A case study for sustainable development action using financial gradients
International Nuclear Information System (INIS)
Bose, Arnab; Ramji, Aditya; Singh, Jarnail; Dholakia, Dhairya
2012-01-01
Energy access is critical for sustainable development and therefore financing energy access is a necessity. The key is whether to focus on grants or public finance for sustainable development projects or move to a more diffused financing mechanism, involving investment grade financing sources like debt and equity. In other words, financing sustainable development action via grants is becoming a constraint. To address this constraint, it is important to consider the relationship between the nature and sources of financial flows. The concept of ‘financial gradients’ emerged while analysing the financial and business strategy developed for Lighting a Billion Lives (LaBL) campaign. This paper espouses the idea of ‘financial gradients’ which is a potential financial mechanism for sustainable development action. Financial gradients, can contribute in three different ways—first, as an approach to analyse financial flows in projects; second, as a tool to generate a single, long term and stable inflow of finance; third, as a financial mechanism to help in creating long term strategies to sustain projects. This paper will concentrate on financial gradients as a potential approach to analyse financial flows in a sustainable development programme. - Highlights: ► Financial stability is a key challenge for sustainable development programmes. ► Development action via public funds is limited, need for investment grade finance. ► Need to understand financial flows with relation to nature and sources of finance. ► Financial gradients is an innovative tool for ensuring health of programmes.
Case study of the gradient features of in situ concrete
Directory of Open Access Journals (Sweden)
Pengkun Hou
2014-01-01
Full Text Available The recognition of gradient features of the properties of in situ concrete is important for the interpretation/prediction of service life. In this work, the gradient features: water absorption, porosity, mineralogy, morphology and micromechanical properties were studied on two in situ road concretes (15 and 5 years old, respectively by weighing, MIP, XRD, IR, SEM/EDS and micro-indentation techniques. Results showed that a coarsening trend of the pores of the concrete leads to a gradual increase of liquid transport property from inside to outside. Although the carbonation of the exposed surface results in a compact microstructure of the paste, its combined action with calcium-leaching leads to a comparable porosity of different concrete layers. Moreover, the combining factors result in three morphological features, i.e. a porous and granular exposed-layer, a fibrous and porous subexposed-layer and a compact inner-layer. Micro-indentation test results showed that a hard layer that moves inward with aging exists due to the alterations of the mineralogy, the pore and the gel structure.
Estimation of geothermal gradients from single temperature log-field cases
International Nuclear Information System (INIS)
Kutasov, I M; Eppelbaum, L V
2009-01-01
A geothermal gradient is one of the most frequently used parameters in logging geophysics. However, the drilling process greatly disturbs the temperature of the formations around the wellbore. For this reason, in order to determine with the required accuracy the formation temperatures and geothermal gradients, a certain length of shut-in time is required. It was shown earlier (Kutasov 1968 Freiberger Forshungshefte C 238 55–61, 1987 Geothermics 16 467–72) that at least two transient temperature surveys are needed to determine the geothermal gradient with adequate accuracy. However, in many cases only one temperature log is conducted in a shut-in borehole. For these cases, we propose an approximate method for the estimation of the geothermal gradient. The utilization of this method is demonstrated on four field examples
Energy Technology Data Exchange (ETDEWEB)
Elhaddad, SH; Moustafa, H; Ziada, G; Seleem, Z; Elsabban, KH; Mahmoud, F [Nuclear medicine department and pediatric cardiology department Faculty of medicine, Cairo university, Cairo, (Egypt)
1995-10-01
One hundred and fifty patients with isolated VSD were evaluated by radionuclide MUGA study and Echo-Doppler. Difference between phase angle of the right and left ventricles as detected by MUGA had been divided into main four groups according to pressure gradient between the two ventricles : group I (with pressure gradient {<=}30 mmHg and phase difference 80.10 degree{+-}34.1), group III (with pressure gradient > 70 mmHg and phase difference -0.5 degree {+-} 8.4). It has been found that there was a significant difference between the 4 groups as regards right - to - left ventricular phase difference (P<0.0001). There was significant delay in emptying of right ventricle in groups with pressure gradient < 50 mmHg. Regression analysis revealed inverse correlation between right -to- left ventricular phase difference with changes in pressure gradient (r= 0.81). Similarly, significant correlation had been found between right -to-left ventricular phase difference in relation Qp/Qs (r=0.85); conclusion: interventricular phase difference can be used to evaluate interventricular pressure gradient in cases of isolated VSD. 4 figs., 2 tabs.
A pratical case of a pipeline deformation by transverse and longitudinal thermal gradient
International Nuclear Information System (INIS)
Franca Filho, J.L. de; Souza, H.S.; Ribeiro, S.V.G.
1982-01-01
A pratical case of pipeline deformation due to a thermal gradient that exist in the cross section and along its length is presented. From an approximation of the temperature profile obtained by measurements made in the field and taking into account the boundary conditions of the structure, its displacements are calculated for comparison with the actual values observed. The analytical calculation of the displacements fields and stress fields are executed, using the concept of thermal momentum in the section. (EG) [pt
Yu, Long-Sheng; Fu, Yi-Fu; Yu, Huai-Yi; Li, Zhi-Qin
2011-01-01
In order to understand the landscape pattern gradient dynamics and desakota features in rapid urbanization area, this paper took the rapidly urbanizing Panyu District of Guangzhou City as a case, and analyzed its land use and land cover data, based on four Landsat TM images from 1990 to 2008. With the combination of gradient analysis and landscape pattern analysis, and by using the landscape indices in both class and landscape scales, the spatial dynamics and desakota feature of this rapidly urbanizing district were quantified. In the study district, there was a significant change in the landscape pattern, and a typical desakota feature presented along buffer gradient zones. Urban landscape increased and expanded annually, accompanied with serious fragmentation of agricultural landscape. The indices patch density, contagion, and landscape diversity, etc., changed regularly in the urbanization gradient, and the peak of landscape indices appeared in the gradient zone of 4-6 km away from the urban center. The landscape patterns at time series also reflected the differences among the dynamics in different gradient zones. The landscape pattern in desakota region was characterized by complex patch shape, high landscape diversity and fragmentation, and remarkable landscape dynamics. The peaks of landscape indices spread from the urban center to border areas, and desakota region was expanding gradually. The general trend of spatiotemporal dynamics in desakota region and its driving forces were discussed, which could be benefit to the regional land use policy-making and sustainable development planning.
Li, Huayun; Jia, Huibin; Yu, Dongchuan
2018-03-01
Using behavioral measures and ERP technique, researchers discovered at least two factors could influence the final perception of depth in Panum's limiting case, which are the vertical disparity gradient and the degree of cue conflict between two- and three-dimensional shapes. Although certain event-related potential components have been proved to be sensitive to the different levels of these two factors, some methodological limitations existed in this technique. In this study, we proposed that the omega complexity of EEG signal may serve as an important supplement of the traditional event-related potential technique. We found that the trials with lower vertical gradient disparity have lower omega complexity (i.e., higher global functional connectivity) of the occipital region, especially that of the right-occipital hemisphere. Moreover, for occipital omega complexity, the trials with low-cue conflict have significantly larger omega complexity than those with medium- and high-cue conflict. It is also found that the electrodes located in the middle line of the occipital region (i.e., POz and Oz) are more crucial to the impact of different levels of cue conflict on omega complexity than the other electrodes located in the left- and right-occipital hemispheres. These evidences demonstrated that the EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations, with different levels of vertical disparity gradient and cue conflict. Besides, the influence of vertical disparity gradient and cue conflict on omega complexity may be regional dependent. NEW & NOTEWORTHY The EEG omega complexity could reflect distinct neural activities evoked by Panum's limiting case configurations with different levels of vertical disparity gradient and cue conflict. The influence of vertical disparity gradient and cue conflict on omega complexity is regional dependent. The omega complexity of EEG signal can serve as an important supplement of the
Occurrence and Magnitude of High Reflectance Materials on the Moon
Nuno, R. G.; Boyd, A. K.; Robinson, M. S.
2013-12-01
We utilize a Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) 643 nm photometrically normalized (30°, 0°, 30°; i, e, g) reflectance map to investigate the occurrence and origin of high reflectance materials on the Moon. Compositional differences (mainly iron and titanium content) and maturity state (e.g. Copernican crater rays and swirls) are the predominant factors affecting reflectance variations observed on the Moon. Therefore, comparing reflectance values of different regions yields insight into the composition and relative exposure age of lunar materials. But an accurate comparison requires precise reflectance values normalized across every region being investigated. The WAC [1] obtains monthly near-global ground coverage, each month's observations acquired with different lighting conditions. Boyd et al. [2] utilized a geologically homogeneous subset [0°N to 90°N, 146°E to 148°E] of the WAC observations to determine an equation that describes how viewing and lighting angles affect reflectance values. A normalized global reflectance map was generated by applying the local empirical solution globally, with photometric angles derived from the WAC Global Lunar Digital Terrain Model (DTM)(GLD100) [3]. The GLD100 enables accurate correction of reflectance differences caused by local topographic undulations at the scale of 300 meters. We compare reflectance values across the Moon within 80°S to 80°N latitude. The features with the highest reflectance are steep crater walls within Copernican aged craters, such as the walls of Giordano Bruno, which have normalized reflectance values up to 0.35. Near-impact ejecta of some craters have high reflectance values, such as Virtanen (0.22). There are also broad relatively flat features with high reflectance, such as the 900-km Thales-Compton region (0.24) and the 600-km extent of Anaxagoras (Copernican age) ejecta (0.20). Since the interior of Anaxagoras contains occurrences of pure anorthosite [4], the high
Lasič, Samo; Lundell, Henrik; Topgaard, Daniel; Dyrby, Tim B
2018-04-01
To illustrate the potential bias caused by imaging gradients in correlation MRI sequences using longitudinal magnetization storage (LS) and examine the case of filter exchange imaging (FEXI) yielding maps of the apparent exchange rate (AXR). The effects of imaging gradients in FEXI were observed on yeast cells. To analyze the AXR bias, signal evolution was calculated by applying matrix exponential operators. A sharp threshold for the slice thickness was identified, below which the AXR is increasingly underestimated. The bias can be understood in terms of an extended low-pass diffusion filtering during the LS interval, which is more pronounced at lower exchange rates. For a total exchange rate constant larger than 1 s -1 , the AXR bias is expected to be negligible when slices thicker than 2.5 mm are used. In correlation experiments like FEXI, relying on LS with variable duration, imaging gradients may cause disrupting effects that cannot be easily mitigated and should be carefully considered for unbiased results. In typical clinical applications of FEXI, the imaging gradients are expected to cause a negligible AXR bias. However, the AXR bias may be significant in preclinical settings or whenever thin imaging slices are used. Magn Reson Med 79:2228-2235, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Friedt, J.M.
1976-01-01
The change in the hyperfine line intensities is discussed for various Moessbauer transitions in cases involving axial vibrational lattice anisotropy and axial electric field gradient at the resonant nucleus. The change in the relative intensities of the spectral components has been calculed numerically for the different types of Moessbauer transitions. Polynomial expansions are given to describe the functional dependence of the relative intensities on the magnitude of the vibration anisotropy. They may be used to extract the relevant parameters from experimental data without requiring the numerical integrations implied in the description of the Goldanskii-Karyagin effect [fr
Real-time defect detection on highly reflective curved surfaces
Rosati, G.; Boschetti, G.; Biondi, A.; Rossi, A.
2009-03-01
This paper presents an automated defect detection system for coated plastic components for the automotive industry. This research activity came up as an evolution of a previous study which employed a non-flat mirror to illuminate and inspect high reflective curved surfaces. According to this method, the rays emitted from a light source are conveyed on the surface under investigation by means of a suitably curved mirror. After the reflection on the surface, the light rays are collected by a CCD camera, in which the coating defects appear as shadows of various shapes and dimensions. In this paper we present an evolution of the above-mentioned method, introducing a simplified mirror set-up in order to reduce the costs and the complexity of the defect detection system. In fact, a set of plane mirrors is employed instead of the curved one. Moreover, the inspection of multiple bend radius parts is investigated. A prototype of the machine vision system has been developed in order to test this simplified method. This device is made up of a light projector, a set of plane mirrors for light rays reflection, a conveyor belt for handling components, a CCD camera and a desktop PC which performs image acquisition and processing. Like in the previous system, the defects are identified as shadows inside a high brightness image. At the end of the paper, first experimental results are presented.
Directory of Open Access Journals (Sweden)
Yung Yau
2011-01-01
Full Text Available Urban decay is an inevitable outcome of the growth of most cities, including Hong Kong. Many old buildings in Hong Kong are dilapidated, and it is urgent to tackle urban decay in the city. Redeveloping dilapidated buildings has long been regarded as an effective solution to this urban problem. Yet, as suggested in the literature, redevelopment may be responsible for gentrifying neighbourhoods because it pushes up property and rental prices near redeveloped sites. However, there are still few empirical studies on how comprehensive redevelopment affects housing values in a neighbourhood. In this light, this study investigates the impacts of the Urban Renewal Authority’s Argyle Street / Shanghai Street Redevelopment Project on the transaction prices of nearby housing. A set of panel data is employed and the change in the spatial price gradient before and after the redevelopment project is explored. The findings suggest that proximity to the project site had a significant positive impact on housing prices before the project. However, no change was seen in the spatial price gradient after completion of the project. These results confirm the findings of a previous study that housing prices do not respond to the change in the environmental quality resulting from comprehensive redevelopment.
Gasparini, N. M.; Han, J.; Johnson, J. P.; Menking, J. A.
2011-12-01
This study uses observations from the Kohala Peninsula, on the Big Island of Hawaii, and numerical modeling, to explore how precipitation gradients may affect fluvial bedrock incision and channel morphology. Orographic precipitation patterns result in over 4 m/yr of rainfall on the wet side of the peninsula and less than 0.5 m/yr on the dry side. These precipitation patterns likely strongly contribute to the observed channel morphology. Further, the region is subsiding, leading to prolonged transient channel evolution. We explore changes in a number of channel morphologic parameters with watershed averaged precipitation rate. We use PRISM precipitation data and data from isohyets developed from historic rain gauge data. Not surprisingly, valley depth, measured from a 10 meter DEM, increases with spatially averaged precipitation rate. We also find that channel profile form varies with precipitation rate, with drier channels exhibiting a straight to slightly concave channel form and wetter channels exhibiting a convex to concave channel form. The precipitation value at which this transition in channel profile form occurs depends on the precipitation data-set used, highlighting the need for more accurate measurements of precipitation in settings with extreme precipitation patterns similar to our study area. The downstream pattern in precipitation is likely significant in the development of the convex-concave profile form. Numerical modeling results support that precipitation patterns such as those observed on the wet-side of the Kohala Peninsula may contribute to the convex-concave profile form. However, we emphasize that while precipitation patterns may contribute to the channel form, these channel features are transient and not expected to be sustained in steady-state landscapes. We also emphasize that it is fluvial discharge, as driven by precipitation, rather than precipitation alone, that drives the processes shaping the channel form. Because fluvial discharge is
Spitzer, Jan
2013-04-01
The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.
Genetic structure along a gaseous organic pollution gradient: a case study with Poa annua L
International Nuclear Information System (INIS)
Chen Xiaoyong; Li Ning; Shen Lang; Li Yuanyuan
2003-01-01
Genetic composition of Poa annua populations showed clinal change along an organic pollution gradient. - The population genetic composition of Poa annua L. was studied by starch electrophoresis along a transect running NE from an organic reagents factory at Shanghai, China. Five enzyme systems were stained. We have reached the following preliminary conclusions: (1) Organic pollution has dramatically changed genotypic frequencies at some loci of Poa annua populations. At polluted sites, significant deviations from Hardy-Weinberg equilibrium were observed on loci Sod-1 and Me due to the excess of heterozygote. Especially in the two nearest sites to pollution source, all the individuals were heterozygous at locus Sod-1. The data suggests that heterozygotes were more tolerant to organic pollution than homozygotes, indicating the fitness superiority of heterozygotes. (2) A tendency towards clinal changes of allele frequencies was found at some polymorphic loci. Frequencies of the common alleles at loci Sod-1, Me and Fe-1 increased as the distance to the pollution source increased. (3) The effective number of alleles per locus, and the observed and expected heterozygosity were much higher in the pollution series than in the clear control site (Botanic Park population), but genetic multiplicity (number of alleles per locus) was lower than for the control. (4) Most genetic variability was found within populations, and only 2.56% were among populations of the polluted series. However, 9.48% of the total genetic variation occurred among populations when including the Botanic Park population. The genetic identity between populations of the pollution series (0.9869-1.0000, mean 0.9941) was higher than those between the pollution series and the Botanic Park population. UPGMA divided the five populations into two groups. One contained the four polluted populations, and the other only contained the Botanic Park population
Genetic structure along a gaseous organic pollution gradient: a case study with Poa annua L
Energy Technology Data Exchange (ETDEWEB)
Xiaoyong, Chen; Ning, Li; Lang, Shen; Yuanyuan, Li
2003-08-01
Genetic composition of Poa annua populations showed clinal change along an organic pollution gradient. - The population genetic composition of Poa annua L. was studied by starch electrophoresis along a transect running NE from an organic reagents factory at Shanghai, China. Five enzyme systems were stained. We have reached the following preliminary conclusions: (1) Organic pollution has dramatically changed genotypic frequencies at some loci of Poa annua populations. At polluted sites, significant deviations from Hardy-Weinberg equilibrium were observed on loci Sod-1 and Me due to the excess of heterozygote. Especially in the two nearest sites to pollution source, all the individuals were heterozygous at locus Sod-1. The data suggests that heterozygotes were more tolerant to organic pollution than homozygotes, indicating the fitness superiority of heterozygotes. (2) A tendency towards clinal changes of allele frequencies was found at some polymorphic loci. Frequencies of the common alleles at loci Sod-1, Me and Fe-1 increased as the distance to the pollution source increased. (3) The effective number of alleles per locus, and the observed and expected heterozygosity were much higher in the pollution series than in the clear control site (Botanic Park population), but genetic multiplicity (number of alleles per locus) was lower than for the control. (4) Most genetic variability was found within populations, and only 2.56% were among populations of the polluted series. However, 9.48% of the total genetic variation occurred among populations when including the Botanic Park population. The genetic identity between populations of the pollution series (0.9869-1.0000, mean 0.9941) was higher than those between the pollution series and the Botanic Park population. UPGMA divided the five populations into two groups. One contained the four polluted populations, and the other only contained the Botanic Park population.
Species diversity of abuscular mycorrhizal fungi (AMF) was assessed along a dunes stabilization gradient (embyonic dune, foredune and fixed dune) at Praia da Joaquina (Joaquina Beach), Ilha de Santa Catarina. These dunes served as a case study to assess whether diversity and myc...
Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.
2017-12-01
Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.
Highly Reflecting, Broadband Deformable Membrane Mirror for Wavefront Control Applications, Phase I
National Aeronautics and Space Administration — This Phase I STTR project will develop a highly reflecting, broadband, radiation resistant, low-stress and lightweight, membrane integrated into an electrostatically...
DEFF Research Database (Denmark)
Lasic, Samo; Lundell, Henrik; Topgaard, Daniel
2017-01-01
low-pass diffusion filtering during the LS interval, which is more pronounced at lower exchange rates. For a total exchange rate constant larger than 1 s-1, the AXR bias is expected to be negligible when slices thicker than 2.5mm are used. Conclusion: In correlation experiments like FEXI, relying...... on LS with variable duration, imaging gradients may cause disrupting effects that cannot be easily mitigated and should be carefully considered for unbiased results. In typical clinical applications of FEXI, the imaging gradients are expected to cause a negligible AXR bias. However, the AXR bias may...
MRI of the breast with 2D spin-echo and gradient echo sequences in diagnostically difficult cases
International Nuclear Information System (INIS)
Allgayer, B.; Lukas, P.; Loos, W.; Kersting-Sommerhoff, B.
1993-01-01
One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T 1 weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied -26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.) [de
Ngoma, Justine; Moors, Eddy; Kruijt, Bart; Speer, James H.; Vinya, Royd; Chidumayo, Emmanuel N.; Leemans, Rik
2018-02-01
Understanding carbon (C) stocks or biomass in forests is important to examine how forests mitigate climate change. To estimate biomass in stems, branches and roots takes intensive fieldwork to uproot, cut and weigh the mass of each component. Different models or equations are also required. Our research focussed on the dry tropical Zambezi teak forests and we studied their structure at three sites following a rainfall gradient in Zambia. We sampled 3558 trees at 42 plots covering a combined area of 15ha. Using data from destructive tree samples, we developed mixed-species biomass models to estimate above ground biomass for small (forests, thereby adversely affecting their mitigating role in climate change.
High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime
Alias, Mohd Sharizal; Alatawi, Abdullah; Wong, Ka Chun; Tangi, Malleswararao; Holguin Lerma, Jorge Alberto; Stegenburgs, Edgars; Shakfa, Mohammad Khaled; Ng, Tien Khee; Rahman, Abdul; Alyamani, Ahmed; Ooi, Boon S.
2018-01-01
A distributed Bragg reflector (DBR) composed of Y2O3-doped HfO2 (YDH)/SiO2 layers with high reflectivity spectrum centered at a wavelength of ~240 nm is deposited using radio-frequency magnetron sputtering. Before the DBR deposition, optical
Pinceel, Tom; Vanschoenwinkel, Bram; Hawinkel, Wouter; Tuytens, Karen; Brendonck, Luc
2017-05-01
Climate change does affect not only average rainfall and temperature but also their variation, which can reduce the predictability of suitable conditions for growth and reproduction. This situation is problematic for inhabitants of temporary waters whose reproductive success depends on rainfall and evaporation that determine the length of the aquatic phase. For organisms with long-lived dormant life stages, bet hedging models suggest that a fraction of these should stay dormant during each growing season to buffer against the probability of total reproductive failure in variable environments. Thus far, however, little empirical evidence supports this prediction in aquatic organisms. We study geographic variation in delayed hatching of dormant eggs in natural populations of two crustaceans, Branchinella longirostris and Paralimnadia badia, that occur in temporary rock pools along a 725 km latitudinal aridity gradient in Western Australia. Consistent with bet hedging theory, populations of both species were characterised by delayed hatching under common garden conditions and hatching fractions decreased towards the drier end of the gradient where the probability of reproductive success was shown to be lower. This decrease was most pronounced in the species with the longer maturation time, presumably because it is more sensitive to the higher prevalence of short inundations. Overall, these findings illustrate that regional variation in climate can be reflected in differential investment in bet hedging and hints at a higher importance of delayed hatching to persist when the climate becomes harsher. Such strategies could become exceedingly relevant as determinants of vulnerability under climate change.
International Nuclear Information System (INIS)
Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft
1992-04-01
A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
DEFF Research Database (Denmark)
Marshall, C.T.; O'Brien, L.; Tomkiewicz, Jonna
2003-01-01
There is accumulating evidence to suggest that spawning stock biomass (SSB) may not bedirectly proportional to reproductive potential. The wide-ranging implications of this conclu-sion necessitate that it be tested for as many stocks as possible. Undertaking such tests iscomplicated by the fact...... that fish stocks vary in the amount and type of information that isavailable to estimate reproductive potential. In this review, nine stocks illustrate the range of approaches that are being taken to developing alternative indices of reproductive potential fromexisting data resources. Three stocks had...... sufficient data to reconstruct a time series of total eggproduction (TEP), whereas, the remaining stocks were limited to estimating proxies for stockreproductive potential. For some of the case studies the alternative indices explained a higheramount of recruitment variation than did SSB. Other case studies...
High-reflective colorful films fabricated by all-solid multi-layer cholesteric structures
Li, Y.; Luo, D.
2018-02-01
We demonstrate all-solid-state film with high-reflectivity based on cholesteric template. The adhesive (NOA81) is both filler and an adhesive, which can be avoids interfacial losses. The reflected right- and left-circularly polarized light has been developed by roll-to-roll method, and the reflectance of the films is more than 78%. Here, the all-solid film was used in distribute feedback laser with dye-doped. In addition, this films also used in include flexible reflective display, color pixels in digital photographs, printing and colored cladding of variety of objects.
Rosenthal, Amir; Horowitz, Moshe; Kieckbusch, Sven; Brinkmeyer, Ernst
2007-10-01
We demonstrate experimentally, for the first time to our knowledge, a reconstruction of a highly reflecting fiber Bragg grating from its complex reflection spectrum by using a regularization algorithm. The regularization method is based on correcting the measured reflection spectrum at the Bragg zone frequencies and enables the reconstruction of the grating profile using the integral-layer-peeling algorithm. A grating with an approximately uniform profile and with a maximum reflectivity of 99.98% was accurately reconstructed by measuring only its complex reflection spectrum.
High reflectivity YDH/SiO2 distributed Bragg reflector for UV-C wavelength regime
Alias, Mohd Sharizal
2018-02-15
A distributed Bragg reflector (DBR) composed of Y2O3-doped HfO2 (YDH)/SiO2 layers with high reflectivity spectrum centered at a wavelength of ~240 nm is deposited using radio-frequency magnetron sputtering. Before the DBR deposition, optical properties for a single layer of YDH, SiO2, and HfO2 thin films were studied using spectroscopic ellipsometry and spectrophotometry. To investigate the performance of YDH as a material for the high refractive index layer in the DBR, a comparison of its optical properties was made with HfO2 thin films. Due to larger optical bandgap, the YDH thin films demonstrated higher transparency, lower extinction coefficient, and lower absorption coefficient in the UV-C regime (especially for wavelengths below 250 nm) compared to the HfO2 thin films. The deposited YDH/SiO2 DBR consisting of 15 periods achieved a reflectivity higher than 99.9% at the wavelength of ~240 nm with a stopband of ~50 nm. The high reflectivity and broad stopband of YDH/SiO2 DBRs will enable further advancement of various photonic devices such as vertical-cavity surface-emitting lasers, resonant-cavity light-emitting diodes, and resonant-cavity photodetectors operating in the UV-C wavelength regime.
Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka
Directory of Open Access Journals (Sweden)
Yuan Jihui
2017-01-01
Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.
Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.
Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mégret, Patrice; Caucheteur, Christophe
2014-07-28
During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser.
Calegaro-Marques, Cláudia; Amato, Suzana B
2014-01-01
Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites.
Production of a diffuse very high reflectivity material for light collection in nuclear detectors
Pichler, B J; Mirzoyan, R; Weiss, L; Ziegler, S I
2000-01-01
A diffuse very high reflectivity material, based on polytetrafluorethylene (PTFE) for optimization of light-collection efficiency has been developed. PTFE powder was used to produce reflector block material. The powder was pressed with 525 kPa in a form and sintered at 375 deg. C. The reflectivity was above 98% within the spectral range from 350 to 1000 nm. The blocks of this material are machinable with saws, drilling and milling machines. The reflector is used as a housing for scintillating crystals in a nuclear medicine application (small animal positron emission tomograph). It is also used as a light collector in very high-energy gamma-ray astrophysicas experiments, HEGRA and MAGIC. The application of this inexpensive, easy to make diffuse reflector may allow the optimization of light collection in a wide range of low-level light-detector configurations.
Multifunctional high-reflective and antireflective layer systems with easy-to-clean properties
International Nuclear Information System (INIS)
Gloess, D.; Frach, P.; Gottfried, C.; Klinkenberg, S.; Liebig, J.-S.; Hentsch, W.; Liepack, H.; Krug, M.
2008-01-01
High-reflective (HR) and even more antireflective (AR) layer systems are in use for widespread applications. Multifunctional layer systems providing high optical functionality with an easy-to-clean or a self-cleaning behaviour would be preferable for many applications to avoid soiling of the surface. In this paper, the feasibility of fabrication by highly productive pulse magnetron sputtering in an in-line coating plant is investigated. Easy-to-clean properties are achieved by a top layer of photocatalytic and photoinduced hydrophilic TiO 2 . Multifunctional HR layer systems were successfully deposited on glass and polyethylene terephthalate (PET) substrates at a low deposition temperature of 150 deg. C, demonstrating the possibility of coating certain polymer materials. Double-sided multifunctional AR layer systems with a single-sided photoinduced hydrophilic TiO 2 top coating have a resulting reflectivity of about 3% and transmittance of about 97% in the visible range of light
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, B.
Using multibeam system, artifact creating conditions are dominant when functioning in highly reflective and flat bottom areas. This simulation study manifests the causes responsible for creating such conditions which influence seafloor...
Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel
2015-01-01
As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.
Lambert, M.; Lesselier, D.; Kooij, B. J.
1998-10-01
The retrieval of an unknown, possibly inhomogeneous, penetrable cylindrical obstacle buried entirely in a known homogeneous half-space - the constitutive material parameters of the obstacle and of its embedding obey a Maxwell model - is considered from single- or multiple-frequency aspect-limited data collected by ideal sensors located in air above the embedding half-space, when a small number of time-harmonic transverse electric (TE)-polarized line sources - the magnetic field H is directed along the axis of the cylinder - is also placed in air. The wavefield is modelled from a rigorous H-field domain integral-differential formulation which involves the dot product of the gradients of the single component of H and of the Green function of the stratified environment times a scalar-valued contrast function which contains the obstacle parameters (the frequency-independent, position-dependent relative permittivity and conductivity). A modified gradient method is developed in order to reconstruct the maps of such parameters within a prescribed search domain from the iterative minimization of a cost functional which incorporates both the error in reproducing the data and the error on the field built inside this domain. Non-physical values are excluded and convergence reached by incorporating in the solution algorithm, from a proper choice of unknowns, the condition that the relative permittivity be larger than or equal to 1, and the conductivity be non-negative. The efficiency of the constrained method is illustrated from noiseless and noisy synthetic data acquired independently. The importance of the choice of the initial values of the sought quantities, the need for a periodic refreshment of the constitutive parameters to avoid the algorithm providing inconsistent results, and the interest of a frequency-hopping strategy to obtain finer and finer features of the obstacle when the frequency is raised, are underlined. It is also shown that though either the permittivity
High-Reflectivity Multi-Layer Coatings for the CLASP Sounding Rocket Project
Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; Giono, Gabriel; Auchere, Frederic;
2015-01-01
We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman alpha line (Ly alpha line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly alpha lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approximately 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly alpha line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly alpha line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (greater than 50%) in Ly alpha line, visible light is a multilayer coating be kept to a low reflectance (less than 5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al
Improving the Performance of a Semitransparent BIPV by Using High-Reflectivity Heat Insulation Film
Directory of Open Access Journals (Sweden)
Huei-Mei Liu
2016-01-01
Full Text Available Currently, standard semitransparent photovoltaic (PV modules can largely replace architectural glass installed in the windows, skylights, and facade of a building. Their main features are power generation and transparency, as well as possessing a heat insulating effect. Through heat insulation solar glass (HISG encapsulation technology, this study improved the structure of a typical semitransparent PV module and explored the use of three types of high-reflectivity heat insulation films to form the HISG building-integrated photovoltaics (BIPV systems. Subsequently, the authors analyzed the influence of HISG structures on the optical, thermal, and power generation performance of the original semitransparent PV module and the degree to which enhanced performance is possible. The experimental results indicated that the heat insulation performance and power generation of HISGs were both improved. Selecting an appropriate heat insulation film so that a larger amount of reflective solar radiation is absorbed by the back side of the HISG can yield greater enhancement of power generation. The numerical results conducted in this study also indicated that HISG BIPV system not only provides the passive energy needed for power loading in a building, but also decreases the energy consumption of the HVAC system in subtropical and temperate regions.
High Reflectance Nanoscale V/Sc Multilayer for Soft X-ray Water Window Region.
Huang, Qiushi; Yi, Qiang; Cao, Zhaodong; Qi, Runze; Loch, Rolf A; Jonnard, Philippe; Wu, Meiyi; Giglia, Angelo; Li, Wenbin; Louis, Eric; Bijkerk, Fred; Zhang, Zhong; Wang, Zhanshan
2017-10-10
V/Sc multilayer is experimentally demonstrated for the first time as a high reflectance mirror for the soft X-ray water window region. It primarily works at above the Sc-L edge (λ = 3.11 nm) under near normal incidence while a second peak appears at above the V-L edge (λ = 2.42 nm) under grazing incidence. The V/Sc multilayer fabricated with a d-spacing of 1.59 nm and 30 bilayers has a smaller interface width (σ = 0.27 and 0.32 nm) than the conventional used Cr/Sc (σ = 0.28 and 0.47 nm). For V/Sc multilayer with 30 bilayers, the introduction of B 4 C barrier layers has little improvement on the interface structure. As the number of bilayers increasing to 400, the growth morphology and microstructure of the V/Sc layers evolves with slightly increased crystallization. Nevertheless, the surface roughness remains to be 0.25 nm. A maximum soft X-ray reflectance of 18.4% is measured at λ = 3.129 nm at 9° off-normal incidence using the 400-bilayers V/Sc multilayer. According to the fitted model, an s-polarization reflectance of 5.2% can also be expected at λ = 2.425 nm under 40° incidence. Based on the promising experimental results, further improvement of the reflectance can be achieved by using a more stable deposition system, exploring different interface engineering methods and so on.
Up-gradient transport in a probabilistic transport model
DEFF Research Database (Denmark)
Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.
2005-01-01
The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
Directory of Open Access Journals (Sweden)
Zhonghao Zhang
2016-08-01
Full Text Available Quantifying the landscape pattern change can effectively demonstrate the ecological progresses and the consequences of urbanization. Based on remotely sensed land cover data in 1994, 2000, 2006 and a gradient analysis with landscape metrics at landscape- and class- level, we attempted to characterize the individual and entire landscape patterns of Shanghai metropolitan during the rapid urbanization. We highlighted that a roadscape transect approach that combined the buffer zone method and the transect-based approach was introduced to describe the urban-rural patterns of agricultural, residential, green, industrial, and public facilities land along the railway route. Our results of landscape metrics showed significant spatiotemporal patterns and gradient variations along the transect. The urban growth pattern in two time spans conform to the hypothesis for diffusion–coalescence processes, implying that the railway is adaptive as a gradient element to analyze the landscape patterns with urbanization. As the natural landscape was replaced by urban landscape gradually, the desakota region expanded its extent widely. Suburb areas witnessed the continual transformation from the predominantly rural landscape to peri-urban landscape. Furthermore, the gap between urban and rural areas remained large especially in public service. More reasonable urban plans and land use policies should push to make more efforts to transition from the urban-rural separation to coordinated urban-rural development. This study is a meaningful trial in demonstrating a new form of urban–rural transects to study the landscape change of large cities. By combining gradient analysis with landscape metrics, we addressed the process of urbanization both spatially and temporally, and provided a more quantitative approach to urban studies.
Ono, Shunsuke
2017-04-01
Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun
2018-04-01
Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.
Belay, Abel A; Bellizzi, Andrew M; Stolpen, Alan H
2018-01-15
Extramedullary hematopoiesis is the proliferation of hematopoietic cells outside bone marrow secondary to marrow hematopoiesis failure. Extramedullary hematopoiesis rarely presents as a mass-forming hepatic lesion; in this case, imaging-based differentiation from primary and metastatic hepatic neoplasms is difficult, often leading to biopsy for definitive diagnosis. We report a case of tumefactive hepatic extramedullary hematopoiesis in the setting of myelodysplastic syndrome with concurrent hepatic iron overload, and the role of T2*-weighted gradient-echo magnetic resonance imaging in differentiating extramedullary hematopoiesis from primary and metastatic hepatic lesions. To the best of our knowledge, T2*-weighted gradient-echo evaluation of extramedullary hematopoiesis in the setting of diffuse hepatic hemochromatosis has not been previously described. A 52-year-old white man with myelodysplastic syndrome and marrow fibrosis was found to have a 4 cm hepatic lesion on ultrasound during workup for bone marrow transplantation. Magnetic resonance imaging revealed diffuse hepatic iron overload and non-visualization of the lesion on T2* gradient-echo sequence suggesting the presence of iron deposition within the lesion similar to that in background hepatic parenchyma. Subsequent ultrasound-guided biopsy of the lesion revealed extramedullary hematopoiesis. Six months later, while still being evaluated for bone marrow transplant, our patient was found to have poor pulmonary function tests. Follow-up computed tomography angiogram showed a mass within his right main pulmonary artery. Bronchoscopic biopsy of this mass once again revealed extramedullary hematopoiesis. He received radiation therapy to his chest. However, 2 weeks later, he developed mediastinal hematoma and died shortly afterward, secondary to respiratory arrest. Mass-forming extramedullary hematopoiesis is rare; however, our report emphasizes that it needs to be considered in the initial differential
Directory of Open Access Journals (Sweden)
Vasileios Athanasiou
2017-03-01
Full Text Available Sentiment analysis has played a primary role in text classification. It is an undoubted fact that some years ago, textual information was spreading in manageable rates; however, nowadays, such information has overcome even the most ambiguous expectations and constantly grows within seconds. It is therefore quite complex to cope with the vast amount of textual data particularly if we also take the incremental production speed into account. Social media, e-commerce, news articles, comments and opinions are broadcasted on a daily basis. A rational solution, in order to handle the abundance of data, would be to build automated information processing systems, for analyzing and extracting meaningful patterns from text. The present paper focuses on sentiment analysis applied in Greek texts. Thus far, there is no wide availability of natural language processing tools for Modern Greek. Hence, a thorough analysis of Greek, from the lexical to the syntactical level, is difficult to perform. This paper attempts a different approach, based on the proven capabilities of gradient boosting, a well-known technique for dealing with high-dimensional data. The main rationale is that since English has dominated the area of preprocessing tools and there are also quite reliable translation services, we could exploit them to transform Greek tokens into English, thus assuring the precision of the translation, since the translation of large texts is not always reliable and meaningful. The new feature set of English tokens is augmented with the original set of Greek, consequently producing a high dimensional dataset that poses certain difficulties for any traditional classifier. Accordingly, we apply gradient boosting machines, an ensemble algorithm that can learn with different loss functions providing the ability to work efficiently with high dimensional data. Moreover, for the task at hand, we deal with a class imbalance issues since the distribution of sentiments in
High reflectance Cr/C multilayer at 250 eV for soft X-ray polarimetry
Energy Technology Data Exchange (ETDEWEB)
Wen, Mingwu; Jiang, Li; Zhang, Zhong; Huang, Qiushi [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Wang, Zhanshan, E-mail: wangzs@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); She, Rui; Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing (China); Wang, Hongchang [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)
2015-10-01
X-ray reflection near 45° via multilayer mirrors can be used for astronomical polarization measurements. A Cr/C multilayer mirror (designed for X-ray polarimetry at 250 eV), with a period thickness of 3.86 nm and a bi-layer number of 100, was fabricated using direct current magnetron sputtering. Grazing incidence X-ray reflectometry at 8 keV and transmission electron microscopy were used to investigate the multilayer structure. Different models were introduced to fit the hard X-ray reflectivity curve, which indicates that the layer thickness of two materials slightly drifts from the bottom to the top of the stack. Both the chromium and carbon layers are amorphous with asymmetric interfaces, while the Cr-on-C interface is slightly wider. Based on the good quality of the multilayer structure, a high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV at a grazing incidence angle of 40.7°. The fabricated Cr/C multilayer mirror exhibits high reflectivity and polarization levels in the energy region of 240 eV–260 eV. - Highlights: • We fabricated Cr/C multilayer with 3.8 nm d-spacing. • X-ray reflectometry was used to determine the exact structure of Cr/C multilayer. • A high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV. • Both Cr and C were found to be amorphous with slightly asymmetric interfaces. • A 4-layer model was used to fit and explain the results.
Nelson, N.; Munoz-Carpena, R.
2016-12-01
In the presented exercise, students (advanced undergraduate-graduate) explore dissolved oxygen (DO) dynamics at three locations along a fresh-estuarine gradient of the Lower St. Johns River, FL (USA). Spatiotemporal DO trends along this gradient vary as a function of (1) tidal influence, and (2) biotic productivity (phytoplankton photosynthesis and community respiration). This combination of influences produces distinct DO behavior across each of the three hydrologically-connected sites. Through analysis of high frequency monitoring data, students are encouraged to think critically about the roles of physical and biological drivers of DO, and how the relative importance of these factors can vary among different locations within a single tidal waterbody. Data from each of the three locations along the river are downloaded with CUAHSI HydroClient, and analysis is performed with a Python-enabled Jupyter Notebook that has been specifically created for this assignment. Jupyter Notebooks include annotated code organized into blocks that are executed one-at-a-time; this format is amenable to classroom teaching, and provides an approachable introduction to Python for inexperienced coders. The outputs from each code block (i.e. graphs, tables) are produced within the Jupyter Notebook, thus allowing students to directly interact with the code. Expected student learning outcomes include increased spatial reasoning, as well as greater understanding of DO cycling, spatiotemporal variability in tidal systems, and challenges associated with collecting and evaluating large data sets. Specific technical learning outcomes include coding in Python for data management and analysis using Jupyter notebooks. This assignment and associated materials are open-access and available on the Science Education Resource Center website.
Travelling gradient thermocouple calibration
International Nuclear Information System (INIS)
Broomfield, G.H.
1975-01-01
A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed
Quaternion Gradient and Hessian
Xu, Dongpo; Mandic, Danilo P.
2014-01-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...
Gradient Alloy for Optical Packaging
National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...
Zhou, Zhen-Hua; Ren, Zhe; Wang, Kun; Yang, Kui; Tang, Yong-Jun; Tian, Lin; Xu, Ze-Min
2018-05-01
Debris flows with long reaches are one of the major natural hazards to human life and property on alluvial fans, as shown by the debris flow that occurred in the Dongyuege (DYG) Gully in August 18, 2010, and caused 96 deaths. The travel distance and the runout distance of the DYG large-scale tragic debris flow were 11 km and 9 km, respectively. In particular, the runout distance over the low gradient channel (channel slope sediment and water are related to the maximum grain size (MGS), gradation and mineralogy of clay-size particles of the sediment. The layer-lattice silicates in clay particles can be the typical clay minerals, including kaolinite, montmorillonite and illite, and also the unrepresentative clay minerals such as muscovite and chlorite. Moreover, small woody debris can also contribute to the slurrying of sediments and maintenance of debris flows in well vegetated mountainous areas and the boulders suspended in debris flows can elevate excess pore pressure and extend debris-flow mobility. The parameters, including Id, Kp, R and etc., are affected by the intrinsic properties of debris. They, therefore, can reflect the slurrying susceptibility of sediments, and can also be applied to the research on the occurrence mechanisms and risk assessment of other debris flows.
High Gradient Accelerator Research
International Nuclear Information System (INIS)
Temkin, Richard
2016-01-01
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.
Giovannini, Massimo
2015-01-01
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.
High gradient superconducting quadrupoles
International Nuclear Information System (INIS)
Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.
1987-07-01
Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed
Gradient dissimilation in Mongolian: Implications for diachrony
DEFF Research Database (Denmark)
Jatteau, Adèle; Hejná, Michaela
2018-01-01
This paper explores the implications of ‘gradient dissimilation’ (Jatteau & Hejná 2016) for the diachronic implementation of dissimilation. Since this sound change is usually considered as typically sporadic, lexically regular cases should result from lexical diffusion. In contrast with this ass......This paper explores the implications of ‘gradient dissimilation’ (Jatteau & Hejná 2016) for the diachronic implementation of dissimilation. Since this sound change is usually considered as typically sporadic, lexically regular cases should result from lexical diffusion. In contrast...... with this assumption, we explore the hypothesis that gradient dissimilation may represent the phonetic precursor of completed, regular dissimilatory processes. Such cases of dissimilation might then be reanalysed as Neogrammarian types of change. To assess this question, we gather and analyse new data from Halh...... Mongolian, a language reported to show gradient dissimilation (Svantesson et al. 2005), and compare it to two completed patterns of dissimilation reconstructed within the Mongolic family: Mongolian Chahar and Monguor. The results suggest that the gradient dissimilation in Halh may represent the phonetic...
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
Directory of Open Access Journals (Sweden)
Ahmad S.R.
2017-01-01
Full Text Available The objective of this study is to evaluate the application of the metal magnetic memory (MMM technique for investigations on fatigue crack propagation in a ferromagnetic material. Fatigue failure caused by stress concentration is serious in practical engineering. However, early fatigue damages cannot be detected by using traditional nondestructive testing (NDT methods. Therefore this paper study about NDT method called metal magnetic memory (MMM that has potentials for evaluating the fatigue damage at the early damage and critical fracture stages. While its capacity to evaluate the distribution of self-magnetic leakage field signals on the component’s surface is well-established, there remains a need to scrutinize the physical mechanism and quantitative analysis aspects of this method. To begin with, a fatigue test involving a loading of 7kN was conducted on a SAE 1045 carbon steel specimen. This material is frequently used in the manufacturing of automotive transmission components that include the axle and spline shaft. MMM signals were measured along a scanning distance of 100 mm and analysed during the propagation stage. Other than revealing that the value of the magnetic flux gradient signals dH(y/dx increased in tandem with the crack length, the results also led to the detection of the crack growth location. It was anticipated that the dH(y/dx value will also exhibit an upward trend with a rise in the fatigue growth rate of da/dN. A modified Paris equation was utilized to correlate dH(y/dx with da/dn through the replacement of the stress intensity factor range ΔK. This resulted in the log-log plot of da/dN versus dH(y/dx portraying an inclination similar to the log-log plot of da/dN versus ΔK. A linear relationship was established between dH(y/dx and ΔK with the R2 value as 0.96. Players in the automotive industry can benefit from the disclosure that dH(y/dx can effectively replace ΔK for the monitoring of fatigue crack growth
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.
2017-02-01
A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.
Examining the Education Gradient in Chronic Illness
Chatterji, Pinka; Joo, Heesoo; Lahiri, Kajal
2015-01-01
We examine the education gradient in diabetes, hypertension, and high cholesterol. We take into account diagnosed as well as undiagnosed cases and use methods accounting for the possibility of unmeasured factors that are correlated with education and drive both the likelihood of having illness and the propensity to be diagnosed. Data come from the…
Bigravity from gradient expansion
International Nuclear Information System (INIS)
Yamashita, Yasuho; Tanaka, Takahiro
2016-01-01
We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.
2010-03-31
nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and
Self-induced temperature gradients in Brownian dynamics
Devine, Jack; Jack, M. W.
2017-12-01
Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.
Wetting of flat gradient surfaces.
Bormashenko, Edward
2018-04-01
Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
Gradient Boosting Machines, A Tutorial
Directory of Open Access Journals (Sweden)
Alexey eNatekin
2013-12-01
Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.
Gradient waveform synthesis for magnetic propulsion using MRI gradient coils
International Nuclear Information System (INIS)
Han, B H; Lee, S Y; Park, S
2008-01-01
Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path
Alsaffar, Zahra Hassan Ali; Curdia, Joao; Borja, Angel; Irigoien, Xabier; Carvalho, Susana
2017-01-01
. These findings suggest that mechanisms driving biodiversity are similar across the depth gradient. The partitioning of beta-diversity also show that assemblages are mainly driven by the substitution of species (turnover or replacement), most likely as a result
Denaturing gradient gel electrophoresis
International Nuclear Information System (INIS)
Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.
2005-01-01
It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc
Characterization of gradient control systems
Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Characterization of Gradient Control Systems
Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.
2005-01-01
Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system
Sobolev gradients and differential equations
Neuberger, J W
2010-01-01
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...
Electric field gradients in metals
International Nuclear Information System (INIS)
Schatz, G.
1979-01-01
A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-01-01
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it's ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Scattering-angle based filtering of the waveform inversion gradients
Alkhalifah, Tariq Ali
2014-11-22
Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.
Color Gradient in the King Type Globular Cluster NGC 7089
Directory of Open Access Journals (Sweden)
Young-Jong Sohn
1999-12-01
Full Text Available We use BV CCD images to investigate the reality of the color gradient within a King type globular cluster NGC 7089. Surface photometry shows that there is a strong radial color gradient in the central region of the cluster in the sense of bluer center with the amplitude of -0.39 +/- 0.07 mag/arcsec2 in (B - V. In the outer region of the cluster, however, the radial color gradient shows a reverse case, i.e., redder toward the center. (B - V color profile which was derived from resolved stars in VGC 7089 field also shows a significant color gradient in the central region of the clusters, indicating that lights from the combination of red giant stars and blue horizontal branch stars cause the radial color gradient. Color gradient of the outer region of NGC 7089 may be due to the unresolved background of the cluster. Similar color gradients in the central area of clusters have been previously observed exserved exclusively in highly concentrated systems classified as post core collapse clusters. We caution, however, to confirm the reality of the color gradient from resolved stars, we need more accurate imaging data of the cluster with exceptional seeing condition because the effect of completeness correlates with local density of stars.
Crosswind Shear Gradient Affect on Wake Vortices
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT
Directory of Open Access Journals (Sweden)
ZURAIDAH FITRIAH
2017-10-01
Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.
Evolution of a Planar Wake in Adverse Pressure Gradient
Driver, David M.; Mateer, George G.
2016-01-01
In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Block-conjugate-gradient method
International Nuclear Information System (INIS)
McCarthy, J.F.
1989-01-01
It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum
Consolidation by Prefabricated Vertical Drains with a Threshold Gradient
Xiao Guo; Kang-He Xie; Yue-Bao Deng
2014-01-01
This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1) the flow with the threshold gradie...
Spatial gradient tuning in metamaterials
Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David
2011-03-01
Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.
Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe
2016-09-07
An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA gradient (gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Graded/Gradient Porous Biomaterials
Directory of Open Access Journals (Sweden)
Xigeng Miao
2009-12-01
Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Dose gradient curve: A new tool for evaluating dose gradient.
Sung, KiHoon; Choi, Young Eun
2018-01-01
Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
Air temperature gradient in large industrial hall
Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia
2017-11-01
In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.
Diffusiophoresis in one-dimensional solute gradients
Energy Technology Data Exchange (ETDEWEB)
Ault, Jesse T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Patrick B. [Unilever R& D Port Sunlight, Bebington (United Kingdom); Shin, Sangwoo [Univ. of Hawaii at Manoa, Honolulu, HI (United States); Stone, Howard A. [Princeton Univ., Princeton, NJ (United States)
2017-11-06
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ_{p} relative to the solute diffusivity D_{s} for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.
Diffusiophoresis in one-dimensional solute gradients
International Nuclear Information System (INIS)
Ault, Jesse T.; Warren, Patrick B.; Shin, Sangwoo; Stone, Howard A.
2017-01-01
Here, the diffusiophoretic motion of suspended colloidal particles under one-dimensional solute gradients is solved using numerical and analytical techniques. Similarity solutions are developed for the injection and withdrawal dynamics of particles into semi-infinite pores. Furthermore, a method of characteristics formulation of the diffusion-free particle transport model is presented and integrated to realize particle trajectories. Analytical solutions are presented for the limit of small particle diffusiophoretic mobility Γ p relative to the solute diffusivity D s for particle motions in both semi-infinite and finite domains. Results confirm the build up of local maxima and minima in the propagating particle front dynamics. The method of characteristics is shown to successfully predict particle motions and the position of the particle front, although it fails to accurately predict suspended particle concentrations in the vicinity of sharp gradients, such as at the particle front peak seen in some injection cases, where particle diffusion inevitably plays an important role. Results inform the design of applications in which the use of applied solute gradients can greatly enhance particle injection into and withdrawal from pores.
High gradient magnetic separation
International Nuclear Information System (INIS)
Prothero, D.H.
1982-01-01
In a process in which magnetic material is trapped in a filter disposed in a magnetic field, and is unloaded by passing a fluid through the filter in the absence of the initial magnetic field, the magnetic field is first reduced to an intermediate value to allow unloading of the more weakly magnetic particles, the more strongly magnetic particles being retained and subsequently unloaded by further reduction of the magnetic field. Stage by stage reduction of the magnetic field during unloading allows separation of different species from the mixture. As an example the method can be applied to the separation of uranium compounds from mine ores. The uranium compounds are magnetic, while most of the other constituents of the ore are non-magnetic. The starting material is a suspension of the ore. Water is used for unloading. The filter material in this case is stainless steel balls. (author)
The influence of ALN-Al gradient material gradient index on ballistic performance
International Nuclear Information System (INIS)
Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang
2013-01-01
Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.
Scattering angle base filtering of the inversion gradients
Alkhalifah, Tariq Ali
2014-01-01
Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.
Minimum weight protection - Gradient method; Protection de poids minimum - Methode du gradient
Energy Technology Data Exchange (ETDEWEB)
Danon, R.
1958-12-15
After having recalled that, when considering a mobile installation, total weight has a crucial importance, and that, in the case of a nuclear reactor, a non neglectable part of weight is that of protection, this note presents an iterative method which results, for a given protection, to a configuration with a minimum weight. After a description of the problem, the author presents the theoretical formulation of the gradient method as it is applied to the concerned case. This application is then discussed, as well as its validity in terms of convergence and uniqueness. Its actual application is then reported, and possibilities of practical applications are evoked.
Directory of Open Access Journals (Sweden)
Jun-Chin Liu
2014-01-01
Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.
Precision bounds for gradient magnetometry with atomic ensembles
Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza
2018-05-01
We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
The Potential of Tropospheric Gradients for Regional Precipitation Prediction
Boisits, Janina; Möller, Gregor; Wittmann, Christoph; Weber, Robert
2017-04-01
Changes of temperature and humidity in the neutral atmosphere cause variations in tropospheric path delays and tropospheric gradients. By estimating zenith wet delays (ZWD) and gradients using a GNSS reference station network the obtained time series provide information about spatial and temporal variations of water vapour in the atmosphere. Thus, GNSS-based tropospheric parameters can contribute to the forecast of regional precipitation events. In a recently finalized master thesis at TU Wien the potential of tropospheric gradients for weather prediction was investigated. Therefore, ZWD and gradient time series at selected GNSS reference stations were compared to precipitation data over a period of six months (April to September 2014). The selected GNSS stations form two test areas within Austria. All required meteorological data was provided by the Central Institution for Meteorology and Geodynamics (ZAMG). Two characteristics in ZWD and gradient time series can be anticipated in case of an approaching weather front. First, an induced asymmetry in tropospheric delays results in both, an increased magnitude of the gradient and in gradients pointing towards the weather front. Second, an increase in ZWD reflects the increased water vapour concentration right before a precipitation event. To investigate these characteristics exemplary test events were processed. On the one hand, the sequence of the anticipated increase in ZWD at each GNSS station obtained by cross correlation of the time series indicates the direction of the approaching weather front. On the other hand, the corresponding peak in gradient time series allows the deduction of the direction of movement as well. To verify the results precipitation data from ZAMG was used. It can be deduced, that tropospheric gradients show high potential for predicting precipitation events. While ZWD time series rather indicate the orientation of the air mass boundary, gradients rather indicate the direction of movement
Hydraulic gradients in rock aquifers
International Nuclear Information System (INIS)
Dahlblom, P.
1992-05-01
This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)
Braak, ter C.J.F.
1988-01-01
The theory of gradient analysis is presented in this chapter, in which the heuristic techniques are integrated with regression, calibration, ordination and constrained ordination as distinct, well-defined statistical problems. The various techniques used for each type of problem are classified into
Compositional gradients in Gramineae genes
DEFF Research Database (Denmark)
Wong, Gane Ka-Shu; Wang, Jun; Tao, Lin
2002-01-01
In this study, we describe a property of Gramineae genes, and perhaps all monocot genes, that is not observed in eudicot genes. Along the direction of transcription, beginning at the junction of the 5'-UTR and the coding region, there are gradients in GC content, codon usage, and amino-acid usage...
Orderings for conjugate gradient preconditionings
Ortega, James M.
1991-01-01
The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.
Color gradients in elliptical galaxies
International Nuclear Information System (INIS)
Franx, M.; Illingworth, G.
1990-01-01
The relationship of the color gradients within ellipticals and the color differences between them are studied. It is found that the local color appears to be strongly related to the escape velocity. This suggests that the local escape velocity is the primary factor that determines the metallicity of the stellar population. Models with and without dark halos give comparable results. 27 refs
Fractional calculus and morphogen gradient formation
Yuste, Santos Bravo; Abad, Enrique; Lindenberg, Katja
2012-12-01
Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equation is employed to study the developmental biology key problem of morphogen gradient formation for the case in which the morphogens are subdiffusive. If the morphogen degradation rate (reactivity) is constant, we find exponentially decreasing stationary concentration profiles, which are similar to the profiles found when the morphogens diffuse normally. However, for the case in which the degradation rate decays exponentially with the distance to the morphogen source, we find that the morphogen profiles are qualitatively different from the profiles obtained when the morphogens diffuse normally.
Energy Technology Data Exchange (ETDEWEB)
Allgayer, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik); Lukas, P. (Technische Univ. Muenchen (Germany). Inst. und Poliklinik fuer Strahlentherapie und Radiologische Onkologie); Loos, W. (Technische Univ. Muenchen (Germany). Frauenklinik und Poliklinik); Kersting-Sommerhoff, B. (Technische Univ. Muenchen (Germany). Inst. fuer Roentgendiagnostik)
1993-05-01
One or both breasts of 296 patients with equivocal clinical or mammographical findings were examined with MRI. T[sub 1] weighted spinecho (SE) and gradient echo (FFE) sequences were acquired before and after i.v. application of Gadolinium DTPA. 50 lesions with enhancement after Gd-DTPA were biopsied - 26 carcinomas, 17 proliferating mastopathic tissues, 5 fibroadenomas and 1 abscess were found. Contrast enhanced MRI with 2D-SE and FFE sequences is an effective technqiue for evaluating suspicious breast lesions with high diagnostic acurracy. (orig.)
A parametric study of adverse pressure gradient turbulent boundary layers
International Nuclear Information System (INIS)
Monty, J.P.; Harun, Z.; Marusic, I.
2011-01-01
There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.
Elemental gradients in macrophytes from a reactor effluent gradient
International Nuclear Information System (INIS)
Grace, J.B.; Tilly, L.J.
1978-01-01
The tissues of submersed macrophtes from along the thermal gradient were analyzed for phosphorus to determine whether any pattern correspondent to standing crop distributions could be detected. Although water concentrations of phosphorus showed no detectable relationship to the thermal effluent, tissue concentrations of this element in submersed macrophytes declined with distance from the effluent entry point. The occurrence of this concentration pattern suggests that phosphorus availability is greater near the discharge. Because phosphorus is the element most often determined to limit aquatic productivity, its greater availability may partially account for the apparent enhancement of macrophte growth near the thermal discharge. A patter of macrophyte abundance which indicated enchancement related to the discharge gradient in the reactor-cooling reservoir, Par Pond is reported. Correlative data tended to implicate light and temperature as important in influencing the differential abundance pattern
Color Gradients Within Globular Clusters: Restricted Numerical Simulation
Directory of Open Access Journals (Sweden)
Young-Jong Sohn
1997-06-01
Full Text Available The results of a restricted numerical simulation for the color gradients within globular clusters have been presented. The standard luminosity function of M3 and Salpeter's initial mass functions were used to generate model clusters as a fundamental population. Color gradients with the sample clusters for both King and power law cusp models of surface brightness distributions are discussed in the case of using the standard luminosity function. The dependence of color gradients on several parameters for the simulations with Salpeter's initial mass functions, such as slope of initial mass functions, cluster ages, metallicities, concentration parameters of King model, and slopes of power law, are also discussed. No significant radial color gradients are shown to the sample clusters which are regenerated by a random number generation technique with various parameters in both of King and power law cusp models of surface brightness distributions. Dynamical mass segregation and stellar evolution of horizontal branch stars and blue stragglers should be included for the general case of model simulations to show the observed radial color gradients within globular clusters.
Modeling biological gradient formation: combining partial differential equations and Petri nets.
Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J
2016-01-01
Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.
Computational Strain Gradient Crystal Plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Kysar, Jeffrey W.
2011-01-01
A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...... element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......-plane parameters are developed based on the crystallographic properties of the material. The problem of cyclic shear of a single crystal between rigid platens is studied as well as void growth of a cylindrical void....
Computational strain gradient crystal plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Kysar, Jeffrey W.
2014-01-01
A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems...... of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically...... oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale....
Vertebrate pressure-gradient receivers
DEFF Research Database (Denmark)
Christensen-Dalsgaard, Jakob
2011-01-01
The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...
Primordial vorticity and gradient expansion
Giovannini, Massimo
2012-01-01
The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...
Alsaffar, Zahra Hassan Ali
2017-09-30
Patterns of variability in diversity (alpha and beta), abundance, and community structure of soft-bottom macrobenthic assemblages were investigated across an inshore/offshore environmental gradient in the central Red Sea. A total of three distinct soft-substrate biotopes were identified through multivariate techniques: seagrass meadows, nearshore, and offshore. While the seagrass biotope was associated with higher organic matter content, the two coastal biotopes presented higher redox potential in the sediments and dissolved oxygen in the water. Depth and medium sand increased toward the offshore, while the percentage of fine particles was a determinant of nearshore communities. Regardless of the prevailing environmental conditions, the three biotopes were characterized by high numbers of exclusive taxa, most of which were singletons. Changes in species richness were not related to depth or organic matter, peaking at intermediate depths (nearshore). However, the number of taxa increased exponentially with abundance. On the other hand, density decreased logarithmically with depth and organic matter in sediments, probably linked to a reduced availability of food. One of the most conspicuous features of the macrobenthic assemblages inhabiting soft substrates in the central oligotrophic Red Sea is the low level of dominance resulting from a high species richness: abundance ratio. Despite the differences observed for alpha-diversity across the three biotopes, beta-diversity patterns were rather consistent. These findings suggest that mechanisms driving biodiversity are similar across the depth gradient. The partitioning of beta-diversity also show that assemblages are mainly driven by the substitution of species (turnover or replacement), most likely as a result of environmental filtering. The heterogeneity of the seafloor in shallow waters of the Red Sea promoted by the co-existence of coral reefs inter-spaced by sedimentary habitats may increase the regional pool of
Gradient computation for VTI acoustic wavefield tomography
Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Diaz, Esteban; Alkhalifah, Tariq Ali
2016-01-01
-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space
Increase of volume swelling by a temperature gradient
International Nuclear Information System (INIS)
Herschbach, K.; Schneider, W.; Stober, T.
1996-11-01
The temperature gradient in the cladding of a Fast Reactor fuel pin leads to increased dilatation compared to material irradiations. Investigations of a specially designed fuel pin reached the conclusion that the cause is enhanced volume swelling. It is induced by He-bubbles, which migrate upwards the temperature gradient and coalesce. The critical size of nuclei for void swelling is thus reached much faster. Consequently, the p in deformation is larger than expected from materials irradiations, in the present case (DIN 1.4981 sa) by about 50%. (orig.) [de
Instabilities in power law gradient hardening materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2005-01-01
Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....
An education gradient in health, a health gradient in education, or a confounded gradient in both?
Lynch, Jamie L; von Hippel, Paul T
2016-04-01
There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Strain gradient effects in surface roughening
DEFF Research Database (Denmark)
Borg, Ulrik; Fleck, N.A.
2007-01-01
evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...
Gradient remediability in linear distributed parabolic systems ...
African Journals Online (AJOL)
The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...
A magnetic gradient induced force in NMR restricted diffusion experiments
International Nuclear Information System (INIS)
Ghadirian, Bahman; Stait-Gardner, Tim; Castillo, Reynaldo; Price, William S.
2014-01-01
We predict that the phase cancellation of a precessing magnetisation field carried by a diffusing species in a bounded geometry under certain nuclear magnetic resonance pulsed magnetic field gradient sequences results in a small force over typically micrometre length scales. Our calculations reveal that the total magnetisation energy in a pore under the influence of a pulsed gradient will be distance-dependent thus resulting in a force acting on the boundary. It is shown that this effect of the magnetisation of diffusing particles will appear as either an attractive or repulsive force depending on the geometry of the pore and magnetic properties of the material. A detailed analysis is performed for the case of a pulsed gradient spin-echo experiment on parallel planes. It is shown that the force decays exponentially in terms of the spin-spin relaxation. The proof is based on classical electrodynamics. An application of this effect to soft matter is suggested
Entropy Generation in Steady Laminar Boundary Layers with Pressure Gradients
Directory of Open Access Journals (Sweden)
Donald M. McEligot
2014-07-01
Full Text Available In an earlier paper in Entropy [1] we hypothesized that the entropy generation rate is the driving force for boundary layer transition from laminar to turbulent flow. Subsequently, with our colleagues we have examined the prediction of entropy generation during such transitions [2,3]. We found that reasonable predictions for engineering purposes could be obtained for flows with negligible streamwise pressure gradients by adapting the linear combination model of Emmons [4]. A question then arises—will the Emmons approach be useful for boundary layer transition with significant streamwise pressure gradients as by Nolan and Zaki [5]. In our implementation the intermittency is calculated by comparison to skin friction correlations for laminar and turbulent boundary layers and is then applied with comparable correlations for the energy dissipation coefficient (i.e., non-dimensional integral entropy generation rate. In the case of negligible pressure gradients the Blasius theory provides the necessary laminar correlations.
Dispersion of acoustic surface waves by velocity gradients
Kwon, S. D.; Kim, H. C.
1987-10-01
The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.
AC susceptibility response of bulk YBCO superconductors in the presence of a temperature gradient
International Nuclear Information System (INIS)
Bodi, A.C.; Kirschner, I.
1997-01-01
Low-frequency AC susceptibility measurements on ceramic YBCO superconductors carried out at the presence of a quasi-one-dimensional temperature gradient are compared with those made without the temperature gradient. The values of the different characteristic temperatures measured on samples without and with a temperature gradient are identical but in the second case its characteristic temperature is a medium value. When the temperature gradient is constant on the sample the arithmetic medium value of the local temperatures is the effective characteristic temperature different phenomena. (orig.)
Metallicity gradient of the thick disc progenitor at high redshift
Kawata, Daisuke; Allende Prieto, Carlos; Brook, Chris B.; Casagrande, Luca; Ciucă, Ioana; Gibson, Brad K.; Grand, Robert J. J.; Hayden, Michael R.; Hunt, Jason A. S.
2018-01-01
We have developed a novel Markov Chain Monte Carlo chemical 'painting' technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis, we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment survey. We assume that the thick disc has a constant scaleheight and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star-forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high-redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.
Temperature Gradient in Hall Thrusters
International Nuclear Information System (INIS)
Staack, D.; Raitses, Y.; Fisch, N.J.
2003-01-01
Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons
Generalized Gradient Approximation Made Simple
International Nuclear Information System (INIS)
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-01-01
Generalized gradient approximations (GGA close-quote s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. copyright 1996 The American Physical Society
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.
Ternary gradient metal-organic frameworks.
Liu, Chong; Rosi, Nathaniel L
2017-09-08
Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.
Strain gradient effects on cyclic plasticity
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Legarth, Brian Nyvang
2010-01-01
Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...
High gradient RF breakdown study
International Nuclear Information System (INIS)
Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.
1998-01-01
Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity
NIF optics phase gradient specfication
International Nuclear Information System (INIS)
Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.
1997-01-01
A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of ∼80 angstrom/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS ampersand T personnel
Directory of Open Access Journals (Sweden)
Serena Falasca
2018-02-01
Full Text Available The Urban Heat Island (UHI is a well-known phenomenon concerning an increasing percentage of the world’s population due to the growth rates of metropolitan areas. Given the health and economic implications of UHIs, several mitigation techniques are being evaluated and tested. In this study, we consider the use of highly reflective materials for urban surfaces, and we carried out numerical experiments using the Weather Research and Forecasting model coupled with the CHIMERE model in order to investigate the effects of these materials on the meteorology and air quality in the urban area of Milan (Italy. Results show that an increase in albedo from 0.2 to 0.7 for urban roofs, walls and streets leads to a decrease in UHI intensity by up to 2–3 °C and of the planetary boundary layer (PBL height of about 500 m. However, the difference of PM10 and ozone between urban and surrounding areas increases by a factor of about 2, attributable to the reduction of PBL height and wind speed and to the increased reflected solar radiation that may enhance photochemical production during the daytime. Therefore, if anthropogenic emissions are held at the same levels, the potential benefit to the UHI in terms of thermal discomfort may have negative repercussions on air quality.
Directory of Open Access Journals (Sweden)
Tae-Sik Cho
2012-08-01
Full Text Available The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.
Cho, Tae-Sik; Choi, Ki-Sun; Seo, Dae-Cheol; Kwon, Il-Bum; Lee, Jung-Ryul
2012-01-01
The use of a fiber optic quasi-distributed sensing technique for detecting the location and severity of water leakage is suggested. A novel fiber optic sensor probe is devised with a vessel of water absorption material called as water combination soil (WCS) located between two highly reflected connectors: one is a reference connector and the other is a sensing connector. In this study, the sensing output is calculated from the reflected light signals of the two connectors. The first reflected light signal is a reference and the second is a sensing signal which is attenuated by the optical fiber bending loss due to the WCS expansion absorbing water. Also, the bending loss of each sensor probe is determined by referring to the total number of sensor probes and the total power budget of an entire system. We have investigated several probe characteristics to show the design feasibility of the novel fiber sensor probe. The effects of vessel sizes of the probes on the water detection sensitivity are studied. The largest vessel probe provides the highest sensitivity of 0.267 dB/mL, while the smallest shows relatively low sensitivity of 0.067 dB/mL, and unstable response. The sensor probe with a high output value provides a high sensitivity with various detection levels while the number of total installable sensor probes decreases.
Strength gradient enhances fatigue resistance of steels
Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian
2016-02-01
Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.
High-gradient compact linear accelerator
Carder, Bruce M.
1998-01-01
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.
Directory of Open Access Journals (Sweden)
John C. Bellum
2016-03-01
Full Text Available We describe an optical coating design suitable for broad bandwidth high reflection (BBHR at 45° angle of incidence (AOI, P polarization (Ppol of femtosecond (fs laser pulses whose wavelengths range from 800 to 1000 nm. Our design process is guided by quarter-wave HR coating properties. The design must afford low group delay dispersion (GDD for reflected light over the broad, 200 nm bandwidth in order to minimize temporal broadening of the fs pulses due to dispersive alteration of relative phases between their frequency components. The design should also be favorable to high laser-induced damage threshold (LIDT. We base the coating on TiO2/SiO2 layer pairs produced by means of e-beam evaporation with ion-assisted deposition, and use OptiLayer Thin Film Software to explore designs starting with TiO2/SiO2 layers having thicknesses in a reverse chirped arrangement. This approach led to a design with R > 99% from 800 to 1000 nm and GDD < 20 fs2 from 843 to 949 nm (45° AOI, Ppol. The design’s GDD behaves in a smooth way, suitable for GDD compensation techniques, and its electric field intensities show promise for high LIDTs. Reflectivity and GDD measurements for the initial test coating indicate good performance of the BBHR design. Subsequent coating runs with improved process calibration produced two coatings whose HR bands satisfactorily meet the design goals. For the sake of completeness, we summarize our previously reported transmission spectra and LIDT test results with 800 ps, 8 ps and 675 fs pulses for these two coatings, and present a table of the LIDT results we have for all of our TiO2/SiO2 BBHR coatings, showing the trends with test laser pulse duration from the ns to sub-ps regimes.
Density gradient effect on waveguide launching of lower hybrid waves
International Nuclear Information System (INIS)
Fichet, M.; Fidone, I.
1981-01-01
An extensive numerical investigation of the waveguide-plasma coupling, in the lower hybrid range of frequencies, is presented. The role of a sharp density gradient at the plasma edge is investigated. It is found that, in the case of a very sharp gradient, the accessibility condition |nsub(parallel)|>nsub(c)=(1-ω 2 /ωsub(i)ωsub(e))sup(-1/2) is violated and an appreciable fraction of the total energy is launched in the range |nsub(parallel)|< nsub(c). The case of one, two and four waveguides is considered, and it is found that the general pattern of the energy spectrum is very similar for the three antennas. (author)
Thermal conduction down steep temperature gradients
International Nuclear Information System (INIS)
Bell, A.R.; Evans, R.G.; Nicholas, D.J.
1980-08-01
The Fokker-Planck equation has been solved numerically in one spatial and two velocity dimensions in order to study thermal conduction in large temperature gradients. An initially cold plasma is heated at one end of the spatial grid producing temperature gradients with scale lengths of a few times the electron mean free path. The heat flow is an order of magnitude smaller than that predicted by the classical theory which is valid in the limit of small temperature gradients. (author)
Testing the limits of gradient sensing.
Directory of Open Access Journals (Sweden)
Vinal Lakhani
2017-02-01
Full Text Available The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis or grow (chemotropism towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/μm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.
Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling
Cao, L.; Elliot, W.
2017-12-01
Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates
Gradient Flow Convolutive Blind Source Separation
DEFF Research Database (Denmark)
Pedersen, Michael Syskind; Nielsen, Chinton Møller
2004-01-01
Experiments have shown that the performance of instantaneous gradient flow beamforming by Cauwenberghs et al. is reduced significantly in reverberant conditions. By expanding the gradient flow principle to convolutive mixtures, separation in a reverberant environment is possible. By use...... of a circular four microphone array with a radius of 5 mm, and applying convolutive gradient flow instead of just applying instantaneous gradient flow, experimental results show an improvement of up to around 14 dB can be achieved for simulated impulse responses and up to around 10 dB for a hearing aid...
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2003-01-01
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...... the tangent moduli governing increments of stress and strain. It is shown that the modification is far from benign from a mathematical standpoint, changing the qualitative character of solutions and leading to a new type of localization that is at odds with what is expected from a strain gradient theory....... The findings raise questions about the physical acceptability of this class of strain gradient theories....
Community and ecosystem responses to elevational gradients
DEFF Research Database (Denmark)
Sundqvist, Maja K.; Sanders, Nate; Wardle, David A.
2013-01-01
Community structure and ecosystem processes often vary along elevational gradients. Their responses to elevation are commonly driven by changes in temperature, and many community- and ecosystem-level variables therefore frequently respond similarly to elevation across contrasting gradients...... elevational gradients for understanding community and ecosystem responses to global climate change at much larger spatial and temporal scales than is possible through conventional ecological experiments. However, future studies that integrate elevational gradient approaches with experimental manipulations...... will provide powerful information that can improve predictions of climate change impacts within and across ecosystems....
STOCHASTIC GRADIENT METHODS FOR UNCONSTRAINED OPTIMIZATION
Directory of Open Access Journals (Sweden)
Nataša Krejić
2014-12-01
Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.
Fluvial signatures of modern and paleo orographic rainfall gradients
Schildgen, Taylor; Strecker, Manfred
2016-04-01
The morphology of river profiles is intimately linked to both climate and tectonic forcing. While much interest recently has focused on how river profiles can be inverted to derive uplift histories, here we show how in regions of strong orographic rainfall gradients, rivers may primarily record spatial patterns of precipitation. As a case study, we examine the eastern margin of the Andean plateau in NW Argentina, where the outward (eastward) growth of a broken foreland has led to a eastward shift in the main orographic rainfall gradient over the last several million years. Rivers influenced by the modern rainfall gradient are characterized by normalized river steepness values in tributary valleys that closely track spatial variations in rainfall, with higher steepness values in drier areas and lower steepness values in wetter areas. The same river steepness pattern has been predicted in landscape evolution models that apply a spatial gradient in rainfall to a region of uniform erosivity and uplift rate (e.g., Han et al., 2015). Also, chi plots from river networks on individual ranges affected by the modern orographic rainfall reveal patterns consistent with assymmetric precipitation across the range: the largest channels on the windward slopes are characterized by capture, while the longest channels on the leeward slopes are dominated by beheadings. Because basins on the windward side both lengthen and widen, tributary channels in the lengthening basins are characterized by capture, while tributary channels from neighboring basins on the windward side are dominated by beheadings. These patterns from the rivers influenced by the modern orographic rainfall gradient provide a guide for identifying river morphometric signatures of paleo orographic rainfall gradients. Mountain ranges to the west of the modern orographic rainfall have been interpreted to mark the location of orographic rainfall in the past, but these ranges are now in spatially near-uniform semi-arid to
Consolidation by Prefabricated Vertical Drains with a Threshold Gradient
Directory of Open Access Journals (Sweden)
Xiao Guo
2014-01-01
Full Text Available This paper shows the development of an approximate analytical solution of radial consolidation by prefabricated vertical drains with a threshold gradient. To understand the effect of the threshold gradient on consolidation, a parametric analysis was performed using the present solution. The applicability of the present solution was demonstrated in two cases, wherein the comparisons with Hansbo’s results and observed data were conducted. It was found that (1 the flow with the threshold gradient would not occur instantaneously throughout the whole unit cell. Rather, it gradually occurs from the vertical drain to the outside; (2 the moving boundary would never reach the outer radius of influence if R+1
Parallel conjugate gradient algorithms for manipulator dynamic simulation
Fijany, Amir; Scheld, Robert E.
1989-01-01
Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).
Gravity gradient preprocessing at the GOCE HPF
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Edge gradient and safety factor effects on electrostatic turbulent transport in tokamaks
International Nuclear Information System (INIS)
Tan, Ing Hwie.
1992-05-01
Electrostatic turbulence and transport measurements are performed on the Tokapole-II tokamak at the University of Wisconsin-Madison, as the safety-factor and the edge equilibrium gradients and varied substantially. Tokapole-II is a poloidal divertor tokamak capable of operating at a wide range of safety factors due to its unique magnetic limiter configuration. It also has retractable material limiters in a large scrape-off region, which permits the study of edge boundary conditions like density and temperature gradients. The turbulence is independent of safety factor, but strongly sensitive to the local density gradient, which itself depends upon the limiter configuration. When a material limiter is inserted in a high discharge, the density gradient is increased locally together with a local increase of the turbulence. On the other hand, limiter insertion in low discharges did not increase the density gradient as much and the turbulence properties are unchanged with respect to the magnetic limiter case. It is conducted then, that electrostatic turbulence is caused by the density gradient. Although the electrostatic fluctuation driven transport is enhanced in the large density gradient case, it is in all cases to small to explain the observed energy confinement times. To explore instabilities with small wavelengths, a 0.5 mm diameter shperical Langmuir probe was constructed, and its power compared with the power measured by larger cylindrical probes
Canonical trivialization of gravitational gradients
International Nuclear Information System (INIS)
Niedermaier, Max
2017-01-01
A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein–Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie–Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions. (paper)
Canonical trivialization of gravitational gradients
Niedermaier, Max
2017-06-01
A one-parameter family of canonical transformations is constructed that reduces the Hamiltonian form of the Einstein-Hilbert action to its strong coupling limit where dynamical spatial gradients are absent. The parameter can alternatively be viewed as the overall scale of the spatial metric or as a fractional inverse power of Newton’s constant. The generating function of the canonical transformation is constructed iteratively as a powerseries in the parameter to all orders. The algorithm draws on Lie-Deprit transformation theory and defines a ‘trivialization map’ with several bonus properties: (i) Trivialization of the Hamiltonian constraint implies that of the action while the diffeomorphism constraint is automatically co-transformed. (ii) Only a set of ordinary differential equations needs to be solved to drive the iteration via a homological equation where no gauge fixing is required. (iii) In contrast to (the classical limit of) a Lagrangian trivialization map the algorithm also produces series solutions of the field equations. (iv) In the strong coupling theory temporal gauge variations are abelian, nevertheless the map intertwines with the respective gauge symmetries on the action, the field equations, and their solutions.
Rank gradient and p-gradient of amalgamated free products and HNN extensions
Pappas, Nathaniel
2013-01-01
We calculate the rank gradient and p-gradient of free products, free products with amalgamation over an amenable subgroup, and HNN extensions with an amenable associated subgroup. The notion of cost is used to compute the rank gradient of amalgamated free products and HNN extensions. For the p-gradient the Kurosh subgroup theorems for amalgamated free products and HNN extensions will be used.
Preconditioning the modified conjugate gradient method ...
African Journals Online (AJOL)
In this paper, the convergence analysis of the conventional conjugate Gradient method was reviewed. And the convergence analysis of the modified conjugate Gradient method was analysed with our extension on preconditioning the algorithm. Convergence of the algorithm is a function of the condition number of M-1A.
Structures and Strength of Gradient Nanostructures
DEFF Research Database (Denmark)
Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu
distance from the surface forming a gradient structure. In this study [2], by shot peening of a low carbon steel a gradient structure has been produced extending to about 1 mm below the surface. A number of strengthening mechanisms have been analyzed as a basis for a calculation of the stress and strain...
On lower order strain gradient plasticity theories
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Hutchinson, J. W.
2002-01-01
By way of numerical examples, this paper explores the nature of solutions to a class of strain gradient plasticity theories that employ conventional stresses, equilibrium equations and boundary conditions. Strain gradients come into play in these modified conventional theories only to alter...
Ultra-high gradient compact accelerator developments
Brussaard, G.J.H.; Wiel, van der M.J.
2004-01-01
Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration,
An Inexpensive Digital Gradient Controller for HPLC.
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
40 CFR 230.25 - Salinity gradients.
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Salinity gradients. 230.25 Section 230.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b... Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.25 Salinity gradients. (a) Salinity...
Microinstabilities in weak density gradient tokamak systems
International Nuclear Information System (INIS)
Tang, W.M.; Rewoldt, G.; Chen, L.
1986-04-01
A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient
Marko Gómez-Hernández; Guadalupe Williams-Linera; Roger Guevara; D. Jean Lodge
2012-01-01
Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500 m altitude represent tropical dry forest, tropical montane cloud...
International Nuclear Information System (INIS)
Ren, Y.; Kaye, S.M.; Mazzucato, E.; Guttenfelder, W.; Bell, R.E.; Domier, C.W.; LeBlanc, B.P.; Lee, K.C.; Luhmann, N.C. Jr.; Smith, D.R.; Yuh, H.
2011-01-01
In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k (perpendicular) ρ s ∼< 10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.
Dual fuel gradients in uranium silicide plates
Energy Technology Data Exchange (ETDEWEB)
Pace, B.W. [Babock and Wilcox, Lynchburg, VA (United States)
1997-08-01
Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Protein gradient films of fibroin and gelatine.
Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas
2013-10-01
Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multimodal image registration based on binary gradient angle descriptor.
Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian
2017-12-01
Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for
Gradient-based methods for production optimization of oil reservoirs
Energy Technology Data Exchange (ETDEWEB)
Suwartadi, Eka
2012-07-01
Production optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis. The emphasis has been on numerical optimization algorithms, tested on case examples using simple hypothetical oil reservoirs. Gradientbased optimization, which utilizes adjoint-based gradient computation, is used to solve the optimization problems. The first contribution of this thesis is to address output constraint problems. These kinds of constraints are natural in production optimization. Limiting total water production and water cut at producer wells are examples of such constraints. To maintain the feasibility of an optimization solution, a Lagrangian barrier method is proposed to handle the output constraints. This method incorporates the output constraints into the objective function, thus avoiding additional computations for the constraints gradient (Jacobian) which may be detrimental to the efficiency of the adjoint method. The second contribution is the study of the use of second-order adjoint-gradient information for production optimization. In order to speedup convergence rate in the optimization, one usually uses quasi-Newton approaches such as BFGS and SR1 methods. These methods compute an approximation of the inverse of the Hessian matrix given the first-order gradient from the adjoint method. The methods may not give significant speedup if the Hessian is ill-conditioned. We have developed and implemented the Hessian matrix computation using the adjoint method. Due to high computational cost of the Newton method itself, we instead compute the Hessian-timesvector product which is used in a conjugate gradient algorithm. Finally, the last contribution of this thesis is on surrogate optimization for water flooding in the presence of the output constraints. Two kinds of model order reduction techniques are applied to build surrogate models. These are proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM
Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio
2018-04-27
Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
On the formulation of higher gradient single and polycrystal plasticity
International Nuclear Information System (INIS)
Menzel, A.; Steinmann, P.
1998-01-01
This contribution aims in a geometrically linear formulation of higher gradient plasticity of single and polycrystalline material based on the continuum theory of dislocations and incompatibilities. Thereby, general continuum dislocation densities and incompatibilities are introduced from the viewpoint of continuum mechanics by considering the spatial closure failure of arbitrary line integrals of the displacement differential. Then these findings are translated to the plastic parts of the displacement gradient, the so called plastic distortion, and the plastic strain, respectively, within an elasto-plastic solid thus defining tensor fields of plastic dislocation densities and plastic incompatibilities. Next, in the case of single crystalline material the plastic dislocation density and in the case of polycrystalline material the plastic incompatibility are considered within the exploitation of the thermodynamical principle of positive dissipation. As a result, a phenomenological but physically motivated description of hardening is obtained, which incorporates for single crystals second spatial derivatives of the plastic deformation gradient and for polycrystals fourth spatial derivatives of the plastic strains into the yield condition. Moreover, these modifications mimic the characteristic structure of kinematic hardening, whereby the backstress obeys a nonlocal evolution law. (orig.)
Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A
2017-06-01
To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Intracellular chemical gradients: morphing principle in bacteria
Directory of Open Access Journals (Sweden)
Endres Robert G
2012-09-01
Full Text Available Abstract Advances in computational biology allow systematic investigations to ascertain whether internal chemical gradients can be maintained in bacteria – an open question at the resolution limit of fluorescence microscopy. While it was previously believed that the small bacterial cell size and fast diffusion in the cytoplasm effectively remove any such gradient, a new computational study published in BMC Biophysics supports the emerging view that gradients can exist. The study arose from the recent observation that phosphorylated CtrA forms a gradient prior to cell division in Caulobacter crescentus, a bacterium known for its complicated cell cycle. Tropini et al. (2012 postulate that such gradients can provide an internal chemical compass, directing protein localization, cell division and cell development. More specifically, they describe biochemical and physical constraints on the formation of such gradients and explore a number of existing bacterial cell morphologies. These chemical gradients may limit in vitro analyses, and may ensure timing control and robustness to fluctuations during critical stages in cell development.
Modeling and control of a gravity gradient stabilised satellite
Directory of Open Access Journals (Sweden)
Aage Skullestad
1999-01-01
Full Text Available This paper describes attitude control, i.e., 3-axes stabilisation and pointing, of a proposed Norwegian small gravity gradient stabilized satellite to be launched into low earth orbit. Generally, a gravity gradient stabilised system has limited stability and pointing capabilities, and wheels and/or magnetic coils are added in order to improve the attitude control. The best attitude accuracy is achieved using wheels, which can give accuracies down to less than one degree, but wheels increase the complexity and cost of the satellite. Magnetic coils allow cheaper satellites, and are an attractive solution to small, inexpensive satellites in low earth orbits and may provide an attitude control accuracy of a few degrees. Scientific measurements often require accurate attitude control in one or two axes only. Combining wheel and coil control may, in these cases, provide the best solutions. The simulation results are based on a linearised mathematical model of the satellite.
Application of Conjugate Gradient methods to tidal simulation
Barragy, E.; Carey, G.F.; Walters, R.A.
1993-01-01
A harmonic decomposition technique is applied to the shallow water equations to yield a complex, nonsymmetric, nonlinear, Helmholtz type problem for the sea surface and an accompanying complex, nonlinear diagonal problem for the velocities. The equation for the sea surface is linearized using successive approximation and then discretized with linear, triangular finite elements. The study focuses on applying iterative methods to solve the resulting complex linear systems. The comparative evaluation includes both standard iterative methods for the real subsystems and complex versions of the well known Bi-Conjugate Gradient and Bi-Conjugate Gradient Squared methods. Several Incomplete LU type preconditioners are discussed, and the effects of node ordering, rejection strategy, domain geometry and Coriolis parameter (affecting asymmetry) are investigated. Implementation details for the complex case are discussed. Performance studies are presented and comparisons made with a frontal solver. ?? 1993.
Local beam angle optimization with linear programming and gradient search
International Nuclear Information System (INIS)
Craft, David
2007-01-01
The optimization of beam angles in IMRT planning is still an open problem, with literature focusing on heuristic strategies and exhaustive searches on discrete angle grids. We show how a beam angle set can be locally refined in a continuous manner using gradient-based optimization in the beam angle space. The gradient is derived using linear programming duality theory. Applying this local search to 100 random initial angle sets of a phantom pancreatic case demonstrates the method, and highlights the many-local-minima aspect of the BAO problem. Due to this function structure, we recommend a search strategy of a thorough global search followed by local refinement at promising beam angle sets. Extensions to nonlinear IMRT formulations are discussed. (note)
Automated gravity gradient tensor inversion for underwater object detection
International Nuclear Information System (INIS)
Wu, Lin; Tian, Jinwen
2010-01-01
Underwater abnormal object detection is a current need for the navigation security of autonomous underwater vehicles (AUVs). In this paper, an automated gravity gradient tensor inversion algorithm is proposed for the purpose of passive underwater object detection. Full-tensor gravity gradient anomalies induced by an object in the partial area can be measured with the technique of gravity gradiometry on an AUV. Then the automated algorithm utilizes the anomalies, using the inverse method to estimate the mass and barycentre location of the arbitrary-shaped object. A few tests on simple synthetic models will be illustrated, in order to evaluate the feasibility and accuracy of the new algorithm. Moreover, the method is applied to a complicated model of an abnormal object with gradiometer and AUV noise, and interference from a neighbouring illusive smaller object. In all cases tested, the estimated mass and barycentre location parameters are found to be in good agreement with the actual values
Sharp vorticity gradients in two-dimensional turbulence and the energy spectrum
DEFF Research Database (Denmark)
Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry
2010-01-01
Formation of sharp vorticity gradients in two-dimensional (2D) hydrodynamic turbulence and their influence on the turbulent spectra are considered. The analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines...... is developed and compressibility of this mapping appears as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k −3 at large k, which appear to take the same form...
Sound beam manipulation based on temperature gradients
Energy Technology Data Exchange (ETDEWEB)
Qian, Feng [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Physics & Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Quan, Li; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)
2015-10-28
Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.
First-principles calculation of electric field gradients in metals, semiconductors, and insulators
Energy Technology Data Exchange (ETDEWEB)
Zwanziger, J.W. [Dalhousie Univ, Dept Chem, Halifax, NS (Canada); Dalhousie Univ, Inst Res Mat, Halifax, NS (Canada); Torrent, M. [CEA Bruyeres-le-Chatel, Dept Phys Theor and Appl, Bruyeres 91 (France)
2008-07-01
A scheme for computing electric field gradients within the projector augmented wave (PAW) formalism of density functional theory is presented. On the basis of earlier work (M. Profeta, F. Mauri, C.J. Pickard, J. Am. Chem. Soc. 125, 541, 2003) the present implementation handles metallic cases as well as insulators and semiconductors with equal efficiency. Details of the implementation, as well as applications and the discussion of the limitations of the PAW method for computing electric field gradients are presented. (authors)
Unimodal and crossmodal gradients of spatial attention
DEFF Research Database (Denmark)
Föcker, J.; Hötting, K.; Gondan, Matthias
2010-01-01
Behavioral and event-related potential (ERP) studies have shown that spatial attention is gradually distributed around the center of the attentional focus. The present study compared uni- and crossmodal gradients of spatial attention to investigate whether the orienting of auditory and visual...... spatial attention is based on modality specific or supramodal representations of space. Auditory and visual stimuli were presented from five speaker locations positioned in the right hemifield. Participants had to attend to the innermost or outmost right position in order to detect either visual...... or auditory deviant stimuli. Detection rates and event-related potentials (ERPs) indicated that spatial attention is distributed as a gradient. Unimodal spatial ERP gradients correlated with the spatial resolution of the modality. Crossmodal spatial gradients were always broader than the corresponding...
Full Gradient Solution to Adaptive Hybrid Control
Bean, Jacob; Schiller, Noah H.; Fuller, Chris
2017-01-01
This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.
Continuous spray forming of functionally gradient materials
International Nuclear Information System (INIS)
McKechnie, T.N.; Richardson, E.H.
1995-01-01
Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers
Vegetation patterns and environmental gradients in Benin
Adomou, A.
2005-01-01
Key words: West Africa, Benin, vegetation patterns, floristic areas, phytogeography, chorology, floristic gradients, climatic factors, water availability, Dahomey Gap, threatened plants, biodiversity, conservation.Understanding plant species distribution patterns and the underlying factors is a
Coreless Concept for High Gradient Induction Cell
International Nuclear Information System (INIS)
Krasnykh, Anatoly
2008-01-01
An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments
Flexoelectricity: strain gradient effects in ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)
2007-12-15
Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.
On fracture in finite strain gradient plasticity
DEFF Research Database (Denmark)
Martínez Pañeda, Emilio; Niordson, Christian Frithiof
2016-01-01
In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields are invest......In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided. Both mechanism-based and phenomenological strain gradient plasticity (SGP) theories are implemented numerically using finite deformation theory and crack tip fields...... are investigated. Differences and similarities between the two approaches within continuum SGP modeling are highlighted and discussed. Local strain hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the crack leads to much higher stresses, relative to classical plasticity...... in the multiple parameter version of the phenomenological SGP theory. Since this also dominates the mechanics of indentation testing, results suggest that length parameters characteristic of mode I fracture should be inferred from nanoindentation....
TEK twisted gradient flow running coupling
Pérez, Margarita García; Keegan, Liam; Okawa, Masanori
2014-01-01
We measure the running of the twisted gradient flow coupling in the Twisted Eguchi-Kawai (TEK) model, the SU(N) gauge theory on a single site lattice with twisted boundary conditions in the large N limit.
Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients
Sánchez, S. F.; Sánchez-Menguiano, L.
2017-07-01
We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.
Stability of gradient semigroups under perturbations
Aragão-Costa, E. R.; Caraballo, T.; Carvalho, A. N.; Langa, J. A.
2011-07-01
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).
Stability of gradient semigroups under perturbations
International Nuclear Information System (INIS)
Aragão-Costa, E R; Carvalho, A N; Caraballo, T; Langa, J A
2011-01-01
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646–68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646–68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space)
Gradient High Performance Liquid Chromatography Method ...
African Journals Online (AJOL)
Purpose: To develop a gradient high performance liquid chromatography (HPLC) method for the simultaneous determination of phenylephrine (PHE) and ibuprofen (IBU) in solid ..... nimesulide, phenylephrine. Hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form. Acta Pol.
Ultimate gradient in solid-state accelerators
International Nuclear Information System (INIS)
Whittum, D.H.
1998-08-01
The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams
Quasistatic nonlinear viscoelasticity and gradient flows
Ball, John M.; Şengül, Yasemin
2014-01-01
We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the d...
Tolman temperature gradients in a gravitational field
Santiago, Jessica; Visser, Matt
2018-01-01
Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...
Tearing modes with pressure gradient effect in pair plasmas
International Nuclear Information System (INIS)
Cai Huishan; Li Ding; Zheng Jian
2009-01-01
The general dispersion relation of tearing mode with pressure gradient effect in pair plasmas is derived analytically. If the pressure gradients of positron and electron are not identical in pair plasmas, the pressure gradient has significant influence at tearing mode in both collisionless and collisional regimes. In collisionless regime, the effects of pressure gradient depend on its magnitude. For small pressure gradient, the growth rate of tearing mode is enhanced by pressure gradient. For large pressure gradient, the growth rate is reduced by pressure gradient. The tearing mode can even be stabilized if pressure gradient is large enough. In collisional regime, the growth rate of tearing mode is reduced by the pressure gradient. While the positron and electron have equal pressure gradient, tearing mode is not affected by pressure gradient in pair plasmas.
Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise
Zhang, Mingji; Or, Siu Wing
2017-01-01
We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME vo...
Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng
2015-09-01
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
A spiral, bi-planar gradient coil design for open magnetic resonance imaging.
Zhang, Peng; Shi, Yikai; Wang, Wendong; Wang, Yaohui
2018-01-01
To design planar gradient coil for MRI applications without discretization of continuous current density and loop-loop connection errors. In the new design method, the coil current is represented using a spiral curve function described by just a few control parameters. Using a proper parametric equation set, an ensemble of spiral contours is reshaped to satisfy the coil design requirements, such as gradient linearity, inductance and shielding. In the given case study, by using the spiral coil design, the magnetic field errors in the imaging area were reduced from 5.19% (non-spiral design) to 4.47% (spiral design) for the transverse gradient coils, and for the longitudinal gradient coil design, the magnetic field errors were reduced to 5.02% (spiral design). The numerical evaluation shows that when compared with conventional wire loop, the inductance and resistance of spiral coil was reduced by 11.55% and 8.12% for x gradient coil, respectively. A novel spiral gradient coil design for biplanar MRI systems, the new design offers better magnetic field gradients, smooth contours than the conventional connected counterpart, which improves manufacturability.
Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients
Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.
2017-12-01
Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.
Plant pollinator networks along a gradient of urbanisation.
Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle
2013-01-01
Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits ("open flowers" and "tubular flowers"). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies
Ion temperature gradient modes in toroidal helical systems
Energy Technology Data Exchange (ETDEWEB)
Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.
2000-04-01
Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)
Ion temperature gradient modes in toroidal helical systems
International Nuclear Information System (INIS)
Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M.
2000-04-01
Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of ∇B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)
Be-Cu gradient materials through controlled segregation. Basic investigations
Energy Technology Data Exchange (ETDEWEB)
Muecklich, F.; Lorinser, M.; Hartmann, S.; Beinstingel, S. [Saarland Univ., Saarbruecken (Germany); Linke, J.; Roedig, M.
1998-01-01
The joining of materials has a fundamental problematic nature: Creating a sharp interface between two different materials causes a more or less extreme jump in the properties at this point. This may result in the failure of the component under mechanical or thermal loads. In some cases there are further difficulties caused by using a third component (e.g. the transformation of Ag-lead into Cd by neutron beams). The solution may be the creating of a functionally gradient material (FGM) Be-Cu. We discuss the advantage of such a FGM and the probabilities of an new procedure for manufacturing 1-dimensional FGMs. (author)
Dimensional Representation and Gradient Boosting for Seismic Event Classification
Semmelmayer, F. C.; Kappedal, R. D.; Magana-Zook, S. A.
2017-12-01
In this research, we conducted experiments of representational structures on 5009 seismic signals with the intent of finding a method to classify signals as either an explosion or an earthquake in an automated fashion. We also applied a gradient boosted classifier. While perfect classification was not attained (approximately 88% was our best model), some cases demonstrate that many events can be filtered out as very high probability being explosions or earthquakes, diminishing subject-matter experts'(SME) workload for first stage analysis. It is our hope that these methods can be refined, further increasing the classification probability.
Conjugate gradient heat bath for ill-conditioned actions.
Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele
2007-08-01
We present a method for performing sampling from a Boltzmann distribution of an ill-conditioned quadratic action. This method is based on heat-bath thermalization along a set of conjugate directions, generated via a conjugate-gradient procedure. The resulting scheme outperforms local updates for matrices with very high condition number, since it avoids the slowing down of modes with lower eigenvalue, and has some advantages over the global heat-bath approach, compared to which it is more stable and allows for more freedom in devising case-specific optimizations.
Quasivariational Solutions for First Order Quasilinear Equations with Gradient Constraint
Rodrigues, José Francisco; Santos, Lisa
2012-08-01
We prove the existence of solutions for a quasi-variational inequality of evolution with a first order quasilinear operator and a variable convex set which is characterized by a constraint on the absolute value of the gradient that depends on the solution itself. The only required assumption on the nonlinearity of this constraint is its continuity and positivity. The method relies on an appropriate parabolic regularization and suitable a priori estimates. We also obtain the existence of stationary solutions by studying the asymptotic behaviour in time. In the variational case, corresponding to a constraint independent of the solution, we also give uniqueness results.
Energy Technology Data Exchange (ETDEWEB)
Santos, Helio M.R. dos [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao; Foutoura, Sergio A.B. da [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)
1990-12-31
The purpose of this paper is to show the influence of in-situ stresses and well geometry (direction and inclinational) on the fracture gradient. The results that are presented, obtained through computer simulation using an analytical model of the stresses around the well, show that in some cases it may be very dangerous to use fracture gradient data from vertical wells when dealing with non vertical wells. Likewise, it may also be unsafe to use results from absorption tests as the fracture gradient for the complete phase. The paper also indicates that, depending on the in-situ stresses and on the geometry of the well, the fracture gradient of a non-vertical well may be larger or smaller than that of vertical wells. Another aspects emphasized is that, through the use of more accurate calculations of the fracture gradient, it is possible to obtain great cost reduction, due to the fact that the casing strings will be designed in a more appropriate manner. (author) 12 refs., 4 figs.
Energy Technology Data Exchange (ETDEWEB)
Peeters, A. G.; Rath, F.; Buchholz, R.; Grosshauser, S. R.; Strintzi, D.; Weikl, A. [Physics Department, University of Bayreuth, Universitätsstrasse 30, Bayreuth (Germany); Camenen, Y. [Aix Marseille Univ, CNRS, PIIM, UMR 7345, Marseille (France); Candy, J. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Casson, F. J. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); Hornsby, W. A. [Max Planck Institut für Plasmaphysik, Boltzmannstrasse 2 85748 Garching (Germany)
2016-08-15
It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then does not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.
Income inequality and socioeconomic gradients in mortality.
Wilkinson, Richard G; Pickett, Kate E
2008-04-01
We investigated whether the processes underlying the association between income inequality and population health are related to those responsible for the socioeconomic gradient in health and whether health disparities are smaller when income differences are narrower. We used multilevel models in a regression analysis of 10 age- and cause-specific US county mortality rates on county median household incomes and on state income inequality. We assessed whether mortality rates more closely related to county income were also more closely related to state income inequality. We also compared mortality gradients in more- and less-equal states. Mortality rates more strongly associated with county income were more strongly associated with state income inequality: across all mortality rates, r= -0.81; P=.004. The effect of state income inequality on the socioeconomic gradient in health varied by cause of death, but greater equality usually benefited both wealthier and poorer counties. Although mortality rates with steep socioeconomic gradients were more sensitive to income distribution than were rates with flatter gradients, narrower income differences benefit people in both wealthy and poor areas and may, paradoxically, do little to reduce health disparities.
Jupiter's evolution with primordial composition gradients
Vazan, Allona; Helled, Ravit; Guillot, Tristan
2018-02-01
Recent formation and structure models of Jupiter suggest that the planet can have composition gradients and not be fully convective (adiabatic). This possibility directly affects our understanding of Jupiter's bulk composition and origin. In this Letter we present Jupiter's evolution with a primordial structure consisting of a relatively steep heavy-element gradient of 40 M⊕. We show that for a primordial structure with composition gradients, most of the mixing occurs in the outer part of the gradient during the early evolution (several 107 yr), leading to an adiabatic outer envelope (60% of Jupiter's mass). We find that the composition gradient in the deep interior persists, suggesting that 40% of Jupiter's mass can be non-adiabatic with a higher temperature than the one derived from Jupiter's atmospheric properties. The region that can potentially develop layered convection in Jupiter today is estimated to be limited to 10% of the mass. Movies associated to Figs. 1-3 are available at http://https://www.aanda.org
Gradient algorithm applied to laboratory quantum control
International Nuclear Information System (INIS)
Roslund, Jonathan; Rabitz, Herschel
2009-01-01
The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.
Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence
DEFF Research Database (Denmark)
Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry
2007-01-01
The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...
Poh, L.H.; Peerlings, R.H.J.; Geers, M.G.D.; Swaddiwudhipong, S.
2011-01-01
Many rate-independent models for metals utilize the gradient of effective plastic strain to capture size-dependent behavior. This enhancement, sometimes termed as "explicit" gradient formulation, requires higher-order tractions to be imposed on the evolving elasto-plastic boundary and the resulting
Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.
2015-01-01
Counter-gradient growth, where growth per unit temperature increases as temperature decreases, can reduce the variation in ectothermic growth rates across environmental gradients. Understanding how ectothermic species respond to changing temperatures is essential to their conservation and management due to human-altered habitats and changing climates.
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Inversion gradients for acoustic VTI wavefield tomography
Li, Vladimir; Wang, Hui; Tsvankin, Ilya; Dí az, Esteban; Alkhalifah, Tariq Ali
2017-01-01
Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.
Gradient pattern analysis applied to galaxy morphology
Rosa, R. R.; de Carvalho, R. R.; Sautter, R. A.; Barchi, P. H.; Stalder, D. H.; Moura, T. C.; Rembold, S. B.; Morell, D. R. F.; Ferreira, N. C.
2018-06-01
Gradient pattern analysis (GPA) is a well-established technique for measuring gradient bilateral asymmetries of a square numerical lattice. This paper introduces an improved version of GPA designed for galaxy morphometry. We show the performance of the new method on a selected sample of 54 896 objects from the SDSS-DR7 in common with Galaxy Zoo 1 catalogue. The results suggest that the second gradient moment, G2, has the potential to dramatically improve over more conventional morphometric parameters. It separates early- from late-type galaxies better (˜ 90 per cent) than the CAS system (C˜ 79 per cent, A˜ 50 per cent, S˜ 43 per cent) and a benchmark test shows that it is applicable to hundreds of thousands of galaxies using typical processing systems.
Dynamics of gradient formation by intracellular shuttling
Energy Technology Data Exchange (ETDEWEB)
Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)
2015-08-21
A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.
Relativistic klystrons for high-gradient accelerators
International Nuclear Information System (INIS)
Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S.; Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.
1991-01-01
Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. The authors have learned how to overcome their previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power
Substrate curvature gradient drives rapid droplet motion.
Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui
2014-07-11
Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.
Nonlinear conjugate gradient methods in micromagnetics
Directory of Open Access Journals (Sweden)
J. Fischbacher
2017-04-01
Full Text Available Conjugate gradient methods for energy minimization in micromagnetics are compared. The comparison of analytic results with numerical simulation shows that standard conjugate gradient method may fail to produce correct results. A method that restricts the step length in the line search is introduced, in order to avoid this problem. When the step length in the line search is controlled, conjugate gradient techniques are a fast and reliable way to compute the hysteresis properties of permanent magnets. The method is applied to investigate demagnetizing effects in NdFe12 based permanent magnets. The reduction of the coercive field by demagnetizing effects is μ0ΔH = 1.4 T at 450 K.
Inversion gradients for acoustic VTI wavefield tomography
Li, Vladimir
2017-03-21
Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a generalized pseudospectral operator based on a separable approximation for the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified image-power objective functions. We also obtain the gradient expressions for a data-domain objective function that can more easily incorporate borehole information necessary for stable VTI velocity analysis. These gradients are similar to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations but the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show the potential advantages of the modified image-power objective function in estimating the anellipticity parameter η.
Vertical gradients of sunspot magnetic fields
Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.
1983-01-01
The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.
Conjugate gradient algorithms using multiple recursions
Energy Technology Data Exchange (ETDEWEB)
Barth, T.; Manteuffel, T.
1996-12-31
Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.
METALLICITY GRADIENTS OF THICK DISK DWARF STARS
Energy Technology Data Exchange (ETDEWEB)
Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
2012-12-01
We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.
Review of new shapes for higher gradients
International Nuclear Information System (INIS)
Geng, R.L.
2006-01-01
High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient E acc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field H pk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field H crit,RF , a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of H pk /E acc has been recently proposed. For a reduced H pk /E acc , a higher ultimate E acc is sustained when H pk finally strikes H crit,RF . The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called 'Low-loss' shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration
Review of new shapes for higher gradients
Geng, R. L.
2006-07-01
High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient Eacc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field Hpk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field Hcrit,RF, a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of Hpk/ Eacc has been recently proposed. For a reduced Hpk/ Eacc, a higher ultimate Eacc is sustained when Hpk finally strikes Hcrit,RF. The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called “Low-loss” shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration.
Frequency Analysis of Gradient Estimators in Volume Rendering
Bentum, Marinus Jan; Lichtenbelt, Barthold B.A.; Malzbender, Tom
1996-01-01
Gradient information is used in volume rendering to classify and color samples along a ray. In this paper, we present an analysis of the theoretically ideal gradient estimator and compare it to some commonly used gradient estimators. A new method is presented to calculate the gradient at arbitrary
Lactate uptake against a concentration gradient
DEFF Research Database (Denmark)
Nordström, Carl-Henrik; Nielsen, Troels Halfeld; Nielsen, Hans Boye
2014-01-01
The recently published article by Jalloh et al (Jalloh I, Helmy A, Shannon RJ, Gallagher CN, Menon D, Carpenter K, Hutchinson P. Lactate uptake by the injured human brain - evidence from an arterio-venous gradient and cerebral microdialysis study. J Neurotrauma. 2013 Aug 22. [Epub ahead of print......]) concludes that lactate may be transported across the blood brain barrier into the brain against a concentration gradient. Unfortunately the authors have misinterpreted the concept of analytical imprecision and their conclusion is based on analytical artifact. As the topic of lactate transport into the brain...
Measurement of gradient magnetic field temporal characteristics
International Nuclear Information System (INIS)
Bartusek, K.; Jflek, B.
1994-01-01
We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters
Magnetic field of longitudinal gradient bend
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
CFRMF neutron flux gradient and spectral determinations
International Nuclear Information System (INIS)
Rogers, J.W.; Turk, E.H.; Hogg, C.H.
1976-01-01
Recently more accurate and complete measurements of the flux gradient have been measured by the activation of 235 U and Au samples. Neutron spectrum characteristics were studied by making activation measurements with and without the ends of the CFRMF test region plugged with 10 B. These measurements define the flux gradient to +-1 to 2% and indicate there is no detectable streaming of thermal or resonance neutrons from the ends in the central 30 cm of the CFRMF test region. Measurements of the Cd ratio of Au foil activations were conducted and these results also indicate there is no streaming of thermal and resonance neutrons into the CFRMF test region
The effect of density gradients on hydrometers
Heinonen, Martti; Sillanpää, Sampo
2003-05-01
Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.
Relativistic klystron research for high gradient accelerators
International Nuclear Information System (INIS)
Allen, M.A.; Callin, R.S.; Deruyter, H.
1988-06-01
Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs
Gradient Learning Algorithms for Ontology Computing
Gao, Wei; Zhu, Linli
2014-01-01
The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752
Gradient Learning Algorithms for Ontology Computing
Directory of Open Access Journals (Sweden)
Wei Gao
2014-01-01
Full Text Available The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting.
Sensitivity of ITER MHD global stability to edge pressure gradients
International Nuclear Information System (INIS)
Hogan, J.T.; Martynov, A.
1994-01-01
In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4-5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g = 2-3 are found. Thus, the assumption of ITER stability limits higher than g = 2 must be treated with caution
Motion-compensating gradients in the study of multiple sclerosis
International Nuclear Information System (INIS)
Runge, V.M.; Wood, M.L.; Kaufman, D.L.
1987-01-01
A low bandwidth motion compensating technique (no. 1) was compared with a conventional spin-echo technique (no. 2) in 20 patients with multiple sclerosis using a 1.0-T MR imaging system. In technique 1, refocusing gradients were employed to compensate for motion of constant velocity along the frequency-encoding direction. The sampling time was also increased to provide a greater S/N. Use of technique 1 was resulted in detection of 42% +- 23% more lesions (n = 8). The contrast-to-noise ratio for gray versus white matter improved by 87% +- 54% and that for lesion versus white matter by 66% +- 22%. The S/N for white matter improved by 56% +- 25%. An increase in chemical shift artifact was noted but not felt to be detrimental to lesion visualization. In the majority of cases, normal brain stem structures were more distinctly visualized. In two cases, pontine lesions were more clearly demarcated due to reduced pulsation artifacts. The combined use of refocusing gradients and low bandwidth techniques provides reduction of motion artifacts (from CSF and vessel pulsation) and improved S/N, leading to improved lesion detection
Theory of neoclassical ion temperature-gradient-driven turbulence
Kim, Y. B.; Diamond, P. H.; Biglari, H.; Callen, J. D.
1991-02-01
The theory of collisionless fluid ion temperature-gradient-driven turbulence is extended to the collisional banana-plateau regime. Neoclassical ion fluid evolution equations are developed and utilized to investigate linear and nonlinear dynamics of negative compressibility ηi modes (ηi≡d ln Ti/d ln ni). In the low-frequency limit (ωB2p. As a result of these modifications, growth rates are dissipative, rather than sonic, and radial mode widths are broadened [i.e., γ˜k2∥c2s(ηi -(2)/(3) )/μi, Δx˜ρs(Bt/Bp) (1+ηi)1/2, where k∥, cs, and ρs are the parallel wave number, sound velocity, and ion gyroradius, respectively]. In the limit of weak viscous damping, enhanced neoclassical polarization persists and broadens radial mode widths. Linear mixing length estimates and renormalized turbulence theory are used to determine the ion thermal diffusivity in both cases. In both cases, a strong favorable dependence of ion thermal diffusivity on Bp (and hence plasma current) is exhibited. Furthermore, the ion thermal diffusivity for long wavelength modes exhibits favorable density scaling. The possible role of neoclassical ion temperature-gradient-driven modes in edge fluctuations and transport in L-phase discharges and the L to H transition is discussed.
Magnetoelectric Transverse Gradient Sensor with High Detection Sensitivity and Low Gradient Noise.
Zhang, Mingji; Or, Siu Wing
2017-10-25
We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/ f ) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
Energy Transfer Using Gradient Index Metamaterial
Directory of Open Access Journals (Sweden)
Boopalan Ganapathy
2018-01-01
Full Text Available The gradient refractive index structure in this paper is used to increase the quantum of energy transfer. This is done by improving the directive gain of the pyramidal horn antenna at a frequency of 10 GHz. A three-dimensional array of closed square rings is placed in front of the horn antenna aperture to form a gradient refractive index structure. This structure increases the directive gain by 1.6 dB as compared to that of the conventional horn antenna. The structure nearly doubles the wireless power transfer quantum between the transmitter and the receiver when placed at both ends. The increase in the directivity is achieved by converting the spherical wave emanating from the horn to a plane wave once it passes through the structure. This transformation is realized by the gradient refractive index structure being placed perpendicular to the direction of propagation. The gradient refractive index is constructed by changing the dimensions of a closed square ring placed in the unit cell of the array. The change in the refractive index gives rise to an improvement of the half power beam width and side lobe level compared to that of the normal horn. The design and simulation were done using CST Studio software.
Crack Tip Mechanics in Distortion Gradient Plasticity
DEFF Research Database (Denmark)
Fuentes-Alonso, Sandra; Martínez Pañeda, Emilio
2017-01-01
Gradient Plasticity (DGP), the influence on crack tip mechanics of DGP's distinguishing features that entail superior modelling capabilities has not been investigated yet. In this work crack tip fields are thoroughly examined by implementing the higher order theory of DGP in an implicit finite element...
Discrete gradients in discrete classical mechanics
International Nuclear Information System (INIS)
Renna, L.
1987-01-01
A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated
Gradient based filtering of digital elevation models
DEFF Research Database (Denmark)
Knudsen, Thomas; Andersen, Rune Carbuhn
We present a filtering method for digital terrain models (DTMs). The method is based on mathematical morphological filtering within gradient (slope) defined domains. The intention with the filtering procedure is to improbé the cartographic quality of height contours generated from a DTM based...
Gradient Space under Orthography and Perspective
1982-05-24
surfaceorientation to image geometry [8, 9, 10, 13, 15]. The descriptions of important gradient space properties, however, have been scattered throughout...Kanade, T. A Theory of Origami World. Artificial Intelligence 13:279-311, 1980. *[8] Kanade, T. and Kender, J. Mapping Image Properies into Shape
Joining of Tungsten Armor Using Functional Gradients
International Nuclear Information System (INIS)
John Scott O'Dell
2006-01-01
The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.
Mass balance gradients and climatic change
Oerlemans, J.; Hoogendoorn, N.C.
1989-01-01
It is generally assumed that the mass-balance gradient on glaciers is more or less conserved under climatic change. In studies of the dynamic response of glaciers to climatic change, one of the following assumptions is normally made: (i) the mass-balance perturbation is independent of altitude
Considerations of ion temperature gradient driven turbulence
International Nuclear Information System (INIS)
Cowley, S.C.; Kulsrud, R.M.
1991-02-01
The ion temperature gradient driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. We show that eddies which are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be alternative to the usual Fourier mode picture in which the mode is localized around the surface where k parallel = 0. We show how these elongated twisting eddies, which are an integral part of the ''ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. We argue that this mechanism isotropizes ion temperature gradient turbulence. We further argue that the ''mixing length'' is set by this nonlinear process, not by a linear eigenmode width. 17 refs., 6 figs
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Gradient computation for VTI acoustic wavefield tomography
Li, Vladimir
2016-09-06
Wavefield tomography can handle complex subsurface geology better than ray-based techniques and, ultimately, provide a higher resolution. Here, we implement forward and adjoint wavefield extrapolation for VTI (transversely isotropic with a vertical symmetry axis) media using a pseudospectral operator that employes a separable approximation of the P-wave dispersion relation. This operator is employed to derive the gradients of the differential semblance optimization (DSO) and modified stack-power objective functions. We also obtain the gradient expressions for the data-domain objective function, which can incorporate borehole information necessary for stable VTI velocity analysis. These gradients are compared to the ones obtained with a space-time finite-difference (FD) scheme for a system of coupled wave equations. Whereas the kernels computed with the two wave-equation operators are similar, the pseudospectral method is not hampered by the imprint of the shear-wave artifact. Numerical examples also show that the modified stack-power objective function produces cleaner gradients than the more conventional DSO operator.
Conjugate Gradient Algorithms For Manipulator Simulation
Fijany, Amir; Scheid, Robert E.
1991-01-01
Report discusses applicability of conjugate-gradient algorithms to computation of forward dynamics of robotic manipulators. Rapid computation of forward dynamics essential to teleoperation and other advanced robotic applications. Part of continuing effort to find algorithms meeting requirements for increased computational efficiency and speed. Method used for iterative solution of systems of linear equations.
Subspace learning from image gradient orientations
Tzimiropoulos, Georgios; Zafeiriou, Stefanos; Pantic, Maja
2012-01-01
We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As image data is typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities fails very often to estimate reliably the
Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows
Cadel, Daniel; Lowe, K. Todd
2015-11-01
Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.
Space-time symmetries and the Yang-Mills gradient flow
Del Debbio, Luigi; Rago, Antonio
2013-01-01
The recent introduction of the gradient flow has provided a new tool to probe the dynamics of quantum field theories. The latest developments have shown how to use the gradient flow for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In this paper we introduce infinitesimal translations along the gradient flow for gauge theories, and study the corresponding Ward identities. This approach is readily generalized to the case of gauge theories defined on a lattice, where the regulator breaks translation invariance. The Ward identities in this case lead to a nonperturbative renormalization of the energy-momentum tensor. We discuss an application of this method to the study of dilatations and scale invariance on the lattice.
International Nuclear Information System (INIS)
Rukolaine, Sergey A.
2010-01-01
Optimal shape design problems of steady-state radiative heat transfer are considered. The optimal shape design problem (in the three-dimensional space) is formulated as an inverse one, i.e., in the form of an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem via a least-squares objective functional. The minimization problem has to be solved numerically. Gradient minimization methods need the gradient of a functional to be minimized. In this paper the shape gradient of the least-squares objective functional is derived with the help of the shape sensitivity analysis and adjoint problem method. In practice a surface to be optimized may be (or, most likely, is to be) given in a parametric form by a finite number of parameters. In this case the objective functional is, in fact, a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. The gradient of the objective functional, in the case that the surface to be optimized is given in a finite-parametric form, is derived from the shape gradient. A particular case, that a surface to be optimized is a 'two-dimensional' polyhedral one, is considered. The technique, developed in the paper, is applied to a synthetic problem of designing a 'two-dimensional' radiant enclosure.
On the rigidity of rank gradient in a group of intermediate growth
Grigorchuk, Rostislav; Kravchenko, Rostyslav
2018-01-01
We introduce and investigate the rigidity property of rank gradient in the case of the group $\\mathcal G$ of intermediate growth constructed by the first author. We show that $\\mathcal G$ is normally $(f,g)$-RG rigid where $f(n)=\\log(n)$ and $g(n) =\\log(\\log(n)).$
The electron temperature gradient instability in presence of a limiter with tilted plates
International Nuclear Information System (INIS)
Farina, D.; Pozzoli, R.; Ryutov, D.
1994-01-01
The analysis of the electron temperature gradient instability in the scrape-off layer is generalized to the case of non-orthogonal intersections of the magnetic field with the wall surface, a situation which is most typical for a tokamak with a limiter. (orig.)
Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen
2018-01-01
The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.
Gradient waveform pre-emphasis based on the gradient system transfer function.
Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert
2018-02-25
The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.
Degraded character recognition based on gradient pattern
Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash
2010-02-01
Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.
Voltammetry under a Controlled Temperature Gradient
Directory of Open Access Journals (Sweden)
Jan Krejci, Jr.
2010-07-01
Full Text Available Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference.
Anisotropic gradients in the upper mantle
International Nuclear Information System (INIS)
Garmany, J.
1981-01-01
Pn amplitudes in some widely spaced sets of orthogonal marine refraction lines on young oceanic crust are greater in the fast direction than in the slow direction. This is inconsistent with the predicted amplitude behavior for simple head waves, but can be explained by an increase in anisotropy with depth. It appears that these gradients are due to increasing olivine crystal orientation, although changes in the relative abundance of two anisotropic minerals without variable tectonization could also account for the observations. Depth variation of tectonization most probably indicates very high temperature gradients at the Moho. This would imply a substantial amount of convective heat transport in the whole oceanic crust near mid-ocean rises
Model predictive control for wind power gradients
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Boyd, Stephen; Jørgensen, John Bagterp
2015-01-01
We consider the operation of a wind turbine and a connected local battery or other electrical storage device, taking into account varying wind speed, with the goal of maximizing the total energy generated while respecting limits on the time derivative (gradient) of power delivered to the grid. We...... ranges. The system dynamics are quite non-linear, and the constraints and objectives are not convex functions of the control inputs, so the resulting optimal control problem is difficult to solve globally. In this paper, we show that by a novel change of variables, which focuses on power flows, we can...... wind data and modern wind forecasting methods. The simulation results using real wind data demonstrate the ability to reject the disturbances from fast changes in wind speed, ensuring certain power gradients, with an insignificant loss in energy production....
Entanglement-Gradient Routing for Quantum Networks.
Gyongyosi, Laszlo; Imre, Sandor
2017-10-27
We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.
Social gradients in periodontal diseases among adolescents.
López, Rodrigo; Fernández, Olaya; Baelum, Vibeke
2006-06-01
To investigate the association between socioeconomic position and periodontal diseases among adolescents. Data were obtained from 9203 Chilean high school students. Clinical examinations included direct recordings of clinical attachment level and the necrotizing ulcerative gingival lesions. Students answered a questionnaire on various dimensions of socioeconomic position. Seven periodontal outcomes were analyzed. Logistic regression analyses were used to identify socioeconomic variables associated with the periodontal outcomes. The occurrence of all periodontal outcomes investigated followed social gradients, and paternal income and parental education were the most influential variables. The study demonstrates the existence of significant social gradients in periodontal diseases already among adolescents. This is worrying, and indicates a new potential for further insight into the mechanisms of periodontal disease causation.
Opinion formation models on a gradient.
Directory of Open Access Journals (Sweden)
Michael T Gastner
Full Text Available Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales proportional g(-1/4, not proportional g(-4/7 as in independent percolation, and the cluster size distribution is consistent with first-order percolation.
Superconducting niobium cavities with high gradients
International Nuclear Information System (INIS)
Kneisel, P.; Saito, K.
1992-01-01
Present accelerator projects making use of superconducting cavity technology are constructed with design accelerating gradients E acc ranging between 5 MV/m and 8 MV/m and Q-values of several 10 9 . Future plans for upgrades of existing accelerators or for linear colliders call for gradients greater than 15 MV/m corresponding to peak surface electric fields above 30 MV/m. These demands challenge state-of-the-art production technology and require improvements in processing and handling of these cavities to overcome the major performance limitation of field emission loading. This paper reports on efforts to improve the performance of cavities made from niobium from different suppliers by using improved cleaning techniques after processing and ultrahigh vacuum annealing at temperatures of 1400 C. In single cell L-band cavities peak surface electric fields as high as 50 MV/m have been measured without significant field emission loading. (Author) 8 refs., fig
Optimizing sampling approaches along ecological gradients
DEFF Research Database (Denmark)
Schweiger, Andreas; Irl, Severin D. H.; Steinbauer, Manuel
2016-01-01
1. Natural scientists and especially ecologists use manipulative experiments or field observations along gradients to differentiate patterns driven by processes from those caused by random noise. A well-conceived sampling design is essential for identifying, analysing and reporting underlying...... patterns in a statistically solid and reproducible manner, given the normal restrictions in labour, time and money. However, a technical guideline about an adequate sampling design to maximize prediction success under restricted resources is lacking. This study aims at developing such a solid...... and reproducible guideline for sampling along gradients in all fields of ecology and science in general. 2. We conducted simulations with artificial data for five common response types known in ecology, each represented by a simple function (no response, linear, exponential, symmetric unimodal and asymmetric...
Spectrum of resistivity gradient driven turbulence
International Nuclear Information System (INIS)
Terry, P.W.; Diamond, P.H.; Shaing, K.C.; Garcia, L.; Carreras, B.A.
1986-01-01
The resistivity fluctuation correlation function and electrostatic potential spectrum of resistivity gradient driven turbulence are calculated analytically and compared to the results of three dimensional numerical calculations. Resistivity gradient driven turbulence is characterized by effective Reynolds' numbers of order unity. Steady-state solution of the renormalized spectrum equations yields an electrostatic potential spectrum (circumflex phi 2 )/sub ktheta/ approx. k/sub theta//sup -3.25/. Agreement of the analytically calculated potential spectrum and mean-square radial velocity with the results of multiple helicity numerical calculations is excellent. This comparison constitutes a quantitative test of the analytical turbulence theory used. The spectrum of magnetic fluctuations is also calculated, and agrees well with that obtained from the numerical computations. 13 refs., 8 figs
Transport due to ion pressure gradient turbulence
International Nuclear Information System (INIS)
Connor, J.W.
1986-01-01
Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)
Radial oxygen gradients over rat cortex arterioles
Galler, Michael
2011-01-01
Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...
Sodium setpoint and gradient in bicarbonate hemodialysis.
Basile, Carlo; Libutti, Pasquale; Lisi, Piero; Vernaglione, Luigi; Casucci, Francesco; Losurdo, Nicola; Teutonico, Annalisa; Lomonte, Carlo
2013-01-01
The demonstration of an individual osmolar setpoint in hemodialysis (HD) is crucial to individualize dialysate sodium concentrations. Furthermore, the diffusive gradient between plasma and dialysate sodium is important in the "fine tuning" of the intradialytic sodium mass balance (MB). The design of this study included part A: a retrospective analysis of predialysis plasma sodium concentrations extracted from a 6-year database in our HD population (147 prevalent white anuric patients); and part B: study of intradialytic sodium kinetics in 48 patients undergoing one 4-hour bicarbonate HD session. Direct potentiometry with an ion-selective electrode was used for sodium measurements. Study part A: the mean number of plasma sodium measurements per patient was 16.06 ± 14.03 over a mean follow-up of 3.55 ± 1.76 years. The mean of the averaged plasma sodium concentrations was 136.7 ± 2.1 mmol/L, with a low mean intraindividual coefficient of variation (1.39 ± 0.4). Study part B: mean predialysis and postdialysis plasma sodium concentrations were 135.8 ± 0.9 and 138.0 ± 0.9 mmol/L (p<0.001). Mean inlet dialyzer sodium concentration was 138.7 ± 1.1 mmol/L; the hourly diffusion concentration gradients showed a statistically significant transfer from dialysate to plasma (Wilks ? <0.0001). A statistically significant relationship was found between sodium MB and diffusion gradient (p<0.02), and between sodium MB and ultrafiltration volume (p<0.01). A relatively "fixed" and individual osmolar setpoint in HD patients was shown for the first time in a long-term follow-up. A dialysate sodium concentration of 140 mmol/L determined a dialysate to plasma sodium gradient.
High gradient accelerators for linear light sources
International Nuclear Information System (INIS)
Barletta, W.A.
1988-01-01
Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs
CERN/KEK: Very high accelerating gradients
Energy Technology Data Exchange (ETDEWEB)
Anon.
1993-01-15
Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible.
Error Estimation in Preconditioned Conjugate Gradients
Czech Academy of Sciences Publication Activity Database
Strakoš, Zdeněk; Tichý, Petr
2005-01-01
Roč. 45, - (2005), s. 789-817 ISSN 0006-3835 R&D Projects: GA AV ČR 1ET400300415; GA AV ČR KJB1030306 Institutional research plan: CEZ:AV0Z10300504 Keywords : preconditioned conjugate gradient method * error bounds * stopping criteria * evaluation of convergence * numerical stability * finite precision arithmetic * rounding errors Subject RIV: BA - General Mathematics Impact factor: 0.509, year: 2005
Conjugate gradient optimization programs for shuttle reentry
Powers, W. F.; Jacobson, R. A.; Leonard, D. A.
1972-01-01
Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.
M-step preconditioned conjugate gradient methods
Adams, L.
1983-01-01
Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.
Pressure gradient turbulent transport and collisionless reconnection
International Nuclear Information System (INIS)
Connor, J.W.
1993-01-01
The scale invariance technique is employed to discuss pressure gradient driven turbulent transport when an Ohm's law with electron inertia, rather than resistivity, is relevant. An expression for thermal diffusivity which has many features appropriate to L-mode transport in tokamaks, is seen to have greater generality than indicated by their particular calculation. The results of applying the technique to a more appropriate collisionless Ohm's law are discussed. (Author)
CERN/KEK: Very high accelerating gradients
International Nuclear Information System (INIS)
Anon.
1993-01-01
Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible
Designing optimal nanofocusing with a gradient hyperlens
Directory of Open Access Journals (Sweden)
Shen Lian
2017-11-01
Full Text Available We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT, which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.
Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients
Yu, Mingbiao; Cai, Tijing
2018-05-01
The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.
Self-organization of intracellular gradients during mitosis
Directory of Open Access Journals (Sweden)
Fuller Brian G
2010-01-01
Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.
A Penalization-Gradient Algorithm for Variational Inequalities
Directory of Open Access Journals (Sweden)
Abdellatif Moudafi
2011-01-01
Full Text Available This paper is concerned with the study of a penalization-gradient algorithm for solving variational inequalities, namely, find x̅∈C such that 〈Ax̅,y-x̅〉≥0 for all y∈C, where A:H→H is a single-valued operator, C is a closed convex set of a real Hilbert space H. Given Ψ:H→R ∪ {+∞} which acts as a penalization function with respect to the constraint x̅∈C, and a penalization parameter βk, we consider an algorithm which alternates a proximal step with respect to ∂Ψ and a gradient step with respect to A and reads as xk=(I+λkβk∂Ψ-1(xk-1-λkAxk-1. Under mild hypotheses, we obtain weak convergence for an inverse strongly monotone operator and strong convergence for a Lipschitz continuous and strongly monotone operator. Applications to hierarchical minimization and fixed-point problems are also given and the multivalued case is reached by replacing the multivalued operator by its Yosida approximate which is always Lipschitz continuous.
Convergence in gradient systems with branching of equilibria
International Nuclear Information System (INIS)
Galaktionov, V A; Pohozaev, Stanislav I; Shishkov, A E
2007-01-01
The basic model is a semilinear elliptic equation with coercive C 1 non-linearity: Δψ+f(ψ)=0 in Ω, ψ=0 on ∂Ω, where Ω subset of R N is a bounded smooth domain. The main hypothesis (H R ) about resonance branching is as follows: if a branching of equilibria occurs at a point ψ with k-dimensional kernel of the linearized operator Δ+f'(ψ)I, then the branching subset S k at ψ is a locally smooth k-dimensional manifold. For N=1 the first result on the stabilization to a single equilibrium is due to Zelenyak (1968). It is shown that Zelenyak's approach, which is based on the analysis of Lyapunov functions, can be extended to general gradient systems in Hilbert spaces with smooth resonance branching. The case of asymptotically small non-autonomous perturbations of such systems is also considered. The approach developed here represents an alternative to Hale's stabilization method (1992) and other similar techniques in the theory of gradient systems. Bibliography: 32 titles.
Blind separation of positive sources by globally convergent gradient search.
Oja, Erkki; Plumbley, Mark
2004-09-01
The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.
Variable high gradient permanent magnet quadrupole (QUAPEVA)
Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.
2017-12-01
Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.
Gradient Dynamics and Entropy Production Maximization
Janečka, Adam; Pavelka, Michal
2018-01-01
We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.
Measurement of carotid bifurcation pressure gradients using the Bernoulli principle.
Illig, K A; Ouriel, K; DeWeese, J A; Holen, J; Green, R M
1996-04-01
Current randomized prospective studies suggest that the degree of carotid stenosis is a critical element in deciding whether surgical or medical treatment is appropriate. Of potential interest is the actual pressure drop caused by the blockage, but no direct non-invasive means of quantifying the hemodynamic consequences of carotid artery stenoses currently exists. The present prospective study examined whether preoperative pulsed-Doppler duplex ultrasonographic velocity (v) measurements could be used to predict pressure gradients (delta P) caused by carotid artery stenoses, and whether such measurements could be used to predict angiographic percent diameter reduction. Preoperative Doppler velocity and intraoperative direct pressure measurements were obtained, and per cent diameter angiographic stenosis measured in 76 consecutive patients who underwent 77 elective carotid endarterectomies. Using the Bernoulli principle (delta P = 4v(2), pressure gradients across the stenoses were calculated. The predicted delta P, as well as absolute velocities and internal carotid artery/common carotid velocity ratios were compared with the actual delta P measured intraoperatively and with preoperative angiography and oculopneumoplethysmography (OPG) results. An end-diastolic velocity of > or = 1 m/s and an end-diastolic internal carotid artery/common carotid artery velocity ratio of > or = 10 predicted a 50% diameter angiographic stenosis with 100% specificity. Although statistical significance was reached, preoperative pressure gradients derived from the Bernoulli equation could not predict actual individual intraoperative pressure gradients with enough accuracy to allow decision making on an individual basis. Velocity measurements were as specific and more sensitive than OPG results. Delta P as predicted by the Bernoulli equation is not sufficiently accurate at the carotid bifurcation to be useful for clinical decision making on an individual basis. However, end
Gentamicin concentration gradients in scala tympani perilymph following systemic applications.
Hahn, Hartmut; Salt, Alec N; Schumacher, Ulrike; Plontke, Stefan K
2013-01-01
It has been shown in prior studies that round window membrane (RWM) application of gentamicin produced a robust basal-apical concentration gradient in the perilymph of scala tympani (ST) with peak concentrations in the basal turn of ST. These gradients potentially contribute to the clinical efficacy and safety of intratympanic gentamicin applications for the treatment of Ménière's disease. The present study aimed to establish the distribution of gentamicin along ST perilymph after systemic applications. Gentamicin sulfate was applied intravenously in the amounts of 100, 300 and 600 mg/kg body weight (BW) over a period of 3 h or as a 300 mg/kg BW subcutaneous bolus injection. At 3 and 5 h after the start of the application perilymph of ST was aspirated from the cochlea apex of the right and left cochlea, respectively, and 10 sequential 1-µl perilymph samples from the apex of each cochlea were quantitatively analyzed using a fluorescence polarization immunoassay. In contrast to local RWM delivery, systemic application of gentamicin resulted in the highest perilymph levels in the apex of the cochlea with decreasing concentrations towards the basal regions of ST. The absolute gentamicin concentrations increased with the amount of drug applied and time before sampling. While it is likely that the basal-apical gradient measured after local drug applications to the round window niche is the result of the direct uptake of drugs into the perilymph of the ST, distribution by diffusion and a very low perilymph flow towards the cochlear apex, computer simulations suggested that the apical-basal gradient observed with these systemic applications can be explained by higher entry rates of gentamicin in the apex compared to the basal turns of the cochlea. It is also possible that gentamicin enters perilymph indirectly from the blood via the endolymph. In this case the faster kinetics in apical turns could be due to the smaller cross-sectional area of ST relative to endolymph in
Growth of fibroblasts and endothelial cells on wettability gradient surfaces
Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ
1997-01-01
The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using
A strain gradient plasticity theory with application to wire torsion
Liu, J. X.; El Sayed, Tamer S.
2014-01-01
Based on the framework of the existing strain gradient plasticity theories, we have examined three kinds of relations for the plastic strain dependence of the material intrinsic length scale, and thus developed updated strain gradient plasticity
Doorey, Andrew J; Gakhal, Mandip; Pasquale, Michael J
2006-04-01
Suspected prosthetic valve dysfunction is a difficult clinical problem, because of the high risk of repeat valvular surgery. Echocardiographic measurements of prosthetic valvular dysfunction can be misleading, especially with bileaflet valves. Direct measurement of trans-valvular gradients is problematic because of potentially serious catheter entrapment issues. We report a case in which a high-fidelity pressure sensor angioplasty guidewire was used to cross prosthetic mitral and aortic valves in a patient, with hemodynamic and echocardiographic assessment. This technique was safe and effective, refuting the inaccurate non-invasive tests that over-estimated the aortic valvular gradient.
East-West gradient in the incidence of inflammatory bowel disease in Europe
DEFF Research Database (Denmark)
Burisch, J.; Pedersen, N; Cukovic-Cavka, S
2014-01-01
OBJECTIVE: The incidence of inflammatory bowel disease (IBD) is increasing in Eastern Europe. The reasons for these changes remain unknown. The aim of this study was to investigate whether an East-West gradient in the incidence of IBD in Europe exists. DESIGN: A prospective, uniformly diagnosed...... treatment as rescue therapy. Of all European CD patients, 20% received only 5-aminosalicylates as induction therapy. CONCLUSIONS: An East-West gradient in IBD incidence exists in Europe. Among this inception cohort-including indolent and aggressive cases-international guidelines for diagnosis and initial...
Modified cuckoo search: A new gradient free optimisation algorithm
International Nuclear Information System (INIS)
Walton, S.; Hassan, O.; Morgan, K.; Brown, M.R.
2011-01-01
Highlights: → Modified cuckoo search (MCS) is a new gradient free optimisation algorithm. → MCS shows a high convergence rate, able to outperform other optimisers. → MCS is particularly strong at high dimension objective functions. → MCS performs well when applied to engineering problems. - Abstract: A new robust optimisation algorithm, which can be regarded as a modification of the recently developed cuckoo search, is presented. The modification involves the addition of information exchange between the top eggs, or the best solutions. Standard optimisation benchmarking functions are used to test the effects of these modifications and it is demonstrated that, in most cases, the modified cuckoo search performs as well as, or better than, the standard cuckoo search, a particle swarm optimiser, and a differential evolution strategy. In particular the modified cuckoo search shows a high convergence rate to the true global minimum even at high numbers of dimensions.
Gradient-based stochastic estimation of the density matrix
Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton
2018-03-01
Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.
Recognition of handwritten characters using local gradient feature descriptors
Surinta, Olarik; Karaaba, Mahir F.; Schomaker, Lambert R.B.; Wiering, Marco A.
2015-01-01
Abstract In this paper we propose to use local gradient feature descriptors, namely the scale invariant feature transform keypoint descriptor and the histogram of oriented gradients, for handwritten character recognition. The local gradient feature descriptors are used to extract feature vectors
International Nuclear Information System (INIS)
Roidl, B.; Meinke, M.; Schröder, W.
2014-01-01
Highlights: • Reformulated synthetic turbulence generation method (RSTGM) is applied. • Zonal RANS-LES method is applied to boundary layers at pressure gradients. • Good agreement with the pure LES and other reference data is obtained. • The RSTGM is applicable to pressure gradient flows without modification. • RANS-to-LES boundary should be located where -1·10 6 6 is satisfied. -- Abstract: The reformulated synthetic turbulence generation (RSTG) method is used to compute by a fully coupled zonal RANS-LES approach turbulent non-zero-pressure gradient boundary layers. The quality of the RSTG method, which is based on the same shape functions and length scale distributions as in zero-pressure gradient flow, is discussed by comparing the zonal RANS-LES findings with pure LES, pure RANS, direct numerical simulation (DNS), and experimental data. For the favorable pressure gradient (FPG) simulation the RANS-to-LES transition occurs in the accelerated flow region and for the adverse pressure gradient (APG) case it is located in the decelerated flow region. The results of the time and spanwise averaged skin-friction distributions, velocity profiles, and Reynolds stress distributions of the zonal RANS-LES simulation show a satisfactory to good agreement with the pure LES, reference DNS, and experimental data. The quality of the findings shows that the rigorous formulation of the synthetic turbulence generation makes the RSTG method applicable without a priori knowledge of the flow properties but those determined by the RANS solution and without using additional control planes to regulate the shear stress budget to a wide range of Reynolds numbers and pressure gradients. The method is a promising approach to formulate embedded RANS-to-LES boundaries in flow regions where the Pohlhausen or acceleration parameter satisfies -1·10 -6 ⩽K⩽2·10 -6
The evolution of conditional dispersal and reproductive isolation along environmental gradients.
Payne, Joshua L; Mazzucco, Rupert; Dieckmann, Ulf
2011-03-21
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels
Total variation superiorized conjugate gradient method for image reconstruction
Zibetti, Marcelo V. W.; Lin, Chuan; Herman, Gabor T.
2018-03-01
The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Non-linear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ɛ. It is proved that, for any given ɛ that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ɛ. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ɛ of the half-squared residual.
The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator
International Nuclear Information System (INIS)
Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.
1999-01-01
The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics
Djebbi, Ramzi
2015-08-19
The instantaneous traveltime is able to reduce the non-linearity of full waveform inversion (FWI) that originates from the wrapping of the phase. However, the adjoint state method in this case requires a total of 5 modeling calculations to compute the gradient. Also, considering the larger modeling cost for anisotropic wavefield extrapolation and the necessity to use a line-search algorithm to estimate a step length that depends on the parameters scale, we propose to calculate the gradient based on the instantaneous traveltime sensitivity kernels. We, specifically, use the sensitivity kernels computed using dynamic ray-tracing to build the gradient. The resulting update is computed using a matrix decomposition and accordingly the computational cost is reduced. We consider a simple example where an anomaly is embedded into a constant background medium and we compute the update for the VTI wave equation parameterized using vh, η and ε.
Application of conjugate gradient method to Commix-1B three-dimensional momentum equation
International Nuclear Information System (INIS)
King, J.B.; Domanus, H.
1987-01-01
Conjugate gradient method which is a special case of the variational method was implemented in the momentum section of the COMMIX-1B thermal hydraulics code. The comparisons between this method and the conventional iterative method of Successive Over Relation (S.O.R.) were made. Using COMMIX-1B, three steady state problems were analyzed. These problems were flow distribution in a scaled model of the Clinch River Fast Breeder Reactor outlet plenum, flow of coolant in the cold leg and downcomer of a PWR and isothermal air flow through a partially blocked pipe. It was found that if the conjugate gradient method is used, the execution time required to solve the resulting COMMIX-1B system of equations can be reduced by a factor of about 2 for the first two problems. For the isothermal air flow problem, the conjugate gradient method did not improve the execution time
Djebbi, Ramzi; Alkhalifah, Tariq Ali
2015-01-01
The instantaneous traveltime is able to reduce the non-linearity of full waveform inversion (FWI) that originates from the wrapping of the phase. However, the adjoint state method in this case requires a total of 5 modeling calculations to compute the gradient. Also, considering the larger modeling cost for anisotropic wavefield extrapolation and the necessity to use a line-search algorithm to estimate a step length that depends on the parameters scale, we propose to calculate the gradient based on the instantaneous traveltime sensitivity kernels. We, specifically, use the sensitivity kernels computed using dynamic ray-tracing to build the gradient. The resulting update is computed using a matrix decomposition and accordingly the computational cost is reduced. We consider a simple example where an anomaly is embedded into a constant background medium and we compute the update for the VTI wave equation parameterized using vh, η and ε.
Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Liu, Yingce; Liu, Mengling; Liu, Zongyuan; Gui, Chengqun; Liu, Sheng
2017-10-30
We demonstrate two types of GaN-based flip-chip light-emitting diodes (FCLEDs) with highly reflective Ag/TiW and indium-tin oxide (ITO)/distributed Bragg reflector (DBR) p-type Ohmic contacts. We show that a direct Ohmic contact to p-GaN layer using pure Ag is obtained when annealed at 600°C in N 2 ambient. A TiW diffusion barrier layer covered onto Ag is used to suppress the agglomeration of Ag and thus maintain high reflectance of Ag during high temperature annealing process. We develop a strip-shaped SiO 2 current blocking layer beneath the ITO/DBR to alleviate current crowding occurring in FCLED with ITO/DBR. Owing to negligibly small spreading resistance of Ag, however, our combined numerical and experimental results show that the FCLED with Ag/TiW has a more favorable current spreading uniformity in comparison to the FCLED with ITO/DBR. As a result, the light output power of FCLED with Ag/TiW is 7.5% higher than that of FCLED with ITO/DBR at 350 mA. The maximum output power of the FCLED with Ag/TiW obtained at 305.6 A/cm 2 is 29.3% larger than that of the FCLED with ITO/DBR obtained at 278.9 A/cm 2 . The improvement appears to be due to the enhanced current spreading and higher optical reflectance provided by the Ag/TiW.
International Nuclear Information System (INIS)
Salat, A.
1990-01-01
In conventional drift wave theory the density gradient κ n =d lnn/dχ determines the linear phase velocity, and the (electron) temperature gradient κ T =d lnT/dχ gives rise to a nonlinear term which leads to the existence of soliton-type solutions and solitary waves. LAKHIN, MIKHAILOVSKI and ONISHCHENKO, Phys. Lett. A 119, 348 (1987) and Plasma Phys. and Contr. Fus. 30, 457 (1988), recently claimed that it is not κ T but essentially the derivative of the density gradient, dκ n /dχ, that is relevant. This claim is refuted by means of an expansion scheme in ε=eΦ/T≤1, where Φ is the drift wave potential. (orig.)
Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations.
Directory of Open Access Journals (Sweden)
Allan Buras
Full Text Available This paper introduces a new approach-the Principal Component Gradient Analysis (PCGA-to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population. Detection of ecological gradients is of particular importance when dealing with time-series from heterogeneous populations which express differing trends. PCGA makes use of polar coordinates of loadings from the first two axes obtained by principal component analysis (PCA to define groups of similar trends. Based on the mean inter-series correlation (rbar the gain of increasing a common underlying signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation PCGA is compared to three other existing approaches. Focusing on dendrochronological examples, PCGA is shown to correctly determine population gradients and in particular cases to be advantageous over other considered methods. Furthermore, PCGA groups in each example allowed for enhancing the strength of a common underlying signal and comparably well as hierarchical cluster analysis. Our results indicate that PCGA potentially allows for a better understanding of mechanisms causing time-series population gradients as well as objectively enhancing the performance of climate transfer functions in dendroclimatology. While our examples highlight the relevance of PCGA to the field of dendrochronology, we believe that also other disciplines working with data of comparable structure may benefit from PCGA.
Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations.
Buras, Allan; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Ahlgrimm, Svenja; Hermann, Philipp; Simard, Sonia; Heinrich, Ingo; Helle, Gerd; Unterseher, Martin; Schnittler, Martin; Eusemann, Pascal; Wilmking, Martin
2016-01-01
This paper introduces a new approach-the Principal Component Gradient Analysis (PCGA)-to detect ecological gradients in time-series populations, i.e. several time-series originating from different individuals of a population. Detection of ecological gradients is of particular importance when dealing with time-series from heterogeneous populations which express differing trends. PCGA makes use of polar coordinates of loadings from the first two axes obtained by principal component analysis (PCA) to define groups of similar trends. Based on the mean inter-series correlation (rbar) the gain of increasing a common underlying signal by PCGA groups is quantified using Monte Carlo Simulations. In terms of validation PCGA is compared to three other existing approaches. Focusing on dendrochronological examples, PCGA is shown to correctly determine population gradients and in particular cases to be advantageous over other considered methods. Furthermore, PCGA groups in each example allowed for enhancing the strength of a common underlying signal and comparably well as hierarchical cluster analysis. Our results indicate that PCGA potentially allows for a better understanding of mechanisms causing time-series population gradients as well as objectively enhancing the performance of climate transfer functions in dendroclimatology. While our examples highlight the relevance of PCGA to the field of dendrochronology, we believe that also other disciplines working with data of comparable structure may benefit from PCGA.
On the effect of velocity gradients on the depth of correlation in μPIV
Mustin, B.; Stoeber, B.
2016-03-01
The present work revisits the effect of velocity gradients on the depth of the measurement volume (depth of correlation) in microscopic particle image velocimetry (μPIV). General relations between the μPIV weighting functions and the local correlation function are derived from the original definition of the weighting functions. These relations are used to investigate under which circumstances the weighting functions are related to the curvature of the local correlation function. Furthermore, this work proposes a modified definition of the depth of correlation that leads to more realistic results than previous definitions for the case when flow gradients are taken into account. Dimensionless parameters suitable to describe the effect of velocity gradients on μPIV cross correlation are derived and visual interpretations of these parameters are proposed. We then investigate the effect of the dimensionless parameters on the weighting functions and the depth of correlation for different flow fields with spatially constant flow gradients and with spatially varying gradients. Finally this work demonstrates that the results and dimensionless parameters are not strictly bound to a certain model for particle image intensity distributions but are also meaningful when other models for particle images are used.
On the effect of velocity gradients on the depth of correlation in μPIV
International Nuclear Information System (INIS)
Mustin, B; Stoeber, B
2016-01-01
The present work revisits the effect of velocity gradients on the depth of the measurement volume (depth of correlation) in microscopic particle image velocimetry (μPIV). General relations between the μPIV weighting functions and the local correlation function are derived from the original definition of the weighting functions. These relations are used to investigate under which circumstances the weighting functions are related to the curvature of the local correlation function. Furthermore, this work proposes a modified definition of the depth of correlation that leads to more realistic results than previous definitions for the case when flow gradients are taken into account. Dimensionless parameters suitable to describe the effect of velocity gradients on μPIV cross correlation are derived and visual interpretations of these parameters are proposed. We then investigate the effect of the dimensionless parameters on the weighting functions and the depth of correlation for different flow fields with spatially constant flow gradients and with spatially varying gradients. Finally this work demonstrates that the results and dimensionless parameters are not strictly bound to a certain model for particle image intensity distributions but are also meaningful when other models for particle images are used. (paper)
Tunable high-gradient permanent magnet quadrupoles
Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A
2014-01-01
A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.
Stereo vision with distance and gradient recognition
Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu
2007-12-01
Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.
Higher-order force gradient symplectic algorithms
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
Impact of Ozone Gradient on Grapevine Leaves
Alebic-Juretic, Ana; Bokan-Vucelic, Itana; Mifka, Boris; Zatezalo, Marija; Zubak, Velimir
2017-04-01
Due to complex orography and air mass circulation, the Rijeka Bay area is characterized by O3 gradient, with concentrations risen with the altitude (1). Therefore AOT40 values were often exceeded and should result in harmful effects on vegetation. Based on previous controlled experiments (2), we examined the possible effect of atmospheric ozone on grape leaves under natural O3 gradient. Grapevine leaves (2-5) were collected from May to September 2016 at two sampling points in the proximity of two AQM stations: Site 1 in the city centre (20m asl) and Site 2 (186m asl) in the suburban settlement. Subsequent to weighing and determination of surface area, the leaves (0,5 g) were extracted in 95% ethanol and analysed on chlorophyl a (Chla), chlorophyl b (Chlb) and carotene (Car) content by UV-VIS spectrometry on 3 wavelengths (664, 649, 470 nm) (3) In summer 2016 O3 gradient was not that pronounced as usual (1), but stil the concentrations differed by approx. 20%, exceeding national AOT40 value at both sites (22.360 and 28.061 μg m-3 h, respectively, at Sites 1 and 2). The concentrations of other pollutants were bellow limit values (LV). The Cha and Chb in a sample leaves collected at the end of May at Site 2 are equal to that with filtered O3 in control experiment (2), i.e. without damage caused by ozone, while the Car content is lower approx. 50% and is kept at the same level. The con-centrations of pigments obtained in July prooved the possible damage by O3, while in subsequent months could speed up natural ageing. This is the first evidence of O3 damage on plants in the Rijeka Bay area, in spite of weaker O3 gradient and lacking visible signs of damage. Preliminary results indicate the need for more frequent sampling, particularly in the period included in AOT40 (May-July). References: 1. Alebić-Juretić A (2012) Int J Remote Sensing, 33(2): 335-345 2. Britvec M, Reichenauer T, Soja G., Ljubešić N, Pećina M (2001) Biologia (Bratislava),56/4: 417-424 3. Sumanata
Gradient-index optics fundamentals and applications
Gomez-Reino, Carlos; Bao, Carmen
2010-01-01
Gradient-Index (GRIN) optics provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The book can be used both as a classroom text for students in physics and engineering and as a reference for specialists. A description of the phenomena, components and technology used in GRIN Optics are presented. The relationship to lenses, waveguides, optical connections, spatial solitons and vision is demonstrated. Applications of GRIN components and hybrid structures for optical connections, optical sensing and Talbot effect are analyzed.
Microfluidic high gradient magnetic cell separation
Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.
2006-04-01
Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.
Quasi parton distributions and the gradient flow
International Nuclear Information System (INIS)
Monahan, Christopher; Orginos, Kostas
2017-01-01
We propose a new approach to determining quasi parton distribution functions (PDFs) from lattice quantum chromodynamics. By incorporating the gradient flow, this method guarantees that the lattice quasi PDFs are finite in the continuum limit and evades the thorny, and as yet unresolved, issue of the renormalization of quasi PDFs on the lattice. In the limit that the flow time is much smaller than the length scale set by the nucleon momentum, the moments of the smeared quasi PDF are proportional to those of the lightfront PDF. Finally, we use this relation to derive evolution equations for the matching kernel that relates the smeared quasi PDF and the light-front PDF.
Human impact gradient on mammalian biodiversity
Directory of Open Access Journals (Sweden)
Mariana Munguía
2016-04-01
Full Text Available Drastic changes have been caused by human influence in natural landscapes, which may exert an intensive effect on species loss. However, species loss from human pressure is not random but depends on a series of environmentally associated factors. Linking species traits to environmental attributes may allow us to detect the ecological impacts of habitat so that meaningful habitat degradation gradients can be identified. The relationships between environmental factors and species traits provide the basis for identifying those biological traits that make species more sensitive to disturbance. These relationships are also helpful to detect the geographic distribution of latent risk to reveal areas where biodiversity is threatened. Here, we identify a “Human Impact Gradient for Biodiversity (HIGB” based on a three-table ordination method (RLQ analysis and fourth-corner analysis to identify key species traits that are associated with environmental gradient. Species distribution and environmental geographic data were gathered nationwide to analyze 68 localities, which represent 27% of Mexico’s surface, including 211 species of mammals. Nine environmental variables (including biophysical, geophysical and land-use impacts were analyzed by using the Geographic Information System. Three types of species’ traits were evaluated: locomotion, trophic habit and body size. We identified a human impact gradient, which was mainly determined by the percentage of the area that was covered by seedlings, the plant richness, the understory coverage percentage and the human settlement index. The most important species traits that are associated with non-human-impacted sites were carnivores, frugivores–herbivores and a body size that was greater than 17.8 kg; 25 species were selected by the decision criteria framework for species that were sensitive to degradation based on ecological function information. Conversely, granivores, fossorial and semifossorial
PET regularization by envelope guided conjugate gradients
International Nuclear Information System (INIS)
Kaufman, L.; Neumaier, A.
1996-01-01
The authors propose a new way to iteratively solve large scale ill-posed problems and in particular the image reconstruction problem in positron emission tomography by exploiting the relation between Tikhonov regularization and multiobjective optimization to obtain iteratively approximations to the Tikhonov L-curve and its corner. Monitoring the change of the approximate L-curves allows us to adjust the regularization parameter adaptively during a preconditioned conjugate gradient iteration, so that the desired solution can be reconstructed with a small number of iterations
Theory of resistivity-gradient-driven turbulence
International Nuclear Information System (INIS)
Garcia, L.; Carreras, B.A.; Diamond, P.H.; Callen, J.D.
1984-10-01
A theory of the nonlinear evolution and saturation of resistivity-driven turbulence, which evolves from linear rippling instabilities, is presented. The nonlinear saturation mechanism is identified both analytically and numerically. Saturation occurs when the turbulent diffusion of the resistivity is large enough so that dissipation due to parallel electron thermal conduction balances the nonlinearly modified resistivity gradient driving term. The levels of potential, resistivity, and density fluctuations at saturation are calculated. A combination of computational modeling and analytic treatment is used in this investigation
Mullite-alumina functionally gradient ceramics
International Nuclear Information System (INIS)
Pena, P.; Bartolome, J.; Requena, J.; Moya, J.S.
1993-01-01
Cracks free mullite-alumina Functionally Gradient Ceramics (FGC) have been obtained by sequential slip casting of Mullite-alumina slurries with different mullite/alumina ratios. These slurries were prepared with 65 % solids content and viscosities ranging from 10 to 40 mPa.s. The presence of cracks perpendicular to the FGC layers have been attributed to residual stresses developed because of the mismatch in thermal expansion between layers. The microstructure of the different layers, and de residual stress value σ R in each layer was also determined. (orig.)
A method for easily customizable gradient gel electrophoresis.
Miller, Andrew J; Roman, Brandon; Norstrom, Eric
2016-09-15
Gradient polyacrylamide gel electrophoresis is a powerful tool for the resolution of polypeptides by relative mobility. Here, we present a simplified method for generating polyacrylamide gradient gels for routine analysis without the need for specialized mixing equipment. The method allows for easily customizable gradients which can be optimized for specific polypeptide resolution requirements. Moreover, the method eliminates the possibility of buffer cross contamination in mixing equipment, and the time and resources saved with this method in place of traditional gradient mixing, or the purchase of pre-cast gels, are noteworthy given the frequency with which many labs use gradient gel SDS-PAGE. Copyright © 2016 Elsevier Inc. All rights reserved.
Role of the vertical pressure gradient in wave boundary layers
DEFF Research Database (Denmark)
Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna
2014-01-01
By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....
Structural and compositional gradients: basic idea, preparation, applications
International Nuclear Information System (INIS)
Ilschner, B.
1993-01-01
The term gradient materials refers to gradients of chemical composition and/or microstructural parameters which are intentionally introduced into components of any kind of homogeneous or heterogeneous materials, including metallic alloys, ceramics, glasses, polymers, and composites. After a short review of the development of the gradient materials technology since 1972, some fundamental aspects concerning the effects of such gradients on physical or mechanical properties are discussed. A selection of technical applications which have been discussed recently is presented. Finally, different methods for the preparation of gradients from gaseous, liquid or powder precursors are reviewed. (orig.)
Saturation mechanism of decaying ion temperature gradient driven turbulence with kinetic electrons
International Nuclear Information System (INIS)
Idomura, Yasuhiro
2016-01-01
We present full-f gyrokinetic simulations of the ion temperature gradient driven (ITG) turbulence including kinetic electrons. By comparing decaying ITG turbulence simulations with adiabatic and kinetic electron models, an impact of kinetic electrons on the ITG turbulence is investigated. It is found that significant electron transport occurs even in the ITG turbulence, and both ion and electron temperature profiles are relaxed. In steady states, both cases show upshifts of nonlinear critical ion temperature gradients from linear ones, while their saturation mechanisms are qualitatively different. In the adiabatic electron case, the ITG mode is stabilized by turbulence driven zonal flows. On the other hand, in the kinetic electron case, passing electrons transport shows fine resonant structures at mode rational surfaces, which generate corrugated density profiles. Such corrugated density profiles lead to fine radial electric fields following the neoclassical force balance relation. The resulting E × B shearing rate greatly exceeds the linear growth rate of the ITG mode. (author)
A substrate independent approach for generation of surface gradients
Energy Technology Data Exchange (ETDEWEB)
Goreham, Renee V. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Mierczynska, Agnieszka; Pierce, Madelene [Ian Wark Research Institute, University of South Australia, Mawson Lakes 5095 (Australia); Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E. [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir, E-mail: krasimir.vasilev@unisa.edu.au [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia)
2013-01-01
Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands.
A substrate independent approach for generation of surface gradients
International Nuclear Information System (INIS)
Goreham, Renee V.; Mierczynska, Agnieszka; Pierce, Madelene; Short, Robert D.; Taheri, Shima; Bachhuka, Akash; Cavallaro, Alex; Smith, Louise E.; Vasilev, Krasimir
2013-01-01
Recently, surface gradients have attracted significant interest for various research and technological applications. In this paper, we report a facile and versatile method for generating surface gradients of immobilized nanoparticles, nanotopography and ligands that is independent from the substrate material. The method consists of first depositing a functional polymer layer on a substrate and subsequent time controlled immersion of this functionalized substrate in solution gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) or poly (styrenesulfonate) (PSS). Chemical characterization by X-ray Photoelectron Spectroscopy (XPS) and morphological analysis by Atomic Force Microscopy (AFM) show that the density of nanoparticles and the concentration of PSS across the surface increases in a gradient manner. As expected, time of immersion determines the concentration of surface bound species. We also demonstrate the generation of surface gradients of pure nanotopography. This is achieved by depositing a 5 nm thick plasma polymer layer on top of the number density gradient of nanoparticles to achieve a homogeneous surface chemistry. The surface independent approach for generation of surface gradients presented in this paper may open opportunities for a wider use of surface gradient in research and in various technologies. - Highlights: ► We present a substrate independent approach for generation of surface gradients. ► We demonstrate well-defined density gradients of gold and silver nanoparticles. ► We provide an example of pure surface nanotopography gradients. ► We demonstrate concentration gradients of bound ligands
Cell orientation gradients on an inverse opal substrate.
Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze
2015-05-20
The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.
Asymmetric Uncertainty Expression for High Gradient Aerodynamics
Pinier, Jeremy T
2012-01-01
When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.
Adaptive Gradient Multiobjective Particle Swarm Optimization.
Han, Honggui; Lu, Wei; Zhang, Lu; Qiao, Junfei
2017-10-09
An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (stocktickerMOG) method and a self-adaptive flight parameters mechanism, is developed to improve the computation performance in this paper. In this AGMOPSO algorithm, the stocktickerMOG method is devised to update the archive to improve the convergence speed and the local exploitation in the evolutionary process. Meanwhile, the self-adaptive flight parameters mechanism, according to the diversity information of the particles, is then established to balance the convergence and diversity of AGMOPSO. Attributed to the stocktickerMOG method and the self-adaptive flight parameters mechanism, this AGMOPSO algorithm not only has faster convergence speed and higher accuracy, but also its solutions have better diversity. Additionally, the convergence is discussed to confirm the prerequisite of any successful application of AGMOPSO. Finally, with regard to the computation performance, the proposed AGMOPSO algorithm is compared with some other multiobjective particle swarm optimization algorithms and two state-of-the-art multiobjective algorithms. The results demonstrate that the proposed AGMOPSO algorithm can find better spread of solutions and have faster convergence to the true Pareto-optimal front.
The phenotypic variance gradient - a novel concept.
Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton
2014-11-01
Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.
The multigrid preconditioned conjugate gradient method
Tatebe, Osamu
1993-01-01
A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.
Performance evaluation of matrix gradient coils.
Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim
2016-02-01
In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.
Three gradients and the perception of flat and curved surfaces.
Cutting, J E; Millard, R T
1984-06-01
Researchers of visual perception have long been interested in the perceived slant of a surface and in the gradients that purportedly specify it. Slant is the angle between the line of sight and the tangent to the planar surface at any point, also called the surface normal. Gradients are the sources of information that grade, or change, with visual angle as one looks from one's feet upward to the horizon. The present article explores three gradients--perspective, compression, and density--and the phenomenal impression of flat and curved surfaces. The perspective gradient is measured at right angles to the axis of tilt at any point in the optic array; that is, when looking down a hallway at the tiles of a floor receding in the distance, perspective is measured by the x-axis width of each tile projected on the image plane orthogonal to the line of sight. The compression gradient is the ratio of y/x axis measures on the projected plane. The density gradient is measured by the number of tiles per unit solid visual angle. For flat surfaces and many others, perspective and compression gradients decrease with distance, and the density gradient increases. We discuss the manner in which these gradients change for various types of surfaces. Each gradient is founded on a different assumption about textures on the surfaces around us. In Experiment 1, viewers assessed the three-dimensional character of projections of flat and curved surfaces receding in the distance. They made pairwise judgments of preference and of dissimilarity among eight stimuli in each of four sets. The presence of each gradient was manipulated orthogonally such that each stimulus had zero, one, two, or three gradients appropriate for either a flat surface or a curved surface. Judgments were made were made for surfaces with both regularly shaped and irregularly shaped textures scattered on them. All viewer assessment were then scaled in one dimension. Multiple correlation and regression on the scale values
Directory of Open Access Journals (Sweden)
Li Yang
2017-01-01
Full Text Available Paste-like tailings slurry (PTLS is always simplified as a Bingham plastic fluid, leading to excessive computational errors in the calculation of the hydraulic gradient. In the case of paste-like tailings in long-distance pipeline transportation, to explore a high-precision and reliable hydraulic gradient formula, the rheological behavior of paste-like tailings slurry was analyzed, a time-varying hydraulic gradient model was constructed, and a series of laboratory shear tests were conducted. The results indicate that the PTLS shows noticeable shear-thinning characteristics in constant shear tests; the calculated hydraulic gradient declined by about 56%, from 4.44 MPa·km−1 to 1.95 MPa·km−1 within 253 s, and remained constant for the next four hours during the pipeline transportation. Comparing with the balance hydraulic gradient obtained in a semi-industrial loop test, the computational errors of those calculated by using the time-varying hydraulic gradient model, Jinchuan formula, and Shanxi formula are 15%, 78%, and 130%, respectively. Therefore, our model is a feasible and high-precision solution for the calculation of the hydraulic gradient of paste-like tailings in long-distance pipeline transportation.
cultivadas bajo un gradiente de sombra
Directory of Open Access Journals (Sweden)
Marco V. Gutiérrez
2007-01-01
Full Text Available Se evaluó el crecimiento de 9 especies de palmas cultivadas bajo un gradiente de sombra producido por mallas de polipropileno negro de 40, 50, 60, 70 y 80% de sombra, más un tratamiento de malla aluminizada de 70%, y uno con plantas a pleno sol. Las especies evaluadas fueron Caryota mitis (cola de pez, Chamaedorea costaricana (pacaya, Chamaedorea tepejilote (tepejilote, Dypsis lutescens (areca, Licuala elegans (licuala, Phoenix roebelenii (fénix, Ptychosperma macarthurii (palma macarthur, Roystonea regia (palma real, y Veitchia merrillii (navideña. Se midió la altura de las plantas, la longitud de las hojas maduras, y el número de hojas cosechadas, durante 5 cosechas por 2 años. En general, la altura de las plantas y la longitud de las hojas fueron menores a 0-40% de sombra, se incrementaron a 50-70%, y decrecieron a 80%. C. mitis, C. tepejilote, L. elegans y P. macarthurii, se comportaron como especies obligadas de sombra y no sobrevivieron a pleno sol. C. costaricana y D. lutescens sobrevivieron a plena exposición solar, y su crecimiento alcanzó valores máximos a 50-60%. P. roebelenii, R. regia, y V. merrillii mostraron un crecimiento reducido a 0-40%, pero éste mejoró bajo los demás niveles de sombra a lo largo del gradiente. En general, 1-2 años es un periodo apropiado para el cultivo de palmas de crecimiento rápido (R. regia, Chamedorea spp., D. lutescens en casas de mallas. Palmas de lento crecimiento (L.elegans pueden permanecer 3-5 años en una casa de sombra. Se discute estrategias para el uso de gradientes de sombra en el tiempo y en el espacio, según la utilidad y los requerimientos de las especies, los requisitos establecidos por el mercado, y el ciclo de producción del material vegetal.
Advanced compositional gradient and compartmentalization analysis
Energy Technology Data Exchange (ETDEWEB)
Canas, Jesus A.; Petti, Daniela; Mullins, Oliver [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)
2008-07-01
Acquisition of hydrocarbons samples from the reservoir prior to oil or gas production is essential in order to design production strategies and production facilities. In addition, reservoir compartmentalization and hydrocarbon compositional grading magnify the necessity to map fluid properties vertically and laterally in the reservoir prior to production. Formation testers supply a wealth of information to observe and predict the state of fluids in hydrocarbon reservoirs, through detailed pressure and fluid analysis measurements. With the correct understanding of the state of fluids in the reservoirs, reserve calculations and adequate development plans can be prepared. Additionally, flow barriers may then be revealed. This paper describes a new Downhole Fluid Analysis technology (DFA) for improved reservoir management. DFA is a unique process that combines new fluid identification sensors, which allow real time monitoring of a wide range of parameters as GOR, fluid density, viscosity, fluorescence and composition (CH{sub 4}, C2- C5, C6 +, CO{sub 2}), free gas and liquid phases detection, saturation pressure, as well WBM and OBM filtrate differentiation and pH. This process is not limited to light fluid evaluation and we extended to heavy oil (HO) reservoirs analysis successfully. The combination of DFA Fluid Profiling with pressure measurements has shown to be very effective for compartmentalization characterization. The ability of thin barriers to hold off large depletion pressures has been established, as the gradual variation of hydrocarbon quality in biodegraded oils. In addition, heavy oils can show large compositional variation due to variations in source rock charging but without fluid mixing. Our findings indicates that steep gradients are common in gas condensates or volatile oils, and that biodegradation is more common in HO than in other hydrocarbons, which generate fluid gradients and heavy ends tars near the OWC, limiting the aquifer activity and
Composition gradients across spiral galaxies II. The stellar mass limit
International Nuclear Information System (INIS)
Shields, G.A.; Tinsley, B.M.
1976-01-01
The equivalent width of the Hβ emission from H ii regions in spiral galaxies increases with distance from the nucleus. This W (Hβ) gradient is interpreted in terms of a radial gradient in the temperature of the hottest exciting stars. (T/subu/). From Searle's observations of M101, an increase Δ log T/subu/=0.02--0.13 from the intermediate to outermost spiral arms of M101 is inferred. There is also a radial decrease in the metal abundance (Z) across M101, and the T/subu/ gradient is consistent with the prediction of Kahn's recent theory that the upper mass limit for star formation should be smaller in regions of high Z. It is noted also that, even in the absence of changes in the upper mass limit, a T/subu/ gradient is expected because metal-rich stars of given mass have smaller effective temperatures. Several observational and theoretical improvements are needed before firm conclusions can be drawn, but it is clear that the presence of a T/subu/ gradient may lead to several important systematic changes in the interpretation of gradients in the properties of H ii regions across galaxies. A T/subu/ gradient reduces the Z gradient that is inferred from emission-line ratios, and it may help to explain why O ii is strong in the innermost regions where O iii is weak. A T/subu/ gradient may also partly camouflage a helium abundance gradient
B1 gradient coherence selection using a tapered stripline.
van Meerten, S G J; Tijssen, K C H; van Bentum, P J M; Kentgens, A P M
2018-01-01
Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B 1 gradient result in a spatial encoding similar to that created by pulsed-field (B 0 ) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B 1 field gradient (OFFBEAT) pulses. The advantage of B 1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B 1 field strength. B 1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B 0 pulsed-field gradients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Gradient limitation in accelerating structures imposed by surface melting
International Nuclear Information System (INIS)
Wilson, Perry B
2003-01-01
A rough picture is beginning to emerge of the physics behind the maximum gradient that can be sustained in an accelerating structure without producing surface damage at a level sufficient to cause a measurable change in the rf properties of the structure. Field emission sites are known to trigger the formation of so-called plasma spots in regions of high dc or rf surface electric fields. A single plasma spot has a finite lifetime (∼ 20-50ns) and leaves behind a single crater. In the rf case, some fraction of the electrons emitted from the spot pick up energy from the rf field and back-bombard the area around the spot. Depending on the gradient, pulse length and available rf energy, multiple spots can form in close proximity. The combined back-bombardment power density from such a spot cluster can be sufficient to raise the surface temperature to the melting point in tens of nanoseconds over an area on the order of 100 microns in diameter. This molten area can now support a plasma capable of emitting several kiloamperes of electrons with an average energy of 50-100kV. This is sufficient beam power to collapse the field in a travelling structure in 30 ns or so. The plasma also exerts a tremendous pressure on the molten surface, sufficient to cause a macroscopic amount of material to migrate toward a region of lower surface field. Over time, this process can modify the profile of the iris tip and produce an unacceptable change in the phase shift per cell
Gradient heating protocol for a diode-pumped alkali laser
Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang
2018-06-01
A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.
Fano resonances from gradient-index metamaterials.
Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang
2016-01-27
Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.
Ultimate-gradient accelerators physics and prospects
Skrinsky, Aleksander Nikolayevich
1995-01-01
As introduction, the needs and ways for ultimate acceleration gradients are discussed briefly. The Plasma Wake Field Acceleration is analized in the most important details. The structure of specific plasma oscillations and "high energy driver beam SP-plasma" interaction is presented, including computer simulation of the process. Some pratical ways to introduce the necessary mm-scale bunching in driver beam and to arrange sequential energy multiplication are dicussed. The influence of accelerating beam particle - plasma binary collisions is considered, also. As applications of PWFA, the use of proton super-colliders beams (LHC and Future SC) to drive the "multi particle types" accelerator, and the arrangements for the electron-positron TeV range collider are discussed.
High gradient lens for charged particle beam
Chen, Yu-Jiuan
2014-04-29
Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.
Molecular evolution and the latitudinal biodiversity gradient.
Dowle, E J; Morgan-Richards, M; Trewick, S A
2013-06-01
Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.
Accelerated gradient methods for constrained image deblurring
International Nuclear Information System (INIS)
Bonettini, S; Zanella, R; Zanni, L; Bertero, M
2008-01-01
In this paper we propose a special gradient projection method for the image deblurring problem, in the framework of the maximum likelihood approach. We present the method in a very general form and we give convergence results under standard assumptions. Then we consider the deblurring problem and the generality of the proposed algorithm allows us to add a energy conservation constraint to the maximum likelihood problem. In order to improve the convergence rate, we devise appropriate scaling strategies and steplength updating rules, especially designed for this application. The effectiveness of the method is evaluated by means of a computational study on astronomical images corrupted by Poisson noise. Comparisons with standard methods for image restoration, such as the expectation maximization algorithm, are also reported.
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
Simulation studies on high-gradient experiments
International Nuclear Information System (INIS)
Yamaguchi, S.
1992-12-01
Computer simulation of the characteristics of the dark current emitted from a 0.6 m long S-band accelerating structure has been made. The energy spectra and the dependence of the dark current on the structure length were simulated. By adjusting the secondary electron emission (SEE) coefficients, the simulated energy spectra qualitatively reproduced the observed ones. It was shown that the dark current increases exponentially with the structure length. The measured value of the multiplication factor of the dark current per unit cell can be explained if the SEE coefficient is set to 1.2. The critical gradient for dark current capture E cri has been calculated for two structures of 180 cells. They are E cri [MV/m] = 13.1 f and 8.75 f for a/λ = 0.089 and 0.16, respectively, where f is the frequency in GHz, a the iris diameter and λ the wave length
Eigen-Gradients for Traffic Sign Recognition
Directory of Open Access Journals (Sweden)
Sheila Esmeralda Gonzalez-Reyna
2013-01-01
Full Text Available Traffic sign detection and recognition systems include a variety of applications like autonomous driving, road sign inventory, and driver support systems. Machine learning algorithms provide useful tools for traffic sign identification tasks. However, classification algorithms depend on the preprocessing stage to obtain high accuracy rates. This paper proposes a road sign characterization method based on oriented gradient maps and the Karhunen-Loeve transform in order to improve classification performance. Dimensionality reduction may be important for portable applications on resource constrained devices like FPGAs; therefore, our approach focuses on achieving a good classification accuracy by using a reduced amount of attributes compared to some state-of-the-art methods. The proposed method was tested using German Traffic Sign Recognition Benchmark, reaching a dimensionality reduction of 99.3% and a classification accuracy of 95.9% with a Multi-Layer Perceptron.
Dynamic pulsed-field-gradient NMR
Sørland, Geir Humborstad
2014-01-01
Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.
Magnon dark modes and gradient memory.
Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X
2015-11-16
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.
A fast, preconditioned conjugate gradient Toeplitz solver
Pan, Victor; Schrieber, Robert
1989-01-01
A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.
Formulating viscous hydrodynamics for large velocity gradients
International Nuclear Information System (INIS)
Pratt, Scott
2008-01-01
Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time
Gradient Measurements of Nitrous Acid (hono)
Kleffmann, J.; Kurtenbach, R.; Lörzer, J.; Wiesen, P.; Kalthoff, N.; Vogel, B.; Vogel, H.
Nitrous acid (HONO) plays an important role in photochemical air pollution due to its photodissociation by solar UV radiation into hydroxyl radicals and thus significantly enhances photooxidation processes. Furthermore, HONO is an important indoor pol- lutant, which can react with amines leading to nitrosamines, which are known to be carcinogenic. Despite its importance in atmospheric chemistry the mechanisms lead- ing to HONO formation are still not completely understood at present. Although it is commonly proposed that HONO is formed by heterogeneous processes, i.e. by the conversion of NO2 on wet surfaces, it is still under discussion whether HONO produc- tion is dominated by the surface of particles or by the ground surface. Simultaneous vertical profile measurements of HONO, the precursor NO2 and the aerosol surface area, which could answer this question are not available at present. Accordingly, in the present study night-time HONO, NO2 and particle surface area gradients in the altitude range 10-190 m were measured on the meteorological tower at the Forschungszentrum Karlsruhe/Germany using a new, very sensitive HONO in- strument (LOPAP), a commercial NOx monitor and a SMPS system. For all gradient measurements during the campaign it was observed that the [HONO]/[NO2] ratio decreased with increasing altitude. In contrast, the particle sur- face area was found to be more or less constant. Accordingly, no correlation between the [HONO]/[NO2] ratio and the particle surface area was observed showing that HONO formation was dominated by processes on ground surfaces and that signifi- cant HONO formation on particle surfaces could be excluded for the measurement site.
Modified conjugate gradient method for diagonalizing large matrices.
Jie, Quanlin; Liu, Dunhuan
2003-11-01
We present an iterative method to diagonalize large matrices. The basic idea is the same as the conjugate gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroducing errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trial vectors, play a similar role as the conjugate gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitable for first principle calculations.
International Nuclear Information System (INIS)
BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC
2003-01-01
OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate
Detecting deep venous thrombosis with limited flip angle gradient refocused MR imaging
International Nuclear Information System (INIS)
Spritzer, C.E.; Sussman, S.K.; Herfkens, R.J.; Blinder, R.A.; Saeed, M.; Vogler, J.A.; Baker, M.E.
1987-01-01
This study was undertaken to determine if limited flip angle gradient refocused MR pulse sequences (GRASS) could be used to accurately diagnose deep venous thrombosis (DVT). Sixteen patients (17 extremities) with possible DVT were prospectively evaluated with MR imaging and venography. Typical imaging parameters included a 16-msec echo time, 33-msec repetition time, 30 0 flip angle, and section thickness of 2 nex. MR imaging correctly disclosed the presence (nine cases) or absence (eight cases) of DVT. In one study, GRASS images overestimated the extent of clot due to slow venous blood flow. Subsequently the flip angle was varied to distinguish between venous thrombus and slow flow. When this technique was used, no false-positive studies occurred in the remaining patients. MR gradient refocused imaging appears to be an accurate aid for the diagnosis of DVT
On wake modeling, wind-farm gradients and AEP predictions at the Anholt wind farm
DEFF Research Database (Denmark)
Pena Diaz, Alfredo; Hansen, Kurt Schaldemose; Ott, Søren
2017-01-01
of the mesoscale simulations and supervisory control and data acquisition (SCADA), we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly....... When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend...... to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate...
Gradient porous hydroxyapatite ceramics fabricated by freeze casting method
International Nuclear Information System (INIS)
Zuo Kaihui; Zhang Yuan; Jiang Dongliang; Zeng Yuping
2011-01-01
By controlling the cooling rates and the composition of slurries, the gradient porous hydroxyapatite ceramics are fabricated by the freeze casting method. According to the different cooling rate, the pores of HAP ceramics fabricated by gradient freeze casting are divided into three parts: one is lamellar pores, another is column pore and the last one is fine round pores. The laminated freeze casting is in favour of obtaining the gradient porous ceramics composed of different materials and the ceramics have unclear interfaces.
Stability of Gradient Field Corrections for Quantitative Diffusion MRI
Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.
2017-01-01
In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fie...
Minimizing inner product data dependencies in conjugate gradient iteration
Vanrosendale, J.
1983-01-01
The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).
Comparison of genetic algorithms with conjugate gradient methods
Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.
1972-01-01
Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.
Fundamental limits to position determination by concentration gradients.
Directory of Open Access Journals (Sweden)
Filipe Tostevin
2007-04-01
Full Text Available Position determination in biological systems is often achieved through protein concentration gradients. Measuring the local concentration of such a protein with a spatially varying distribution allows the measurement of position within the system. For these systems to work effectively, position determination must be robust to noise. Here, we calculate fundamental limits to the precision of position determination by concentration gradients due to unavoidable biochemical noise perturbing the gradients. We focus on gradient proteins with first-order reaction kinetics. Systems of this type have been experimentally characterised in both developmental and cell biology settings. For a single gradient we show that, through time-averaging, great precision potentially can be achieved even with very low protein copy numbers. As a second example, we investigate the ability of a system with oppositely directed gradients to find its centre. With this mechanism, positional precision close to the centre improves more slowly with increasing averaging time, and so longer averaging times or higher copy numbers are required for high precision. For both single and double gradients, we demonstrate the existence of optimal length scales for the gradients for which precision is maximized, as well as analyze how precision depends on the size of the concentration-measuring apparatus. These results provide fundamental constraints on the positional precision supplied by concentration gradients in various contexts, including both in developmental biology and also within a single cell.
Refined discrete and empirical horizontal gradients in VLBI analysis
Landskron, Daniel; Böhm, Johannes
2018-02-01
Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. https://doi.org/10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017.https://doi.org/10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these
Role of spatial averaging in multicellular gradient sensing.
Smith, Tyler; Fancher, Sean; Levchenko, Andre; Nemenman, Ilya; Mugler, Andrew
2016-05-20
Gradient sensing underlies important biological processes including morphogenesis, polarization, and cell migration. The precision of gradient sensing increases with the length of a detector (a cell or group of cells) in the gradient direction, since a longer detector spans a larger range of concentration values. Intuition from studies of concentration sensing suggests that precision should also increase with detector length in the direction transverse to the gradient, since then spatial averaging should reduce the noise. However, here we show that, unlike for concentration sensing, the precision of gradient sensing decreases with transverse length for the simplest gradient sensing model, local excitation-global inhibition. The reason is that gradient sensing ultimately relies on a subtraction of measured concentration values. While spatial averaging indeed reduces the noise in these measurements, which increases precision, it also reduces the covariance between the measurements, which results in the net decrease in precision. We demonstrate how a recently introduced gradient sensing mechanism, regional excitation-global inhibition (REGI), overcomes this effect and recovers the benefit of transverse averaging. Using a REGI-based model, we compute the optimal two- and three-dimensional detector shapes, and argue that they are consistent with the shapes of naturally occurring gradient-sensing cell populations.
Signal restoration for NMR imaging using time-dependent gradients
International Nuclear Information System (INIS)
Frahm, J.; Haenicke, W.
1984-01-01
NMR imaging experiments that employ linear but time-dependent gradients for encoding spatial information in the time-domain signals result in distorted images when treated with conventional image reconstruction techniques. It is shown here that the phase and amplitude distortions can be entirely removed if the timeshape of the gradient is known. The method proposed is of great theoretical and experimental simplicity. It consists of a retransformation of the measured time-domain signal and corresponds to synchronisation of the signal sampling with the time-development of the gradient field strength. The procedure complements other treatments of periodically oscillating gradients in NMR imaging. (author)
Destabilization of drift waves due to nonuniform density gradient
International Nuclear Information System (INIS)
Hirose, A.; Ishihara, O.
1985-01-01
It is shown that the conventional mode differential equation for low frequency electrostatic waves in a tokamak does not contain full ion dynamics. Both electrons and ions contribute to the ballooning term, which is subject to finite ion Larmor radius effects. Also, both fluid ion approximation and kinetic ion model yield the same correction. Reexamined are the density gradient universal mode and ion temperature gradient instability employing the lowest order Pearlstein-Berk type radial eigenfunctions. No unstable, bounded, energy outgoing eigenfunctions have been found. In particular, a large ion temperature gradient (eta/sub i/) tends to further stabilize the temperature gradient driven mode
Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"
DEFF Research Database (Denmark)
Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede
2010-01-01
Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically...
Collisional transport in a plasma with steep gradients
International Nuclear Information System (INIS)
Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S.
1999-06-01
The validity is given to the newly proposed two δf method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)
Generation of tunable and pulsatile concentration gradients via microfluidic network
Zhou, Bingpu
2014-06-04
We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.
A nonsmooth nonlinear conjugate gradient method for interactive contact force problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...... and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better....
Bhaya, Amit; Kaszkurewicz, Eugenius
2004-01-01
It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.
International Nuclear Information System (INIS)
McGraw, D.; Oberlander, P.
2007-01-01
Eleana Formation is absent at borehole UE-25 p No.1 at Yucca Mountain, which penetrated the lower Carbonate Aquifer directly beneath the lower volcanic confining unit. The Site-scale model uses an area of very low permeability, referenced as the east-west barrier, to simulate the large hydraulic gradient. The Site-scale model is further refined in this study to provide a base-case model for exploring the geologic causes of the large hydraulic gradient
Modeling chemical gradients in sediments under losing and gaining flow conditions: The GRADIENT code
Boano, Fulvio; De Falco, Natalie; Arnon, Shai
2018-02-01
Interfaces between sediments and water bodies often represent biochemical hotspots for nutrient reactions and are characterized by steep concentration gradients of different reactive solutes. Vertical profiles of these concentrations are routinely collected to obtain information on nutrient dynamics, and simple codes have been developed to analyze these profiles and determine the magnitude and distribution of reaction rates within sediments. However, existing publicly available codes do not consider the potential contribution of water flow in the sediments to nutrient transport, and their applications to field sites with significant water-borne nutrient fluxes may lead to large errors in the estimated reaction rates. To fill this gap, the present work presents GRADIENT, a novel algorithm to evaluate distributions of reaction rates from observed concentration profiles. GRADIENT is a Matlab code that extends a previously published framework to include the role of nutrient advection, and provides robust estimates of reaction rates in sediments with significant water flow. This work discusses the theoretical basis of the method and shows its performance by comparing the results to a series of synthetic data and to laboratory experiments. The results clearly show that in systems with losing or gaining fluxes, the inclusion of such fluxes is critical for estimating local and overall reaction rates in sediments.
Biogeochemical gradients above a coal tar DNAPL
Energy Technology Data Exchange (ETDEWEB)
Scherr, Kerstin E., E-mail: kerstin.brandstaetter-scherr@boku.ac.at [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Backes, Diana [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Scarlett, Alan G. [University of Plymouth, Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Lantschbauer, Wolfgang [Government of Upper Austria, Directorate for Environment and Water Management, Division for Environmental Protection, Kärntner Strasse 10-12, 4021 Linz (Austria); Nahold, Manfred [GUT Gruppe Umwelt und Technik GmbH, Ingenieurbüro für Technischen Umweltschutz, Plesching 15, 4040 Linz (Austria)
2016-09-01
Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares – Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H’ and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are
Soil Fertility Gradient in the Restinga Ecosystem
América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo
2013-04-01
The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due
Directory of Open Access Journals (Sweden)
Dagmar R. D'hooge
2014-04-01
Full Text Available Based on kinetic Monte Carlo simulations of the monomer sequences of a representative number of copolymer chains (≈ 150,000, optimal synthesis procedures for linear gradient copolymers are proposed, using bulk Initiators for Continuous Activator Regeneration Atom Transfer Radical Polymerization (ICAR ATRP. Methyl methacrylate and n-butyl acrylate are considered as comonomers with CuBr2/PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine as deactivator at 80 °C. The linear gradient quality is determined in silico using the recently introduced gradient deviation (
Monte Carlo method for polarized radiative transfer in gradient-index media
International Nuclear Information System (INIS)
Zhao, J.M.; Tan, J.Y.; Liu, L.H.
2015-01-01
Light transfer in gradient-index media generally follows curved ray trajectories, which will cause light beam to converge or diverge during transfer and induce the rotation of polarization ellipse even when the medium is transparent. Furthermore, the combined process of scattering and transfer along curved ray path makes the problem more complex. In this paper, a Monte Carlo method is presented to simulate polarized radiative transfer in gradient-index media that only support planar ray trajectories. The ray equation is solved to the second order to address the effect induced by curved ray trajectories. Three types of test cases are presented to verify the performance of the method, which include transparent medium, Mie scattering medium with assumed gradient index distribution, and Rayleigh scattering with realistic atmosphere refractive index profile. It is demonstrated that the atmospheric refraction has significant effect for long distance polarized light transfer. - Highlights: • A Monte Carlo method for polarized radiative transfer in gradient index media. • Effect of curved ray paths on polarized radiative transfer is considered. • Importance of atmospheric refraction for polarized light transfer is demonstrated
Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R
2017-02-01
We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.
Applying Gradient Descent in Convolutional Neural Networks
Cui, Nan
2018-04-01
With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.
The educational gradient in coronary heart disease
DEFF Research Database (Denmark)
Ariansen, Inger; Mortensen, Laust Hvas; Igland, Jannicke
2015-01-01
BACKGROUND: Independently of cardiovascular disease (CVD) risk factors, cognitive ability may account for some of the excess risk of coronary heart disease (CHD) associated with lower education. We aimed to assess how late adolescence cognitive ability and midlife CVD risk factors are associated...... with the educational gradient in CHD in Norway. METHODS: In a cohort of 57 279 men born during 1949-1959, health survey information was linked to military conscription records of cognitive ability, to national educational data, to hospitalisation records from the Cardiovascular Disease in Norway (CVDNOR) project...... and to the Norwegian Cause of Death Registry. RESULTS: Age and period adjusted HR for incident CHD events was 3.62 (95% CI 2.50 to 5.24) for basic relative to tertiary education, and was attenuated after adjustment; to 2.86 (1.87 to 4.38) for cognitive ability, to 1.90 (1.30 to 2.78) for CVD risk factors, and to 1...
Competition along productivity gradients: news from heathlands.
Delerue, Florian; Gonzalez, Maya; Achat, David L; Puzos, Luc; Augusto, Laurent
2018-05-01
The importance of competition in low productive habitats is still debated. Studies which simultaneously evaluate preemption of resources and consequences for population dynamics are needed for a comprehensive view of competitive outcomes. We cultivated two emblematic species of European heathlands (Calluna vulgaris and Molinia caerulea) in a nursery for 2 years at two fertility levels, reproducing the productivity gradient found in phosphorus (P)-depleted heathlands in southwest France. The second year, we planted Ulex europaeus seedlings, a ubiquitous heathland species, under the cover of the two species to evaluate its ability to regenerate. Half of the seedlings were placed in tubes for exclusion of competitor roots. We measured the development of the competitors aboveground and belowground and their interception of resources (light, water, inorganic P). Ulex seedlings' growth and survival were also measured. Our results on resources interception were consistent with species distribution in heathlands. Molinia, which dominates rich heathlands, was the strongest competitor for light and water in the rich soil. Calluna, which dominates poor heathlands, increased its root allocation in the poor soil, decreasing water and inorganic P availability. However, the impact of total competition and root competition on Ulex seedlings decreased in the poor soil. Other mechanisms, especially decrease of water stress under neighbouring plant cover, appeared to have more influence on the seedlings' response. We found no formal contradiction between Tilman and Grime's theories. Root competition has a primary role in acquisition of soil resources in poor habitats. However, the importance of competition decreases with decreasing fertility.
Evaluation of the Field Gradient Lattice Detector
AUTHOR|(CDS)2072983
A novel Micro Pattern Gas Detector, named the Field Gradient Lattice Detector, has been implemented using technologies available to CERN’s Printed Circuit Workshop. Numerous prototypes based on various materials were constructed in different geometries and their gain performance has been studied using 55Fe and 109Cd X-ray sources in Argon-CO2 gas mixtures. Two axis (2D) prototype structures have been shown to provide stable gains of around 1000 while a 3D design, based on the same polyimide foils used in other MPGD elements, holds a gain of 5000 for 8.9 keV X-rays even at high rates of 22 kHz/mm2. At a gain of 3100, the device has been tested up to 1 MHz/mm2 and shows no signs of degradation in performance. The energy resolution of the 3D-in-polyimide is modest, around 40% for 5.9 keV X-rays and 30% if the source is collimated indicating a variation in gain over the 3x3 cm2 active area. Having the most promise for future applications, the 3D-in-polyimide design has been selected for testing with a custom-bu...
Bioinspired adaptive gradient refractive index distribution lens
Yin, Kezhen; Lai, Chuan-Yar; Wang, Jia; Ji, Shanzuo; Aldridge, James; Feng, Jingxing; Olah, Andrew; Baer, Eric; Ponting, Michael
2018-02-01
Inspired by the soft, deformable human eye lens, a synthetic polymer gradient refractive index distribution (GRIN) lens with an adaptive geometry and focal power has been demonstrated via multilayer coextrusion and thermoforming of nanolayered elastomeric polymer films. A set of 30 polymer nanolayered films comprised of two thermoplastic polyurethanes having a refractive index difference of 0.05 were coextruded via forced-assembly technique. The set of 30 nanolayered polymer films exhibited transmission near 90% with each film varying in refractive index by 0.0017. An adaptive GRIN lens was fabricated from a laminated stack of the variable refractive index films with a 0.05 spherical GRIN. This lens was subsequently deformed by mechanical ring compression of the lens. Variation in the optical properties of the deformable GRIN lens was determined, including 20% variation in focal length and reduced spherical aberration. These properties were measured and compared to simulated results by placido-cone topography and ANSYS methods. The demonstration of a solid-state, dynamic focal length, GRIN lens with improved aberration correction was discussed relative to the potential future use in implantable devices.
Height perception influenced by texture gradient.
Tozawa, Junko
2012-01-01
Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.
Liu, F. S.; Jiang, Dongfei; Faber, S. M.; Koo, David C.; Yesuf, Hassen M.; Tacchella, Sandro; Mao, Shude; Wang, Weichen; Guo, Yicheng; Fang, Jerome J.; Barro, Guillermo; Zheng, Xianzhong; Jia, Meng; Tong, Wei; Liu, Lu; Meng, Xianmin
2017-07-01
The rest-frame UV-optical (I.e., NUV - B) color is sensitive to both low-level recent star formation (specific star formation rate—sSFR) and dust. In this Letter, we extend our previous work on the origins of NUV - B color gradients in star-forming galaxies (SFGs) at z˜ 1 to those at z˜ 2. We use a sample of 1335 large (semimajor axis radius {R}{SMA}> 0\\buildrel{\\prime\\prime}\\over{.} 18) SFGs with extended UV emission out to 2{R}{SMA} in the mass range {M}* ={10}9{--}{10}11 {M}⊙ at 1.5negative NUV - B color gradients (redder centers), and their color gradients strongly increase with galaxy mass. We also show that the global rest-frame FUV - NUV color is approximately linear with {A}{{V}}, which is derived by modeling the observed integrated FUV to NIR spectral energy distributions of the galaxies. Applying this integrated calibration to our spatially resolved data, we find a negative dust gradient (more dust extinguished in the centers), which steadily becomes steeper with galaxy mass. We further find that the NUV - B color gradients become nearly zero after correcting for dust gradients regardless of galaxy mass. This indicates that the sSFR gradients are negligible and dust reddening is likely the principal cause of negative UV-optical color gradients in these SFGs. Our findings support that the buildup of the stellar mass in SFGs at Cosmic Noon is self-similar inside 2{R}{SMA}.
Microstructural gradients in thin hard coatings -- tailor-made
DEFF Research Database (Denmark)
Pantleon, Karen; Oettel, Heinrich
1998-01-01
) alternating sputtering with and without substrate voltage and (c) pulsed bias voltage. On the basis of X-ray diffraction measurements, it is demonstrated that residual stress gradients and texture gradients can be designed tailor-made. Furthermore, results of microhardness measurements and scratch tests...
Microgravimetry and the Measurement and Application of Gravity Gradients,
1980-06-01
Neumann, R., 1972, High precision gravimetry--recent develop- ments: Report to Paris Commission of E.A.E.G., Compagnie Generale de Geophysique , Massy...experimentation on vertical gradient: Compagnie Generale de Geophysique , Massy, France. 12. Fajklewicz, Z. J., 1976, Gravity vertical gradient
Competitive ability, stress tolerance and plant interactions along stress gradients.
Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier
2018-04-01
Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.
Development and propagation of a pollution gradient in the marine ...
Indian Academy of Sciences (India)
The development and propagation of a pollution gradient in the marine boundary layer over the Arabian Sea during the Intensive Field Phase of the Indian Ocean Experiment (1999) is investigated. A hypothesis for the generation of the pollution gradient is presented. Infrared satellite images show the formation of the ...
Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.
Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart
2018-04-01
In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.
Ponderomotive force effects on temperature-gradient-driven instabilities
International Nuclear Information System (INIS)
Sundaram, A.K.; Hershkowitz, N.
1992-01-01
The modification of temperature-gradient-driven instabilities due to the presence of nonuniform radio-frequency fields near the ion cyclotron frequency is investigated in the linear regime. Employing the fluid theory, it is shown that the induced field line compression caused by ion cyclotron range of frequencies (ICRF) fields makes the net parallel compressibility positive, and thus provides a stabilizing influence on the ion-temperature-gradient-driven mode for an appropriately tailored profile of radio-frequency (rf) pressure. Concomitantly, the radial ponderomotive force generates an additional contribution via coupling between the perturbed fluid motion and the equilibrium ponderomotive force and this effect plays the role of dissipation to enhance or decrease the growth of temperature-gradient-driven modes depending upon the sign of rf pressure gradients. For decreased growth of temperature-gradient-driven instabilities, the plasma density gradients and rf pressure gradients must have opposite signs while enhancement in growth arises when both gradients have the same sign. Finally, the kinetic effects associated with these modes are briefly discussed
Calculation of Vertical Temperature Gradients in Heated Rooms
DEFF Research Database (Denmark)
Overby, H.; Steen-Thøde, Mogens
This paper deals with a simple model which predicts the vertical temperature gradient in a heated room. The gradient is calculated from a dimensionless temperature profile which is determined by two room air temperatures only, the mean temperature in the occupied zone and the mean temperature...
Advances in high-gradient magnetic fishing for bioprocessing
DEFF Research Database (Denmark)
Goncalves Gomes, Claudia Sofia
2006-01-01
“High-gradient magnetic fishing” (HGMF) er en metode til processering af fødestrømme med biologiske molekyler. HGMF integrerer brugen af superparamagnetiske adsorbenter med separation og processering med høj-gradient magnetisk separation (HGMS) i et magnetisk filter. Adsorbenterne er uporøse og...
Global correlation imaging of magnetic total field gradients
International Nuclear Information System (INIS)
Guo, Lianghui; Meng, Xiaohong; Shi, Lei
2012-01-01
Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)
Substrate-Bound Protein Gradients to Study Haptotaxis
Directory of Open Access Journals (Sweden)
Sebastien G. Ricoult
2015-03-01
Full Text Available Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however it is increasingly clear that in vivo many physiologically relevant guidance proteins – including many secreted cues – are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact-printing, light patterning and 3D fabrication to pattern substrate-bound protein gradients in vitro, and focus on their application to study axon guidance. The range of methods to create substrate-bound gradients discussed herein make possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.
Adaptive Regularization of Neural Networks Using Conjugate Gradient
DEFF Research Database (Denmark)
Goutte, Cyril; Larsen, Jan
1998-01-01
Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...
Wing coloration and pigment gradients in scales of pierid butterflies
Giraldo, Marco A.; Stavenga, Doekele G.
Depending on the species, the individual scales of butterfly wings have a longitudinal gradient in structure and reflectance properties, as shown by scanning electron microscopy and microspectrophotometry. White scales of the male Small White, Pieris rapae crucivora, show a strong gradient in both
Effects of lithology on geothermal gradient on the southeast Nigeria ...
African Journals Online (AJOL)
A study of the effects of lithologic formations on geothermal gradients is carried out in the south-east Niger Delta, Nigeria, using continuous temperature and lithologic log data from closely-spaced petroleum wells. The gradient profiles obtained for the deep wells, logged to depths between 6500 ft (1981m) and 8500ft ...
A new method of determining moisture gradient in wood
Zhiyong Cai
2008-01-01
Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...
Near-surface temperature gradient in a coastal upwelling regime
Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.
2014-08-01
In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.
Directional phytoscreening: contaminant gradients in trees for plume delineation.
Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G
2013-08-20
Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.
New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems
International Nuclear Information System (INIS)
Al-Bayati, A.; Al-Asadi, N.
1997-01-01
This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab
pH-gradient chromatofocusing of proteins on a chip
Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, J.G.E.
2015-01-01
We present a novel microfluidic system for the pH-gradient focusing of proteins with the integration of 16 parallel micro-mixers, a micro-column, and a multiplexer. In this work we successfully achieved the creation of 16 non-linear gradients and the generation of a solid-phase micro-column for the
International Nuclear Information System (INIS)
Kleva, Robert G.; Guzdar, Parvez N.
2009-01-01
Steepening of the ion temperature gradient in nonlinear fluid simulations of the edge region of a tokamak plasma causes a rapid degradation in confinement. As the density gradient steepens, there is a continuous improvement in confinement analogous to the low (L) to high (H) transition observed in tokamaks. In contrast, as the ion temperature gradient steepens, there is a rapid increase in the particle and energy fluxes and no L-H transition. For a given pressure gradient, confinement always improves when more of the pressure gradient arises from the density gradient, and less of the pressure gradient arises from the ion temperature gradient.
Pressure gradients fail to predict diffusio-osmosis
Liu, Yawei; Ganti, Raman; Frenkel, Daan
2018-05-01
We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.
Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications
2018-01-01
Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612
Role of polarized G protein signaling in tracking pheromone gradients
McClure, Allison W.; Minakova, Maria; Dyer, Jayme M.; Zyla, Trevin R.; Elston, Timothy C.; Lew, Daniel J.
2015-01-01
Summary Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial, and illuminate a novel mechanism for gradient tracking. PMID:26609960
HG2006 Workshop on High-Gradient Radio Frequency
2006-01-01
Meeting to be held at CERN on 25-27 September 2006 in Room 40/S2-B01 (Building 40). The objective of the workshop is to bring the high-gradient RF community together to present and discuss recent theoretical and experimental developments. Significant progress has recently been made in understanding the basic physics of rf breakdown and developing techniques for achieving higher gradients. This workshop should contribute to maintaining these efforts and to promoting contacts and collaboration. The scientific programme will be organized in half day sessions dedicated to: High-gradient rf experimental results Theory and computation High-gradient technology, materials and processing Specialized experiments on related high-gradient or high-power phenomenon like dc discharge and pulsed surface heating Reports from collaborations and projects. Each session will consist of selected presentations followed by a dedicated discussion. Information about the meeting and participant registration is available at http...
Subsurface temperatures and geothermal gradients on the North Slope, Alaska
Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.
1989-01-01
Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).
Stability of boundary layer flow based on energy gradient theory
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
Abundance gradients in disc galaxies and chemical evolution models
International Nuclear Information System (INIS)
Diaz, A.I.
1989-01-01
The present state of abundance gradients and chemical evolution models of spiral galaxies is reviewed. An up to date compilation of abundance data in the literature concerning HII regions over galactic discs is presented. From these data Oxygen and Nitrogen radial gradients are computed. The slope of the Oxygen gradient is shown to have a break at a radius between 1.5 and 1.75 times the value of the effective radius of the disc, i.e. the radius containing half of the light of the disc. The gradient is steeper in the central parts of the disc and becomes flatter in the outer parts. N/O gradients are shown to be rather different from galaxy to galaxy and only a weak trend of N/O with O/H is found. The existing chemical evolution models for spiral galaxies are reviewed with special emphasis in the interpretation of numerical models having a large number of parameters. (author)
Discrete gradient methods for solving variational image regularisation models
International Nuclear Information System (INIS)
Grimm, V; McLachlan, Robert I; McLaren, David I; Quispel, G R W; Schönlieb, C-B
2017-01-01
Discrete gradient methods are well-known methods of geometric numerical integration, which preserve the dissipation of gradient systems. In this paper we show that this property of discrete gradient methods can be interesting in the context of variational models for image processing, that is where the processed image is computed as a minimiser of an energy functional. Numerical schemes for computing minimisers of such energies are desired to inherit the dissipative property of the gradient system associated to the energy and consequently guarantee a monotonic decrease of the energy along iterations, avoiding situations in which more computational work might lead to less optimal solutions. Under appropriate smoothness assumptions on the energy functional we prove that discrete gradient methods guarantee a monotonic decrease of the energy towards stationary states, and we promote their use in image processing by exhibiting experiments with convex and non-convex variational models for image deblurring, denoising, and inpainting. (paper)
Developing a multi-stressor gradient for coral reefs | Science ...
Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit
Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation
Directory of Open Access Journals (Sweden)
Jisun Lee
2015-07-01
Full Text Available In this study, simulation tests for gravity gradient referenced navigation (GGRN are conducted to verify the effects of various factors such as database (DB and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN. In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available.
A constrained conjugate gradient algorithm for computed tomography
Energy Technology Data Exchange (ETDEWEB)
Azevedo, S.G.; Goodman, D.M. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.
Estimating Soil Hydraulic Parameters using Gradient Based Approach
Rai, P. K.; Tripathi, S.
2017-12-01
The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.
Acceleration of monte Carlo solution by conjugate gradient method
International Nuclear Information System (INIS)
Toshihisa, Yamamoto
2005-01-01
The conjugate gradient method (CG) was applied to accelerate Monte Carlo solutions in fixed source problems. The equilibrium model based formulation enables to use CG scheme as well as initial guess to maximize computational performance. This method is available to arbitrary geometry provided that the neutron source distribution in each subregion can be regarded as flat. Even if it is not the case, the method can still be used as a powerful tool to provide an initial guess very close to the converged solution. The major difference of Monte Carlo CG to deterministic CG is that residual error is estimated using Monte Carlo sampling, thus statistical error exists in the residual. This leads to a flow diagram specific to Monte Carlo-CG. Three pre-conditioners were proposed for CG scheme and the performance was compared with a simple 1-D slab heterogeneous test problem. One of them, Sparse-M option, showed an excellent performance in convergence. The performance per unit cost was improved by four times in the test problem. Although direct estimation of efficiency of the method is impossible mainly because of the strong problem-dependence of the optimized pre-conditioner in CG, the method seems to have efficient potential as a fast solution algorithm for Monte Carlo calculations. (author)
Adiabatic theory in regions of strong field gradients. [in magnetosphere
Whipple, E. C.; Northrop, T. G.; Birmingham, T. J.
1986-01-01
The theory for the generalized first invariant for adiabatic motion of charged particles in regions where there are large gradients in magnetic or electric fields is developed. The general condition for an invariant to exist in such regions is that the potential well in which the particle oscillates change its shape slowly as the particle drifts. It is shown how the Kruskal (1962) procedure can be applied to obtain expressions for the invariant and for drift velocities that are asymptotic in a smallness parameter epsilon. The procedure is illustrated by obtaining the invariant and drift velocities for particles traversing a perpendicular shock, and the generalized invariant is compared with the magnetic moment, and the drift orbits with the actual orbits, for a particular case. In contrast to the magnetic moment, the generalized first invariant is better for large gyroradii (large kinetic energies) than for small gyroradii. Expressions for the invariant when an electrostatic potential jump is imposed across the perpendicular shock, and when the particle traverses a rotational shear layer with a small normal component of the magnetic field are given.
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
Investigation of axial power gradients near a control rod tip
Energy Technology Data Exchange (ETDEWEB)
Loberg, John, E-mail: John.Loberg@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Osterlund, Michael, E-mail: Michael.Osterlund@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Division of Applied Nuclear Physics, Box 525, SE-75120 Uppsala (Sweden); Bejmer, Klaes-Hakan, E-mail: Klaes-Hakan.Bejmer@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Blomgren, Jan, E-mail: Jan.Blomgren@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden); Kierkegaard, Jesper, E-mail: Jesper.Kierkegaar@vattenfall.com [Vattenfall Nuclear Fuel AB, Jaemtlandsgatan 99, 162 60 Vaellingby, Stockholm (Sweden)
2011-07-15
Highlights: > Pin power gradients near BWR control rod tips have been investigated. > A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. > Small nodes increases pin power gradients; standard nodes underestimates gradients. > The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, {approx}15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.
Gradients estimation from random points with volumetric tensor in turbulence
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Investigation of axial power gradients near a control rod tip
International Nuclear Information System (INIS)
Loberg, John; Osterlund, Michael; Bejmer, Klaes-Hakan; Blomgren, Jan; Kierkegaard, Jesper
2011-01-01
Highlights: → Pin power gradients near BWR control rod tips have been investigated. → A control rod tip is modeled in MCNP and compared to simplified 2D/3D geometry. → Small nodes increases pin power gradients; standard nodes underestimates gradients. → The MCNP results are validated against axial gamma scan of a controlled fuel pin. - Abstract: Control rod withdrawal in BWRs induces large power steps in the adjacent fuel assemblies. This paper investigates how well a 2D/3D method, e.g., CASMO5/SIMULATE5 computes axial pin power gradients adjacent to an asymmetrical control-rod tip in a BWR. The ability to predict pin power gradients accurately is important for safety considerations whereas large powers steps induced by control rod withdrawal can cause Pellet Cladding Interaction. The computation of axial pin power gradients axially around a control rod tip is a challenging task for any nodal code. On top of that, asymmetrical control rod handles are present in some BWR designs. The lattice code CASMO requires diagonal symmetry of all control rod parts. This introduces an error in computed pin power gradients that has been evaluated by Monte Carlo calculations. The results show that CASMO5/SIMULATE5, despite the asymmetrical control rod handle, is able to predict the axial pin power gradient within 1%/cm for axial nodal sizes of 15-3.68 cm. However, a nodal size of 3.68 cm still causes underestimations of pin power gradients compared with 1 cm nodes. Furthermore, if conventional node sizes are used, ∼15 cm, pin power gradients can be underestimated by over 50% compared with 1 cm nodes. The detailed axial pin power profiles from MCNP are corroborated by measured gamma scan data on fuel rods irradiated adjacent to control rods.
International Nuclear Information System (INIS)
Ohtakara, Kazuhiro; Hayashi, Shinya; Hoshi, Hiroaki
2011-01-01
The objective of our study was to describe the dose gradient characteristics of Linac-based stereotactic radiosurgery using Paddick's gradient index (GI) and to elucidate the factors influencing the GI value. Seventy-three plans for brain metastases using the dynamic conformal arcs were reviewed. The GI values were calculated at the 80% and 90% isodose surfaces (IDSs) and at the different target coverage IDSs (D99, D95, D90, and D85). The GI values significantly decreased as the target coverage of the reference IDS increased (the percentage of the IDS decreased). There was a significant inverse correlation between the GI values and target volume. The plans generated with the addition of a 1-mm leaf margin had worse GI values both at the D99 and D95 relative to those without leaf margin. The number and arrangement of arcs also affected the GI value. The GI values are highly sensitive to the IDS selection variability for dose prescription or evaluation, the target volume, and the planning method. To objectively compare the quality of dose gradient between rival plans, it would be preferable to employ the GI defined at the reference IDS indicating the specific target coverage (exempli gratia (e.g.), D95), irrespective of the intended marginal dose. The modified GI (mGI), defined in this study, substituting the denominator of the original GI with the target volume, would be useful to compensate for the false superior GI value in cases of target over-coverage with the reference IDS and to objectively evaluate the dose gradient outside the target boundary. (author)
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2011-09-28
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed to predict retention times for segmented-temperature gradients based on temperature-gradient input data in liquid chromatography (LC) with high accuracy. The LES model assumes that retention times for isothermal separations can be predicted based on two temperature gradients and is employed to calculate the retention factor of an analyte when changing the start temperature of the temperature gradient. In this study it was investigated whether this approach can also be employed in LC. It was shown that this approximation cannot be transferred to temperature-programmed LC where a temperature range from 60°C up to 180°C is investigated. Major relative errors up to 169.6% were observed for isothermal retention factor predictions. In order to predict retention times for temperature gradients with different start temperatures in LC, another relationship is required to describe the influence of temperature on retention. Therefore, retention times for isothermal separations based on isothermal input runs were predicted using a plot of the natural logarithm of the retention factor vs. the inverse temperature and a plot of the natural logarithm of the retention factor vs. temperature. It could be shown that a plot of lnk vs. T yields more reliable isothermal/isocratic retention time predictions than a plot of lnk vs. 1/T which is usually employed. Hence, in order to predict retention times for temperature-gradients with different start temperatures in LC, two temperature gradient and two isothermal measurements have been employed. In this case, retention times can be predicted with a maximal relative error of 5.5% (average relative error: 2.9%). In comparison, if the start temperature of the simulated temperature gradient is equal to the start temperature of the input data, only two temperature-gradient
Buis, E.
2008-01-01
This research is entitled ‘Arid landscape dynamics along a precipitation gradient: addressing
vegetation – landscape structure – resource interactions at different time scales’ with as subtitle
‘A case study for the Northern Negev Desert of Israel’. Landscape dynamics describes the
Cardiovascular Responses of Snakes to Gravitational Gradients
Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)
1998-01-01
Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.
Efficient and robust gradient enhanced Kriging emulators.
Energy Technology Data Exchange (ETDEWEB)
Dalbey, Keith R.
2013-08-01
%E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.
Self-similar solutions for multi-species plasma mixing by gradient driven transport
Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.
2018-05-01
Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.
PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS
International Nuclear Information System (INIS)
Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.
2012-01-01
Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.
PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS
Energy Technology Data Exchange (ETDEWEB)
Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711 (United States); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)
2012-04-20
Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.
2014-10-01
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
International Nuclear Information System (INIS)
Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.
2014-01-01
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches
A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence
Energy Technology Data Exchange (ETDEWEB)
Mavridis, M.; Isliker, H.; Vlahos, L. [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Görler, T.; Jenko, F.; Told, D. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)
2014-10-15
An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.
The NTF Inlet Guide Vanes Thermal Gradient Problem and Its Mitigation
Venkat, Venki S.; Paryz, Roman W.; Bissett, Owen W.; Kilgore, W.
2013-01-01
The National Transonic Facility (NTF) utilizes Inlet Guide Vanes (IGV) to provide precise, quick response Mach number control for the tunnel. During cryogenic operations, the massive IGV structure can experience large thermal gradients, measured as "Delta T or (Delta)T", between the IGV ring and its support structure called the transfer case. If these temperature gradients are too large, the IGV structure can be stressed beyond its safety limit and cease operation. In recent years, (Delta)T readings exceeding the prescribed safety limits were observed frequently during cryogenic operations, particularly during model access. The tactical operation methods of the tunnel to minimize (Delta)T did not always succeed. One obvious option to remedy this condition is to warm up the IGV structure by disabling the main drive operation, but this "natural" warm up method can takes days in some cases, resulting in productivity loss. This paper documents the thermal gradient problem associated with the IGV structure during cryogenic operation and how the facility has recently achieved an acceptable mitigation which has resulted in improved efficiency of operations.
An extended discrete gradient formula for oscillatory Hamiltonian systems
International Nuclear Information System (INIS)
Liu Kai; Shi Wei; Wu Xinyuan
2013-01-01
In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)
A flexoelectric theory with rotation gradient effects for elastic dielectrics
International Nuclear Information System (INIS)
Anqing, Li; Shenjie, Zhou; Lu, Qi; Xi, Chen
2016-01-01
In this paper, a general flexoelectric theory in the framework of couple stress theory is proposed for isotropic dielectrics, in which the rotation gradient and the polarization gradient are involved to represent the nonlocal mechanical and electrical effects, respectively. The present flexoelectric theory shows only the anti-symmetric part of rotation gradient can induce polarization, while the symmetric part of rotation gradient cannot induce polarization in isotropic dielectrics. The electrostatic stress is obtained naturally in the governing equations and boundary conditions in terms of the variational principle, which is composed of two parts: the Maxwell stress corresponding to the polarization and the remainder relating to the polarization gradient. The current theory is able to account for the effects of size, direct and inverse flexoelectricities, and electrostatic force. To illustrate this theory, a simple application of Bernoulli–Euler cantilever beam is discussed. The numerical results demonstrate neither the higher-order constant l 1 nor the higher-order constant l 2 associated with the symmetric and anti-symmetric parts of rotation gradient, respectively, can be ignored in the flexoelectric theory. In addition, the induced deflection increases as the increase of the flexoelectric coefficient. The polarization is no longer constant and the potential is no longer linear along the thickness direction of beam because of the influence of polarization gradient. (paper)
Neotropical lowland forests along environmental gradients
Toledo, M.
2010-01-01
Neotropical lowlands feature an extraordinary display of vegetation types. This is especially the case for Bolivia where three biogeographical regions, Amazonian, Brazilian-Paranaense and Gran Chaco meet in the lowland areas, providing thus an ideal setting to study vegetation-environment
A study of gradient strengthening based on a finite-deformation gradient crystal-plasticity model
Pouriayevali, Habib; Xu, Bai-Xiang
2017-11-01
A comprehensive study on a finite-deformation gradient crystal-plasticity model which has been derived based on Gurtin's framework (Int J Plast 24:702-725, 2008) is carried out here. This systematic investigation on the different roles of governing components of the model represents the strength of this framework in the prediction of a wide range of hardening behaviors as well as rate-dependent and scale-variation responses in a single crystal. The model is represented in the reference configuration for the purpose of numerical implementation and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Furthermore, a function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions. Our simulation results reveal that the dissipative gradient strengthening can be identified as a source of isotropic-hardening behavior, which may represent the effect of irrecoverable work introduced by Gurtin and Ohno (J Mech Phys Solids 59:320-343, 2011). Here, the variation of size dependency at different magnitude of a rate-sensitivity parameter is also discussed. Moreover, an observation of effect of a distinctive feature in the model which explains the effect of distortion of crystal lattice in the reference configuration is reported in this study for the first time. In addition, plastic flows in predefined slip systems and expansion of accumulation of GNDs are distinctly observed in varying scales and under different loading conditions.
Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki
2016-01-01
In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.
Discontinuous gradient differential equations and trajectories in the calculus of variations
International Nuclear Information System (INIS)
Bogaevskii, I A
2006-01-01
The concept of gradient of smooth functions is generalized for their sums with concave functions. An existence, uniqueness, and continuous dependence theorem for increasing time is formulated and proved for solutions of an ordinary differential equation the right-hand side of which is the gradient of the sum of a concave and a smooth function. With the use of this result a physically natural motion of particles, well defined even at discontinuities of the velocity field, is constructed in the variational problem of the minimal mechanical action in a space of arbitrary dimension. For such a motion of particles in the plane all typical cases of the birth and the interaction of point clusters of positive mass are described.
Discontinuous gradient differential equations and trajectories in the calculus of variations
Bogaevskii, I. A.
2006-12-01
The concept of gradient of smooth functions is generalized for their sums with concave functions. An existence, uniqueness, and continuous dependence theorem for increasing time is formulated and proved for solutions of an ordinary differential equation the right-hand side of which is the gradient of the sum of a concave and a smooth function. With the use of this result a physically natural motion of particles, well defined even at discontinuities of the velocity field, is constructed in the variational problem of the minimal mechanical action in a space of arbitrary dimension. For such a motion of particles in the plane all typical cases of the birth and the interaction of point clusters of positive mass are described.
Strong source heat transfer simulations based on a GalerKin/Gradient - least - squares method
International Nuclear Information System (INIS)
Franca, L.P.; Carmo, E.G.D. do.
1989-05-01
Heat conduction problems with temperature-dependent strong sources are modeled by an equation with a laplacian term, a linear term and a given source distribution term. When the linear-temperature-dependent source term is much larger than the laplacian term, we have a singular perturbation problem. In this case, boundary layers are formed to satisfy the Dirichlet boundary conditions. Although this is an elliptic equation, the standard Galerkin method solution is contaminated by spurious oscillations in the neighborhood of the boundary layers. Herein we employ a Galerkin/Gradient-least-squares method which eliminates all pathological phenomena of the Galerkin method. The method is constructed by adding to the Galerkin method a mesh-dependent term obtained by the least-squares form of the gradient of the Euler-Lagrange equation. Error estimates, numerical simulations in one-and multi-dimensions are given that attest the good stability and accuracy properties of the method [pt
Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theory
DEFF Research Database (Denmark)
El-Naaman, Salim Abdallah; Nielsen, Kim Lau; Niordson, Christian Frithiof
2016-01-01
The existence of characteristic strain rates in rate-dependent material models, corresponding to rate-independent model behavior, is studied within a back stress based rate-dependent higher order strain gradient crystal plasticity model. Such characteristic rates have recently been observed...... for steady-state processes, and the present study aims to demonstrate that the observations in fact unearth a more widespread phenomenon. In this work, two newly proposed back stress formulations are adopted to account for the strain gradient effects in the single slip simple shear case, and characteristic...... rates for a selected quantity are identified through numerical analysis. Evidently, the concept of a characteristic rate, within the rate-dependent material models, may help unlock an otherwise inaccessible parameter space....
Strain gradient crystal plasticity analysis of a single crystal containing a cylindrical void
DEFF Research Database (Denmark)
Borg, Ulrik; Kysar, J.W.
2007-01-01
to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal...... plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation......, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up...
Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
Tol, S.; Degertekin, F. L.; Erturk, A.
2016-08-01
We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.
On wake modeling, wind-farm gradients, and AEP predictions at the Anholt wind farm
Directory of Open Access Journals (Sweden)
A. Peña
2018-04-01
Full Text Available We investigate wake effects at the Anholt offshore wind farm in Denmark, which is a farm experiencing strong horizontal wind-speed gradients because of its size and proximity to land. Mesoscale model simulations are used to study the horizontal wind-speed gradients over the wind farm. From analysis of the mesoscale simulations and supervisory control and data acquisition (SCADA, we show that for westerly flow in particular, there is a clear horizontal wind-speed gradient over the wind farm. We also use the mesoscale simulations to derive the undisturbed inflow conditions that are coupled with three commonly used wake models: two engineering approaches (the Park and G. C. Larsen models and a linearized Reynolds-averaged Navier–Stokes approach (Fuga. The effect of the horizontal wind-speed gradient on annual energy production estimates is not found to be critical compared to estimates from both the average undisturbed wind climate of all turbines' positions and the undisturbed wind climate of a position in the middle of the wind farm. However, annual energy production estimates can largely differ when using wind climates at positions that are strongly influenced by the horizontal wind-speed gradient. When looking at westerly flow wake cases, where the impact of the horizontal wind-speed gradient on the power of the undisturbed turbines is largest, the wake models agree with the SCADA fairly well; when looking at a southerly flow case, where the wake losses are highest, the wake models tend to underestimate the wake loss. With the mesoscale-wake model setup, we are also able to estimate the capacity factor of the wind farm rather well when compared to that derived from the SCADA. Finally, we estimate the uncertainty of the wake models by bootstrapping the SCADA. The models tend to underestimate the wake losses (the median relative model error is 8.75 % and the engineering wake models are as uncertain as Fuga. These results are specific for
Plasma gradient effects on double-probe measurements in the magnetosphere
Directory of Open Access Journals (Sweden)
H. Laakso
1995-02-01
Full Text Available The effects on double-probe electric field measurements induced by electron density and temperature gradients are investigated. We show that on some occasions such gradients may lead to marked spurious electric fields if the probes are assumed to lie at the same probe potential with respect to the plasma. The use of a proper bias current will decrease the magnitude of such an error. When the probes are near the plasma potential, the magnitude of these error signals, ∆E, can vary as ∆E ~ Te(∆ne/ne+0.5∆Te, where Te is the electron temperature, ∆ne/ne the relative electron density variation between the two sensors, and ∆Te the electron temperature difference between the two sensors. This not only implies that the error signals will increase linearly with the density variations but also that such signatures grow with Te, i.e., such effects are 10 times larger in a 10-eV plasma than in a 1-eV plasma. This type of error is independent of the probe separation distance provided the gradient scale length is much larger than this distance. The largest errors occur when the probes are near to the plasma potential. At larger positive probe potentials with respect to the plasma potential, the error becomes smaller if the probes are biased, as is usually the case with spherical double-probe experiments in the tenuous magnetospheric plasmas. The crossing of a plasma boundary (like the plasmapause or magnetopause yields an error signal of a single peak. During the crossing of a small structure (e.g., a double layer the error signal appears as a bipolar signature. Our analysis shows that errors in double-probe measurements caused by plasma gradients are not significant at large scale (»1 km plasma boundaries, and may only be important in cases where small-scale (<1 km, internal gradient structures exist. Bias currents tailored for each plasma parameter regime (i.e., variable bias current would o1q1improve the double-probe response to gradient
Apparent Brecciation Gradient, Mount Desert Island, Maine
Hawkins, A. T.; Johnson, S. E.
2004-05-01
Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic
McDougall, Cameron M; Ban, Vin Shen; Beecher, Jeffrey; Pride, Lee; Welch, Babu G
2018-03-02
OBJECTIVE The role of venous sinus stenting (VSS) for idiopathic intracranial hypertension (IIH) is not well understood. The aim of this systematic review is to attempt to identify subsets of patients with IIH who will benefit from VSS based on the pressure gradients of their venous sinus stenosis. METHODS MEDLINE/PubMed was searched for studies reporting venous pressure gradients across the stenotic segment of the venous sinus, pre- and post-stent pressure gradients, and clinical outcomes after VSS. Findings are reported according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. RESULTS From 32 eligible studies, a total of 186 patients were included in the analysis. Patients who had favorable outcomes had higher mean pressure gradients (22.8 ± 11.5 mm Hg vs 17.4 ± 8.0 mm Hg, p = 0.033) and higher changes in pressure gradients after stent placement (19.4 ± 10.0 mm Hg vs 12.0 ± 6.0 mm Hg, p = 0.006) compared with those with unfavorable outcomes. The post-stent pressure gradients between the 2 groups were not significantly different (2.8 ± 4.0 mm Hg vs 2.7 ± 2.0 mm Hg, p = 0.934). In a multivariate stepwise logistic regression controlling for age, sex, body mass index, CSF opening pressure, pre-stent pressure gradient, and post-stent pressure gradient, the change in pressure gradient with stent placement was found to be an independent predictor of favorable outcome (p = 0.028). Using a pressure gradient of 21 as a cutoff, 81/86 (94.2%) of patients with a gradient > 21 achieved favorable outcomes, compared with 82/100 (82.0%) of patients with a gradient ≤ 21 (p = 0.022). CONCLUSIONS There appears to be a relationship between the pressure gradient of venous sinus stenosis and the success of VSS in IIH. A randomized controlled trial would help elucidate this relationship and potentially guide patient selection.
Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E
2010-11-08
Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.
Effects of degree correlation on scale-free gradient networks
International Nuclear Information System (INIS)
Pan Guijun; Yan Xiaoqing; Ma Weichuan; Luo Yihui; Huang Zhongbing
2010-01-01
We have studied the effects of degree correlation on congestion pressure in scale-free gradient networks. It is observed that the jamming coefficient J is insensitive to the degree correlation coefficient r for assortative and strongly disassortative scale-free networks, and J markedly decreases with an increase in r for weakly disassortative scale-free networks. We have also investigated the effects of degree correlation on the topology structure of scale-free gradient networks, and discussed the relation between the topology structure properties and transport efficiency of gradient networks.
Hamilton's gradient estimate for the heat kernel on complete manifolds
Kotschwar, Brett
2007-01-01
In this paper we extend a gradient estimate of R. Hamilton for positive solutions to the heat equation on closed manifolds to bounded positive solutions on complete, non-compact manifolds with $Rc \\geq -Kg$. We accomplish this extension via a maximum principle of L. Karp and P. Li and a Bernstein-type estimate on the gradient of the solution. An application of our result, together with the bounds of P. Li and S.T. Yau, yields an estimate on the gradient of the heat kernel for complete manifol...
Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators
Energy Technology Data Exchange (ETDEWEB)
Checchin, Mattia [Fermilab; Grassellino, Anna [Fermilab; Martinello, Martina [IIT, Chicago; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)
2017-05-01
The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.
Rainbow refractometry on particles with radial refractive index gradients
Energy Technology Data Exchange (ETDEWEB)
Saengkaew, Sawitree [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France); Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Charinpanitkul, Tawatchai; Vanisri, Hathaichanok; Tanthapanichakoon, Wiwut [Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Biscos, Yves; Garcia, Nicolas; Lavergne, Gerard [ONERA/DMAE, Toulouse (France); Mees, Loic; Gouesbet, Gerard; Grehan, Gerard [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France)
2007-10-15
The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified. (orig.)
Enhanced Photovoltaic Properties of Gradient Doping Solar Cells
International Nuclear Information System (INIS)
Zhang Chun-Lei; Du Hui-Jing; Zhu Jian-Zhuo; Xu Tian-Fu; Fang Xiao-Yong
2012-01-01
An optimum design of a-Si:H(n)/a-Si:H(i)/c-Si(p) heterojunction solar cell is realized with 24.27% conversion efficiency by gradient doping of the a-Si:H(n) layer. The photovoltaic properties are simulated by the AFORSHET software. Besides the additional electric field caused by the gradient doping, the enhanced and widen spectral response also improves the solar cell performance compared with the uniform-doping mode. The simulation shows that the gradient doping is efficient to improve the photovoltaic performance of the solar cells. The study is valuable for the solar cell design with excellent performances
Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures
Abdula, Rzger A.
2016-01-01
Bottom hole temperature (BHT) data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km) was found for well Taq Taq-8 in the Low Folded Zone (central part of the area). The lowest geothermal gradients (14.9 °C/km) were observed for well Bekhme-1 in the High Folded Zone (northern and...
Coupling of hydraulic and electric gradients in sandy soils
Energy Technology Data Exchange (ETDEWEB)
Gregolec, G.; Zorn, R.; Kurzbach, A.; Roehl, K.E.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)
2001-07-01
Laboratory studies were conducted to investigate the influence of hydraulic gradient on the migration of ions caused by an applied dc electric field. The model soil used was a uniform sand which was placed into an electrokinetic cell and saturated with sodium chloride solution. Applying only an electric gradient, steady state conditions are reached where the concentration distribution of sodium and chloride coincides with a theoretical model. The combination of electric and hydraulic gradients shows that it is possible to hinder ions from moving with the groundwater flow by applying an electric field. (orig.)
Generating substrate bound functional chemokine gradients in vitro
DEFF Research Database (Denmark)
Hjortø, Gertrud Malene; Hansen, Morten; Larsen, Niels Bent
2009-01-01
Microcontact printing (mCP) is employed to generate discontinuous microscale gradients of active fractalkine, a chemokine expressed by endothelial cells near sites of inflammation where it is believed to form concentration gradients descending away from the inflamed area. In vivo, fractalkine...... active part of the molecules. Here, indirect mCP of a capture antibody recognizing a molecular tag on the target protein is successfully used to pattern tagged fractalkine in microscale gradient patterns. Fractalkine functions as an adhesion molecule for leukocytes. Cells expressing the fractalkine...
Gradient estimates on the weighted p-Laplace heat equation
Wang, Lin Feng
2018-01-01
In this paper, by a regularization process we derive new gradient estimates for positive solutions to the weighted p-Laplace heat equation when the m-Bakry-Émery curvature is bounded from below by -K for some constant K ≥ 0. When the potential function is constant, which reduce to the gradient estimate established by Ni and Kotschwar for positive solutions to the p-Laplace heat equation on closed manifolds with nonnegative Ricci curvature if K ↘ 0, and reduce to the Davies, Hamilton and Li-Xu's gradient estimates for positive solutions to the heat equation on closed manifolds with Ricci curvature bounded from below if p = 2.
Löve, Jesper; Hensing, Gunnel; Holmgren, Kristina; Torén, Kjell
2013-06-05
Some previous studies have proposed potential explanatory factors for the social gradient in sickness absence. Yet, this research area is still in its infancy and in order to comprise the full range of socioeconomic positions there is a need for studies conducted on random population samples. The main aim of the present study was to investigate if somatic and mental symptoms, mental wellbeing, job strain, and physical work environment could explain the association between low socioeconomic position and belonging to a sample of new cases of sick-listed employees. This study was conducted on one random working population sample (n = 2763) and one sample of newly sick-listed cases of employees (n = 3044), drawn from the same random general population in western Sweden. Explanatory factors were self-rated 'Somatic and mental symptoms', 'Mental well-being', 'job strain', and 'physical work conditions' (i.e. heavy lifting and awkward work postures). Multiple logistic regression analyses were used. Somatic and mental symptoms, mental well-being, and job strain, could not explain the association between socioeconomic position and sickness absence in both women and men. However, physical work conditions explained the total association in women and much of this association in men. In men the gradient between Non-skilled manual OR 1.76 (1.24;2.48) and Skilled manual OR 1.59 (1.10;2.20), both in relation to Higher non-manual, remained unexplained. The present study strengthens the scientific evidence that social differences in physical work conditions seem to comprise a key element of the social gradient in sickness absence, particularly in women. Future studies should try to identify further predictors for this gradient in men.
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes
Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.
1995-09-01
Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on
Ebbers, Lena; Weber, Maren; Nothwang, Hans Gerd
2017-10-26
In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular
Miasnikov, Alexandre A; Weinberger, Norman M
2012-11-01
Experience often does not produce veridical memory. Understanding false attribution of events constitutes an important problem in memory research. "Peak shift" is a well-characterized, controllable phenomenon in which human and animal subjects that receive reinforcement associated with one sensory stimulus later respond maximally to another stimulus in post-training stimulus generalization tests. Peak shift ordinarily develops in discrimination learning (reinforced CS+, unreinforced CS-) and has long been attributed to the interaction of an excitatory gradient centered on the CS+ and an inhibitory gradient centered on the CS-; the shift is away from the CS-. In contrast, we have obtained peak shifts during single tone frequency training, using stimulation of the cholinergic nucleus basalis (NB) to implant behavioral memory into the rat. As we also recorded cortical activity, we took the opportunity to investigate the possible existence of a neural frequency gradient that could account for behavioral peak shift. Behavioral frequency generalization gradients (FGGs, interruption of ongoing respiration) were determined twice before training while evoked potentials were recorded from the primary auditory cortex (A1), to obtain a baseline gradient of "habituatory" neural decrement. A post-training behavioral FGG obtained 24h after three daily sessions of a single tone paired with NB stimulation (200 trials/day) revealed a peak shift. The peak of the FGG was at a frequency lower than the CS while the cortical inhibitory gradient was at a frequency higher than the CS frequency. Further analysis indicated that the frequency location and magnitude of the gradient could account for the behavioral peak shift. These results provide a neural basis for a systematic case of memory misattribution and may provide an animal model for the study of the neural bases of a type of "false memory". Published by Elsevier Inc.
Development and propagation of a pollution gradient in the marine ...
Indian Academy of Sciences (India)
are significantly influenced by the diurnal cycle of coastal sea-land breeze circulations along India's west coast. Transport of ... cloud bands during INDOEX were in fact pollu- tion gradients ...... State Climate Office of North Carolina. We thank.
Quasi Gradient Projection Algorithm for Sparse Reconstruction in Compressed Sensing
Directory of Open Access Journals (Sweden)
Xin Meng
2014-02-01
Full Text Available Compressed sensing is a novel signal sampling theory under the condition that the signal is sparse or compressible. The existing recovery algorithms based on the gradient projection can either need prior knowledge or recovery the signal poorly. In this paper, a new algorithm based on gradient projection is proposed, which is referred as Quasi Gradient Projection. The algorithm presented quasi gradient direction and two step sizes schemes along this direction. The algorithm doesn’t need any prior knowledge of the original signal. Simulation results demonstrate that the presented algorithm cans recovery the signal more correctly than GPSR which also don’t need prior knowledge. Meanwhile, the algorithm has a lower computation complexity.
A density gradient theory based method for surface tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht; Kontogeorgis, Georgios
2016-01-01
The density gradient theory has been becoming a widely used framework for calculating surface tension, within which the same equation of state is used for the interface and bulk phases, because it is a theoretically sound, consistent and computationally affordable approach. Based on the observation...... that the optimal density path from the geometric mean density gradient theory passes the saddle point of the tangent plane distance to the bulk phases, we propose to estimate surface tension with an approximate density path profile that goes through this saddle point. The linear density gradient theory, which...... assumes linearly distributed densities between the two bulk phases, has also been investigated. Numerical problems do not occur with these density path profiles. These two approximation methods together with the full density gradient theory have been used to calculate the surface tension of various...
On combined gravity gradient components modelling for applied geophysics
International Nuclear Information System (INIS)
Veryaskin, Alexey; McRae, Wayne
2008-01-01
Gravity gradiometry research and development has intensified in recent years to the extent that technologies providing a resolution of about 1 eotvos per 1 second average shall likely soon be available for multiple critical applications such as natural resources exploration, oil reservoir monitoring and defence establishment. Much of the content of this paper was composed a decade ago, and only minor modifications were required for the conclusions to be just as applicable today. In this paper we demonstrate how gravity gradient data can be modelled, and show some examples of how gravity gradient data can be combined in order to extract valuable information. In particular, this study demonstrates the importance of two gravity gradient components, Txz and Tyz, which, when processed together, can provide more information on subsurface density contrasts than that derived solely from the vertical gravity gradient (Tzz)
Theory of ion-temperature-gradient-driven turbulence in tokamaks
International Nuclear Information System (INIS)
Lee, G.S.; Diamond, P.H.
1986-01-01
An analytic theory of ion-temperature-gradient-driven turbulence in tokamaks is presented. Energy-conserving, renormalized spectrum equations are derived and solved in order to obtain the spectra of stationary ion-temperature-gradient-driven turbulence. Corrections to mixing-length estimates are calculated explicitly. The resulting anomalous ion thermal diffusivity chi/sub i/ = 0.4[(π/2)ln(1 + eta/sub i/)] 2 [(1 + eta/sub i/)/tau] 2 rho/sub s/ 2 c/sub s//L/sub s/ is derived and is found to be consistent with experimentally-deduced thermal diffusivities. The associated electron thermal diffusivity and particle and heat-pinch velocities are also calculated. The effect of impurity gradients on saturated ion-temperature-gradient-driven turbulence is discussed and a related explanation of density profile steepening during Z-mode operation is proposed. 35 refs., 4 figs
Conditioning the full waveform inversion gradient to welcome anisotropy
Alkhalifah, Tariq Ali
2014-01-01
Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.
High Ra, high Pr convection with viscosity gradients
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.
Bacterial pleomorphism and competition in a relative humidity gradient
de Goffau, Marcus C.; Yang, Xiaomei; van Dijl, Jan Maarten; Harmsen, Hermie J. M.
The response of different bacterial species to reduced water availability was studied using a simple relative humidity gradient technique. Interestingly, distinct differences in morphology and growth patterns were observed between populations of the same species growing at different relative
Analysis of Gradient Waveform in Magnetic Resonance Imaging
Directory of Open Access Journals (Sweden)
OU-YANG Shan-mei
2017-12-01
Full Text Available The accuracy of gradient pulse waveform affects image quality significantly in magnetic resonance imaging (MRI. Recording and analyzing the waveform of gradient pulse helps to make rapid and accurate diagnosis of spectrometer gradient hardware and/or pulse sequence. Using the virtual instrument software LabVIEW to control the high speed data acquisition card DAQ-2005, a multi-channel acquisition scheme was designed to collect the gradient outputs from a custom-made spectrometer. The collected waveforms were post-processed (i.e., histogram statistical analysis, data filtering and difference calculation to obtain feature points containing time and amplitude information. Experiments were carried out to validate the method, which is an auxiliary test method for the development of spectrometer and pulses sequence.
Geothermal gradients in Iraqi Kurdistan deduced from bottom hole temperatures
Directory of Open Access Journals (Sweden)
Rzger A. Abdula
2017-09-01
Full Text Available Bottom hole temperature (BHT data from 12 oil wells in Iraqi Kurdistan were used to obtain the thermal trend of Iraqi Kurdistan. Due to differences in thermal conductivity of rocks and groundwater movement, variations in geothermal gradients were observed. The highest geothermal gradient (29.2 °C/km was found for well Taq Taq-8 in the Low Folded Zone (central part of the area. The lowest geothermal gradients (14.9 °C/km were observed for well Bekhme-1 in the High Folded Zone (northern and northeastern parts of the area. The average regional geothermal gradient for Iraqi Kurdistan is 21 °C/km.
Ecological status of species on grazing gradients on the shallow ...
African Journals Online (AJOL)
Ecological status of species on grazing gradients on the shallow soils of the western ... Open Access DOWNLOAD FULL TEXT ... Vegetation data were gathered in such a way that those of different successional stages could be identified.
Spatial gradients of polychlorinated biphenyls (PCBs) and organochlorine pesticides
National Oceanic and Atmospheric Administration, Department of Commerce — Spatial gradients of polychlorinated biphenyls (PCBs) and organochlorine pesticides were examined in the young-of-the-year (YOY) blueÂżsh collected in the vicinity...
Non-Conventional Thermodynamics and Models of Gradient Elasticity
Directory of Open Access Journals (Sweden)
Hans-Dieter Alber
2018-03-01
Full Text Available We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.
Conditioning the full waveform inversion gradient to welcome anisotropy
Alkhalifah, Tariq Ali
2014-08-05
Multi-parameter full waveform inversion (FWI) suffers from the complex nonlinearity in the objective function, compounded by the eventual tradeoff between the model parameters. A hierarchical approach based on frequency and arrival time data decimation to maneuver the complex nonlinearity associated with this problem usually falls short in anisotropic media. In place of data decimation, I use a model gradient filter approach to access the parts of the gradient more suitable to combat the potential nonlinearity and parameter trade off. The filter is based on representing the gradient in the time-lag normalized domain in which the small scattering angles of the gradient update is initially muted out. A model update hierarchical filtering strategy includes applying varying degree of filtering to the different parameter updates. A feature not easily accessible to simple data decimation. Using both FWI and reection based FWI (RFWI), two strategies to combat the tradeoff between anisotropic parameters are outlined.
Penaeid Shrimp Salinity Gradient Tank Study 2005-2008
National Oceanic and Atmospheric Administration, Department of Commerce — We designed an experimental gradient tank to examine salinity preferences of juvenile brown shrimp and white shrimp. Although no strong pattern of salinity avoidance...
Topological charge using cooling and the gradient flow
International Nuclear Information System (INIS)
Alexandrou, C.; Athenodorou, A.; The Cyprus Institute, Nicosia; Jansen, K.
2015-12-01
The equivalence of cooling to the gradient flow when the cooling step n c and the continuous flow step of gradient flow τ are matched is generalized to gauge actions that include rectangular terms. By expanding the link variables up to subleading terms in perturbation theory, we relate n c and τ and show that the results for the topological charge become equivalent when rescaling τ ≅ n c /(3-15c 1 ) where c 1 is the Symanzik coefficient multiplying the rectangular term. We, subsequently, apply cooling and the gradient flow using the Wilson, the Symanzik tree-level improved and the Iwasaki gauge actions to configurations produced with N f = 2 + 1 + 1 twisted mass fermions. We compute the topological charge, its distribution and the correlators between cooling and gradient flow at three values of the lattice spacing demonstrating that the perturbative rescaling τ ≅ n c /(3-15c 1 ) leads to equivalent results.
Formation of actin networks in microfluidic concentration gradients
Directory of Open Access Journals (Sweden)
Natalja eStrelnikova
2016-05-01
Full Text Available The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.
Comparative Studies of High-Gradient Rf and Dc Breakdowns
Kovermann, Jan Wilhelm; Wuensch, Walter
2010-01-01
The CLIC project is based on normal-conducting high-gradient accelerating structures with an average accelerating gradient of 100 MV/m. The maximum achievable gradient in these structures is limited by the breakdown phenomenon. The physics of breakdowns is not yet fully understood quantitatively. A full knowledge could have strong impact on the design, material choice and construction of rf structures. Therefore, understanding breakdowns has great importance to reaching a gradient of 100MV/m with an acceptable breakdown probability. This thesis addresses the physics underlying the breakdown effect, focusing on a comparison of breakdowns in rf structures and in a dc spark setup. The dc system is simpler, easier to benchmark against simulations, with a faster turnaround time, but the relationship to rf breakdown must be established. To do so, an experimental approach based on optical diagnostics and electrical measurements methods was made. Following an introduction into the CLIC project, a general theoretical ...
Yin, Ming; Xie, Luofeng; Jiang, Weifeng; Yin, Guofu
2018-05-01
Functional gradient systems have important applications in many areas. Although a 2D dielectric structure that serves as the gradient index medium for controlling electromagnetic waves is well established, it may not be suitable for application in 3D case. In this paper, we present a method to realize functional gradient systems with 3D integrated micro/macrostructure. The homogenization of the structure is studied in detail by conducting band diagram analysis. The analysis shows that the effective medium approximation is valid even when periodicity is comparable to wavelength. The condition to ensure the polarization-invariant, isotropic, and frequency-independent property is investigated. The scheme for the design and fabrication of 3D systems requiring spatial material property distribution is presented. By using the vat photopolymerization process, a large overall size of macrostructure at the system level and precise fine features of microstructure at the unit cell level are realized, thus demonstrating considerable scalability of the system for wave manipulation.
Low Gradient, Large Aperture IR Upgrade Options for the LHC compatible with Nb-Ti Magnet Technology
Brüning, Oliver Sim; Ostojic, R
2007-01-01
The paper presents three different layout and optics solutions for the upgrade of LHC insertions using Nb-Ti superconducting quadrupoles. Each solution is the outcome of different driving design criteria: a) a compact triplet using low gradient quadrupoles; b) a triplet using low gradient quadrupoles of modular design, and c) a layout minimizing the B-max while using modular magnets. The paper discusses the different strategies and design criteria for the three solutions. It also discusses their relative advantages and disadvantages and identifies outstanding studies that need to be addressed in order to develop the solutions further. All cases assume that the first quadrupole magnet requires a smaller minimum aperture and therefore, can feature a slightly larger gradient than the remaining final focus quadrupole magnets.
High-gradient electron accelerator powered by a relativisitic klystron
International Nuclear Information System (INIS)
Allen, M.A.; Boyd, J.K.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Haimson, J.; Hoag, H.A.; Hopkins, D.B.; Houck, T.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Mecklenburg, B.; Miller, R.H.; Ruth, R.D.; Ryne, R.D.; Sessler, A.M.; Vlieks, A.E.; Wang, J.W.; Westenskow, G.A.; Yu, S.S.
1989-01-01
We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power
Refining geoid and vertical gradient of gravity anomaly
Directory of Open Access Journals (Sweden)
Zhang Chijun
2011-11-01
Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.
Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities
Energy Technology Data Exchange (ETDEWEB)
Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)
2016-06-01
The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q_{0} at high gradients.
Functional trait space and the latitudinal diversity gradient
DEFF Research Database (Denmark)
Lamanna, Christine; Blonder, Benjamin; Violle, Cyrille
2014-01-01
The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha...... of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory....
Interior Gradient Estimates for Nonuniformly Parabolic Equations II
Directory of Open Access Journals (Sweden)
Lieberman Gary M
2007-01-01
Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.
New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods
International Nuclear Information System (INIS)
Dai, Y.-H.; Liao, L.-Z.
2001-01-01
Conjugate gradient methods are a class of important methods for unconstrained optimization, especially when the dimension is large. This paper proposes a new conjugacy condition, which considers an inexact line search scheme but reduces to the old one if the line search is exact. Based on the new conjugacy condition, two nonlinear conjugate gradient methods are constructed. Convergence analysis for the two methods is provided. Our numerical results show that one of the methods is very efficient for the given test problems
Several Guaranteed Descent Conjugate Gradient Methods for Unconstrained Optimization
Directory of Open Access Journals (Sweden)
San-Yang Liu
2014-01-01
Full Text Available This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent condition gkTdk≤-1-1/4θkgk2 θk>1/4 and which is strongly convergent whenever the weak Wolfe line search is fulfilled. Moreover, we present several specific guaranteed descent conjugate gradient methods and give their numerical results for large-scale unconstrained optimization.
A Spectral Conjugate Gradient Method for Unconstrained Optimization
International Nuclear Information System (INIS)
Birgin, E. G.; Martinez, J. M.
2001-01-01
A family of scaled conjugate gradient algorithms for large-scale unconstrained minimization is defined. The Perry, the Polak-Ribiere and the Fletcher-Reeves formulae are compared using a spectral scaling derived from Raydan's spectral gradient optimization method. The best combination of formula, scaling and initial choice of step-length is compared against well known algorithms using a classical set of problems. An additional comparison involving an ill-conditioned estimation problem in Optics is presented
Hepatic venous pressure gradients measured by duplex ultrasound
International Nuclear Information System (INIS)
Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M.
2002-01-01
AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P -2 provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)
Morphogengineering roots: comparing mechanisms of morphogen gradient formation
2012-01-01
Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698
Development and implementation of an 84-channel matrix gradient coil.
Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim
2018-02-01
Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med 79:1181-1191, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Gradient biomaterials and their influences on cell migration
Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou
2012-01-01
Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610
Characterization of a texture gradient in tantalum plate
International Nuclear Information System (INIS)
Wright, S.I.; Gray, G.T. III.
1994-01-01
Clark et al. have shown that significant texture gradients can be produced in rolled tantalum plate and that the strength of the gradient is dependent on the processing path. Texture gradients are often ignored because they are time consuming to characterize and add significant complexity to materials modeling. The variation in texture through the thickness of rolled materials is most commonly measured by sectioning samples to different depths through the thickness of the plate and then measuring the texture from these section planes by X-ray diffraction. A new technique based on automatic indexing of electron backscatter diffraction patterns in the scanning electron microscope enables spatially specific orientations to be measured in a practical manner. This technique allows spatial variations in texture to be measured directly enabling gradients in texture to be investigated in more detail than previously possible. This data can be used directly in coupled finite-element/polycrystal-plasticity models to simulate the effects of variations in texture on the plastic behavior of polycrystals. This work examines the variation in texture through the thickness of a tantalum plate and its resultant effect on the compressive deformation of samples prepared from the plate. The characterization of the texture gradient using the automatic point-by-point measurement technique mentioned above is described in detail. The effect of the gradient on the plastic response of through-thickness compression tests is also discussed
Tight junction regulates epidermal calcium ion gradient and differentiation
International Nuclear Information System (INIS)
Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki
2011-01-01
Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.