FPGA-Based Multi-Core Platforms for Hard Real-Time Applications

    DEFF Research Database (Denmark)

    Pezzarossa, Luca; Schoeberl, Martin; Sparsø, Jens

    2016-01-01

    -case execution-time of tasks of an application that determines the systems ability to respond in time. To support this focus, the platform must provide service guarantees for both communication and computation resources. In addition, many hard real-time applications have multiple modes of operation, and each......In general-purpose computing multi-core platforms, hardware accelerators and reconfiguration are means to improve performance; i.e., the average-case execution time of a software application. In hard real-time systems, such average-case speed-up is not in itself relevant - it is the worst...... mode has specific requirements. An interesting perspective on reconfigurable computing is to exploit run-time reconfiguration to support mode changes. In this paper we explore approaches to reconfiguration of communication and computation resources in the T-CREST hard real-time multi-core platform...

  2. Advanced real-time control systems for magnetically confined fusion plasmas

    International Nuclear Information System (INIS)

    Goncalves, B.; Sousa, J.; Fernandes, H.; Rodrigues, A.P.; Carvalho, B.B.; Neto, A.; Varandas, C.A.F.

    2008-01-01

    Real-time control of magnetically confined plasmas is a critical issue for the safety, operation and high performance scientific exploitation of the experimental devices on regimes beyond the current operation frontiers. The number of parameters and the data volumes used for the plasma properties identification scale normally not only with the machine size but also with the technology improvements, leading to a great complexity of the plant system. A strong computational power and fast communication infrastructure are needed to handle in real-time this information, allowing just-in-time decisions to achieve the fusion critical plasma conditions. These advanced control systems require a tiered infrastructure including the hardware layer, the signal-processing middleware, real-time timing and data transport, the real-time operating system tools and drivers, the framework for code development, simulation, deployment and experiment parameterization and the human real-time plasma condition monitoring and management. This approach is being implemented at CFN by offering a vertical solution for the forthcoming challenges, including ITER, the first experimental fusion reactor. A given set of tools and systems are described on this paper, namely: (i) an ATCA based hardware multiple-input-multiple-output (MIMO) platform, PCI and PCIe acquisition and control modules; (ii) FPGA and DSP parallelized signal processing algorithms; (iii) a signal data and event distribution system over a 2.5/10Gb optical network with sub-microsecond latencies; (iv) RTAI and Linux drivers; and (v) the FireSignal, FusionTalk, SDAS FireCalc application tools. (author)

  3. Real-time simulation of energy management in a domestic consumer

    DEFF Research Database (Denmark)

    Fernandes, F.; Silva, M.; Faria, P.

    2013-01-01

    Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoi......-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer....

  4. Innovation and international business communication : can European research help to increase the validity and reliability for our business and teaching practice?

    NARCIS (Netherlands)

    Ulijn, J.M.

    2000-01-01

    We can improve the validity and reliability of business communication research by using both quantitative and qualitative methods and studying both real life and simulations. Studies should build on both American research on strategy and innovation and European research on psycholinguistics and

  5. A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks

    International Nuclear Information System (INIS)

    Mo, Hua-Dong; Li, Yan-Fu; Zio, Enrico

    2016-01-01

    Highlights: • A system-of-systems framework is proposed for reliability analysis of DG system. • The impact of degraded communication networks is included and quantified. • Various uncertainties and contingencies in the DG system are considered. • A Monte Carlo simulation-optimal power flow computational framework is developed. • The results of the application study show the power of the proposed framework. - Abstract: Distributed generation (DG) systems install communication networks for managing real-time energy imbalance. Different from previous research, which typically assumes perfect communication networks, this work aims to quantitatively account for the impact of degraded communication networks on DG systems performance. The degraded behavior of communication networks is modeled by stochastic continuous time transmission delays and packet dropouts. On the DG systems side, we consider the inherent uncertainties of renewable energy sources, loads and energy prices. We develop a Monte Carlo simulation-optimal power flow (MCS-OPF) computational framework that is capable of generating consecutive time-dependent operating scenarios of the integrated system. Quantitative analysis is carried out to measure the impact of communication networks degradation onto the DG systems. For illustration, the framework is applied to a modified IEEE 13 nodes test feeder. The results demonstrate that the degraded communication networks can significantly deteriorate the performance of the integrated system. A grey differential model-based prediction method for reconstructing missing data is effective in mitigating the influence of the degraded communication networks.

  6. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  7. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  8. Real-Time RT-PCR for the Detection of Lyssavirus Species

    Directory of Open Access Journals (Sweden)

    A. Deubelbeiss

    2014-01-01

    Full Text Available The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV. Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used.

  9. Design principles of a resource sharing real-time-system

    International Nuclear Information System (INIS)

    Gliss, B.

    1978-01-01

    Criteria for developing a resource sharing real time system are given. Resource sharing necessitates extra precautions for guaranteeing stable operating conditions. Some relevant measures to insure reliability and maintainability of the system are discussed. (Auth.)

  10. Volcanic ash and aviation–The challenges of real-time, global communication of a natural hazard

    Science.gov (United States)

    Lechner, Peter; Tupper, Andrew C.; Guffanti, Marianne C.; Loughlin, Sue; Casadevall, Thomas

    2017-01-01

    More than 30 years after the first major aircraft encounters with volcanic ash over Indonesia in 1982, it remains challenging to inform aircraft in flight of the exact location of potentially dangerous ash clouds on their flight path, particularly shortly after the eruption has occurred. The difficulties include reliably forecasting and detecting the onset of significant explosive eruptions on a global basis, observing the dispersal of eruption clouds in real time, capturing their complex structure and constituents in atmospheric transport models, describing these observations and modelling results in a manner suitable for aviation users, delivering timely warning messages to the cockpit, flight planners and air traffic management systems, and the need for scientific development in order to undertake operational enhancements. The framework under which these issues are managed is the International Airways Volcano Watch (IAVW), administered by the International Civil Aviation Organization (ICAO). ICAO outlines in its standards and recommended practices (International Civil Aviation Organization, 2014) the basic volcanic monitoring and communication that is necessary at volcano observatories in Member States (countries). However, not all volcanoes are monitored and not all countries with volcanoes have mandated volcano observatories or equivalents. To add to the efforts of volcano observatories, a system of Meteorological Watch Offices, Air Traffic Management Area Control Centres, and nine specialist Volcanic Ash Advisory Centres (VAACs) are responsible for observing, analysing, forecasting and communicating the aviation hazard (airborne ash), using agreed techniques and messages in defined formats. Continuous improvement of the IAVW framework is overseen by expert groups representing the operators of the system, the user community, and the science community. The IAVW represents a unique marriage of two scientific disciplines - volcanology and meteorology - with the

  11. Coverage and Rate of Downlink Sequence Transmissions with Reliability Guarantees

    DEFF Research Database (Denmark)

    Park, Jihong; Popovski, Petar

    2017-01-01

    Real-time distributed control is a promising application of 5G in which communication links should satisfy certain reliability guarantees. In this letter, we derive closed-form maximum average rate when a device (e.g. industrial machine) downloads a sequence of n operational commands through cell...

  12. A UAV based system for real time flash flood monitoring in desert environments using Lagrangian microsensors

    KAUST Repository

    Abdelkader, Mohamed; Shaqura, Mohammad; Claudel, Christian G.; Gueaieb, Wail

    2013-01-01

    with advance warning, for which real time monitoring is critical. While satellite-based high resolution weather forecasts can help predict floods to a certain extent, they are not reliable enough, as flood models depend on a large number of parameters

  13. Real-time software for the COMPASS tokamak plasma control

    International Nuclear Information System (INIS)

    Valcarcel, D.F.; Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J.; Sartori, F.; Janky, F.; Cahyna, P.; Hron, M.; Panek, R.

    2010-01-01

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 μs. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  14. Real-time software for the COMPASS tokamak plasma control

    Energy Technology Data Exchange (ETDEWEB)

    Valcarcel, D.F., E-mail: danielv@ipfn.ist.utl.p [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Duarte, A.S.; Neto, A.; Carvalho, I.S.; Carvalho, B.B.; Fernandes, H.; Sousa, J. [Associacao EURATOM/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, P-1049-001 Lisboa (Portugal); Sartori, F. [Euratom-UKAEA, Culham Science Centre, Abingdon, OX14 3DB Oxon (United Kingdom); Janky, F.; Cahyna, P.; Hron, M.; Panek, R. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague (Czech Republic)

    2010-07-15

    The COMPASS tokamak has started its operation recently in Prague and to meet the necessary operation parameters its real-time system, for data processing and control, must be designed for both flexibility and performance, allowing the easy integration of code from several developers and to guarantee the desired time cycle. For this purpose an Advanced Telecommunications Computing Architecture based real-time system has been deployed with a solution built on a multi-core x86 processor. It makes use of two software components: the BaseLib2 and the MARTe (Multithreaded Application Real-Time executor) real-time frameworks. The BaseLib2 framework is a generic real-time library with optimized objects for the implementation of real-time algorithms. This allowed to build a library of modules that process the acquired data and execute control algorithms. MARTe executes these modules in kernel space Real-Time Application Interface allowing to attain the required cycle time and a jitter of less than 1.5 {mu}s. MARTe configuration and data storage are accomplished through a Java hardware client that connects to the FireSignal control and data acquisition software. This article details the implementation of the real-time system for the COMPASS tokamak, in particular the organization of the control code, the design and implementation of the communications with the actuators and how MARTe integrates with the FireSignal software.

  15. The case for a Supersite for real-time GNSS hazard monitoring on a global scale

    Science.gov (United States)

    Bar-Sever, Y. E.

    2017-12-01

    Real-time measurements from many hundreds of GNSS tracking sites around the world are publicly available today, and the amount of streaming data is steadily increasing as national agencies densify their local and global infrastructure for natural hazard monitoring and a variety of geodetic, cadastral, and other civil applications. Thousands of such sites can soon be expected on a global scale. It is a challenge to manage and make optimal use of this massive amount of real-time data. We advocate the creation of Supersite(s), in the parlance of the U.N. Global Earth Observation System of Systems (https://www.earthobservations.org/geoss.php), to generate high level real-time data products from the raw GNSS measurements from all available sources (many thousands of sites). These products include: • High rate, real-time positioning time series for assessing rapid crustal motion due to Earthquakes, volcanic activities, land slides, etc. • Co-seismic displacement to help resolve earthquake mechanism and moment magnitude • Real-time total electron content (TEC) fluctuations to augment Dart buoy in detecting and tracking tsunamis • Aggregation of the many disparate raw data dispensation servers (Casters)Recognizing that natural hazards transcend national boundaries in terms of direct and indirect (e.g., economical, security) impact, the benefits from centralized, authoritative processing of GNSS measurements is manifold: • Offers a one-stop shop to less developed nations and institutions for raw and high-level products, in support of research and applications • Promotes the installation of tracking sites and the contribution of data from nations without the ability to process the data • Reduce dependency on local responsible agencies impacted by a natural disaster • Reliable 24/7 operations, independent of voluntary, best effort contributions from good-willing scientific organizationsThe JPL GNSS Real-Time Earthquake and Tsunami (GREAT) Alert has been

  16. Evaluation of technologies of parallel computers. Communication networks for a real-time triggering application for a high-energy physics experiment at CERN

    International Nuclear Information System (INIS)

    Hoertnagl, Ch.

    1997-12-01

    Experiments at the future Large Hadron Collider (LHC) at CERN will be faced with an extraordinary challenge of event selection in real time. The primary event rate, equal to the bunch crossing frequency of 40 MHz, will have to be reduced by a factor of almost one-in-a-million in order to reveal traces of rare physics processes from an abundant background. This work presents various contributions to ongoing feasibility studies concerning the possible use of commercial technologies from the proximities of parallel computers and their communication networks for the second trigger stage, which faces an average data input rate of 100 kHz. Studies in this thesis apply a combination of methodologies, namely the build-up of lab-scale prototype implementations (including their exposition to test beam runs), algorithm development, technology tracking and benchmarking, as well as discrete event simulation. The main contribution consists of several technology case studies, which are based on the exploration of a set of standard benchmark programs for revealing simple parameters for characterizing delays during communication. Studied technologies include the communication sub-system of the Meiko CS-2, Asynchronous Transfer Mode (ATM), MEMORY CHANNEL, and Scalable Coherent Interface (SCI); all could be considered typical for candidate technologies. The discussion sheds light on the relative benefits and costs associated with different parallel programming models, in general, and with the use of message-passing libraries, such as Message Passing Interface (MPI), in particular. Best observed end-user-to-end-user latencies were ∼ 10 μs, best asymptotic bandwidths were ∼ 70 MByte/s. Typical sub-patterns of communication that have to be applied in the second trigger stage were sustained at ∼ 13 kHz, using today's technologies in realistic embeddings. (author)

  17. Management of threatened abortion with real-time sonography.

    Science.gov (United States)

    Anderson, S G

    1980-02-01

    Real-time sonography was used to evaluate 158 patients with threatened abortion. Fetal motion was first detected during the seventh gestational week and with increasing frequency thereafter in 73 patients with viable pregnancies continuing to term. Only 2 of 65 patients who aborted demonstrated fetal motion. The presence or absence of fetal motion was most reliable after 7 weeks' gestation for establishing a prognosis for a given pregnancy. Seventy-two of 74 pregnancies with fetal motion continued to term, whereas 63 of 64 pregnancies without fetal motion aborted. A method for using real-time sonography in the management of threatened abortion is presented.

  18. 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR

    Science.gov (United States)

    Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas

    2016-04-01

    The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten

  19. Optimized Interface Diversity for Ultra-Reliable Low Latency Communication (URLLC)

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Liu, Rongkuan; Popovski, Petar

    2017-01-01

    An important ingredient of the future 5G systems will be Ultra-Reliable Low-Latency Communication (URLLC). A way to offer URLLC without intervention in the baseband/PHY layer design is to use interface diversity and integrate multiple communication interfaces, each interface based on a different...... technology. Our approach is to use rateless codes to seamlessly distribute coded payload and redundancy data across multiple available communication interfaces. We formulate an optimization problem to find the payload allocation weights that maximize the reliability at specific target latency values...

  20. Socially bold personality in the real communication and Internet communication: the analysis of representations of people of the different age

    Directory of Open Access Journals (Sweden)

    Pogodina A. V.

    2017-03-01

    Full Text Available The article is concerned with the results of the study, subject of which is the submis- sion of the respondents of the different age groups about the social and bold personality. Required property of the respondents was the presence in the Internet environment and participation in various social networks. They assessed social and bold personal- ity in such contexts of communication, as real communication and Internet communication. Analyses were undertaken to determine the structural and content features of emotional and semantic representations of the phenomenon of the social and bold personality, depending on the context of communication, but also the detection of age-sensitive representations of the young respondents (19—35 years, middle-aged respondents (36-55 years and older respondents (from 56 to 70 years. The concept of the “social and bold personality in real communion” is shown to have a high semantic relevance, strongly marked positive emotional coloration and a similar factor structure for respondents of all age groups. The concept of the “social and bold personality in online communication” with a high semantic significance in the perception of the young respondents moves into a zone of moderate and semantic importance in representations of the middle-aged and older respondents. In representations of the respondents of all age groups, the attractiveness of the "social and bold personality in Internet communication" is less than in comparison with the "social and bold personality in the real communication". The age-specific of the social representations about social and bold personality in the real and virtual communication has been analysed in detail.

  1. FPGA Implementation of Real-Time Ethernet for Motion Control

    Directory of Open Access Journals (Sweden)

    Chen Youdong

    2013-01-01

    Full Text Available This paper provides an applicable implementation of real-time Ethernet named CASNET, which modifies the Ethernet medium access control (MAC to achieve the real-time requirement for motion control. CASNET is the communication protocol used for motion control system. Verilog hardware description language (VHDL has been used in the MAC logic design. The designed MAC serves as one of the intellectual properties (IPs and is applicable to various industrial controllers. The interface of the physical layer is RJ45. The other layers have been implemented by using C programs. The real-time Ethernet has been implemented by using field programmable gate array (FPGA technology and the proposed solution has been tested through the cycle time, synchronization accuracy, and Wireshark testing.

  2. Data forwarding mechanism for supporting real-time services during relocations in UMTS systems

    Science.gov (United States)

    Cai, Wei; Liao, Xianglong; Zheng, Liang; Liu, Zehong

    2004-04-01

    To minimize the interruption during the handovers or relocations invoked by subscribers moving is a very critical factor to enhance the performance of the UMTS systems. We know that the 2G systems have been optimized to minimize the interruption of speech during handovers by two main technologies: one is the bi-casting for the DL traffic and the other is the fast radio resynchronization by the UE for the UL traffic. In the UMTS systems, we have also implemented lossless relocations for non real-time services with high reliability by data buffering in the source RNC and target RNC for the UE. However, the UMTS systems support four QoS classes traffic flow: conversational class, streaming class, interactive class and background class. The main distinguishing factor between these QoS classes is how delay sensitive the traffic is: Conversational and Streaming classes are mainly used to carry real-time traffic flows, like video telephony, interactive and background classes are mainly used by traditional Internet applications like WWW, E-mail and FTP. It"s essential to provide the solutions for supporting real-time services to meet the requirement for QoS in UMTS systems. Apparently, the Data buffering mechanism is not adapted to real-time services because of it"s delay may exceed the basic requirement for real-time services. Under this background, the paper discussed two data forwarding solutions for real-time services from the PS domain in the UMTS systems: packet duplication and Core Network bi-casting. The former mechanism does not require any new procedures, messages nor information elements. The later mechanism requires that the GGSN or SGSN is able to bi-cast the DL traffic to the target RNC according to the relocations involving two SGSNs or just involving one SGSN. It also implicitly shows that we need change procedures at the nodes SGSN, GGSN and RNC which are involved in the relocation procedure based on existing procedures that we have already designed if

  3. Unix Philosophy and the Real World: Control Software for Humanoid Robots

    Directory of Open Access Journals (Sweden)

    Neil Thomas Dantam

    2016-03-01

    Full Text Available Robot software combines the challenges of general purpose and real-time software, requiring complex logic and bounded resource use. Physical safety, particularly for dynamic systems such as humanoid robots, depends on correct software. General purpose computation has converged on unix-like operating systems -- standardized as POSIX, the Portable Operating System Interface -- for devices from cellular phones to supercomputers. The modular, multi-process design typical of POSIX applications is effective for building complex and reliable software. Absent from POSIX, however, is an interproccess communication mechanism that prioritizes newer data as typically desired for control of physical systems. We address this need in the Ach communication library which provides suitable semantics and performance for real-time robot control. Although initially designed for humanoid robots, Ach has broader applicability to complex mechatronic devices -- humanoid and otherwise -- that require real-time coupling of sensors, control, planning, and actuation. The initial user space implementation of Ach was limited in the ability to receive data from multiple sources. We remove this limitation by implementing Ach as a Linux kernel module, enabling Ach's high-performance and latest-message-favored semantics within conventional POSIX communication pipelines. We discuss how these POSIX interfaces and design principles apply to robot software, and we present a case study using the Ach kernel module for communication on the Baxter robot.

  4. Simulating Real-Time Aspects of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Christian Nastasi

    2010-01-01

    Full Text Available Wireless Sensor Networks (WSNs technology has been mainly used in the applications with low-frequency sampling and little computational complexity. Recently, new classes of WSN-based applications with different characteristics are being considered, including process control, industrial automation and visual surveillance. Such new applications usually involve relatively heavy computations and also present real-time requirements as bounded end-to- end delay and guaranteed Quality of Service. It becomes then necessary to employ proper resource management policies, not only for communication resources but also jointly for computing resources, in the design and development of such WSN-based applications. In this context, simulation can play a critical role, together with analytical models, for validating a system design against the parameters of Quality of Service demanded for. In this paper, we present RTNS, a publicly available free simulation tool which includes Operating System aspects in wireless distributed applications. RTNS extends the well-known NS-2 simulator with models of the CPU, the Real-Time Operating System and the application tasks, to take into account delays due to the computation in addition to the communication. We demonstrate the benefits of RTNS by presenting our simulation study for a complex WSN-based multi-view vision system for real-time event detection.

  5. Novel techniques of real-time blood flow and functional mapping: technical note.

    Science.gov (United States)

    Kamada, Kyousuke; Ogawa, Hiroshi; Saito, Masato; Tamura, Yukie; Anei, Ryogo; Kapeller, Christoph; Hayashi, Hideaki; Prueckl, Robert; Guger, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.

  6. Real-time monitoring of seismic data using satellite telemetry

    Directory of Open Access Journals (Sweden)

    L. Merucci

    1997-06-01

    Full Text Available This article describes the ARGO Satellite Seismic Network (ARGO SSN as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica, Rome. The task of the peripheral stations is to digitalise and send via satellite the geophysical data collected by the various sensors to the master station. The master station receives the data and forwards them via satellite to the ING in Rome; it also performs alI the monitoring functions of satellite communications. At the data collection and processing centre of ING, the data are received and analysed in real time, the seismic events are identified and recorded, the low-frequency geophysical data are stored. In addition, the generaI sta- tus of the satellite network and of each peripheral station connected, is monitored. The procedure for analysjs of acquired seismic signals allows the automatic calculation of local magnitude and duration magnitude The communication and data exchange between the seismic networks of Greece, Spain and Italy is the fruit of a recent development in the field of technology of satellite transmission of ARGO SSN (project of European Community "Southern Europe Network for Analysis of Seismic Data"

  7. The reliability of a modified Kalamazoo Consensus Statement Checklist for assessing the communication skills of multidisciplinary clinicians in the simulated environment.

    Science.gov (United States)

    Peterson, Eleanor B; Calhoun, Aaron W; Rider, Elizabeth A

    2014-09-01

    With increased recognition of the importance of sound communication skills and communication skills education, reliable assessment tools are essential. This study reports on the psychometric properties of an assessment tool based on the Kalamazoo Consensus Statement Essential Elements Communication Checklist. The Gap-Kalamazoo Communication Skills Assessment Form (GKCSAF), a modified version of an existing communication skills assessment tool, the Kalamazoo Essential Elements Communication Checklist-Adapted, was used to assess learners in a multidisciplinary, simulation-based communication skills educational program using multiple raters. 118 simulated conversations were available for analysis. Internal consistency and inter-rater reliability were determined by calculating a Cronbach's alpha score and intra-class correlation coefficients (ICC), respectively. The GKCSAF demonstrated high internal consistency with a Cronbach's alpha score of 0.844 (faculty raters) and 0.880 (peer observer raters), and high inter-rater reliability with an ICC of 0.830 (faculty raters) and 0.89 (peer observer raters). The Gap-Kalamazoo Communication Skills Assessment Form is a reliable method of assessing the communication skills of multidisciplinary learners using multi-rater methods within the learning environment. The Gap-Kalamazoo Communication Skills Assessment Form can be used by educational programs that wish to implement a reliable assessment and feedback system for a variety of learners. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Revisiting Frequency Reuse towards Supporting Ultra-Reliable Ubiquitous-Rate Communication

    DEFF Research Database (Denmark)

    Park, Jihong; Kim, Dong Min; Popovski, Petar

    2017-01-01

    One of the goals of 5G wireless systems stated by the NGMN alliance is to provide moderate rates (50+ Mbps) everywhere and with very high reliability. We term this service Ultra-Reliable Ubiquitous-Rate Communication (UR2C). This paper investigates the role of frequency reuse in supporting UR2C...... in the downlink. To this end, two frequency reuse schemes are considered: user-specific frequency reuse (FRu) and BS-specific frequency reuse (FRb). For a given unit frequency channel, FRu reduces the number of serving user equipments (UEs), whereas FRb directly decreases the number of interfering base stations...

  9. Real-time brain computer interface using imaginary movements

    DEFF Research Database (Denmark)

    El-Madani, Ahmad; Sørensen, Helge Bjarup Dissing; Kjær, Troels W.

    2015-01-01

    Background: Brain Computer Interface (BCI) is the method of transforming mental thoughts and imagination into actions. A real-time BCI system can improve the quality of life of patients with severe neuromuscular disorders by enabling them to communicate with the outside world. In this paper...

  10. RTnet -- A Flexible Hard Real-Time Networking Framework

    NARCIS (Netherlands)

    Kiszka, Jan; Wagner, Bernardo; Zhang, Yuchen; Broenink, Johannes F.

    2005-01-01

    In this paper, the open source project RTnet is presented. RTnet provides a customisable and extensible framework for hard real-time communication over Ethernet and other transport media. The paper describes architecture, core components, and protocols of RTnet. FireWire is introduced as a powerful

  11. MARTe: A Multiplatform Real-Time Framework

    Science.gov (United States)

    Neto, André C.; Sartori, Filippo; Piccolo, Fabio; Vitelli, Riccardo; De Tommasi, Gianmaria; Zabeo, Luca; Barbalace, Antonio; Fernandes, Horacio; Valcarcel, Daniel F.; Batista, Antonio J. N.

    2010-04-01

    Development of real-time applications is usually associated with nonportable code targeted at specific real-time operating systems. The boundary between hardware drivers, system services, and user code is commonly not well defined, making the development in the target host significantly difficult. The Multithreaded Application Real-Time executor (MARTe) is a framework built over a multiplatform library that allows the execution of the same code in different operating systems. The framework provides the high-level interfaces with hardware, external configuration programs, and user interfaces, assuring at the same time hard real-time performances. End-users of the framework are required to define and implement algorithms inside a well-defined block of software, named Generic Application Module (GAM), that is executed by the real-time scheduler. Each GAM is reconfigurable with a set of predefined configuration meta-parameters and interchanges information using a set of data pipes that are provided as inputs and required as output. Using these connections, different GAMs can be chained either in series or parallel. GAMs can be developed and debugged in a non-real-time system and, only once the robustness of the code and correctness of the algorithm are verified, deployed to the real-time system. The software also supplies a large set of utilities that greatly ease the interaction and debugging of a running system. Among the most useful are a highly efficient real-time logger, HTTP introspection of real-time objects, and HTTP remote configuration. MARTe is currently being used to successfully drive the plasma vertical stabilization controller on the largest magnetic confinement fusion device in the world, with a control loop cycle of 50 ?s and a jitter under 1 ?s. In this particular project, MARTe is used with the Real-Time Application Interface (RTAI)/Linux operating system exploiting the new ?86 multicore processors technology.

  12. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.

  13. SABA: A Testbed for a Real-Time MIMO System

    Directory of Open Access Journals (Sweden)

    Brühl Lars

    2006-01-01

    Full Text Available The growing demand for high data rates for wireless communication systems leads to the development of new technologies to increase the channel capacity thus increasing the data rate. MIMO (multiple-input multiple-output systems are best qualified for these applications. In this paper, we present a MIMO test environment for high data rate transmissions in frequency-selective environments. An overview of the testbed is given, including the analyzed algorithms, the digital signal processing with a new highly parallel processor to perform the algorithms in real time, as well as the analog front-ends. A brief overview of the influence of polarization on the channel capacity is given as well.

  14. Reliability of real-time computing with radiation data feedback at accidental release

    International Nuclear Information System (INIS)

    Deme, S.; Feher, I.; Lang, E.

    1990-01-01

    At the first workshop in 1985 we reported on the real-time dose computing method used at the Paks Nuclear Power Plant and on the telemetric system developed for the normalization of the computed data. At present, the computing method normalized for the telemetric data represents the primary information for deciding on any necessary counter measures in case of a nuclear reactor accident. In this connection we analyzed the reliability of the results obtained in this manner. The points of the analysis were: how the results are influenced by the choice of certain parameters that cannot be determined by direct methods and how the improperly chosen diffusion parameters would distort the determination of environmental radiation parameters normalized on the basis of the measurements ( 131 I activity concentration, gamma dose rate) at points lying at a given distance from the measuring stations. A further source of errors may be that, when determining the level of gamma radiation, the radionuclide doses in the cloud and on the ground surface are measured together by the environmental monitoring stations, whereas these doses appear separately in the computations. At the Paks NPP it is the time integral of the aiborne activity concentration of vapour form 131 I which is determined. This quantity includes neither the other physical and chemical forms of 131 I nor the other isotopes of radioiodine. We gave numerical examples for the uncertainties due to the above factors. As a result, we arrived at the conclusions that there is a need to decide on accident-related measures based on the computing method that the dose uncertainties may reach one order of magnitude for points lying far from the monitoring stations. Different measures are discussed to make the uncertainties significantly lower

  15. Real-time environmental radiation monitoring system with automatic restoration of backup data in site detector via communication using radio frequency

    International Nuclear Information System (INIS)

    Lee, Wan No; Kim, Eun Han; Chung, Kun Ho; Cho, Young Hyun; Choi, Geun Sik; Lee, Chang Woo; Park, Ki Hyun; Kim, Yun Goo

    2003-01-01

    An environmental radiation monitoring system based on high pressurized ionization chamber has been used for on-line gamma monitoring surrounding the KAERI (Korea Atomic Energy Research Institute), which transmits the dose data measured from ion chamber on the site via radio frequency to a central processing computer and stores the transmitted real-time data. Although communication using ratio frequency has several advantages such as effective and economical transmission, storage, and data process, there is one main disadvantage that data loss during transmission often happens because of unexpected communication problems. It is possible to restore the loss data by off-line such as floppy disk but the simultaneous process and display of current data as well as the backup data are very difficult in the present on-line system. In this work, a new electronic circuit board and the operation software applicable to the conventional environmental radiation monitoring system are developed and the automatical synchronization of the ion chamber unit and the central processing computer is carried out every day. This system is automatically able to restore the backup data within 34 hours without additional equipment and also display together the current data as well as the transmitted backup data after checking time flag

  16. Real-time multiplexed digital cavity-enhanced spectroscopy

    International Nuclear Information System (INIS)

    Boyson, Toby K.; Dagdigian, Paul J.; Pavey, Karl D.; Fitzgerald, Nicholas J.; Spence, Thomas G.; Moore, David S.; Harb, Charles C.

    2015-01-01

    Cavity-enhanced spectroscopy is a sensitive optical absorption technique but one where the practical applications have been limited to studying small wavelength ranges. In addition, this Letter shows that wideband operation can be achieved by combining techniques usually reserved for the communications community with that of cavity-enhanced spectroscopy, producing a multiplexed real-time cavity-enhanced spectrometer. We use multiple collinear laser sources operating asynchronously and simultaneously while being detected on a single photodetector. This is synonymous with radio frequency (RF) cellular systems in which signals are detected on a single antenna but decoded uniquely. Here, we demonstrate results with spectra of methyl salicylate and show parts-per-billion per root hertz sensitivity measured in real-time

  17. Real-time control systems: feedback, scheduling and robustness

    Science.gov (United States)

    Simon, Daniel; Seuret, Alexandre; Sename, Olivier

    2017-08-01

    The efficient control of real-time distributed systems, where continuous components are governed through digital devices and communication networks, needs a careful examination of the constraints arising from the different involved domains inside co-design approaches. Thanks to the robustness of feedback control, both new control methodologies and slackened real-time scheduling schemes are proposed beyond the frontiers between these traditionally separated fields. A methodology to design robust aperiodic controllers is provided, where the sampling interval is considered as a control variable of the system. Promising experimental results are provided to show the feasibility and robustness of the approach.

  18. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare e ects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  19. Real-time Pricing in Power Markets

    DEFF Research Database (Denmark)

    Boom, Anette; Schwenen, Sebastian

    We examine welfare eects of real-time pricing in electricity markets. Before stochastic energy demand is known, competitive retailers contract with nal consumers who exogenously do not have real-time meters. After demand is realized, two electricity generators compete in a uniform price auction...... to satisfy demand from retailers acting on behalf of subscribed customers and from consumers with real-time meters. Increasing the number of consumers on real-time pricing does not always increase welfare since risk-averse consumers dislike uncertain and high prices arising through market power...

  20. A Step Toward High Reliability: Implementation of a Daily Safety Brief in a Children's Hospital.

    Science.gov (United States)

    Saysana, Michele; McCaskey, Marjorie; Cox, Elaine; Thompson, Rachel; Tuttle, Lora K; Haut, Paul R

    2017-09-01

    Health care is a high-risk industry. To improve communication about daily events and begin the journey toward a high reliability organization, the Riley Hospital for Children at Indiana University Health implemented a daily safety brief. Various departments in our children's hospital were asked to participate in a daily safety brief, reporting daily events and unexpected outcomes within their scope of responsibility. Participants were surveyed before and after implementation of the safety brief about communication and awareness of events in the hospital. The length of the brief and percentage of departments reporting unexpected outcomes were measured. The analysis of the presurvey and the postsurvey showed a statistically significant improvement in the questions related to the awareness of daily events as well as communication and relationships between departments. The monthly mean length of time for the brief was 15 minutes or less. Unexpected outcomes were reported by 50% of the departments for 8 months. A daily safety brief can be successfully implemented in a children's hospital. Communication between departments and awareness of daily events were improved. Implementation of a daily safety brief is a step toward becoming a high reliability organization.

  1. Designing real-time systems based on mono-master Profibus-DP networks

    OpenAIRE

    Monforte, Salvatore; Alves, Mário; Vasques, Francisco; Tovar, Eduardo

    2000-01-01

    Profibus networks are widely used as the communication infrastructure for supporting distributed computer-controlled applications. Most of the times, these applications impose strict real-time requirements. Profibus-DP has gradually become the preferred Profibus application profile. It is usually implemented as a mono-master Profibus network, and is optimised for speed and efficiency. The aim of this paper is to analyse the real-time behaviour of this class of Profibus networks...

  2. Upgrade of the COMPASS tokamak real-time control system

    Energy Technology Data Exchange (ETDEWEB)

    Janky, F., E-mail: filip.janky.work@gmail.com [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); Havlicek, J. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); Batista, A.J.N. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Kudlacek, O.; Seidl, J. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Neto, A.C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa (Portugal); Pipek, J.; Hron, M. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Mikulin, O. [Institute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 18200 Prague (Czech Republic); Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, V Holesovickach 2, 18000 Prague (Czech Republic); and others

    2014-03-15

    Highlights: • An upgrade of the COMPASS real-time system has been made to generally improve the plasma performance. • Stability of discharges in SNT configuration has been increased. • Plasma flat-top phase length has been extended. • Central solenoid protection has been developed. • Plasma position estimation has been improved. - Abstract: The COMPASS plasma control system is based on the MARTe real-time framework. Thanks to MARTe modularity and flexibility new algorithms have been developed for plasma diagnostic (plasma position calculation), control (shaping field control), and protection systems (central solenoid protection). Moreover, the MARTe framework itself was modified to broaden the communication capabilities via Aurora. This paper presents the recent upgrades and improvements made to the COMPASS real-time plasma control system, focusing on the issues related to precision of the real-time calculations, and discussing the improvements in terms of discharge parameters and stability. In particular, the new real-time system has given the possibility to analyze and to minimize the transport delays of each control loop.

  3. Real time neutron flux monitoring using Rh self powered neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed {beta} decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter.

  4. Real time neutron flux monitoring using Rh self powered neutron detector

    International Nuclear Information System (INIS)

    Juna, Byung Jin; Lee, Byung Chul; Park, Sang Jun; Jung, Hoan Sung

    2012-01-01

    Rhodium (Rh) self powered neutron detectors (SPNDs) are widely used for on line monitoring of local neutron flux. Its signal is slower than the actual variation of neutron flux owing to a delayed β decay of the Rh activation product, but real time monitoring is possible by solving equations between the neutron reaction rate in the detector and its signal. While the measuring system is highly reliable, the accuracy depends on the method solving the equations and accuracy of the parameters in the equations. The uncertain parameters are the contribution of gamma rays to the signal, and the branching ratios of Rh 104 and Rh 104m after the neutron absorption of Rh 103. Real time neutron flux monitoring using Rh SPNDs has been quite successful for neutron transmutation doping (NTD) at HANARO. We revisited the initial data used for the verification of a real time monitoring system, to refine algorithm for a better solution and to check the parameters for correctness. As a result, we suggest an effective way to determine the prompt parameter

  5. Wireless communication of real-time ultrasound data and control

    Science.gov (United States)

    Tobias, Richard J.

    2015-03-01

    The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.

  6. Real-time determination of confinement parameters in JET

    International Nuclear Information System (INIS)

    Barana, Oliviero; Joffrin, E.; Murari, A.; Sartori, F.

    2003-01-01

    The main confinement parameters, like the internal inductance l i and the diamagnetic poloidal beta β DIA , are of particular relevance for a reliable real-time control system of next step tokamaks. These quantities have been obtained at Joint European Torus (JET), with a precision more than satisfactory for real-time applications, through a method, known as BETALI, that uses the Shafranov integrals S 1 , S 2 and S 3 . Since S 1 , S 2 and S 3 are defined on the plasma boundary, a technique, that exploits the real-time boundary code XLOC, has been expressively developed to determine the last closed flux surface (LCFS). BETALI has been verified on several experimental plasma configurations, giving very encouraging results both in the limiter and x-point phase of the discharges. The compatibility with the time restrictions has also been tested successfully. This application has, therefore, been implemented and it has already been used during last JET campaigns

  7. Toddlers favor communicatively presented information over statistical reliability in learning about artifacts.

    Directory of Open Access Journals (Sweden)

    Hanna Marno

    Full Text Available Observed associations between events can be validated by statistical information of reliability or by testament of communicative sources. We tested whether toddlers learn from their own observation of efficiency, assessed by statistical information on reliability of interventions, or from communicatively presented demonstration, when these two potential types of evidence of validity of interventions on a novel artifact are contrasted with each other. Eighteen-month-old infants observed two adults, one operating the artifact by a method that was more efficient (2/3 probability of success than that of the other (1/3 probability of success. Compared to the Baseline condition, in which communicative signals were not employed, infants tended to choose the less reliable method to operate the artifact when this method was demonstrated in a communicative manner in the Experimental condition. This finding demonstrates that, in certain circumstances, communicative sanctioning of reliability may override statistical evidence for young learners. Such a bias can serve fast and efficient transmission of knowledge between generations.

  8. High-speed railway real-time localization auxiliary method based on deep neural network

    Science.gov (United States)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  9. A Comprehensive Real-Time Traffic Map for Geographic Routing in VANETs

    Directory of Open Access Journals (Sweden)

    Chi-Fu Huang

    2017-01-01

    Full Text Available Vehicular Ad Hoc Networks (VANETs have attracted a lot of attention during the last decade. VANETs can not only improve driving safety, but also convenience, and support most future Intelligent Transportation System (ITS. Due to the highly dynamic network topology of VANETs, many geographic routing protocols have been proposed and use real-time traffic information as an important metric to select a reliable forwarding path. However, most of the existing works do not describe how to gather real-time traffic. They either assume this information is already available, or can query an existing traffic center. Few studies have noticed this issue but the proposed solutions only consider a small region. In this paper, we propose a Comprehensive Real-Time Traffic Map (CRT Map to collect wide-ranging real-time traffic information with low overhead. In the design of a CRT Map, the concept of Crowdsensing is adopted. Vehicles cooperatively gather traffic information and share it with each other to construct an overview of the whole road network traffic. In addition, we design a CRT Map Based Routing (CBR, which takes into account the connectivity of consecutive roads in routing decisions. Simulation results show that the CBR can achieve a lower end-to-end delay and a higher packet delivery ratio.

  10. High throughput web inspection system using time-stretch real-time imaging

    Science.gov (United States)

    Kim, Chanju

    Photonic time-stretch is a novel technology that enables capturing of fast, rare and non-repetitive events. Therefore, it operates in real-time with ability to record over long period of time while having fine temporal resolution. The powerful property of photonic time-stretch has already been employed in various fields of application such as analog-to-digital conversion, spectroscopy, laser scanner and microscopy. Further expanding the scope, we fully exploit the time-stretch technology to demonstrate a high throughput web inspection system. Web inspection, namely surface inspection is a nondestructive evaluation method which is crucial for semiconductor wafer and thin film production. We successfully report a dark-field web inspection system with line scan speed of 90.9 MHz which is up to 1000 times faster than conventional inspection instruments. The manufacturing of high quality semiconductor wafer and thin film may directly benefit from this technology as it can easily locate defects with area of less than 10 microm x 10 microm where it allows maximum web flow speed of 1.8 km/s. The thesis provides an overview of our web inspection technique, followed by description of the photonic time-stretch technique which is the keystone in our system. A detailed explanation of each component is covered to provide quantitative understanding of the system. Finally, imaging results from a hard-disk sample and flexible films are presented along with performance analysis of the system. This project was the first application of time-stretch to industrial inspection, and was conducted under financial support and with close involvement by Hitachi, Ltd.

  11. On the reliability evaluation of communication equipment for SMART using FMEA

    International Nuclear Information System (INIS)

    Kim, D. H.; Suh, Y. S.; Koo, I. S.; Song, Ki Sang; Han, Byung Rae

    2000-07-01

    This report describes the reliability analysis method for communication equipment using FMEA and FTA. The major equipments to be applicable for SMART communication networks are repeater, bridge, router and gateway and we can apply the FMEA or FTA technique. In the FMEA process, analysis of tagged system, decision of the level of analysis of the target system, drawing reliability block diagram according to the function, decision of failure mode, writing the fault reasons, writing on the FMEA sheet and FMEA level decision are included. Also, the FTA, it is possible to figure out top event reasons and system reliability. We have considered these in mind and we did the FMEA and FTA for NIC, hub, client server and router. Also, we suggested and integrated network model for nuclear power plant and we have shown the reliability analysis procedure according to FTA. If any proprietary communication device is developed, the reliability can be easily determined with proposed procedures

  12. On the reliability evaluation of communication equipment for SMART using FMEA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Suh, Y. S.; Koo, I. S.; Song, Ki Sang; Han, Byung Rae

    2000-07-01

    This report describes the reliability analysis method for communication equipment using FMEA and FTA. The major equipments to be applicable for SMART communication networks are repeater, bridge, router and gateway and we can apply the FMEA or FTA technique. In the FMEA process, analysis of tagged system, decision of the level of analysis of the target system, drawing reliability block diagram according to the function, decision of failure mode, writing the fault reasons, writing on the FMEA sheet and FMEA level decision are included. Also, the FTA, it is possible to figure out top event reasons and system reliability. We have considered these in mind and we did the FMEA and FTA for NIC, hub, client server and router. Also, we suggested and integrated network model for nuclear power plant and we have shown the reliability analysis procedure according to FTA. If any proprietary communication device is developed, the reliability can be easily determined with proposed procedures.

  13. Evaluation of highly accelerated real-time cardiac cine MRI in tachycardia.

    Science.gov (United States)

    Bassett, Elwin C; Kholmovski, Eugene G; Wilson, Brent D; DiBella, Edward V R; Dosdall, Derek J; Ranjan, Ravi; McGann, Christopher J; Kim, Daniel

    2014-02-01

    Electrocardiogram (ECG)-gated breath-hold cine MRI is considered to be the gold standard test for the assessment of cardiac function. However, it may fail in patients with arrhythmia, impaired breath-hold capacity and poor ECG gating. Although ungated real-time cine MRI may mitigate these problems, commercially available real-time cine MRI pulse sequences using parallel imaging typically yield relatively poor spatiotemporal resolution because of their low image acquisition efficiency. As an extension of our previous work, the purpose of this study was to evaluate the diagnostic quality and accuracy of eight-fold-accelerated real-time cine MRI with compressed sensing (CS) for the quantification of cardiac function in tachycardia, where it is challenging for real-time cine MRI to provide sufficient spatiotemporal resolution. We evaluated the performances of eight-fold-accelerated cine MRI with CS, three-fold-accelerated real-time cine MRI with temporal generalized autocalibrating partially parallel acquisitions (TGRAPPA) and ECG-gated breath-hold cine MRI in 21 large animals with tachycardia (mean heart rate, 104 beats per minute) at 3T. For each cine MRI method, two expert readers evaluated the diagnostic quality in four categories (image quality, temporal fidelity of wall motion, artifacts and apparent noise) using a Likert scale (1-5, worst to best). One reader evaluated the left ventricular functional parameters. The diagnostic quality scores were significantly different between the three cine pulse sequences, except for the artifact level between CS and TGRAPPA real-time cine MRI. Both ECG-gated breath-hold cine MRI and eight-fold accelerated real-time cine MRI yielded all four scores of ≥ 3.0 (acceptable), whereas three-fold-accelerated real-time cine MRI yielded all scores below 3.0, except for artifact (3.0). The left ventricular ejection fraction (LVEF) measurements agreed better between ECG-gated cine MRI and eight-fold-accelerated real-time cine MRI

  14. Real Time Linux - The RTOS for Astronomy?

    Science.gov (United States)

    Daly, P. N.

    The BoF was attended by about 30 participants and a free CD of real time Linux-based upon RedHat 5.2-was available. There was a detailed presentation on the nature of real time Linux and the variants for hard real time: New Mexico Tech's RTL and DIAPM's RTAI. Comparison tables between standard Linux and real time Linux responses to time interval generation and interrupt response latency were presented (see elsewhere in these proceedings). The present recommendations are to use RTL for UP machines running the 2.0.x kernels and RTAI for SMP machines running the 2.2.x kernel. Support, both academically and commercially, is available. Some known limitations were presented and the solutions reported e.g., debugging and hardware support. The features of RTAI (scheduler, fifos, shared memory, semaphores, message queues and RPCs) were described. Typical performance statistics were presented: Pentium-based oneshot tasks running > 30kHz, 486-based oneshot tasks running at ~ 10 kHz, periodic timer tasks running in excess of 90 kHz with average zero jitter peaking to ~ 13 mus (UP) and ~ 30 mus (SMP). Some detail on kernel module programming, including coding examples, were presented showing a typical data acquisition system generating simulated (random) data writing to a shared memory buffer and a fifo buffer to communicate between real time Linux and user space. All coding examples were complete and tested under RTAI v0.6 and the 2.2.12 kernel. Finally, arguments were raised in support of real time Linux: it's open source, free under GPL, enables rapid prototyping, has good support and the ability to have a fully functioning workstation capable of co-existing hard real time performance. The counter weight-the negatives-of lack of platforms (x86 and PowerPC only at present), lack of board support, promiscuous root access and the danger of ignorance of real time programming issues were also discussed. See ftp://orion.tuc.noao.edu/pub/pnd/rtlbof.tgz for the StarOffice overheads

  15. Real-time data exchange system in CSRe and RIBBLL II

    International Nuclear Information System (INIS)

    Liu Wufeng; Xu Yang; Li Guohua; Guo Yuhui; Chinese Academy of Sciences, Beijing; Qiao Weimin; Jing Lan; Wang Yongping; Gou Shizhe

    2008-01-01

    The design of real-time data exchange system in HIRFL-CSR's CSRe and RIBLL II has been introduced, including it's design of software and hardware. This system realizes controlling power devices at the same time. In system, data is from web browser to center Oracle database. And then, it arrives at sqlite database in ARM module by way of front-server's Oracle database by COM module. Finally, ARM module transmits data to DSP module's memory to control power devices when event is same. At the same time, ADC can acquire device's current value or voltage value which is saved in center Oracle data-base. Practice shows that this system has the character of high reliability and stability. (authors)

  16. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy.

    Science.gov (United States)

    Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Hiroshima, Satoru; Prueckl, Robert; Guger, Christoph

    2014-11-01

    Electrocortical stimulation (ECS) is the gold standard for functional brain mapping during an awake craniotomy. The critical issue is to set aside enough time to identify eloquent cortices by ECS. High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram is assumed to reflect localized cortical processing. In this report, we used real-time HGA mapping and functional neuronavigation integrated with functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Four patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. During the craniotomy, we recorded electrocorticogram activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated real-time HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared with ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. We found different HGA dynamics of language tasks in frontal and temporal regions. Specificities of the motor and language-fMRI did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate identification of motor and frontal language areas. Furthermore, real-time HGA mapping sheds light on underlying physiological mechanisms related to human brain functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    Science.gov (United States)

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  18. Real-time monitoring of capacity loss for vanadium redox flow battery

    Science.gov (United States)

    Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2018-06-01

    The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.

  19. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  20. Real Time Revisited

    Science.gov (United States)

    Allen, Phillip G.

    1985-12-01

    The call for abolishing photo reconnaissance in favor of real time is once more being heard. Ten years ago the same cries were being heard with the introduction of the Charge Coupled Device (CCD). The real time system problems that existed then and stopped real time proliferation have not been solved. The lack of an organized program by either DoD or industry has hampered any efforts to solve the problems, and as such, very little has happened in real time in the last ten years. Real time is not a replacement for photo, just as photo is not a replacement for infra-red or radar. Operational real time sensors can be designed only after their role has been defined and improvements made to the weak links in the system. Plodding ahead on a real time reconnaissance suite without benefit of evaluation of utility will allow this same paper to be used ten years from now.

  1. High Availability Applications for NOMADS at the NOAA Web Operations Center Aimed at Providing Reliable Real Time Access to Operational Model Data

    Science.gov (United States)

    Alpert, J. C.; Rutledge, G.; Wang, J.; Freeman, P.; Kang, C. Y.

    2009-05-01

    The NOAA Operational Modeling Archive Distribution System (NOMADS) is now delivering high availability services as part of NOAA's official real time data dissemination at its Web Operations Center (WOC). The WOC is a web service used by all organizational units in NOAA and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including metadata. Data sets served in this way with a high availability server offer vast possibilities for the creation of new products for value added retailers and the scientific community. New applications to access data and observations for verification of gridded model output, and progress toward integration with access to conventional and non-conventional observations will be discussed. We will demonstrate how users can use NOMADS services to repackage area subsets either using repackaging of GRIB2 files, or values selected by ensemble component, (forecast) time, vertical levels, global horizontal location, and by variable, virtually a 6- Dimensional analysis services across the internet.

  2. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  3. Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera

    International Nuclear Information System (INIS)

    Duan, Jun; Macey, Daniel J.; Pareek, Prem N.; Brezovich, Ivan A.

    2001-01-01

    We investigated a pinhole imaging system for independent in vivo monitoring and verification of high dose rate (HDR) brachytherapy treatment. The system consists of a high-resolution pinhole collimator, an x-ray fluoroscope, and a standard radiographic screen-film combination. Autofluoroscopy provides real-time images of the in vivo Ir-192 HDR source for monitoring the source location and movement, whereas autoradiography generates a permanent record of source positions on film. Dual-pinhole autoradiographs render stereo-shifted source images that can be used to reconstruct the source dwell positions in three dimensions. The dynamic range and spatial resolution of the system were studied with a polystyrene phantom using a range of source strengths and dwell times. For the range of source activity used in HDR brachytherapy, a 0.5 mm diameter pinhole produced sharp fluoroscopic images of the source within the dynamic range of the fluoroscope. With a source-to-film distance of 35 cm and a 400 speed screen-film combination, the same pinhole yielded well recognizable images of a 281.2 GBq (7.60 Ci) Ir-192 source for dwell times in the typical clinical range of 2 to 400 s. This 0.5 mm diameter pinhole could clearly resolve source positions separated by lateral displacements as small as 1 mm. Using a simple reconstruction algorithm, dwell positions in a phantom were derived from stereo-shifted dual-pinhole images and compared to the known positions. The agreement was better than 1 mm. A preliminary study of a patient undergoing HDR treatment for cervical cancer suggests that the imaging method is clinically feasible. Based on these studies we believe that the pinhole imaging method is capable of providing independent and reliable real-time monitoring and verification for HDR brachytherapy

  4. Probabilistic real-time contingency ranking method

    International Nuclear Information System (INIS)

    Mijuskovic, N.A.; Stojnic, D.

    2000-01-01

    This paper describes a real-time contingency method based on a probabilistic index-expected energy not supplied. This way it is possible to take into account the stochastic nature of the electric power system equipment outages. This approach enables more comprehensive ranking of contingencies and it is possible to form reliability cost values that can form the basis for hourly spot price calculations. The electric power system of Serbia is used as an example for the method proposed. (author)

  5. Kinota: An Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring

    Science.gov (United States)

    Miles, B.; Chepudira, K.; LaBar, W.

    2017-12-01

    The Open Geospatial Consortium (OGC) SensorThings API (STA) specification, ratified in 2016, is a next-generation open standard for enabling real-time communication of sensor data. Building on over a decade of OGC Sensor Web Enablement (SWE) Standards, STA offers a rich data model that can represent a range of sensor and phenomena types (e.g. fixed sensors sensing fixed phenomena, fixed sensors sensing moving phenomena, mobile sensors sensing fixed phenomena, and mobile sensors sensing moving phenomena) and is data agnostic. Additionally, and in contrast to previous SWE standards, STA is developer-friendly, as is evident from its convenient JSON serialization, and expressive OData-based query language (with support for geospatial queries); with its Message Queue Telemetry Transport (MQTT), STA is also well-suited to efficient real-time data publishing and discovery. All these attributes make STA potentially useful for use in environmental monitoring sensor networks. Here we present Kinota(TM), an Open-Source NoSQL implementation of OGC SensorThings for large-scale high-resolution real-time environmental monitoring. Kinota, which roughly stands for Knowledge from Internet of Things Analyses, relies on Cassandra its underlying data store, which is a horizontally scalable, fault-tolerant open-source database that is often used to store time-series data for Big Data applications (though integration with other NoSQL or rational databases is possible). With this foundation, Kinota can scale to store data from an arbitrary number of sensors collecting data every 500 milliseconds. Additionally, Kinota architecture is very modular allowing for customization by adopters who can choose to replace parts of the existing implementation when desirable. The architecture is also highly portable providing the flexibility to choose between cloud providers like azure, amazon, google etc. The scalable, flexible and cloud friendly architecture of Kinota makes it ideal for use in next

  6. High performance embedded system for real-time pattern matching

    Energy Technology Data Exchange (ETDEWEB)

    Sotiropoulou, C.-L., E-mail: c.sotiropoulou@cern.ch [University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Luciano, P. [University of Cassino and Southern Lazio, Gaetano di Biasio 43, Cassino 03043 (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gkaitatzis, S. [Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Citraro, S. [University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giannetti, P. [INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dell' Orso, M. [University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN-Pisa Section, Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2017-02-11

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton–proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device. - Highlights: • A high performance embedded system for real-time pattern matching is proposed. • It is based on a system developed for High Energy Physics experiment triggers. • It mimics the operation of the human brain (cognitive image processing). • The process can be executed on 2D and 3D, black and white or grayscale images. • The implementation uses FPGAs and custom designed associative memory (AM) chips.

  7. High performance embedded system for real-time pattern matching

    International Nuclear Information System (INIS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-01-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton–proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device. - Highlights: • A high performance embedded system for real-time pattern matching is proposed. • It is based on a system developed for High Energy Physics experiment triggers. • It mimics the operation of the human brain (cognitive image processing). • The process can be executed on 2D and 3D, black and white or grayscale images. • The implementation uses FPGAs and custom designed associative memory (AM) chips.

  8. Novel, high-definition 3-D endoscopy system with real-time compression communication system to aid diagnoses and treatment between hospitals in Thailand.

    Science.gov (United States)

    Uemura, Munenori; Kenmotsu, Hajime; Tomikawa, Morimasa; Kumashiro, Ryuichi; Yamashita, Makoto; Ikeda, Testuo; Yamashita, Hiromasa; Chiba, Toshio; Hayashi, Koichi; Sakae, Eiji; Eguchi, Mitsuo; Fukuyo, Tsuneo; Chittmittrapap, Soottiporn; Navicharern, Patpong; Chotiwan, Pornarong; Pattana-Arum, Jirawat; Hashizume, Makoto

    2015-05-01

    Traditionally, laparoscopy has been based on 2-D imaging, which represents a considerable challenge. As a result, 3-D visualization technology has been proposed as a way to better facilitate laparoscopy. We compared the latest 3-D systems with high-end 2-D monitors to validate the usefulness of new systems for endoscopic diagnoses and treatment in Thailand. We compared the abilities of our high-definition 3-D endoscopy system with real-time compression communication system with a conventional high-definition (2-D) endoscopy system by asking health-care staff to complete tasks. Participants answered questionnaires and whether procedures were easier using our system or the 2-D endoscopy system. Participants were significantly faster at suture insertion with our system (34.44 ± 15.91 s) than with the 2-D system (52.56 ± 37.51 s) (P < 0.01). Most surgeons thought that the 3-D system was good in terms of contrast, brightness, perception of the anteroposterior position of the needle, needle grasping, inserting the needle as planned, and needle adjustment during laparoscopic surgery. Several surgeons highlighted the usefulness of exposing and clipping the bile duct and gallbladder artery, as well as dissection from the liver bed during laparoscopic surgery. In an image-transfer experiment with RePure-L®, participants at Rajavithi Hospital could obtain reconstructed 3-D images that were non-inferior to conventional images from Chulalongkorn University Hospital (10 km away). These data suggest that our newly developed system could be of considerable benefit to the health-care system in Thailand. Transmission of moving endoscopic images from a center of excellence to a rural hospital could help in the diagnosis and treatment of various diseases. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  9. Real-Time Traffic Information for Emergency Evacuation Operations: Phase A Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Oscar [ORNL; Zhang, Li [Mississippi State University (MSU); Mahmoud, Anas M. [Mississippi State University (MSU); Lascurain, Mary Beth [ORNL; Wen, Yi [Mississippi State University (MSU)

    2010-05-01

    is also equipped with their own power supply and a GPS (Global Positioning System) device to auto-determine its spatial location on the transportation network under surveillance. The system is capable of assessing traffic parameters by identifying and re-identifying vehicles in the traffic stream as those vehicles pass over the sensors. The system of sensors transmits, through wireless communication, real-time traffic information (travel time and other parameters) to a command and control center via an NTCIP (National Transportation Communication for ITS Protocol) -compatible interface. As an alternative, an existing NTCIP-compatible system accepts the real-time traffic information mentioned and broadcasts the traffic information to emergency managers, the media and the public via the existing channels. A series of tests, both in a controlled environment and on the field, were conducted to study the feasibility of rapidly deploying the system of traffic sensors and to assess its ability to provide real-time traffic information during an emergency evacuation. The results of these tests indicated that the prototype sensors are reliable and accurate for the type of application that is the focus of this project.

  10. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene

    Directory of Open Access Journals (Sweden)

    Lewin Astrid

    2008-12-01

    Full Text Available Abstract Background The free-living amoeba Balamuthia mandrillaris may cause fatal encephalitis both in immunocompromised and in – apparently – immunocompetent humans and other mammalian species. Rapid, specific, sensitive, and reliable detection requiring little pathogen-specific expertise is an absolute prerequisite for a successful therapy and a welcome tool for both experimental and epidemiological research. Results A real-time polymerase chain reaction assay using TaqMan® probes (real-time PCR was established specifically targeting the RNase P gene of B. mandrillaris amoebae. The assay detected at least 2 (down to 0.5 genomes of B. mandrillaris grown in axenic culture. It did not react with DNA from closely related Acanthamoeba (3 species, nor with DNA from Toxoplasma gondii, Leishmania major, Pneumocystis murina, Mycobacterium bovis (BCG, human brain, various mouse organs, or from human and murine cell lines. The assay efficiently detected B. mandrillaris DNA in spiked cell cultures, spiked murine organ homogenates, B. mandrillaris-infected mice, and CNS tissue-DNA preparations from 2 patients with proven cerebral balamuthiasis. This novel primer set was successfully combined with a published set that targets the B. mandrillaris 18S rRNA gene in a duplex real-time PCR assay to ensure maximum specificity and as a precaution against false negative results. Conclusion A real-time PCR assay for B. mandrillaris amoebae is presented, that is highly specific, sensitive, and reliable and thus suited both for diagnosis and for research.

  11. Real-time UNIX in HEP data acquisition

    International Nuclear Information System (INIS)

    Buono, S.; Gaponenko, I.; Jones, R.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P.Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Aguer, M.; Huet, M.

    1994-01-01

    Today's experimentation in high energy physics is characterized by an increasing need for sensitivity to rare phenomena and complex physics signatures, which require the use of huge and sophisticated detectors and consequently a high performance readout and data acquisition. Multi-level triggering, hierarchical data collection and an always increasing amount of processing power, distributed throughout the data acquisition layers, will impose a number of features on the software environment, especially the need for a high level of standardization. Real-time UNIX seems, today, the best solution for the platform independence, operating system interface standards and real-time features necessary for data acquisition in HEP experiments. We present the results of the evaluation, in a realistic application environment, of a Real-Time UNIX operating system: the EP/LX real-time UNIX system. ((orig.))

  12. Study of Real-Time Programming for Simulation of Nuclear Reactor Dynamics

    International Nuclear Information System (INIS)

    Aliq; Widi Setiawan; Hendro Tjahjono

    2003-01-01

    Many aspects of real-time system are reviewed including the method, programming techniques, and its possibility to be applied in research reactor. The main point of real-time system is that it must designed to have a characteristics not only fast response but the most important is on-time response. In order to cover this requirements, real-time system need also a simple operating system consist of a kernel and application software. At the level of programming, real-time system require a modular approach, hard and soft time division and interprocess communications. The implementation can include some real-time (RT) operation system such as: RT-Linux, RT-OS9 and RT-Mat lab. Because of fast and on-time response requirements, if this system is going to be applied to research reactor, the transfer function model maybe more appropriate model compared to point kinetics model for the reason of computation time. (author)

  13. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, Marc; Draye, Jean Pierre; Verween, Gunther

    2014-01-01

    While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decell......While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting...... before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo......-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found...

  14. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  15. NOAA Operational Model Archive Distribution System (NOMADS): High Availability Applications for Reliable Real Time Access to Operational Model Data

    Science.gov (United States)

    Alpert, J. C.; Wang, J.

    2009-12-01

    To reduce the impact of natural hazards and environmental changes, the National Centers for Environmental Prediction (NCEP) provide first alert and a preferred partner for environmental prediction services, and represents a critical national resource to operational and research communities affected by climate, weather and water. NOMADS is now delivering high availability services as part of NOAA’s official real time data dissemination at its Web Operations Center (WOC) server. The WOC is a web service used by organizational units in and outside NOAA, and acts as a data repository where public information can be posted to a secure and scalable content server. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development efforts aimed at advancing modeling and GEO-related tasks. The user (client) executes what is efficient to execute on the client and the server efficiently provides format independent access services. Client applications can execute on the server, if it is desired, but the same program can be executed on the client side with no loss of efficiency. In this way this paradigm lends itself to aggregation servers that act as servers of servers listing, searching catalogs of holdings, data mining, and updating information from the metadata descriptions that enable collections of data in disparate places to be simultaneously accessed, with results processed on servers and clients to produce a needed answer. The services used to access the operational model data output are the Open-source Project for a Network Data Access Protocol (OPeNDAP), implemented with the Grid Analysis and Display System (GrADS) Data Server (GDS), and applications for slicing, dicing and area sub-setting the large matrix of real time model data holdings. This approach insures an efficient use of computer resources because users transmit/receive only the data necessary for their tasks including

  16. Control and data acquisition ATCA/AXIe board designed for high system availability and reliability of nuclear fusion experiments

    International Nuclear Information System (INIS)

    Batista, A.J.N.; Leong, C.; Bexiga, V.; Rodrigues, A.P.; Combo, A.; Carvalho, B.B.; Carvalho, P.F.; Fortunato, J.; Santos, B.; Carvalho, P.; Correia, M.; Teixeira, J.P.; Teixeira, I.C.; Sousa, J.; Gonçalves, B.; Varandas, C.A.F.

    2013-01-01

    This paper describes the implementation and test of a control and data acquisition board designed to be integrated on systems demanding high availability and reliability, foreseen for future experiments like ITER or other long operation fusion devices. The Advanced Telecommunications Computing Architecture (ATCA) standard (PICMG 3.0 and 3.4) was selected for board implementation, which has support for the desired system robustness and performance. Some board features such as rear Input/Output (IO) signals connectivity (passive, copper tracks only), cable-less hot-swap maintenance, Intelligent Platform Management Controller (IPMC) and redundancy on timing signals, communications links and power supplies are significant board improvements, relatively to previous control and data acquisition boards, allowing the development of more reliable system architectures. Moreover, the developed board is also compatible with the emerging ATCA eXtensions for Instrumentation (AXIe) specifications, which provides additional timing and synchronization signals on the backplane. ATCA full-mesh, multi-gigabit, full-duplex, point-to-point communication links between Field Programmable Gate Arrays (FPGA), of peer boards inside the shelf, allow the implementation of distributed algorithms and development of Multi-Input Multi-Output (MIMO) systems. Up to 48 analog input channels, simultaneously digitized (2 MSPS @ 18-bits), are filtered/decimated by the board FPGA and sent to the ATCA/AXIe host through Peripheral Component Interconnect express (PCIe) using Direct Memory Access (DMA). In real-time, the host can update up to 48 analog output channels (1 MSPS @ 18-bits), per board, through PCIe. Further board characteristics comprise analog IO channels with galvanic isolation and an optional signal chopper mode, for offset compensation over time on digital integration of magnetic signals. Board time synchronization is attained by means of the Inter-Range Instrumentation Group (IRIG) time-code

  17. Cellphones and Real-World Communication

    Science.gov (United States)

    Bugeja, Michael

    2004-01-01

    In this article, the author shares his views on cellphones and real-world communication. He claims that the cellphone has changed society more than the home computer, which it has assimilated. Cellphones sound during worship, wakes, births, graduations, hearings, trials, and accreditation meetings--interrupting life-changing spiritual or secular…

  18. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.

    Science.gov (United States)

    Shibata, Mikihiro; Nishimasu, Hiroshi; Kodera, Noriyuki; Hirano, Seiichi; Ando, Toshio; Uchihashi, Takayuki; Nureki, Osamu

    2017-11-10

    The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9-RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9-RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

  19. Development of in-plant real-time materials control: the DYMAC program

    International Nuclear Information System (INIS)

    Augustson, R.H.

    1976-01-01

    LASL is in the process of developing a dynamic materials control program, called DYMAC, to provide the technology for stringent real-time nuclear materials control. The DYMAC program combines hardware and software into four component subsystems: nondestructive assay (NDA), instrumentation, data acquisition, data base management, and real-time accountability. To demonstrate the feasibility of DYMAC, a working real-time materials control system will be installed at the new plutonium facility presently under construction at LASL. Program emphasis is on developing practical solutions to generic problems and communicating those solutions to other installations for use throughout the nuclear fuel cycle

  20. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT

    Science.gov (United States)

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-01-01

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909

  1. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.

    Science.gov (United States)

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-11-04

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.

  2. Microgrids Real-Time Pricing Based on Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2018-05-01

    Full Text Available Microgrids are widely spreading in electricity markets worldwide. Besides the security and reliability concerns for these microgrids, their operators need to address consumers’ pricing. Considering the growth of smart grids and smart meter facilities, it is expected that microgrids will have some level of flexibility to determine real-time pricing for at least some consumers. As such, the key challenge is finding an optimal pricing model for consumers. This paper, accordingly, proposes a new pricing scheme in which microgrids are able to deploy clustering techniques in order to understand their consumers’ load profiles and then assign real-time prices based on their load profile patterns. An improved weighted fuzzy average k-means is proposed to cluster load curve of consumers in an optimal number of clusters, through which the load profile of each cluster is determined. Having obtained the load profile of each cluster, real-time prices are given to each cluster, which is the best price given to all consumers in that cluster.

  3. Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals

    Science.gov (United States)

    Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei

    2018-01-01

    Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.

  4. Toward Real-time Multi-criteria Decision Making for Bus Service Reliability Optimisation

    DEFF Research Database (Denmark)

    Tran, Vu The; Eklund, Peter; Cook, Chris

    2015-01-01

    factors (such as traffic congestion and bad weather) in high frequency transit operations often cause irregular headway that can result in decreased service reliability. The approach proposed in this paper, which has the capability of handling the uncertainty of transit operations based on Multi...

  5. UNAVCO Geodetic HIgh-Rate and Real-Time Products and Services: A next generation geodetic network

    Science.gov (United States)

    Mattioli, G. S.; Mencin, D.; Meertens, C. M.; Feaux, K.; Looney, S.

    2012-12-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1 Hz) and low latency (transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in our data center. In addition, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time GPS data over the next decade. Additionally, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. As part of this upgrade UNAVCO is also exploring making the 75 PBO borehole strainmeter sites, whose data are now collected with a latency of 24 hours, available in SEED format in real-time in the near future, providing an opportunity to combine high-rate surface positioning and strain data together.

  6. Real-time performance monitoring and management system

    Science.gov (United States)

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2007-06-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  7. Effectiveness of different approaches to disseminating traveler information on travel time reliability. [supporting datasets

    Science.gov (United States)

    2013-11-30

    Travel time reliability information includes static data about traffic speeds or trip times that capture historic variations from day to day, and it can help individuals understand the level of variation in traffic. Unlike real-time travel time infor...

  8. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    Science.gov (United States)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  9. Real-time rockmass response from microseismics

    Energy Technology Data Exchange (ETDEWEB)

    Andrew King; Michael Lofgren; Matt van de Werken [CSIRO Exploration and Mining (Australia)

    2009-06-15

    The primary objective of this project was to develop a prototype real-time microseismic monitoring system for strata control management and forewarning of geotechnical hazards. Power and communications problems have been addressed by developing a wirelessly connected network of solar-powered acquisition nodes, one at the top of each instrumented borehole. The open-source 'earthworm' earthquake acquisition software, which can run on different hardware platforms and use different acquisition cards, was modified for use in a coal environment by developing special new arrival-picking and event-location procedures. The system was field-trialled at Moranbah North mine. The acquisition software performed well, as did wireless communications and solar power. There were issues with the acquisition hardware selected, including problems with timing synchronisation, which is essential for seismic event location. Although these were fixed during the test, different hardware is likely to be used in future installations.

  10. Subtyping of swine influenza viruses using a high-throughput real time PCR platform

    DEFF Research Database (Denmark)

    Goecke, Nicole Bakkegård; Krog, Jesper Schak; Hjulsager, Charlotte Kristiane

    ). The results revealed that the performance of the dynamic chip was similar to conventional real time analysis. Discussion and conclusion. Application of the chip for subtyping of swine influenza has resulted in a significant reduction in time, cost and working hours. Thereby, it is possible to offer diagnostic...... test and subsequent subtyping is performed by real time RT-PCR (RT-qPCR) but several assays are needed to cover the wide range of circulating subtypes which is expensive,resource and time demanding. To mitigate these restrictions the high-throughput qPCR platform BioMark (Fluidigm) has been explored...... services with reduced price and turnover time which will facilitate choice of vaccines and by that lead to reduction of antibiotic used....

  11. Real-time digital angiocardiography using a temporal high-pass filter

    International Nuclear Information System (INIS)

    Hardin, C.W.; Kruger, R.A.; Anderson, F.L.; Bray, B.F.; Nelson, J.A.

    1984-01-01

    A temporal high-pass filtration technique for digital subtraction angiocardiography was studied, using real-time digital studies performed simultaneously with routine cineangiocardiography (cine) for qualitative image comparison. The digital studies showed increased contrast and suppression of background anatomy and also enhanced detection of wall motion abnormalities when compared with cine. The digital images are comparable with, and in some cases better than, cine images. Clinical efficacy of this digital technique is currently being evaluated

  12. Performance and Reliability of DSRC Vehicular Safety Communication: A Formal Analysis

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available IEEE- and ASTM-adopted dedicated short range communications (DSRC standard toward 802.11p is a key enabling technology for the next generation of vehicular safety communication. Broadcasting of safety messages is one of the fundamental services in DSRC. There have been numerous publications addressing design and analysis of such broadcast ad hoc system based on the simulations. For the first time, an analytical model is proposed in this paper to evaluate performance and reliability of IEEE 802.11a-based vehicle-to-vehicle (V2V safety-related broadcast services in DSRC system on highway. The proposed model takes two safety services with different priorities, nonsaturated message arrival, hidden terminal problem, fading transmission channel, transmission range, IEEE 802.11 backoff counter process, and highly mobile vehicles on highway into account. Based on the solutions to the proposed analytic model, closed-form expressions of channel throughput, transmission delay, and packet reception rates are derived. From the obtained numerical results under various offered traffic and network parameters, new insights and enhancement suggestions are given.

  13. Monitoring of offshore wind farm using reliable communication

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.G.; Gajranib, K.; Bhargavac, A. [Rajasthan Technical Univ.. Dept. of Electrical Engineering, Kota (India)

    2012-07-01

    Due to rapid exhaustion of fossil fuels, new renewable technologies for electricity generation are insisted upon to meet the continuous growing demand of energy all across the globe. Wind energy as a green energy is a favorable option, among other available renewable sources. The offshore wind farm capacity is growing rapidly, but it's uncertain and intermittent nature offers great challenges to power system engineers. The cost of repair and down time, results into extensive damage and reduced profitability. This necessitates the requirement of fast and reliable communication network for the monitoring and controlling of the wind farm. In this paper, we have proposed the communication network for medium offshore wind farm (160MW). The wind farm consists of four clusters; each cluster comprises of 10 Wind Turbines (WTs), each of capacity 4MW. A WT can be represented by nine logical nodes according to IEC-61400-25 standard. The functions of logical nodes are modeled in terms of analogue /status/control information. The wind farm has been modeled in OPNET modeler and the performance of the communication network is evaluated in terms of End to End delay and packet drop, using Synchronous Optical NETwork (SONET) standard. (Author)

  14. Monitoring of offshore wind farm using reliable communication

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K G; Gajranib, K; Bhargavac, A [Rajasthan Technical Univ. Dept. of Electrical Engineering, Kota (India)

    2012-07-01

    Due to rapid exhaustion of fossil fuels, new renewable technologies for electricity generation are insisted upon to meet the continuous growing demand of energy all across the globe. Wind energy as a green energy is a favorable option, among other available renewable sources. The offshore wind farm capacity is growing rapidly, but it's uncertain and intermittent nature offers great challenges to power system engineers. The cost of repair and down time, results into extensive damage and reduced profitability. This necessitates the requirement of fast and reliable communication network for the monitoring and controlling of the wind farm. In this paper, we have proposed the communication network for medium offshore wind farm (160MW). The wind farm consists of four clusters; each cluster comprises of 10 Wind Turbines (WTs), each of capacity 4MW. A WT can be represented by nine logical nodes according to IEC-61400-25 standard. The functions of logical nodes are modeled in terms of analogue /status/control information. The wind farm has been modeled in OPNET modeler and the performance of the communication network is evaluated in terms of End to End delay and packet drop, using Synchronous Optical NETwork (SONET) standard. (Author)

  15. An approach to a real-time distribution system

    Science.gov (United States)

    Kittle, Frank P., Jr.; Paddock, Eddie J.; Pocklington, Tony; Wang, Lui

    1990-01-01

    The requirements of a real-time data distribution system are to provide fast, reliable delivery of data from source to destination with little or no impact to the data source. In this particular case, the data sources are inside an operational environment, the Mission Control Center (MCC), and any workstation receiving data directly from the operational computer must conform to the software standards of the MCC. In order to supply data to development workstations outside of the MCC, it is necessary to use gateway computers that prevent unauthorized data transfer back to the operational computers. Many software programs produced on the development workstations are targeted for real-time operation. Therefore, these programs must migrate from the development workstation to the operational workstation. It is yet another requirement for the Data Distribution System to ensure smooth transition of the data interfaces for the application developers. A standard data interface model has already been set up for the operational environment, so the interface between the distribution system and the application software was developed to match that model as closely as possible. The system as a whole therefore allows the rapid development of real-time applications without impacting the data sources. In summary, this approach to a real-time data distribution system provides development users outside of the MCC with an interface to MCC real-time data sources. In addition, the data interface was developed with a flexible and portable software design. This design allows for the smooth transition of new real-time applications to the MCC operational environment.

  16. Versatile real-time interferometer phase-detection system using high-speed digital techniques

    International Nuclear Information System (INIS)

    Mendell, D.S.; Willett, G.W.

    1977-01-01

    This paper describes the basic design and philosophy of a versatile real-time interferometer phase-detection system to be used on the 2XIIB and TMX magnetic-fusion experiments at Lawrence Livermore Laboratory. This diagnostics system is a satellite to a host computer and uses high-speed emitter-coupled logic techniques to derive data on real-time phase relationships. The system's input signals can be derived from interferometer outputs over a wide range of reference frequencies. An LSI-11 microcomputer is the interface between the high-speed phase-detection logic, buffer memory, human interaction, and host computer. Phase data on a storage CRT is immediately displayed after each experimental fusion shot. An operator can interrogate this phase data more closely from an interactive control panel, and the host computer can be simultaneously examining the system's buffer memory or arming the system for the next shot

  17. Real-time computational photon-counting LiDAR

    Science.gov (United States)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  18. Real-time hybrid simulation in a shaking table configuration for parametric studies of high-voltage equipment and IEEE693 development

    Energy Technology Data Exchange (ETDEWEB)

    Günay, Selim [nees@berkeley, UC Berkeley, Richmond, CA (United States); Mosalam, Khalid [Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA (United States); Takhirov, Shakhzod, E-mail: takhirov@berkeley.edu [nees@berkeley, UC Berkeley, Richmond, CA (United States)

    2015-12-15

    Highlights: • A real-time hybrid simulation (RTHS) system for high-voltage (HV) equipment is developed. • The system is a cost effective and timely efficient approach for seismic testing and evaluation. • The coupled system of equipment and modeled support structure is tested/analyzed in real time. • The system is validated by comparing the RTHS test results with the shaking table results. • The effect of support structure on the equipment response is analyzed in a parametric study. - Abstract: This paper presents extensive discussion on seismic qualification of substation equipment in conventional shake table tests and its comparison to real-time hybrid simulation (RTHS). The hybrid simulation technique is based on a sub-structuring idea where a portion of a test specimen with well-predicted performance can be replaced by its finite element model. The rest of the test specimen is experimentally studied as part of the coupled system, where the test object and the mathematical model are interacting with each other in real time. The real-time hybrid simulation technique has a strong potential of complementing and in some cases replacing seismic qualification testing. In addition to that, it has a strong potential as a comprehensive and reliable tool for IEEE693 development, where code provisions can be developed from parametric hybrid simulation studies of actual pieces of substation equipment which are otherwise difficult to model. As a typical example of successful application of hybrid simulation, a comprehensive study related to RTHS of electrical disconnect switches is discussed in the paper. First, the RTHS system developed for this purpose is described and the results of a RTHS test are compared with a benchmark conventional shaking table test as a validation of the system. Second, effect of the support structures of the disconnect switches on the global and local responses of different insulator types is evaluated using the results of a series of

  19. Real-time hybrid simulation in a shaking table configuration for parametric studies of high-voltage equipment and IEEE693 development

    International Nuclear Information System (INIS)

    Günay, Selim; Mosalam, Khalid; Takhirov, Shakhzod

    2015-01-01

    Highlights: • A real-time hybrid simulation (RTHS) system for high-voltage (HV) equipment is developed. • The system is a cost effective and timely efficient approach for seismic testing and evaluation. • The coupled system of equipment and modeled support structure is tested/analyzed in real time. • The system is validated by comparing the RTHS test results with the shaking table results. • The effect of support structure on the equipment response is analyzed in a parametric study. - Abstract: This paper presents extensive discussion on seismic qualification of substation equipment in conventional shake table tests and its comparison to real-time hybrid simulation (RTHS). The hybrid simulation technique is based on a sub-structuring idea where a portion of a test specimen with well-predicted performance can be replaced by its finite element model. The rest of the test specimen is experimentally studied as part of the coupled system, where the test object and the mathematical model are interacting with each other in real time. The real-time hybrid simulation technique has a strong potential of complementing and in some cases replacing seismic qualification testing. In addition to that, it has a strong potential as a comprehensive and reliable tool for IEEE693 development, where code provisions can be developed from parametric hybrid simulation studies of actual pieces of substation equipment which are otherwise difficult to model. As a typical example of successful application of hybrid simulation, a comprehensive study related to RTHS of electrical disconnect switches is discussed in the paper. First, the RTHS system developed for this purpose is described and the results of a RTHS test are compared with a benchmark conventional shaking table test as a validation of the system. Second, effect of the support structures of the disconnect switches on the global and local responses of different insulator types is evaluated using the results of a series of

  20. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    International Nuclear Information System (INIS)

    Brombin, M.; Boboc, A.; Zabeo, L.; Murari, A.

    2008-01-01

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements for a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.

  1. Real-time image reconstruction and display system for MRI using a high-speed personal computer.

    Science.gov (United States)

    Haishi, T; Kose, K

    1998-09-01

    A real-time NMR image reconstruction and display system was developed using a high-speed personal computer and optimized for the 32-bit multitasking Microsoft Windows 95 operating system. The system was operated at various CPU clock frequencies by changing the motherboard clock frequency and the processor/bus frequency ratio. When the Pentium CPU was used at the 200 MHz clock frequency, the reconstruction time for one 128 x 128 pixel image was 48 ms and that for the image display on the enlarged 256 x 256 pixel window was about 8 ms. NMR imaging experiments were performed with three fast imaging sequences (FLASH, multishot EPI, and one-shot EPI) to demonstrate the ability of the real-time system. It was concluded that in most cases, high-speed PC would be the best choice for the image reconstruction and display system for real-time MRI. Copyright 1998 Academic Press.

  2. UNAVCO GPS High-Rate and Real-Time Products and Services: Building a next generation geodetic network.

    Science.gov (United States)

    Mencin, David; Meertens, Charles; Mattioli, Glen; Feaux, Karl; Looney, Sara; Sievers, Charles; Austin, Ken

    2013-04-01

    Recent advances in GPS technology and data processing are providing position estimates with centimeter-level precision at high-rate (1-5 Hz) and low latency (transforming rapid event characterization, early warning, as well as hazard mitigation and response. Other scientific and operational applications for high-rate GPS also include glacier and ice sheet motions, tropospheric modeling, and better constraints on the dynamics of space weather. UNAVCO, through community input and the recent Plate Boundary Observatory (PBO) NSF-ARRA Cascadia initiative, has nearly completed the process of upgrading a total of 373 PBO GPS sites to real-time high-rate capability and these streams are now being archived in the UNAVCO data center. Further, through the UNAVCO core proposal (GAGE), currently under review at NSF, UNAVCO has proposed upgrading a significant portion of the ~1100 GPS stations that PBO currently operates to real-time high-rate capability to address community science and operational needs. In addition, in collaboration with NOAA, 74 of these stations will provide meteorological data in real-time, primarily to support watershed and flood analyses for regional early-warning systems related to NOAA's work with California Department of Water Resources. In preparation for this increased emphasis on high-rate GPS data, UNAVCO hosted an NSF funded workshop in Boulder, CO on March 26-28, 2012, which brought together 70 participants representing a spectrum of research fields with a goal to develop a community plan for the use of real-time GPS data products within the UNAVCO and EarthScope communities. These data products are expected to improve and expand the use of real-time, high-rate GPS data over the next decade.

  3. Infrared wireless data transfer for real-time motion control

    NARCIS (Netherlands)

    Gajdusek, M.; Overboom, T.T.; Damen, A.A.H.; Bosch, van den P.P.J.

    2009-01-01

    In this paper several wireless solution are compared for their suitability for real-time control of a fast motion system. From the comparison, Very Fast Infrared (VFIR) communication link has been found to be an attractive solution for presented wirelessly controlled manipulator. Because standard

  4. Performance evaluation of an interactive teleradiology system for real-time teleconsultation in different network environments

    International Nuclear Information System (INIS)

    Lian Ping; Gong Jun; Zhuang Jun; Sun Jianyong; Yang Yuanyuan; Zhang Jianguo; Meng Lili

    2004-01-01

    Objective: Measure the performance of self-developed Interoperable teleradiology system at various communication conditions. Methods: Through three different network media ( satellite network, Asymmetrical Digital Subscriber Loop (ADSL), and Shanghai health system's private broadband WAN), Digital images in radiology were transmitted and experiments on teleradiology consultation were applied. Results such as transmission time were recorded, effects of real-time consultation were evaluated subjectively, and experimental data were analyzed. Results: In satellite network, time spent on the transmission of images is long and effects of consultation is normal; in broadband network, time spent is short and no delay is observed in interoperation. Conclusion: teleconsultation can be hold on image sets composed of small matrix size images and compressed large matrix size images in satellite narrowband network, optimum transmission bandwidth is 192 kbps; original large matrix size images such as CR can be transmitted through broadband network and be used in teleconsultation. Real-time interoperation of the system doesn't require very high bandwidth. It can be implemented at various communication conditions

  5. Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing

    Science.gov (United States)

    Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.

    2018-05-01

    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.

  6. A New Generation of Real-Time Systems in the JET Tokamak

    Science.gov (United States)

    Alves, Diogo; Neto, Andre C.; Valcarcel, Daniel F.; Felton, Robert; Lopez, Juan M.; Barbalace, Antonio; Boncagni, Luca; Card, Peter; De Tommasi, Gianmaria; Goodyear, Alex; Jachmich, Stefan; Lomas, Peter J.; Maviglia, Francesco; McCullen, Paul; Murari, Andrea; Rainford, Mark; Reux, Cedric; Rimini, Fernanda; Sartori, Filippo; Stephen, Adam V.; Vega, Jesus; Vitelli, Riccardo; Zabeo, Luca; Zastrow, Klaus-Dieter

    2014-04-01

    Recently, a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of JET's well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide real-time performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests' (IRQs) affinities together with the kernel's CPU isolation mechanism allows one to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multi-core architectures. In the past year, four new systems based on this philosophy have been installed and are now part of JET's routine operation. The focus of the present work is on the configuration aspects that enable these new systems' real-time capability. Details are given about the common real-time configuration of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronizing over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel.

  7. Reliable quantum communication over a quantum relay channel

    Energy Technology Data Exchange (ETDEWEB)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117, Hungary and Information Systems Research Group, Mathematics and Natural Sciences, Hungarian Ac (Hungary); Imre, Sandor [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117 (Hungary)

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  8. Integrating Real-time Earthquakes into Natural Hazard Courses

    Science.gov (United States)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    real-time, consulting other members of their class and accessing the E-DBMS server and other links to glean information that they will then use to make decisions. Students wrestle with the complications in interpreting natural hazard data, evaluating whether a response is needed, and problems such as those associated with communication between media and the public through these focused exercises. Although earthquakes are targeted at present, similar DBMS systems are envisioned for other natural hazards like flooding, volcanoes, and severe weather. We are testing this system as a prototype intended to be expanded to provide web-based access to classes at both the middle/high school and college/university levels.

  9. Real time capable infrared thermography for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sieglin, B., E-mail: Bernhard.Sieglin@ipp.mpg.de; Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S. [Max-Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany)

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  10. Semantics for Communicating Actors with Interdependent Real-Time Deadlines

    DEFF Research Database (Denmark)

    Knoll, Istvan; Ravn, Anders Peter; Skou, Arne

    2009-01-01

    on the results, these tools must use consistent semantics for the model. Yet, a monolithic semantic model is just as complex as the entity it describes. In order to circumvent this issue, we define a three level semantics giving independent definitions of the functionality of actors, the temporal properties...... of communications, and finally imposing deadlines on the timing of dependent actors. With this approach the semantics is used directly in developing a simulator supporting the nondeterminism of the abstract semantics such that e.g. potential race conditions can be detected. The layers are also planned to underpin...... independent specialized verification tools. The verification task for timed, hybrid systems can thus be divided into the continuous, discrete, and timing domains with automated translation to specialized tools, and this promises better scalability than simulation or model checking of one complex model....

  11. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  12. Real-time position reconstruction with hippocampal place cells.

    Science.gov (United States)

    Guger, Christoph; Gener, Thomas; Pennartz, Cyriel M A; Brotons-Mas, Jorge R; Edlinger, Günter; Bermúdez I Badia, S; Verschure, Paul; Schaffelhofer, Stefan; Sanchez-Vives, Maria V

    2011-01-01

    Brain-computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat's trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat's position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5-6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral-neuronal feedback loops or for implementing neuroprosthetic control.

  13. Real-time detection of TDP1 activity using a fluorophore-quencher coupled DNA-biosensor

    DEFF Research Database (Denmark)

    Jensen, Pia Wrensted; Falconi, Mattia; Kristoffersen, Emil Laust

    2013-01-01

    structure of the biosensor. The specific action of TDP1 removes the quencher, thereby enabling optical detection of the fluorophore. Since the enzymatic action of TDP1 is the only “signal amplification” the increase in fluorescence may easily be followed in real-time and allows quantitative analyses of TDP1......Real-time detection of enzyme activities may present the easiest and most reliable way of obtaining quantitative analyses in biological samples. We present a new DNA-biosensor capable of detecting the activity of the potential anticancer drug target tyrosyl-DNA phosphodiesterase 1 (TDP1) in a very...... simple, high throughput, and real-time format. The biosensor is specific for Tdp1 even in complex biological samples, such as human cell extracts, and may consequently find future use in fundamental studies as well as a cancer predictive tool allowing fast analyses of diagnostic cell samples...

  14. Study on a High-frequency Multi-GNSS Real-time Precise Clock Estimation Algorithm and Application in GNSS Augment System

    Directory of Open Access Journals (Sweden)

    CHEN Liang

    2017-05-01

    Full Text Available GNSS satellite-based differential augment system is based on real-time orbit and clock augment message. The multi-GNSS real-time precise clock error estimation model is studied, and then the parameters estimated in traditional un-difference model are optimized and a high-efficient real-time clock simplified model is proposed and realized. The real-time orbit data processing based on PANDA is also analyzed. The results indicate that the real-time orbit radial accuracy of GPS, BeiDou MEO and Galileo is 1~5 cm, and the radial accuracy of the BeiDou GEO/IGSO satellite is about 10 cm. It is found that the optimized real-time clock simplified model is more efficient in one epoch than un-difference model and can be applied to high-frequency (such as 1 Hz updating of real-time clock augment message. The results show that the real-time clock error obtained by this model is absolute value and there is no constant bias. Based on the real-time orbit, the GPS real-time clock precision of the simplified model is about 0.24 ns, BeiDou GEO is about 0.50 ns, IGSO/MEO is about 0.22 ns and Galileo is about 0.32 ns. Using the multi-GNSS real-time data stream in GFZ, a multi-GNSS real-time augment prototype system is built and the real-time augment message is being broadcasted on the Internet. The real-time PPP centimeter-level service and meter-level navigation service based on pseudorange are realized based on this prototype system.

  15. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Rapson, Christopher J., E-mail: chris.rapson@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Carvalho, Pedro [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Lüddecke, Klaus; Neto, André C. [Unlimited Computer Systems GmbH, Seeshaupterstr. 15, 82393 Iffeldorf (Germany); Santos, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Treutterer, Wolfgang [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany); Winter, Axel [ITER Organization, Route de Vinon-sur-Verdon, 13115 St.-Paul-Lès-Durance (France); Zehetbauer, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748 Garching (Germany)

    2014-12-15

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework.

  16. Coupling DCS and MARTe: two real-time control frameworks in collaboration

    International Nuclear Information System (INIS)

    Rapson, Christopher J.; Carvalho, Pedro; Lüddecke, Klaus; Neto, André C.; Santos, Bruno; Treutterer, Wolfgang; Winter, Axel; Zehetbauer, Thomas

    2014-01-01

    Highlights: • Similarities and differences between DCS and MARTe. • Identifies the state-of-the-art in terms of software frameworks for fusion control. • Interfaces developed for realtime and non-realtime communication between DCS and MARTe. • An algorithm replicated in DCS and MARTe produces identical results and good performance. • The start of collaboration to develop a new framework for ITER PCS. - Abstract: Fusion experiments place high demands on real-time control systems. Within the fusion community two modern framework-based software architectures have emerged as powerful tools for developing algorithms for real-time control of complex systems while maintaining the flexibility required when operating a physics experiment. The two frameworks are known as DCS (Discharge Control System), from ASDEX Upgrade and MARTe (Multithreaded Application Real-Time executor), originally from JET. Based on the success of DCS and MARTe, ITER has chosen to develop a framework architecture for its Plasma Control System which will adopt major design concepts from both the existing frameworks. This paper describes a coupling of the two existing frameworks, which was undertaken to explore the degree of similarity and compliance between the concepts, and to extend their capabilities. DCS and MARTe operate in parallel with synchronised state machines and a common message logger. Configuration data is exchanged before the real-time phase. During the real-time phase, structured data is exchanged via shared memory and an existing DCS algorithm is replicated within MARTe. The coupling tests the flexibility and identifies the respective strengths of the two frameworks, providing a well-informed basis on which to move forward and design a new ITER real-time framework

  17. Monitoring Distributed Real-Time Systems: A Survey and Future Directions

    Science.gov (United States)

    Goodloe, Alwyn E.; Pike, Lee

    2010-01-01

    Runtime monitors have been proposed as a means to increase the reliability of safety-critical systems. In particular, this report addresses runtime monitors for distributed hard real-time systems. This class of systems has had little attention from the monitoring community. The need for monitors is shown by discussing examples of avionic systems failure. We survey related work in the field of runtime monitoring. Several potential monitoring architectures for distributed real-time systems are presented along with a discussion of how they might be used to monitor properties of interest.

  18. Real-Time Wireless Data Acquisition System

    Science.gov (United States)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time

  19. Dynamic Reconfiguration in Real-Time Systems Energy, Performance, and Thermal Perspectives

    CERN Document Server

    Wang, Weixun; Ranka, Sanjay

    2013-01-01

    Given the widespread use of real-time multitasking systems, there are tremendous optimization opportunities if reconfigurable computing can be effectively incorporated while maintaining performance and other design constraints of typical applications. The focus of this book is to describe the dynamic reconfiguration techniques that can be safely used in real-time systems. This book provides comprehensive approaches by considering synergistic effects of computation, communication as well as storage together to significantly improve overall performance, power, energy and temperature.  Provides a comprehensive introduction to optimization and dynamic reconfiguration techniques in real-time embedded systems; Covers state-of-the-art techniques and ongoing research in reconfigurable architectures; Focuses on algorithms tuned for dynamic reconfiguration techniques in real-time systems;  Provides reference for anyone designing low-power systems, energy-/temperature-constrained devices, and power-performance efficie...

  20. ABO Blood Group Genotyping by Real-time PCR in Kazakh Population

    Directory of Open Access Journals (Sweden)

    Pavel Tarlykov

    2014-12-01

    Full Text Available Introduction. ABO blood group genotyping is a new technology in hematology that helps prevent adverse transfusion reactions in patients. Identification of antigens on the surface of red blood cells is based on serology; however, genotyping employs a different strategy and is aimed directly at genes that determine the surface proteins. ABO blood group genotyping by real-time PCR has several crucial advantages over other PCR-based techniques, such as high rapidity and reliability of analysis. The purpose of this study was to examine nucleotide substitutions differences by blood types using a PCR-based method on Kazakh blood donors.Methods. The study was approved by the Ethics Committee of the National Center for Biotechnology. Venous blood samples from 369 healthy Kazakh blood donors, whose blood types had been determined by serological methods, were collected after obtaining informed consent. The phenotypes of the samples included blood group A (n = 99, B (n = 93, O (n = 132, and AB (n = 45. Genomic DNA was extracted using a salting-out method. PCR products of ABO gene were sequenced on an ABI 3730xl DNA analyzer (Applied Biosystems. The resulting nucleotide sequences were compared and aligned against reference sequence NM_020469.2. Real-time PCR analysis was performed on CFX96 Touch™ Real-Time PCR Detection System (BioRad.Results. Direct sequencing of ABO gene in 369 samples revealed that the vast majority of nucleotide substitutions that change the ABO phenotype were limited to exons 6 and 7 of the ABO gene at positions 261, 467, 657, 796, 803, 930 and 1,060. However, genotyping of only three of them (261, 796 and 803 resulted in identification of major ABO genotypes in the Kazakh population. As a result, TaqMan probe based real-time PCR assay for the specific detection of genotypes 261, 796 and 803 was developed. The assay did not take into account several other mutations that may affect the determination of blood group, because they have a

  1. InfiniBand-based real-time simulation of HVDC, STATCOM and SVC devices with commercial-off-the-shelf PCs and FPGAs

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, C.; Abourida, S.; Belanger, J.; Lapointe, V. [OPAL-RT Technologies Inc., Montreal, PQ (Canada)

    2006-07-01

    Details of a real-time simulator for large power networks using commercial-off-the-shelf products and an RT-LAB platform were presented. The simulator was designed to realistically simulate bipolar high voltage DC (HVDC) networks transmission systems and to meet large grid simulation challenges. The system was also designed to cope with complex power grid design and validation tests as well as to interface with modern power electronic controllers and protection systems. The platform used Pentium, Xeon or Opteron based PCs and InfiniBand communication fabric for fast inter-PC communications. The real-time PC ran under well-known operating systems while the main control interface used Simulink software. Grid circuits were designed using an SPS interface using an ARTEMIS plug-in. Various model performances were reported. The results of several simulations suggested that InfiniBand communication was slower than shared-memory communication, while STATCOM timing was difficult to compare with the Opteron benchmarks. Results also suggested that XEON CPUs were slower than Opteron counterparts. Hardware-in-the-loop (HIL) testing was also performed with a prototype controller and with a real production controller. It was concluded that a communication time of 5 microseconds was obtained across the 2 PCs. The paper also discussed recent advances in HIL simulation and programming devices. 10 refs., 15 figs.

  2. Real-time underwater object detection based on an electrically scanned high-resolution sonar

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1994-01-01

    The paper describes an approach to real time detection and tracking of underwater objects, using image sequences from an electrically scanned high-resolution sonar. The use of a high resolution sonar provides a good estimate of the location of the objects, but strains the computers on board, beca...

  3. Use of real-time tools to support field operations of NSF's Lower Atmosphere Observing Facilities

    Science.gov (United States)

    Daniels, M.; Stossmeister, G.; Johnson, E.; Martin, C.; Webster, C.; Dixon, M.; Maclean, G.

    2012-12-01

    NCAR's Earth Observing Laboratory (EOL) operates Lower Atmosphere Observing Facilities (LAOF) for the scientific community, under sponsorship of the National Science Foundation. In order to obtain the highest quality dataset during field campaigns, real-time decision-making critically depends on the availability of timely data and reliable communications between field operations staff and instrument operators. EOL incorporates the latest technologies to monitor the health of instrumentation, facilitate remote operations of instrumentation and keep project participants abreast of changing conditions in the field. As the availability of bandwidth on mobile communication networks and the capabilities of their associated devices (smart phone, tablets, etc.) improved, so has the ability of researchers to respond to rapidly changing conditions and coordinate ever more detailed measurements from multiple remote fixed, portable and airborne platforms. This presentation will describe several new tools that EOL is making available to project investigators and how these tools are being used in a mobile computing environment to support enhanced data collection during field campaigns. LAOF platforms such as radars, aircraft, sondes, balloons and surface stations all rely on displays of real-time data for their operations. Data from sondes are ingested into the Global Telecommunications System (GTS) for assimilation into regional forecasting models that help guide project operations. Since many of EOL's projects occur around the globe and at the same time instrument complexity has increased, automated monitoring of instrumentation platforms and systems has become essential. Tools are being developed to allow remote instrument control of our suite of observing systems where feasible. The Computing, Data and Software (CDS) Facility of EOL develops and supports a Field Catalog used in field campaigns for nearly two decades. Today, the Field Catalog serves as a hub for the

  4. A high-resolution mini-microscope system for wireless real-time monitoring.

    Science.gov (United States)

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2017-09-04

    Compact, cost-effective and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless mini-microscope with resolution up to 2592 × 1944 pixels and speed up to 90 fps. The mini-microscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed mini-microscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 hours. In addition, the mini-microscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the mini-microscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed mini-microscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high resolution mini-microscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  5. A real-time expert system for self-repairing flight control

    Science.gov (United States)

    Gaither, S. A.; Agarwal, A. K.; Shah, S. C.; Duke, E. L.

    1989-01-01

    An integrated environment for specifying, prototyping, and implementing a self-repairing flight-control (SRFC) strategy is described. At an interactive workstation, the user can select paradigms such as rule-based expert systems, state-transition diagrams, and signal-flow graphs and hierarchically nest them, assign timing and priority attributes, establish blackboard-type communication, and specify concurrent execution on single or multiple processors. High-fidelity nonlinear simulations of aircraft and SRFC systems can be performed off-line, with the possibility of changing SRFC rules, inference strategies, and other heuristics to correct for control deficiencies. Finally, the off-line-generated SRFC can be transformed into highly optimized application-specific real-time C-language code. An application of this environment to the design of aircraft fault detection, isolation, and accommodation algorithms is presented in detail.

  6. Limited Preemptive Scheduling in Real-time Systems

    OpenAIRE

    Thekkilakattil, Abhilash

    2016-01-01

    Preemptive and non-preemptive scheduling paradigms typically introduce undesirable side effects when scheduling real-time tasks, mainly in the form of preemption overheads and blocking, that potentially compromise timeliness guarantees. The high preemption overheads in preemptive real-time scheduling may imply high resource utilization, often requiring significant over-provisioning, e.g., pessimistic Worst Case Execution Time (WCET) approximations. Non-preemptive scheduling, on the other hand...

  7. Key technology research of HILS based on real-time operating system

    Science.gov (United States)

    Wang, Fankai; Lu, Huiming; Liu, Che

    2018-03-01

    In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.

  8. Integration of Real-Time Data Into Building Automation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

    2003-04-16

    The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

  9. Latency Analysis of Systems with Multiple Interfaces for Ultra-Reliable M2M Communication

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Popovski, Petar

    2016-01-01

    One of the ways to satisfy the requirements of ultra-reliable low latency communication for mission critical Machine-type Communications (MTC) applications is to integrate multiple communication interfaces. In order to estimate the performance in terms of latency and reliability of such an integr...

  10. Real-Time MENTAT programming language and architecture

    Science.gov (United States)

    Grimshaw, Andrew S.; Silberman, Ami; Liu, Jane W. S.

    1989-01-01

    Real-time MENTAT, a programming environment designed to simplify the task of programming real-time applications in distributed and parallel environments, is described. It is based on the same data-driven computation model and object-oriented programming paradigm as MENTAT. It provides an easy-to-use mechanism to exploit parallelism, language constructs for the expression and enforcement of timing constraints, and run-time support for scheduling and exciting real-time programs. The real-time MENTAT programming language is an extended C++. The extensions are added to facilitate automatic detection of data flow and generation of data flow graphs, to express the timing constraints of individual granules of computation, and to provide scheduling directives for the runtime system. A high-level view of the real-time MENTAT system architecture and programming language constructs is provided.

  11. A Reliable Wireless Control System for Tomato Hydroponics.

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  12. A Reliable Wireless Control System for Tomato Hydroponics

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  13. IGBT Switching Characteristic Curve Embedded Half-Bridge MMC Modelling and Real Time Simulation Realization

    Science.gov (United States)

    Zhengang, Lu; Hongyang, Yu; Xi, Yang

    2017-05-01

    The Modular Multilevel Converter (MMC) is one of the most attractive topologies in recent years for medium or high voltage industrial applications, such as high voltage dc transmission (HVDC) and medium voltage varying speed motor drive. The wide adoption of MMCs in industry is mainly due to its flexible expandability, transformer-less configuration, common dc bus, high reliability from redundancy, and so on. But, when the sub module number of MMC is more, the test of MMC controller will cost more time and effort. Hardware in the loop test based on real time simulator will save a lot of time and money caused by the MMC test. And due to the flexible of HIL, it becomes more and more popular in the industry area. The MMC modelling method remains an important issue for the MMC HIL test. Specifically, the VSC model should realistically reflect the nonlinear device switching characteristics, switching and conduction losses, tailing current, and diode reverse recovery behaviour of a realistic converter. In this paper, an IGBT switching characteristic curve embedded half-bridge MMC modelling method is proposed. This method is based on the switching curve referring and sample circuit calculation, and it is sample for implementation. Based on the proposed method, a FPGA real time simulation is carried out with 200ns sample time. The real time simulation results show the proposed method is correct.

  14. The Study on the Communication Network of Wide Area Measurement System in Electricity Grid

    Science.gov (United States)

    Xiaorong, Cheng; Ying, Wang; Yangdan, Ni

    Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.

  15. Development of a high-throughput real time PCR based on a hot-start alternative for Pfu mediated by quantum dots

    Science.gov (United States)

    Sang, Fuming; Yang, Yang; Yuan, Lin; Ren, Jicun; Zhang, Zhizhou

    2015-09-01

    Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour preincubation at 50 °C before real time PCR. Moreover, the results obtained by QD-based HS PCR were comparable to a commercial Taq antibody DNA polymerase. However, no obvious HS effect of QDs was found in real time PCR using Taq DNA polymerase. The findings of this study demonstrated that a cost-effective high-throughput real time PCR based on QD triggered HS PCR could be established with high consistency, sensitivity and accuracy.Hot start (HS) PCR is an excellent alternative for high-throughput real time PCR due to its ability to prevent nonspecific amplification at low temperature. Development of a cost-effective and simple HS PCR technique to guarantee high-throughput PCR specificity and consistency still remains a great challenge. In this study, we systematically investigated the HS characteristics of QDs triggered in real time PCR with EvaGreen and SYBR Green I dyes by the analysis of amplification curves, standard curves and melting curves. Two different kinds of DNA polymerases, Pfu and Taq, were employed. Here we showed that high specificity and efficiency of real time PCR were obtained in a plasmid DNA and an error-prone two-round PCR assay using QD-based HS PCR, even after an hour

  16. A time reference distribution concept for a time division communication network

    Science.gov (United States)

    Stover, H. A.

    1973-01-01

    Starting with an assumed ideal network having perfect clocks at every node and known fixed transmission delays between nodes, the effects of adding tolerances to both transmission delays and nodal clocks is described. The advantages of controlling tolerances on time rather than frequency are discussed. Then a concept is presented for maintaining these tolerances on time throughout the network. This concept, called time reference distribution, is a systematic technique for distributing time reference to all nodes of the network. It is reliable, survivable and possesses many other desirable characteristics. Some of its features such as an excellent self monitoring capability will be pointed out. Some preliminary estimates of the accuracy that might be expected are developed and there is a brief discussion of the impact upon communication system costs. Time reference distribution is a concept that appears very attractive. It has not had experimental evaluation and has not yet been endorsed for use in any communication network.

  17. Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT

    International Nuclear Information System (INIS)

    Giannone, L.; Cerna, M.; Cole, R.; Fitzek, M.; Kallenbach, A.; Lueddecke, K.; McCarthy, P.J.; Scarabosio, A.; Schneider, W.; Sips, A.C.C.; Treutterer, W.; Vrancic, A.; Wenzel, L.; Yi, H.; Behler, K.; Eich, T.; Eixenberger, H.; Fuchs, J.C.; Haas, G.; Lexa, G.

    2010-01-01

    The existing VxWorks real-time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real-time using a multi-core PCI Express system running LabVIEW RT 8.6. real-time signal processing of bolometers and manometers is performed with the on-board FPGA to calculate the measured radiated power flux and particle flux respectively from the raw data. Radiation feedback experiments use halo current measurements from the outer divertor with real-time median filter pre-processing to remove the excursions produced by ELMs. Integration of these plasma diagnostics into the control system by the exchange of XML sheets for communicating the real-time variables to be produced and consumed is in operation. Reflective memory and UDP are employed by the LabVIEW RT plasma diagnostics to communicate with the control system and other plasma diagnostics in a multi-platform real-time network.

  18. Data acquisition and real-time signal processing of plasma diagnostics on ASDEX Upgrade using LabVIEW RT

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L., E-mail: Louis.Giannone@ipp.mpg.d [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Cerna, M. [National Instruments, Austin, TX 78759-3504 (United States); Cole, R.; Fitzek, M. [Unlimited Computer Systems GmbH, 82393 Iffeldorf (Germany); Kallenbach, A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Lueddecke, K. [Unlimited Computer Systems GmbH, 82393 Iffeldorf (Germany); McCarthy, P.J. [Department of Physics, University College Cork, Association EURATOM-DCU, Cork (Ireland); Scarabosio, A.; Schneider, W.; Sips, A.C.C.; Treutterer, W. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany); Vrancic, A.; Wenzel, L.; Yi, H. [National Instruments, Austin, TX 78759-3504 (United States); Behler, K.; Eich, T.; Eixenberger, H.; Fuchs, J.C.; Haas, G.; Lexa, G. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-IPP Association, D-85748 Garching (Germany)

    2010-07-15

    The existing VxWorks real-time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real-time using a multi-core PCI Express system running LabVIEW RT 8.6. real-time signal processing of bolometers and manometers is performed with the on-board FPGA to calculate the measured radiated power flux and particle flux respectively from the raw data. Radiation feedback experiments use halo current measurements from the outer divertor with real-time median filter pre-processing to remove the excursions produced by ELMs. Integration of these plasma diagnostics into the control system by the exchange of XML sheets for communicating the real-time variables to be produced and consumed is in operation. Reflective memory and UDP are employed by the LabVIEW RT plasma diagnostics to communicate with the control system and other plasma diagnostics in a multi-platform real-time network.

  19. The influence of real-time rural transit tracking on traveler perception.

    Science.gov (United States)

    2013-03-01

    Public transportation systems require accurate and reliable information as part of their : day-to-day operations and are increasingly engaging their customers through a variety of online : services and smart phone applications, such as real-time vehi...

  20. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    International Nuclear Information System (INIS)

    Glad, A.S.; Jacobson, V.

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc

  1. CHIMERA II - A real-time multiprocessing environment for sensor-based robot control

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1989-01-01

    A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.

  2. A new concept of a unified parameter management, experiment control, and data analysis in fMRI: application to real-time fMRI at 3T and 7T.

    Science.gov (United States)

    Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J

    2008-10-30

    In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.

  3. Improving patient safety: patient-focused, high-reliability team training.

    Science.gov (United States)

    McKeon, Leslie M; Cunningham, Patricia D; Oswaks, Jill S Detty

    2009-01-01

    Healthcare systems are recognizing "human factor" flaws that result in adverse outcomes. Nurses work around system failures, although increasing healthcare complexity makes this harder to do without risk of error. Aviation and military organizations achieve ultrasafe outcomes through high-reliability practice. We describe how reliability principles were used to teach nurses to improve patient safety at the front line of care. Outcomes include safety-oriented, teamwork communication competency; reflections on safety culture and clinical leadership are discussed.

  4. Usability of a new multiple high-speed pulse time data registration, processing and real-time display system for pulse time interval analysis

    International Nuclear Information System (INIS)

    Yawata, Takashi; Sakaue, Hisanobu; Hashimoto, Tetsuo; Itou, Shigeki

    2006-01-01

    A new high-speed multiple pulse time data registration, processing and real-time display system for time interval analysis (TIA) was developed for counting either β-α or α-α correlated decay-events. The TIA method has been so far limited to selective extraction of successive α-α decay events within the milli-second time scale owing to the use of original electronic hardware. In the present pulse-processing system, three different high-speed α/β(γ) pulses could be fed quickly to original 32 bit PCI board (ZN-HTS2) within 1 μs. This original PCI board is consisting of a timing-control IC (HTS-A) and 28 bit counting IC (HTS-B). All channel and pulse time data were stored to FIFO RAM, followed to transfer into temporary CPU RAM (32 MB) by DMA. Both data registration (into main RAM (200 MB)) and calculation of pulse time intervals together with real-time TIA-distribution display simultaneously processed using two sophisticate softwares. The present system has proven to succeed for the real-time display of TIA distribution spectrum even when 1.6x10 5 cps pulses from pulse generator were given to the system. By using this new system combined with liquid scintillation counting (LSC) apparatus, both a natural micro-second order β-α correlated decay-events and a milli-second order α-α correlated decay-event could be selectively extracted from the mixture of natural radionuclides. (author)

  5. Development of a self-made framework for the acquisition and communication of real-time precipitation data

    Science.gov (United States)

    Pedrozo-Acuña, A.; Magos-Hernández, J. A.; Sánchez-Peralta, J. A.; Blanco-Figueroa, J.; Breña-Naranjo, J. A.

    2017-12-01

    This contribution presents a real-time system for issuing warnings of intense precipitation events during major storms, developed for Mexico City, Mexico. The system is based on high-temporal resolution (Dt=1min) measurements of precipitation in 10 different points within the city, which report variables such as intensity, number of raindrops, raindrop size, kinetic energy, fall velocity, etc. Each one of these stations, is comprised of an optical disdrometer to measure size and fall velocity of hydrometeors, a solar panel to guarantee an uninterrupted power supply, a wireless broadband access to internet, and a resource constrained device known as Raspberry Pi3 for the processing, storage and sharing of the sensor data over the world wide web. The self-made developed platform follows a component-based system paradigm allowing users to implement custom algorithms and models depending on application requirements. The system is in place since July 2016, and continuous measurements of rainfall in real-time are published over the internet through the webpage www.oh-iiunam.mx. Additionally, the developed platform for the data collection and management interacts with the social network known as Twitter to enable real-time warnings of precipitation events. Key contribution of this development is the design and implementation of a scalable, easy to use, interoperable platform that facilitates the development of real-time precipitation sensor networks and warnings. The system is easy to implement and could be used as a prototype for systems in other regions of the world.

  6. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    Science.gov (United States)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  7. Real-time nanofabrication with high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Vicary, J A; Miles, M J

    2009-01-01

    The ability to follow nanoscale processes in real-time has obvious benefits for the future of material science. In particular, the ability to evaluate the success of fabrication processes in situ would be an advantage for many in the semiconductor industry. We report on the application of a previously described high-speed atomic force microscope (AFM) for nanofabrication. The specific fabrication method presented here concerns the modification of a silicon surface by locally oxidizing the region in the vicinity of the AFM tip. Oxide features were fabricated during imaging, with relative tip-sample velocities of up to 10 cm s -1 , and with a data capture rate of 15 fps.

  8. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    Science.gov (United States)

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  9. Recommendations relating to safety-critical real-time software in nuclear power plants

    International Nuclear Information System (INIS)

    1992-01-01

    The Advisory Committee on Nuclear Safety (ACNS) has reviewed safety issues associated with the software for the digital computers in the safety shutdown systems for the Darlington NGS. From this review the ACNS has developed four recommendations for safety-critical real-time software in nuclear power plants. These recommendations cover: the completion of the present efforts to develop an overall standard and sub-tier standards for safety-critical real-time software; the preparation of schedules and lists of responsibilities for this development; the concentration of AECB efforts on ensuring the scrutability of safety-critical real-time software; and, the collection of data on reliability and causes of failure (error) of safety-critical real-time software systems and on the probability and causes of common-mode failures (errors). (9 refs.)

  10. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    Science.gov (United States)

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  11. Recent achievements in real-time computational seismology in Taiwan

    Science.gov (United States)

    Lee, S.; Liang, W.; Huang, B.

    2012-12-01

    Real-time computational seismology is currently possible to be achieved which needs highly connection between seismic database and high performance computing. We have developed a real-time moment tensor monitoring system (RMT) by using continuous BATS records and moment tensor inversion (CMT) technique. The real-time online earthquake simulation service is also ready to open for researchers and public earthquake science education (ROS). Combine RMT with ROS, the earthquake report based on computational seismology can provide within 5 minutes after an earthquake occurred (RMT obtains point source information ROS completes a 3D simulation real-time now. For more information, welcome to visit real-time computational seismology earthquake report webpage (RCS).

  12. Real time avalanche detection for high risk areas.

    Science.gov (United States)

    2014-12-01

    Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...

  13. Real-time disruption handling at ASDEX upgrade

    International Nuclear Information System (INIS)

    Zehetbauer, Th.; Pautasso, G.; Tichmann, C.; Egorov, S.; Lorenz, A.; Mertens, V.; Neu, G.; Raupp, G.; Treutterer, W.; Zasche, D.

    2001-01-01

    A neural network for prediction of disruptions has been developed at ASDEX Upgrade with the goal to mitigate or avoid these. The novel idea is to compute the remaining time-to-disruption to indicate the stability level of the discharge. The neural network has been specified, trained and then implemented within the real-time plasma control system. The current version of the system terminates the discharge with an impurity pellet when the computed time-to-disruption falls below a threshold of 80 ms. Routine operation shows that disruptions are recognized reliably. Vessel currents and forces are considerably reduced. The system will be enhanced to avoid disruptions with a soft landing initiated in time

  14. On the Physiology of Normal Swallowing as Revealed by Magnetic Resonance Imaging in Real Time

    Directory of Open Access Journals (Sweden)

    Arno Olthoff

    2014-01-01

    Full Text Available The aim of this study was to assess the physiology of normal swallowing using recent advances in real-time magnetic resonance imaging (MRI. Therefore ten young healthy subjects underwent real-time MRI and flexible endoscopic evaluations of swallowing (FEES with thickened pineapple juice as oral contrast bolus. MRI movies were recorded in sagittal, coronal, and axial orientations during successive swallows at about 25 frames per second. Intermeasurement variation was analyzed and comparisons between real-time MRI and FEES were performed. Twelve distinct swallowing events could be quantified by real-time MRI (start time, end time, and duration. These included five valve functions: oro-velar opening, velo-pharyngeal closure, glottal closure, epiglottic retroflexion, and esophageal opening; three bolus transports: oro-velar transit, pharyngeal delay, pharyngeal transit; and four additional events: laryngeal ascent, laryngeal descent, vallecular, and piriform sinus filling and pharyngeal constriction. Repetitive measurements confirmed the general reliability of the MRI method with only two significant differences for the start times of the velo-pharyngeal closure (t(8=-2.4, P≤0.046 and laryngeal ascent (t(8=-2.6, P≤0.031. The duration of the velo-pharyngeal closure was significantly longer in real-time MRI compared to FEES (t(8=-3.3, P≤0.011. Real-time MRI emerges as a simple, robust, and reliable tool for obtaining comprehensive functional and anatomical information about the swallowing process.

  15. Alpha: A real-time decentralized operating system for mission-oriented system integration and operation

    Science.gov (United States)

    Jensen, E. Douglas

    1988-01-01

    Alpha is a new kind of operating system that is unique in two highly significant ways. First, it is decentralized transparently providing reliable resource management across physically dispersed nodes, so that distributed applications programming can be done largely as though it were centralized. And second, it provides comprehensive, high technology support for real-time system integration and operation, an application area which consists predominately of aperiodic activities having critical time constraints such as deadlines. Alpha is extremely adaptable so that it can be easily optimized for a wide range of problem-specific functionality, performance, and cost. Alpha is the first systems effort of the Archons Project, and the prototype was created at Carnegie-Mellon University directly on modified Sun multiprocessor workstation hardware. It has been demonstrated with a real-time C(sup 2) application. Continuing research is leading to a series of enhanced follow-ons to Alpha; these are portable but initially hosted on Concurrent's MASSCOMP line of multiprocessor products.

  16. Real Time Conference 2016 Overview

    Science.gov (United States)

    Luchetta, Adriano

    2017-06-01

    This is a special issue of the IEEE Transactions on Nuclear Science containing papers from the invited, oral, and poster presentation of the 20th Real Time Conference (RT2016). The conference was held June 6-10, 2016, at Centro Congressi Padova “A. Luciani,” Padova, Italy, and was organized by Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA) and the Istituto Nazionale di Fisica Nucleare. The Real Time Conference is multidisciplinary and focuses on the latest developments in real-time techniques in high-energy physics, nuclear physics, astrophysics and astroparticle physics, nuclear fusion, medical physics, space instrumentation, nuclear power instrumentation, general radiation instrumentation, and real-time security and safety. Taking place every second year, it is sponsored by the Computer Application in Nuclear and Plasma Sciences technical committee of the IEEE Nuclear and Plasma Sciences Society. RT2016 attracted more than 240 registrants, with a large proportion of young researchers and engineers. It had an attendance of 67 students from many countries.

  17. Modeling Just-in-Time Communication On the Optimal Resource Utilization in Distributed Real-Time Multimedia Applications

    NARCIS (Netherlands)

    R. Yang (Ran); R.D. van der Mei (Rob); D. Roubos; F.J. Seinstra; H. Bal

    2012-01-01

    htmlabstractThe applications of multimedia content analysis (MMCA) operating in real-time environments must run under extremely strict time constraints. To meet these requirements, large-scale multimedia applications are typically executed on Grid systems consisting of large collections of

  18. Modeling Just-in-Time Communication On the Optimal Resource Utilization in Distributed Real-Time Multimedia Applications

    NARCIS (Netherlands)

    R. Yang (Ran); R.D. van der Mei (Rob); D. Roubos; F.J. Seinstra; H. Bal

    2011-01-01

    htmlabstractThe applications of multimedia content analysis (MMCA) operating in real-time environments must run under extremely strict time constraints. To meet these requirements, large-scale multimedia applications are typically executed on Grid systems consisting of large collections of

  19. Polynomial-time computability of the edge-reliability of graphs using Gilbert's formula

    Directory of Open Access Journals (Sweden)

    Marlowe Thomas J.

    1998-01-01

    Full Text Available Reliability is an important consideration in analyzing computer and other communication networks, but current techniques are extremely limited in the classes of graphs which can be analyzed efficiently. While Gilbert's formula establishes a theoretically elegant recursive relationship between the edge reliability of a graph and the reliability of its subgraphs, naive evaluation requires consideration of all sequences of deletions of individual vertices, and for many graphs has time complexity essentially Θ (N!. We discuss a general approach which significantly reduces complexity, encoding subgraph isomorphism in a finer partition by invariants, and recursing through the set of invariants. We illustrate this approach using threshhold graphs, and show that any computation of reliability using Gilbert's formula will be polynomial-time if and only if the number of invariants considered is polynomial; we then show families of graphs with polynomial-time, and non-polynomial reliability computation, and show that these encompass most previously known results. We then codify our approach to indicate how it can be used for other classes of graphs, and suggest several classes to which the technique can be applied.

  20. Signal Quality Outage Analysis for Ultra-Reliable Communications in Cellular Networks

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Alvarez, Beatriz Soret; Lauridsen, Mads

    2015-01-01

    Ultra-reliable communications over wireless will open the possibility for a wide range of novel use cases and applications. In cellular networks, achieving reliable communication is challenging due to many factors, particularly the fading of the desired signal and the interference. In this regard......, we investigate the potential of several techniques to combat these main threats. The analysis shows that traditional microscopic multiple-input multiple-output schemes with 2x2 or 4x4 antenna configurations are not enough to fulfil stringent reliability requirements. It is revealed how such antenna...... schemes must be complemented with macroscopic diversity as well as interference management techniques in order to ensure the necessary SINR outage performance. Based on the obtained performance results, it is discussed which of the feasible options fulfilling the ultra-reliable criteria are most promising...

  1. Dynamic quality of service model for improving performance of multimedia real-time transmission in industrial networks.

    Science.gov (United States)

    Gopalakrishnan, Ravichandran C; Karunakaran, Manivannan

    2014-01-01

    Nowadays, quality of service (QoS) is very popular in various research areas like distributed systems, multimedia real-time applications and networking. The requirements of these systems are to satisfy reliability, uptime, security constraints and throughput as well as application specific requirements. The real-time multimedia applications are commonly distributed over the network and meet various time constraints across networks without creating any intervention over control flows. In particular, video compressors make variable bit-rate streams that mismatch the constant-bit-rate channels typically provided by classical real-time protocols, severely reducing the efficiency of network utilization. Thus, it is necessary to enlarge the communication bandwidth to transfer the compressed multimedia streams using Flexible Time Triggered- Enhanced Switched Ethernet (FTT-ESE) protocol. FTT-ESE provides automation to calculate the compression level and change the bandwidth of the stream. This paper focuses on low-latency multimedia transmission over Ethernet with dynamic quality-of-service (QoS) management. This proposed framework deals with a dynamic QoS for multimedia transmission over Ethernet with FTT-ESE protocol. This paper also presents distinct QoS metrics based both on the image quality and network features. Some experiments with recorded and live video streams show the advantages of the proposed framework. To validate the solution we have designed and implemented a simulator based on the Matlab/Simulink, which is a tool to evaluate different network architecture using Simulink blocks.

  2. Kajian dan Implementasi Real TIME Operating System pada Single Board Computer Berbasis Arm

    OpenAIRE

    A, Wiedjaja; M, Handi; L, Jonathan; Christian, Benyamin; Kristofel, Luis

    2014-01-01

    Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system) which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC) ARM-based, namely Pandaboard ES with ...

  3. Software reliability growth models with normal failure time distributions

    International Nuclear Information System (INIS)

    Okamura, Hiroyuki; Dohi, Tadashi; Osaki, Shunji

    2013-01-01

    This paper proposes software reliability growth models (SRGM) where the software failure time follows a normal distribution. The proposed model is mathematically tractable and has sufficient ability of fitting to the software failure data. In particular, we consider the parameter estimation algorithm for the SRGM with normal distribution. The developed algorithm is based on an EM (expectation-maximization) algorithm and is quite simple for implementation as software application. Numerical experiment is devoted to investigating the fitting ability of the SRGMs with normal distribution through 16 types of failure time data collected in real software projects

  4. Wide-area, real-time monitoring and visualization system

    Science.gov (United States)

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  5. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2008-06-01

    Full Text Available Abstract Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP, which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP and a complementary quenching probe (QP lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  6. RealCalc : a real time Java calculation tool. Application to HVSR estimation

    Science.gov (United States)

    Hloupis, G.; Vallianatos, F.

    2009-04-01

    Java computation platform is not a newcomer in the seismology field. It is mainly used for applications regarding collecting, requesting, spreading and visualizing seismological data because it is productive, safe and has low maintenance costs. Although it has very attractive characteristics for the engineers, Java didn't used frequently in real time applications where prediction and reliability required as a reaction to real world events. The main reasons for this are the absence of priority support (such as priority ceiling or priority inversion) and the use of an automated memory management (called garbage collector). To overcome these problems a number of extensions have been proposed with the Real Time Specification for Java (RTSJ) being the most promising and used one. In the current study we used the RTSJ to build an application that receives data continuously and provides estimations in real time. The application consists of four main modules: incoming data, preprocessing, estimation and publication. As an application example we present real time HVSR estimation. Microtremors recordings are collected continuously from the incoming data module. The preprocessing module consists of a window selector tool based on wavelets which is applied on the incoming data stream in order derive the most stationary parts. The estimation module provides all the necessary calculations according to user specifications. Finally the publication module except the results presentation it also calculates attributes and relevant statistics for each site (temporal variations, HVSR stability). Acknowledgements This work is partially supported by the Greek General Secretariat of Research and Technology in the frame of Crete Regional Project 2000- 2006 (M1.2): "TALOS: An integrated system of seismic hazard monitoring and management in the front of the Hellenic Arc", CRETE PEP7 (KP_7).

  7. 78 FR 10169 - Federal Advisory Committee Act; Communications Security, Reliability, and Interoperability Council

    Science.gov (United States)

    2013-02-13

    ... Location Accuracy, Network Security Best Practices, DNSSEC Implementation Practices for ISPs, Secure BGP... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Communications Security... persons that the Federal Communications Commission's (FCC) Communications Security, Reliability, and...

  8. Design of a Mobile Agent-Based Adaptive Communication Middleware for Federations of Critical Infrastructure Simulations

    Science.gov (United States)

    Görbil, Gökçe; Gelenbe, Erol

    The simulation of critical infrastructures (CI) can involve the use of diverse domain specific simulators that run on geographically distant sites. These diverse simulators must then be coordinated to run concurrently in order to evaluate the performance of critical infrastructures which influence each other, especially in emergency or resource-critical situations. We therefore describe the design of an adaptive communication middleware that provides reliable and real-time one-to-one and group communications for federations of CI simulators over a wide-area network (WAN). The proposed middleware is composed of mobile agent-based peer-to-peer (P2P) overlays, called virtual networks (VNets), to enable resilient, adaptive and real-time communications over unreliable and dynamic physical networks (PNets). The autonomous software agents comprising the communication middleware monitor their performance and the underlying PNet, and dynamically adapt the P2P overlay and migrate over the PNet in order to optimize communications according to the requirements of the federation and the current conditions of the PNet. Reliable communications is provided via redundancy within the communication middleware and intelligent migration of agents over the PNet. The proposed middleware integrates security methods in order to protect the communication infrastructure against attacks and provide privacy and anonymity to the participants of the federation. Experiments with an initial version of the communication middleware over a real-life networking testbed show that promising improvements can be obtained for unicast and group communications via the agent migration capability of our middleware.

  9. Polynomial-time computability of the edge-reliability of graphs using Gilbert's formula

    Directory of Open Access Journals (Sweden)

    Thomas J. Marlowe

    1998-01-01

    Full Text Available Reliability is an important consideration in analyzing computer and other communication networks, but current techniques are extremely limited in the classes of graphs which can be analyzed efficiently. While Gilbert's formula establishes a theoretically elegant recursive relationship between the edge reliability of a graph and the reliability of its subgraphs, naive evaluation requires consideration of all sequences of deletions of individual vertices, and for many graphs has time complexity essentially Θ (N!. We discuss a general approach which significantly reduces complexity, encoding subgraph isomorphism in a finer partition by invariants, and recursing through the set of invariants.

  10. Study on Communication Methods for Electric Power High-voltage Equipment Monitoring System

    Directory of Open Access Journals (Sweden)

    Jia Yu Chen

    2018-02-01

    Full Text Available Real-time monitoring of high-voltage equipment in substations is beneficial for early detection of faults. The use of wireless sensor networks to build monitoring system is an effective way, but the data collection is a difficult task. The author introduces a real-time monitoring system based on ZIGBEE and mobile communication technology. The system includes multiple monitoring points and terminal platforms. Each monitoring point consists of a number of sensor nodes to form a ZIGBEE network, detecting relevant parameters, coordinator node data collected one by one, known as linear transmission, and finally to the monitoring platform through the mobile communication network. This paper presents a fusion algorithm for monitoring cell data acquisition to reduce the amount of data uploaded to the base station. In addition, multi-hop routing algorithm based on opportunistic routing is proposed to balance network energy and improve network transmission rate and efficiency.

  11. Telemetric real-time sensor for the detection of acute upper gastrointestinal bleeding.

    Science.gov (United States)

    Schostek, Sebastian; Zimmermann, Melanie; Keller, Jan; Fode, Mario; Melbert, Michael; Schurr, Marc O; Gottwald, Thomas; Prosst, Ruediger L

    2016-04-15

    Acute upper gastrointestinal bleedings from ulcers or esophago-gastric varices are life threatening medical conditions which require immediate endoscopic therapy. Despite successful endoscopic hemostasis, there is a significant risk of rebleeding often requiring close surveillance of these patients in the intensive care unit (ICU). Any time delay to recognize bleeding may lead to a high blood loss and increases the risk of death. A novel telemetric real-time bleeding sensor can help indicate blood in the stomach: the sensor is swallowed to detect active bleeding or is anchored endoscopically on the gastrointestinal wall close to the potential bleeding source. By telemetric communication with an extra-corporeal receiver, information about the bleeding status is displayed. In this study the novel sensor, which measures characteristic optical properties of blood, has been evaluated in an ex-vivo setting to assess its clinical applicability and usability. Human venous blood of different concentrations, various fluids, and liquid food were tested. The LED-based sensor was able to reliably distinguish between concentrated blood and other liquids, especially red-colored fluids. In addition, the spectrometric quality of the small sensor (size: 6.5mm in diameter, 25.5mm in length) was comparable to a much larger and technically more complex laboratory spectrophotometer. The experimental data confirm the capability of a miniaturized sensor to identify concentrated blood, which could help in the very near future the detection of upper gastrointestinal bleeding and to survey high-risk patients for rebleeding. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    Science.gov (United States)

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  13. Improving the Transmission System Reliability for the 154kV Radial Network Operation

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jin Boo; Yoo, Myeong Ho; Yoon, Young Beum; Kim, Tae Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, Gi Won; Chung, Beom Jin; Jung, Jung Won; Park, Kyu Hyun; Lee, Myung Hee; Kim, Hyun Jong; Kim, Chae Hee [KEYIN CO., (Korea, Republic of)

    1996-12-31

    Analyzing that 154kV radial network current ed operated, we developed Automatic Power Reconfiguration System(APRS) which restore blackout area. It consists of special data acquisition system(DAU) and central monitoring system for reason of protecting currently operating power system. In addition, it communicates using optical communication network for high speed data transmission and accuracy. An Accuracy of operation and stability of the developed system is tested using Real Time Digital Simulator in 3-bus equivalent model system. In An Outage case, our developed system can restore a blackout area in three second. An ability of the restoration of a blackout was verified by simulations. For the field test, the developed system was set up at SINCHON S/S, SESOMUN S/S, SINDANG S/S and MAJANG S/S governed by Seoul Power Transmission Center. If the system reliability is proved for a one year test in real power system, application of the system will be extended to the other substations.

  14. Power System Real-Time Monitoring by Using PMU-Based Robust State Estimation Method

    DEFF Research Database (Denmark)

    Zhao, Junbo; Zhang, Gexiang; Das, Kaushik

    2016-01-01

    Accurate real-time states provided by the state estimator are critical for power system reliable operation and control. This paper proposes a novel phasor measurement unit (PMU)-based robust state estimation method (PRSEM) to real-time monitor a power system under different operation conditions...... the system real-time states with good robustness and can address several kinds of BD.......-based bad data (BD) detection method, which can handle the smearing effect and critical measurement errors, is presented. We evaluate PRSEM by using IEEE benchmark test systems and a realistic utility system. The numerical results indicate that, in short computation time, PRSEM can effectively track...

  15. Improved Image Encryption for Real-Time Application over Wireless Communication Networks using Hybrid Cryptography Technique

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2016-12-01

    Full Text Available Advances in communication networks have enabled organization to send confidential data such as digital images over wireless networks. However, the broadcast nature of wireless communication channel has made it vulnerable to attack from eavesdroppers. We have developed a hybrid cryptography technique, and we present its application to digital images as a means of improving the security of digital image for transmission over wireless communication networks. The hybrid technique uses a combination of a symmetric (Data Encryption Standard and asymmetric (Rivest Shamir Adleman cryptographic algorithms to secure data to be transmitted between different nodes of a wireless network. Three different image samples of type jpeg, png and jpg were tested using this technique. The results obtained showed that the hybrid system encrypt the images with minimal simulation time, and high throughput. More importantly, there is no relation or information between the original images and their encrypted form, according to Shannon’s definition of perfect security, thereby making the system much more secure.

  16. Main real time software for high-energy physics experiments

    International Nuclear Information System (INIS)

    Tikhonov, A.N.

    1985-01-01

    The general problems of organization of software complexes, as well as development of typical algorithms and packages of applied programs for real time systems used in experiments with charged particle accelerators are discussed. It is noted that numerous qualitatively different real time tasks are solved by parallel programming of the processes of data acquisition, equipment control, data exchange with remote terminals, data express processing and accumulation, operator's instruction interpretation, generation and buffering of resulting files for data output and information processing which is realized on the basis of multicomputer system utilization. Further development of software for experiments is associated with improving the algorithms for automatic recognition and analysis of events with complex topology and standardization of applied program packages

  17. Harmonizing electricity markets with physics : real time performance monitoring using grid-3PTM

    International Nuclear Information System (INIS)

    Budhraja, V.S.

    2003-01-01

    The Electric Power Group, LLC provides management and strategic consulting services for the electric power industry, with special emphasis on industry restructuring, competitive electricity markets, grid operations and reliability, power technologies, venture investments and start-ups. The Consortium for Electric Reliability Technology Solutions involves national laboratories, universities, and industry partners in researching, developing, and commercializing electric reliability technology solutions to protect and enhance the reliability of the American electric power system under the emerging competitive electricity market structure. Physics differentiate electric markets from other markets: there is real-time balancing, no storage, interconnected network, and power flows governed by physics. Some issues affecting both grid reliability and market issues are difficult to separate, such as security and congestion management, voltage management, reserves, frequency volatility, and others. The author examined the following investment challenges facing the electricity market: grid solutions, market solutions, and technology solutions. The real time performance monitoring and prediction platform, grid-3P was described and applications discussed, such as ACE-frequency monitoring, performance monitoring for automatic generation control (AGC) and frequency response, voltage/VAR monitoring, stability monitoring using phasor technology, and market monitoring. figs

  18. Implementation and design of a communication system of an agent-based automated substation

    Institute of Scientific and Technical Information of China (English)

    LIN Yong-jun; LIU Yu-tao; ZHANG Dan-hui

    2006-01-01

    A substation system requires that communication be transmitted reliably,accurately and in real-time.Aimed at solving problems,e.g.,flow confliction and sensitive data transmission,a model of the communication system of an agent-based automated substation is introduced.The running principle is discussed in detail and each type of agent is discussed further.At the end,the realization of the agent system applied to the substation is presented.The outcome shows that the communication system of an agent-based automated substation improves the accuracy and reliability of the data transfer and presents it in realtime.

  19. Real-time information and processing system for radiation protection

    International Nuclear Information System (INIS)

    Oprea, I.; Oprea, M.; Stoica, M.; Badea, E.; Guta, V.

    1999-01-01

    The real-time information and processing system has as main task to record, collect, process and transmit the radiation level and weather data, being proposed for radiation protection, environmental monitoring around nuclear facilities and for civil defence. Such a system can offer information in order to provide mapping, data base, modelling and communication and to assess the consequences of nuclear accidents. The system incorporates a number of stationary or mobile radiation monitoring equipment, weather parameter measuring station, a GIS-based information processing center and the communication network, all running on a real-time operating system. It provides the automatic data collection on-line and off-line, remote diagnostic, advanced presentation techniques, including a graphically oriented executive support, which has the ability to respond to an emergency by geographical representation of the hazard zones on the map.The system can be integrated into national or international environmental monitoring systems, being based on local intelligent measuring and transmission units, simultaneous processing and data presentation using a real-time operating system for PC and geographical information system (GIS). Such an integrated system is composed of independent applications operating under the same computer, which is capable to improve the protection of the population and decision makers efforts, updating the remote GIS data base. All information can be managed directly from the map by multilevel data retrieving and presentation by using on-line dynamic evolution of the events, environment information, evacuation optimization, image and voice processing

  20. Real-time numerical simulation with high efficiency for an experimental reactor system

    International Nuclear Information System (INIS)

    Ding Shuling; Li Fu; Li Sifeng; Chu Xinyuan

    2006-01-01

    The paper presents a systematic and efficient method for numerical real-time simulation of an experimental reactor. The reactor models were built based on the physical characteristics of the experimental reactor, and several real-time simulation approaches were discussed and compared in the paper. How to implement the real-time reactor simulation system in Windows platform for the sake of hardware-in-loop experiment for the reactor power control system was discussed. (authors)

  1. Real-time Image Processing for Microscopy-based Label-free Imaging Flow Cytometry in a Microfluidic Chip.

    Science.gov (United States)

    Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun

    2017-09-14

    Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.

  2. Reliability of fitness tests using methods and time periods common in sport and occupational management.

    Science.gov (United States)

    Burnstein, Bryan D; Steele, Russell J; Shrier, Ian

    2011-01-01

    Fitness testing is used frequently in many areas of physical activity, but the reliability of these measurements under real-world, practical conditions is unknown. To evaluate the reliability of specific fitness tests using the methods and time periods used in the context of real-world sport and occupational management. Cohort study. Eighteen different Cirque du Soleil shows. Cirque du Soleil physical performers who completed 4 consecutive tests (6-month intervals) and were free of injury or illness at each session (n = 238 of 701 physical performers). Performers completed 6 fitness tests on each assessment date: dynamic balance, Harvard step test, handgrip, vertical jump, pull-ups, and 60-second jump test. We calculated the intraclass coefficient (ICC) and limits of agreement between baseline and each time point and the ICC over all 4 time points combined. Reliability was acceptable (ICC > 0.6) over an 18-month time period for all pairwise comparisons and all time points together for the handgrip, vertical jump, and pull-up assessments. The Harvard step test and 60-second jump test had poor reliability (ICC < 0.6) between baseline and other time points. When we excluded the baseline data and calculated the ICC for 6-month, 12-month, and 18-month time points, both the Harvard step test and 60-second jump test demonstrated acceptable reliability. Dynamic balance was unreliable in all contexts. Limit-of-agreement analysis demonstrated considerable intraindividual variability for some tests and a learning effect by administrators on others. Five of the 6 tests in this battery had acceptable reliability over an 18-month time frame, but the values for certain individuals may vary considerably from time to time for some tests. Specific tests may require a learning period for administrators.

  3. Real-time three-dimensional surface measurement by color encoded light projection

    International Nuclear Information System (INIS)

    Chen, S. Y.; Li, Y. F.; Guan, Q.; Xiao, G.

    2006-01-01

    Existing noncontact methods for surface measurement suffer from the disadvantages of poor reliability, low scanning speed, or high cost. The authors present a method for real-time three-dimensional data acquisition by a color-coded vision sensor composed of common components. The authors use a digital projector controlled by computer to generate desired color light patterns. The unique indexing of the light codes is a key problem and is solved in this study so that surface perception can be performed with only local pattern analysis of the neighbor color codes in a single image. Experimental examples and performance analysis are provided

  4. Real-time power plant monitoring and verification and validation issues

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1993-03-01

    By means of the advances in the computer technology, the implementation of a real-time power plant monitoring and dynamic signal analysis system is described. As hardware and software, the system has several essential components to perform the task. Among these, mention may be made of a remote-controlled data acquisition system, a fast data processing system and a dynamic signal analysis system. For a complex system like an NPP, the system verification and validation is an important issue as the plant operation involves many engineering disciplines and also the 'soft sciences'. Additionally, the real-time requirements impose substantial time limitation for the implementation of tasks. The system V and V is accomplished partly by means of V and V of the system components which are monitored by the help of sensory signals. Therefore, an essential part of the V and V task involves the real-time analyses of the data provided by these signals. In this respect the NPP real-time monitoring system described possesses the required design features to carry out this task which provides enhanced reliability and availability in plant operation. (orig./HP)

  5. 76 FR 72922 - Federal Advisory Committee Act; Communications Security, Reliability, and Interoperability Council

    Science.gov (United States)

    2011-11-28

    ... alerting systems, 9-1-1 location accuracy, and network security. The FCC will attempt to accommodate as... FEDERAL COMMUNICATIONS COMMISSION Federal Advisory Committee Act; Communications Security... persons that the Federal Communications Commission's (FCC) third Communications Security, Reliability, and...

  6. Real-time networked control of an industrial robot manipulator via discrete-time second-order sliding modes

    Science.gov (United States)

    Massimiliano Capisani, Luca; Facchinetti, Tullio; Ferrara, Antonella

    2010-08-01

    This article presents the networked control of a robotic anthropomorphic manipulator based on a second-order sliding mode technique, where the control objective is to track a desired trajectory for the manipulator. The adopted control scheme allows an easy and effective distribution of the control algorithm over two networked machines. While the predictability of real-time tasks execution is achieved by the Soft Hard Real-Time Kernel (S.Ha.R.K.) real-time operating system, the communication is established via a standard Ethernet network. The performances of the control system are evaluated under different experimental system configurations using, to perform the experiments, a COMAU SMART3-S2 industrial robot, and the results are analysed to put into evidence the robustness of the proposed approach against possible network delays, packet losses and unmodelled effects.

  7. A Highly Sensitive Chemiluminometric Assay for Real-Time Detection of Biological Hydrogen Peroxide Formation.

    Science.gov (United States)

    Zhu, Hong; Jia, Zhenquan; Trush, Michael A; Li, Y Robert

    2016-05-01

    Hydrogen peroxide (H 2 O 2 ) is a major reactive oxygen species (ROS) produced by various cellular sources, especially mitochondria. At high levels, H 2 O 2 causes oxidative stress, leading to cell injury, whereas at low concentrations, this ROS acts as an important second messenger to participate in cellular redox signaling. Detection and measurement of the levels or rates of production of cellular H 2 O 2 are instrumental in studying the biological effects of this major ROS. While a number of assays have been developed over the past decades for detecting and/or quantifying biological H 2 O 2 formation, none has been shown to be perfect. Perhaps there is no perfect assay for sensitively and accurately quantifying H 2 O 2 as well as other ROS in cells, wherein numerous potential reactants are present to interfere with the reliable measurement of the specific ROS. In this context, each assay has its own advantages and intrinsic limitations. This article describes a highly sensitive assay for real-time detection of H 2 O 2 formation in cultured cells and isolated mitochondria. This assay is based on the luminol/horseradish peroxidase-dependent chemiluminescence that is inhibitable by catalase. The article discusses the usefulness and shortcomings of this chemiluminometric assay in detecting biological H 2 O 2 formation induced by beta-lapachone redox cycling with both cells and isolated mitochondria.

  8. IoT for Real-Time Measurement of High-Throughput Liquid Dispensing in Laboratory Environments.

    Science.gov (United States)

    Shumate, Justin; Baillargeon, Pierre; Spicer, Timothy P; Scampavia, Louis

    2018-04-01

    Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.

  9. Real-time flood monitoring and warning system

    Directory of Open Access Journals (Sweden)

    Jirapon Sunkpho

    2011-04-01

    Full Text Available Flooding is one of the major disasters occurring in various parts of the world. The system for real-time monitoring ofwater conditions: water level; flow; and precipitation level, was developed to be employed in monitoring flood in Nakhon SiThammarat, a southern province in Thailand. The two main objectives of the developed system is to serve 1 as informationchannel for flooding between the involved authorities and experts to enhance their responsibilities and collaboration and2 as a web based information source for the public, responding to their need for information on water condition and flooding.The developed system is composed of three major components: sensor network, processing/transmission unit, and database/application server. These real-time data of water condition can be monitored remotely by utilizing wireless sensors networkthat utilizes the mobile General Packet Radio Service (GPRS communication in order to transmit measured data to theapplication server. We implemented a so-called VirtualCOM, a middleware that enables application server to communicatewith the remote sensors connected to a GPRS data unit (GDU. With VirtualCOM, a GDU behaves as if it is a cable directlyconnected the remote sensors to the application server. The application server is a web-based system implemented usingPHP and JAVA as the web application and MySQL as its relational database. Users can view real-time water conditionas well as the forecasting of the water condition directly from the web via web browser or via WAP. The developed systemhas demonstrated the applicability of today’s sensors in wirelessly monitor real-time water conditions.

  10. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  11. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    Science.gov (United States)

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  12. Real-Time Performance of Hybrid Mobile Robot Control Utilizing USB Protocol

    Directory of Open Access Journals (Sweden)

    Jacek Augustyn

    2015-02-01

    Full Text Available This article discusses the problem of usability of the USB 2.0 protocol in the area of real-time control of a mobile robot. Optimization methods of data transfer handling were proposed. The impact of the optimization results on the entire system's performance was examined in practice. As a test-bed, a hybrid system composed of two devices communicating by direct USB connection was implemented. The first of the mentioned devices was a 32-bit SoC micro-system serving as a direct control unit, and the second one was an off-the-shelf PDA providing supervisory control and logging. Due to this design, the system meets regimes of the real-time constraints and maintains continuity of a data stream at a large bandwidth. The real-time performances of subsystems and the entire system were experimentally examined depending on various operating conditions. Thanks to the performed experiments, the dependency of real-time limits on operational parameters has been determined.

  13. Detection and typing of highly pathogenic porcine reproductive and respiratory syndrome virus by multiplex real-time rt-PCR.

    Directory of Open Access Journals (Sweden)

    Kerstin Wernike

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS causes economic losses in the pig industry worldwide, and PRRS viruses (PRRSV are classified into the two distinct genotypes "North American (NA, type 2" and "European (EU, type 1". In 2006, a highly pathogenic NA strain of PRRSV (HP-PRRSV, characterized by high fever as well as high morbidity and mortality, emerged in swine farms in China. Therefore, a real-time reverse transcription polymerase chain reaction (RT-qPCR assay specific for HP-PRRSV was developed and combined with type 1- and type 2-specific RT-qPCR systems. Furthermore, an internal control, based on a heterologous RNA, was successfully introduced. This final multiplex PRRSV RT-qPCR, detecting and typing PRRSV, had an analytical sensitivity of less than 200 copies per µl for the type 1-assay and 20 copies per µl for the type 2- and HP assays and a high diagnostic sensitivity. A panel of reference strains and field isolates was reliably detected and samples from an animal trial with a Chinese HP-PRRS strain were used for test validation. The new multiplex PRRSV RT-qPCR system allows for the first time the highly sensitive detection and rapid differentiation of PRRSV of both genotypes as well as the direct detection of HP-PRRSV.

  14. Deception Detection: The Relationship of Levels of Trust and Perspective Taking in Real-Time Online and Offline Communication Environments.

    Science.gov (United States)

    Friend, Catherine; Fox Hamilton, Nicola

    2016-09-01

    Where humans have been found to detect lies or deception only at the rate of chance in offline face-to-face communication (F2F), computer-mediated communication (CMC) online can elicit higher rates of trust and sharing of personal information than F2F. How do levels of trust and empathetic personality traits like perspective taking (PT) relate to deception detection in real-time CMC compared to F2F? A between groups correlational design (N = 40) demonstrated that, through a paired deceptive conversation task with confederates, levels of participant trust could predict accurate detection online but not offline. Second, participant PT abilities could not predict accurate detection in either conversation medium. Finally, this study found that conversation medium also had no effect on deception detection. This study finds support for the effects of the Truth Bias and online disinhibition in deception, and further implications in law enforcement are discussed.

  15. A study of internet of things real-time data updating based on WebSocket

    Science.gov (United States)

    Wei, Shoulin; Yu, Konglin; Dai, Wei; Liang, Bo; Zhang, Xiaoli

    2015-12-01

    The Internet of Things (IoT) is gradually entering the industrial stage. Web applications in IoT such as monitoring, instant messaging, real-time quote system changes need to be transmitted in real-time mode to client without client constantly refreshing and sending the request. These applications often need to be as fast as possible and provide nearly real-time components. Real-time data updating is becoming the core part of application layer visualization technology in IoT. With support of data push in server-side, running state of "Things" in IoT could be displayed in real-time mode. This paper discusses several current real-time data updating method and explores the advantages and disadvantages of each method. We explore the use of WebSocket in a new approach for real-time data updating in IoT, since WebSocket provides low delay, low network throughput solutions for full-duplex communication.

  16. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    OpenAIRE

    Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P.

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 x 80 m with a section thickness of only 600 m were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the i...

  17. Merged Real Time GNSS Solutions for the READI System

    Science.gov (United States)

    Santillan, V. M.; Geng, J.

    2014-12-01

    Real-time measurements from increasingly dense Global Navigational Satellite Systems (GNSS) networks located throughout the western US offer a substantial, albeit largely untapped, contribution towards the mitigation of seismic and other natural hazards. Analyzed continuously in real-time, currently over 600 instruments blanket the San Andreas and Cascadia fault systems of the North American plate boundary and can provide on-the-fly characterization of transient ground displacements highly complementary to traditional seismic strong-motion monitoring. However, the utility of GNSS systems depends on their resolution, and merged solutions of two or more independent estimation strategies have been shown to offer lower scatter and higher resolution. Towards this end, independent real time GNSS solutions produced by Scripps Inst. of Oceanography and Central Washington University (PANGA) are now being formally combined in pursuit of NASA's Real-Time Earthquake Analysis for Disaster Mitigation (READI) positioning goals. CWU produces precise point positioning (PPP) solutions while SIO produces ambiguity resolved PPP solutions (PPP-AR). The PPP-AR solutions have a ~5 mm RMS scatter in the horizontal and ~10mm in the vertical, however PPP-AR solutions can take tens of minutes to re-converge in case of data gaps. The PPP solutions produced by CWU use pre-cleaned data in which biases are estimated as non-integer ambiguities prior to formal positioning with GIPSY 6.2 using a real time stream editor developed at CWU. These solutions show ~20mm RMS scatter in the horizontal and ~50mm RMS scatter in the vertical but re-converge within 2 min. or less following cycle-slips or data outages. We have implemented the formal combination of the CWU and SCRIPPS ENU displacements using the independent solutions as input measurements to a simple 3-element state Kalman filter plus white noise. We are now merging solutions from 90 stations, including 30 in Cascadia, 39 in the Bay Area, and 21

  18. Dependable Real-Time Systems

    Science.gov (United States)

    1991-09-30

    0196 or 413 545-0720 PI E-mail Address: krithi@nirvan.cs.umass.edu, stankovic(ocs.umass.edu Grant or Contract Title: Dependable Real - Time Systems Grant...Dependable Real - Time Systems " Grant or Contract Number: N00014-85-k-0398 L " Reporting Period: 1 Oct 87 - 30 Sep 91 , 2. Summary of Accomplishments ’ 2.1 Our...in developing a sound approach to scheduling tasks in complex real - time systems , (2) developed a real-time operating system kernel, a preliminary

  19. Real-time monitoring and operational control of drinking-water systems

    CERN Document Server

    Ocampo-Martínez, Carlos; Pérez, Ramon; Cembrano, Gabriela; Quevedo, Joseba; Escobet, Teresa

    2017-01-01

    This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;...

  20. MINIX4RT: real-time interprocess communications facilities

    OpenAIRE

    Pessolani, Pablo Andrés

    2006-01-01

    MINIX4RT es una extensión del conocido Sistema Operativo MINIX que incorpora servicios de Tiempo Real Estricto en un nuevo microkernel pero manteniendo compatibilidad con las versiones anteriores del MINIX estándar. La Comunicación entre Procesos es un mecanismo que permite hacer extensible a un Sistema Operativo, pero debe estar libre de Inversión de Prioridades para ser utilizado en aplicaciones de Tiempo Real. Como las primitivas de MINIX no disponen de esta funcionalidad, se incorporar...