WorldWideScience

Sample records for high-redshift galaxy surveys

  1. A Subaru galaxy redshift survey: WFMOS survey

    International Nuclear Information System (INIS)

    Takada, M

    2008-01-01

    A planned galaxy redshift survey with the Subaru 8.2m telescope, the WFMOS survey, offers a unique opportunity for probing detailed properties of large-scale structure formation in the expanding universe by measuring clustering strength of galaxy distribution as a function of distance scale and redshift. In particular, the precise measurement of the galaxy power spectrum, combined with the cosmic microwave background experiments, allows us to obtain stringent constraints on or even determine absolute mass scales of the Big-Bang relic neutrinos as the neutrinos imprint characteristic scale- and redshift-dependent modifications onto the galaxy power spectrum shape. Here we describe the basic concept of how the galaxy clustering measurement can be used to explore the neutrino masses, with particular emphasis on advantages of the WFMOS survey over the existing low-redshift surveys such as SDSS

  2. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4survey of massive galaxy clusters ideal to tackle these problems. We present cluster galaxy luminosity functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  3. Measuring our Universe from Galaxy Redshift Surveys.

    Science.gov (United States)

    Lahav, Ofer; Suto, Yasushi

    2004-01-01

    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  4. Measuring our Universe from Galaxy Redshift Surveys

    Directory of Open Access Journals (Sweden)

    Lahav Ofer

    2004-07-01

    Full Text Available Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant. We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  5. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Capak, Peter [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel; Rhodes, Jason [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ilbert, Olivier [Aix Marseille Universite, CNRS, LAM (Laboratoire dAstrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Salvato, Mara [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Schmidt, Samuel [Department of Physics, University of California, Davis, CA 95616 (United States); Longo, Giuseppe [Department of Physics, University Federico II, via Cinthia 6, I-80126 Napoli (Italy); Paltani, Stephane; Coupon, Jean [Department of Astronomy, University of Geneva ch. dcogia 16, CH-1290 Versoix (Switzerland); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Universität Bonn, Auf dem H’´ugel 71, D-53121 Bonn (Germany); Speagle, Josh [Department of Astronomy, Harvard University, 60 Garden Street, MS 46, Cambridge, MA 02138 (United States); Kalinich, Adam [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Brescia, Massimo; Cavuoti, Stefano [Astronomical Observatory of Capodimonte—INAF, via Moiariello 16, I-80131, Napoli (Italy)

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  6. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    Wen, Z. L.; Han, J. L.

    2011-01-01

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 ∼ + - m 3.6 μ m colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z f ≥ 2 and evolved passively. The g' - z' and B - m 3.6μm colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z f ∼ 2, indicating star formation in high-redshift BCGs.

  7. The visibility of high-redshift galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Davies, J.I.; Disney, M.J.

    1990-01-01

    The most visible galaxies - that is, those which have the largest apparent sizes and isophotal luminosities when seen at a given distance - are those with a particular observed surface brightness. Extending this argument to high-redshift galaxies, it is clear that this optimum surface brightness moves progressively to brighter intrinsic surface brightnesses, so as to counteract the effect of K-corrections and cosmological dimming. Thus the galaxies appearing in faint surveys will be from a population distinctly different from those 'normal' galaxies observed nearby. Galaxies in deep surveys are more likely to be spirals and to be of high surface brightness. This has very important implications for observational studies of galaxy evolution. (author)

  8. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    International Nuclear Information System (INIS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson; Coil, Alison L.; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan Renbin; Kassin, Susan A.; Konidaris, N. P.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ∼ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M B = –20 at z ∼ 1 via ∼90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg 2 divided into four separate fields observed to a limiting apparent magnitude of R AB = 24.1. Objects with z ∼ 0.7 to be targeted ∼2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ∼ 1.45, where the [O II] 3727 Å doublet lies in the infrared. The DEIMOS 1200 line mm –1 grating used for the survey delivers high spectral resolution (R ∼ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate

  9. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  10. THE SPITZER HIGH-REDSHIFT RADIO GALAXY SURVEY

    International Nuclear Information System (INIS)

    De Breuck, Carlos; Galametz, Audrey; Vernet, Joel; Seymour, Nick; Stern, Daniel; Eisenhardt, P. R. M.; Willner, S. P.; Fazio, G. G.; Lacy, Mark; Rettura, Alessandro; Rocca-Volmerange, Brigitte

    2010-01-01

    We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1 3 μ m /S 1.6 μ m versus S 5 μ m /S 3 μ m criterion, we identify 42 sources where the rest-frame 1.6 μm emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2 x 10 11 M sun , and remarkably constant within the range 1 3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z ∼ 3, but confirmation by more detailed decomposition of stellar and active galactic nucleus (AGN) emission is needed. The rest-frame 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the rest-frame 5 μm hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance-an indicator of jet orientation-is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6'') companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.

  11. VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)

    Science.gov (United States)

    McLure, R.; Pentericci, L.; Vandels Team

    2017-11-01

    This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0=3. In addition, VANDELS is targeting a substantial number of passive galaxies in the redshift interval 1.0filter, which covers the wavelength range 4800-10000Å at a dispersion of 2.5Å/pix and a spectral resolution of R~600. Each galaxy receives between a minimum of 20-hours and a maximum of 80-hours of on-source integration time. The fundamental aim of the survey is to provide the high signal-to-noise spectra necessary to measure key physical properties such as stellar population ages, metallicities and outflow velocities from detailed absorption-line studies. By targeting two extra-galactic survey fields with superb multi-wavelength imaging data, VANDELS is designed to produce a unique legacy dataset for exploring the physics underpinning high-redshift galaxy evolution. (2 data files).

  12. SHELS: A complete galaxy redshift survey with R ≤ 20.6

    International Nuclear Information System (INIS)

    Geller, Margaret J.; Hwang, Ho Seong; Fabricant, Daniel G.; Kurtz, Michael J.; Dell'Antonio, Ian P.; Zahid, Harus Jabran

    2014-01-01

    The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A. 2000 = 09 h 19 m 32.4 and decl. 2000 = +30°00'00''). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg 2 F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is z = 0.3; the survey provides a view of structure in the range 0.1 ≲ z ≲ 0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D n 4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2 survey, we examine the behavior of the index D n 4000 as a function of galaxy luminosity, stellar mass, and redshift. The known evolutionary and stellar mass dependent properties of the galaxy population are cleanly evident in the data. We also show that the mass-metallicity relation previously determined from these data is robust to the analysis approach.

  13. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.; /LBNL, NSD; Davis, Marc; /UC, Berkeley /UC, Berkeley, Astron.Dept.; Marinoni, Christian; /Brera Observ.; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; /UC, Berkeley, Astron.Dept.; Faber, S.M.; /Lick Observ.; Finkbeiner, Douglas P.; /Princeton U. Observ.; Guhathakurta, Puragra; /Lick Observ.; Kaiser, Nick; /Hawaii U.; Koo, David C.; Phillips, Andrew C.; /Lick Observ.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  14. A faint galaxy redshift survey behind massive clusters

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Brenda Louise [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  15. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Science.gov (United States)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 quality. The spectra of passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 web site is http://www.vipers.inaf.it/

  16. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  17. On the recovery of the local group motion from galaxy redshift surveys

    Energy Technology Data Exchange (ETDEWEB)

    Nusser, Adi [Physics Department and the Asher Space Science Institute-Technion, Haifa 32000 (Israel); Davis, Marc [Departments of Astronomy and Physics, University of California, Berkeley, CA 94720 (United States); Branchini, Enzo, E-mail: adi@physics.technion.ac.il, E-mail: mdavis@berkeley.edu, E-mail: branchin@fis.uniroma3.it [Department of Physics, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s} = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  18. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen; Zheng, Wei; Ford, Holland; Lemze, Doron; Moustakas, John; Van der Wel, Arjen; Zitrin, Adi; Frye, Brenda L.; Postman, Marc; Bradley, Larry; Coe, Dan; Bartelmann, Matthias; Benítez, Narciso; Broadhurst, Tom; Donahue, Megan; Infante, Leopoldo

    2015-01-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y 105 ) and F125W (J 125 ), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete

  19. CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xingxing; Wang, Junxian; Shu, Xinwen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Wei; Ford, Holland; Lemze, Doron [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Van der Wel, Arjen [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Frye, Brenda L. [Steward Observatory/Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Postman, Marc; Bradley, Larry; Coe, Dan [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden (Netherlands); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), C/Camino Bajo de Huétor 24, Granada E-18008 (Spain); Broadhurst, Tom [Department of Theoretical Physics, University of Basque Country UPV/EHU E-Bilbao (Spain); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Infante, Leopoldo, E-mail: hxx@mail.ustc.edu.cn [Departamento de Astronoía y Astrofísica, Pontificia Universidad Católica de Chile, V. Mackenna 4860 Santiago 22 (Chile); and others

    2015-03-01

    We utilize the Cluster Lensing And Supernova survey with Hubble observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y {sub 105}) and F125W (J {sub 125}), as the flux of the central bands could be enhanced by the presence of [O III] λλ4959, 5007 at redshifts of ∼0.93-1.14 and 1.57-1.79, respectively. The multiband observations help to constrain the equivalent widths (EWs) of emission lines. Thanks to cluster lensing, we are able to identify 52 candidates down to an intrinsic limiting magnitude of 28.5 and to a rest-frame [O III] λλ4959, 5007 EW of ≅ 3700 Å. Our samples include a number of EELGs at lower luminosities that are missed in other surveys, and the extremely high EW can only be found in such faint galaxies. These EELGs can mimic a dropout feature similar to that of high-redshift galaxies and contaminate the color-color selection of high-redshift galaxies when the signal-to-noise ratio is limited or the band coverage is incomplete.

  20. How to falsify the GR+ΛCDM model with galaxy redshift surveys

    International Nuclear Information System (INIS)

    Acquaviva, Viviana; Gawiser, Eric

    2010-01-01

    A wide range of models describing modifications to general relativity have been proposed, but no fundamental parameter set exists to describe them. Similarly, no fundamental theory exists for dark energy to parametrize its potential deviation from a cosmological constant. This motivates a model-independent search for deviations from the concordance GR+ΛCDM cosmological model in large galaxy redshift surveys. We describe two model-independent tests of the growth of cosmological structure, in the form of quantities that must equal one if GR+ΛCDM is correct. The first, ε, was introduced previously as a scale-independent consistency check between the expansion history and structure growth. The second, υ, is introduced here as a test of scale-dependence in the linear evolution of matter density perturbations. We show that the ongoing and near-future galaxy redshift surveys WiggleZ, BOSS, and HETDEX will constrain these quantities at the 5-10% level, representing a stringent test of concordance cosmology at different redshifts. When redshift space distortions are used to probe the growth of cosmological structure, galaxies at higher redshift with lower bias are found to be most powerful in detecting the presence of deviations from the GR+ΛCDM model. However, because many dark energy or modified gravity models predict consistency with GR+ΛCDM at high redshift, it is desirable to apply this approach to surveys covering a wide range of redshifts and spatial scales.

  1. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    Science.gov (United States)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  2. EVIDENCE FOR MORPHOLOGY AND LUMINOSITY TRANSFORMATION OF GALAXIES AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2009-01-01

    We study the galaxy morphology-luminosity-environmental relation and its redshift evolution using a spectroscopic sample of galaxies in the Great Observatories Origins Deep Survey. In the redshift range of 0.4 ≤ z ≤ 1.0, we detect conformity in morphology between neighboring galaxies. The realm of conformity is confined within the virialized region associated with each galaxy plus dark matter halo system. When a galaxy is located within the virial radius of its nearest neighbor galaxy, its morphology strongly depends on the neighbor's distance and morphology: the probability for a galaxy to be an early type (f E ) increases as it approaches an early-type neighbor, but decreases as it approaches a late-type neighbor. We find that f E evolves much faster in high-density regions than in low-density regions, and that the morphology-density relation becomes significantly weaker at z ∼ 1. This may be because the rate of galaxy-galaxy interactions is higher in high-density regions, and a series of interactions and mergers over the course of galaxy life eventually transform late types into early types. We find more isolated galaxies are more luminous, which supports luminosity transformation through mergers at these redshifts. Our results are consistent with those from nearby galaxies, and demonstrate that galaxy-galaxy interactions have been strongly affecting the galaxy evolution over a long period of time.

  3. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    Science.gov (United States)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at zcolor selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program IDs 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).MUSE Ultra Deep Field redshift catalogs (Full Table A.1) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  4. Angular power spectrum of galaxies in the 2MASS Redshift Survey

    Science.gov (United States)

    Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro

    2018-02-01

    We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.

  5. Herschel-ATLAS: The Angular Correlation Function of Submillimetre Galaxies at High and Low Redshift

    Science.gov (United States)

    Maddox, S. J.; Dunne, L.; Rigby, E.; Eales, S.; Cooray, A.; Scott, D.; Peacock, J. A.; Negrello, M.; Smith, D. J. B.; Benford, D.; hide

    2010-01-01

    We present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 micrometer-selected sample we detect no significant clustering, consistent with the expectation that the 250 pm-selected sources are mostly normal galaxies at z high redshift galaxies at z approx. 2-3 we detect significant strong clustering, leading to an estimate of r(0) approx. 7-11/h Mpc. The slope of our clustering measurements is very steep. delta approx. 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.

  6. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Way, M. J.

    2011-01-01

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error for luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS (∼350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.

  7. THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Strandet, M. L.; Weiss, A. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69 D-53121 Bonn (Germany); Vieira, J. D.; Furstenau, R. M. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); De Breuck, C.; Béthermin, M.; Gullberg, B. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); Everett, W. [Department of Astrophysical and Planetary Sciences and Department of Physics, University of Colorado, Boulder, CO 80309 (United States); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); and others

    2016-05-10

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H{sub 2}O and NH{sub 3}. We further present Atacama Pathfinder Experiment [C ii] and CO mid- J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high- z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  8. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  9. Predicting the High Redshift Galaxy Population for JWST

    Science.gov (United States)

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  10. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    Energy Technology Data Exchange (ETDEWEB)

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Seitz, Stella [University Observatory Munich, Scheinstrasse 1, 81679 Muenchen (Germany); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Wood-Vasey, W. Michael [Pittsburgh Center for Particle Physics, Astrophysics, and Cosmology (PITT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802 (United States); Weaver, Benjamin A. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  11. A high-redshift IRAS galaxy with huge luminosity - hidden quasar or protogalaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rowan-Robinson, M; Broadhurst, T [Queen Mary Coll., London (UK). School of Mathematical Sciences; Lawrence, A [Queen Mary Coll., London (UK). Dept. of Physics; McMahon, R G [Cambridge Univ. (UK). Inst. of Astronomy; Lonsdale, C J [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Oliver, S J; Taylor, A N [Queen Mary Coll., London (UK). School of Mathematical Sciences; Hacking, P B; Conrow, T [California Inst. of Tech., Pasadena, CA (USA). Infrared Processing and Analysis Center; Saunders, W [Oxford Univ. (UK). Dept. of Astrophysics; Ellis, R S [Durham Univ. (UK). Dept. of Physics; Efstathiou, G P [Oxford Univ. (UK). Dept. of Astrophysics; Condon, J J [National Radio Astronomy Observatory, Charlottesville, VA (USA)

    1991-06-27

    During a survey intended to measure redshifts for 1,400 galaxies identified with faint sources detected by the Infrared Astronomy Satellite, we found an emission-line galaxy at a redshift of 2.286, and with the enormous far-infrared luminosity of 3 x 10{sup 14} times that of the sun (L{sub sun}) The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-{alpha} emission. A self-absorbed synchrotron model for the infrared energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the infrared emission, as might a starburst embedded in 1-10 x 10{sup 9} M{sub sun} of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. In either case, this is a remarkable object, and the presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch. (author).

  12. EVOLUTION OF GALAXY LUMINOSITY FUNCTION USING PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    Ramos, B. H. F.; Pellegrini, P. S.; Da Costa, L. N.; Maia, M. A. G.; Ogando, R. L. C.; De Simoni, F.; Benoist, C.; Makler, M.; Mesquita, A. A.

    2011-01-01

    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end, we compare the LFs obtained using photometric redshifts from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ∼4800 galaxies. We find that for z ≤ 2.0, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of the CFHTLS comprising ∼386,000 galaxies to compute the LF of the combined fields and directly estimate the error in the parameters based on the field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ∼0.7 mag from z ∼ 1.8 to z ∼ 0.3, while the characteristic density φ* increases by a factor of ∼4 in the same redshift interval. We use the galaxy classification provided by the template fitting program used to compute photometric redshifts and split the sample into galaxy types. We find that these Schechter parameters evolve differently for each galaxy type, an indication that their evolution is a combination of several effects: galaxy merging, star formation quenching, and mass assembly. All these results are compatible with those obtained by different spectroscopic surveys such as VVDS, DEEP2, and zCosmos, which reinforces the fact that photometric redshifts can be used to study galaxy evolution, at least for the redshift bins adopted so far. This is of great interest since future very large imaging surveys containing hundreds of millions of galaxies will allow us to obtain important precise measurements to constrain the evolution of the LF and to explore the dependence of this evolution on morphology and/or color helping constrain the mechanisms of galaxy evolution.

  13. A redshift survey of very faint (B <= 22.5) field galaxies, radio sources, and quasars

    International Nuclear Information System (INIS)

    Koo, D.C.

    1983-01-01

    As part of a three year program to study the evolution of quasars, radio sources and galaxies, a 10 night redshift survey has been carried out. A few preliminary results are presented (a magnitude-redshift plot of 54 galaxies). (Auth.)

  14. Dust in High-Redshift Galaxies

    Science.gov (United States)

    Pettini, Max; King, David L.; Smith, Linda J.; Hunstead, Richard W.

    1997-03-01

    Measurements of Zn and Cr abundances in 18 damped Lyα systems (DLAs) at absorption redshifts zabs = 0.692-3.390 (but mostly between zabs ~= 2 and 3) show that metals and dust are much less abundant in high-redshift galaxies than in the Milky Way today. Typically, [Zn/H] ~= -1.2 as Zn tracks Fe closely in Galactic stars of all metallicities and is only lightly depleted onto interstellar grains, we conclude that the overall degree of metal enrichment of damped Lyα galaxies ~13.5 Gyr ago (H0 = 50 km s-1 Mpc-1, q0 = 0.05) was ~1/15 solar. Values of [Cr/Zn] span the range from ~=0 to account correctly, it is possible to misinterpret the clues to early nucleosynthesis provided by nonsolar element ratios.

  15. Detecting Massive, High-Redshift Galaxy Clusters Using the Thermal Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Adams, Carson; Steinhardt, Charles L.; Loeb, Abraham; Karim, Alexander; Staguhn, Johannes; Erler, Jens; Capak, Peter L.

    2017-01-01

    We develop the thermal Sunyaev-Zel'dovich (SZ) effect as a direct astrophysical measure of the mass distribution of dark matter halos. The SZ effect increases with cosmological distance, a unique astronomical property, and is highly sensitive to halo mass. We find that this presents a powerful methodology for distinguishing between competing models of the halo mass function distribution, particularly in the high-redshift domain just a few hundred million years after the Big Bang. Recent surveys designed to probe this epoch of initial galaxy formation such as CANDELS and SPLASH report an over-abundance of highly massive halos as inferred from stellar ultraviolet (UV) luminosities and the stellar mass to halo mass ratio estimated from nearby galaxies. If these UV luminosity to halo mass relations hold to high-redshift, observations estimate several orders of magnitude more highly massive halos than predicted by hierarchical merging and the standard cosmological paradigm. Strong constraints on the masses of these galaxy clusters are essential to resolving the current tension between observation and theory. We conclude that detections of thermal SZ sources are plausible at high-redshift only for the halo masses inferred from observation. Therefore, future SZ surveys will provide a robust determination between theoretical and observational predictions.

  16. Will kinematic Sunyaev-Zel'dovich measurements enhance the science return from galaxy redshift surveys?

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Naonori S.; Okumura, Teppei [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Chiba 277-8582 (Japan); Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: tokumura@asiaa.sinica.edu.tw, E-mail: dns@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton NJ 08544-0010 (United States)

    2017-01-01

    Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated between the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τ{sub T} in the survey is known, we marginalize over τ{sub T}, to compute constraints on the growth rate f and the expansion rate H . For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ∼50-70% compared to the galaxy-only analysis.

  17. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-01-01

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z ∼ 1.5 and 46 galaxies at z ∼ 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z ∼ 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z ∼ 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M 20 ), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M 20 with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M 20 20/30% of real/simulated galaxies at z ∼ 1.5 and 37/12% at z ∼ 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z ∼ 1.5 and z ∼ 4 real galaxies are exponential disks or bulge-like with n>0.8, and ∼ 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with ∼ 35% bulge or exponential at z ∼ 1.5 and 4. Therefore, ∼ 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n 20 > - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z ∼ 1.5 and 4.

  18. The fate of high redshift massive compact galaxies in dense environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Tobias; /Zurich, ETH; Mayer, Lucio; /Zurich U.; Carollo, Marcella; /Zurich, ETH; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  19. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-01-01

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s –1 . Their high speeds allow them to travel ∼0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f esc , from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f esc as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f esc by factors of ≈1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  20. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    International Nuclear Information System (INIS)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L.; Gonzalez-Nuevo, J.

    2016-01-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10 10 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10 2 M ⊙ yr −1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr −1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  1. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    Science.gov (United States)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  2. Galaxy Clustering in Early SDSS Redshift Data

    CERN Document Server

    Zehavi, I.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Anderson, Scott F.; Strauss, Michael A.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson,Scott; Doi,Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezic, Zeljko; Kent,Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald; French Leger, R.; Long, Daniel C.; Loveday, Jon.; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell,Patrick; Yanny, Brian; York, Donald G.; Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.

    2002-01-01

    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but narrow (2.5-5 degree) segments, covering 690 square degrees. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 Mpc/h. The two-dimensional correlation function \\xi(r_p,\\pi) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, \\xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03}, for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is \\sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5 Mpc/h. When we divide the...

  3. On the Number of Galaxies at High Redshift

    Directory of Open Access Journals (Sweden)

    Lorenzo Zaninetti

    2015-09-01

    Full Text Available The number of galaxies at a given flux as a function of the redshift, z, is derived when the z-distance relation is non-standard. In order to compare different models, the same formalism is also applied to the standard cosmology. The observed luminosity function for galaxies of the zCOSMOS catalog at different redshifts is modeled by a new luminosity function for galaxies, which is derived by the truncated beta probability density function. Three astronomical tests, which are the photometric maximum as a function of the redshift for a fixed flux, the mean value of the redshift for a fixed flux, and the luminosity function for galaxies as a function of the redshift, compare the theoretical values of the standard and non-standard model with the observed value. The tests are performed on the FORS Deep Field (FDF catalog up to redshift z = 1.5 and on the zCOSMOS catalog extending beyond z = 4. These three tests show minimal differences between the standard and the non-standard models.

  4. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    Science.gov (United States)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  5. THE CLUSTERING OF GALAXIES IN THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOSITY AND COLOR DEPENDENCE AND REDSHIFT EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hong; Zehavi, Idit [Department of Astronomy, Case Western Reserve University, OH 44106 (United States); Zheng Zheng [Department of Physics and Astronomy, University of Utah, UT 84112 (United States); Weinberg, David H. [Department of Astronomy and CCAPP, Ohio State University, Columbus, OH 43210 (United States); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Blanton, Michael [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Chen Yanmei [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Eisenstein, Daniel J.; McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Ho, Shirley; Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kazin, Eyal [Center for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122 (Australia); Manera, Marc; Maraston, Claudia; Percival, Will J.; Ross, Ashley J.; Samushia, Lado [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Nuza, Sebastian E. [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Padmanabhan, Nikhil; Parejko, John K. [Department of Physics, Yale University, 260 Whitney Ave, New Haven, CT 06520 (United States); and others

    2013-04-20

    We measure the luminosity and color dependence and the redshift evolution of galaxy clustering in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Ninth Data Release. We focus on the projected two-point correlation function (2PCF) of subsets of its CMASS sample, which includes about 260,000 galaxies over {approx}3300 deg{sup 2} in the redshift range 0.43 < z < 0.7. To minimize the selection effect on galaxy clustering, we construct well-defined luminosity and color subsamples by carefully accounting for the CMASS galaxy selection cuts. The 2PCF of the whole CMASS sample, if approximated by a power-law, has a correlation length of r{sub 0} = 7.93 {+-} 0.06 h {sup -1} Mpc and an index of {gamma} = 1.85 {+-} 0.01. Clear dependences on galaxy luminosity and color are found for the projected 2PCF in all redshift bins, with more luminous and redder galaxies generally exhibiting stronger clustering and steeper 2PCF. The color dependence is also clearly seen for galaxies within the red sequence, consistent with the behavior of SDSS-II main sample galaxies at lower redshifts. At a given luminosity (k + e corrected), no significant evolution of the projected 2PCFs with redshift is detected for red sequence galaxies. We also construct galaxy samples of fixed number density at different redshifts, using redshift-dependent magnitude thresholds. The clustering of these galaxies in the CMASS redshift range is found to be consistent with that predicted by passive evolution. Our measurements of the luminosity and color dependence and redshift evolution of galaxy clustering will allow for detailed modeling of the relation between galaxies and dark matter halos and new constraints on galaxy formation and evolution.

  6. Photometric redshift requirements for lens galaxies in galaxy-galaxy lensing analyses

    Science.gov (United States)

    Nakajima, R.; Mandelbaum, R.; Seljak, U.; Cohn, J. D.; Reyes, R.; Cool, R.

    2012-03-01

    Weak gravitational lensing is a valuable probe of galaxy formation and cosmology. Here we quantify the effects of using photometric redshifts (photo-z) in galaxy-galaxy lensing, for both sources and lenses, both for the immediate goal of using galaxies with photo-z as lenses in the Sloan Digital Sky Survey (SDSS) and as a demonstration of methodology for large, upcoming weak lensing surveys that will by necessity be dominated by lens samples with photo-z. We calculate the bias in the lensing mass calibration as well as consequences for absolute magnitude (i.e. k-corrections) and stellar mass estimates for a large sample of SDSS Data Release 8 (DR8) galaxies. The redshifts are obtained with the template-based photo-z code ZEBRA on the SDSS DR8 ugriz photometry. We assemble and characterize the calibration samples (˜9000 spectroscopic redshifts from four surveys) to obtain photometric redshift errors and lensing biases corresponding to our full SDSS DR8 lens and source catalogues. Our tests of the calibration sample also highlight the impact of observing conditions in the imaging survey when the spectroscopic calibration covers a small fraction of its footprint; atypical imaging conditions in calibration fields can lead to incorrect conclusions regarding the photo-z of the full survey. For the SDSS DR8 catalogue, we find σΔz/(1+z)= 0.096 and 0.113 for the lens and source catalogues, with flux limits of r= 21 and 21.8, respectively. The photo-z bias and scatter is a function of photo-z and template types, which we exploit to apply photo-z quality cuts. By using photo-z rather than spectroscopy for lenses, dim blue galaxies and L* galaxies up to z˜ 0.4 can be used as lenses, thus expanding into unexplored areas of parameter space. We also explore the systematic uncertainty in the lensing signal calibration when using source photo-z, and both lens and source photo-z; given the size of existing training samples, we can constrain the lensing signal calibration (and

  7. THE QUEST FOR DUSTY STAR-FORMING GALAXIES AT HIGH REDSHIFT z ≳ 4

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, C.; Lapi, A.; Shi, J.; Aversa, R.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Gonzalez-Nuevo, J. [Departamento de Física, Universidad de Oviedo, C. Calvo Sotelo s/n, E-33007 Oviedo (Spain)

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 10{sup 10} M {sub ⊙} at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 10{sup 2} M {sub ⊙} yr{sup −1} in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory . We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ∼ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M {sub ⊙} yr{sup −1} cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC - LABOCA , SCUBA-2 , and ALMA - SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2 , supplemented by photometric data from on-source observations with ALMA , can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  8. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    Science.gov (United States)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  9. ASSOCIATIONS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS WITH ACTIVE, LOW-REDSHIFT SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Burbidge, G.; Napier, W. M.

    2009-01-01

    Following the discovery in the 1960s of radio and optical QSOs it was found that some of them lie very close to low-redshift (z ≤ 0.01) spiral galaxies with separations of ∼<2 arcmin. These were discovered both serendipitously by many observers, and systematically by Arp. They are some of the brightest QSOs in radio and optical wavelengths and are very rare. We have carried out a new statistical analysis of most of those galaxy-QSO pairs and find that the configurations have high statistical significance. We show that gravitational microlensing due to stars or other dark objects in the halos of the galaxies apparently cannot account for the excess. Sampling or identification bias likewise seems unable to explain it. Following this up we selected all ∼4000 QSOs with g ≤ 18 from a catalog of confirmed QSOs in the Sloan Digital Sky Survey, and compared them with various subsets of galaxies from the RC 3 galaxy catalog. In contrast to the earlier results, no significant excess of such QSOs was found around these galaxies. Possible reasons for the discrepancy are discussed.

  10. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    Science.gov (United States)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  11. High-Redshift Radio Galaxies from Deep Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, ... Articles are also visible in Web of Science immediately.

  12. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F. [KIPAC, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 29, Menlo Park, CA 94725 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Davis, Marc [Department of Physics and Department of Astronomy, Campbell Hall, University of California-Berkeley, Berkeley, CA 94720 (United States); Coil, Alison L. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0424, La Jolla, CA 92093 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697 (United States); Dutton, Aaron A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C. [UCO/Lick Observatory, University of California-Santa Cruz, Santa Cruz, CA 95064 (United States); Konidaris, Nicholas; Lin, Lihwai [Astronomy Department, Caltech 249-17, Pasadena, CA 91125 (United States); Noeske, Kai [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rosario, David J. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching bei Muenchen (Germany); Weiner, Benjamin J.; Willmer, Christopher N. A. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Yan, Renbin [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  13. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    International Nuclear Information System (INIS)

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Konidaris, Nicholas; Lin, Lihwai; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-01-01

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above ∼300 km s –1 to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  14. UV Visibility of Moderate-Redshift Giant Elliptical Galaxies

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Rhee

    1998-06-01

    Full Text Available We show quantitatively whether giant elliptical galaxies would be visible at far UV wavelengths if they were placed at moderate redshift of 0.4-0.5. On the basis of simple cosmological tests, we conclude that giant elliptical galaxies can be detectable upto the redshift of 0.4-0.5 in the proposed GALEX (Galaxy Evolution Explorer Deep Imaging Survey. We also show that obtaining UV color index such as m_1550 - V from upcoming GALEX and SDSS (Sloan Digital Sky Survey observations should be feasible.

  15. CLUSTER LENSING PROFILES DERIVED FROM A REDSHIFT ENHANCEMENT OF MAGNIFIED BOSS-SURVEY GALAXIES

    International Nuclear Information System (INIS)

    Coupon, Jean; Umetsu, Keiichi; Broadhurst, Tom

    2013-01-01

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M 200 ∼ 1.4-1.8 × 10 14 M ☉ for the optically detected cluster samples, and M 200 ∼ 5.0 × 10 14 M ☉ for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration

  16. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    Science.gov (United States)

    Hoyle, B.; Gruen, D.; Bernstein, G. M.; Rau, M. M.; De Vicente, J.; Hartley, W. G.; Gaztanaga, E.; DeRose, J.; Troxel, M. A.; Davis, C.; Alarcon, A.; MacCrann, N.; Prat, J.; Sánchez, C.; Sheldon, E.; Wechsler, R. H.; Asorey, J.; Becker, M. R.; Bonnett, C.; Carnero Rosell, A.; Carollo, D.; Carrasco Kind, M.; Castander, F. J.; Cawthon, R.; Chang, C.; Childress, M.; Davis, T. M.; Drlica-Wagner, A.; Gatti, M.; Glazebrook, K.; Gschwend, J.; Hinton, S. R.; Hoormann, J. K.; Kim, A. G.; King, A.; Kuehn, K.; Lewis, G.; Lidman, C.; Lin, H.; Macaulay, E.; Maia, M. A. G.; Martini, P.; Mudd, D.; Möller, A.; Nichol, R. C.; Ogando, R. L. C.; Rollins, R. P.; Roodman, A.; Ross, A. J.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sevilla-Noarbe, I.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Uddin, S. A.; Varga, T. N.; Vielzeuf, P.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Busha, M. T.; Capozzi, D.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kirk, D.; Krause, E.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; O'Neill, C. R.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.; Yanny, B.; Zuntz, J.; DES Collaboration

    2018-04-01

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the populations of galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z ≈ 0.2 and ≈1.3, and to produce initial estimates of the lensing-weighted redshift distributions n^i_PZ(z)∝ dn^i/dz for members of bin i. Accurate determination of cosmological parameters depends critically on knowledge of ni but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts n^i(z)=n^i_PZ(z-Δ z^i) to correct the mean redshift of ni(z) for biases in n^i_PZ. The Δzi are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the Δzi of the three lowest redshift bins are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15 < z < 0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the ni(z) beyond the choice of Δzi. The clustering and COSMOS validation methods produce consistent estimates of Δzi in the bins where both can be applied, with combined uncertainties of σ _{Δ z^i}=0.015, 0.013, 0.011, and 0.022 in the four bins. Repeating the photo-z proceedure instead using the Directional Neighborhood Fitting (DNF) algorithm, or using the ni(z) estimated from the matched sample in COSMOS, yields no discernible difference in cosmological inferences.

  17. Redshifts for fainter galaxies in the first CfA survey slice. II

    Science.gov (United States)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.

  18. The cluster environments of powerful, high-redshift radio galaxies

    International Nuclear Information System (INIS)

    Yates, M.G.

    1989-01-01

    We present deep imaging of a sample of 25 powerful radio galaxies in the redshift range 0.15 gr ) about each source, a measure of the richness of environment. The powerful radio galaxies in this sample at z>0.3 occupy environments nearly as rich on average as Abell class 0 clusters of galaxies, about three times richer than the environments of the z<0.3 radio galaxies. This trend in cluster environment is consistent with that seen in radio-loud quasars over the same redshift range. Our previous work on the 3CR sample suggested that the fundamental parameter which correlates with the richness of environment might be the radio luminosity of the galaxy, rather than its redshift. Our direct imaging confirms that the most powerful radio galaxies do inhabit rich environments. (author)

  19. Selection and Physical Properties of High-redshift Galaxies

    Science.gov (United States)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find that the fraction of OGs and DGs in our sample (COSMOS) is similar, about 52% of them are DGs, and the other 48% are OGs. For 24 EROs in the UDF, 16 fall into DGs, while 8 are OGs. To reduce the redundancy of these three different classification methods, we perform a principal component analysis on the measurements of EROs, and find that the nonparametric measures and SEDs are efficient in segregating DGs and OGs. We investigate the dependence of the fraction of EROs on their observational properties, and the results suggest that DGs become increasingly important toward fainter magnitudes, redder colors, and higher redshifts. Moreover, we find that the clustering of EROs is much stronger than that of full K-limited samples of

  20. Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, B.; et al.

    2017-08-04

    We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributions $n^i_{PZ}(z)$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $n^i(z)=n^i_{PZ}(z-\\Delta z^i)$ to correct the mean redshift of $n^i(z)$ for biases in $n^i_{\\rm PZ}$. The $\\Delta z^i$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $\\Delta z^i$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15

  1. BULK FLOWS FROM GALAXY LUMINOSITIES: APPLICATION TO 2MASS REDSHIFT SURVEY AND FORECAST FOR NEXT-GENERATION DATA SETS

    International Nuclear Information System (INIS)

    Nusser, Adi; Branchini, Enzo; Davis, Marc

    2011-01-01

    We present a simple method for measuring cosmological bulk flows from large redshift surveys, based on the apparent dimming or brightening of galaxies due to their peculiar motion. It is aimed at estimating bulk flows of cosmological volumes containing large numbers of galaxies. Constraints on the bulk flow are obtained by minimizing systematic variations in galaxy luminosities with respect to a reference luminosity function measured from the whole survey. This method offers two advantages over more popular bulk flow estimators: it is independent of error-prone distance indicators and of the poorly known galaxy bias. We apply the method to the Two Micron All Sky Survey redshift survey to measure the local bulk flows of spherical shells centered on the Milky Way (MW). The result is consistent with that obtained by Nusser and Davis using the SFI++ catalogue of Tully-Fisher distance indicators. We also make an assessment of the ability of the method to constrain bulk flows at larger redshifts (z = 0.1-0.5) from next-generation data sets. As a case study we consider the planned EUCLID survey. Using this method we will be able to measure a bulk motion of ∼200 km s -1 of 10 6 galaxies with photometric redshifts, at the 3σ level for both z ∼ 0.15 and z ∼ 0.5. Thus, the method will allow us to put strong constraints on dark energy models as well as alternative theories for structure formation.

  2. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brant E.; Stark, Dan P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ellis, Richard S. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Dunlop, James S.; McLure, Ross J.; McLeod, Derek, E-mail: brant@email.arizona.edu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom)

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  3. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    International Nuclear Information System (INIS)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program

  4. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    Science.gov (United States)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  5. Measuring redshift-space distortions using photometric surveys

    OpenAIRE

    Ross, Ashley; Percival, Will; Crocce, M.; Cabre, A.; Gaztanaga, E.

    2011-01-01

    We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({\\theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable ...

  6. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    Science.gov (United States)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  7. Redshifts for a sample of fainter galaxies in the first CfA survey slice

    Science.gov (United States)

    Thorstensen, J. R.; Wegner, G. A.; Hamwey, R.; Boley, F.; Geller, M. J.

    1989-01-01

    Redshifts were measured for 93 of the 94 galaxies in the Zwicky-Nilson merged catalog with the value of m(B/01) between 15.5 and 15.7 and with right ascension alpha between 8(h) and 17(h) and declination delta between 29 and 30 deg. This region is within the one covered by the first slice of the CfA (Center for Astrophysics) survey. The galaxies reinforce features already visible in the earlier survey.

  8. Impacts of satellite galaxies on the redshift-space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Hikage, Chiaki [Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602 (Japan); Yamamoto, Kazuhiro, E-mail: hikage@kmi.nagoya-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp [Department of Physical Sciences, Hiroshima University, Higashi-hiroshima, Kagamiyama 1-3-1, 739-8526 (Japan)

    2013-08-01

    We study the impacts of the satellite galaxies on the redshift-space distortions. In our multipole power spectrum analysis of the luminous red galaxies (LRGs) samples of the Sloan digital sky survey (SDSS), we have clearly detected the non-zero signature of the hexadecapole and tetrahexadecapole spectrum, which almost disappears in the power spectrum with the sample of the brightest LRGs only. We thus demonstrate that the satellite LRGs in multiple systems make a significant contribution to the multipole power spectrum though its fraction is small. The behavior can be understood by a simple halo model, in which the one-halo term, describing the Finger of God (FoG) effect from the satellite galaxies, makes the dominant contribution to the higher multipole spectra. We demonstrate that the small-scale information of higher multipole spectrum is useful for calibrating the satellite FoG effect and improves the measurement of the cosmic growth rate dramatically. We further demonstrate that the fiber collision in the galaxy survey influences the one-halo term and the higher multipole spectra, because the number of satellite galaxies in the halo occupation distribution (HOD) is changed. We also discuss about the impact of satellite galaxies on future high-redshift surveys targeting the H-alpha emitters.

  9. THE SLOAN DIGITAL SKY SURVEY CO-ADD: A GALAXY PHOTOMETRIC REDSHIFT CATALOG

    International Nuclear Information System (INIS)

    Reis, Ribamar R. R.; Soares-Santos, Marcelle; Annis, James; Dodelson, Scott; Hao Jiangang; Johnston, David; Kubo, Jeffrey; Lin Huan; Seo, Hee-Jong; Simet, Melanie

    2012-01-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor error method to estimate photo-z errors for ∼13 million objects classified as galaxies in the co-add with r 68 = 0.031. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  10. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard J. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Dey, Arjun; Jannuzi, Buell T. [National Optical Astronomy Observatory, Tucson, AZ 85726 (United States); Moustakas, John [Center for Astrophysics and Space Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2012-03-20

    We present the galaxy optical luminosity function for the redshift range 0.05 < z < 0.75 from the AGN and Galaxy Evolution Survey, a spectroscopic survey of 7.6 deg{sup 2} in the Booetes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z){sup (0.54{+-}0.64)} for red galaxies and (1 + z){sup (1.64{+-}0.39)} for blue galaxies.

  11. IMPROVED MOCK GALAXY CATALOGS FOR THE DEEP2 GALAXY REDSHIFT SURVEY FROM SUBHALO ABUNDANCE AND ENVIRONMENT MATCHING

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, M/S 29, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697 (United States); Yan, Renbin [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Coil, Alison L., E-mail: bgerke@slac.stanford.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., MC 0424, La Jolla, CA 92093 (United States)

    2013-09-15

    We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in a manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2.

  12. IMPROVED MOCK GALAXY CATALOGS FOR THE DEEP2 GALAXY REDSHIFT SURVEY FROM SUBHALO ABUNDANCE AND ENVIRONMENT MATCHING

    International Nuclear Information System (INIS)

    Gerke, Brian F.; Wechsler, Risa H.; Behroozi, Peter S.; Cooper, Michael C.; Yan, Renbin; Coil, Alison L.

    2013-01-01

    We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock catalogs for the DEEP2 Galaxy Redshift Survey based on the output of the high-resolution Bolshoi simulation, as well as two other simulations with different cosmological parameters, all of which we release for public use. The mock-catalog creation technique uses subhalo abundance matching to assign galaxy luminosities to simulated dark-matter halos. It then adds color information to the resulting mock galaxies in a manner that depends on the local galaxy density, in order to reproduce the measured color-environment relation in the data. In the course of constructing the catalogs, we test various models for including scatter in the relation between halo mass and galaxy luminosity, within the abundance-matching framework. We find that there is no constant-scatter model that can simultaneously reproduce both the luminosity function and the autocorrelation function of DEEP2. This result has implications for galaxy-formation theory, and it restricts the range of contexts in which the mock catalogs can be usefully applied. Nevertheless, careful comparisons show that our new mock catalogs accurately reproduce a wide range of the other properties of the DEEP2 catalog, suggesting that they can be used to gain a detailed understanding of various selection effects in DEEP2

  13. Bimodal star formation - constraints from galaxy colors at high redshift

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1. 38 references

  14. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; der Linden, A. von; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2017-10-14

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).

  15. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Science.gov (United States)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  16. A massive, quiescent galaxy at a redshift of 3.717

    Science.gov (United States)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  17. Morpho-z: improving photometric redshifts with galaxy morphology

    Science.gov (United States)

    Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic

    2018-04-01

    We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.

  18. The KMOS Redshift One Spectroscopic Survey (KROSS): the origin of disc turbulence in z ≈ 1 star-forming galaxies

    Science.gov (United States)

    Johnson, H. L.; Harrison, C. M.; Swinbank, A. M.; Tiley, A. L.; Stott, J. P.; Bower, R. G.; Smail, Ian; Bunker, A. J.; Sobral, D.; Turner, O. J.; Best, P.; Bureau, M.; Cirasuolo, M.; Jarvis, M. J.; Magdis, G.; Sharples, R. M.; Bland-Hawthorn, J.; Catinella, B.; Cortese, L.; Croom, S. M.; Federrath, C.; Glazebrook, K.; Sweet, S. M.; Bryant, J. J.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; Medling, A. M.; Owers, M. S.; Richards, S.

    2018-03-01

    We analyse the velocity dispersion properties of 472 z ˜ 0.9 star-forming galaxies observed as part of the KMOS Redshift One Spectroscopic Survey (KROSS). The majority of this sample is rotationally dominated (83 ± 5 per cent with vC/σ0 > 1) but also dynamically hot and highly turbulent. After correcting for beam smearing effects, the median intrinsic velocity dispersion for the final sample is σ0 = 43.2 ± 0.8 km s-1 with a rotational velocity to dispersion ratio of vC/σ0 = 2.6 ± 0.1. To explore the relationship between velocity dispersion, stellar mass, star formation rate, and redshift, we combine KROSS with data from the SAMI survey (z ˜ 0.05) and an intermediate redshift MUSE sample (z ˜ 0.5). Whilst there is, at most, a weak trend between velocity dispersion and stellar mass, at fixed mass there is a strong increase with redshift. At all redshifts, galaxies appear to follow the same weak trend of increasing velocity dispersion with star formation rate. Our results are consistent with an evolution of galaxy dynamics driven by discs that are more gas rich, and increasingly gravitationally unstable, as a function of increasing redshift. Finally, we test two analytic models that predict turbulence is driven by either gravitational instabilities or stellar feedback. Both provide an adequate description of the data, and further observations are required to rule out either model.

  19. Star formation and mass assembly in high redshift galaxies

    Science.gov (United States)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions: The analysis of the SFR density and the SSFR seems to support the downsizing scenario, according to which high mass galaxies

  20. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    International Nuclear Information System (INIS)

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-01-01

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L IR > 10 11.5 L ☉ ). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L C II /L FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L C II –L FIR relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L C II /L FIR ratio and the far-IR color L 60 /L 100 observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L C II /L FIR at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L C II /L FIR ratios, the moderate star formation efficiencies (L IR /L CO ′ or L IR /M H 2 ), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ∼ 0.3.

  1. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    International Nuclear Information System (INIS)

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P; Stark, Daniel P

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy

  2. RED NUGGETS AT HIGH REDSHIFT: STRUCTURAL EVOLUTION OF QUIESCENT GALAXIES OVER 10 Gyr OF COSMIC HISTORY

    International Nuclear Information System (INIS)

    Damjanov, Ivana; Abraham, Roberto G.; Carlberg, Raymond G.; Mentuch, Erin; Glazebrook, Karl; Caris, Evelyn; Green, Andrew W.; McCarthy, Patrick J.; Chen, Hsiao-Wen; Crampton, David; Murowinski, Richard; Joergensen, Inger; Roth, Kathy; Juneau, Stephanie; Le Borgne, Damien; Marzke, Ronald O.; Savaglio, Sandra; Yan Haojing

    2011-01-01

    We present an analysis of the size growth seen in early-type galaxies over 10 Gyr of cosmic time. Our analysis is based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution, augmented by new measurements for galaxies in the Gemini Deep Deep Survey. In total, our sample contains structural data for 465 galaxies (mainly early-type) in the redshift range 0.2 e ∝(1 + z) -1.62±0.34 . Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range z ∼ 0.5-3.5. It is also in accordance with the predictions from recent theoretical models.

  3. Analysis of 'Coma strip' galaxy redshift catalog

    International Nuclear Information System (INIS)

    Klypin, A.A.; Karachentsev, I.D.; Lebedev, V.S.

    1990-01-01

    We present results of the analysis of a galaxy redshift catalog made at the 6-m telescope by Karachentsev and Kopylov (1990. Mon. Not. R. astr. Soc., 243, 390). The catalog covers a long narrow strip on the sky (10 arcmin by 63 0 ) and lists 283 galaxies up to limiting blue magnitude m B = 17.6. The strip goes through the core of Coma cluster and this is called the 'Coma strip' catalog. The catalog is almost two times deeper than the CfA redshift survey and creates the possibility of studying the galaxy distribution on scales of 100-250 Mpc. Due to the small number of galaxies in the catalog, we were able to estimate only very general and stable parameters of the distribution. (author)

  4. The SPT+Herschel+ALMA+Spitzer Legacy Survey: The stellar content of high redshift strongly lensed systems

    Science.gov (United States)

    Vieira, Joaquin; Ashby, Matt; Carlstrom, John; Chapman, Scott; DeBreuck, Carlos; Fassnacht, Chris; Gonzalez, Anthony; Phadke, Kedar; Marrone, Dan; Malkan, Matt; Reuter, Cassie; Rotermund, Kaja; Spilker, Justin; Weiss, Axel

    2018-05-01

    The South Pole Telescope (SPT) has systematically identified 90 high-redshift strongly gravitationally lensed submillimeter galaxies (SMGs) in a 2500 square-degree cosmological survey of the millimeter (mm) sky. These sources are selected by their extreme mm flux, which is largely independent of redshift and lensing configuration. We are undertaking a comprehensive and systematic followup campaign to use these "cosmic magnifying glasses" to study the infrared background in unprecedented detail, inform the condition of the interstellar medium in starburst galaxies at high redshift, and place limits on dark matter substructure. Here we ask for 115.4 hours of deep Spitzer/IRAC imaging to complete our survey of 90 systems to a uniform depth of 30min integrations at 3.6um and 60min at 4.5um. In our sample of 90 systems, 16 have already been fully observed, 30 have been partially observed, and 44 have not been observed at all. Our immediate goals are to: 1) constrain the specific star formation rates of the background high-redshift submillimeter galaxies by combining these Spitzer observations with our APEX, Herschel, and ALMA data, 2) robustly determine the stellar masses and mass-to-light ratios of all the foreground lensing galaxies in the sample by combining these observations with our VLT and Gemini data, the Dark Energy Survey, and ALMA; and 3) provide complete, deep, and uniform NIR coverage of our entire sample of lensed systems to characterize the environments of high redshift SMGs, maximize the discovery potential for additional spectacular and rare sources, and prepare for JWST. This program will provide the cornerstone data set for two PhD theses: Kedar Phadke at Illinois will lead the analysis of stellar masses for the background SMGs, and Kaja Rotermund at Dalhousie will lead the analysis of stellar masses for the foreground lenses.

  5. Calibrating photometric redshifts of luminous red galaxies

    International Nuclear Information System (INIS)

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan

    2005-01-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.

  6. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Gravity test from the combination of redshift-space distortions and galaxy-galaxy lensing at 0.5 < z < 1.2

    Science.gov (United States)

    de la Torre, S.; Jullo, E.; Giocoli, C.; Pezzotta, A.; Bel, J.; Granett, B. R.; Guzzo, L.; Garilli, B.; Scodeggio, M.; Bolzonella, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.; Moscardini, L.; Peacock, J. A.; Metcalf, R. B.; Prada, F.; Yepes, G.

    2017-12-01

    We carry out a joint analysis of redshift-space distortions and galaxy-galaxy lensing, with the aim of measuring the growth rate of structure; this is a key quantity for understanding the nature of gravity on cosmological scales and late-time cosmic acceleration. We make use of the final VIPERS redshift survey dataset, which maps a portion of the Universe at a redshift of z ≃ 0.8, and the lensing data from the CFHTLenS survey over the same area of the sky. We build a consistent theoretical model that combines non-linear galaxy biasing and redshift-space distortion models, and confront it with observations. The two probes are combined in a Bayesian maximum likelihood analysis to determine the growth rate of structure at two redshifts z = 0.6 and z = 0.86. We obtain measurements of fσ8(0.6) = 0.48 ± 0.12 and fσ8(0.86) = 0.48 ± 0.10. The additional galaxy-galaxy lensing constraint alleviates galaxy bias and σ8 degeneracies, providing direct measurements of f and σ8: [f(0.6),σ8(0.6)] = [0.93 ± 0.22,0.52 ± 0.06] and [f(0.86),σ8(0.86)] = [0.99 ± 0.19,0.48 ± 0.04]. These measurements are statistically consistent with a Universe where the gravitational interactions can be described by General Relativity, although they are not yet accurate enough to rule out some commonly considered alternatives. Finally, as a complementary test we measure the gravitational slip parameter, EG, for the first time at z > 0.6. We find values of E̅G(0.6) = 0.16±0.09 and E̅G(0.86) = 0.09±0.07, when EG is averaged over scales above 3 h-1 Mpc. We find that our EG measurements exhibit slightly lower values than expected for standard relativistic gravity in a ΛCDM background, although the results are consistent within 1-2σ. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT

  7. Groups of galaxies in the Center for Astrophysics redshift survey

    International Nuclear Information System (INIS)

    Ramella, M.; Geller, M.J.; Huchra, J.P.

    1989-01-01

    By applying the Huchra and Geller (1982) objective group identification algorithm to the Center for Astrophysics' redshift survey, a catalog of 128 groups with three or more members is extracted, and 92 of these are used as a statistical sample. A comparison of the distribution of group centers with the distribution of all galaxies in the survey indicates qualitatively that groups trace the large-scale structure of the region. The physical properties of groups may be related to the details of large-scale structure, and it is concluded that differences among group catalogs may be due to the properties of large-scale structures and their location relative to the survey limits. 28 refs

  8. Center for astrophysics redshift survey

    International Nuclear Information System (INIS)

    Davis, M.; Huchra, J.; Latham, D.

    1983-01-01

    Major advances in the art of redshift measurements have improved the obtainable accuracy to better than 30 km/s. It is now posible to obtain a redshift for almost any galaxy brighter than 15th magnitude on a 60-inch telescope in 60 minutes or less. These advances were utilized in an observation program initiated in the spring of 1978. This program represents a survey of radial velocities for all 2400 galaxies brighter than 14.5 at high galactic latitude in the northern hemisphere. The obtained data set has been employed as a basis for a derivation of a good measure of the local mean mass density. In addition, information was obtained concerning the overdensity and the dynamics of the local supercluster, and an analysis was conducted of the dynamics of groups and clusters of galaxies within the sample volume. 16 references

  9. The role of AGN feedback in galaxy evolution at high-redshift

    International Nuclear Information System (INIS)

    Collet, Cedric

    2014-01-01

    There is growing evidence that supermassive black holes may play a crucial role for galaxy evolution, in particular during the formation of massive galaxies at high redshift (z ≅ 2 - 3). Our work focuses on quantifying the effects of jets of radiogalaxies and of large bolometric luminosities of quasars on the interstellar gas in their host galaxies. To this end, we studied the kinematics of the ionized gas in 12 moderately powerful radio galaxies and 11 quasars (6 radio-loud and 5 radio-quiet) at high redshifts with rest-frame optical imaging spectroscopy obtained at the VLT with SINFONI. We searched for outflows and other signatures of feedback from the supermassive black holes in the centers of these galaxies to evaluate if the AGN may plausibly quench star formation. In our sample of moderately powerful radiogalaxies, we observe velocity dispersions nearly as large as those observed in the most powerful ones (with FWHM ≅ 1000 km/s), but the quantity of ionized gas is decreased by one order of magnitude (M-ion gas ≅ 10"8 - 10"9 M-sun) and velocity gradients tend to be less dramatic (Δv ≤ 400 km/s), when they are observed. In our sample of quasars, we had to carefully subtract the broad spectral component of emission lines to have access to its narrow, and spatially extended, component. We detect truly extended emission line regions in 4/6 sources of our radio-loud sub-sample and in 1/5 source of our radio-quiet sub-sample. We estimate that masses of ionized gas in these sources are smaller than in our sample of high-redshift radiogalaxies (with Mion gas ≅ 10"7 - 10"8 Msun) and kinematics tend to be more quiescent, akin to what is observed in local quasars. Finally, detailed observations of two outliers among our sample of high-redshift radiogalaxies revealed that one of them is closely surrounded by 14 companions galaxies, hence lying in an over density. We therefore interpret the presence and morphology of ionized gas around these galaxies as evidence

  10. The SDSS Coadd: A Galaxy Photometric Redshift Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Ribamar R.R.; /Fermilab /Rio de Janeiro Federal U.; Soares-Santos, Marcelle; /Fermilab /Inst. Geo. Astron., Havana /Sao Paulo U.; Annis, James; /Fermilab; Dodelson, Scott; /Fermilab /Chicago U. /Chicago U., KICP; Hao, Jiangang; /Fermilab; Johnston, David; /Fermilab; Kubo, Jeffrey; /Fermilab; Lin, Huan; /Fermilab; Seo, Hee-Jong; /UC, Berkeley; Simet, Melanie; /Chicago U.

    2011-11-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-z's and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for {approx} 13 million objects classified as galaxies in the coadd with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx} 89, 000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS), the Visible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.036. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  11. THE GALAXY OPTICAL LUMINOSITY FUNCTION FROM THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Cool, Richard J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Brown, Michael J. I.; Caldwell, Nelson; Forman, William R.; Hickox, Ryan C.; Jones, Christine; Murray, Stephen S.; Dey, Arjun; Jannuzi, Buell T.; Moustakas, John

    2012-01-01

    We present the galaxy optical luminosity function for the redshift range 0.05 2 in the Boötes field of the NOAO Deep Wide-Field Survey. Our statistical sample is composed of 12,473 galaxies with known redshifts down to I = 20.4 (AB). Our results at low redshift are consistent with those from Sloan Digital Sky Survey; at higher redshift, we find strong evidence for evolution in the luminosity function, including differential evolution between blue and red galaxies. We find that the luminosity density evolves as (1 + z) (0.54±0.64) for red galaxies and (1 + z) (1.64±0.39) for blue galaxies.

  12. Large-scale clustering of galaxies in the CfA Redshift Survey

    Science.gov (United States)

    Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.

    1992-01-01

    The power spectrum of the galaxy distribution in the Center for Astrophysics Redshift Survey (de Lapparent et al., 1986; Geller and Huchra, 1989; and Huchra et al., 1992) is measured up to wavelengths of 200/h Mpc. Results are compared with several cosmological simulations with Gaussian initial conditions. It is shown that the power spectrum of the standard CDM model is inconsistent with the observed power spectrum at the 99 percent confidence level.

  13. Galaxy clusters in the SDSS Stripe 82 based on photometric redshifts

    International Nuclear Information System (INIS)

    Durret, F.; Adami, C.; Bertin, E.; Hao, J.; Márquez, I.

    2015-01-01

    Based on a recent photometric redshift galaxy catalogue, we have searched for galaxy clusters in the Stripe ~82 region of the Sloan Digital Sky Survey by applying the Adami & MAzure Cluster FInder (AMACFI). Extensive tests were made to fine-tune the AMACFI parameters and make the cluster detection as reliable as possible. The same method was applied to the Millennium simulation to estimate our detection efficiency and the approximate masses of the detected clusters. Considering all the cluster galaxies (i.e. within a 1 Mpc radius of the cluster to which they belong and with a photoz differing by less than 0.05 from that of the cluster), we stacked clusters in various redshift bins to derive colour-magnitude diagrams and galaxy luminosity functions (GLFs). For each galaxy with absolute magnitude brighter than -19.0 in the r band, we computed the disk and spheroid components by applying SExtractor, and by stacking clusters we determined how the disk-to-spheroid flux ratio varies with cluster redshift and mass. We also detected 3663 clusters in the redshift range 0.15< z<0.70, with estimated mean masses between 10"1"3 and a few 10"1"4 solar masses. Furthermore, by stacking the cluster galaxies in various redshift bins, we find a clear red sequence in the (g'-r') versus r' colour-magnitude diagrams, and the GLFs are typical of clusters, though with a possible contamination from field galaxies. The morphological analysis of the cluster galaxies shows that the fraction of late-type to early-type galaxies shows an increase with redshift (particularly in high mass clusters) and a decrease with detection level, i.e. cluster mass. From the properties of the cluster galaxies, the majority of the candidate clusters detected here seem to be real clusters with typical cluster properties.

  14. Intermediate-mass black holes in dwarf galaxies out to redshift ˜ 2.4 in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Mezcua, M.; Civano, F.; Marchesi, S.; Suh, H.; Fabbiano, G.; Volonteri, M.

    2018-05-01

    We present a sample of 40 AGN in dwarf galaxies at redshifts z ≲ 2.4. The galaxies are drawn from the Chandra COSMOS-Legacy survey as having stellar masses 107 ≤ M* ≤ 3 × 109 M⊙. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.5-10keV ˜ 1039 - 1044 erg s-1. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid_1192, at z = 2.39 and with L0.5-10keV ˜ 1044 erg s-1. One of the dwarf galaxies has M* = 6.6 × 107 M⊙ and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses ˜104 - 105 M⊙ and typical Eddington ratios >1%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7. We find that the AGN fraction for 109 < M* ≤ 3 × 109 M⊙ and LX ˜ 1041 - 1042 erg s-1 is ˜0.4% for z ≤ 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.

  15. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  16. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    Energy Technology Data Exchange (ETDEWEB)

    Masters, Daniel C. [Infrared Processing and Analysis Center, Pasadena, CA 91125 (United States); Stern, Daniel K.; Rhodes, Jason D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Cohen, Judith G. [California Institute of Technology, Pasadena, CA 91125 (United States); Capak, Peter L. [Spitzer Science Center, Pasadena, CA 91125 (United States); Castander, Francisco J. [Institut de Ciències de lEspai (ICE, IEEC/CSIC), E-08193 Bellaterra (Barcelona) (Spain); Paltani, Stéphane [Department of Astronomy, University of Geneva, Ch. dEcogia 16, 1290 Versoix (Switzerland)

    2017-06-01

    A key goal of the Stage IV dark energy experiments Euclid , LSST, and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo- z ) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color–Redshift Relation (C3R2) survey, which is designed specifically to calibrate the empirical galaxy color–redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST . The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies that are most important for the redshift calibration. We focus spectroscopic efforts on undersampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color–redshift relation to the required accuracy. We present the C3R2 survey strategy and initial results, including the 1283 high-confidence redshifts obtained in the 2016A semester and released as Data Release 1.

  17. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    International Nuclear Information System (INIS)

    Masters, Daniel C.; Stern, Daniel K.; Rhodes, Jason D.; Cohen, Judith G.; Capak, Peter L.; Castander, Francisco J.; Paltani, Stéphane

    2017-01-01

    A key goal of the Stage IV dark energy experiments Euclid , LSST, and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo- z ) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color–Redshift Relation (C3R2) survey, which is designed specifically to calibrate the empirical galaxy color–redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST . The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies that are most important for the redshift calibration. We focus spectroscopic efforts on undersampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color–redshift relation to the required accuracy. We present the C3R2 survey strategy and initial results, including the 1283 high-confidence redshifts obtained in the 2016A semester and released as Data Release 1.

  18. Galaxy redshift surveys with sparse sampling

    International Nuclear Information System (INIS)

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro; Jee, Inh; Jeong, Donghui; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Schneider, Donald P.; Drory, Niv; Fabricius, Maximilian; Landriau, Martin; Finkelstein, Steven; Jogee, Shardha; Cooper, Erin Mentuch; Tuttle, Sarah; Gebhardt, Karl; Hill, Gary J.

    2013-01-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V survey ∼ 10Gpc 3 ) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V survey , we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V survey (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V survey (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys

  19. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Stark, Daniel P, E-mail: schenker@astro.caltech.edu [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  20. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Kochanek, C. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Eisenstein, D. J.; Caldwell, N.; Jones, C.; Murray, S. S.; Forman, W. R.; Green, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cool, R. J. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Assef, R. J.; Eisenhardt, P.; Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Jannuzi, B. T.; Dey, A. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Brown, M. J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Gonzalez, A. H. [Department of Astronomy, Bryant Space Science Center, University of Florida, Gainesville, FL 32611 (United States)

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples in all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.

  1. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schrabback, T.; et al.

    2016-11-11

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  2. Quasi-periodicity in deep redshift surveys

    International Nuclear Information System (INIS)

    Weygaert, R. van de

    1991-01-01

    The recent result by Broadhurst et al., (1990. Nature 343, 726) showing a striking, nearly periodic, galaxy redshift distribution in a narrow pencil-beam survey, is explained within the Voronoi cellular model of clustering of galaxies. Galaxies, whose luminosities are selected from a Schechter luminosity function, are placed randomly within the walls of this cellular model. Narrow and deep, magnitude-limited, pencil-beam surveys through these structures are simulated. Some 15 per cent of these beams show that observed regular pattern, with a spacing between the peaks of the order of 105 h -1 -150 h -1 Mpc, but most pencil-beams show peaks in the redshift distribution without periodicity, so we may conclude that, even within a cellular universe, periodicity is not a common phenomenon. (author)

  3. Galaxy correlations at high redshift and the environment of quasars

    International Nuclear Information System (INIS)

    Phillipps, Steven

    1986-01-01

    In close line-of-sight pairs of quasars absorption lines may be seen in the spectrum of the further quasar at a redshift corresponding to that of the nearer quasar. This is indicative of the presence of an intervening galaxy belonging to the same cluster as the (galaxy containing the) nearer quasar. The likelihood of this occurring is calculated in terms of the galaxy correlation function and it is found that present results already suggest that quasars at redshifts above one must be associated with rich clusters. (author)

  4. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    Science.gov (United States)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1poster, I will present the results of this study and compare our results to various results in the literature.

  5. Galaxy Tagging: photometric redshift refinement and group richness enhancement

    Science.gov (United States)

    Kafle, P. R.; Robotham, A. S. G.; Driver, S. P.; Deeley, S.; Norberg, P.; Drinkwater, M. J.; Davies, L. J.

    2018-06-01

    We present a new scheme, galtag, for refining the photometric redshift measurements of faint galaxies by probabilistically tagging them to observed galaxy groups constructed from a brighter, magnitude-limited spectroscopy survey. First, this method is tested on the DESI light-cone data constructed on the GALFORM galaxy formation model to tests its validity. We then apply it to the photometric observations of galaxies in the Kilo-Degree Imaging Survey (KiDS) over a 1 deg2 region centred at 15h. This region contains Galaxy and Mass Assembly (GAMA) deep spectroscopic observations (i-bandhttps://github.com/pkaf/galtag.git.

  6. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura Santiago (Chile); Ashby, M. L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Béthermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Carlstrom, J. E.; Crawford, T. M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C. [Dalhousie University, Halifax, Nova Scotia (Canada); De Breuck, C.; Gullberg, B. [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hezaveh, Y. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Holzapfel, W. L., E-mail: jspilker@as.arizona.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  7. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    Science.gov (United States)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z 2), dusty star-forming galaxies for which the scatter increases to ˜0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ˜30% more scatter and ˜5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ˜0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ˜1.1-1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere surveys.

  8. Close companions to two high-redshift quasars

    Energy Technology Data Exchange (ETDEWEB)

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan [Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Strauss, Michael A. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544 (United States); Haiman, Zoltàn [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Jiang, Linhua [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Schneider, Donald P., E-mail: imcgreer@as.arizona.edu [Department of Astronomy and Astrophysics and the Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  9. CONTINUUM OBSERVATIONS AT 350 MICRONS OF HIGH-REDSHIFT MOLECULAR EMISSION LINE GALAXIES

    International Nuclear Information System (INIS)

    Wu Jingwen; Evans, Neal J.; Dunham, Michael M.; Vanden Bout, Paul A.

    2009-01-01

    We report observations of 15 high-redshift (z = 1 - 5) galaxies at 350 μm using the Caltech Submillimeter Observatory and Submillimeter High Angular Resolution Camera II array detector. Emission was detected from eight galaxies, for which far-infrared luminosities, star formation rates (SFRs), total dust masses, and minimum source size estimates are derived. These galaxies have SFRs and star formation efficiencies comparable to other high-redshift molecular emission line galaxies. The results are used to test the idea that star formation in these galaxies occurs in a large number of basic units, the units being similar to star-forming clumps in the Milky Way. The luminosity of these extreme galaxies can be reproduced in a simple model with (0.9-30)x10 6 dense clumps, each with a luminosity of 5 x 10 5 L sun , the mean value for such clumps in the Milky Way. Radiative transfer models of such clumps can provide reasonable matches to the overall spectral energy distributions (SEDs) of the galaxies. They indicate that the individual clumps are quite opaque in the far-infrared. Luminosity-to-mass ratios vary over two orders of magnitude, correlating strongly with the dust temperature derived from simple fits to the SED. The gas masses derived from the dust modeling are in remarkable agreement with those from CO luminosities, suggesting that the assumptions going into both calculations are reasonable.

  10. Clustering at high redshifts

    International Nuclear Information System (INIS)

    Shaver, P.A.

    1986-01-01

    Evidence for clustering of and with high-redshift QSOs is discussed. QSOs of different redshifts show no clustering, but QSOs of similar redshifts appear to be clustered on a scale comparable to that of galaxies at the present epoch. In addition, spectroscopic studies of close pairs of QSOs indicate that QSOs are surrounded by a relatively high density of absorbing matter, possibly clusters of galaxies

  11. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  12. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Science.gov (United States)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-03-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  13. Population III Stars and Remnants in High-redshift Galaxies

    Science.gov (United States)

    Xu, Hao; Wise, John H.; Norman, Michael L.

    2013-08-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 109 M ⊙ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ~ 107 M ⊙ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ~10-4 M ⊙ yr-1 Mpc-3 at redshift 15. The most massive starless halo has a mass of 7 × 107 M ⊙, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 108 M ⊙, culminating in 50 remnants located in 109 M ⊙ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  14. The [CII] 158 μm line emission in high-redshift galaxies

    Science.gov (United States)

    Lagache, G.; Cousin, M.; Chatzikos, M.

    2018-02-01

    Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of the gas in galaxies, and as a star formation rate (SFR) indicator at z ≥ 4. In this paper, we have used a semi-analytical model of galaxy evolution (G.A.S.) combined with the photoionisation code CLOUDY to predict the [CII] luminosity of a large number of galaxies (25 000 at z ≃ 5) at 4 ≤ z ≤ 8. We assumed that the [CII]-line emission originates from photo-dominated regions. At such high redshift, the CMB represents a strong background and we discuss its effects on the luminosity of the [CII] line. We studied the L[CII ]-SFR and L[ CII ]-Zg relations and show that they do not strongly evolve with redshift from z = 4 and to z = 8. Galaxies with higher [CII] luminosities tend to have higher metallicities and higher SFRs but the correlations are very broad, with a scatter of about 0.5 and 0.8 dex for L[ CII ]-SFR and L[ CII ]-Zg, respectively. Our model reproduces the L[ CII ]-SFR relations observed in high-redshift star-forming galaxies, with [CII] luminosities lower than expected from local L[ CII ]-SFR relations. Accordingly, the local observed L[ CII ]-SFR relation does not apply at high-z (z ≳ 5), even when CMB effects are ignored. Our model naturally produces the [CII] deficit (i.e. the decrease of L[ CII ]/LIR with LIR), which appears to be strongly correlated with the intensity of the radiation field in our simulated galaxies. We then predict the

  15. Morphological Evolution in High-Redshift Radio Galaxies and the Formation of Giant Elliptical Galaxies

    International Nuclear Information System (INIS)

    Breugel, W.J. van; Stanford, S.A.; Spinrad, H.; Stern, D.; Graham, J.R.

    1998-01-01

    We present deep near-infrared images of high-redshift radio galaxies (HzRGs) obtained with the near-infrared camera (NIRC) on the Keck I telescope. In most cases, the near-IR data sample rest wavelengths that are free of contamination from strong emission lines and at λ rest > 4000 Angstrom, where older stellar populations, if present, might dominate the observed flux. At z > 3, the rest-frame optical morphologies generally have faint, large-scale (∼50 kpc) emission surrounding multiple, ∼10 kpc components. The brightest of these components are often aligned with the radio structures. These morphologies change dramatically at 2 rest ) ∼ -20 to -22] of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal radio-quiet star forming galaxies at z = 3 - 4. For objects where such data are available, our observations show that the line-free, near-IR colors of the z > 3 galaxies are very blue, consistent with models in which recent star formation dominates the observed light. Direct spectroscopic evidence for massive star formation in one of the z > 3 HzRGs exists (4C 41.17). Our results suggest that the z > 3 HzRGs evolve into much more massive systems than the radio-quiet galaxies and that they are qualitatively consistent with models in which massive galaxies form in hierarchical fashion through the merging of smaller star-forming systems. The presence of relatively luminous subcomponents along the radio axes of the z > 3 galaxies suggests a causal connection with the AGN. We compare the radio and near-IR sizes as a function of redshift and suggest that this parameter may be a measure of the degree to which the radio sources have induced star formation in the parent objects. We also discuss the Hubble diagram of radio galaxies, the possibility of a radio power dependence in the K-z relation, and its implications for radio galaxy formation. Finally, we present for the first time in published format basic radio and

  16. Focusing Cosmic Telescopes: Exploring Redshift z ~ 5-6 Galaxies with the Bullet Cluster 1E0657 - 56

    Science.gov (United States)

    Bradač, Maruša; Treu, Tommaso; Applegate, Douglas; Gonzalez, Anthony H.; Clowe, Douglas; Forman, William; Jones, Christine; Marshall, Phil; Schneider, Peter; Zaritsky, Dennis

    2009-12-01

    The gravitational potential of clusters of galaxies acts as a cosmic telescope allowing us to find and study galaxies at fainter limits than otherwise possible and thus probe closer to the epoch of formation of the first galaxies. We use the Bullet cluster 1E0657 - 56 (z = 0.296) as a case study, because its high mass and merging configuration makes it one of the most efficient cosmic telescopes we know. We develop a new algorithm to reconstruct the gravitational potential of the Bullet cluster based on a non-uniform adaptive grid, combining strong and weak gravitational lensing data derived from deep Hubble Space Telescope/Advanced Camera for Surveys F606W-F775W-F850LP and ground-based imaging. We exploit this improved mass map to study z ~ 5-6 Lyman break galaxies (LBGs), which we detect as dropouts. One of the LBGs is multiply imaged, providing a geometric confirmation of its high redshift, and is used to further improve our mass model. We quantify the uncertainties in the magnification map reconstruction in the intrinsic source luminosity, and in the volume surveyed, and show that they are negligible compared to sample variance when determining the luminosity function of high-redshift galaxies. With shallower and comparable magnitude limits to Hubble Ultra Deep Field (HUDF) and Great Observatories Origins Deep Survey (GOODS), the Bullet cluster observations, after correcting for magnification, probe deeper into the luminosity function of the high-redshift galaxies than GOODS and only slightly shallower than HUDF. We conclude that accurately focused cosmic telescopes are the most efficient way to sample the bright end of the luminosity function of high-redshift galaxies and—in case they are multiply imaged—confirm their redshifts. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5

  17. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    International Nuclear Information System (INIS)

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-01-01

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 ∼> z ∼> 0.3) and luminosities, finding an average accuracy in (1 + z phot )/(1 + z spec ) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 μm flux ∼> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L IR ∼> 10 12 L ☉ ), and 3% of the total SFRD at z ∼ 2

  18. A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies

    Science.gov (United States)

    Zhang, Kai; Hao, Lei

    2018-04-01

    We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.

  19. Constraining omega from X-ray properties of clusters of galaxies at high redshifts

    DEFF Research Database (Denmark)

    Sadat, R.; Blanchard, A.; Oukbir, J.

    1997-01-01

    Properties of high redshift clusters are a fundamental source of information for cosmology. It has been shown by Oukbir and Blanchard (1997) that the combined knowledge of the redshift distribution of X-ray clusters of galaxies and the luminosity-temperature correlation, L-X - T-X, provides a pow...

  20. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard J. [MMT Observatory, Tucson, AZ 85721 (United States); Moustakas, John [Department of Physics, Siena College, 515 Loudon Rd., Loudonville, NY 12211 (United States); Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Burles, Scott M. [D.E. Shaw and Co. L.P, 20400 Stevens Creek Blvd., Suite 850, Cupertino, CA 95014 (United States); Coil, Alison L.; Aird, James; Mendez, Alexander J. [Department of Physics, Center for Astrophysics and Space Sciences, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS 20, Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, The University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Zhu, Guangtun [Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Bernstein, Rebecca A. [Department of Astronomy and Astrophysics, UCA/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Bolton, Adam S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States)

    2013-04-20

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1 + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.

  1. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    International Nuclear Information System (INIS)

    Smolčić, V.; Navarrete, F.; Bertoldi, F.; Aravena, M.; Sheth, K.; Ilbert, O.; Yun, M. S.; Salvato, M.; Finoguenov, A.; McCracken, H. J.; Diener, C.; Aretxaga, I.; Hughes, D.; Wilson, G.; Riechers, D. A.; Capak, P.; Scoville, N. Z.; Karim, A.; Schinnerer, E.

    2012-01-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F 1m > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ∼10''-30'', resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (∼2'') mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z ∼> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9 +0.9 –0.5 , and ∼4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of ∼> 1000 M ☉ yr –1 and IR luminosities of ∼10 13 L ☉ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ∼ 2 and today's passive galaxies.

  2. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Xu Hao; Norman, Michael L.; Wise, John H.

    2013-01-01

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10 9 M ☉ dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M vir ∼ 10 7 M ☉ because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H 2 formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of ∼10 –4 M ☉ yr –1 Mpc –3 at redshift 15. The most massive starless halo has a mass of 7 × 10 7 M ☉ , which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10 8 M ☉ , culminating in 50 remnants located in 10 9 M ☉ halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies

  3. Discovery of a probable galaxy with a redshift of 3.218

    International Nuclear Information System (INIS)

    Djorgovski, S.; Spinard, H.; McCarthy, P.; Strauss, M.A.

    1985-01-01

    We report the discovery of a narrow emission line object, probably a galaxy, with a redshift of 3.218. The object is a companion to the quasar PKS 1614+051, which is at a redshift of 3.209. This is the most distant non--QSO, non--gravitationally lensed object presently known by a large margin. Its properties are consistent with those expected of a high-redshift galaxy. This object has an age of only a few percent of the present age of the universe. The object was discovered with a novel technique, which promises to push studies of distant galaxies to redshifts as high as those of the most distant quasars known, and which may eventually lead to the discovery of primeval galaxies. This discovery opens the way for studies of galaxies beyond z = 3, which should prove invaluable for observational cosmology

  4. Close Companions to Two High-redshift Quasars

    Science.gov (United States)

    McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.

  5. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  6. Galaxy power-spectrum responses and redshift-space super-sample effect

    Science.gov (United States)

    Li, Yin; Schmittfull, Marcel; Seljak, Uroš

    2018-02-01

    As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.

  7. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    International Nuclear Information System (INIS)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike

    2014-01-01

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M * ∼2 × 10 11 M ☉ . We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M dyn /M * ∼(1 + z) –0.30±0.12 , further strengthening the evidence for an increase of M dyn /M * with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  8. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Chen, Yan-Mei; Wake, David [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706 (United States); Bolton, Adam; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Leauthaud, Alexie [Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo, Chiba 277-8582 (Japan); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Skibba, Ramin [Department of Physics, Center for Astrophysics and Space Sciences, University of California, 9500 Gilman Drive, San Diego, CA 92093 (United States); Pan, Kaike, E-mail: beifiori@mpe.mpg.de [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  9. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    International Nuclear Information System (INIS)

    Faisst, Andreas L.; Capak, Peter L.; Masters, Daniel C.; Yan, Lin; Pavesi, Riccardo; Riechers, Dominik A.; Barišić, Ivana; Cooke, Kevin C.; Kartaltepe, Jeyhan S.

    2017-01-01

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope ( β UV ) and the infrared excess (IRX; L IR / L UV ) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX− β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX− β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX− β diagram.

  10. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties

    Energy Technology Data Exchange (ETDEWEB)

    Faisst, Andreas L.; Capak, Peter L.; Masters, Daniel C. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Yan, Lin [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Pavesi, Riccardo; Riechers, Dominik A. [Department of Astronomy, Cornell University, Space Sciences Building, Ithaca, NY 14853 (United States); Barišić, Ivana [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Cooke, Kevin C.; Kartaltepe, Jeyhan S., E-mail: afaisst@ipac.caltech.edu [School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2017-09-20

    Recent studies have found a significant evolution and scatter in the relationship between the UV spectral slope ( β {sub UV}) and the infrared excess (IRX; L {sub IR}/ L {sub UV}) at z > 4, suggesting different dust properties of these galaxies. The total far-infrared (FIR) luminosity is key for this analysis, but it is poorly constrained in normal (main-sequence) star-forming z > 5 galaxies, where often only one single FIR point is available. To better inform estimates of the FIR luminosity, we construct a sample of local galaxies and three low-redshift analogues of z > 5 systems. The trends in this sample suggest that normal high-redshift galaxies have a warmer infrared (IR) spectral energy distribution (SED) compared to average z < 4 galaxies that are used as priors in these studies. The blueshifted peak and mid-IR excess emission could be explained by a combination of a larger fraction of metal-poor interstellar medium being optically thin to ultraviolet (UV) light and a stronger UV radiation field due to high star formation densities. Assuming a maximally warm IR SED suggests a 0.6 dex increase in total FIR luminosities, which removes some tension between the dust attenuation models and observations of the IRX− β relation at z > 5. Despite this, some galaxies still fall below the minimum IRX− β relation derived with standard dust cloud models. We propose that radiation pressure in these highly star-forming galaxies causes a spatial offset between dust clouds and young star-forming regions within the lifetime of O/B stars. These offsets change the radiation balance and create viewing-angle effects that can change UV colors at fixed IRX. We provide a modified model that can explain the location of these galaxies on the IRX− β diagram.

  11. Redshift differences of galaxies in nearby groups

    Science.gov (United States)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  12. High-Redshift galaxies light from the early universe

    CERN Document Server

    Appenzeller, Immo

    2008-01-01

    This book provides a comprehensive account of the scientific results on high-redshift galaxies accumulated during the past ten years. Apart from summarizing and critically discussing the wealth of observational data, the observational methods which made it possible to study these very distant and extremely faint objects are described in detail. Moreover, the technical feasibilities and physical limitations for existing and for future ground-based and space-based telescopes are discussed. Thus, apart from summarizing the knowledge accumulated so far, the book is designed as a tool for planning future observational and instrumental programs and projects. In view of the potential importance of the observational results of the high-redshift universe for basic physics the book is written for astronomers as well as for physicists without prior astronomical knowledge. For this purpose it contains introductory chapters describing the basic concepts and notations used in modern astronomy and a brief overview of the pr...

  13. Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey

    Science.gov (United States)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III

    2002-05-01

    We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian

  14. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts in the DES -- Calibration of the Weak Lensing Source Redshift Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; et al.

    2017-10-06

    We present the calibration of the Dark Energy Survey Year 1 (DES Y1) weak lensing source galaxy redshift distributions from clustering measurements. By cross-correlating the positions of source galaxies with luminous red galaxies selected by the redMaGiC algorithm we measure the redshift distributions of the source galaxies as placed into different tomographic bins. These measurements constrain any such shifts to an accuracy of $\\sim0.02$ and can be computed even when the clustering measurements do not span the full redshift range. The highest-redshift source bin is not constrained by the clustering measurements because of the minimal redshift overlap with the redMaGiC galaxies. We compare our constraints with those obtained from $\\texttt{COSMOS}$ 30-band photometry and find that our two very different methods produce consistent constraints.

  15. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  16. Optical study of the DAFT/FADA galaxy cluster survey

    Science.gov (United States)

    Martinet, N.; Durret, F.; Clowe, D.; Adami, C.

    2013-11-01

    DAFT/FADA (Dark energy American French Team) is a large survey of ˜90 high redshift (0.42×10^{14} M_{⊙}) clusters with HST weak lensing oriented data, plus BVRIZJ 4m ground based follow up to compute photometric redshifts. The main goals of this survey are to constrain dark energy parameters using weak lensing tomography and to study a large homogeneous sample of high redshift massive clusters. We will briefly review the latest results of this optical survey, focusing on two ongoing works: the calculation of galaxy luminosity functions from photometric redshift catalogs and the weak lensing analysis of ground based data.

  17. GREEN PEA GALAXIES AND COHORTS: LUMINOUS COMPACT EMISSION-LINE GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Izotov, Yuri I.; Guseva, Natalia G.; Thuan, Trinh X.

    2011-01-01

    We present a large sample of 803 star-forming luminous compact galaxies (LCGs) in the redshift range z = 0.02-0.63, selected from Data Release 7 of the Sloan Digital Sky Survey (SDSS). The global properties of these galaxies are similar to those of the so-called green pea star-forming galaxies in the redshift range z = 0.112-0.360 and selected from the SDSS on the basis of their green color and compact structure. In contrast to green pea galaxies, our LCGs are selected on the basis of both their spectroscopic and photometric properties, resulting in a ∼10 times larger sample, with galaxies spanning a redshift range ∼>2 times larger. We find that the oxygen abundances and the heavy element abundance ratios in LCGs do not differ from those of nearby low-metallicity blue compact dwarf galaxies. The median stellar mass of LCGs is ∼10 9 M sun . However, for galaxies with high EW(Hβ), ≥ 100 A, it is only ∼7 x 10 8 M sun . The star formation rate in LCGs varies in the large range of 0.7-60 M sun yr -1 , with a median value of ∼4 M sun yr -1 , a factor of ∼3 lower than in high-redshift star-forming galaxies at z ∼> 3. The specific star formation rates in LCGs are extremely high and vary in the range ∼10 -9 -10 -7 yr -1 , comparable to those derived in high-redshift galaxies.

  18. The CfA redshift survey - Data for the NGP + 30 zone

    Science.gov (United States)

    Huchra, John P.; Geller, Margaret J.; De Lapparent, Valerie; Corwin, Harold G., Jr.

    1990-01-01

    Redshifts and morphological types are presented for a complete sample of 1093 galaxies with m(pg) less than or equal to 15.5 mag in a 6-deg-wide strip crossing the north Galactic pole. Also presented are redshifts for an additional 92 fainter galaxies in the same strip. Outside of the core of the Coma Cluster, both early- and late-type galaxies trace essentially the same structures in redshift space. Thinner slices illustrate the small velocity dispersion perpendicular to the surfaces in the survey.

  19. THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES

    International Nuclear Information System (INIS)

    Niino, Yuu

    2012-01-01

    We investigate the relation between stellar mass (M * ), star formation rate (SFR), and metallicity (Z) of galaxies, the so-called fundamental metallicity relation, in the galaxy sample of the Sloan Digital Sky Survey Data Release 7. We separate the galaxies into narrow redshift bins and compare the relation at different redshifts and find statistically significant (>99%) evolution. We test various observational effects that might cause seeming Z evolution and find it difficult to explain the evolution of the relation only by the observational effects. In the current sample of low-redshift galaxies, galaxies with different M * and SFR are sampled from different redshifts, and there is degeneracy between M * /SFR and redshift. Hence, it is not straightforward to distinguish a relation between Z and SFR from a relation between Z and redshift. The separation of the intrinsic relation from the redshift evolution effect is a crucial issue in the understanding of the evolution of galaxies.

  20. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    Energy Technology Data Exchange (ETDEWEB)

    Tellarini, Matteo; Ross, Ashley J.; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Tasinato, Gianmassimo, E-mail: matteo.tellarini@port.ac.uk, E-mail: ross.1333@osu.edu, E-mail: g.tasinato@swansea.ac.uk, E-mail: david.wands@port.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2016-06-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f {sub NL}, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f {sub NL}. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f {sub NL} from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ {sub f} {sub N{sub L}}—the accuracy of the determination of local non-linear parameter f {sub NL}—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f {sub NL} constraints competitive with Planck , and future surveys could improve them further.

  1. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    International Nuclear Information System (INIS)

    Tellarini, Matteo; Ross, Ashley J.; Wands, David; Tasinato, Gianmassimo

    2016-01-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter f NL , which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including f NL . We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of f NL from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σ f NL —the accuracy of the determination of local non-linear parameter f NL —from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide f NL constraints competitive with Planck , and future surveys could improve them further.

  2. THE HETDEX PILOT SURVEY. I. SURVEY DESIGN, PERFORMANCE, AND CATALOG OF EMISSION-LINE GALAXIES

    International Nuclear Information System (INIS)

    Adams, Joshua J.; Blanc, Guillermo A.; Gebhardt, Karl; Hao, Lei; Byun, Joyce; Fry, Alex; Jeong, Donghui; Komatsu, Eiichiro; Hill, Gary J.; Cornell, Mark E.; MacQueen, Phillip J.; Drory, Niv; Bender, Ralf; Hopp, Ulrich; Kelzenberg, Ralf; Ciardullo, Robin; Gronwall, Caryl; Finkelstein, Steven L.; Gawiser, Eric; Kelz, Andreas

    2011-01-01

    We present a catalog of emission-line galaxies selected solely by their emission-line fluxes using a wide-field integral field spectrograph. This work is partially motivated as a pilot survey for the upcoming Hobby-Eberly Telescope Dark Energy Experiment. We describe the observations, reductions, detections, redshift classifications, line fluxes, and counterpart information for 397 emission-line galaxies detected over 169 □' with a 3500-5800 A bandpass under 5 A full-width-half-maximum (FWHM) spectral resolution. The survey's best sensitivity for unresolved objects under photometric conditions is between 4 and 20x 10 -17 erg s -1 cm -2 depending on the wavelength, and Lyα luminosities between 3 x 10 42 and 6 x 10 42 erg s -1 are detectable. This survey method complements narrowband and color-selection techniques in the search of high-redshift galaxies with its different selection properties and large volume probed. The four survey fields within the COSMOS, GOODS-N, MUNICS, and XMM-LSS areas are rich with existing, complementary data. We find 105 galaxies via their high-redshift Lyα emission at 1.9 44 □' which appear to be extended Lyα nebulae. We also find three high-z objects with rest-frame Lyα EW above the level believed to be achievable with normal star formation, EW 0 >240 A. Future papers will investigate the physical properties of this sample.

  3. Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.; Broadhurst, T. J.; Franx, M.

    2004-08-01

    We use the exceptional depth of the Ultra Deep Field (UDF) and UDF-parallel Advanced Camera for Surveys fields to study the sizes of high-redshift (z~2-6) galaxies and address long-standing questions about possible biases in the cosmic star formation rate due to surface brightness dimming. Contrasting B-, V-, and i-dropout samples culled from the deeper data with those obtained from the shallower Great Observatories Origins Deep Survey fields, we demonstrate that the shallower data are essentially complete at bright magnitudes to z~0.4", >~3 kpc) low surface brightness galaxies are rare. A simple comparison of the half-light radii of the Hubble Deep Field-North + Hubble Deep Field-South U-dropouts with B-, V-, and i-dropouts from the UDF shows that the sizes follow a (1+z)-1.05+/-0.21 scaling toward high redshift. A more rigorous measurement compares different scalings of our U-dropout sample with the mean profiles for a set of intermediate-magnitude (26.0dropouts from the UDF. The best fit is found with a (1+z)-0.94+0.19-0.25 size scaling (for fixed luminosity). This result is then verified by repeating this experiment with different size measures, low-redshift samples, and magnitude ranges. Very similar scalings are found for all comparisons. A robust measurement of size evolution is thereby demonstrated for galaxies from z~6 to 2.5 using data from the UDF. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  4. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    International Nuclear Information System (INIS)

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.; Aretxaga, I.; Auld, R.; Dariush, A.; Barton, E.; Cooke, J.; Cooray, A.; Beelen, A.; Bertoldi, F.; Bock, J. J.; Bradford, C. M.; Bonfield, D.; Buttiglione, S.; De Zotti, G.; Cava, A.; Clements, D. L.; Dannerbauer, H.; Dunne, L.

    2012-01-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z ∼ 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10 2–3 M ☉ yr –1 . Lower limits for the dust masses (∼ a few 10 8 M ☉ ) and spatial extents (∼1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures (∼< 100 K) and optical depths (τ ∼< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 → 3 to 10 → 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.

  5. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  6. Photometric redshifts of galaxies from SDSS and 2MASS

    International Nuclear Information System (INIS)

    Wang Tao; Gu Qiusheng; Huang Jiasheng

    2009-01-01

    In order to find the physical parameters which determine the accuracy of photometric redshifts, we compare the spectroscopic and photometric redshifts (photo-z's) for a large sample of ∼ 80000 SDSS-2MASS galaxies. Photo-z's in this paper are estimated by using the artificial neural network photometric redshift method (ANNz). For a subset of ∼40000 randomly selected galaxies, we find that the photometric redshift recovers the spectroscopic redshift distribution very well with rms of 0.016. Our main results are as follows: (1) Using magnitudes directly as input parameters produces more accurate photo-z's than using colors; (2) The inclusion of 2MASS (J, H, K s ) bands does not improve photo-z's significantly, which indicates that near infrared data might not be important for the low-redshift sample; (3) Adding the concentration index (essentially the steepness of the galaxy brightness profile) as an extra input can improve the photo-z's estimation up to ∼ 10 percent; (4) Dividing the sample into early- and late-type galaxies by using the concentration index, normal and abnormal galaxies by using the emission line flux ratios, and red and blue galaxies by using color index (g - r), we can improve the accuracy of photo-z's significantly; (5) Our analysis shows that the outliers (where there is a big difference between the spectroscopic and photometric redshifts) are mainly correlated with galaxy types, e.g., most outliers are late-type (blue) galaxies.

  7. A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51.

    Science.gov (United States)

    Finkelstein, S L; Papovich, C; Dickinson, M; Song, M; Tilvi, V; Koekemoer, A M; Finkelstein, K D; Mobasher, B; Ferguson, H C; Giavalisco, M; Reddy, N; Ashby, M L N; Dekel, A; Fazio, G G; Fontana, A; Grogin, N A; Huang, J-S; Kocevski, D; Rafelski, M; Weiner, B J; Willner, S P

    2013-10-24

    Of several dozen galaxies observed spectroscopically that are candidates for having a redshift (z) in excess of seven, only five have had their redshifts confirmed via Lyman α emission, at z = 7.008, 7.045, 7.109, 7.213 and 7.215 (refs 1-4). The small fraction of confirmed galaxies may indicate that the neutral fraction in the intergalactic medium rises quickly at z > 6.5, given that Lyman α is resonantly scattered by neutral gas. The small samples and limited depth of previous observations, however, makes these conclusions tentative. Here we report a deep near-infrared spectroscopic survey of 43 photometrically-selected galaxies with z > 6.5. We detect a near-infrared emission line from only a single galaxy, confirming that some process is making Lyman α difficult to detect. The detected emission line at a wavelength of 1.0343 micrometres is likely to be Lyman α emission, placing this galaxy at a redshift z = 7.51, an epoch 700 million years after the Big Bang. This galaxy's colours are consistent with significant metal content, implying that galaxies become enriched rapidly. We calculate a surprisingly high star-formation rate of about 330 solar masses per year, which is more than a factor of 100 greater than that seen in the Milky Way. Such a galaxy is unexpected in a survey of our size, suggesting that the early Universe may harbour a larger number of intense sites of star formation than expected.

  8. PHOTOMETRIC REDSHIFT PROBABILITY DISTRIBUTIONS FOR GALAXIES IN THE SDSS DR8

    International Nuclear Information System (INIS)

    Sheldon, Erin S.; Cunha, Carlos E.; Mandelbaum, Rachel; Brinkmann, J.; Weaver, Benjamin A.

    2012-01-01

    We present redshift probability distributions for galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 8 imaging data. We used the nearest-neighbor weighting algorithm to derive the ensemble redshift distribution N(z), and individual redshift probability distributions P(z) for galaxies with r < 21.8 and u < 29.0. As part of this technique, we calculated weights for a set of training galaxies with known redshifts such that their density distribution in five-dimensional color-magnitude space was proportional to that of the photometry-only sample, producing a nearly fair sample in that space. We estimated the ensemble N(z) of the photometric sample by constructing a weighted histogram of the training-set redshifts. We derived P(z)'s for individual objects by using training-set objects from the local color-magnitude space around each photometric object. Using the P(z) for each galaxy can reduce the statistical error in measurements that depend on the redshifts of individual galaxies. The spectroscopic training sample is substantially larger than that used for the DR7 release. The newly added PRIMUS catalog is now the most important training set used in this analysis by a wide margin. We expect the primary sources of error in the N(z) reconstruction to be sample variance and spectroscopic failures: The training sets are drawn from relatively small volumes of space, and some samples have large incompleteness. Using simulations we estimated the uncertainty in N(z) due to sample variance at a given redshift to be ∼10%-15%. The uncertainty on calculations incorporating N(z) or P(z) depends on how they are used; we discuss the case of weak lensing measurements. The P(z) catalog is publicly available from the SDSS Web site.

  9. GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.; Dickinson, M.; Kartaltepe, J. [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States); Elbaz, D.; Daddi, E.; Magdis, G.; Aussel, H.; Dannerbauer, H.; Dasyra, K.; Hwang, H. S. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CE-Saclay, F-91191, Gif-sur-Yvette (France); Morrison, G. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Giavalisco, M. [Astronomy Department, University of Massachusetts, Amherst, Amherst, MA 01003 (United States); Ivison, R. [UK Astronomy Technology Centre, Science and Technology Facilities Council, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Papovich, C. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Buat, V.; Burgarella, D. [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-Marseille, CNRS, 38 Rue Frederic Joliot-Curie, 13388 Marseille Cedex 13 (France); Charmandaris, V. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Murphy, E. [Spitzer Science Center, MC 314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, 28691 Madrid (Spain); and others

    2012-01-10

    We take advantage of the sensitivity and resolution of the Herschel Space Observatory at 100 and 160 {mu}m to directly image the thermal dust emission and investigate the infrared luminosities (L{sub IR}) and dust obscuration of typical star-forming (L*) galaxies at high redshift. Our sample consists of 146 UV-selected galaxies with spectroscopic redshifts 1.5 {<=} z{sub spec} < 2.6 in the GOODS-North field. Supplemented with deep Very Large Array and Spitzer imaging, we construct median stacks at the positions of these galaxies at 24, 100, and 160 {mu}m, and 1.4 GHz. The comparison between these stacked fluxes and a variety of dust templates and calibrations implies that typical star-forming galaxies with UV luminosities L{sub UV} {approx}> 10{sup 10} L{sub Sun} at z {approx} 2 are luminous infrared galaxies with a median L{sub IR} = (2.2 {+-} 0.3) Multiplication-Sign 10{sup 11} L{sub Sun }. Their median ratio of L{sub IR} to rest-frame 8 {mu}m luminosity (L{sub 8}) is L{sub IR}/L{sub 8} = 8.9 {+-} 1.3 and is Almost-Equal-To 80% larger than that found for most star-forming galaxies at z {approx}< 2. This apparent redshift evolution in the L{sub IR}/L{sub 8} ratio may be tied to the trend of larger infrared luminosity surface density for z {approx}> 2 galaxies relative to those at lower redshift. Typical galaxies at 1.5 {<=} z < 2.6 have a median dust obscuration L{sub IR}/L{sub UV} = 7.1 {+-} 1.1, which corresponds to a dust correction factor, required to recover the bolometric star formation rate (SFR) from the unobscured UV SFR, of 5.2 {+-} 0.6. This result is similar to that inferred from previous investigations of the UV, H{alpha}, 24 {mu}m, radio, and X-ray properties of the same galaxies studied here. Stacking in bins of UV slope ({beta}) implies that L* galaxies with redder spectral slopes are also dustier and that the correlation between {beta} and dustiness is similar to that found for local starburst galaxies. Hence, the rest-frame {approx_equal} 30 and

  10. A redshift determination of the host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Yoshida, A. [Aoyama Garkuin Univ., Kanagawa (Japan). Department of Physics; Yamada, T. [National Astronomical Observatory, Tokyo (Japan)] (and others)

    2005-07-15

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically {approx} 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 {+-} 0.4) x 10{sup 54} erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10{sup 51} ergs, their opening angle is calculated as {theta}{sub j} = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts.0.

  11. A redshift determination of the host galaxy

    International Nuclear Information System (INIS)

    Urata, Y.

    2005-01-01

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically ∼ 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 ± 0.4) x 10 54 erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10 51 ergs, their opening angle is calculated as θ j = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts

  12. OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z ≈ 8

    International Nuclear Information System (INIS)

    Trenti, Michele; Shull, J. M.; Bradley, L. D.; Stiavelli, M.; Oesch, P.; Bouwens, R. J.; Muñoz, J. A.; Romano-Diaz, E.; Shlosman, I.; Treu, T.; Carollo, C. M.

    2012-01-01

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z ∼ 8 candidates as Y 098 -dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y 098 -dropouts to fainter luminosities (M * galaxies with M AB ∼ –20), with detections at ≥5σ confidence (compared to the 8σ confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y 098 -dropouts at ≥99.84% confidence. Field BoRG58, which contains the best bright z ∼ 8 candidate (M AB = –21.3), has the most significant overdensity of faint Y 098 -dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z ∼ 8 candidate. The overdensity of Y 098 -dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y 098 -dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass M h ≈ (4-7) × 10 11 M ☉ (∼5σ density peak) and is surrounded by several M h ≈ 10 11 M ☉ halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a M h > 2 × 10 14 M ☉ galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z ∼ 8 nature of the overdensity, discover new members, and measure their precise redshift.

  13. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    Science.gov (United States)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  14. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, P.; Chapman, R.; Vreeswijk, P. M. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Tanvir, N. R.; Starling, R. L. C. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Letawe, G. [Departement d' Astrophysique, Geophysique et Oceanographie, ULg, Allee du 6 aout, 17-Bat. B5c B-4000 Liege (Sart-Tilman) (Belgium)

    2012-06-10

    We present 10 new gamma-ray burst (GRB) redshifts and another five redshift limits based on host galaxy spectroscopy obtained as part of a large program conducted at the Very Large Telescope (VLT). The redshifts span the range 0.345 {<=} z {approx}< 2.54. Three of our measurements revise incorrect values from the literature. The homogeneous host sample researched here consists of 69 hosts that originally had a redshift completeness of 55% (with 38 out of 69 hosts having redshifts considered secure). Our project, including VLT/X-shooter observations reported elsewhere, increases this fraction to 77% (53/69), making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, analyzed to date. We present the cumulative redshift distribution and derive a conservative, yet small, associated uncertainty. We constrain the fraction of Swift GRBs at high redshift to a maximum of 14% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be (z) {approx}> 2.2, with the 10 new redshifts reducing it significantly. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift (z {approx}> 3) appears to be in excess of predictions based on assumptions that it should follow conventional determinations of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example, due to a dominant contribution from faint, undetected galaxies, or that GRB production is enhanced in the conditions of early star formation, beyond that usually ascribed to lower metallicity.

  15. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    Energy Technology Data Exchange (ETDEWEB)

    Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Kassin, Susan A.; Gardner, Jonathan P. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Weiner, Benjamin [Steward Observatory, 933 North Cherry Street, University of Arizona, Tucson, AZ 85721 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 < z < 1.4 from the All-Wavelength Extended Groth Strip International Survey. This consists in the Bayesian analysis of the observed galaxy spectral energy distributions with a comprehensive library of synthetic spectra assembled using realistic, hierarchical star formation, and chemical enrichment histories from cosmological simulations. We constrain the SFH of each galaxy in our sample by comparing the observed fluxes in the B, R, I, and K{sub s} bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  16. A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    White, Catherine E. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Somerville, Rachel S. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-01

    Both numerical hydrodynamic and semi-analytic cosmological models of galaxy formation struggle to match observed star formation histories of galaxies in low-mass halos (M {sub H} ≲ 10{sup 11} M {sub ☉}), predicting more star formation at high redshift and less star formation at low redshift than observed. The fundamental problem is that galaxies' gas accretion and star formation rates are too closely coupled in the models: the accretion rate largely drives the star formation rate. Observations point to gas accretion rates that outpace star formation at high redshift, resulting in a buildup of gas and a delay in star formation until lower redshifts. We present three empirical adjustments of standard recipes in a semi-analytic model motivated by three physical scenarios that could cause this decoupling: (1) the mass-loading factors of outflows driven by stellar feedback may have a steeper dependence on halo mass at earlier times, (2) the efficiency of star formation may be lower in low-mass halos at high redshift, and (3) gas may not be able to accrete efficiently onto the disk in low-mass halos at high redshift. These new recipes, once tuned, better reproduce the evolution of f {sub *}≡ M {sub *}/M {sub H} as a function of halo mass as derived from abundance matching over redshifts z = 0 to 3, though they have different effects on cold gas fractions, star formation rates, and metallicities. Changes to gas accretion and stellar-driven winds are promising, while direct modification of the star formation timescale requires drastic measures that are not physically well motivated.

  17. New redshifts of bright galaxies. III

    International Nuclear Information System (INIS)

    de Vaucouleurs, G.; de Vaucouleurs, A.; Nieto, J.

    1979-01-01

    Redshifts of 196 bright galaxies, and 2 QSO's are derived from 246 spectrograms obtained from 1972 to 1977 with the Galaxy meter's two-state image tube grism spectrograph attached at the Cassegrain focus of the McDonald Observatory Struve reflector. The reciprocal dispersion in 335 A/mm at Hα and the wavelength range lambdalambda 4500--8000 A. The galaxy redshifts are in the range -28 -1 , but few exceed 5,000 km s -1 . The internal mean errors of the weighted mean velocities range from 22 to 140 km s -1 . Comparisons with other systems of redshifts, particularly the RC2, 21-cm and Sandage systems, indicate a mean systematic error of -35 +- 16 km s -1 , but it is probably variable with V. The external mean error is sigma*=90 km s -1 for velocities V -1 having a mean weight =4.0

  18. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  19. Contamination of Broad-Band Photometry by Nebular Emission in High Redshift Galaxies: Investigations with Keck's MOSFIRE Near-Infrared Spectrograph

    OpenAIRE

    Schenker, Matthew A.; Ellis, Richard S.; Konidaris, Nick P.; Stark, Daniel P.

    2013-01-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≃ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground...

  20. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6.

    Science.gov (United States)

    Decarli, R; Walter, F; Venemans, B P; Bañados, E; Bertoldi, F; Carilli, C; Fan, X; Farina, E P; Mazzucchelli, C; Riechers, D; Rix, H-W; Strauss, M A; Wang, R; Yang, Y

    2017-05-24

    The existence of massive (10 11 solar masses) elliptical galaxies by redshift z ≈ 4 (refs 1, 2, 3; when the Universe was 1.5 billion years old) necessitates the presence of galaxies with star-formation rates exceeding 100 solar masses per year at z > 6 (corresponding to an age of the Universe of less than 1 billion years). Surveys have discovered hundreds of galaxies at these early cosmic epochs, but their star-formation rates are more than an order of magnitude lower. The only known galaxies with very high star-formation rates at z > 6 are, with one exception, the host galaxies of quasars, but these galaxies also host accreting supermassive (more than 10 9 solar masses) black holes, which probably affect the properties of the galaxies. Here we report observations of an emission line of singly ionized carbon ([C ii] at a wavelength of 158 micrometres) in four galaxies at z > 6 that are companions of quasars, with velocity offsets of less than 600 kilometres per second and linear offsets of less than 100 kiloparsecs. The discovery of these four galaxies was serendipitous; they are close to their companion quasars and appear bright in the far-infrared. On the basis of the [C ii] measurements, we estimate star-formation rates in the companions of more than 100 solar masses per year. These sources are similar to the host galaxies of the quasars in [C ii] brightness, linewidth and implied dynamical mass, but do not show evidence for accreting supermassive black holes. Similar systems have previously been found at lower redshift. We find such close companions in four out of the twenty-five z > 6 quasars surveyed, a fraction that needs to be accounted for in simulations. If they are representative of the bright end of the [C ii] luminosity function, then they can account for the population of massive elliptical galaxies at z ≈ 4 in terms of the density of cosmic space.

  1. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    Energy Technology Data Exchange (ETDEWEB)

    Capelo, Pedro R [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States); Natarajan, Priyamvada [Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101 (United States)

    2007-12-15

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution.

  2. How robust are the constraints on cosmology and galaxy evolution from the lens-redshift test?

    International Nuclear Information System (INIS)

    Capelo, Pedro R; Natarajan, Priyamvada

    2007-01-01

    The redshift distribution of galaxy lenses in known gravitational lens systems provides a powerful test that can potentially discriminate amongst cosmological models. However, applications of this elegant test have been curtailed by two factors: our ignorance of how galaxies evolve with redshift, and the absence of methods to deal with the effect of incomplete information in lensing systems. In this paper, we investigate both issues in detail. We explore how to extract the properties of evolving galaxies, assuming that the cosmology is well determined by other techniques. We propose a new nested Monte Carlo method to quantify the effects of incomplete data. We apply the lens-redshift test to an improved sample of seventy lens systems derived from recent observations, primarily from the SDSS, SLACS and the CLASS surveys. We find that the limiting factor in applying the lens-redshift test derives from poor statistics, including incomplete information samples and biased sampling. Many lenses that uniformly sample the underlying true image separation distribution will be needed to use this test as a complementary method to measure the value of the cosmological constant or the properties of evolving galaxies. Planned future surveys by missions like the SNAP satellite or LSST are likely to usher in a new era for strong lensing studies that utilize this test. With expected catalogues of thousands of new strong lenses, the lens-redshift test could offer a powerful tool to probe cosmology as well as galaxy evolution

  3. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    International Nuclear Information System (INIS)

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo

    2013-01-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a ΛCDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 200 , a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M 200 and in L X demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  4. Very deep IRAS survey - constraints on the evolution of starburst galaxies

    International Nuclear Information System (INIS)

    Hacking, P.; Houck, J.R.; Condon, J.J.; National Radio Astronomy Observatory, Charlottesville, VA)

    1987-01-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts. 21 references

  5. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    Science.gov (United States)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  6. A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS

    International Nuclear Information System (INIS)

    Song, Jeeseon; Mohr, Joseph J.; Barkhouse, Wayne A.; Rude, Cody; Warren, Michael S.; Dolag, Klaus

    2012-01-01

    We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the ≤15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be ∼35% to redshift z ∼ 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B gc and a red-sequence redshift estimator. We measure the intrinsic scatter of the B gc -mass relation to be approximately log normal with σ log10M ∼0.25 and we demonstrate photometric redshift accuracies for massive clusters at the ∼3% level out to z ∼ 0.7.

  7. The impact of galaxy formation on satellite kinematics and redshift-space distortions

    Science.gov (United States)

    Orsi, Álvaro A.; Angulo, Raúl E.

    2018-04-01

    Galaxy surveys aim to map the large-scale structure of the Universe and use redshift-space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extracted is limited by the accuracy of theoretical models used to analyse the data. Here, by using the L-Galaxies semi-analytical model run over the Millennium-XXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of haloes and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small-scale velocities with a single Gaussian distribution leads to a poor description of the measured clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics and that leads to an accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift-space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large data sets.

  8. Implications of multiple high-redshift galaxy clusters

    International Nuclear Information System (INIS)

    Hoyle, Ben; Jimenez, Raul; Verde, Licia

    2011-01-01

    To date, 14 high-redshift (z>1.0) galaxy clusters with mass measurements have been observed, spectroscopically confirmed, and are reported in the literature. These objects should be exceedingly rare in the standard Λ cold dark matter (ΛCDM) model. We conservatively approximate the selection functions of these clusters' parent surveys and quantify the tension between the abundances of massive clusters as predicted by the standard ΛCDM model and the observed ones. We alleviate the tension, considering non-Gaussian primordial perturbations of the local type, characterized by the parameter f NL , and derive constraints on f NL arising from the mere existence of these clusters. At the 95% confidence level, f NL >467, with cosmological parameters fixed to their most likely WMAP5 values, or f NL > or approx. 123 (at 95% confidence) if we marginalize over prior WMAP5 parameters. In combination with f NL constraints from cosmic microwave background and halo bias, this determination implies a scale dependence of f NL at ≅3σ. Given the assumptions made in the analysis, we expect any future improvements to the modeling of the non-Gaussian mass function, survey volumes, or selection functions to increase the significance of f NL >0 found here. In order to reconcile these massive, high-z clusters with f NL =0, their masses would need to be systematically lowered by 1.5σ, or the σ 8 parameter should be ∼3σ higher than cosmic microwave background (and large-scale structure) constraints. The existence of these objects is a puzzle: it either represents a challenge to the ΛCDM paradigm or it is an indication that the mass estimates of clusters are dramatically more uncertain than we think.

  9. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z ∼ 8

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-01-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z ∼ 8, selected by the so-called dropout method or photometric redshift; e.g., Y 105 -dropouts (Y 105 - J 125 > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z ∼ 8 galaxy candidates. We focus on the strong emission-line galaxies at z ∼ 2 in this paper. Such galaxies may be selected as Y 105 -dropouts since the [O III] λ5007 emission line is redshifted into the J 125 band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z ∼ 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z ∼ 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z ∼ 5 x 10 -4 Z sun ) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  10. THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5

    International Nuclear Information System (INIS)

    Straatman, Caroline M. S.; Labbé, Ivo; Van Houdt, Josha; Spitler, Lee R.; Cowley, Michael; Quadri, Ryan F.; Papovich, Casey; Tran, Kim-Vy H.; Tomczak, Adam; Alcorn, Leo; Broussard, Adam; Forrest, Ben; Kawinwanichakij, Lalitwadee; Glazebrook, Karl; Nanayakkara, Themiya; Allen, Rebecca; Kacprzak, Glenn G.; Persson, S. Eric; Brammer, Gabriel B.; Van Dokkum, Pieter

    2016-01-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin 2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5–26.5 AB mag, 5 σ , total), and >80% complete to K s < 25.3–25.9 AB. We use 5 near-IR medium-bandwidth filters ( J 1 , J 2 , J 3 , H s , H l ) as well as broad-band K s at 1.05–2.16 μ m to 25–26 AB at a seeing of ∼0.″5. Each field has ancillary imaging in 26–40 filters at 0.3–8 μ m. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ z = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ z ,pairs = 0.01–0.02 at 1 < z < 2.5. We quantify how σ z ,pairs depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ z ,pairs is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ z ,pairs . Including FourStar medium bands reduces σ z ,pairs by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer /MIPS and Herschel /PACS data. We derive rest-frame U − V and V − J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ∼ 3, demonstrating their SFRs are suppressed by > ×15.

  11. Dark Galaxy Candidates at Redshift ∼3.5 Detected with MUSE

    Science.gov (United States)

    Marino, Raffaella Anna; Cantalupo, Sebastiano; Lilly, Simon J.; Gallego, Sofia G.; Straka, Lorrie A.; Borisova, Elena; Pezzulli, Gabriele; Bacon, Roland; Brinchmann, Jarle; Carollo, C. Marcella; Caruana, Joseph; Conseil, Simon; Contini, Thierry; Diener, Catrina; Finley, Hayley; Inami, Hanae; Leclercq, Floriane; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Wendt, Martin; Wisotzki, Lutz

    2018-05-01

    Recent theoretical models suggest that the early phase of galaxy formation could involve an epoch when galaxies are gas rich but inefficient at forming stars: a “dark galaxy” phase. Here, we report the results of our Multi-Unit Spectroscopic Explorer (MUSE) survey for dark galaxies fluorescently illuminated by quasars at z > 3. Compared to previous studies which are based on deep narrowband (NB) imaging, our integral field survey provides a nearly uniform sensitivity coverage over a large volume in redshift space around the quasars as well as full spectral information at each location. Thanks to these unique features, we are able to build control samples at large redshift distances from the quasars using the same data taken under the same conditions. By comparing the rest-frame equivalent width (EW0) distributions of the Lyα sources detected in proximity to the quasars and in control samples, we detect a clear correlation between the locations of high-EW0 objects and the quasars. This correlation is not seen in other properties, such as Lyα luminosities or volume overdensities, suggesting the possible fluorescent nature of at least some of these objects. Among these, we find six sources without continuum counterparts and EW0 limits larger than 240 Å that are the best candidates for dark galaxies in our survey at z > 3.5. The volume densities and properties, including inferred gas masses and star formation efficiencies, of these dark galaxy candidates are similar to those of previously detected candidates at z ≈ 2.4 in NB surveys. Moreover, if the most distant of these are fluorescently illuminated by the quasar, our results also provide a lower limit of t = 60 Myr on the quasar lifetime. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Programme IDs 094.A-0396, 095.A-0708, 096.A-0345, 097.A-0251, 098.A-0678, 094.A-0131, 095.A-0200, 096.A-0222, 097.A-0089, 098.A-0216).

  12. Recovering the systemic redshift of galaxies from their Lyman-alpha line profile

    Science.gov (United States)

    Verhamme, A.; Garel, T.; Ventou, E.; Contini, T.; Bouché, N.; Herenz, E. C.; Richard, J.; Bacon, R.; Schmidt, K. B.; Maseda, M.; Marino, R. A.; Brinchmann, J.; Cantalupo, S.; Caruana, J.; Clément, B.; Diener, C.; Drake, A. B.; Hashimoto, T.; Inami, H.; Kerutt, J.; Kollatschny, W.; Leclercq, F.; Patrício, V.; Schaye, J.; Wisotzki, L.; Zabl, J.

    2018-04-01

    The Lyman alpha (Lyα) line of Hydrogen is a prominent feature in the spectra of star-forming galaxies, usually redshifted by a few hundreds of km s-1 compared to the systemic redshift. This large offset hampers follow-up surveys, galaxy pair statistics and correlations with quasar absorption lines when only Lyα is available. We propose diagnostics that can be used to recover the systemic redshift directly from the properties of the Lyα line profile. We use spectroscopic observations of Lyman-Alpha Emitters (LAEs) for which a precise measurement of the systemic redshift is available. Our sample contains 13 sources detected between z ≈ 3 and z ≈ 6 as part of various Multi Unit Spectroscopic Explorer (MUSE) Guaranteed Time Observations (GTO). We also include a compilation of spectroscopic Lyα data from the literature spanning a wide redshift range (z ≈ 0 - 8). First, restricting our analysis to double-peaked Lyα spectra, we find a tight correlation between the velocity offset of the red peak with respect to the systemic redshift, V_peak^red, and the separation of the peaks. Secondly, we find a correlation between V_peak^red and the full width at half maximum of the Lyα line. Fitting formulas, to estimate systemic redshifts of galaxies with an accuracy of ≤100 km s-1 when only the Lyα emission line is available, are given for the two methods.

  13. CANDELS/GOODS-S, CDFS, and ECDFS: photometric redshifts for normal and X-ray-detected galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Li-Ting; Salvato, Mara; Nandra, Kirpal; Brusa, Marcella; Bender, Ralf; Buchner, Johannes; Brightman, Murray; Georgakakis, Antonis [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Donley, Jennifer L. [Los Alamos National Laboratory, Los Alamos, NM (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Guo, Yicheng; Barro, Guillermo; Faber, Sandra M. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA (United States); Hathi, Nimish P. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Rangel, Cyprian [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Willner, S. P.; Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Budavári, Tamás; Szalay, Alexander S. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Dahlen, Tomas [Space Telescope Science Institute, Baltimore, MD (United States); and others

    2014-11-20

    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). This work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4 Ms CDFS and 250 ks ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (∼96%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of active galactic nuclei/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014 and outlier fractions are 4% and 5.2%, respectively. The results within the CANDELS coverage area are even better, as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broadband photometry. For best accuracy, templates must include emission lines.

  14. CANDELS/GOODS-S, CDFS, and ECDFS: photometric redshifts for normal and X-ray-detected galaxies

    International Nuclear Information System (INIS)

    Hsu, Li-Ting; Salvato, Mara; Nandra, Kirpal; Brusa, Marcella; Bender, Ralf; Buchner, Johannes; Brightman, Murray; Georgakakis, Antonis; Donley, Jennifer L.; Kocevski, Dale D.; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Hathi, Nimish P.; Rangel, Cyprian; Willner, S. P.; Ashby, Matthew L. N.; Budavári, Tamás; Szalay, Alexander S.; Dahlen, Tomas

    2014-01-01

    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). This work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4 Ms CDFS and 250 ks ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (∼96%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of active galactic nuclei/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014 and outlier fractions are 4% and 5.2%, respectively. The results within the CANDELS coverage area are even better, as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broadband photometry. For best accuracy, templates must include emission lines.

  15. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). VII. Brightest cluster galaxy UV upturn and the FUV-NUV color up to redshift 0.35

    Science.gov (United States)

    Boissier, S.; Cucciati, O.; Boselli, A.; Mei, S.; Ferrarese, L.

    2018-03-01

    Context. At low redshift, early-type galaxies often exhibit a rising flux with decreasing wavelength in the 1000-2500 Å range, called "UV upturn". The origin of this phenomenon is debated, and its evolution with redshift is poorly constrained. The observed GALEX FUV-NUV color can be used to probe the UV upturn approximately to redshift 0.5. Aim. We provide constraints on the existence of the UV upturn up to redshift 0.4 in the brightest cluster galaxies (BCG) located behind the Virgo cluster, using data from the GUViCS survey. Methods: We estimate the GALEX far-UV (FUV) and near-UV (NUV) observed magnitudes for BCGs from the maxBCG catalog in the GUViCS fields. We increase the number of nonlocal galaxies identified as BCGs with GALEX photometry from a few tens of galaxies to 166 (64 when restricting this sample to relatively small error bars). We also estimate a central color within a 20 arcsec aperture. By using the r-band luminosity from the maxBCG catalog, we can separate blue FUV-NUV due to recent star formation and candidate upturn cases. We use Lick indices to verify their similarity to redshift 0 upturn cases. Results: We clearly detect a population of blue FUV-NUV BCGs in the redshift range 0.10-0.35, vastly improving the existing constraints at these epochs by increasing the number of galaxies studied, and by exploring a redshift range with no previous data (beyond 0.2), spanning one more Gyr in the past. These galaxies bring new constraints that can help distinguish between assumptions concerning the stellar populations causing the UV upturn phenomenon. The existence of a large number of UV upturns around redshift 0.25 favors the existence of a binary channel among the sources proposed in the literature. Tables 2-5 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A42

  16. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    Science.gov (United States)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  17. Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8

    Science.gov (United States)

    Trenti, Michele; Bradley, L. D.; Stiavelli, M.; Shull, J. M.; Oesch, P.; Bouwens, R. J.; Muñoz, J. A.; Romano-Diaz, E.; Treu, T.; Shlosman, I.; Carollo, C. M.

    2012-02-01

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z ~ 8 candidates as Y 098-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y 098-dropouts to fainter luminosities (M * galaxies with M AB ~ -20), with detections at >=5σ confidence (compared to the 8σ confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y 098-dropouts at >=99.84% confidence. Field BoRG58, which contains the best bright z ~ 8 candidate (M AB = -21.3), has the most significant overdensity of faint Y 098-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z ~ 8 candidate. The overdensity of Y 098-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y 098-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass Mh ≈ (4-7) × 1011 M ⊙ (~5σ density peak) and is surrounded by several Mh ≈ 1011 M ⊙ halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a Mh > 2 × 1014 M ⊙ galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z ~ 8 nature of the overdensity, discover new members, and measure their precise redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in

  18. Physical conditions of the interstellar medium in high-redshift submillimetre bright galaxies

    Science.gov (United States)

    Yang, Chentao

    2017-12-01

    The discovery of a population of high- redshift dust-obscured submillimeter galaxies (SMGs) from ground-based submm cameras has revolutionised our understanding of galaxy evolution and star formation in extreme conditions. They are the strongest starbursts in the Universe approaching the Eddington limit and are believed to be the progenitors of the most massive galaxies today. However, theoretical models of galaxy evolution have even been challenged by a large number of detections of high-redshift SMGs. A very few among them are gravitationally lensed by an intervening galaxy. Recent wide-area extragalactic surveys have discovered hundreds of such strongly lensed SMGs, opening new exciting opportunities for observing the interstellar medium in these exceptional objects. We have thus carefully selected a sample of strongly gravitational lensed SMGs based on the submillimeter flux limit from the Herschel-ATLAS sample. Using IRAM telescopes, we have built a rich H2O-line-detected sample of 16 SMGs. We found a close-to-linear tight correlation between the H2O line and total infrared luminosity. This indicates the importance of far-IR pumping to the excitation of the H2O lines. Using a far-IR pumping model, we have derived the physical properties of the H2O gas and the dust. We showed that H2O lines trace a warm dense gas that may be closely related to the active star formation. Along with the H2O lines, several H2O+ lines have also been detected in three of our SMGs. We also find a tight correlation between the luminosity of the lines of H2O and H2O+ from local ULIRGs to high-redshift SMGs. The flux ratio between H2O+ and H2O suggests that cosmic rays from strong star forming activities are possibly driving the related oxygen chemistry. Another important common molecular gas tracer is the CO line. We have observed multiple transitions of the CO lines in each of our SMGs with IRAM 30m telescope. By analysing the CO line profile, we discovered a significant differential

  19. THE AGE SPREAD OF QUIESCENT GALAXIES WITH THE NEWFIRM MEDIUM-BAND SURVEY: IDENTIFICATION OF THE OLDEST GALAXIES OUT TO z ∼ 2

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel; Bezanson, Rachel; Lee, Kyoung-Soo; Muzzin, Adam; Wake, David A.; Kriek, Mariska; Franx, Marijn; Quadri, Ryan F.; Labbe, Ivo; Marchesini, Danilo; Illingworth, Garth D.; Rudnick, Gregory

    2010-01-01

    With a complete, mass-selected sample of quiescent galaxies from the NEWFIRM Medium-Band Survey, we study the stellar populations of the oldest and most massive galaxies (>10 11 M sun ) to high redshift. The sample includes 570 quiescent galaxies selected based on their extinction-corrected U - V colors out to z = 2.2, with accurate photometric redshifts, σ z /(1 + z) ∼ 2%, and rest-frame colors, σ U-V ∼ 0.06 mag. We measure an increase in the intrinsic scatter of the rest-frame U - V colors of quiescent galaxies with redshift. This scatter in color arises from the spread in ages of the quiescent galaxies, where we see both relatively quiescent red, old galaxies and quiescent blue, younger galaxies toward higher redshift. The trends between color and age are consistent with the observed composite rest-frame spectral energy distributions (SEDs) of these galaxies. The composite SEDs of the reddest and bluest quiescent galaxies are fundamentally different, with remarkably well-defined 4000 A and Balmer breaks, respectively. Some of the quiescent galaxies may be up to four times older than the average age and up to the age of the universe, if the assumption of solar metallicity is correct. By matching the scatter predicted by models that include growth of the red sequence by the transformation of blue galaxies to the observed intrinsic scatter, the data indicate that most early-type galaxies formed their stars at high redshift with a burst of star formation prior to migrating to the red sequence. The observed U - V color evolution with redshift is weaker than passive evolution predicts; possible mechanisms to slow the color evolution include increasing amounts of dust in quiescent galaxies toward higher redshift, red mergers at z ∼< 1, and a frosting of relatively young stars from star formation at later times.

  20. Velocity-metallicity correlation for high-z DLA galaxies

    DEFF Research Database (Denmark)

    Ledoux, C.; Petitjean, P.; Fynbo, J.P.U.

    2006-01-01

    Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct.......Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct....

  1. The effect of morphological type on the spectral redshift of Perseus supercluster galaxies

    International Nuclear Information System (INIS)

    Giraud, Edmond

    1982-01-01

    The relation between the spectral redshift of galaxies belonging to the Perseus supercluster and their morphological type on the basis of the complete sample given by Gregory et coll. is studied. It is shown that in the central core the Sb and Scd galaxies have a very significant redshift excess and that the Sbc and Sc galaxies have the same highly significant excess as a complete (for m [fr

  2. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-01

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z ∼> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z ∼> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  3. Dark Energy Survey Year 1 Results: Calibration of redMaGiC Redshift Distributions in DES and SDSS from Cross-Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Cawthon, R.; et al.

    2017-12-19

    We present calibrations of the redshift distributions of redMaGiC galaxies in the Dark Energy Survey Year 1 (DES Y1) and Sloan Digital Sky Survey (SDSS) DR8 data. These results determine the priors of the redshift distribution of redMaGiC galaxies, which were used for galaxy clustering measurements and as lenses for galaxy-galaxy lensing measurements in DES Y1 cosmological analyses. We empirically determine the bias in redMaGiC photometric redshift estimates using angular cross-correlations with Baryon Oscillation Spectroscopic Survey (BOSS) galaxies. For DES, we calibrate a single parameter redshift bias in three photometric redshift bins: $z \\in[0.15,0.3]$, [0.3,0.45], and [0.45,0.6]. Our best fit results in each bin give photometric redshift biases of $|\\Delta z|<0.01$. To further test the redMaGiC algorithm, we apply our calibration procedure to SDSS redMaGiC galaxies, where the statistical precision of the cross-correlation measurement is much higher due to a greater overlap with BOSS galaxies. For SDSS, we also find best fit results of $|\\Delta z|<0.01$. We compare our results to other analyses of redMaGiC photometric redshifts.

  4. SPHEREx: Probing the Physics of Inflation with an All-Sky Spectroscopic Galaxy Survey

    Science.gov (United States)

    Dore, Olivier; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA’s astrophysics division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. These themes are addressed by a single survey, with a single instrument.In this poster, we describe how SPHEREx can probe the physics of inflationary non-Gaussianity by measuring large-scale structure with galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra. In particular, it will measure the redshifts of over 500 million galaxies of all types, an unprecedented dataset. Using this catalog, SPHEREx will reduce the uncertainty in fNL -- a parameter describing the inflationary initial conditions -- by a factor of more than 10 compared with CMB measurements. At the same time, this catalog will enable strong scientific synergies with Euclid, WFIRST and LSST

  5. The luminosity function for different morphological types in the CfA Redshift Survey

    Science.gov (United States)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  6. Peculiar morphology of the high-redshift radio galaxies 3C 13 and 3C 256 in subarcsecond seeing

    International Nuclear Information System (INIS)

    Le Fevre, O.; Hammer, F.; Nottale, L.; Mazure, A.; Christian, C.

    1988-01-01

    High-spatial-resolution imaging is presented for two radio galaxies from the 3C catalog, 3C 13 and 3C 256 with redshifts of 1.351 and 1.819, respectively. The excellent image quality obtained at CFHT, 0.6-arcsec FWHM for 3C 13 and 0.7-arcsec FWHM for 3C 256 in the R band, over long integration times, made it possible to resolve these distant galaxies into complex structures. As suggested by Le Fevre et al. (1987) for another source (the gravitational lens candidate 3C 324) an interpretation in terms of gravitational amplification by foreground galaxies or clusters of galaxies is proposed. 3C 13 appears to be the most serious candidate, since a foreground galaxy, with an absolute luminosity M(R) = 23.3 and a redshift z = 0.477, is only 3.9 in from the extended radio galaxy. 18 references

  7. The Galaxy Count Correlation Function in Redshift Space Revisited

    Science.gov (United States)

    Campagne, J.-E.; Plaszczynski, S.; Neveu, J.

    2017-08-01

    In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.

  8. Cosmological Constraints from the Redshift Dependence of the Volume Effect Using the Galaxy 2-point Correlation Function across the Line of Sight

    Science.gov (United States)

    Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.

    2017-08-01

    We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.

  9. Photometric Redshifts with the LSST: Evaluating Survey Observing Strategies

    Science.gov (United States)

    Graham, Melissa L.; Connolly, Andrew J.; Ivezić, Željko; Schmidt, Samuel J.; Jones, R. Lynne; Jurić, Mario; Daniel, Scott F.; Yoachim, Peter

    2018-01-01

    In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspect makes our estimator an ideal tool for evaluating the impact of changes to LSST survey parameters that affect the measurement errors of the photometry, which is the main motivation of our work (i.e., it is not intended to provide the “best” photometric redshifts for LSST data). We show how the photometric redshifts will improve with time over the 10 year LSST survey and confirm that the nominal distribution of visits per filter provides the most accurate photo-z results. The LSST survey strategy naturally produces observations over a range of airmass, which offers the opportunity of using an SED- and z-dependent atmospheric affect on the observed photometry as a color-independent redshift indicator. We show that measuring this airmass effect and including it as a prior has the potential to improve the photometric redshifts and can ameliorate extreme outliers, but that it will only be adequately measured for the brightest galaxies, which limits its overall impact on LSST photometric redshifts. We furthermore demonstrate how this airmass effect can induce a bias in the photo-z results, and caution against survey strategies that prioritize high-airmass observations for the purpose of improving this prior. Ultimately, we intend for this work to serve as a guide for the expectations and preparations of the LSST science community with regard to the minimum quality of photo-z as the survey progresses.

  10. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Carlos E. [KIPAC, Menlo Park; Huterer, Dragan [Michigan U.; Lin, Huan [Fermilab; Busha, Michael T. [Zurich U.; Wechsler, Risa H. [SLAC

    2014-10-11

    We use N-body-spectro-photometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys to photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modeled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectrograph with wavelength coverage of 5500{\\AA} < {\\lambda} < 9500{\\AA}. The principal systematic errors that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colors, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a percent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also substantially degrade the accuracy of training set based photo-z estimators. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably.

  11. Typical effect on redshift of galaxies of the Hercules supercluster

    International Nuclear Information System (INIS)

    Giraud, Edmond.

    1981-01-01

    We study dependance of redshift on the morphological type of galaxies in the Hercules supercluster from Tarenghi and al.'s data. We show that S-galaxies have a significant excess in 105 redshift samples [fr

  12. Is there a maximum star formation rate in high-redshift galaxies? , , ,

    International Nuclear Information System (INIS)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.; Owen, F. N.; Wang, W.-H.

    2014-01-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin 2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K – z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ☉ yr –1 to z ∼ 6. We find galaxies with SFRs up to ∼6000 M ☉ yr –1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ☉ yr –1 .

  13. THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO z ∼ 3.5

    Energy Technology Data Exchange (ETDEWEB)

    Straatman, Caroline M. S.; Labbé, Ivo; Van Houdt, Josha [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Spitler, Lee R.; Cowley, Michael [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Quadri, Ryan F.; Papovich, Casey; Tran, Kim-Vy H.; Tomczak, Adam; Alcorn, Leo; Broussard, Adam; Forrest, Ben; Kawinwanichakij, Lalitwadee [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Glazebrook, Karl; Nanayakkara, Themiya; Allen, Rebecca; Kacprzak, Glenn G. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Persson, S. Eric [Carnegie Observatories, Pasadena, CA 91101 (United States); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van Dokkum, Pieter, E-mail: straatman@mpia.de [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2016-10-10

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin{sup 2} in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K {sub s} -band detection images (25.5–26.5 AB mag, 5 σ , total), and >80% complete to K {sub s} < 25.3–25.9 AB. We use 5 near-IR medium-bandwidth filters ( J {sub 1}, J {sub 2}, J {sub 3}, H {sub s} , H {sub l} ) as well as broad-band K {sub s} at 1.05–2.16 μ m to 25–26 AB at a seeing of ∼0.″5. Each field has ancillary imaging in 26–40 filters at 0.3–8 μ m. We derive photometric redshifts and stellar population properties. Comparing with spectroscopic redshifts indicates a photometric redshift uncertainty σ {sub z} = 0.010, 0.009, and 0.011 in CDFS, COSMOS, and UDS. As spectroscopic samples are often biased toward bright and blue sources, we also inspect the photometric redshift differences between close pairs of galaxies, finding σ {sub z} {sub ,pairs} = 0.01–0.02 at 1 < z < 2.5. We quantify how σ {sub z} {sub ,pairs} depends on redshift, magnitude, spectral energy distribution type, and the inclusion of FourStar medium bands. σ {sub z} {sub ,pairs} is smallest for bright, blue star-forming samples, while red star-forming galaxies have the worst σ {sub z} {sub ,pairs}. Including FourStar medium bands reduces σ {sub z} {sub ,pairs} by 50% at 1.5 < z < 2.5. We calculate star formation rates (SFRs) based on ultraviolet and ultradeep far-IR Spitzer /MIPS and Herschel /PACS data. We derive rest-frame U − V and V − J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ∼ 3, demonstrating their SFRs are suppressed by > ×15.

  14. The effect of photometric redshift uncertainties on galaxy clustering and baryonic acoustic oscillations

    Science.gov (United States)

    Chaves-Montero, Jonás; Angulo, Raúl E.; Hernández-Monteagudo, Carlos

    2018-04-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of redshift uncertainties on cosmological observables. In this paper we explore the effect of sub-percent photometric redshift errors (photo-z errors) on galaxy clustering and baryonic acoustic oscillations (BAO). Using analytic expressions and results from 1 000 N-body simulations, we show how photo-z errors modify the amplitude of moments of the 2D power spectrum, their variances, the amplitude of BAO, and the cosmological information in them. We find that: a) photo-z errors suppress the clustering on small scales, increasing the relative importance of shot noise, and thus reducing the interval of scales available for BAO analyses; b) photo-z errors decrease the smearing of BAO due to non-linear redshift-space distortions (RSD) by giving less weight to line-of-sight modes; and c) photo-z errors (and small-scale RSD) induce a scale dependence on the information encoded in the BAO scale, and that reduces the constraining power on the Hubble parameter. Using these findings, we propose a template that extracts unbiased cosmological information from samples with photo-z errors with respect to cases without them. Finally, we provide analytic expressions to forecast the precision in measuring the BAO scale, showing that spectro-photometric surveys will measure the expansion history of the Universe with a precision competitive to that of spectroscopic surveys.

  15. The Taipan Galaxy Survey: Scientific Goals and Observing Strategy

    Science.gov (United States)

    da Cunha, Elisabete; Hopkins, Andrew M.; Colless, Matthew; Taylor, Edward N.; Blake, Chris; Howlett, Cullan; Magoulas, Christina; Lucey, John R.; Lagos, Claudia; Kuehn, Kyler; Gordon, Yjan; Barat, Dilyar; Bian, Fuyan; Wolf, Christian; Cowley, Michael J.; White, Marc; Achitouv, Ixandra; Bilicki, Maciej; Bland-Hawthorn, Joss; Bolejko, Krzysztof; Brown, Michael J. I.; Brown, Rebecca; Bryant, Julia; Croom, Scott; Davis, Tamara M.; Driver, Simon P.; Filipovic, Miroslav D.; Hinton, Samuel R.; Johnston-Hollitt, Melanie; Jones, D. Heath; Koribalski, Bärbel; Kleiner, Dane; Lawrence, Jon; Lorente, Nuria; Mould, Jeremy; Owers, Matt S.; Pimbblet, Kevin; Tinney, C. G.; Tothill, Nicholas F. H.; Watson, Fred

    2017-10-01

    The Taipan galaxy survey (hereafter simply `Taipan') is a multi-object spectroscopic survey starting in 2017 that will cover 2π steradians over the southern sky (δ ≲ 10°, |b| ≳ 10°), and obtain optical spectra for about two million galaxies out to z growth rate of structure to 5%; (ii) to make the most extensive map yet constructed of the total mass distribution and motions in the local Universe, using peculiar velocities based on improved Fundamental Plane distances, which will enable sensitive tests of gravitational physics; and (iii) to deliver a legacy sample of low-redshift galaxies as a unique laboratory for studying galaxy evolution as a function of dark matter halo and stellar mass and environment. The final survey, which will be completed within 5 yrs, will consist of a complete magnitude-limited sample (i ⩽ 17) of about 1.2 × 106 galaxies supplemented by an extension to higher redshifts and fainter magnitudes (i ⩽ 18.1) of a luminous red galaxy sample of about 0.8 × 106 galaxies. Observations and data processing will be carried out remotely and in a fully automated way, using a purpose-built automated `virtual observer' software and an automated data reduction pipeline. The Taipan survey is deliberately designed to maximise its legacy value by complementing and enhancing current and planned surveys of the southern sky at wavelengths from the optical to the radio; it will become the primary redshift and optical spectroscopic reference catalogue for the local extragalactic Universe in the southern sky for the coming decade.

  16. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    International Nuclear Information System (INIS)

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-01

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 ∼ 23 -O 32 plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  17. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Finkelstein, K.; Finkelstein, Steven [University of Texas, Austin, TX 78712 (United States); Carilli, Chris [National Radio Astronomy Observatory, Socorro, NM (United States); Combes, Françoise [Observatoire de Paris, LERMA, CNRS, 61 Avenue de l’Observatoire, F-75014 Paris (France); Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole [Institut d’Astrophysique Spatiale, Centre Universitaire d’Orsay (France); Frye, Brenda [Steward Observatory, University of Arizona, Tucson, AZ (United States); Gerin, Maryvonne [LERMA,24 rue Lhomond, F-75231 Paris Cedex 05 (France); Rigby, Jane [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Shin, Min-Su [Oxford University, Oxford, OX1 3PA (United Kingdom); Spaans, Marco [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Papovich, Casey, E-mail: malhotra@asu.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics, Texas A and M University, College Station, TX 77843 (United States)

    2017-01-20

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10{sup 7} L {sub ⊙} to 3.7 × 10{sup 9} L {sub ⊙} (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  18. HERSCHEL EXTREME LENSING LINE OBSERVATIONS: [C ii] VARIATIONS IN GALAXIES AT REDSHIFTS z = 1–3

    International Nuclear Information System (INIS)

    Malhotra, Sangeeta; Rhoads, James E.; Yang, Huan; Finkelstein, K.; Finkelstein, Steven; Carilli, Chris; Combes, Françoise; Dassas, Karine; Guillard, Pierre; Nesvadba, Nicole; Frye, Brenda; Gerin, Maryvonne; Rigby, Jane; Shin, Min-Su; Spaans, Marco; Strauss, Michael A.; Papovich, Casey

    2017-01-01

    We observed the [C ii] line in 15 lensed galaxies at redshifts 1 < z < 3 using HIFI on the Herschel Space Observatory and detected 14/15 galaxies at 3 σ or better. High magnifications enable even modestly luminous galaxies to be detected in [C ii] with Herschel . The [C ii] luminosity in this sample ranges from 8 × 10 7 L ⊙ to 3.7 × 10 9 L ⊙ (after correcting for magnification), confirming that [C ii] is a strong tracer of the ISM at high redshifts. The ratio of the [C ii] line to the total far-infrared (FIR) luminosity serves as a measure of the ratio of gas to dust cooling and thus the efficiency of the grain photoelectric heating process. It varies between 3.3% and 0.09%. We compare the [C ii]/FIR ratio to that of galaxies at z = 0 and at high redshifts and find that they follow similar trends. The [C ii]/FIR ratio is lower for galaxies with higher dust temperatures. This is best explained if increased UV intensity leads to higher FIR luminosity and dust temperatures, but gas heating does not rise due to lower photoelectric heating efficiency. The [C ii]/FIR ratio shows weaker correlation with FIR luminosity. At low redshifts highly luminous galaxies tend to have warm dust, so the effects of dust temperature and luminosity are degenerate. Luminous galaxies at high redshifts show a range of dust temperatures, showing that [C ii]/FIR correlates most strongly with dust temperature. The [C ii] to mid-IR ratio for the HELLO sample is similar to the values seen for low-redshift galaxies, indicating that small grains and PAHs dominate the heating in the neutral ISM, although some of the high [CII]/FIR ratios may be due to turbulent heating.

  19. Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing

    Energy Technology Data Exchange (ETDEWEB)

    Bonnett, C.; Troxel, M. A.; Hartley, W.; Amara, A.; Leistedt, B.; Becker, M. R.; Bernstein, G. M.; Bridle, S. L.; Bruderer, C.; Busha, M. T.; Carrasco Kind, M.; Childress, M. J.; Castander, F. J.; Chang, C.; Crocce, M.; Davis, T. M.; Eifler, T. F.; Frieman, J.; Gangkofner, C.; Gaztanaga, E.; Glazebrook, K.; Gruen, D.; Kacprzak, T.; King, A.; Kwan, J.; Lahav, O.; Lewis, G.; Lidman, C.; Lin, H.; MacCrann, N.; Miquel, R.; O’Neill, C. R.; Palmese, A.; Peiris, H. V.; Refregier, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sánchez, C.; Sheldon, E.; Uddin, S.; Wechsler, R. H.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Fausti Neto, A.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruendl, R. A.; Honscheid, K.; Jain, B.; James, D. J.; Jarvis, M.; Kim, A. G.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.

    2016-08-01

    We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δz ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σcrit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.

  20. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    International Nuclear Information System (INIS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crites, A. T.; Haan, T. de

    2016-01-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆ ). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  1. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    Science.gov (United States)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  2. Redshift Survey Strategies

    Science.gov (United States)

    Jones, A. W.; Bland-Hawthorn, J.; Kaiser, N.

    1994-12-01

    In the first half of 1995, the Anglo-Australian Observatory is due to commission a wide field (2.1(deg) ), 400-fiber, double spectrograph system (2dF) at the f/3.3 prime focus of the AAT 3.9m bi-national facility. The instrument should be able to measure ~ 4000 galaxy redshifts (assuming a magnitude limit of b_J ~\\ 20) in a single dark night and is therefore ideally suited to studies of large-scale structure. We have carried out simple 3D numerical simulations to judge the relative merits of sparse surveys and contiguous surveys. We generate a survey volume and fill it randomly with particles according to a selection function which mimics a magnitude-limited survey at b_J = 19.7. Each of the particles is perturbed by a gaussian random field according to the dimensionless power spectrum k(3) P(k) / 2pi (2) determined by Feldman, Kaiser & Peacock (1994) from the IRAS QDOT survey. We introduce some redshift-space distortion as described by Kaiser (1987), a `thermal' component measured from pairwise velocities (Davis & Peebles 1983), and `fingers of god' due to rich clusters at random density enhancements. Our particular concern is to understand how the window function W(2(k)) of the survey geometry compromises the accuracy of statistical measures [e.g., P(k), xi (r), xi (r_sigma ,r_pi )] commonly used in the study of large-scale structure. We also examine the reliability of various tools (e.g. genus) for describing the topological structure within a contiguous region of the survey.

  3. The coevolution of supermassive black holes and massive galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Negrello, M. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years

    Science.gov (United States)

    Haines, C. P.; Iovino, A.; Krywult, J.; Guzzo, L.; Davidzon, I.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Granett, B. R.; de la Torre, S.; De Lucia, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Gargiulo, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Moutard, T.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Zamorani, G.; Bel, J.; Branchini, E.; Coupon, J.; Ilbert, O.; Moscardini, L.; Peacock, J. A.; Siudek, M.

    2017-08-01

    We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z 1. We trace the extents and evolutions of both the blue cloud and red sequence by fitting double Gaussians to the d4000 distribution of galaxies in narrow stellar mass bins, for four redshift intervals over 0 1011M⊙, d4000 web site is http://www.vipers.inaf.it/

  5. CALIBRATING PHOTOMETRIC REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS

    International Nuclear Information System (INIS)

    Schulz, A. E.

    2010-01-01

    The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshift identifications by two orders of magnitude, drastically expanding both the redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair subsample of these new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys to illuminate the processes of galaxy evolution and to constrain the underlying cosmology and growth of structure. We examine here an alternative to direct spectroscopic follow-up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline to implement the method, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is generally effective, but the estimator is weakened by two main factors. One is that the correlation function of the spectroscopic sample must be measured in many bins along the line of sight, which renders the measurement noisy and interferes with high-quality reconstruction of the photometric redshift distribution. Also, the method is not able to disentangle the photometric redshift distribution from redshift dependence in the bias of the photometric sample. We establish the impact of these factors using our mock catalogs. We conclude that it may still be necessary to spectroscopically follow up a fair subsample of the photometric survey data. Nonetheless, it is significant that the method has been successfully implemented on mock data, and with further refinement it may appreciably decrease the number of spectra that will be needed to calibrate future surveys.

  6. Designing future dark energy space missions. II. Photometric redshift of space weak lensing optimized surveys

    Science.gov (United States)

    Jouvel, S.; Kneib, J.-P.; Bernstein, G.; Ilbert, O.; Jelinsky, P.; Milliard, B.; Ealet, A.; Schimd, C.; Dahlen, T.; Arnouts, S.

    2011-08-01

    Context. With the discovery of the accelerated expansion of the universe, different observational probes have been proposed to investigate the presence of dark energy, including possible modifications to the gravitation laws by accurately measuring the expansion of the Universe and the growth of structures. We need to optimize the return from future dark energy surveys to obtain the best results from these probes. Aims: A high precision weak-lensing analysis requires not an only accurate measurement of galaxy shapes but also a precise and unbiased measurement of galaxy redshifts. The survey strategy has to be defined following both the photometric redshift and shape measurement accuracy. Methods: We define the key properties of the weak-lensing instrument and compute the effective PSF and the overall throughput and sensitivities. We then investigate the impact of the pixel scale on the sampling of the effective PSF, and place upper limits on the pixel scale. We then define the survey strategy computing the survey area including in particular both the Galactic absorption and Zodiacal light variation accross the sky. Using the Le Phare photometric redshift code and realistic galaxy mock catalog, we investigate the properties of different filter-sets and the importance of the u-band photometry quality to optimize the photometric redshift and the dark energy figure of merit (FoM). Results: Using the predicted photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We find that we can derive the most accurate the photometric redshifts for the bulk of the faint galaxy population when filters have a resolution ℛ ~ 3.2. We show that an optimal mission would survey the sky through eight filters using two cameras (visible and near infrared). Assuming a five-year mission duration, a mirror size of 1.5 m and a 0.5 deg2 FOV with a visible pixel

  7. Spectroscopic Observations of Lyman Break Galaxies at Redshifts ~4, 5, and 6 in the Goods-South Field

    Science.gov (United States)

    Vanzella, E.; Giavalisco, M.; Dickinson, M.; Cristiani, S.; Nonino, M.; Kuntschner, H.; Popesso, P.; Rosati, P.; Renzini, A.; Stern, D.; Cesarsky, C.; Ferguson, H. C.; Fosbury, R. A. E.

    2009-04-01

    We report on observations of Lyman break galaxies (LBGs) selected from the Great Observatories Origins Deep Survey at mean redshifts z ~ 4, 5, and 6 (B 435-, V 606-, and i 775-band dropouts, respectively), obtained with the red-sensitive FORS2 spectrograph at the ESO VLT. This program has yielded spectroscopic identifications for 114 galaxies (~60% of the targeted sample), of which 51 are at z ~ 4, 31 at z ~ 5, and 32 at z ~ 6. We demonstrate that the adopted selection criteria are effective, identifying galaxies at the expected redshift with minimal foreground contamination. Of the 10% interlopers, 83% turn out to be Galactic stars. Once selection effects are properly accounted for, the rest-frame ultraviolet (UV) spectra of the higher redshift LBGs appear to be similar to their counterparts at z ~ 3. As at z ~ 3, LBGs at z ~ 4 and z ~ 5 are observed with Lyα both in emission and in absorption; when in absorption, strong interstellar lines are also observed in the spectra. The stacked spectra of Lyα absorbers and emitters also show that the former have redder UV spectra and stronger but narrower interstellar lines, a fact also observed at z ~ 2 and 3. At z ~ 6, sensitivity issues bias our sample toward galaxies with Lyα in emission; nevertheless, these spectra appear to be similar to their lower redshift counterparts. As in other studies at similar redshifts, we find clear evidence that brighter LBGs tend to have weaker Lyα emission lines. At fixed rest-frame UV luminosity, the equivalent width of the Lyα emission line is larger at higher redshifts. At all redshifts where the measurements can be reliably made, the redshift of the Lyα emission line turns out to be larger than that of the interstellar absorption lines (ISLs), with a median velocity difference ΔV ~ 400 km s-1 at z ~ 4 and 5, consistent with results at lower redshifts. This shows that powerful, large-scale winds are common at high redshift. In general, there is no strong correlation between the

  8. Redshift space clustering of galaxies and cold dark matter model

    Science.gov (United States)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  9. OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z Almost-Equal-To 8

    Energy Technology Data Exchange (ETDEWEB)

    Trenti, Michele; Shull, J. M. [CASA, Department of Astrophysical and Planetary Science, University of Colorado, Center for Astrophysics and Space Astronomy, 389-UCB, Boulder, CO 80309 (United States); Bradley, L. D.; Stiavelli, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Oesch, P.; Bouwens, R. J. [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Munoz, J. A. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Romano-Diaz, E.; Shlosman, I. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Treu, T. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Carollo, C. M., E-mail: trenti@colorado.edu [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2012-02-10

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z {approx} 8 candidates as Y{sub 098}-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y{sub 098}-dropouts to fainter luminosities (M{sub *} galaxies with M{sub AB} {approx} -20), with detections at {>=}5{sigma} confidence (compared to the 8{sigma} confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y{sub 098}-dropouts at {>=}99.84% confidence. Field BoRG58, which contains the best bright z {approx} 8 candidate (M{sub AB} = -21.3), has the most significant overdensity of faint Y{sub 098}-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z {approx} 8 candidate. The overdensity of Y{sub 098}-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y{sub 098}-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass M{sub h} Almost-Equal-To (4-7) Multiplication-Sign 10{sup 11} M{sub Sun} ({approx}5{sigma} density peak) and is surrounded by several M{sub h} Almost-Equal-To 10{sup 11} M{sub Sun} halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a M{sub h} > 2 Multiplication-Sign 10{sup 14} M{sub Sun} galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z {approx} 8 nature

  10. TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY

    International Nuclear Information System (INIS)

    Bilicki, Maciej; Jarrett, Thomas H.; Cluver, Michelle E.; Steward, Louise; Peacock, John A.

    2014-01-01

    Key cosmological applications require the three-dimensional (3D) galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow, and testing the Copernican principle. However, the largest all-sky redshift surveys—the 2MASS Redshift Survey and IRAS Point Source Catalog Redshift Survey—have median redshifts of only z = 0.03 and sample the very local universe. All-sky galaxy catalogs exist that reach much deeper—SuperCOSMOS in the optical, the Two Micron All Sky Survey (2MASS) in the near-IR, and WISE in the mid-IR—but these lack complete redshift information. At present, the only rapid way toward larger 3D catalogs covering the whole sky is through photometric redshift techniques. In this paper we present the 2MASS Photometric Redshift catalog (2MPZ) containing one million galaxies, constructed by cross-matching Two Micron All Sky Survey Extended Source Catalog (2MASS XSC), WISE, and SuperCOSMOS all-sky samples and employing the artificial neural network approach (the ANNz algorithm), trained on such redshift surveys as the Sloan Digital Sky Survey, 6dFGS, and 2dFGRS. The derived photometric redshifts have errors nearly independent of distance, with an all-sky accuracy of σ z = 0.015 and a very small percentage of outliers. In this way, we obtain redshift estimates with a typical precision of 12% for all the 2MASS XSC galaxies that lack spectroscopy. In addition, we have made an early effort toward probing the entire 3D sky beyond 2MASS, by pairing up WISE with SuperCOSMOS and training the ANNz on GAMA redshift data currently reaching to z med ∼ 0.2. This has yielded photo-z accuracies comparable to those in the 2MPZ. These all-sky photo-z catalogs, with a median z ∼ 0.1 for the 2MPZ, and significantly deeper for future WISE-based samples, will be the largest and most complete of their kind for the foreseeable future

  11. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  12. THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenfeld, Alessandro; Treu, Tommaso; Suyu, Sherry H. [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Gavazzi, Raphaël [Institut d' Astrophysique de Paris, UMR7095 CNRS-Université Pierre et Marie Curie, 98bis bd Arago, F-75014 Paris (France); Marshall, Philip J. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Nipoti, Carlo, E-mail: sonnen@physics.ucsb.edu [Astronomy Department, University of Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-11-10

    We present optical and near-infrared spectroscopy obtained at Keck, Very Large Telescope, and Gemini for a sample of 36 secure strong gravitational lens systems and 17 candidates identified as part of the Strong Lensing Legacy Survey. The deflectors are massive early-type galaxies in the redshift range z{sub d} = 0.2-0.8, while the lensed sources are at z{sub s} = 1-3.5. We combine these data with photometric and lensing measurements presented in the companion paper III and with lenses from the Sloan Lens Advanced Camera for Surveys and Lènses Structure and Dynamics surveys to investigate the cosmic evolution of the internal structure of massive early-type galaxies over half the age of the universe. We study the dependence of the slope of the total mass density profile, γ' (ρ(r)∝r{sup -γ{sup '}}), on stellar mass, size, and redshift. We find that two parameters are sufficient to determine γ' with less than 6% residual scatter. At fixed redshift, γ' depends solely on the surface stellar mass density ∂γ'/∂Σ{sub *} = 0.38 ± 0.07, i.e., galaxies with denser stars also have steeper slopes. At fixed M{sub *} and R{sub eff}, γ' depends on redshift, in the sense that galaxies at a lower redshift have steeper slopes (∂γ'/∂z = –0.31 ± 0.10). However, the mean redshift evolution of γ' for an individual galaxy is consistent with zero dγ'/dz = –0.10 ± 0.12. This result is obtained by combining our measured dependencies of γ' on z, M{sub *},R{sub eff} with the evolution of the R{sub eff}-M{sub *} taken from the literature, and is broadly consistent with current models of the formation and evolution of massive early-type galaxies. Detailed quantitative comparisons of our results with theory will provide qualitatively new information on the detailed physical processes at work.

  13. THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE

    International Nuclear Information System (INIS)

    Sonnenfeld, Alessandro; Treu, Tommaso; Suyu, Sherry H.; Gavazzi, Raphaël; Marshall, Philip J.; Auger, Matthew W.; Nipoti, Carlo

    2013-01-01

    We present optical and near-infrared spectroscopy obtained at Keck, Very Large Telescope, and Gemini for a sample of 36 secure strong gravitational lens systems and 17 candidates identified as part of the Strong Lensing Legacy Survey. The deflectors are massive early-type galaxies in the redshift range z d = 0.2-0.8, while the lensed sources are at z s = 1-3.5. We combine these data with photometric and lensing measurements presented in the companion paper III and with lenses from the Sloan Lens Advanced Camera for Surveys and Lènses Structure and Dynamics surveys to investigate the cosmic evolution of the internal structure of massive early-type galaxies over half the age of the universe. We study the dependence of the slope of the total mass density profile, γ' (ρ(r)∝r -γ ' ), on stellar mass, size, and redshift. We find that two parameters are sufficient to determine γ' with less than 6% residual scatter. At fixed redshift, γ' depends solely on the surface stellar mass density ∂γ'/∂Σ * = 0.38 ± 0.07, i.e., galaxies with denser stars also have steeper slopes. At fixed M * and R eff , γ' depends on redshift, in the sense that galaxies at a lower redshift have steeper slopes (∂γ'/∂z = –0.31 ± 0.10). However, the mean redshift evolution of γ' for an individual galaxy is consistent with zero dγ'/dz = –0.10 ± 0.12. This result is obtained by combining our measured dependencies of γ' on z, M * ,R eff with the evolution of the R eff -M * taken from the literature, and is broadly consistent with current models of the formation and evolution of massive early-type galaxies. Detailed quantitative comparisons of our results with theory will provide qualitatively new information on the detailed physical processes at work

  14. THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Gregory D.; Kassis, Marc; Lyke, Jim; Rizzi, Luca; Campbell, Randy; Goodrich, Robert W. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Trump, Jonathan R.; Barro, Guillermo; Guo, Yicheng; Koo, David C.; Liu, Fengshan; Faber, S. M., E-mail: gregory.wirth@gmail.com [University of California Observatories, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-11-15

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band. We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra.

  15. Cosmological constraints with clustering-based redshifts

    Science.gov (United States)

    Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi

    2017-07-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.

  16. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    Science.gov (United States)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  17. THE RISE AND FALL OF THE STAR FORMATION HISTORIES OF BLUE GALAXIES AT REDSHIFTS 0.2 < z < 1.4

    International Nuclear Information System (INIS)

    Pacifici, Camilla; Kassin, Susan A.; Gardner, Jonathan P.; Weiner, Benjamin; Charlot, Stéphane

    2013-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitors, each with their own unique star formation history (SFH). We use a sophisticated approach to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range 0.2 s bands and rest-frame optical emission-line luminosities with those of one million model spectral energy distributions. We explore the dependence of the resulting SFHs on galaxy stellar mass and redshift. We find that the average SFHs of high-mass galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs widely used to interpret observed galaxy spectral energy distributions may not be appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  18. CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Somerville, Rachel S.; Maulbetsch, Christian; Van den Bosch, Frank C.; Maccio, Andrea V.; Naab, Thorsten; Oser, Ludwig

    2010-01-01

    We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass function be reproduced. We find good agreement with constraints from galaxy-galaxy lensing and predictions of semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation, we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass are in excellent agreement with the observed clustering properties in the Sloan Digital Sky Survey at z = 0. We show that the clustering data do not provide additional strong constraints on the SHM function and conclude that our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function, which yields the average number of galaxies with stellar masses in the range m ± dm/2 that reside in a halo of mass M. We study the redshift dependence of the SHM relation and show that, for low-mass halos, the SHM ratio is lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias at high redshift. Our model predicts that not only are massive galaxies more biased than low-mass galaxies at all redshifts, but also the bias increases more rapidly with increasing redshift for massive galaxies than for low-mass ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass function, and the bias as a function of stellar mass and redshift.

  19. High-redshift Galaxies and Black Holes Detectable with the JWST: A Population Synthesis Model from Infrared to X-Rays

    Science.gov (United States)

    Volonteri, Marta; Reines, Amy E.; Atek, Hakim; Stark, Daniel P.; Trebitsch, Maxime

    2017-11-01

    The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages < 1 {Gyr}, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.

  20. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O’Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Beers, Timothy C. [Department of Physics and JINA—Center for the Evolution of the Elements, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tumlinson, Jason, E-mail: crosby.bd@gmail.com [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  1. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Rao, Sandhya M. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ross, Ashley J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dawson, Kyle S.; Bautista, Julian E.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Comparat, Johan [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Tojeiro, Rita [School of Physics and Astronomy, St Andrews, KY16 9SS (United Kingdom); Ho, Shirley; Lang, Dustin [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Guangtun Ben, E-mail: abp15@pitt.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); and others

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  2. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L ∼> fL * galaxies follows the simple relation dN/dt ≅ 0.03(1+f)Gyr -1 (1+z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L * high-redshift galaxies (∼ 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the last 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman Break Galaxies (LBGs)

  3. Photometry of High-Redshift Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Haynie, Annastasia

    2018-01-01

    Out of more than 1100 well-identified Type Ia Supernovae, only roughly 10 of them are at z> 1.5. High redshift supernovae are hard to detect but this is made easier by taking advantage of the effects of gravitational lensing, which magnifies objects in the background field of massive galaxy clusters. Supernova Nebra (z= ~1.8), among others, was discovered during observations taken as part of the RELICS survey, which focused on fields of view that experience strong gravitational lensing effects. SN Nebra, which sits behind galaxy cluster Abell 1763, is magnified and therefore appears closer and easier to see than with HST alone. Studying high-redshift supernovae like SN Nebra is an important step towards creating cosmological models that accurately describe the behavior of dark energy in the early Universe. Recent efforts have been focused on improving photometry and the building and fitting of preliminary light curves.

  4. RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey

    Science.gov (United States)

    Cerny, Catherine; Sharon, Keren; Andrade-Santos, Felipe; Avila, Roberto J.; Bradač, Maruša; Bradley, Larry D.; Carrasco, Daniela; Coe, Dan; Czakon, Nicole G.; Dawson, William A.; Frye, Brenda L.; Hoag, Austin; Huang, Kuang-Han; Johnson, Traci L.; Jones, Christine; Lam, Daniel; Lovisari, Lorenzo; Mainali, Ramesh; Oesch, Pascal A.; Ogaz, Sara; Past, Matthew; Paterno-Mahler, Rachel; Peterson, Avery; Riess, Adam G.; Rodney, Steven A.; Ryan, Russell E.; Salmon, Brett; Sendra-Server, Irene; Stark, Daniel P.; Strolger, Louis-Gregory; Trenti, Michele; Umetsu, Keiichi; Vulcani, Benedetta; Zitrin, Adi

    2018-06-01

    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at {\\boldsymbol{z}}> 6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7–0349, and ACT-CLJ0102–49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space Telescopes.

  5. Dark Energy Survey Year 1 Results: Galaxy Sample for BAO Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Crocce, M.; et al.

    2017-12-17

    We define and characterise a sample of 1.3 million galaxies extracted from the first year of Dark Energy Survey data, optimised to measure Baryon Acoustic Oscillations in the presence of significant redshift uncertainties. The sample is dominated by luminous red galaxies located at redshifts $z \\gtrsim 0.6$. We define the exact selection using color and magnitude cuts that balance the need of high number densities and small photometric redshift uncertainties, using the corresponding forecasted BAO distance error as a figure-of-merit in the process. The typical photo-$z$ uncertainty varies from $2.3\\%$ to $3.6\\%$ (in units of 1+$z$) from $z=0.6$ to $1$, with number densities from $200$ to $130$ galaxies per deg$^2$ in tomographic bins of width $\\Delta z = 0.1$. Next we summarise the validation of the photometric redshift estimation. We characterise and mitigate observational systematics including stellar contamination, and show that the clustering on large scales is robust in front of those contaminants. We show that the clustering signal in the auto-correlations and cross-correlations is generally consistent with theoretical models, which serves as an additional test of the redshift distributions.

  6. Is There a Maximum Star Formation Rate in High-redshift Galaxies?

    Science.gov (United States)

    Barger, A. J.; Cowie, L. L.; Chen, C.-C.; Owen, F. N.; Wang, W.-H.; Casey, C. M.; Lee, N.; Sanders, D. B.; Williams, J. P.

    2014-03-01

    We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin2 area surrounding the GOODS-N field. The 850 μm rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 μm source catalog to 2 mJy containing 49 sources detected above the 4σ level. We use an ultradeep (11.5 μJy at 5σ) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9' radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio-flux-dependent K - z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter fluxes and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 M ⊙ yr-1 to z ~ 6. We find galaxies with SFRs up to ~6000 M ⊙ yr-1 over the redshift range z = 1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 M ⊙ yr-1. The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific

  7. SPECTROSCOPIC OBSERVATIONS OF LYMAN BREAK GALAXIES AT REDSHIFTS ∼4, 5, AND 6 IN THE GOODS-SOUTH FIELD

    International Nuclear Information System (INIS)

    Vanzella, E.; Cristiani, S.; Nonino, M.; Giavalisco, M.; Dickinson, M.; Kuntschner, H.; Fosbury, R. A. E.; Popesso, P.; Rosati, P.; Cesarsky, C.; Renzini, A.; Stern, D.; Ferguson, H. C.

    2009-01-01

    We report on observations of Lyman break galaxies (LBGs) selected from the Great Observatories Origins Deep Survey at mean redshifts z ∼ 4, 5, and 6 (B 435 -, V 606 -, and i 775 -band dropouts, respectively), obtained with the red-sensitive FORS2 spectrograph at the ESO VLT. This program has yielded spectroscopic identifications for 114 galaxies (∼60% of the targeted sample), of which 51 are at z ∼ 4, 31 at z ∼ 5, and 32 at z ∼ 6. We demonstrate that the adopted selection criteria are effective, identifying galaxies at the expected redshift with minimal foreground contamination. Of the 10% interlopers, 83% turn out to be Galactic stars. Once selection effects are properly accounted for, the rest-frame ultraviolet (UV) spectra of the higher redshift LBGs appear to be similar to their counterparts at z ∼ 3. As at z ∼ 3, LBGs at z ∼ 4 and z ∼ 5 are observed with Lyα both in emission and in absorption; when in absorption, strong interstellar lines are also observed in the spectra. The stacked spectra of Lyα absorbers and emitters also show that the former have redder UV spectra and stronger but narrower interstellar lines, a fact also observed at z ∼ 2 and 3. At z ∼ 6, sensitivity issues bias our sample toward galaxies with Lyα in emission; nevertheless, these spectra appear to be similar to their lower redshift counterparts. As in other studies at similar redshifts, we find clear evidence that brighter LBGs tend to have weaker Lyα emission lines. At fixed rest-frame UV luminosity, the equivalent width of the Lyα emission line is larger at higher redshifts. At all redshifts where the measurements can be reliably made, the redshift of the Lyα emission line turns out to be larger than that of the interstellar absorption lines (ISLs), with a median velocity difference ΔV ∼ 400 km s -1 at z ∼ 4 and 5, consistent with results at lower redshifts. This shows that powerful, large-scale winds are common at high redshift. In general, there is no

  8. The ALHAMBRA survey: evolution of galaxy clustering since z ˜ 1

    Science.gov (United States)

    Arnalte-Mur, P.; Martínez, V. J.; Norberg, P.; Fernández-Soto, A.; Ascaso, B.; Merson, A. I.; Aguerri, J. A. L.; Castander, F. J.; Hurtado-Gil, L.; López-Sanjuan, C.; Molino, A.; Montero-Dorta, A. D.; Stefanon, M.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Masegosa, J.; Moles, M.; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.

    2014-06-01

    We study the clustering of galaxies as function of luminosity and redshift in the range 0.35 work cover 2.38 deg2 in seven independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, σz ≲ 0.014(1 + z), down to IAB accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the Cosmic Evolution Survey (COSMOS) and European Large Area ISO Survey North 1 (ELAIS-N1) fields are dominated by the presence of large structures. For the intermediate and bright samples, Lmed ≳ 0.6L*, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between log10[Mh/( h-1 M⊙)] ≳ 11.5 for samples with Lmed ≃ 0.3L* and log10[Mh/( h-1 M⊙)] ≳ 13.0 for samples with Lmed ≃ 2L*, with typical occupation numbers in the range of ˜1-3 galaxies per halo.

  9. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Bertoldi, F.; Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße, D-85748 Garching bei München (Germany); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Da Cunha, E.; Hodge, J. A.; Schinnerer, E. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K. [Department of Earth and Space Science, Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden); Poggianti, B. M., E-mail: j.m.simpson@dur.ac.uk [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  10. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    International Nuclear Information System (INIS)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.

    2014-01-01

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z phot = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z phot = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M * = (8 ± 1) × 10 10 M ☉ , although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M H distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  11. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    Science.gov (United States)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), I.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s-1 cm-2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  12. The Rise and Fall of Star Formation Histories of Blue Galaxies at Redshifts 0.2 < z < 1.4

    Science.gov (United States)

    Pacifici, Camilla; Kassin, Susan A.; Weiner, Benjamin; Charlot, Stephane; Gardner, Jonathan P.

    2012-01-01

    Popular cosmological scenarios predict that galaxies form hierarchically from the merger of many progenitor, each with their own unique star formation history (SFH). We use the approach recently developed by Pacifici et al. to constrain the SFHs of 4517 blue (presumably star-forming) galaxies with spectroscopic redshifts in the range O.2 galaxies rise and fall in a roughly symmetric bell-shaped manner, while those of low-mass galaxies rise progressively in time, consistent with the typically stronger activity of star formation in low-mass compared to high-mass galaxies. For galaxies of all masses, the star formation activity rises more rapidly at high than at low redshift. These findings imply that the standard approximation of exponentially declining SFHs wIdely used to interpret observed galaxy spectral energy distributions is not appropriate to constrain the physical parameters of star-forming galaxies at intermediate redshifts.

  13. USING THE 1.6 μm BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2

    International Nuclear Information System (INIS)

    Sorba, Robert; Sawicki, Marcin

    2010-01-01

    We explore the feasibility and limitations of using the 1.6 μm bump as a photometric redshift indicator and selection technique, and use it to study the rest-frame H-band galaxy luminosity and stellar mass functions (SMFs) at redshift z ∼ 2. We use publicly available Spitzer/IRAC images in the GOODS fields and find that color selection in the IRAC bandpasses alone is comparable in completeness and contamination to BzK selection. We find that the shape of the 1.6 μm bump is robust, and photometric redshifts are not greatly affected by choice of model parameters. Comparison with spectroscopic redshifts shows photometric redshifts to be reliable. We create a rest-frame NIR-selected catalog of galaxies at z ∼ 2 and construct a galaxy SMF. Comparisons with other SMFs at approximately the same redshift but determined using shorter wavelengths show good agreement. This agreement suggests that selection at bluer wavelengths does not miss a significant amount of stellar mass in passive galaxies. Comparison with SMFs at other redshifts shows evidence for the downsizing scenario of galaxy evolution. We conclude by pointing out the potential for using the 1.6 μm bump technique to select high-redshift galaxies with the JWST, whose λ>0.6 μm coverage will not be well suited to selecting galaxies using techniques that require imaging at shorter wavelengths.

  14. Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, T.M.C.; et al.

    2017-12-17

    We present angular diameter distance measurements obtained by locating the BAO scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1318 deg$^2$ with $0.6 < z_{\\rm photo} < 1$ and a typical redshift uncertainty of $0.03(1+z)$. This sample was selected, as fully described in a companion paper, using a color/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the co-moving transverse separation, and spherical harmonics. Further, we compare results obtained from template based and machine learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, $D_A$, at the effective redshift of our sample divided by the true physical scale of the BAO feature, $r_{\\rm d}$. We obtain close to a 4 per cent distance measurement of $D_A(z_{\\rm eff}=0.81)/r_{\\rm d} = 10.75\\pm 0.43 $. These results are consistent with the flat $\\Lambda$CDM concordance cosmological model supported by numerous other recent experimental results.

  15. A DETAILED STUDY OF PHOTOMETRIC REDSHIFTS FOR GOODS-SOUTH GALAXIES

    International Nuclear Information System (INIS)

    Dahlen, Tomas; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton; Mobasher, Bahram; Dickinson, Mark; Giavalisco, Mauro; Guo, Yicheng; Salimbeni, Sara; Lee, Kyoung-Soo; Lee, Seong-Kook; Riess, Adam G.; Nonino, Mario

    2010-01-01

    We use the deepest and the most comprehensive photometric data currently available for GOODS-South (GOODS-S) galaxies to measure their photometric redshifts. The photometry includes VLT/VIMOS (U band), HST/ACS (F435W, F606W, F775W, and F850LP bands), VLT/ISAAC (J, H, and K s bands), and four Spitzer/IRAC channels (3.6, 4.5, 5.8, and 8.0 μm). The catalog is selected in the z band (F850LP) and photometry in each band is carried out using the recently completed TFIT algorithm, which performs point-spread function (PSF) matched photometry uniformly across different instruments and filters, despite large variations in PSFs and pixel scales. Photometric redshifts are derived using the GOODZ code, which is based on the template fitting method using priors. The code also implements 'training' of the template spectral energy distribution (SED) set, using available spectroscopic redshifts in order to minimize systematic differences between the templates and the SEDs of the observed galaxies. Our final catalog covers an area of 153 arcmin 2 and includes photometric redshifts for a total of 32,505 objects. The scatter between our estimated photometric and spectroscopic redshifts is σ = 0.040 with 3.7% outliers to the full z-band depth of our catalog, decreasing to σ = 0.039 and 2.1% outliers at a magnitude limit m z < 24.5. This is consistent with the best results previously published for GOODS-S galaxies, however, the present catalog is the deepest yet available and provides photometric redshifts for significantly more objects to deeper flux limits and higher redshifts than earlier works. Furthermore, we show that the photometric redshifts estimated here for galaxies selected as dropouts are consistent with those expected based on the Lyman break technique.

  16. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    Science.gov (United States)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  17. Spectral energy distributions for galaxies in high-redshift clusters

    International Nuclear Information System (INIS)

    Ellis, R.S.; Couch, W.J.; MacLaren, Iain

    1985-01-01

    The distant cluster 0016+16 (z=0.54) has been imaged through six intermediate-bandwidth filters ranging in wavelength from 418 to 862 nm, maintaining a photometric precision of 10 per cent to a limiting magnitude of F=22. It is found that the field-subtracted colour distributions are not compatible with a single uniformly red population of early-type members at z=0.54. A significant intermediate colour component identified with a spectroscopic object at z=0.30 is also present, thus reducing the possibility that the z=0.54 cluster exhibits an excess of blue galaxies. It is demonstrated how the six-colour data can be used to individually classify the galaxies by type and approximate redshift so that it is possible to identify which objects are members of the z=0.54 cluster. (author)

  18. INTRINSIC ALIGNMENT OF CLUSTER GALAXIES: THE REDSHIFT EVOLUTION

    International Nuclear Information System (INIS)

    Hao Jiangang; Kubo, Jeffrey M.; Feldmann, Robert; Annis, James; Johnston, David E.; Lin Huan; McKay, Timothy A.

    2011-01-01

    We present measurements of two types of cluster galaxy alignments based on a volume limited and highly pure (≥90%) sample of clusters from the GMBCG catalog derived from Data Release 7 of the Sloan Digital Sky Survey (SDSS DR7). We detect a clear brightest cluster galaxy (BCG) alignment (the alignment of major axis of the BCG toward the distribution of cluster satellite galaxies). We find that the BCG alignment signal becomes stronger as the redshift and BCG absolute magnitude decrease and becomes weaker as BCG stellar mass decreases. No dependence of the BCG alignment on cluster richness is found. We can detect a statistically significant (≥3σ) satellite alignment (the alignment of the major axes of the cluster satellite galaxies toward the BCG) only when we use the isophotal fit position angles (P.A.s), and the satellite alignment depends on the apparent magnitudes rather than the absolute magnitudes of the BCGs. This suggests that the detected satellite alignment based on isophotal P.A.s from the SDSS pipeline is possibly due to the contamination from the diffuse light of nearby BCGs. We caution that this should not be simply interpreted as non-existence of the satellite alignment, but rather that we cannot detect them with our current photometric SDSS data. We perform our measurements on both SDSS r-band and i-band data, but do not observe a passband dependence of the alignments.

  19. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  20. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    Science.gov (United States)

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  1. Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kuang-Han [University of California Davis, 1 Shields Avenue, Davis, CA 95616 (United States); Fall, S. Michael; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Van der Wel, Arjen [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Pérez-González, Pablo G. [Departamento de Astrofísica, Facultad de CC. Física, Universidad Complutense de Madrid, E-28040, Madrid (Spain); Wuyts, Stijn, E-mail: khhuang@ucdavis.edu [Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2017-03-20

    We derive relations between the effective radii R {sub eff} of galaxies and the virial radii R {sub 200} {sub c} of their dark matter halos over the redshift range 0 < z < 3. For galaxies, we use the measured sizes from deep images taken with Hubble Space Telescope for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass–halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions as for our sample of galaxies with size measurements. As a check on the robustness of our results, we also derive R {sub eff}–R {sub 200} {sub c} relations for three independent SMHM relations from the literature. We find that galaxy R {sub eff} is proportional on average to halo R {sub 200} {sub c}, confirming and extending to high redshifts the z = 0 results of Kravtsov. Late-type galaxies (with low Sérsic index and high specific star formation rate (sSFR)) follow a linear R {sub eff}– R {sub 200} {sub c} relation, with effective radii at 0.5 < z < 3 close to those predicted by simple models of disk formation; at z < 0.5, the sizes of late-type galaxies appear to be slightly below this prediction. Early-type galaxies (with high Sérsic index and low sSFR) follow a roughly parallel R {sub eff}– R {sub 200} {sub c} relation, ∼0.2–0.3 dex below the one for late-type galaxies. Our observational results, reinforced by recent hydrodynamical simulations, indicate that galaxies grow quasi-homologously with their dark matter halos.

  2. The new galaxy evolution paradigm revealed by the Herschel surveys

    Science.gov (United States)

    Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine

    2018-01-01

    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.

  3. Studying dark energy with galaxy cluster surveys

    International Nuclear Information System (INIS)

    Mohr, Joseph J.; O'Shea, Brian; Evrard, August E.; Bialek, John; Haiman, Zoltan

    2003-01-01

    Galaxy cluster surveys provide a powerful means of studying the density and nature of the dark energy. The redshift distribution of detected clusters in a deep, large solid angle SZE or X-ray survey is highly sensitive to the dark energy equation of state. Accurate constraints at the 5% level on the dark energy equation of state require that systematic biases in the mass estimators must be controlled at better than the ∼10% level. Observed regularity in the cluster population and the availability of multiple, independent mass estimators suggests these precise measurements are possible. Using hydrodynamical simulations that include preheating, we show that the level of preheating required to explain local galaxy cluster structure has a dramatic effect on X-ray cluster surveys, but only a mild effect on SZE surveys. This suggests that SZE surveys may be optimal for cosmology while X-ray surveys are well suited for studies of the thermal history of the intracluster medium

  4. THE STAR FORMATION AND NUCLEAR ACCRETION HISTORIES OF NORMAL GALAXIES IN THE AGES SURVEY

    International Nuclear Information System (INIS)

    Watson, Casey R.; Kochanek, Christopher S.; Forman, William R.; Hickox, Ryan C.; Jones, Christine J.; Kenter, Almus T.; Murray, Steve S.; Vikhlinin, Alexey; Fazio, Giovani G.; Green, Paul J.; Brown, Michael J. I.; Brand, Kate; Dey, Arjun; Jannuzi, Buell T.; Rieke, Marcia; Eisenstein, Daniel J.; McNamara, Brian R.; Shields, Joseph C.

    2009-01-01

    We combine IR, optical, and X-ray data from the overlapping, 9.3 deg 2 NOAO Deep Wide-Field Survey, AGN and Galaxy Evolution Survey (AGES), and XBooetes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 ∼ 3±1 , in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stacking analyses of faint source populations, with improved statistics.

  5. Mg II-Absorbing Galaxies in the UltraVISTA Survey

    Science.gov (United States)

    Stroupe, Darren; Lundgren, Britt

    2018-01-01

    Light that is emitted from distant quasars can become partially absorbed by intervening gaseous structures, including galaxies, in its path toward Earth, revealing information about the chemical content, degree of ionization, organization and evolution of these structures through time. In this project, quasar spectra are used to probe the halos of foreground galaxies at a mean redshift of z=1.1 in the COSMOS Field. Mg II absorption lines in Sloan Digital Sky Survey quasar spectra are paired with galaxies in the UltraVISTA catalog at an impact parameter less than 200 kpc. A sample of 77 strong Mg II absorbers with a rest-frame equivalent width ≥ 0.3 Å and redshift from 0.34 < z < 2.21 are investigated to find equivalent width ratios of Mg II, C IV and Fe II absorption lines, and their relation to the impact parameter and the star formation rates, stellar masses, environments and redshifts of their host galaxies.

  6. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  7. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z ∼ 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg2

    International Nuclear Information System (INIS)

    Stanford, S. A.; Gonzalez, Anthony H.; Gettings, Daniel P.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z ∼ 1 clusters of galaxies over an area of 10,000 deg 2 . Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates

  8. Science from the Avo 1ST Light: the High Redshift Universe

    Science.gov (United States)

    Walton, Nicholas A.

    The Astrophysical Virtual Observatory science working group defined a number of key science drivers for which the AVO should develop capabilities. At the AVO's Jan 2003 'First Light' event the AVO prototype data access and manipulation tool was demonstrated. In particular its use in enabling discovery in deep multi wavelength data sets was highlighted. In this presentation I will describe how the AVO demonstrator has enabled investigation into the high redshift universe and in particular its use in discovering rare populations of high redshift galaxies from deep Hubble and ground based imaging data obtained through the Great Observatories Origins Deep Survey (GOODS) programme.

  9. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  10. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  11. Bulgeless galaxies at intermediate redshift: Sample selection, color properties, and the existence of powerful active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bizzocchi, Luca; Leonardo, Elvira; Grossi, Marco; Afonso, José; Fernandes, Cristina; Retrê, João [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Filho, Mercedes E.; Lobo, Catarina [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Griffith, Roger L. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Anton, Sonia [Centro de Investigação em Ciências Geo-Espaciais, Faculdade de Ciências da Universidade do Porto, Porto (Portugal); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Brinchmann, Jarle [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Henriques, Bruno [Max-Planck-Institut für Astrophysik, Karl Schwarzschild Straße 1, D-85748 Garching bei München (Germany); Messias, Hugo [Departamento de astronomía, Av. Esteban Iturra 6to piso, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción (Chile)

    2014-02-10

    We present a catalog of bulgeless galaxies, which includes 19,225 objects selected in four of the deepest, largest multi-wavelength data sets available—COSMOS, AEGIS, GEMS, and GOODS—at intermediate redshift (0.4 ≤ z ≤ 1.0). The morphological classification was provided by the Advanced Camera for Surveys General Catalog (ACS-GC), which used publicly available data obtained with the ACS instrument on the Hubble Space Telescope. Rest-frame photometric quantities were derived using kcorrect. We analyze the properties of the sample and the evolution of pure-disk systems with redshift. Very massive [log (M {sub *}/M {sub ☉}) > 10.5] bulgeless galaxies contribute to ∼30% of the total galaxy population number density at z ≥ 0.7, but their number density drops substantially with decreasing redshift. We show that only a negligible fraction of pure disks appear to be quiescent systems, and red sequence bulgeless galaxies show indications of dust-obscured star formation. X-ray catalogs were used to search for X-ray emission within our sample. After visual inspection and detailed parametric morphological fitting we identify 30 active galactic nuclei (AGNs) that reside in galaxies without a classical bulge. The finding of such peculiar objects at intermediate redshift shows that while AGN growth in merger-free systems is a rare event (0.2% AGN hosts in this sample of bulgeless galaxies), it can indeed happen relatively early in the history of the universe.

  12. Direct comparison of observed magnitude-redshift relations in complete galaxy samples with systematic predictions of alternative redshift-distance laws

    International Nuclear Information System (INIS)

    Segal, I.E.

    1989-01-01

    The directly observed average apparent magnitude (or in one case, angular diameter) as a function of redshift in each of a number of large complete galaxy samples is compared with the predictions of hypothetical redshift-distance power laws, as a systematic statistical question. Due account is taken of observational flux limits by an entirely objective and reproducible optimal statistical procedure, and no assumptions are made regarding the distribution of the galaxies in space. The laws considered are of the form z varies as r p , where r denotes the distance, for p = 1, 2 and 3. The comparative fits of the various redshift-distance laws are similar in all the samples. Overall, the cubic law fits better than the linear law, but each shows substantial systematic deviations from observation. The quadratic law fits extremely well except at high redshifts in some of the samples, where no power law fits closely and the correlation of apparent magnitude with redshift is small or negative. In all cases, the luminosity function required for theoretical prediction was estimated from the sample by the non-parametric procedure ROBUST, whose intrinsic neutrality as programmed was checked by comprehensive computer simulations. (author)

  13. The Overdense Environments of WISE-Selected, Ultra-Luminous, High-Redshift AGN in the Submillimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Suzy F., E-mail: suzy.jones@chalmers.se [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, Onsala (Sweden)

    2017-11-21

    The environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively, were found to have overdensities of companion Submillimeter-selected sources. The overdensities were of ~2–3 and ~5–6, respectively, compared with blank field submm surveys. The space densities in both samples were found to be overdense compared to normal star-forming galaxies and Submillimeter galaxies (SMGs). All of the companion sources have consistent mid-IR colors and mid-IR to submm ratios to SMGs. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5 arcmin scale maps. WISE-selected AGNs appear to be good indicators of overdense areas of active galaxies at high redshift.

  14. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range

    Science.gov (United States)

    Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.

    2014-01-01

    Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. Conclusions: The percentage of mass included in substructures was found to be roughly constant with redshift values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures

  15. The progenitors of the compact early-type galaxies at high redshift

    International Nuclear Information System (INIS)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Cassata, Paolo; Tundo, Elena; Conselice, Christopher J.; Wiklind, Tommy; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10 10 M ☉ ) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  16. The progenitors of the compact early-type galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Cassata, Paolo [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Tundo, Elena; Conselice, Christopher J. [The School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Wiklind, Tommy [Joint ALMA Observatory, ESO, Santiago (Chile); Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wuyts, Stijn [Max-Planck-Institut für Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Boulevard, Baltimore, MD 21218 (United States); Hathi, Nimish [Carnegie Observatories, Pasadena, CA 91101 (United States); Huang, Kuang-Han [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Kocevski, Dale, E-mail: ccwillia@astro.umass.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); and others

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10{sup 10} M {sub ☉}) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  17. THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Stott, J. P.; Collins, C. A.; Hilton, M.; Capozzi, D.; Sahlen, M.; Lloyd-Davies, E.; Hosmer, M.; Liddle, A. R.; Mehrtens, N.; Romer, A. K.; Miller, C. J.; Stanford, S. A.; Viana, P. T. P.; Davidson, M.; Hoyle, B.; Kay, S. T.; Nichol, R. C.

    2010-01-01

    We present deep J- and K s -band photometry of 20 high redshift galaxy clusters between z = 0.8 and1.5, 19 of which are observed with the MOIRCS instrument on the Subaru telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ∼9 x 10 11 M sun since z ∼ 1.5. We investigate the effect on this result of differing star formation histories generated by three well-known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter halos, which predict a more protracted mass build-up over a Hubble time. However, we discuss that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.

  18. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    Science.gov (United States)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular emission shed new light on the properties of LBGs with numerous important implications. Appendix A is available in electronic form at http://www.aanda.org

  19. Generating log-normal mock catalog of galaxies in redshift space

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Aniket; Makiya, Ryu; Saito, Shun; Komatsu, Eiichiro [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Chiang, Chi-Ting [C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Jeong, Donghui, E-mail: aniket@mpa-garching.mpg.de, E-mail: makiya@mpa-garching.mpg.de, E-mail: chi-ting.chiang@stonybrook.edu, E-mail: djeong@psu.edu, E-mail: ssaito@mpa-garching.mpg.de, E-mail: komatsu@mpa-garching.mpg.de [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  20. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    Science.gov (United States)

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  1. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003, Heraklion (Greece); Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hwang, Ho Seong [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Scott, Douglas; Magnelli, Benjamin; Popesso, Paola [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741, Garching (Germany); Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Dannerbauer, Helmut [Universitaet Wien, Institut fuer Astrophysik, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Dickinson, Mark; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  2. Redshifts of radio galaxies in Abell clusters of galaxies

    International Nuclear Information System (INIS)

    Owen, F.N.; White, R.A.; Thronson, H.A. Jr.

    1988-01-01

    The paper presents redshifts for 51 radio galaxies and companion systems which were obtained with the Steward 2.3-m and multiple mirror telescopes. The observations were performed over the course of six runs during 1980-1983. The sample includes eight multiple systems (or multiple nuclei) having internal velocity differences ranging from 150 to 2400 km/s. 17 references

  3. GASDRA: Galaxy Spectrum Dynamic Range Analysis for Photometric Redshift Filter Partition Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Sanchez, E.; Sevilla, I.; Castilla, J.; Ponce, R.; Sanchez, F. J.

    2012-04-11

    The photometric redshift is an active area of research. It is becoming the preferred method for redshift measurement above spectroscopy one for large surveys. In these surveys, the requirement in redshift precision is relaxed in benefit of obtaining the measurements of large number of galaxies. One of the more relevant decisions to be taken in the design of a photometric redshift experiment is the number of filters since it affects deeply to the precision and survey time. Currently, there is not a clear method for evaluating the impact in both precision and exposure time of a determined filter partition set and usually it is determined by detailed simulations on the behavior of photo-z algorithms. In this note we describe GASDRA, a new method for extracting the minimal signal to noise requirement, depending on the number of filters needed for preserving the filtered spectrum shape, and hence to make feasible the spectrum identification. The application of this requirement guaranties a determined precision in the spectrum measurement. Although it cannot be translated directly to absolute photometric redshift error, it does provide a method for comparing the relative precision achieved in the spectrum representation by different sets of filters. We foresee that this relative precision is close related to photo-z error. In addition, we can evaluate the impact in the exposure time of any filter partition set with respect to other. (Author) 11 refs.

  4. GASDRA: Galaxy Spectrum Dynamic Range Analysis for Photometric Redshift Filter Partition Optimization

    International Nuclear Information System (INIS)

    Vicente, J. de; Sanchez, E.; Sevilla, I.; Castilla, J.; Ponce, R.; Sanchez, F. J.

    2012-01-01

    The photometric redshift is an active area of research. It is becoming the preferred method for redshift measurement above spectroscopy one for large surveys. In these surveys, the requirement in redshift precision is relaxed in benefit of obtaining the measurements of large number of galaxies. One of the more relevant decisions to be taken in the design of a photometric redshift experiment is the number of filters since it affects deeply to the precision and survey time. Currently, there is not a clear method for evaluating the impact in both precision and exposure time of a determined filter partition set and usually it is determined by detailed simulations on the behavior of photo-z algorithms. In this note we describe GASDRA, a new method for extracting the minimal signal to noise requirement, depending on the number of filters needed for preserving the filtered spectrum shape, and hence to make feasible the spectrum identification. The application of this requirement guaranties a determined precision in the spectrum measurement. Although it cannot be translated directly to absolute photometric redshift error, it does provide a method for comparing the relative precision achieved in the spectrum representation by different sets of filters. We foresee that this relative precision is close related to photo-z error. In addition, we can evaluate the impact in the exposure time of any filter partition set with respect to other. (Author) 11 refs.

  5. Emission-line galaxies and quasars in the southern hemisphere. I. Description and applications of an objective-prism survey

    International Nuclear Information System (INIS)

    Smith, M.G.

    1975-01-01

    A selection of objects from the first plates of a low-dispersion, objective-prism survey for emission-line galaxies and quasars is used to illustrate the application of the survey to the following lines of research in extragalactic astronomy: quasi-stellar objects, Seyfert galaxies, instabilities in galaxies produced by tidal interaction or explosive events, and rates of star formation and the general chemical evolution of galaxies. Included in the discussion is a description of how the survey provides a new, purely optical, color-independent method for the direct isolation of bright, high-redshift QSOs with strong emission lines (Lα is often directly visible on the Schmidt-survey plates). The newly discovered objects used for illustration are a radio-quiet QSO of redshift 2.07, a luminous, class 2 Seyfert galaxy, a compact blue emission-line galaxy with a jet or streamer, yet with no obvious interacting companion, and a blue galaxy with Hβ flux 50 times that of 30 Doradus, and low metal abundances, which is undergoing a very intense burst of star formation. These objects are to be discussed in greater detail in subsequent papers in this series

  6. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2

    Science.gov (United States)

    Guzzo, L.; Scodeggio, M.; Garilli, B.; Granett, B. R.; Fritz, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Hudelot, P.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Peacock, J. A.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-06-01

    We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This ESO Large Programme is using the Very Large Telescope with the aim of building a spectroscopic sample of ~ 100 000 galaxies with iABcontamination is found to be only 3.2%, endorsing the quality of the star-galaxy separation process and fully confirming the original estimates based on the VVDS data, which also indicate a galaxy incompleteness from this process of only 1.4%. Using a set of 1215 repeated observations, we estimate an rms redshift error σz/ (1 + z) = 4.7 × 10-4 and calibrate the internal spectral quality grading. Benefiting from the combination of size and detailed sampling of this dataset, we conclude by presenting a map showing in unprecedented detail the large-scale distribution of galaxies between 5 and 8 billion years ago. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS website is http://www.vipers.inaf.it/

  7. Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass†

    Science.gov (United States)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2013-07-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our Hα measurements of 854 galaxies at 0.8surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z=0 to z=2.2. We find that at all masses the characteristic EW(Hα) is decreasing towards the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~ (1+z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star forming galaxies with redshift. A quantitative conversion of EW(Hα) to sSFR (specific star-formation rate) is model dependent, because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1+z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.

  8. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    Science.gov (United States)

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  9. An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs

    Science.gov (United States)

    Boyer, M. L.; McQuinn, K. B. W.; Groenewegen, M. A. T.; Zijlstra, A. A.; Whitelock, P. A.; van Loon, J. Th.; Sonneborn, G.; Sloan, G. C.; Skillman, E. D.; Meixner, M.; McDonald, I.; Jones, O. C.; Javadi, A.; Gehrz, R. D.; Britavskiy, N.; Bonanos, A. Z.

    2017-12-01

    The survey for DUST in Nearby Galaxies with Spitzer (DUSTiNGS) identified several candidate Asymptotic Giant Branch (AGB) stars in nearby dwarf galaxies and showed that dust can form even in very metal-poor systems ({\\boldsymbol{Z}}∼ 0.008 {Z}ȯ ). Here, we present a follow-up survey with WFC3/IR on the Hubble Space Telescope (HST), using filters that are capable of distinguishing carbon-rich (C-type) stars from oxygen-rich (M-type) stars: F127M, F139M, and F153M. We include six star-forming DUSTiNGS galaxies (NGC 147, IC 10, Pegasus dIrr, Sextans B, Sextans A, and Sag DIG), all more metal-poor than the Magellanic Clouds and spanning 1 dex in metallicity. We double the number of dusty AGB stars known in these galaxies and find that most are carbon rich. We also find 26 dusty M-type stars, mostly in IC 10. Given the large dust excess and tight spatial distribution of these M-type stars, they are most likely on the upper end of the AGB mass range (stars undergoing Hot Bottom Burning). Theoretical models do not predict significant dust production in metal-poor M-type stars, but we see evidence for dust excess around M-type stars even in the most metal-poor galaxies in our sample (12+{log}({{O}}/{{H}})=7.26{--}7.50). The low metallicities and inferred high stellar masses (up to ∼10 {M}ȯ ) suggest that AGB stars can produce dust very early in the evolution of galaxies (∼30 Myr after they form), and may contribute significantly to the dust reservoirs seen in high-redshift galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-14073.

  10. SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS

    International Nuclear Information System (INIS)

    Tominaga, N.; Morokuma, T.; Blinnikov, S. I.; Nomoto, K.; Baklanov, P.; Sorokina, E. I.

    2011-01-01

    Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its observability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses M MS , metallicities Z, and explosion energies E. We present multicolor light curves of shock breakouts in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts z. We derive the observable SN rate and reachable redshift as functions of filter x and limiting magnitude m x,lim by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the g'-band observable SN rate for m g',lim = 27.5 mag is 3.3 SNe deg -2 day -1 and half of them are located at z ≥ 1.2. It is clear that the shock breakout is a beneficial clue for probing high-z core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, timescale, and color. We emphasize that the multicolor observations in blue optical bands with ∼hour intervals, preferably over ≥2 continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.

  11. The redshift distribution of the TOUGH survey

    DEFF Research Database (Denmark)

    Jakobsson, P.; Hjorth, J.; Malesani, D.

    2013-01-01

    of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example due to a dominant contribution from faint, undetected galaxies, or that GRB production...

  12. Clustering of galaxies around AGNs in the HSC Wide survey

    Science.gov (United States)

    Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori

    2018-01-01

    We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.

  13. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Science.gov (United States)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  14. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  15. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    Science.gov (United States)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5account our varying intrinsic Lyα line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyα luminosity function to unprecedented limits of 1040 ergs s -1, corresponding to a star formation rate of 0.01 Msolar yr-1. Our cumulative z~=5 Lyα luminosity function is consistent with a power-law form n(>L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  16. Tomographic intensity mapping versus galaxy surveys: observing the Universe in H α emission with new generation instruments

    Science.gov (United States)

    Silva, B. Marta; Zaroubi, Saleem; Kooistra, Robin; Cooray, Asantha

    2018-04-01

    The H α line emission is an important probe for a number of fundamental quantities in galaxies, including their number density, star formation rate (SFR), and overall gas content. A new generation of low-resolution intensity mapping (IM) probes, e.g. SPHEREx and CDIM, will observe galaxies in H α emission over a large fraction of the sky from the local Universe till a redshift of z ˜ 6 - 10, respectively. This will also be the target line for observations by the high-resolution Euclid and WFIRST instruments in the z ˜ 0.7-2 redshift range. In this paper, we estimate the intensity and power spectra of the H α line in the z ˜ 0-5 redshift range using observed line luminosity functions (LFs), when possible, and simulations, otherwise. We estimate the significance of our predictions by accounting for the modelling uncertainties (e.g. SFR, extinction, etc.) and observational contamination. We find that IM surveys can make a statistical detection of the full H α emission between z ˜ 0.8 and 5. Moreover, we find that the high-frequency resolution and the sensitivity of the planned CDIM surveys allow for the separation of H α emission from several interloping lines. We explore ways to use the combination of these line intensities to probe galaxy properties. As expected, our study indicates that galaxy surveys will only detect bright galaxies that contribute up to a few per cent of the overall H α intensity. However, these surveys will provide important constraints on the high end of the H α LF and put strong constraints on the active galactic nucleus LF.

  17. Dark Energy Survey Year 1 Results: galaxy mock catalogues for BAO

    Energy Technology Data Exchange (ETDEWEB)

    Avila, S.; et al.

    2017-12-17

    Mock catalogues are a crucial tool in the analysis of galaxy surveys data, both for the accurate computation of covariance matrices, and for the optimisation of analysis methodology and validation of data sets. In this paper, we present a set of 1800 galaxy mock catalogues designed to match the Dark Energy Survey Year-1 BAO sample (Crocce et al. 2017) in abundance, observational volume, redshift distribution and uncertainty, and redshift dependent clustering. The simulated samples were built upon HALOGEN (Avila et al. 2015) halo catalogues, based on a $2LPT$ density field with an exponential bias. For each of them, a lightcone is constructed by the superposition of snapshots in the redshift range $0.45redshifts estimators were modelled with a \\textit{double-skewed-Gaussian} curve fitted to the data. We also introduce a hybrid HOD-HAM model with two free parameters that are adjusted to achieve a galaxy bias evolution $b(z_{\\rm ph})$ that matches the data at the 1-$\\sigma$ level in the range $0.6galaxy mock catalogues and compare their clustering to the data using the angular correlation function $ w(\\theta)$, the comoving transverse separation clustering $\\xi_{\\mu<0.8}(s_{\\perp})$ and the angular power spectrum $C_\\ell$.

  18. GALAXY EVOLUTION AT HIGH REDSHIFT: OBSCURED STAR FORMATION, GRB RATES, COSMIC REIONIZATION, AND MISSING SATELLITES

    Energy Technology Data Exchange (ETDEWEB)

    Lapi, A.; Mancuso, C.; Celotti, A.; Danese, L. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy)

    2017-01-20

    We provide a holistic view of galaxy evolution at high redshifts z ≳ 4, which incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic star formation rate (SFR) density from UV/IR surveys and long gamma-ray burst (GRBs) rates, the cosmic reionization history following the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. on the basis of an educated extrapolation of the latest UV/far-IR data from HST / Herschel , and already tested against a number of independent observables. Our SFR functions integrated down to a UV magnitude limit M {sub UV} ≲ −13 (or SFR limit around 10{sup −2} M {sub ⊙} yr{sup −1}) produce a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z ≲ Z {sub ⊙}/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission of the electron scattering optical depth τ {sub es} ≈ 0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f {sub esc} ≈ 0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance-matching technique that the above constraints concurrently imply galaxy formation becoming inefficient within dark matter halos of mass below a few 10{sup 8} M {sub ⊙}; pleasingly, such a limit is also required so as not to run into the missing satellites issue. Finally, we predict a downturn of the Galaxy luminosity function faintward of M {sub UV} ≲ −12, and stress that its detailed shape, to be plausibly probed in the near future by the JWST , will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

  19. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  20. THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    Trenti, M.; Bradley, L. D.; Stiavelli, M.; MacKenty, J. W.; Oesch, P.; Carollo, C. M.; Treu, T.; Bouwens, R. J.; Illingworth, G. D.; Shull, J. M.

    2011-01-01

    We present the first results on the search for very bright (M AB ∼ -21) galaxies at redshift z ∼ 8 from the Brightest of Reionizing Galaxies (BoRG) survey. BoRG is a Hubble Space Telescope Wide Field Camera 3 (WFC3) pure-parallel survey that is obtaining images on random lines of sight at high Galactic latitudes in four filters (F606W, F098M, F125W, and F160W), with integration times optimized to identify galaxies at z ∼> 7.5 as F098M dropouts. We discuss here results from a search area of approximately 130 arcmin 2 over 23 BoRG fields, complemented by six other pure-parallel WFC3 fields with similar filters. This new search area is more than two times wider than previous WFC3 observations at z ∼ 8. We identify four F098M-dropout candidates with high statistical confidence (detected at greater than 8σ confidence in F125W). These sources are among the brightest candidates currently known at z ∼ 8 and approximately 10 times brighter than the z = 8.56 galaxy UDFy-38135539. They thus represent ideal targets for spectroscopic follow-up observations and could potentially lead to a redshift record, as our color selection includes objects up to z ∼ 9. However, the expected contamination rate of our sample is about 30% higher than typical searches for dropout galaxies in legacy fields, such as the GOODS and HUDF, where deeper data and additional optical filters are available to reject contaminants.

  1. Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4–0.9] redshift range

    Energy Technology Data Exchange (ETDEWEB)

    Guennou, L.; et al.

    2014-01-17

    Context. The DAFT/FADA survey is based on the study of ~90 rich(masses found in the literature >2 x 10^14 M_⊙)and moderately distant clusters (redshifts 0.4 < z < 0.9), all withHST imaging data available. This survey has two main objectives: to constrain dark energy(DE) using weak lensing tomography on galaxy clusters and to build a database (deepmulti-band imaging allowing photometric redshift estimates, spectroscopic data, X-raydata) of rich distant clusters to study their properties.

  2. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    International Nuclear Information System (INIS)

    Matthews, Daniel J.; Newman, Jeffrey A.

    2010-01-01

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to ∼0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alone Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys that sample

  3. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch' , Emeric [CEA, IRFU/SAp, F-91191 Gif-Sur-Yvette (France); Perret, Valentin; Amram, Philippe; Epinat, Benoit [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), F-13388 Marseille (France); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Teyssier, Romain [Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich (Switzerland)

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  4. High Redshift Radio Galaxies at Low Redshift, and Some Other Issues

    Science.gov (United States)

    Antonucci, Robert

    Cygnus A is the only high redshift radio galaxy at low redshift, that is it's the only nearby object with radio power in the range of the high redshift 3C objects. It is clear now that this is somewhat misleading in that Cyg A is an overachiever in the radio, and that its actual bolometric luminosity is much more modest than this would indicate. (This point has been explored and generalized in Barthel and Arnaud 1996; also see Carilli and Barthel 1996 for a detailed review of Cyg A). But the energy content of the lobes is famously large. There is a whole history of attempts to show that Cygnus A fits the Unified Model, and our particular contribution was detecting an apparent broad MgII line with the HST (Antonucci, Kinney and Hurt 1994, which includes references to previous work). The spectral signal-to-noise ratio (SNR) was less than amazing; furthermore an unflagged dead diode took out ~12 Å from the line profile; and there was an uncertain ``noise" contribution from confusing narrow lines (gory details in Antonucci 1994). One of the referees of our paper - the favorable one - stated that ``only a mother could love that line." Thus we reobserved it with somewhat better SNR and with the bad diode flagged, and the old and new data are presented to the same scale in Figure 1. Most of the bins are within the combined 1 σ statistical errors, and the many statistically significant wiggles are almost all present in NGC1068 as well (Antonucci, Hurt and Miller 1994). The point is that the errors are believable, and that the continuum should be set low. I believe the MgII line is there and is broader than we thought originally. (A detailed discussion of the spectrum is in prep.) In the 1994 paper we also stated that the polarization in the UV (F320W FOC filter) is ~6 %, and perpendicular to the radio axis, indicating that there is a fairly large contribution from scattered light from a quasar in this region. This is consistent with the scenario of Jackson and Tadhunter

  5. IGMtransmission: A Java GUI to model the effects of the Intergalactic Medium on the colours of high redshift galaxies

    OpenAIRE

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2011-01-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colours of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colours for a wide range of filter responses and model galaxy spectra....

  6. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    Science.gov (United States)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  7. Simulation of deep one- and two-dimensional redshift surveys

    International Nuclear Information System (INIS)

    Park, Changbom; Gott, J.R. III

    1991-01-01

    We show that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with non-equal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6-h -1 Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased Cold Dark Matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. The structures (spikes) we see in these simulated samples occur when the narrow pencil-beam pierces walls, filaments and clusters appearing randomly along the line-of-sight. We have applied a statistical test for goodness of fit to a periodic lattice to the observations and the simulations. (author)

  8. GALAXY MERGERS AND DARK MATTER HALO MERGERS IN ΛCDM: MASS, REDSHIFT, AND MASS-RATIO DEPENDENCE

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We employ a high-resolution ΛCDM N-body simulation to present merger rate predictions for dark matter (DM) halos and investigate how common merger-related observables for galaxies-such as close pair counts, starburst counts, and the morphologically disturbed fraction-likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We investigate both rate at which subhalos first enter the virial radius of a larger halo (the 'infall rate'), and the rate at which subhalos become destroyed, losing 90% of the mass they had at infall (the d estruction rate ) . For both merger rate definitions, we provide a simple 'universal' fitting formula that describes our derived merger rates for DM halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density matching to associate halos with galaxies. For example, we find that the instantaneous (destruction) merger rate of m/M > 0.3 mass-ratio events into typical L ∼> f L * galaxies follows the simple relation dN/dt ≅ 0.03(1 + f) Gyr -1 (1 + z) 2.1 . Despite the rapid increase in merger rate with redshift, only a small fraction of >0.4 L * high-redshift galaxies (∼3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t 0.3) in the previous 700 Myr and conclude that mergers almost certainly play an important role in delivering baryons and influencing the kinematic properties of Lyman break galaxies (LBGs).

  9. VizieR Online Data Catalog: The Canada-France Redshift Survey (CFRS) (Lilly+, 1995)

    Science.gov (United States)

    Lilly, S. J.; Le Fevre, O.; Crampton, D.; Hammer, F.; Tresse, L.

    2001-11-01

    The Canada-France Redshift Survey (CFRS) is a collaboration between astronomers in Canada and France: Simon Lilly (University of Toronto), Olivier Le Fevre and Francois Hammer (Observatoire de Paris Meudon), David Crampton (Dominion Astrophysical Observatory, Victoria), Laurence Tresse (Cambridge University), and David Schade and Dan Hudon (University of Toronto). The survey is based primarily on observations with the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea, Hawaii. The CFRS consists of spectra of over 1000 faint objects selected to have 17.5 study of normal galaxies at redshifts z > 0.5, corresponding to look-back times of greater than 50% of the age of the Universe. Observations of CFRS galaxies have also been made with the Hubble Space Telescope and the survey will form the basis of future studies with a number of other ground-based and space facilities. We have written a lay-persons guide to the CFRS and the main scientific results that are emerging from it. (1 data file).

  10. Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description

    Science.gov (United States)

    Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew

    2017-10-01

    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.

  11. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second part focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments

  12. The many flavours of photometric redshifts

    Science.gov (United States)

    Salvato, Mara; Ilbert, Olivier; Hoyle, Ben

    2018-06-01

    Since more than 70 years ago, the colours of galaxies derived from flux measurements at different wavelengths have been used to estimate their cosmological distances. Such distance measurements, called photometric redshifts, are necessary for many scientific projects, ranging from investigations of the formation and evolution of galaxies and active galactic nuclei to precision cosmology. The primary benefit of photometric redshifts is that distance estimates can be obtained relatively cheaply for all sources detected in photometric images. The drawback is that these cheap estimates have low precision compared with resource-expensive spectroscopic ones. The methodology for estimating redshifts has been through several revolutions in recent decades, triggered by increasingly stringent requirements on the photometric redshift accuracy. Here, we review the various techniques for obtaining photometric redshifts, from template-fitting to machine learning and hybrid schemes. We also describe state-of-the-art results on current extragalactic samples and explain how survey strategy choices affect redshift accuracy. We close with a description of the photometric redshift efforts planned for upcoming wide-field surveys, which will collect data on billions of galaxies, aiming to investigate, among other matters, the stellar mass assembly and the nature of dark energy.

  13. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Science.gov (United States)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.

    2018-05-01

    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 clustering of neutral hydrogen (H I), a small correlation coefficient between optical galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  14. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    Science.gov (United States)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  15. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. III. SURVEY DESIGN, PERFORMANCE, AND SAMPLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Sugiyama, N. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, 277-8583 (Japan); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602 (Japan); Sanders, D.; Zahid, J.; Kewley, L. J.; Chu, J.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI, 96822 (United States); Kartaltepe, J. S. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ, 85719 (United States); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, Hawaii, 96720 (United States); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122, Padova, Italy, EU (Italy); Rodighiero, G.; Baronchelli, I. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122, Padova (Italy); Daddi, E.; Juneau, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Lilly, S. J.; Carollo, C. M. [Institute of Astronomy, ETH Zürich, CH-8093, Zürich (Switzerland); Capak, P. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Ilbert, O., E-mail: john.silverman@ipmu.jp [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); and others

    2015-09-15

    We present a spectroscopic survey of galaxies in the COSMOS field using the Fiber Multi-object Spectrograph (FMOS), a near-infrared instrument on the Subaru Telescope. Our survey is specifically designed to detect the Hα emission line that falls within the H-band (1.6–1.8 μm) spectroscopic window from star-forming galaxies with 1.4 < z < 1.7 and M{sub stellar} ≳ 10{sup 10} M{sub ⊙}. With the high multiplex capability of FMOS, it is now feasible to construct samples of over 1000 galaxies having spectroscopic redshifts at epochs that were previously challenging. The high-resolution mode (R ∼ 2600) effectively separates Hα and [N ii]λ6585, thus enabling studies of the gas-phase metallicity and photoionization state of the interstellar medium. The primary aim of our program is to establish how star formation depends on stellar mass and environment, both recognized as drivers of galaxy evolution at lower redshifts. In addition to the main galaxy sample, our target selection places priority on those detected in the far-infrared by Herschel/PACS to assess the level of obscured star formation and investigate, in detail, outliers from the star formation rate (SFR)—stellar mass relation. Galaxies with Hα detections are followed up with FMOS observations at shorter wavelengths using the J-long (1.11–1.35 μm) grating to detect Hβ and [O iii]λ5008 which provides an assessment of the extinction required to measure SFRs not hampered by dust, and an indication of embedded active galactic nuclei. With 460 redshifts measured from 1153 spectra, we assess the performance of the instrument with respect to achieving our goals, discuss inherent biases in the sample, and detail the emission-line properties. Our higher-level data products, including catalogs and spectra, are available to the community.

  16. GALAXY DOWNSIZING AND THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES: ORIGIN OF THE SCATTER IN THE N/H-O/H DIAGRAM

    International Nuclear Information System (INIS)

    Pilyugin, Leonid S.; Thuan, Trinh X.

    2011-01-01

    The oxygen and nitrogen abundance evolutions with redshift of emission-line galaxies in the Sloan Digital Sky Survey are considered for four intervals of galaxy stellar masses, ranging from 10 11.3 M sun to 10 10.2 M sun . We have measured their line fluxes and derived the O and N abundances using recent calibrations. The evolution of O and N abundances with redshift clearly shows the galaxy downsizing effect, where enrichment (and hence star formation) ceases in high-mass galaxies at earlier times and shifts to lower-mass galaxies at later epochs. The origin of the scatter in the N/H-O/H diagram has been examined. The most massive galaxies, where O and N enrichment and star formation have already stopped, occupy a narrow band in the N/H-O/H diagram, defining an upper envelope. The less massive galaxies which are still undergoing star formation at the current epoch are shifted downward, toward lower N/H values in the N/H-O/H diagram. This downward shift is caused by the time delay between N and O enrichment. This time delay together with the different star formation histories in galaxies is responsible for the large scatter in the N/H-O/H diagram.

  17. The evolution of the cluster optical galaxy luminosity function between z = 0.4 and 0.9 in the DAFT/FADA survey

    Science.gov (United States)

    Martinet, Nicolas; Durret, Florence; Guennou, Loïc; Adami, Christophe; Biviano, Andrea; Ulmer, Melville P.; Clowe, Douglas; Halliday, Claire; Ilbert, Olivier; Márquez, Isabel; Schirmer, Mischa

    2015-03-01

    Context. There is some disagreement about the abundance of faint galaxies in high-redshift clusters, with contradictory results in the literature arising from studies of the optical galaxy luminosity function (GLF) for small cluster samples. Aims: We compute GLFs for one of the largest medium-to-high-redshift (0.4 ≤ z DAFT/FADA survey in the B,V,R, and I rest-frame bands. We used photometric redshifts computed from BVRIZJ images to constrain galaxy cluster membership. We carried out a detailed estimate of the completeness of our data. We distinguished the red-sequence and blue galaxies using a V - I versus I colour-magnitude diagram. We studied the evolution of these two populations with redshift. We fitted Schechter functions to our stacked GLFs to determine average cluster characteristics. Results: We find that the shapes of our GLFs are similar for the B,V,R, and I bands with a drop at the red GLF faint ends that is more pronounced at high redshift: αred ~ -0.5 at 0.40 ≤ z 0.1 at 0.65 ≤ z < 0.90. The blue GLFs have a steeper faint end (αblue ~ -1.6) than the red GLFs, which appears to be independent of redshift. For the full cluster sample, blue and red GLFs meet at MV = -20, MR = -20.5, and MI = -20.3. A study of how galaxy types evolve with redshift shows that late-type galaxies appear to become early types between z ~ 0.9 and today. Finally, the faint ends of the red GLFs of more massive clusters appear to be richer than less massive clusters, which is more typical of the lower redshift behaviour. Conclusions: Our results indicate that these clusters form at redshifts higher than z = 0.9 from galaxy structures that already have an established red sequence. Late-type galaxies then appear to evolve into early types, enriching the red sequence between this redshift and today. This effect is consistent with the evolution of the faint-end slope of the red sequence and the galaxy type evolution that we find. Finally, faint galaxies accreted from the field

  18. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers

    Science.gov (United States)

    Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro

    2018-04-01

    Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.

  19. The ionizing photon production efficiency of compact z similar to 0.3 Lyman continuum leakers and comparison with high-redshift galaxies

    Czech Academy of Sciences Publication Activity Database

    Schaerer, D.; Izotov, Y.I.; Verhamme, A.; Orlitová, Ivana; Thuan, T.X.; Worseck, G.; Guseva, N.G.

    2016-01-01

    Roč. 591, July (2016), L8/1-L8/4 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : galaxies * starburst * high-redshift Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  20. Rotation in [C II]-emitting gas in two galaxies at a redshift of 6.8

    Science.gov (United States)

    Smit, Renske; Bouwens, Rychard J.; Carniani, Stefano; Oesch, Pascal A.; Labbé, Ivo; Illingworth, Garth D.; van der Werf, Paul; Bradley, Larry D.; Gonzalez, Valentino; Hodge, Jacqueline A.; Holwerda, Benne W.; Maiolino, Roberto; Zheng, Wei

    2018-01-01

    The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this ‘epoch of reionization’ involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C II] λ = 157.74 μm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C II] luminosities than would be expected from local scaling relations, and searches for the [C II] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C II] λ = 157.74 μm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C II] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C II] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation

  1. The CfA-Rosat Survey of Distant Clusters of Galaxies

    Science.gov (United States)

    McNamara, Brian

    1998-01-01

    We (Vikhlinin, McNamara, Forman, Jones, Hornstrup, Quintana) have completed a new survey of distant clusters of galaxies, which we use to to study cluster evolution over cosmological timescales. The clusters were identified as extended X-ray sources in 650 ROSAT PSPC images of high Galactic latitude fields. Our catalog of approximately 230 extended X-ray sources covers 160 square degrees on the sky. Ours is the largest of the several ROSAT serendipitous cluster surveys in progress (e.g. SHARC, Rosati, WARPS etc.). Using V,R,I imagery obtained at several observatories, we find that greater than 90% of the X-ray sources are associated with distant clusters of galaxies. We have obtained spectroscopic redshifts for nearly 80 clusters in our catalog, and we have measured photometric redshifts for the remaining clusters. Our sample contains more than 20 clusters at z > 0.5. I will discuss the logN-logS relationship for our clusters. Because our large survey area, we are able to confirm the evolution of the most luminous distant clusters first seen in the Einstein Extended Medium Sensitivity Survey. In addition, I will discuss the relationships between optical richness, core radius, and X-ray luminosity for distant, X-ray-selected clusters.

  2. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  3. The Bright and Dark Sides of High-redshift Starburst Galaxies from Herschel and Subaru Observations

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, A.; Rodighiero, G.; Rodríguez-Muñoz, L.; Mancini, C.; Franceschini, A. [Dipartimento di Fisica e Astronomia, Università di Padova, vicolo dell’Osservatorio 2, I-35122 Padova (Italy); Daddi, E.; Valentino, F.; Calabrò, A.; Jin, S. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Renzini, A. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio, 5, I-35122 Padova (Italy); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Kashino, D. [Institute for Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli-strasse 27, CH-8093 Zürich (Switzerland); Mainieri, V.; Man, A. [ESO, Karl-Schwarschild-Straße 2, D-85748 Garching bei München (Germany); Darvish, B. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125 (United States); Maier, C. [University of Vienna, Department of Astrophysics, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Kartaltepe, J. S. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Sanders, D. B. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2017-04-01

    We present rest-frame optical spectra from the FMOS-COSMOS survey of 12 z ∼ 1.6 Herschel starburst galaxies, with star formation rate (SFR) elevated by ×8, on average, above the star-forming main sequence (MS). Comparing the H α to IR luminosity ratio and the Balmer decrement, we find that the optically thin regions of the sources contain on average only ∼10% of the total SFR, whereas ∼90% come from an extremely obscured component that is revealed only by far-IR observations and is optically thick even in H α . We measure the [N ii]{sub 6583}/H α ratio, suggesting that the less obscured regions have a metal content similar to that of the MS population at the same stellar masses and redshifts. However, our objects appear to be metal-rich outliers from the metallicity–SFR anticorrelation observed at fixed stellar mass for the MS population. The [S ii]{sub 6732}/[S ii]{sub 6717} ratio from the average spectrum indicates an electron density n {sub e} ∼ 1100 cm{sup −3} , larger than what was estimated for MS galaxies but only at the 1.5 σ level. Our results provide supporting evidence that high- z MS outliers are analogous of local ULIRGs and are consistent with a major-merger origin for the starburst event.

  4. Hα Equivalent Widths from the 3D-HST Survey: Evolution with Redshift and Dependence on Stellar Mass

    Science.gov (United States)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2012-10-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our Hα measurements of 854 galaxies at 0.8 < z < 1.5 with those of ground-based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z = 0 to z = 2.2. We find that at all masses the characteristic EW(Hα) is decreasing toward the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~(1 + z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(Hα) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177, 12328.

  5. Far-infrared constraints on the contamination by dust-obscured galaxies of high-z dropout searches.

    OpenAIRE

    Boone, F.; Schaerer, D.; Pelló, R.; Lutz, D.; Weiss, A.; Egami, E.; Smail, I.; Rex, M.; Rawle, T.; Ivison, R.; Laporte, N.; Beelen, A.; Combes, F.; Blain, A.W.; Richard, J.

    2011-01-01

    The spectral energy distributions (SED) of dusty galaxies at intermediate redshift may look similar to very high-redshift galaxies in the optical/near infrared (NIR) domain. This can lead to the contamination of high-redshift galaxy searches based on broad-band optical/NIR photometry by lower redshift dusty galaxies because both kind of galaxies cannot be distinguished. The contamination rate could be as high as 50%. This work shows how the far-infrared (FIR) domain can help to recognize like...

  6. Millimeter Astronomy at High Redshift

    Science.gov (United States)

    Decarli, Roberto

    2017-11-01

    Our understanding of galaxy formation and evolution critically depends on our ability of exposing the properties of the gaseous content of galaxies throughout cosmic history: how much gas is there, in which phase (ionized, atomic, molecular?), in which physical conditions (temperature, density), how efficiently does it turn into stars? We are now entering an exciting era where these questions can be addressed via observations of various gas tracers, especially at mm and sub-mm wavelengths. I will review how to observe various gas phases at high redshift, and discuss lessons we have learned so far from campaigns aimed at characterizing the gas content in galaxies in various cosmic epochs.

  7. A high-resolution atlas of composite Sloan Digital Sky Survey galaxy spectra

    Science.gov (United States)

    Dobos, László; Csabai, István.; Yip, Ching-Wa; Budavári, Tamás.; Wild, Vivienne; Szalay, Alexander S.

    2012-02-01

    In this work we present an atlas of composite spectra of galaxies based on the data of the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Galaxies are classified by colour, nuclear activity and star formation activity to calculate average spectra of high signal-to-noise ratio (S/N) and resolution (? at Δλ= 1 Å), using an algorithm that is robust against outliers. Besides composite spectra, we also compute the first five principal components of the distributions in each galaxy class to characterize the nature of variations of individual spectra around the averages. The continua of the composite spectra are fitted with BC03 stellar population synthesis models to extend the wavelength coverage beyond the coverage of the SDSS spectrographs. Common derived parameters of the composites are also calculated: integrated colours in the most popular filter systems, line-strength measurements and continuum absorption indices (including Lick indices). These derived parameters are compared with the distributions of parameters of individual galaxies, and it is shown on many examples that the composites of the atlas cover much of the parameter space spanned by SDSS galaxies. By co-adding thousands of spectra, a total integration time of several months can be reached, which results in extremely low noise composites. The variations in redshift not only allow for extending the spectral coverage bluewards to the original wavelength limit of the SDSS spectrographs, but also make higher spectral resolution achievable. The composite spectrum atlas is available online at .

  8. MAGNIFICATION AS A PROBE OF DARK MATTER HALOS AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Van Waerbeke, L.; Ford, J.; Milkeraitis, M.; Hildebrandt, H.

    2010-01-01

    We propose a new approach for measuring the mass profile of dark matter halos by stacking the lensing magnification of distant background galaxies behind groups and clusters of galaxies. The main advantage of lensing magnification is that, unlike lensing shear, it relies on accurate photometric redshifts only and not on galaxy shapes, thus enabling the study of the dark matter distribution with unresolved source galaxies. We present a feasibility study, using a real population of z ≥ 2.5 Lyman break galaxies as source galaxies, and where, similar to galaxy-galaxy lensing, foreground lenses are stacked in order to increase the signal-to-noise ratio. We find that there is an interesting new observational window for gravitational lensing as a probe of dark matter halos at high redshift, which does not require a measurement of galaxy shapes.

  9. Towards a census of supercompact massive galaxies in the Kilo Degree Survey

    Science.gov (United States)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Roy, N.; Radovich, M.; Cavuoti, S.; Brescia, M.; Longo, G.; Getman, F.; Capaccioli, M.; Grado, A.; Kuijken, K. H.; de Jong, J. T. A.; McFarland, J. P.; Puddu, E.

    2016-04-01

    The abundance of compact, massive, early-type galaxies (ETGs) provides important constraints to galaxy formation scenarios. Thanks to the area covered, depth, excellent spatial resolution and seeing, the ESO Public optical Kilo Degree Survey (KiDS), carried out with the VLT Survey Telescope, offers a unique opportunity to conduct a complete census of the most compact galaxies in the Universe. This paper presents a first census of such systems from the first 156 deg2 of KiDS. Our analysis relies on g-, r- and I-band effective radii (Re), derived by fitting galaxy images with point spread function (PSF)-convolved Sérsic models, high-quality photometric redshifts, zphot, estimated from machine learning techniques, and stellar masses, M⋆, calculated from KiDS aperture photometry. After massiveness ({M_{⋆}}≳ 8 × 10^{10} M_{⊙}) and compactness ({R_e}≲ 1.5 kpc in g, r and I bands) criteria are applied, a visual inspection of the candidates plus near-infrared photometry from VIKING-DR1 are used to refine our sample. The final catalogue, to be spectroscopically confirmed, consists of 92 systems in the redshift range z ˜ 0.2-0.7. This sample, which we expect to increase by a factor of 10 over the total survey area, represents the first attempt to select massive supercompact ETGs (MSCGs) in KiDS. We investigate the impact of redshift systematics in the selection, finding that this seems to be a major source of contamination in our sample. A preliminary analysis shows that MSCGs exhibit negative internal colour gradients, consistent with a passive evolution of these systems. We find that the number density of MSCGs is only mildly consistent with predictions from simulations at z > 0.2, while no such system is found at z < 0.2.

  10. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

    International Nuclear Information System (INIS)

    Gerdes, David W.; Sypniewski, Adam J.; McKay, Timothy A.; Hao, Jiangang; Weis, Matthew R.; Wechsler, Risa H.; Busha, Michael T.

    2010-01-01

    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single 'best estimate' and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.

  11. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    Science.gov (United States)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  12. Joint analysis of galaxy-galaxy lensing and galaxy clustering: Methodology and forecasts for Dark Energy Survey

    International Nuclear Information System (INIS)

    Park, Y.; Krause, E.; Dodelson, S.; Jain, B.; Amara, A.

    2016-01-01

    Here, the joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large-scale structure. Anticipating a near future application of this analysis to Dark Energy Survey (DES) measurements of galaxy positions and shapes, we develop a practical approach to modeling the assumptions and systematic effects affecting the joint analysis of small-scale galaxy-galaxy lensing and large-scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects being subdominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the Universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that cover over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  13. The Brightest of Reionizing Galaxies Survey: Design and Preliminary Results

    Science.gov (United States)

    Trenti, M.; Bradley, L. D.; Stiavelli, M.; Oesch, P.; Treu, T.; Bouwens, R. J.; Shull, J. M.; MacKenty, J. W.; Carollo, C. M.; Illingworth, G. D.

    2011-02-01

    We present the first results on the search for very bright (M AB ≈ -21) galaxies at redshift z ~ 8 from the Brightest of Reionizing Galaxies (BoRG) survey. BoRG is a Hubble Space Telescope Wide Field Camera 3 (WFC3) pure-parallel survey that is obtaining images on random lines of sight at high Galactic latitudes in four filters (F606W, F098M, F125W, and F160W), with integration times optimized to identify galaxies at z >~ 7.5 as F098M dropouts. We discuss here results from a search area of approximately 130 arcmin2 over 23 BoRG fields, complemented by six other pure-parallel WFC3 fields with similar filters. This new search area is more than two times wider than previous WFC3 observations at z ~ 8. We identify four F098M-dropout candidates with high statistical confidence (detected at greater than 8σ confidence in F125W). These sources are among the brightest candidates currently known at z ~ 8 and approximately 10 times brighter than the z = 8.56 galaxy UDFy-38135539. They thus represent ideal targets for spectroscopic follow-up observations and could potentially lead to a redshift record, as our color selection includes objects up to z ~ 9. However, the expected contamination rate of our sample is about 30% higher than typical searches for dropout galaxies in legacy fields, such as the GOODS and HUDF, where deeper data and additional optical filters are available to reject contaminants. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Programs 11700, 11702.

  14. Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios

    Science.gov (United States)

    Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Thuan, T. X.; Fricke, K. J.; Verhamme, A.; Orlitová, I.

    2018-05-01

    We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993 - 0.4317 and with high emission-line flux ratios O32 = [O III]λ5007/[O II]λ3727 ˜ 8 - 27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2 - 72 per cent. A narrow Lyα emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ˜153 km s-1 to ˜ 345 km s-1. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M⋆, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.

  15. Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting

    Science.gov (United States)

    Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.

    2018-01-01

    We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.

  16. A MISMATCH IN THE ULTRAVIOLET SPECTRA BETWEEN LOW-REDSHIFT AND INTERMEDIATE-REDSHIFT TYPE Ia SUPERNOVAE AS A POSSIBLE SYSTEMATIC UNCERTAINTY FOR SUPERNOVA COSMOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Kessler, Richard; Frieman, Joshua A. [Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bassett, Bruce; Smith, Mathew [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Garnavich, Peter M. [Department of Physics, University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Konishi, Kohki [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Lampeitl, Hubert [Institute of Cosmology and Gravitation, University of Portsmouth, Mercantile House, Hampshire Terrace, Portsmouth PO1 2EG (United Kingdom); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: rfoley@cfa.harvard.edu [Oskar Klein Centre, Department of Astronomy, Stockholm University, 106 91 Stockholm (Sweden)

    2012-05-15

    We present Keck high-quality rest-frame ultraviolet (UV) through optical spectra of 21 Type Ia supernovae (SNe Ia) in the redshift range 0.11 {<=} z {<=} 0.37 and a mean redshift of 0.22 that were discovered during the Sloan Digital Sky Survey-II (SDSS-II) SN Survey. Using the broadband photometry of the SDSS survey, we are able to reconstruct the SN host-galaxy spectral energy distributions (SEDs), allowing for a correction for the host-galaxy contamination in the SN Ia spectra. Comparison of composite spectra constructed from a subsample of 17 high-quality spectra to those created from a low-redshift sample with otherwise similar properties shows that the Keck/SDSS SNe Ia have, on average, extremely similar rest-frame optical spectra but show a UV flux excess. This observation is confirmed by comparing synthesized broadband colors of the individual spectra, showing a difference in mean colors at the 2.4{sigma}-4.4{sigma} level for various UV colors. We further see a slight difference in the UV spectral shape between SNe with low-mass and high-mass host galaxies. Additionally, we detect a relationship between the flux ratio at 2770 and 2900 A and peak luminosity that differs from that observed at low redshift. We find that changing the UV SED of an SN Ia within the observed dispersion can change the inferred distance moduli by {approx}0.1 mag. This effect only occurs when the data probe the rest-frame UV. We suggest that this discrepancy could be due to differences in the host-galaxy population of the two SN samples or to small-sample statistics.

  17. Measures of large-scale structure in the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall. 46 refs

  18. The Arecibo Galaxy Environment Survey - VIII. Discovery of an isolated dwarf galaxy in the Local Volume

    Czech Academy of Sciences Publication Activity Database

    Taylor, Rhys; Minchin, R.F.; Herbst, H.; Smith, R.

    2014-01-01

    Roč. 442, č. 1 (2014), L46-L50 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : surveys * galaxies * distances and redshifts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.107, year: 2014

  19. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2)

    Science.gov (United States)

    Scodeggio, M.; Guzzo, L.; Garilli, B.; Granett, B. R.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moutard, T.; Peacock, J. A.; Zamorani, G.; Burden, A.; Fumana, M.; Jullo, E.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Percival, W. J.

    2018-01-01

    We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86 775 galaxies (plus 4732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to iAB ≤ 22.5, with an additional colour-colour pre-selection devised as to exclude galaxies at z automated pipeline; all redshift determinations were then visually validated and assigned a quality flag. Measurements with a quality flag ≥ 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76 552 out of 86 775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3000 galaxies, is found to be σz = 0.00054(1 + z). All data are available at http://vipers.inaf.it and on the ESO Archive. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  20. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Weiss, Axel [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Elbaz, David; Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Riechers, Dominik [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Smail, Ian, E-mail: cunha@mpia.de [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  1. Masses of galaxies and the greatest redshifts of quasars

    Energy Technology Data Exchange (ETDEWEB)

    Hills, J G [Illinois Univ., Urbana (USA)

    1977-04-01

    The outer parts of a typical galaxy follows an R/sup -2/ density distribution which results in the collapse time of its protogalaxy being proportional to its mass. Since quasars probably occur in the nuclei of galaxies which can only form after the collapse of their parent galaxies, their greatest observed redshift, Zsub(max), is largely determined by the mass, Msub(t), of a typical protogalaxy. The observed Zsub(max) of quasars indicates that Msub(t) = 1 x 10/sup 12/ solar masses. This mass is consistent with the masses of galaxies found in recent dynamical studies. It indicates that most of the mass in a typical galaxy is in the halo lying beyond the familiar optically-bright core, but the mass of a standard galaxy is still only 0.3 of that required for galaxies alone to close the universe.

  2. A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY

    International Nuclear Information System (INIS)

    Hearin, Andrew P.; Zentner, Andrew R.; Ma Zhaoming; Huterer, Dragan

    2010-01-01

    A goal of forthcoming imaging surveys is to use weak gravitational lensing shear measurements to constrain dark energy. A challenge to this program is that redshifts to the lensed, source galaxies must be determined using photometric, rather than spectroscopic, information. We quantify the importance of uncalibrated photometric redshift outliers to the dark energy goals of forthcoming imaging surveys in a manner that does not assume any particular photometric redshift technique or template. In so doing, we provide an approximate blueprint for computing the influence of specific outlier populations on dark energy constraints. We find that outlier populations whose photo-z distributions are tightly localized about a significantly biased redshift must be controlled to a per-galaxy rate of (1-3) x 10 -3 to insure that systematic errors on dark energy parameters are rendered negligible. In the complementary limit, a subset of imaged galaxies with uncalibrated photometric redshifts distributed over a broad range must be limited to fewer than a per-galaxy error rate of F cat ∼ -4 . Additionally, we explore the relative importance of calibrating the photo-z's of a core set of relatively well-understood galaxies as compared to the need to identify potential catastrophic photo-z outliers. We discuss the degradation of the statistical constraints on dark energy parameters induced by excising source galaxies at high- and low-photometric redshifts, concluding that removing galaxies with photometric redshifts z ph ∼> 2.4 and z ph ∼< 0.3 may mitigate damaging catastrophic redshift outliers at a relatively small (∼<20%) cost in statistical error. In an Appendix, we show that forecasts for the degradation in dark energy parameter constraints due to uncertain photometric redshifts depend sensitively on the treatment of the nonlinear matter power spectrum. In particular, previous work using Peacock and Dodds may have overestimated the photo-z calibration requirements of

  3. PHYSICAL AND MORPHOLOGICAL PROPERTIES OF [O II] EMITTING GALAXIES IN THE HETDEX PILOT SURVEY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Gronwall, Caryl; Ciardullo, Robin; Hagen, Alex; Zeimann, Greg; Malz, A. I.; Schneider, Donald P.

    2015-01-01

    The Hobby-Eberly Dark Energy Experiment pilot survey identified 284 [O II] λ3727 emitting galaxies in a 169 arcmin 2 field of sky in the redshift range 0 < z < 0.57. This line flux limited sample provides a bridge between studies in the local universe and higher-redshift [O II] surveys. We present an analysis of the star formation rates (SFRs) of these galaxies as a function of stellar mass as determined via spectral energy distribution fitting. The [O II] emitters fall on the ''main sequence'' of star-forming galaxies with SFR decreasing at lower masses and redshifts. However, the slope of our relation is flatter than that found for most other samples, a result of the metallicity dependence of the [O II] star formation rate indicator. The mass-specific SFR is higher for lower mass objects, supporting the idea that massive galaxies formed more quickly and efficiently than their lower mass counterparts. This is confirmed by the fact that the equivalent widths of the [O II] emission lines trend smaller with larger stellar mass. Examination of the morphologies of the [O II] emitters reveals that their star formation is not a result of mergers, and the galaxies' half-light radii do not indicate evolution of physical sizes

  4. Supernovae in Low-Redshift Galaxy Clusters: Observations by the Wise Observatory Optical Transient Search (WOOTS)

    OpenAIRE

    Gal-Yam, Avishay; Maoz, Dan; Guhathakurta, Puragra; Filippenko, Alexei V.

    2007-01-01

    We describe the Wise Observatory Optical Transient Search (WOOTS), a survey for supernovae (SNe) and other variable and transient objects in the fields of redshift 0.06-0.2 Abell galaxy clusters. We present the survey design and data-analysis procedures, and our object detection and follow-up strategies. We have obtained follow-up spectroscopy for all viable SN candidates, and present the resulting SN sample here. Out of the 12 SNe we have discovered, seven are associated with our target clus...

  5. Simulation of deep one- and two-dimensional redshift surveys

    Science.gov (United States)

    Park, Changbom; Gott, J. Richard, III

    1991-03-01

    It is shown that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with nonequal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6/h Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased cold dark matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. (1990). The structures (spikes) seen in these simulated samples occur when the narrow pencil-beam pierces walls, filaments, and clusters appearing randomly along the line-of-sight. A statistical test for goodness of fit to a periodic lattice has been applied to the observations and the simulations. It is found that the statistical significance level (P = 15.4 percent) is not strong enough to reject the null hypothesis that the observations and the simulations were drawn at random from the same set.

  6. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    International Nuclear Information System (INIS)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn; Van Dokkum, Pieter; Momcheva, Ivelina; Nelson, Erica; Brammer, Gabriel; Da Cunha, Elisabete; Rix, Hans-Walter; Maseda, Michael; Schreiber, Natascha M. Förster; Kriek, Mariska; Quadri, Ryan; Wake, David; Lundgren, Britt; Whitaker, Katherine E.; Marchesini, Danilo; Pacifici, Camilla; Skelton, Rosalind E.

    2014-01-01

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10 –12 yr –1 ). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10 –11.9 × (1 + z) 4 yr –1 . These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  7. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.; Franx, Marijn [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van Dokkum, Pieter; Momcheva, Ivelina; Nelson, Erica [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Brammer, Gabriel [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura, Santiago (Chile); Da Cunha, Elisabete; Rix, Hans-Walter; Maseda, Michael [Max Planck Institute for Astronomy (MPIA), Konigstuhl 17, D-69117 Heidelberg (Germany); Schreiber, Natascha M. Förster [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Kriek, Mariska [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Quadri, Ryan [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Wake, David; Lundgren, Britt [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Whitaker, Katherine E. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa)

    2014-11-20

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.

  8. SUPERDENSE GALAXIES AND THE MASS-SIZE RELATION AT LOW REDSHIFT

    International Nuclear Information System (INIS)

    Poggianti, B. M.; Calvi, R.; Fasano, G.; Vulcani, B.; Bettoni, D.; Gullieuszik, M.; Omizzolo, A.; Bindoni, D.; D'Onofrio, M.; Moretti, A.; Valentinuzzi, T.; Fritz, J.; De Lucia, G.

    2013-01-01

    We search for massive and compact galaxies (superdense galaxies, hereafter SDGs) at z = 0.03-0.11 in the Padova-Millennium Galaxy and Group Catalogue, a spectroscopically complete sample representative of the general field population of the local universe. We find that compact galaxies with radii and mass densities comparable to high-z massive and passive galaxies represent 4.4% of all galaxies with stellar masses above 3 × 10 10 M ☉ , yielding a number density of 4.3 × 10 –4 h 3 Mpc –3 . Most of them are S0s (70%) or ellipticals (23%), are red, and have intermediate-to-old stellar populations, with a median luminosity-weighted age of 5.4 Gyr and a median mass-weighted age of 9.2 Gyr. Their velocity dispersions and dynamical masses are consistent with the small radii and high stellar mass estimates. Comparing with the WINGS sample of cluster galaxies at similar redshifts, the fraction of SDGs is three times smaller in the field than in clusters, and cluster SDGs are on average 4 Gyr older than field SDGs. We confirm the existence of a universal trend of smaller radii for older luminosity-weighted ages at fixed galaxy mass. As a consequence, the median mass-size relation shifts toward smaller radii for galaxies with older stars, but the effect is much more pronounced in clusters than in the field. Our results show that, on top of the well-known dependence of stellar age on galaxy mass, the luminosity-weighted age of galaxies depends on galaxy compactness at fixed mass and, for a fixed mass and radius, on environment. This effect needs to be taken into account in order not to overestimate the evolution of galaxy sizes from high to low z. Our results and hierarchical simulations suggest that a significant fraction of the massive compact galaxies at high z have evolved into compact galaxies in galaxy clusters today. When stellar age and environmental effects are taken into account, the average amount of size evolution of individual galaxies between high and low

  9. Photometric redshifts as a tool for studying the Coma cluster galaxy populations

    Science.gov (United States)

    Adami, C.; Ilbert, O.; Pelló, R.; Cuillandre, J. C.; Durret, F.; Mazure, A.; Picat, J. P.; Ulmer, M. P.

    2008-12-01

    Aims: We apply photometric redshift techniques to an investigation of the Coma cluster galaxy luminosity function (GLF) at faint magnitudes, in particular in the u* band where basically no studies are presently available at these magnitudes. Methods: Cluster members were selected based on probability distribution function from photometric redshift calculations applied to deep u^*, B, V, R, I images covering a region of almost 1 deg2 (completeness limit R ~ 24). In the area covered only by the u* image, the GLF was also derived after a statistical background subtraction. Results: Global and local GLFs in the B, V, R, and I bands obtained with photometric redshift selection are consistent with our previous results based on a statistical background subtraction. The GLF in the u* band shows an increase in the faint end slope towards the outer regions of the cluster. The analysis of the multicolor type spatial distribution reveals that late type galaxies are distributed in clumps in the cluster outskirts, where X-ray substructures are also detected and where the GLF in the u* band is steeper. Conclusions: We can reproduce the GLFs computed with classical statistical subtraction methods by applying a photometric redshift technique. The u* GLF slope is steeper in the cluster outskirts, varying from α ~ -1 in the cluster center to α ~ -2 in the cluster periphery. The concentrations of faint late type galaxies in the cluster outskirts could explain these very steep slopes, assuming a short burst of star formation in these galaxies when entering the cluster. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is also partly based on data products produced at

  10. Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data

    Science.gov (United States)

    Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.

    2018-06-01

    Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.

  11. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenfeld, Alessandro; Treu, Tommaso [Physics Department, University of California, Santa Barbara, CA 93106 (United States); Marshall, Philip J. [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Suyu, Sherry H. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Gavazzi, Raphaël [Institut d' Astrophysique de Paris, UMR7095 CNRS-Université Pierre et Marie Curie, 98bis bd Arago, F-75014 Paris (France); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Nipoti, Carlo, E-mail: sonnen@physics.ucsb.edu [Department of Physics and Astronomy, Bologna University, viale Berti-Pichat 6/2, I-40127 Bologna (Italy)

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  12. The infrared luminosity function of AKARI 90 μm galaxies in the local Universe

    Science.gov (United States)

    Kilerci Eser, Ece; Goto, Tomotsugu

    2018-03-01

    Local infrared (IR) luminosity functions (LFs) are necessary benchmarks for high-redshift IR galaxy evolution studies. Any accurate IR LF evolution studies require accordingly accurate local IR LFs. We present IR galaxy LFs at redshifts of z ≤ 0.3 from AKARI space telescope, which performed an all-sky survey in six IR bands (9, 18, 65, 90, 140, and 160 μm) with 10 times better sensitivity than its precursor Infrared Astronomical Satellite. Availability of 160 μm filter is critically important in accurately measuring total IR luminosity of galaxies, covering across the peak of the dust emission. By combining data from Wide-field Infrared Survey Explorer (WISE), Sloan Digital Sky Survey (SDSS) Data Release 13 (DR 13), six-degree Field Galaxy Survey and the 2MASS Redshift Survey, we created a sample of 15 638 local IR galaxies with spectroscopic redshifts, factor of 7 larger compared to previously studied AKARI-SDSS sample. After carefully correcting for volume effects in both IR and optical, the obtained IR LFs agree well with previous studies, but comes with much smaller errors. Measured local IR luminosity density is ΩIR = 1.19 ± 0.05 × 108L⊙ Mpc-3. The contributions from luminous IR galaxies and ultraluminous IR galaxies to ΩIR are very small, 9.3 per cent and 0.9 per cent, respectively. There exists no future all-sky survey in far-IR wavelengths in the foreseeable future. The IR LFs obtained in this work will therefore remain an important benchmark for high-redshift studies for decades.

  13. The extended epoch of galaxy formation: Age dating of 3600 galaxies with 2 < z < 6.5 in the VIMOS Ultra-Deep Survey

    Science.gov (United States)

    Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.

    2017-06-01

    In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the

  14. Sky Mining - Application to Photomorphic Redshift Estimation

    Science.gov (United States)

    Nayak, Pragyansmita

    severity every day, alternative method "Photometric redshift" has been studied in the past. It uses the brightness of the object viewed through various standard filters, each of which lets through a relatively broad spectrum of colors. However, these methods are bound by the degeneracy problem (objects with different color profiles have the same redshift) which leads to low predictive accuracy. As part of our study, we are looking beyond color attributes to identify other measured attributes as degeneracy resolvers as well as generate estimators that are highly accurate; termed as "Photomorphic redshift" estimators. The present study investigates the photometric information of the objects such as color and magnitude (= observed flux) and morphology attributes such as shape, size, orientation and concentration in the different wavelengths. The specific type of magnitude used in this study are the PSF, Fiber and Petrosian magnitude. The morphology attributes are the ratio of Fiber to Petrosian magnitude, concentration index and Petrosian radius. All these attributes are in the five bands ugriz of the Sloan Digital Sky Survey (SDSS). Machine learning techniques based on Naive Bayes (NB), Bayesian Network (BN) and Generalized Linear Model (GLM) are researched to better understand their applicability, advantages and resulting predictive performance in terms of efficiency and accuracy. Note: The SDSS Data Release (DR) 10 data was used in the executed experiments (total of 700,777 galaxies with forty-five attributes associated with each galaxy). The significant findings of the present work are as follows: 1. Magnitude and morphology attributes have been found to be successful degeneracy resolvers. 2. Magnitude and morphology attributes have been found to be better redshift estimators than color attributes alone. 3. Naive Bayes, Bayesian Network and GLM have been found to be viable redshift estimation methods. Attribute selection is an important factor in computational performance

  15. Development of the 2nd generation z(Redshift) and early universe spectrometer & the study of far-IR fine structure emission in high-z galaxies

    Science.gov (United States)

    Ferkinhoff, Carl

    The 2nd generation z (Redshift) and Early Universe Spectrometer (ZEUS-2), is a long-slit echelle-grating spectrometer (R~1000) for observations at submillimeter wavelengths from 200 to 850 microm. Its design is optimized for the detection of redshifted far-infrared spectral lines from galaxies in the early universe. Combining exquisite sensitivity, broad wavelength coverage, and large (˜2.5%) instantaneous bandwidth, ZEUS-2 is uniquely suited for studying galaxies between z˜0.2 and 5---spanning the peaks in both the star formation rate and number of AGN in the universe. ZEUS-2 saw first light at the Caltech Submillimeter Observatory (CSO) in the Spring of 2012 and was commissioned on the Atacama Pathfinder Experiment (APEX) in November 2012. Here we detail the design and performance of ZEUS-2, first however we discuss important science results that are examples of the science enabled by ZEUS-2. Using the first generation z (Redshift) and Early Universe Spectrometer (ZEUS-1) we made the first high-z detections of the [NII] 122 microm and [OIII] 88 microm lines. We detect these lines from starburst galaxies between z ˜2.5 and 4 demonstrating the utility of these lines for characterizing the properties of early galaxies. Specifically we are able to determine the most massive star still on the main sequence, the number of those stars and a lower limit on the mass of ionized gas in the source. Next we present ZEUS-2's first science result. Using ZEUS-2 on APEX we have detected the [CII] 158 microm line from the z = 1.78 galaxy H-ATLAS J091043.1-000322 with a line flux of (6.44 +/- 0.42) ˜ 10-18 W m-2. Combined with its far-infrared luminosity and a new Herschel-PACS detection of the [OI] 63 microm line we are able to conclude that H-ATLAS J091043.1-000322 is a high redshift analogue of a local ultra-luminous infrared galaxy, i.e. it is likely the site of a compact starburst due to a major merger. This detection, combined with the ZEUS-1 observations of the [NII

  16. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Curran, S. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Whiting, M. T., E-mail: sjc@physics.usyd.edu.au [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  17. UV Continuum Slope and Dust Obscuration from z ~ 6 to z ~ 2: The Star Formation Rate Density at High Redshift

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Conselice, C. J.; Ford, H.; Giavalisco, M.; van Dokkum, P.

    2009-11-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ~ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z = 3) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi "dropout" Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ~ 2-4 than it is at z ~ 5-6 (from ~-2.4 at z ~ 6 to ~-1.5 at z ~ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ~ 2.5 and z ~ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ~ 4, and particularly at z gsim 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ~ 4). This suggests that star-forming galaxies at z gsim 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z gsim 5 that are missed in "dropout" searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ~ 0 and z ~ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (lsim2 times) at all times for lower luminosity galaxies. Because these same lower luminosity galaxies

  18. Multipole analysis of redshift-space distortions around cosmic voids

    Science.gov (United States)

    Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15

  19. Multipole analysis of redshift-space distortions around cosmic voids

    Energy Technology Data Exchange (ETDEWEB)

    Hamaus, Nico; Weller, Jochen [Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians Universität, Scheinerstr. 1, D-81679 München (Germany); Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie, E-mail: hamaus@usm.lmu.de, E-mail: cousinou@cppm.in2p3.fr, E-mail: pisani@cppm.in2p3.fr, E-mail: maubert@cppm.in2p3.fr, E-mail: escoffier@cppm.in2p3.fr, E-mail: jochen.weller@usm.lmu.de [Aix Marseille Univ., CNRS/IN2P3, CPPM, 163 avenue de Luminy, F-13288, Marseille (France)

    2017-07-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  20. Multipole analysis of redshift-space distortions around cosmic voids

    International Nuclear Information System (INIS)

    Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie

    2017-01-01

    We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h −1 Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599 +0.134 −0.124 and β( z-bar =0.54)=0.457 +0.056 −0.054 , with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.

  1. UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Bouwens, R. J.; Illingworth, G. D.; Franx, M.; Chary, R.-R.; Meurer, G. R.; Ford, H.; Conselice, C. J.; Giavalisco, M.; Van Dokkum, P.

    2009-01-01

    We provide a systematic measurement of the rest-frame UV continuum slope β over a wide range in redshift (z ∼ 2-6) and rest-frame UV luminosity (0.1 L* z = 3 to 2 L* z= 3 ) to improve estimates of the star formation rate (SFR) density at high redshift. We utilize the deep optical and infrared data (Advanced Camera for Surveys/NICMOS) over the Chandra Deep Field-South and Hubble Deep Field-North Great Observatories Origins Deep Survey fields, as well as the UDF for our primary UBVi 'dropout' Lyman Break Galaxy sample. We also use strong lensing clusters to identify a population of very low luminosity, high-redshift dropout galaxies. We correct the observed distributions for both selection biases and photometric scatter. We find that the UV-continuum slope of the most luminous galaxies is substantially redder at z ∼ 2-4 than it is at z ∼ 5-6 (from ∼-2.4 at z ∼ 6 to ∼-1.5 at z ∼ 2). Lower luminosity galaxies are also found to be bluer than higher luminosity galaxies at z ∼ 2.5 and z ∼ 4. We do not find a large number of galaxies with β's as red as -1 in our dropout selections at z ∼ 4, and particularly at z ∼> 5, even though such sources could be readily selected from our data (and also from Balmer Break Galaxy searches at z ∼ 4). This suggests that star-forming galaxies at z ∼> 5 almost universally have very blue UV-continuum slopes, and that there are not likely to be a substantial number of dust-obscured galaxies at z ∼> 5 that are missed in 'dropout' searches. Using the same relation between UV-continuum slope and dust extinction as has been found to be appropriate at both z ∼ 0 and z ∼ 2, we estimate the average dust extinction of galaxies as a function of redshift and UV luminosity in a consistent way. As expected, we find that the estimated dust extinction increases substantially with cosmic time for the most UV luminous galaxies, but remains small (∼ 4.

  2. AMICO: optimized detection of galaxy clusters in photometric surveys

    Science.gov (United States)

    Bellagamba, Fabio; Roncarelli, Mauro; Maturi, Matteo; Moscardini, Lauro

    2018-02-01

    We present Adaptive Matched Identifier of Clustered Objects (AMICO), a new algorithm for the detection of galaxy clusters in photometric surveys. AMICO is based on the Optimal Filtering technique, which allows to maximize the signal-to-noise ratio (S/N) of the clusters. In this work, we focus on the new iterative approach to the extraction of cluster candidates from the map produced by the filter. In particular, we provide a definition of membership probability for the galaxies close to any cluster candidate, which allows us to remove its imprint from the map, allowing the detection of smaller structures. As demonstrated in our tests, this method allows the deblending of close-by and aligned structures in more than 50 per cent of the cases for objects at radial distance equal to 0.5 × R200 or redshift distance equal to 2 × σz, being σz the typical uncertainty of photometric redshifts. Running AMICO on mocks derived from N-body simulations and semi-analytical modelling of the galaxy evolution, we obtain a consistent mass-amplitude relation through the redshift range of 0.3 slope of ∼0.55 and a logarithmic scatter of ∼0.14. The fraction of false detections is steeply decreasing with S/N and negligible at S/N > 5.

  3. Mean Occupation Function of High-redshift Quasars from the Planck Cluster Catalog

    Science.gov (United States)

    Chakraborty, Priyanka; Chatterjee, Suchetana; Dutta, Alankar; Myers, Adam D.

    2018-06-01

    We characterize the distribution of quasars within dark matter halos using a direct measurement technique for the first time at redshifts as high as z ∼ 1. Using the Planck Sunyaev-Zeldovich (SZ) catalog for galaxy groups and the Sloan Digital Sky Survey (SDSS) DR12 quasar data set, we assign host clusters/groups to the quasars and make a measurement of the mean number of quasars within dark matter halos as a function of halo mass. We find that a simple power-law fit of {log} =(2.11+/- 0.01) {log}(M)-(32.77+/- 0.11) can be used to model the quasar fraction in dark matter halos. This suggests that the quasar fraction increases monotonically as a function of halo mass even to redshifts as high as z ∼ 1.

  4. DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.; Kollmeier, Juna A.; Reddy, Naveen A.; Erb, Dawn K.; Pettini, Max

    2011-01-01

    Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Lyα line with extremely deep narrow-band imaging, we examine galaxy Lyα emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Lyα emission properties. Approximately 45% (55%) of the galaxy spectra have Lyα appearing in net absorption (emission), with ≅ 20% satisfying commonly used criteria for the identification of 'Lyα emitters' (LAEs; W 0 (Lyα) ≥ 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Lyα images to show that all sub-samples exhibit diffuse Lyα emission to radii of at least 10'' (∼80 physical kpc). The characteristic exponential scale lengths for Lyα line emission exceed that of the λ 0 = 1220 A UV continuum light by factors of ∼5-10. The surface brightness profiles of Lyα emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Lyα appears in net absorption in the spectra, exhibit qualitatively similar diffuse Lyα emission halos. Accounting for the extended Lyα emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Lyα imaging, increases the total Lyα flux (and rest equivalent width W 0 (Lyα)) by an average factor of ∼5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Lyα emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the

  5. Red galaxies at high redshift

    NARCIS (Netherlands)

    Wuyts, Stijn Elisabeth Raphaël

    2007-01-01

    From its origin at the center of a star to the edge, through the surrounding gas and dust in the distant galaxy, through the intergalactic medium, traveling billions of light years only to be reflected by a mirror and captured by a detector; the little amount of light observed from galaxies in the

  6. A SEARCH FOR DISK-GALAXY LENSES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Feron, Chloe; Hjorth, Jens; Samsing, Johan; McKean, John P.

    2009-01-01

    We present the first automated spectroscopic search for disk-galaxy lenses, using the Sloan Digital Sky Survey (SDSS) database. We follow up eight gravitational lens candidates, selected among a sample of ∼40,000 candidate massive disk galaxies, using a combination of ground-based imaging and long-slit spectroscopy. We confirm two gravitational lens systems: one probable disk galaxy and one probable S0 galaxy. The remaining systems are four promising disk-galaxy lens candidates, as well as two probable gravitational lenses whose lens galaxy might be an S0 galaxy. The redshifts of the lenses are z lens ∼ 0.1. The redshift range of the background sources is z source ∼ 0.3-0.7. The systems presented here are (confirmed or candidate) galaxy-galaxy lensing systems, that is, systems where the multiple images are faint and extended, allowing an accurate determination of the lens galaxy mass and light distributions without contamination from the background galaxy. Moreover, the low redshift of the (confirmed or candidates) lens galaxies is favorable for measuring rotation points to complement the lensing study. We estimate the rest-frame total mass-to-light ratio within the Einstein radius for the two confirmed lenses: we find M tot /L I = 5.4 ± 1.5 within 3.9 ± 0.9 kpc for SDSS J081230.30+543650.9 and M tot /L I = 1.5 ± 0.9 within 1.4 ± 0.8 kpc for SDSS J145543.55+530441.2 (all in solar units). Hubble Space Telescope or adaptive optics imaging is needed to further study the systems.

  7. 3D galaxy clustering with future wide-field surveys: Advantages of a spherical Fourier-Bessel analysis

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2015-06-01

    Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the

  8. The UV galaxy luminosity function at z = 3-5 from the CFHT Legacy Survey Deep fields

    Science.gov (United States)

    van der Burg, R. F. J.; Hildebrandt, H.; Erben, T.

    2010-11-01

    Aims: We measure and study the evolution of the UV galaxy luminosity function (LF) at z = 3-5 from the largest high-redshift survey to date, the Deep part of the CFHT Legacy Survey. We also give accurate estimates of the SFR density at these redshifts. Methods: We consider ~100 000 Lyman-break galaxies at z ≈ 3.1, 3.8 and 4.8 selected from very deep ugriz images of this data set and estimate their rest-frame 1600 Å luminosity function. Due to the large survey volume, cosmic variance plays a negligible role. Furthermore, we measure the bright end of the LF with unprecedented statistical accuracy. Contamination fractions from stars and low-z galaxy interlopers are estimated from simulations. From these simulations the redshift distributions of the Lyman-break galaxies in the different samples are estimated, and those redshifts are used to choose bands and calculate k-corrections so that the LFs are compared at the same rest-frame wavelength. To correct for incompleteness, we study the detection rate of simulated galaxies injected to the images as a function of magnitude and redshift. We estimate the contribution of several systematic effects in the analysis to test the robustness of our results. Results: We find the bright end of the LF of our u-dropout sample to deviate significantly from a Schechter function. If we modify the function by a recently proposed magnification model, the fit improves. For the first time in an LBG sample, we can measure down to the density regime where magnification affects the shape of the observed LF because of the very bright and rare galaxies we are able to probe with this data set. We find an increase in the normalisation, ϕ*, of the LF by a factor of 2.5 between z ≈ 5 and z ≈ 3. The faint-end slope of the LF does not evolve significantly between z ≈ 5 and z ≈ 3. We do not find a significant evolution of the characteristic magnitude in the studied redshift interval, possibly because of insufficient knowledge of the source

  9. Spitzer Mid-to-Far-Infrared Flux Densities of Distant Galaxies

    Science.gov (United States)

    Papovich, Casey J.; Rudnick, G.; Le Floc'h, E.; van Dokkum, P. G.; Rieke, G. H.; Taylor, E. N.; Armus, L.; Gawiser, E.; Marcillac, D.; Huang, J.; Franx, M.

    2007-05-01

    We study the 24, 70, and 160 μm properties of high-redshift galaxies. Our primary interest is to improve the constraints on the total infrared (IR) luminosities, L(IR), of these galaxies. We combine Spitzer data in the southern Extended Chandra Deep Field with a Ks-band-selected galaxy sample with photometric redshifts from the Multiwavelength Survey by Yale-Chile. We used a stacking analysis to measure the average 70 and 160 μm flux densities of 1.5 250 μJy and 1.5 250 μJy have S(70)/S(24) flux ratios comparable to sources with X-ray detections or red rest-frame IR colors, suggesting that warm dust possibly heated by AGN produces high 24 μm emission. Based on the average 24-160 μm flux densities, 24 μm-selected galaxies at 1.5 rate observed in low redshift galaxies, suggesting that high redshift galaxies have star formation efficiencies and feedback processes comparable to lower redshift analogs. Support for this work was provided by NASA through the Spitzer Space Telescope Fellowship Program, through a contract issued by JPL, Caltech under a contract with NASA.

  10. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    International Nuclear Information System (INIS)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.

    2014-01-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.

  11. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  12. ALMA Observations of Gas-rich Galaxies in z ∼ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments

    Energy Technology Data Exchange (ETDEWEB)

    Noble, A. G.; McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Muzzin, A. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON MJ3 1P3 (Canada); Nantais, J. [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes 7591538, Santiago, Región Metropolitana (Chile); Rudnick, G. [The University of Kansas, Department of Physics and Astronomy, 1251 Wescoe Hall Drive, Lawrence, KS 66045 (United States); Van Kampen, E.; Manilla-Robles, A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Webb, T. M. A.; Delahaye, A. [Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8 (Canada); Wilson, G.; DeGroot, A.; Foltz, R. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Boone, K.; Hayden, B.; Perlmutter, S. [Department of Physics, University of California Berkeley, 366 LeConte Hall, MC 7300, Berkeley, CA 94720-7300 (United States); Cooper, M. C. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Demarco, R. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Región del Biobío (Chile); Lidman, C., E-mail: noble@mit.edu [Australian Astronomical Observatory, 105 Delhi Road, North Ryde, NSW 2113 (Australia)

    2017-06-20

    We present ALMA CO (2–1) detections in 11 gas-rich cluster galaxies at z ∼ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5 σ detections of the CO (2–1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ∼ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5–2 × 10{sup 11} M {sub ☉} in these objects, with high gas fractions ( f {sub gas}) and long depletion timescales ( τ ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ∼4 σ , but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.

  13. Tracing The Sound Horizon Scale With Photometric Redshift Surveys

    CERN Document Server

    Sanchez, E; Garcia-Bellido, J; Gaztanaga, E; de Simoni, F; Crocce, M; Cabre, A; Fosalba, P; Alonso, D

    2010-01-01

    We propose a new method for cosmological parameters extraction using the baryon acoustic oscillation scale as a standard ruler in deep galaxy surveys with photometric determination of redshifts. The method consists in a simple empirical parametric fit to the angular 2-point correlation function w(theta). It is parametrized as a power law to describe the continuum plus a Gaussian to describe the BAO bump. The location of the Gaussian is used as the basis for the measurement of the sound horizon scale. This method, although simple, actually provides a robust estimation, since the inclusion of the power law and the use of the Gaussian removes the shifts which affect the local maximum. We discuss the effects of projection bias, non-linearities, redshift space distortions and photo-z precision, and apply our method to a mock catalog of the Dark Energy Survey, built upon a large N-body simulation provided by the MICE collaboration. We discuss the main systematic errors associated to our method and show that they ar...

  14. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unbiased estimate of the growth rate of structure at ⟨z⟩ = 0.85 using the clustering of luminous blue galaxies

    Science.gov (United States)

    Mohammad, F. G.; Granett, B. R.; Guzzo, L.; Bel, J.; Branchini, E.; de la Torre, S.; Moscardini, L.; Peacock, J. A.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.

    2018-02-01

    We used the VIMOS Public Extragalactic Redshift Survey (VIPERS) final data release (PDR-2) to investigate the performance of colour-selected populations of galaxies as tracers of linear large-scale motions. We empirically selected volume-limited samples of blue and red galaxies as to minimise the systematic error on the estimate of the growth rate of structure fσ8 from the anisotropy of the two-point correlation function. To this end, rather than rigidly splitting the sample into two colour classes we defined the red or blue fractional contribution of each object through a weight based on the (U - V ) colour distribution. Using mock surveys that are designed to reproduce the observed properties of VIPERS galaxies, we find the systematic error in recovering the fiducial value of fσ8 to be minimised when using a volume-limited sample of luminous blue galaxies. We modelled non-linear corrections via the Scoccimarro extension of the Kaiser model (with updated fitting formulae for the velocity power spectra), finding systematic errors on fσ8 of below 1-2%, using scales as small as 5 h-1 Mpc. We interpret this result as indicating that selection of luminous blue galaxies maximises the fraction that are central objects in their dark matter haloes; this in turn minimises the contribution to the measured ξ(rp,π) from the 1-halo term, which is dominated by non-linear motions. The gain is inferior if one uses the full magnitude-limited sample of blue objects, consistent with the presence of a significant fraction of blue, fainter satellites dominated by non-streaming, orbital velocities. We measured a value of fσ8 = 0.45 ± 0.11 over the single redshift range 0.6 ≤ z ≤ 1.0, corresponding to an effective redshift for the blue galaxies ⟨z⟩=0.85. Including in the likelihood the potential extra information contained in the blue-red galaxy cross-correlation function does not lead to an appreciable improvement in the error bars, while it increases the systematic error

  15. THE ENVIRONMENTS OF HIGH-REDSHIFT QUASI-STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Kim, Soyoung; Stiavelli, Massimo; Trenti, M.; Pavlovsky, C. M.; Djorgovski, S. G.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Panagia, N.; Dickinson, M.; Meylan, G.

    2009-01-01

    We present a sample of i 775 -dropout candidates identified in five Hubble Advanced Camera for Surveys (ACS) fields centered on Sloan Digital Sky Survey quasi-stellar objects (QSOs) at redshift z ∼ 6. Our fields are as deep as the GOODS ACS images, which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of i 775 -dropout counts in the five fields is broader than that derived from GOODS at the 80%-96% confidence level, depending on which selection criteria were adopted to identify i 775 -dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO.

  16. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    International Nuclear Information System (INIS)

    Leistedt, Boris; Hogg, David W.

    2017-01-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i -magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST ) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  17. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    Energy Technology Data Exchange (ETDEWEB)

    Leistedt, Boris; Hogg, David W., E-mail: boris.leistedt@nyu.edu, E-mail: david.hogg@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2017-03-20

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i -magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST ) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  18. Formation of globular cluster candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological simulations

    Science.gov (United States)

    Kim, Ji-hoon; Ma, Xiangcheng; Grudić, Michael Y.; Hopkins, Philip F.; Hayward, Christopher C.; Wetzel, Andrew; Faucher-Giguère, Claude-André; Kereš, Dušan; Garrison-Kimmel, Shea; Murray, Norman

    2018-03-01

    Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypotheses of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ≳ 105-6 M⊙ collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical time-scale, tff ≲ 3 Myr, shorter than most stellar feedback time-scales. Our simulation then allows us to trace how clusters could become virialized and tightly bound to survive for up to ˜420 Myr till the end of the simulation. Because the cluster's tightly bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.

  19. Evolution of galaxies clustering in the VIMOS-VLT Deep Survey

    International Nuclear Information System (INIS)

    Meneux, Baptiste

    2005-01-01

    The recent surveys of the Universe highlighted the presence of structures in the matter distribution, such as filaments and voids. To study the evolution of the galaxy spatial distribution, it is necessary to know their accurate position in a three dimensional space. This thesis took place within the framework of the VIMOS-VLT Deep Survey (VVDS). Its goal is to measure some 100000 redshifts to study the formation and evolution of the galaxies and large scale structures of the Universe up to z∼5. After having made a review of our knowledge of the galaxies distribution, then introduced the VVDS, I present the measurement and the evolution of the real-space two-point correlation function from the first epoch data of the VVDS, the largest sample of 10759 spectra ever acquired up to I_A_B = 24. I developed a whole set of programs made available to the VVDS consortium to easily measure the clustering length of galaxies in a given redshift range, with its associated errors, correcting the effects of the VVDS observing strategy. This tool enabled to measure the evolution of the real space correlation function of the global galaxies population up to z=2. I then extended this study dividing the full galaxies sample by spectral type and color. Finally, combining the GALEX data to the VVDS has allowed me to measure the clustering of an ultraviolet-selected sample of galaxies up to z∼1. This is the first time that such measurements are carried out on such a so long range of cosmic time. The results presented in this thesis are thus establishing a new reference in the field. (author) [fr

  20. Evolution of the cluster optical galaxy luminosity function in the CFHTLS: breaking the degeneracy between mass and redshift

    Science.gov (United States)

    Sarron, F.; Martinet, N.; Durret, F.; Adami, C.

    2018-06-01

    Obtaining large samples of galaxy clusters is important for cosmology: cluster counts as a function of redshift and mass can constrain the parameters of our Universe. They are also useful in order to understand the formation and evolution of clusters. We develop an improved version of the Adami & MAzure Cluster FInder (AMACFI), now the Adami, MAzure & Sarron Cluster FInder (AMASCFI), and apply it to the 154 deg2 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) to obtain a large catalogue of 1371 cluster candidates with mass M200 > 1014 M⊙ and redshift z ≤ 0.7. We derive the selection function of the algorithm from the Millennium simulation, and cluster masses from a richness-mass scaling relation built from matching our candidates with X-ray detections. We study the evolution of these clusters with mass and redshift by computing the i'-band galaxy luminosity functions (GLFs) for the early-type (ETGs) and late-type galaxies (LTGs). This sample is 90% pure and 70% complete, and therefore our results are representative of a large fraction of the cluster population in these redshift and mass ranges. We find an increase in both the ETG and LTG faint populations with decreasing redshift (with Schechter slopes αETG = -0.65 ± 0.03 and αLTG = -0.95 ± 0.04 at z = 0.6, and αETG = -0.79 ± 0.02 and αLTG = -1.26 ± 0.03 at z = 0.2) and also a decrease in the LTG (but not the ETG) bright end. Our large sample allows us to break the degeneracy between mass and redshift, finding that the redshift evolution is more pronounced in high-mass clusters, but that there is no significant dependence of the faint end on mass for a given redshift. These results show that the cluster red sequence is mainly formed at redshift z > 0.7, and that faint ETGs continue to enrich the red sequence through quenching of brighter LTGs at z ≤ 0.7. The efficiency of this quenching is higher in large-mass clusters, while the accretion rate of faint LTGs is lower as the more massive

  1. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    International Nuclear Information System (INIS)

    Webb, T. M. A.; O'Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison; Yee, H. K. C.; Gilbank, David; Ellingson, Erica; Gladders, Mike; Muzzin, Adam; Wilson, Gillian; Yan, Renbin

    2013-01-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 14-15 M ☉ . We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10 11 M ☉ , assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z) 5.1±1.9 over the range 0.3 cluster ). The evolution is similar, with ΣSFR/M cluster ∼ (1 + z) 5.4±1.9 . We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M cluster (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M cluster ∼M cluster -1.5±0.4 ) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR-bright galaxies per unit optical galaxy in the cluster cores, confirming star formation continues to avoid the highest density regions of the universe at z ∼ 0.75 (the average redshift of the high-redshift clusters). While several previous studies appear to show enhanced star formation in high-redshift clusters relative to the field we note that these papers have not accounted for the overall increase in galaxy or dark matter density at the location of clusters. Once this is done, clusters at z ∼ 0.75 have the same

  2. THE MASS-DEPENDENT CLUSTERING HISTORY OF K-SELECTED GALAXIES AT z < 4 IN THE SXDS/UDS FIELD

    International Nuclear Information System (INIS)

    Furusawa, Junko; Sekiguchi, Kazuhiro; Takata, Tadafumi; Furusawa, Hisanori; Shimasaku, Kazuhiro; Simpson, Chris; Akiyama, Masayuki

    2011-01-01

    We investigate mass-dependent galaxy evolution based on a large sample of (more than 50,000) K-band selected galaxies in a multi-wavelength catalog of the Subaru/XMM-Newton Deep Survey and the UKIRT Infrared Deep Sky Survey/Ultra Deep Survey. We employ optical to near-infrared photometry to determine photometric redshifts of these galaxies. Then, we estimate the stellar mass of our sample galaxies using a standard fitting procedure as we used for estimation of the photometric redshift. From the sample galaxies, we obtain the stellar mass function of galaxies and the cosmic stellar mass density up to z ∼ 4. Our results are consistent with previous studies and we find a considerable number of low-mass galaxies (M * ∼ 10 10.5 ) at the redshift range 3 14 M sun ) to low (10 13 M sun ) with decreasing redshift at around z ∼ 2. We also find some high-mass density regions of massive galaxies at 1.4 ≤ z < 2.5 in our sample. These concentrations of massive galaxies may be candidate progenitors of the present-day clusters of galaxies. At this redshift range, massive star-forming galaxies are the dominant population making up the structures and the passively evolving galaxies show stronger clustering and they may have formed earlier than those star-forming galaxies.

  3. Radio polarization properties of quasars and active galaxies at high redshifts

    Science.gov (United States)

    Vernstrom, T.; Gaensler, B. M.; Vacca, V.; Farnes, J. S.; Haverkorn, M.; O'Sullivan, S. P.

    2018-04-01

    We present the largest ever sample of radio polarization properties for z > 4 sources, with 14 sources having significant polarization detections. Using wide-band data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensity and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range 1 ≤ z ≤ 1.4, with the other 28 having spectroscopic redshifts in the range 3.5 ≤ z ≤ 6.21. Fits are performed for the Stokes I and fractional polarization spectra, and Faraday rotation measures are derived using rotation measure synthesis and QU fitting. Using archival data of 476 polarized sources, we compare high-redshift (z > 3) source properties to a 15 GHz rest-frame luminosity matched sample of low-redshift (z 3 sources and 57 ± 4 rad m-2 for z < 3. Although there is some indication of lower intrinsic rotation measures at high-z possibly due to higher depolarization from the high-density environments, using several statistical tests we detect no significant difference between low- and high-redshift sources. Larger samples are necessary to determine any true physical difference.

  4. Why high-latitude clouds in our galaxy and the highly redshifted clouds observed in front of QSOs do not belong to the same parent population

    International Nuclear Information System (INIS)

    Wolfe, A.M.

    1983-01-01

    International Ultraviolet Explorer observations of high-latitude gas in our Galaxy reveal the presence of both C II and C IV absorption in the spectra of stars with z>2 kpc. On the other hand, C II is generally absent from unbiased samples of QSO redshift systems with C IV absorption. Comparison between the equivalent-width distributions of the QSO sample and of the galactic sample (which is suitably corrected for contamination by disk absorption) shows that a probability that the two samples are drawn from the same parent population is less than 1% for C II and less than 10% for C IV. Thus, contrary to prevailing opinion, it is highly unlikely that gaseous halos comprised of material with properties of the high-latitude gas are responsible for the bulk of known QSO redshift systems. However, gaseous halos with bimodal states of ionization, or in which the ionization state is a unique function of redshift, are compatible with QSO absorption statistics

  5. Requirements on the Redshift Accuracy for future Supernova and Number Count Surveys

    International Nuclear Information System (INIS)

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-01-01

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters

  6. THE DARK SIDE OF QSO FORMATION AT HIGH REDSHIFTS

    International Nuclear Information System (INIS)

    Romano-Diaz, Emilio; Shlosman, Isaac; Trenti, Michele; Hoffman, Yehuda

    2011-01-01

    Observed high-redshift QSOs, at z ∼ 6, may reside in massive dark matter (DM) halos of more than 10 12 M sun and are thus expected to be surrounded by overdense regions. In a series of 10 constrained simulations, we have tested the environment of such QSOs. The usage of constrained realizations has enabled us to address the issue of cosmic variance and to study the statistical properties of the QSO host halos. Comparing the computed overdensities with respect to the unconstrained simulations of regions empty of QSOs, assuming there is no bias between the DM and baryon distributions, and invoking an observationally constrained duty cycle for Lyman break galaxies, we have obtained the galaxy count number for the QSO environment. We find that a clear discrepancy exists between the computed and observed galaxy counts in the Kim et al. samples. Our simulations predict that on average eight z ∼ 6 galaxies per QSO field should have been observed, while Kim et al. detect on average four galaxies per QSO field compared to an average of three galaxies in a control sample (GOODS fields). While we cannot rule out a small number of statistics for the observed fields to high confidence, the discrepancy suggests that galaxy formation in the QSO neighborhood proceeds differently than in the field. We also find that QSO halos are the most massive of the simulated volume at z ∼ 6 but this is no longer true at z ∼ 3. This implies that QSO halos, even in a case where they are the most massive ones at high redshifts, do not evolve into the most massive galaxy clusters at z = 0.

  7. PREDICTIONS FOR ULTRA-DEEP RADIO COUNTS OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Claudia; Lapi, Andrea; De Zotti, Gianfranco; Bressan, Alessandro; Perrotta, Francesca; Danese, Luigi [Astrophysics Sector, SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Cai, Zhen-Yi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Negrello, Mattia; Bonato, Matteo, E-mail: cmancuso@sissa.it [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2015-09-01

    We have worked outty predictions for the radio counts of star-forming galaxies down to nJy levels, along with redshift distributions down to the detection limits of the phase 1 Square Kilometer Array MID telescope (SKA1-MID) and of its precursors. Such predictions were obtained by coupling epoch-dependent star formation rate (SFR) functions with relations between SFR and radio (synchrotron and free–free) emission. The SFR functions were derived taking into account both the dust-obscured and the unobscured star formation, by combining far-infrared, ultraviolet, and Hα luminosity functions up to high redshifts. We have also revisited the South Pole Telescope counts of dusty galaxies at 95 GHz, performing a detailed analysis of the Spectral Energy Distributions. Our results show that the deepest SKA1-MID surveys will detect high-z galaxies with SFRs two orders of magnitude lower compared to Herschel surveys. The highest redshift tails of the distributions at the detection limits of planned SKA1-MID surveys comprise a substantial fraction of strongly lensed galaxies. We predict that a survey down to 0.25 μJy at 1.4 GHz will detect about 1200 strongly lensed galaxies per square degree, at redshifts of up to 10. For about 30% of them the SKA1-MID will detect at least 2 images. The SKA1-MID will thus provide a comprehensive view of the star formation history throughout the re-ionization epoch, unaffected by dust extinction. We have also provided specific predictions for the EMU/ASKAP and MIGHTEE/MeerKAT surveys.

  8. The Metallicity Evolution of Low Mass Galaxies: New Contraints at Intermediate Redshift

    Science.gov (United States)

    Henry, Alaina; Martin, Crystal L.; Finlator, Kristian; Dressler, Alan

    2013-01-01

    We present abundance measurements from 26 emission-line-selected galaxies at z approx. 0.6-0.7. By reaching stellar masses as low as 10(exp 8) M stellar mass, these observations provide the first measurement of the intermediate-redshift mass-metallicity (MZ) relation below 10(exp 9)M stellar mass. For the portion of our sample above M is greater than 10(exp 9)M (8/26 galaxies), we find good agreement with previous measurements of the intermediate-redshift MZ relation. Compared to the local relation, we measure an evolution that corresponds to a 0.12 dex decrease in oxygen abundances at intermediate redshifts. This result confirms the trend that metallicity evolution becomes more significant toward lower stellar masses, in keeping with a downsizing scenario where low-mass galaxies evolve onto the local MZ relation at later cosmic times. We show that these galaxies follow the local fundamental metallicity relation, where objects with higher specific (mass-normalized) star formation rates (SFRs) have lower metallicities. Furthermore, we show that the galaxies in our sample lie on an extrapolation of the SFR-M* relation (the star-forming main sequence). Leveraging the MZ relation and star-forming main sequence (and combining our data with higher-mass measurements from the literature), we test models that assume an equilibrium between mass inflow, outflow, and star formation.We find that outflows are required to describe the data. By comparing different outflow prescriptions, we show that momentum, driven winds can describe the MZ relation; however, this model underpredicts the amount of star formation in low-mass galaxies. This disagreement may indicate that preventive feedback from gas heating has been overestimated, or it may signify a more fundamental deviation from the equilibrium assumption.

  9. The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap. I. The Spectroscopic Redshift Catalog

    Science.gov (United States)

    Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-01-01

    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).

  10. Testing the accuracy of clustering redshifts with simulations

    Science.gov (United States)

    Scottez, V.; Benoit-Lévy, A.; Coupon, J.; Ilbert, O.; Mellier, Y.

    2018-03-01

    We explore the accuracy of clustering-based redshift inference within the MICE2 simulation. This method uses the spatial clustering of galaxies between a spectroscopic reference sample and an unknown sample. This study give an estimate of the reachable accuracy of this method. First, we discuss the requirements for the number objects in the two samples, confirming that this method does not require a representative spectroscopic sample for calibration. In the context of next generation of cosmological surveys, we estimated that the density of the Quasi Stellar Objects in BOSS allows us to reach 0.2 per cent accuracy in the mean redshift. Secondly, we estimate individual redshifts for galaxies in the densest regions of colour space ( ˜ 30 per cent of the galaxies) without using the photometric redshifts procedure. The advantage of this procedure is threefold. It allows: (i) the use of cluster-zs for any field in astronomy, (ii) the possibility to combine photo-zs and cluster-zs to get an improved redshift estimation, (iii) the use of cluster-z to define tomographic bins for weak lensing. Finally, we explore this last option and build five cluster-z selected tomographic bins from redshift 0.2 to 1. We found a bias on the mean redshift estimate of 0.002 per bin. We conclude that cluster-z could be used as a primary redshift estimator by next generation of cosmological surveys.

  11. Complete Calibration of the Color-Redshift Relation (C3R2): A Critical Foundation for Weak Lensing Cosmology with Euclid and WFIRST

    Science.gov (United States)

    Masters, Daniel C.; Stern, Daniel; Cohen, Judy; Capak, Peter

    2018-01-01

    A primary objective of both WFIRST and Euclid is to provide a 3D map of the distribution of matter across a significant fraction of the universe from the weak lensing shear field. Doing so will require accurate redshifts to the billions of galaxies that comprise the weak lensing samples of these surveys; achieving the required accuracy is a “tall pole” challenge for both missions. Here we present the ongoing Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to Euclid depth. C3R2 is an ambitious Keck spectroscopy program, with a survey design based on a machine learning technique that allows us to optimally select the most important galaxies to sample the full range of galaxy colors. C3R2 is a multi-center program with time from all the primary Keck partners (Caltech, UC, Hawaii, and NASA), with a total of 34.5 Keck nights allocated to this project. Data Release 1, including 1283 high-confidence spectroscopic redshifts, is published as Masters, Stern, Cohen, Capak, et al. (2017), and we are currently completing Data Release 2, which will include >2000 additional high-confidence spectroscopic redshifts (Masters et al., in prep.). We will discuss current results and prospects for the survey going forward.

  12. The RSA survey of dwarf galaxies, 1: Optical photometry

    Science.gov (United States)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  13. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    Science.gov (United States)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  14. ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas

    Science.gov (United States)

    Bothwell, M.; Cicone, C.; Wagg, J.; De Breuck, C..

    2017-09-01

    We report the completion of the APEX Low-redshift Legacy Survey for MOlecular Gas (ALLSMOG), an ESO Large Programme, carried out with the Atacama Pathfinder EXperiment (APEX) between 2013 and 2016. With a total of 327 hours of APEX observing time, we observed the 12CO(2-1) line in 88 nearby low-mass star-forming galaxies. We briefly outline the ALLSMOG goals and design, and describe a few science highlights that have emerged from the survey so far. We outline future work that will ensure that the ALLSMOG dataset continues to provide scientific value in the coming years. ALLSMOG was designed to be a reference legacy survey and as such all reduced data products are publicly available through the ESO Science Archive Phase 3 interface.

  15. TWO BRIGHT SUBMILLIMETER GALAXIES IN A z = 4.05 PROTOCLUSTER IN GOODS-NORTH, AND ACCURATE RADIO-INFRARED PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    Daddi, E.; Elbaz, D.; Mancini, C.; Dannerbauer, H.; Stern, D.; Dickinson, M.; Pope, A.; Morrison, G.; Giavalisco, M.; Spinrad, H.

    2009-01-01

    We present the serendipitous discovery of molecular gas CO emission lines with the IRAM Plateau de Bure interferometer coincident with two luminous submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey North (GOODS-N) field. The identification of the millimeter emission lines as CO[4-3] at z = 4.05 is based on the optical and near-IR photometric redshifts, radio-infrared photometric redshifts, and Keck+DEIMOS optical spectroscopy. These two galaxies include the brightest submillimeter source in the field (GN20; S 850μm = 20.3 mJy, z CO = 4.055 ± 0.001) and its companion (GN20.2; S 850μm = 9.9 mJy, z CO = 4.051 ± 0.003). These are among the most distant submillimeter-selected galaxies reliably identified through CO emission and also some of the most luminous known. GN20.2 has a possible additional counterpart and a luminous active galactic nucleus inside its primary counterpart revealed in the radio. Continuum emission of 0.3 mJy at 3.3 mm (0.65 mm in the rest frame) is detected at 5σ for GN20, the first dust continuum detection in an SMG at such long wavelength, unveiling a spectral energy distribution that is similar to local ultra luminous IR galaxies. In terms of CO to bolometric luminosities, stellar mass, and star formation rates (SFRs), these newly discovered z > 4 SMGs are similar to z ∼ 2-3 SMGs studied to date. These z ∼ 4 SMGs have much higher specific star formation rates than those of typical B-band dropout Lyman break galaxies at the same redshift. The stellar mass-SFR correlation for normal galaxies does not seem to evolve much further, between z ∼ 2 and z ∼ 4. A significant z = 4.05 spectroscopic redshift spike is observed in GOODS-N, and a strong spatial overdensity of B-band dropouts and IRAC selected z > 3.5 galaxies appears to be centered on the GN20 and GN20.2 galaxies. This suggests a protocluster structure with total mass ∼10 14 M sun . Using photometry at mid-IR (24 μm), submillimeter (850 μm), and

  16. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8

    Science.gov (United States)

    Guennou, L.; Adami, C.; Da Rocha, C.; Durret, F.; Ulmer, M. P.; Allam, S.; Basa, S.; Benoist, C.; Biviano, A.; Clowe, D.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Johnston, D.; Just, D.; Kron, R.; Kubo, J. M.; Le Brun, V.; Marshall, P.; Mazure, A.; Murphy, K. J.; Pereira, D. N. E.; Rabaça, C. R.; Rostagni, F.; Rudnick, G.; Russeil, D.; Schrabback, T.; Slezak, E.; Tucker, D.; Zaritsky, D.

    2012-01-01

    Context. The study of intracluster light (ICL) can help us to understand the mechanisms taking place in galaxy clusters, and to place constraints on the cluster formation history and physical properties. However, owing to the intrinsic faintness of ICL emission, most searches and detailed studies of ICL have been limited to redshifts z DAFT/FADA Survey. Methods: We analyze the ICL by applying the OV WAV package, a wavelet-based technique, to deep HST ACS images in the F814W filter and to V-band VLT/FORS2 images of three clusters. Detection levels are assessed as a function of the diffuse light source surface brightness using simulations. Results: In the F814W filter images, we detect diffuse light sources in all the clusters, with typical sizes of a few tens of kpc (assuming that they are at the cluster redshifts). The ICL detected by stacking the ten F814W images shows an 8σ detection in the source center extending over a ~50 × 50 kpc2 area, with a total absolute magnitude of -21.6 in the F814W filter, equivalent to about two L∗ galaxies per cluster. We find a weak correlation between the total F814W absolute magnitude of the ICL and the cluster velocity dispersion and mass. There is no apparent correlation between the cluster mass-to-light ratio (M/L) and the amount of ICL, and no evidence of any preferential orientation in the ICL source distribution. We find no strong variation in the amount of ICL between z = 0 and z = 0.8. In addition, we find wavelet-detected compact objects (WDCOs) in the three clusters for which data in two bands are available; these objects are probably very faint compact galaxies that in some cases are members of the respective clusters and comparable to the faint dwarf galaxies of the Local Group. Conclusions: We show that the ICL is prevalent in clusters at least up to redshift z = 0.8. In the future, we propose to detect the ICL at even higher redshifts, to determine wether there is a particular stage of cluster evolution where it

  17. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    Science.gov (United States)

    Weijmans, A.-M.; MaNGA Team

    2016-10-01

    MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.

  18. SHARDS: Survey for High-z Absorption Red & Dead Sources

    Science.gov (United States)

    Pérez-González, P. G.; Cava, A.

    2013-05-01

    SHARDS, an ESO/GTC Large Program, is an ultra-deep (26.5 mag) spectro-photometric survey with GTC/OSIRIS designed to select and study massive passively evolving galaxies at z=1.0-2.3 in the GOODS-N field using a set of 24 medium-band filters (FWHM~17 nm) covering the 500-950 nm spectral range. Our observing strategy has been planned to detect, for z>1 sources, the prominent Mg absorption feature (at rest-frame ~280 nm), a distinctive, necessary, and sufficient feature of evolved stellar populations (older than 0.5 Gyr). These observations are being used to: (1) derive for the first time an unbiased sample of high-z quiescent galaxies, which extends to fainter magnitudes the samples selected with color techniques and spectroscopic surveys; (2) derive accurate ages and stellar masses based on robust measurements of spectral features such as the Mg_UV or D(4000) indices; (3) measure their redshift with an accuracy Δz/(1+z)<0.02; and (4) study emission-line galaxies (starbursts and AGN) up to very high redshifts. The well-sampled optical SEDs provided by SHARDS for all sources in the GOODS-N field are a valuable complement for current and future surveys carried out with other telescopes (e.g., Spitzer, HST, and Herschel).

  19. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    Science.gov (United States)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0

  20. A Pointwise Dimension Analysis of the Las Campanas Redshift Survey

    Science.gov (United States)

    Best, J. S.

    1999-12-01

    The modern motivation for fractal geometry may best be summed up by this quote of Benoit Mandelbrot: ``Mountains are not cones, clouds are not spheres, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line.'' Fractals are, in simplest terms, ``objects which are (approximately) self-similar on all scales.'' The renewed modern interest in fractals has found as one of its applications the study of large-scale structure, giving a quantitative descriptive scheme to ideas that had been expressed qualitatively as early as the 1920s. This paper presents the preliminary results of an analysis of the structure of the Las Campanas Redshift Survey, or LCRS. LCRS is an approximately 26000 galaxy survey (surveyed as six declination slices) that has been studied extensively over the past few years, with an eye towards understanding large-scale structure. For this analysis, I have used the pointwise dimension, an easy-to-apply fractal statistic which has been previously used to study cluster interiors, galactic distributions, and cluster distributions. The present analysis has been performed to serve as a guide for the study of future large redshift surveys. This research has been funded by National Science Foundation grant AST-9808608.

  1. STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)

    Science.gov (United States)

    Holwerda, Benne

    2014-10-01

    Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.

  2. El Universo a alto redshift

    Science.gov (United States)

    Alonso, M. V.

    The Universe we see today is the result of structures and galaxies that have been evolving since earlier times. Looking the evolution of the galaxy population at z ˜ 1 has emphasized the important role played by high redshift data. This is the case of the morphology - density relationship, where the morphological type of galaxies in distant clusters has given us a clear vision of evolutionary processes, partly led by environmental effects. I review part of the data available at high redshifts that are fundamental today to check the validity of galaxy formation models in reproducing local and basic galaxy properties. Briefly, I will comment about high redshift studies, a still little explored portion of the Universe, and the current strategies that allow us the study. In this sense, the epoch of reionization is essential for understanding the formation of structures because it is the phase where the first protogalaxies were formed, creating stars and enriching the intergalactic medium. Because of the great distances involved in these studies, gamma-ray bursts, quasars and Lyman-α galaxies are the best tools to study these earlier times. FULL TEXT IN SPANISH

  3. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    International Nuclear Information System (INIS)

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R.; Erben, T.; Hildebrandt, H.; Ilbert, O.; Boissier, S.; Boselli, A.; Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J.; Chen, Y.-T.; Cuillandre, J.-C.; Duc, P. A.; Durrell, P. R.; Guhathakurta, P.; Lançon, A.

    2014-01-01

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg 2 centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i AB = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z phot ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ outl.rej. , and an individual error on z phot that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z phot ≲ 0.8 range (–0.05 < Δz < –0.02, σ outl.rej ∼ 0.06, 10%-15% outliers, and z phot.err. ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations

  4. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R. [GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 61 Avenue de l' Observatoire, F-75014 Paris (France); Erben, T.; Hildebrandt, H. [Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Ilbert, O.; Boissier, S.; Boselli, A. [Aix Marseille Université, CNRS, Laboratoire d' Astrophysique de Marseille, UMR 7326, F-13388 Marseille (France); Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J. [Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Chen, Y.-T. [Insitute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Cuillandre, J.-C. [Canada-France-Hawaïi Telescope Corporation, Kamuela, HI 96743 (United States); Duc, P. A. [Laboratoire AIM Paris-Saclay, CEA/IRFU/SAp, CNRS/INSU, Université Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France); Durrell, P. R. [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Guhathakurta, P. [UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Lançon, A., E-mail: anand.raichoor@obspm.fr [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); and others

    2014-12-20

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg{sup 2} centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i {sub AB} = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z {sub phot} ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ{sub outl.rej.}, and an individual error on z {sub phot} that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z {sub phot} ≲ 0.8 range (–0.05 < Δz < –0.02, σ{sub outl.rej} ∼ 0.06, 10%-15% outliers, and z {sub phot.err.} ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  5. High-redshift quasars in the Cold Dark Matter cosmogony

    International Nuclear Information System (INIS)

    Efstathiou, G.; Rees, M.J.

    1988-01-01

    The relationship between high-redshift quasars and the epoch of galaxy formation in the Cold Dark Matter (CDM) cosmogony is investigated. Luminous quasars could only form after galactic sized systems had collapsed. A constant comoving density of luminous quasars between z = 2 and z = 4 is compatible with the CDM model if quasars are short-lived and radiate at about the Eddington limit. However, according to the CDM model the abundance of high-luminosity quasars must decline exponentially at higher redshifts. Even if all protogalaxies form quasars, and about 1 per cent of the baryons within a protogalaxy collapse into a compact object, a steep fall in the density of quasars with L > 10 47 erg s -1 at redshifts z ≥ 5. The existence of a 'cut-off' in the quasar numbers at high redshift could therefore supply an important test of the CDM theory. (author)

  6. The Metallicity Evolution of Blue Compact Dwarf Galaxies from the Intermediate Redshift to the Local Universe

    Science.gov (United States)

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and Dn(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass-metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower Dn(4000) index values. The insignificant deviation in the mass-metallicity and mass-SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  7. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu; Fang, Guanwen

    2016-01-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D n (4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D n (4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models

  8. THE METALLICITY EVOLUTION OF BLUE COMPACT DWARF GALAXIES FROM THE INTERMEDIATE REDSHIFT TO THE LOCAL UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Jianhui; Hu, Ning; Ye, Chengyun; Kong, Xu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fang, Guanwen, E-mail: ljhhw@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Institute for Astronomy and History of Science and Technology, Dali University, Dali 671003 (China)

    2016-03-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range of [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope. More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD samples, we investigated the cosmic evolution of the metallicity, star formation rate (SFR), and D{sub n}(4000) index. Compared with local BCDs, the intermediate-z BCDs had a systematically higher R23 ratio but a similar O32 ratio. Interestingly, no significant deviation in the mass–metallicity (MZ) relation was found between the intermediate-z and local BCDs. Besides the metallicity, the intermediate-z BCDs also exhibited an SFR distribution that was consistent with local BCDs, suggesting a weak dependence on redshift. The intermediate-z BCDs seemed to be younger than the local BCDs with lower D{sub n}(4000) index values. The insignificant deviation in the mass–metallicity and mass–SFR relations between intermediate-z and local BCDs indicates that the relations between the global parameters of low-mass compact galaxies may be universal. These results from low-mass compact galaxies could be used to place important observational constraints on galaxy formation and evolution models.

  9. J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons

    Science.gov (United States)

    Izotov, Y. I.; Schaerer, D.; Worseck, G.; Guseva, N. G.; Thuan, T. X.; Verhamme, A.; Orlitová, I.; Fricke, K. J.

    2018-03-01

    We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z = 0.3690, is characterized by a high emission-line flux ratio O32 = [O III] λ5007/[O II] λ3727 = 11.5. The escape fraction of the LyC radiation fesc(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Ly α emission line is detected in the spectrum of J1154+2443 with a separation between the peaks Vsep of 199 km s-1, one of the lowest known for Ly α-emitting galaxies, implying a high fesc(Ly α). Comparing the extinction-corrected Ly α/H β flux ratio with the case B value, we find fesc(Ly α) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O32 with increasing fesc(LyC). We also find a tight anticorrelation between fesc(LyC) and Vsep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length α = 1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+log O/H = 7.65 ± 0.01, the lowest stellar mass M⋆ = 108.20 M⊙, a similar star formation rate SFR = 18.9 M⊙ yr-1, and a high specific SFR of 1.2 × 10-7 yr-1.

  10. The redshift distribution of cosmological samples: a forward modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina, E-mail: joerg.herbel@phys.ethz.ch, E-mail: tomasz.kacprzak@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch, E-mail: claudio.bruderer@phys.ethz.ch, E-mail: andrina.nicola@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)

    2017-08-01

    Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  11. The redshift distribution of cosmological samples: a forward modeling approach

    Science.gov (United States)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina

    2017-08-01

    Determining the redshift distribution n(z) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n(z) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc{UFig} (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n(z) distributions for the acceptable models. We demonstrate the method by determining n(z) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n(z) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  12. The redshift distribution of cosmological samples: a forward modeling approach

    International Nuclear Information System (INIS)

    Herbel, Jörg; Kacprzak, Tomasz; Amara, Adam; Refregier, Alexandre; Bruderer, Claudio; Nicola, Andrina

    2017-01-01

    Determining the redshift distribution n ( z ) of galaxy samples is essential for several cosmological probes including weak lensing. For imaging surveys, this is usually done using photometric redshifts estimated on an object-by-object basis. We present a new approach for directly measuring the global n ( z ) of cosmological galaxy samples, including uncertainties, using forward modeling. Our method relies on image simulations produced using \\textsc(UFig) (Ultra Fast Image Generator) and on ABC (Approximate Bayesian Computation) within the MCCL (Monte-Carlo Control Loops) framework. The galaxy population is modeled using parametric forms for the luminosity functions, spectral energy distributions, sizes and radial profiles of both blue and red galaxies. We apply exactly the same analysis to the real data and to the simulated images, which also include instrumental and observational effects. By adjusting the parameters of the simulations, we derive a set of acceptable models that are statistically consistent with the data. We then apply the same cuts to the simulations that were used to construct the target galaxy sample in the real data. The redshifts of the galaxies in the resulting simulated samples yield a set of n ( z ) distributions for the acceptable models. We demonstrate the method by determining n ( z ) for a cosmic shear like galaxy sample from the 4-band Subaru Suprime-Cam data in the COSMOS field. We also complement this imaging data with a spectroscopic calibration sample from the VVDS survey. We compare our resulting posterior n ( z ) distributions to the one derived from photometric redshifts estimated using 36 photometric bands in COSMOS and find good agreement. This offers good prospects for applying our approach to current and future large imaging surveys.

  13. THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION

    International Nuclear Information System (INIS)

    Stark, Daniel P.; Ellis, Richard S.; Targett, Tom; Benson, Andrew; Bunker, Andrew; Bundy, Kevin; Lacy, Mark

    2009-01-01

    We present new measurements of the evolution in the Lyman break galaxy (LBG) population between z ≅ 4 and z ≅ 6. By utilizing the extensive multiwavelength data sets available in the GOODS fields, we identify 2443 B, 506 V, and 137 i'-band dropout galaxies likely to be at z ∼ 4, 5, and 6. For the subset of dropouts for which reliable Spitzer IRAC photometry is feasible (roughly 35% of the sample), we estimate luminosity-weighted ages and stellar masses. With the goal of understanding the duration of typical star formation episodes in galaxies at z ∼> 4, we examine the distribution of stellar masses and ages as a function of cosmic time. We find that at a fixed rest-UV luminosity, the average stellar masses and ages of galaxies do not increase significantly between z ≅ 6 and 4. In order to maintain this near equilibrium in the average properties of high-redshift LBGs, we argue that there must be a steady flux of young, newly luminous objects at each successive redshift. When considered along with the short duty cycles inferred from clustering measurements, these results may suggest that galaxies are undergoing star formation episodes lasting only several hundred million years. In contrast to the unchanging relationship between the average stellar mass and rest-UV luminosity, we find that the number density of massive galaxies increases considerably with time over 4 ∼ 11 M sun ) z ≅ 2-3 distant red galaxies (DRGs) were in part assembled in an LBG phase at earlier times. Integrating the growth in the stellar mass function of actively forming LBGs over 4 ∼ 3 LBGs could have contributed significantly to the quiescent DRG population, indicating that the intense star-forming systems probed by submillimeter observations are not the only route toward the assembly of DRGs at z ≅ 2.

  14. THE EVOLUTION OF DUSTY STAR FORMATION IN GALAXY CLUSTERS TO z = 1: SPITZER INFRARED OBSERVATIONS OF THE FIRST RED-SEQUENCE CLUSTER SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Webb, T. M. A.; O' Donnell, D.; Coppin, Kristen; Faloon, Ashley; Geach, James E.; Noble, Allison [McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, ON, M5S 3H4 (Canada); Gilbank, David [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Ellingson, Erica [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States); Gladders, Mike [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Muzzin, Adam [Leiden Observatory, University of Leiden, Niels Bohrweg 2, NL-2333 CA, Leiden (Netherlands); Wilson, Gillian [Department of Physics and Astronomy, University of California at Riverside, 900 University Avenue, Riverside, CA 92521 (United States); Yan, Renbin [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2013-10-01

    We present the results of an infrared (IR) study of high-redshift galaxy clusters with the MIPS camera on board the Spitzer Space Telescope. We have assembled a sample of 42 clusters from the Red-Sequence Cluster Survey-1 over the redshift range 0.3 < z < 1.0 and spanning an approximate range in mass of 10{sup 14-15} M {sub ☉}. We statistically measure the number of IR-luminous galaxies in clusters above a fixed inferred IR luminosity of 2 × 10{sup 11} M {sub ☉}, assuming a star forming galaxy template, per unit cluster mass and find it increases to higher redshift. Fitting a simple power-law we measure evolution of (1 + z){sup 5.1±1.9} over the range 0.3 < z < 1.0. These results are tied to the adoption of a single star forming galaxy template; the presence of active galactic nuclei, and an evolution in their relative contribution to the mid-IR galaxy emission, will alter the overall number counts per cluster and their rate of evolution. Under the star formation assumption we infer the approximate total star formation rate per unit cluster mass (ΣSFR/M {sub cluster}). The evolution is similar, with ΣSFR/M {sub cluster} ∼ (1 + z){sup 5.4±1.9}. We show that this can be accounted for by the evolution of the IR-bright field population over the same redshift range; that is, the evolution can be attributed entirely to the change in the in-falling field galaxy population. We show that the ΣSFR/M {sub cluster} (binned over all redshift) decreases with increasing cluster mass with a slope (ΣSFR/M{sub cluster}∼M{sub cluster}{sup -1.5±0.4}) consistent with the dependence of the stellar-to-total mass per unit cluster mass seen locally. The inferred star formation seen here could produce ∼5%-10% of the total stellar mass in massive clusters at z = 0, but we cannot constrain the descendant population, nor how rapidly the star-formation must shut-down once the galaxies have entered the cluster environment. Finally, we show a clear decrease in the number of IR

  15. Beyond the plane-parallel approximation for redshift surveys

    Science.gov (United States)

    Castorina, Emanuele; White, Martin

    2018-06-01

    Redshift -space distortions privilege the location of the observer in cosmological redshift surveys, breaking the translational symmetry of the underlying theory. This violation of statistical homogeneity has consequences for the modelling of clustering observables, leading to what are frequently called `wide-angle effects'. We study these effects analytically, computing their signature in the clustering of the multipoles in configuration and Fourier space. We take into account both physical wide-angle contributions as well as the terms generated by the galaxy selection function. Similar considerations also affect the way power spectrum estimators are constructed. We quantify in an analytical way the biases that enter and clarify the relation between what we measure and the underlying theoretical modelling. The presence of an angular window function is also discussed. Motivated by this analysis, we present new estimators for the three dimensional Cartesian power spectrum and bispectrum multipoles written in terms of spherical Fourier-Bessel coefficients. We show how the latter have several interesting properties, allowing in particular a clear separation between angular and radial modes.

  16. FIRST RESULTS FROM THE 3D-HST SURVEY: THE STRIKING DIVERSITY OF MASSIVE GALAXIES AT z > 1

    International Nuclear Information System (INIS)

    Van Dokkum, Pieter G.; Nelson, Erica; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt; Brammer, Gabriel; Fumagalli, Mattia; Franx, Marijn; Patel, Shannon; Labbé, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Bian Fuyan; Fan Xiaohui; Erb, Dawn K.; Förster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan

    2011-01-01

    We present first results from the 3D-HST program, a near-IR spectroscopic survey performed with the Wide Field Camera 3 (WFC3) on the HST. We have used 3D-HST spectra to measure redshifts and Hα equivalent widths (EW Hα ) for a complete, stellar mass-limited sample of 34 galaxies at 1 star > 10 11 M ☉ in the COSMOS, GOODS, and AEGIS fields. We find that a substantial fraction of massive galaxies at this epoch are forming stars at a high rate: the fraction of galaxies with EW Hα >10 Å is 59%, compared to 10% among Sloan Digital Sky Survey galaxies of similar masses at z = 0.1. Galaxies with weak Hα emission show absorption lines typical of 2-4 Gyr old stellar populations. The structural parameters of the galaxies, derived from the associated WFC3 F140W imaging data, correlate with the presence of Hα; quiescent galaxies are compact with high Sérsic index and high inferred velocity dispersion, whereas star-forming galaxies are typically large two-armed spiral galaxies, with low Sérsic index. Some of these star-forming galaxies might be progenitors of the most massive S0 and Sa galaxies. Our results challenge the idea that galaxies at fixed mass form a homogeneous population with small scatter in their properties. Instead, we find that massive galaxies form a highly diverse population at z > 1, in marked contrast to the local universe.

  17. Redshift distortions of galaxy correlation functions

    International Nuclear Information System (INIS)

    Fry, J.N.; Florida Univ., Gainesville, FL; Gaztanaga, E.; Oxford Univ.

    1993-01-01

    To examine how peculiar velocities can affect the 2-, 3-, and 4-point correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r 0 and power index γ of the 2-point correlation, anti Ξ 2 = (r 0 /r) γ , and as the hierarchical amplitudes of the 3- and 4-point functions, S 3 = anti Ξ 3 /anti Ξ 2 2 and S 4 = anti Ξ/anti Ξ 2 3 . We find a characteristic distortion for anti Ξ 2 : The slope γ is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions ''move'' correlations from small to large scales. At the largest scales, extra power in the redshift distribution is compatible with Ω 4/7 /b ∼ 1; we find 0.53 ± 0.15, 1.10 ± 0.16 and 0.84 ± 0.45 for the CfA, SSRS and IRAS catalogs. Higher order correlations anti Ξ 3 and anti Ξ 4 suffer similar redshift distortions, but in such a way that, within the accuracy of our analysis, the normalized amplitudes S 3 and S 4 are insensitive to this effect. The hierarchical amplitudes S 3 and S 4 are constant as a function of scale between 1-12 h -1 Mpc and have similar values in all samples and catalogues, S 3 ∼ 2 and S 4 ∼ 6, despite the fact that anti Ξ 2 , anti Ξ 3 , and anti Ξ 4 differ from one sample to another by large factors. The agreement between the independent estimations of S 3 and S 4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities and locations between samples

  18. VLA-ANGST: A HIGH-RESOLUTION H I SURVEY OF NEARBY DWARF GALAXIES

    International Nuclear Information System (INIS)

    Ott, Jürgen; Stilp, Adrienne M.; Dalcanton, Julianne J.; Warren, Steven R.; Skillman, Evan D.; Walter, Fabian; De Blok, W. J. G.; Koribalski, Bärbel; West, Andrew A.

    2012-01-01

    We present the 'Very Large Array survey of Advanced Camera for Surveys Nearby Galaxy Survey Treasury galaxies (VLA-ANGST)'. VLA-ANGST is a National Radio Astronomy Observatory Large Program consisting of high spectral (0.6-2.6 km s –1 ) and spatial (∼6'') resolution observations of neutral, atomic hydrogen (H I) emission toward 35 nearby dwarf galaxies from the ANGST survey. ANGST is a systematic Hubble Space Telescope survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D ∼ –1 for the majority of the galaxies). The VLA-ANGST data products are made publicly available through a dedicated Web site (https://science.nrao.edu/science/surveys/vla-angst). With available star formation histories from resolved stellar populations and lower resolution ancillary observations from the far-infrared to the ultraviolet, VLA-ANGST will enable detailed studies of the relationship between the ISM and star formation in dwarf galaxies on a ∼100 pc scale.

  19. The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman-break Galaxies at z ∼ 2–4

    Science.gov (United States)

    Du, Xinnan; Shapley, Alice E.; Reddy, Naveen A.; Jones, Tucker; Stark, Daniel P.; Steidel, Charles C.; Strom, Allison L.; Rudie, Gwen C.; Erb, Dawn K.; Ellis, Richard S.; Pettini, Max

    2018-06-01

    We present the first comprehensive evolutionary analysis of the rest-frame UV spectroscopic properties of star-forming galaxies at z ∼ 2–4. We match samples at different redshifts in UV luminosity and stellar mass, and perform systematic measurements of spectral features and stellar population modeling. By creating composite spectra grouped according to Lyα equivalent width (EW) and various galaxy properties, we study the evolutionary trends among Lyα, low- and high-ionization interstellar (LIS and HIS) absorption features, and integrated galaxy properties. We also examine the redshift evolution of Lyα and LIS absorption kinematics, and fine-structure emission EWs. The connections among the strengths of Lyα, LIS lines, and dust extinction are redshift independent, as is the decoupling of the Lyα and HIS line strengths, and the bulk outflow kinematics as traced by the LIS lines. Stronger Lyα emission is observed at higher redshift at fixed UV luminosity, stellar mass, SFR, and age. Much of this variation in the average Lyα strength with redshift, and the variation in Lyα strength at fixed redshift, can be explained in terms of variations in the neutral gas covering fraction and/or dust content in the ISM and CGM. However, based on the connection between Lyα and C III] emission strengths, we additionally find evidence for variations in the intrinsic production rate of Lyα photons at the highest Lyα EWs. The challenge now is to understand the observed evolution of the neutral gas covering fraction and dust extinction within a coherent model for galaxy formation, and make robust predictions for the escape of ionizing radiation at z > 6.

  20. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    International Nuclear Information System (INIS)

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u ' g ' r ' i ' z ' ) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from ∼250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i * B 0 =0.5). Several of the quasars show unusual emission and absorption features in their spectra, including an object at z=4.62 without detectable emission lines, and a broad absorption line (BAL) quasar at z=4.92. (c) (c) 2000. The American Astronomical Society

  1. Mean density and two-point correlation function for the CfA redshift survey slices

    International Nuclear Information System (INIS)

    De Lapparent, V.; Geller, M.J.; Huchra, J.P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample. 45 references

  2. VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)

    Science.gov (United States)

    Wen, Z. L.; Han, J. L.; Liu, F. S.

    2012-06-01

    Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).

  3. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    International Nuclear Information System (INIS)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar; Fonseca, José

    2017-01-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  4. zBEAMS: a unified solution for supernova cosmology with redshift uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Ethan; Lochner, Michelle; Bassett, Bruce A.; Lablanche, Pierre-Yves; Agarwal, Shankar [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945, Cape Town (South Africa); Fonseca, José, E-mail: rbreth001@myuct.ac.za, E-mail: michelle@aims.ac.za, E-mail: jfonseca@uwc.ac.za, E-mail: bruce.a.bassett@gmail.com, E-mail: plablanche@aims.ac.za, E-mail: agarwalshankar@aims.ac.za [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-10-01

    Supernova cosmology without spectra will be an important component of future surveys such as LSST. This lack of supernova spectra results in uncertainty in the redshifts which, if ignored, leads to significantly biased estimates of cosmological parameters. Here we present a hierarchical Bayesian formalism— zBEAMS—that addresses this problem by marginalising over the unknown or uncertain supernova redshifts to produce unbiased cosmological estimates that are competitive with supernova data with spectroscopically confirmed redshifts. zBEAMS provides a unified treatment of both photometric redshifts and host galaxy misidentification (occurring due to chance galaxy alignments or faint hosts), effectively correcting the inevitable contamination in the Hubble diagram. Like its predecessor BEAMS, our formalism also takes care of non-Ia supernova contamination by marginalising over the unknown supernova type. We illustrate this technique with simulations of supernovae with photometric redshifts and host galaxy misidentification. A novel feature of the photometric redshift case is the important role played by the redshift distribution of the supernovae.

  5. SHARDS: An Optical Spectro-photometric Survey of Distant Galaxies

    Science.gov (United States)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Alonso-Herrero, Almudena; Balcells, Marc; Cenarro, Javier; Cepa, Jordi; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Donley, Jennifer; Elbaz, David; Espino, Néstor; Gallego, Jesús; Gobat, R.; González-Martín, Omaira; Guzmán, Rafael; Hernán-Caballero, Antonio; Muñoz-Tuñón, Casiana; Renzini, Alvio; Rodríguez-Zaurín, Javier; Tresse, Laurence; Trujillo, Ignacio; Zamorano, Jaime

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ~ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well described by an exponentially decaying star formation history with scale τ = 100-200 Myr, age around 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V) ~ 0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This

  6. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    International Nuclear Information System (INIS)

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Siana, Brian D.; Cooray, Asantha R.; Hathi, Nimish P.

    2012-01-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin 2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 10 9 M ☉ , from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  7. Galaxy bias from galaxy-galaxy lensing in the DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Prat, J.; et al.

    2016-09-26

    We present a measurement of galaxy-galaxy lensing around a magnitude-limited ($i_{AB} < 22.5$) sample of galaxies selected from the Dark Energy Survey Science Verification (DES-SV) data. We split these lenses into three photometric-redshift bins from 0.2 to 0.8, and determine the product of the galaxy bias $b$ and cross-correlation coefficient between the galaxy and dark matter overdensity fields $r$ in each bin, using scales above 4 Mpc/$h$ comoving, where we find the linear bias model to be valid given our current uncertainties. We compare our galaxy bias results from galaxy-galaxy lensing with those obtained from galaxy clustering (Crocce et al. 2016) and CMB lensing (Giannantonio et al. 2016) for the same sample of galaxies, and find our measurements to be in good agreement with those in Crocce et al. (2016), while, in the lowest redshift bin ($z\\sim0.3$), they show some tension with the findings in Giannantonio et al. (2016). Our results are found to be rather insensitive to a large range of systematic effects. We measure $b\\cdot r$ to be $0.87\\pm 0.11$, $1.12 \\pm 0.16$ and $1.24\\pm 0.23$, respectively for the three redshift bins of width $\\Delta z = 0.2$ in the range $0.2redshift algorithm BPZ. Using a different code to split the lens sample, TPZ, leads to changes in the measured biases at the 10-20% level, but it does not alter the main conclusion of this work: when comparing with Crocce et al. (2016) we do not find strong evidence for a cross-correlation parameter significantly below one in this galaxy sample, except possibly at the lowest redshift bin ($z\\sim 0.3$), where we find $r = 0.71 \\pm 0.11$ when using TPZ, and $0.83 \\pm 0.12$ with BPZ, assuming the difference between the results from the two probes can be solely attributed to the cross-correlation parameter.

  8. Star Formation in low mass galaxies

    Science.gov (United States)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  9. The Environments of High-Redshift Quasi-Stellar Objects

    Science.gov (United States)

    Kim, Soyoung; Stiavelli, Massimo; Trenti, M.; Pavlovsky, C. M.; Djorgovski, S. G.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Dickinson, M.; Panagia, N.; Meylan, G.

    2009-04-01

    We present a sample of i 775-dropout candidates identified in five Hubble Advanced Camera for Surveys (ACS) fields centered on Sloan Digital Sky Survey quasi-stellar objects (QSOs) at redshift z ~ 6. Our fields are as deep as the GOODS ACS images, which are used as a reference field sample. We find them to be overdense in two fields, underdense in two fields, and as dense as the average density of GOODS in one field. The two excess fields show significantly different color distributions from that of GOODS at the 99% confidence level, strengthening the idea that the excess objects are indeed associated with the QSO. The distribution of i 775-dropout counts in the five fields is broader than that derived from GOODS at the 80%-96% confidence level, depending on which selection criteria were adopted to identify i 775-dropouts; its width cannot be explained by cosmic variance alone. Thus, QSOs seem to affect their environments in complex ways. We suggest the picture where the highest redshift QSOs are located in very massive overdensities and are therefore surrounded by an overdensity of lower mass halos. Radiative feedback by the QSO can in some cases prevent halos from becoming galaxies, thereby generating in extreme cases an underdensity of galaxies. The presence of both enhancement and suppression is compatible with the expected differences between lines of sight at the end of reionization as the presence of residual diffuse neutral hydrogen would provide young galaxies with shielding from the radiative effects of the QSO. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities of Research in Astronomy, Inc., under NASA contract NAS5-26555.

  10. WISH: Wide-field Imaging Durvayor for High-redshift

    Science.gov (United States)

    Yamada, Toru

    2015-08-01

    We introduce the concept and current status of WISH project and discuss the science cases. WISH is a proposed space science mission for JAXA, which is dedicated for the deep and wide-field near-infrared imaging surveys. The mission contains the 1.5m cooled telescope as well as the imager with the FoV of ~850 square arcmin. The main goal of WISH is to detect and study galaxies at z=8-15 in the earliest history of structure formation in the universe. The key feature is to conduct WISH Ultra Deep Survey, which images in total of 100 square degrees in 6 broad-band filters at 0.9-4.5 micron down to 28AB magnitude. While more than 10^5 galaxies at z=8-9, 10^4 galaxies at z=11-12 will be detected, WISH-UDS is designed to constrain UV luminosity function at z=15. Depending on the models of the earliest evolution history, 1-1000 galaxies at z~15 (~100 galaxies for the moderate cases) will be detected. The UV spectral properties as well as the clustering properties of galaxies at z=8-15 can be studied as well; UV slope can be measured up to z=15, and the stellar and dark-matter-halo masses can be obtained up to z=9. WISH UDS can provide excellent opportunities for studying SNe at high redshift. Up to ~7000 type Ia SNe at z>1 can be detected and the distance modulus can be constrained with the precision of 0.9-1.5% at z>1.5. More than 100 Super Luminous SNe at z>6, and 10 SLSN at z>10 can also be detected, which allow us to study the earliest history of massive star formation in the universe. WISH imaging surveys as well as WISHSpec, which is an optional parallel-operation simple IFU spectrograph, also provide unique opportunities in various astronomical fields. WISH mission proposal was submitted to JAXA in February 2015 for the first down selection of JAXA Large Strategic Science Mission targeting the launch date in 2020-22. International collaborations including SAO (G.Fazio et al.), LAM (D. Burgarella et al.) and Canada (M.Sawicki et al.) are also actively coordinated.

  11. Evolution of Galaxy Luminosity and Stellar-Mass Functions since $z=1$ with the Dark Energy Survey Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Capozzi, D.; et al.

    2017-07-27

    We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made of $\\sim 4\\times 10^{6}$ galaxies at $0galaxy catalogues and they enable us to study the evolution of GLF and GSMF at $0redshift probability density functions against literature results obtained with spectroscopic redshifts; ii) we want to shed light on the way galaxies build up their masses over cosmic time. We find that both the ${\\it i}$-band galaxy luminosity and stellar mass functions are characterised by a double-Schechter shape at $z<0.2$. Both functions agree well with those based on spectroscopic redshifts. The DES GSMF agrees especially with those measured for the GAlaxy Mass Assembly and the PRism MUlti-object Survey out to $z\\sim1$. At $0.2redshift galaxies have less stellar mass, their luminosities do not change substantially because of their younger and brighter stellar populations. Finally, we also find evidence for a top-down mass-dependent evolution of the GSMF.

  12. KMOS LENsing Survey (KLENS): Morpho-kinematic analysis of star-forming galaxies at z 2

    Science.gov (United States)

    Girard, M.; Dessauges-Zavadsky, M.; Schaerer, D.; Cirasuolo, M.; Turner, O. J.; Cava, A.; Rodríguez-Muñoz, L.; Richard, J.; Pérez-González, P. G.

    2018-06-01

    We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 10). We derive a M⋆ - σ0 relation, using the Tully-Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 2), where we observe higher velocity dispersions for low masses (log(M⋆/M⊙) 9.6) and lower velocity dispersions for high masses (log(M⋆/M⊙) 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift. Based on KMOS observations made with the European Southern Observatory VLT/Antu telescope, Paranal, Chile, collected under the program ID No. 095.A-0962(A)+(B).The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A72

  13. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    Science.gov (United States)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  14. Effective Theory of Dark Energy at Redshift Survey Scales

    CERN Document Server

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo

    2016-01-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with $\\Lambda$CDM as fiducial model and a specific choice for the time dependence of our effective functions, we perform a Fisher matrix analysis and find that the unmarginalized $68\\%$ CL errors on the parameters describing the modifications of gravity are of order $\\sigma\\sim10^{-2}$--$10^{-3}$. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravit...

  15. BRIGHT STRONGLY LENSED GALAXIES AT REDSHIFT z ∼ 6-7 BEHIND THE CLUSTERS ABELL 1703 AND CL0024+16

    International Nuclear Information System (INIS)

    Zheng, W.; Bradley, L. D.; Ford, H. C.; Shu, X.W.; Bouwens, R. J.; Illingworth, G. D.; BenItez, N.; Broadhurst, T.; Zitrin, A.; Frye, B.; Infante, L.; Jee, M. J.; Motta, V.

    2009-01-01

    We report on the discovery of three bright, strongly lensed objects behind Abell 1703 and CL0024+16 from a dropout search over 25 arcmin 2 of deep NICMOS data, with deep ACS optical coverage. They are undetected in the deep ACS images below 8500 A and have clear detections in the J and H bands. Fits to the ACS, NICMOS, and IRAC data yield robust photometric redshifts in the range z ∼ 6-7 and largely rule out the possibility that they are low-redshift interlopers. All three objects are extended, and resolved into a pair of bright knots. The bright i-band dropout in Abell 1703 has an H-band AB magnitude of 23.9, which makes it one of the brightest known galaxy candidates at z > 5.5. Our model fits suggest a young, massive galaxy only ∼60 million years old with a mass of ∼10 10 M sun . The dropout galaxy candidates behind CL0024+16 are separated by 2.''5 (∼2 kpc in the source plane), and have H-band AB magnitudes of 25.0 and 25.6. Lensing models of CL0024+16 suggest that the objects have comparable intrinsic magnitudes of AB ∼27.3, approximately one magnitude fainter than L* at z ∼ 6.5. Their similar redshifts, spectral energy distribution, and luminosities, coupled with their very close proximity on the sky, suggest that they are spatially associated, and plausibly are physically bound. Combining this sample with two previously reported, similarly magnified galaxy candidates at z ∼ 6-8, we find that complex systems with dual nuclei may be a common feature of high-redshift galaxies.

  16. Exploring the luminosity evolution and stellar mass assembly of 2SLAQ luminous red galaxies between redshifts 0.4 and 0.8

    Science.gov (United States)

    Banerji, Manda; Ferreras, Ignacio; Abdalla, Filipe B.; Hewett, Paul; Lahav, Ofer

    2010-03-01

    We present an analysis of the evolution of 8625 luminous red galaxies (LRGs) between z = 0.4 and 0.8 in the 2dF and Sloan Digital Sky Survey LRG and QSO (2SLAQ) survey. The LRGs are split into redshift bins and the evolution of both the luminosity and stellar mass function with redshift is considered and compared to the assumptions of a passive evolution scenario. We draw attention to several sources of systematic error that could bias the evolutionary predictions made in this paper. While the inferred evolution is found to be relatively unaffected by the exact choice of spectral evolution model used to compute K + e corrections, we conclude that photometric errors could be a source of significant bias in colour-selected samples such as this, in particular when using parametric maximum likelihood based estimators. We find that the evolution of the most massive LRGs is consistent with the assumptions of passive evolution and that the stellar mass assembly of the LRGs is largely complete by z ~ 0.8. Our findings suggest that massive galaxies with stellar masses above 1011Msolar must have undergone merging and star formation processes at a very early stage (z >~ 1). This supports the emerging picture of downsizing in both the star formation as well as the mass assembly of early-type galaxies. Given that our spectroscopic sample covers an unprecedentedly large volume and probes the most massive end of the galaxy mass function, we find that these observational results present a significant challenge for many current models of galaxy formation.

  17. THE SPITZER EXTRAGALACTIC REPRESENTATIVE VOLUME SURVEY: THE ENVIRONMENTS OF HIGH-z SDSS QUASI-STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Falder, J. T.; Stevens, J. A.; Jarvis, Matt J.; Bonfield, D. G.; Lacy, M.; Farrah, D.; Oliver, S.; Surace, J.; Mauduit, J.-C.; Vaccari, M.; Marchetti, L.; Gonzalez-Solares, E.; Afonso, J.; Cava, A.; Seymour, N.

    2011-01-01

    This paper presents a study of the environments of SDSS quasi-stellar objects (QSOs) in the Spitzer Extragalactic Representative Volume Survey (SERVS). We concentrate on the high-redshift QSOs as these have not been studied in large numbers with data of this depth before. We use the IRAC 3.6-4.5 μm color of objects and ancillary r-band data to filter out as much foreground contamination as possible. This technique allows us to find a significant (>4σ) overdensity of galaxies around QSOs in a redshift bin centered on z ∼ 2.0 and an (>2σ) overdensity of galaxies around QSOs in a redshift bin centered on z ∼ 3.3. We compare our findings to the predictions of a semi-analytic galaxy formation model, based on the ΛCDM MILLENNIUM simulation, and find for both redshift bins that the model predictions match well the source density we have measured from the SERVS data.

  18. Hunting for Dark Matter in Spheroidal Galaxies

    Science.gov (United States)

    Steele, Rebecca; Holwerda, Benne; Kielkopf, John F.

    2018-06-01

    Searches for blended spectra have been highly successful in identifying strongly lensing galaxies: these spectra show a low-redshift passive galaxy with much stronger emission lines from the source being lensed. We have recently identified 112 strong lensing candidates in the Galaxy and Mass Assembly Survey (GAMA). The improved sensitivity and redshift determination makes this a very clean sample of two-galaxy spectra, spanning both lower-mass galaxy strong lenses as well as a higher redshiftregime (z > 0.4). As a first step of a PhD project, we will vet the 112 candidate strong gravitational lenses using the new Kilo Degree Survey (KiDS), which is both deeper and sharper than existing Sloan images. Once confirmed, these lower mass gravitational lenses can be targeted with the soon-to-launch James Webb Space Telescope or the Hubble Space Telescope for follow-up observations. Models of the gravitational lenses give us direct measures of the dark matter content of these low-mass galaxies, thought to be dominated by dark matter.

  19. THE CONTRIBUTION OF TP-AGB AND RHeB STARS TO THE NEAR-IR LUMINOSITY OF LOCAL GALAXIES: IMPLICATIONS FOR STELLAR MASS MEASUREMENTS OF HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Melbourne, J.; Williams, Benjamin F.; Dalcanton, Julianne J.; Rosenfield, Philip; Weisz, D.

    2012-01-01

    Using high spatial resolution Hubble Space Telescope WFC3 and Advanced Camera for Surveys imaging of resolved stellar populations, we constrain the contribution of thermally pulsing asymptotic giant branch (TP-AGB) stars and red helium burning (RHeB) stars to the 1.6 μm near-infrared (NIR) luminosities of 23 nearby galaxies, including dwarfs and spirals. The TP-AGB phase contributes as much as 17% of the integrated F160W flux, even when the red giant branch is well populated. The RHeB population contribution can match or even exceed the TP-AGB contribution, providing as much as 21% (18% after a statistical correction for foreground) of the integrated F160W light. We estimate that these two short-lived phases may account for up to 70% of the rest-frame NIR flux at higher redshift. The NIR mass-to-light (M/L) ratio should therefore be expected to vary significantly due to fluctuations in the star formation rate (SFR) over timescales from 25 Myr to several Gyr, an effect that may be responsible for some of the lingering scatter in NIR galaxy scaling relations such as the Tully-Fisher and metallicity-luminosity relations. We compare our observational results to predictions based on optically derived star formation histories and stellar population synthesis (SPS) models, including models based on the 2008 Padova isochrones (used in popular SPS programs) and the updated 2010 Padova isochrones, which shorten the lifetimes of low-mass (old) low-metallicity TP-AGB populations. The updated (2010) SPS models generally reproduce the expected numbers of TP-AGB stars in the sample; indeed, for 65% of the galaxies, the discrepancy between modeled and observed numbers is smaller than the measurement uncertainties. The weighted mean model/data number ratio for TP-AGB stars is 1.5 (1.4 with outliers removed) with a standard deviation of 0.5. The same SPS models, however, give a larger discrepancy in the F160W flux contribution from the TP-AGB stars, overpredicting the flux by a

  20. The Munich Near-Infrared Cluster Survey - IX. Galaxy evolution to z ~ 2 from optically selected catalogues†‡

    Science.gov (United States)

    Feulner, Georg; Goranova, Yuliana; Hopp, Ulrich; Gabasch, Armin; Bender, Ralf; Botzler, Christine S.; Drory, Niv

    2007-06-01

    We present B-, R- and I-band-selected galaxy catalogues based on the Munich Near-Infrared Cluster Survey (MUNICS) which, together with the previously used K-selected sample, serve as an important probe of galaxy evolution in the redshift range 0 Karl-Schwarzschild Strasse 2, D-85748, Garching bei München, Germany.

  1. Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range

    Science.gov (United States)

    Huertas-Company, M.; Primack, J. R.; Dekel, A.; Koo, D. C.; Lapiner, S.; Ceverino, D.; Simons, R. C.; Snyder, G. F.; Bernardi, M.; Chen, Z.; Domínguez-Sánchez, H.; Lee, C. T.; Margalef-Bentabol, B.; Tuccillo, D.

    2018-05-01

    We use machine learning to identify in color images of high-redshift galaxies an astrophysical phenomenon predicted by cosmological simulations. This phenomenon, called the blue nugget (BN) phase, is the compact star-forming phase in the central regions of many growing galaxies that follows an earlier phase of gas compaction and is followed by a central quenching phase. We train a convolutional neural network (CNN) with mock “observed” images of simulated galaxies at three phases of evolution— pre-BN, BN, and post-BN—and demonstrate that the CNN successfully retrieves the three phases in other simulated galaxies. We show that BNs are identified by the CNN within a time window of ∼0.15 Hubble times. When the trained CNN is applied to observed galaxies from the CANDELS survey at z = 1–3, it successfully identifies galaxies at the three phases. We find that the observed BNs are preferentially found in galaxies at a characteristic stellar mass range, 109.2–10.3 M ⊙ at all redshifts. This is consistent with the characteristic galaxy mass for BNs as detected in the simulations and is meaningful because it is revealed in the observations when the direct information concerning the total galaxy luminosity has been eliminated from the training set. This technique can be applied to the classification of other astrophysical phenomena for improved comparison of theory and observations in the era of large imaging surveys and cosmological simulations.

  2. Maximal compression of the redshift-space galaxy power spectrum and bispectrum

    Science.gov (United States)

    Gualdi, Davide; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer

    2018-05-01

    We explore two methods of compressing the redshift-space galaxy power spectrum and bispectrum with respect to a chosen set of cosmological parameters. Both methods involve reducing the dimension of the original data vector (e.g. 1000 elements) to the number of cosmological parameters considered (e.g. seven ) using the Karhunen-Loève algorithm. In the first case, we run MCMC sampling on the compressed data vector in order to recover the 1D and 2D posterior distributions. The second option, approximately 2000 times faster, works by orthogonalizing the parameter space through diagonalization of the Fisher information matrix before the compression, obtaining the posterior distributions without the need of MCMC sampling. Using these methods for future spectroscopic redshift surveys like DESI, Euclid, and PFS would drastically reduce the number of simulations needed to compute accurate covariance matrices with minimal loss of constraining power. We consider a redshift bin of a DESI-like experiment. Using the power spectrum combined with the bispectrum as a data vector, both compression methods on average recover the 68 {per cent} credible regions to within 0.7 {per cent} and 2 {per cent} of those resulting from standard MCMC sampling, respectively. These confidence intervals are also smaller than the ones obtained using only the power spectrum by 81 per cent, 80 per cent, and 82 per cent respectively, for the bias parameter b1, the growth rate f, and the scalar amplitude parameter As.

  3. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  4. Galaxy-galaxy lensing in EAGLE: comparison with data from 180 deg2 of the KiDS and GAMA surveys

    Science.gov (United States)

    Velliscig, Marco; Cacciato, Marcello; Hoekstra, Henk; Schaye, Joop; Heymans, Catherine; Hildebrandt, Hendrik; Loveday, Jon; Norberg, Peder; Sifón, Cristóbal; Schneider, Peter; van Uitert, Edo; Viola, Massimo; Brough, Sarah; Erben, Thomas; Holwerda, Benne W.; Hopkins, Andrew M.; Kuijken, Konrad

    2017-11-01

    We present predictions for the galaxy-galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 < R/(h- 1 Mpc) < 2, and for five logarithmically equispaced stellar mass bins in the range 10.3 < log10(Mstar/ M⊙) < 11.8. We compare these excess surface density profiles to the observed signal from background galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the Galaxy And Mass Assembly (GAMA) survey. Exploiting the GAMA galaxy group catalogue, the profiles of central and satellite galaxies are computed separately for groups with at least five members to minimize contamination. EAGLE predictions are in broad agreement with the observed profiles for both central and satellite galaxies, although the signal is underestimated at R ≈ 0.5-2 h- 1 Mpc for the highest stellar mass bins. When central and satellite galaxies are considered simultaneously, agreement is found only when the selection function of lens galaxies is taken into account in detail. Specifically, in the case of GAMA galaxies, it is crucial to account for the variation of the fraction of satellite galaxies in bins of stellar mass induced by the flux-limited nature of the survey. We report the inferred stellar-to-halo mass relation and we find good agreement with recent published results. We note how the precision of the GGL profiles in the simulation holds the potential to constrain fine-grained aspects of the galaxy-dark matter connection.

  5. A DEEP, WIDE-FIELD Hα SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    International Nuclear Information System (INIS)

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-01-01

    We present the results of a wide-field Hα imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured Hα fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M ☉ yr –1 . This paper describes the observations, data processing, and source identification procedures, and presents an Hα and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted Hα emission in more distant clusters.

  6. Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Pujol, A.; Gaztañaga, E.; Amara, A.; Réfrégier, A.; Bacon, D.; Becker, M. R.; Bonnett, C.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Giannantonio, T.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Ross, A. J.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2016-04-15

    We measure the redshift evolution of galaxy bias from a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a $\\sim$116 deg$^{2}$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al., in prep) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a magnitude-limited galaxy sample. We find the galaxy bias and 1$\\sigma$ error bars in 4 photometric redshift bins to be 1.33$\\pm$0.18 (z=0.2-0.4), 1.19$\\pm$0.23 (z=0.4-0.6), 0.99$\\pm$0.36 ( z=0.6-0.8), and 1.66$\\pm$0.56 (z=0.8-1.0). These measurements are consistent at the 1-2$\\sigma$ level with mea- surements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing. In addition, our method provides the only $\\sigma_8$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.

  7. The metallicity evolution of blue compact dwarf galaxies from the intermediate redshift to the local Universe

    OpenAIRE

    Lian, Jianhui; Hu, Ning; Fang, Guanwen; Ye, Chengyun; Kong, Xu

    2016-01-01

    We present oxygen abundance measurements for 74 blue compact dwarf (BCD) galaxies in the redshift range in [0.2, 0.5] using the strong-line method. The spectra of these objects are taken using Hectospec on the Multiple Mirror Telescope (MMT). More than half of these BCDs had dust attenuation corrected using the Balmer decrement method. For comparison, we also selected a sample of 2023 local BCDs from the Sloan Digital Sky Survey (SDSS) database. Based on the local and intermediate-z BCD sampl...

  8. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Donnacha [University Coll. London; Lahav, Ofer [University Coll. London; Bridle, Sarah [Manchester U.; Jouvel, Stephanie [Barcelona, IEEC; Abdalla, Filipe B. [University Coll. London; Frieman, Joshua A. [Chicago U., KICP

    2015-08-21

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.

  9. Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55

    Science.gov (United States)

    Núñez, Carolina; Spergel, David N.; Ho, Shirley

    2017-02-01

    We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color-color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U - B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z0.55. Stellar contamination is estimated to be 1.8%.

  10. The Type Ia Supernova Rate in Radio and Infrared Galaxies from the CFHT Supernova Legacy Survey

    OpenAIRE

    Graham, M. L.; Pritchet, C. J.; Sullivan, M.; Howell, D. A.; Gwyn, S. D. J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Pain, R.

    2009-01-01

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, VLA 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is ~1-5 times the rate in all early-type galaxies, and that any enhancement is always

  11. GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Bleem, L. E.; Stalder, B.; de Haan, T.; Aird, K. A.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-01-29

    We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates, the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts, we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M (500c)(ρ(crit)) $\\sim 3.5\\times 10^{14}\\,M_\\odot \\,h_{70}^{-1}$, the median redshift is z (med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.

  12. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Hartoog, O. E.; Kaper, L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); D' Elia, V. [INAF/Rome Astronomical Observatory, via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy); Zafar, T. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Afonso, P. M. J. [Physics and Astronomy Department, American River College, 4700 College Oak Drive, Sacramento, CA 95841 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Universite Paris Diderot 5 place Jules Janssen, F-92195 Meudon (France); Goldoni, P. [APC, Astroparticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, Rue Alice Domon et Léonie Duquet, F-75205 Paris, Cedex 13 (France); Greiner, J. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Klose, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Levan, A. J., E-mail: sparre@dark-cosmology.dk [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  13. A Foreground Masking Strategy for [C II] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift

    Science.gov (United States)

    Sun, G.; Moncelsi, L.; Viero, M. P.; Silva, M. B.; Bock, J.; Bradford, C. M.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A. R.; Crites, A.; Hailey-Dunsheath, S.; Uzgil, B.; Hunacek, J. R.; Zemcov, M.

    2018-04-01

    Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C II] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C II] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ J upp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C II] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z {10}8 {M}ȯ selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the “voxels” (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion {m}{{K}}AB}≲ 22 (or {M}* ≳ {10}9 {M}ȯ ) at z cost of a moderate ≲8% loss of total survey volume.

  14. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    Science.gov (United States)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  15. A short gamma-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225.

    Science.gov (United States)

    Gehrels, N; Sarazin, C L; O'Brien, P T; Zhang, B; Barbier, L; Barthelmy, S D; Blustin, A; Burrows, D N; Cannizzo, J; Cummings, J R; Goad, M; Holland, S T; Hurkett, C P; Kennea, J A; Levan, A; Markwardt, C B; Mason, K O; Meszaros, P; Page, M; Palmer, D M; Rol, E; Sakamoto, T; Willingale, R; Angelini, L; Beardmore, A; Boyd, P T; Breeveld, A; Campana, S; Chester, M M; Chincarini, G; Cominsky, L R; Cusumano, G; de Pasquale, M; Fenimore, E E; Giommi, P; Gronwall, C; Grupe, D; Hill, J E; Hinshaw, D; Hjorth, J; Hullinger, D; Hurley, K C; Klose, S; Kobayashi, S; Kouveliotou, C; Krimm, H A; Mangano, V; Marshall, F E; McGowan, K; Moretti, A; Mushotzky, R F; Nakazawa, K; Norris, J P; Nousek, J A; Osborne, J P; Page, K; Parsons, A M; Patel, S; Perri, M; Poole, T; Romano, P; Roming, P W A; Rosen, S; Sato, G; Schady, P; Smale, A P; Sollerman, J; Starling, R; Still, M; Suzuki, M; Tagliaferri, G; Takahashi, T; Tashiro, M; Tueller, J; Wells, A A; White, N E; Wijers, R A M J

    2005-10-06

    Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

  16. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  17. STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS

    International Nuclear Information System (INIS)

    High, F. William; Stubbs, Christopher W.; Rest, Armin; Stalder, Brian; Challis, Peter

    2009-01-01

    We present stellar locus regression (SLR), a method of directly adjusting the instrumental broadband optical colors of stars to bring them into accord with a universal stellar color-color locus, producing accurately calibrated colors for both stars and galaxies. This is achieved without first establishing individual zero points for each passband, and can be performed in real-time at the telescope. We demonstrate how SLR naturally makes one wholesale correction for differences in instrumental response, for atmospheric transparency, for atmospheric extinction, and for Galactic extinction. We perform an example SLR treatment of Sloan Digital Sky Survey data over a wide range of Galactic dust values and independently recover the direction and magnitude of the canonical Galactic reddening vector with 14-18 mmag rms uncertainties. We then isolate the effect of atmospheric extinction, showing that SLR accounts for this and returns precise colors over a wide range of air mass, with 5-14 mmag rms residuals. We demonstrate that SLR-corrected colors are sufficiently accurate to allow photometric redshift estimates for galaxy clusters (using red sequence galaxies) with an uncertainty σ(z)/(1 + z) = 0.6% per cluster for redshifts 0.09 < z < 0.25. Finally, we identify our objects in the 2MASS all-sky catalog, and produce i-band zero points typically accurate to 18 mmag using only SLR. We offer open-source access to our IDL routines, validated and verified for the implementation of this technique, at http://stellar-locus-regression.googlecode.com.

  18. Redshift-space distortions from vector perturbations

    Science.gov (United States)

    Bonvin, Camille; Durrer, Ruth; Khosravi, Nima; Kunz, Martin; Sawicki, Ignacy

    2018-02-01

    We compute a general expression for the contribution of vector perturbations to the redshift space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus in principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.

  19. THE MOST METAL-POOR DAMPED Lyα SYSTEMS: AN INSIGHT INTO DWARF GALAXIES AT HIGH-REDSHIFT

    International Nuclear Information System (INIS)

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.

    2015-01-01

    In this paper we analyze the kinematics, chemistry, and physical properties of a sample of the most metal-poor damped Lyα systems (DLAs), to uncover their links to modern-day galaxies. We present evidence that the DLA population as a whole exhibits a ''knee'' in the relative abundances of the α-capture and Fe-peak elements when the metallicity is [Fe/H] ≅ –2.0, assuming that Zn traces the buildup of Fe-peak elements. In this respect, the chemical evolution of DLAs is clearly different from that experienced by Milky Way halo stars, but resembles that of dwarf spheroidal galaxies in the Local Group. We also find a close correspondence between the kinematics of Local Group dwarf galaxies and of high-redshift metal-poor DLAs, which further strengthens this connection. On the basis of such similarities, we propose that the most metal-poor DLAs provide us with a unique opportunity to directly study the dwarf galaxy population more than ten billion years in the past, at a time when many dwarf galaxies were forming the bulk of their stars. To this end, we have measured some of the key physical properties of the DLA gas, including their neutral gas mass, size, kinetic temperature, density, and turbulence. We find that metal-poor DLAs contain a warm neutral medium with T gas ≅ 9600 K predominantly held up by thermal pressure. Furthermore, all of the DLAs in our sample exhibit a subsonic turbulent Mach number, implying that the gas distribution is largely smooth. These results are among the first empirical descriptions of the environments where the first few generations of stars may have formed in the universe

  20. A Practical Computational Method for the Anisotropic Redshift-Space 3-Point Correlation Function

    Science.gov (United States)

    Slepian, Zachary; Eisenstein, Daniel J.

    2018-04-01

    We present an algorithm enabling computation of the anisotropic redshift-space galaxy 3-point correlation function (3PCF) scaling as N2, with N the number of galaxies. Our previous work showed how to compute the isotropic 3PCF with this scaling by expanding the radially-binned density field around each galaxy in the survey into spherical harmonics and combining these coefficients to form multipole moments. The N2 scaling occurred because this approach never explicitly required the relative angle between a galaxy pair about the primary galaxy. Here we generalize this work, demonstrating that in the presence of azimuthally-symmetric anisotropy produced by redshift-space distortions (RSD) the 3PCF can be described by two triangle side lengths, two independent total angular momenta, and a spin. This basis for the anisotropic 3PCF allows its computation with negligible additional work over the isotropic 3PCF. We also present the covariance matrix of the anisotropic 3PCF measured in this basis. Our algorithm tracks the full 5-D redshift-space 3PCF, uses an accurate line of sight to each triplet, is exact in angle, and easily handles edge correction. It will enable use of the anisotropic large-scale 3PCF as a probe of RSD in current and upcoming large-scale redshift surveys.

  1. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    Science.gov (United States)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  2. Getting leverage on inflation with a large photometric redshift survey

    CERN Document Server

    Basse, Tobias; Hannestad, Steen; Wong, Yvonne Y Y

    2015-01-01

    We assess the potential of a future large-volume photometric redshift survey to constrain observational inflationary parameters using three large-scale structure observables: the angular shear and galaxy power spectra, and the cluster mass function measured through weak lensing. When used in combination with Planck-like CMB measurements, we find that the spectral index n_s can be constrained to a 1 sigma precision of up to 0.0025. The sensitivity to the running of the spectral index can potentially improve to 0.0017, roughly a factor of five better than the present 1 sigma~constraint from Planck and auxiliary CMB data, allowing us to test the assumptions of the slow-roll scenario with unprecedented accuracy. Interestingly, neither CMB+shear nor CMB+galaxy nor CMB+clusters alone can achieve this level of sensitivity; it is the combined power of all three probes that conspires to break the different parameter degeneracies inherent in each type of observations. We make our forecast software publicly available vi...

  3. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  4. The Canada-France deep fields survey-II: Lyman-break galaxies and galaxy clustering at z ~ 3

    Science.gov (United States)

    Foucaud, S.; McCracken, H. J.; Le Fèvre, O.; Arnouts, S.; Brodwin, M.; Lilly, S. J.; Crampton, D.; Mellier, Y.

    2003-10-01

    We present a large sample of z ~ 3 U-band dropout galaxies extracted from the Canada-France deep fields survey (CFDF). Our catalogue covers an effective area of ~ 1700 arcmin2 divided between three large, contiguous fields separated widely on the sky. To IAB=24.5, the survey contains 1294 Lyman-break candidates, in agreement with previous measurements by other authors, after appropriate incompleteness corrections have been applied to our data. Based on comparisons with spectroscopic observations and simulations, we estimate that our sample of Lyman-break galaxies is contaminated by stars and interlopers (lower-redshift galaxies) at no more than { ~ } 30%. We find that omega (theta ) is well fitted by a power-law of fixed slope, gamma =1.8, even at small (theta University of Hawaii, and at the Cerro Tololo Inter-American Observatory and Mayall 4-meter Telescopes, divisions of the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.

  5. Hα EQUIVALENT WIDTHS FROM THE 3D-HST SURVEY: EVOLUTION WITH REDSHIFT AND DEPENDENCE ON STELLAR MASS

    International Nuclear Information System (INIS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Labbe, Ivo; Brammer, Gabriel; Van Dokkum, Pieter; Lundgren, Britt; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Kriek, Mariska

    2012-01-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our Hα measurements of 854 galaxies at 0.8 1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(Hα) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ∼ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z) 3.2 , nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.

  6. A Luminous Lyα-emitting Galaxy at Redshift z = 6.535: Discovery and Spectroscopic Confirmation

    Science.gov (United States)

    Rhoads, James E.; Xu, Chun; Dawson, Steve; Dey, Arjun; Malhotra, Sangeeta; Wang, JunXian; Jannuzi, Buell T.; Spinrad, Hyron; Stern, Daniel

    2004-08-01

    We present a redshift z=6.535 galaxy discovered by its Lyα emission in a 9180 Å narrowband image from the Large Area Lyman Alpha survey. The Lyα line luminosity (1.1×1043 ergs s-1) is among the largest known for star-forming galaxies at z~6.5. The line shows the distinct asymmetry that is characteristic of high-redshift Lyα. The 2 σ lower bound on the observer-frame equivalent width is greater than 530 Å. This is hard to reconcile with a neutral intergalactic medium (IGM) unless the Lyα line is intrinsically strong and is emitted from its host galaxy with an intrinsic Doppler shift of several hundred km s-1. If the IGM is ionized, it corresponds to a rest-frame equivalent width greater than 40 Å after correcting for Lyα forest absorption. We also present a complete spectroscopic follow-up of the remaining candidates with line flux greater than 2×10-17 ergs cm-2 s-1 in our 1200 arcmin2 narrowband image. These include another galaxy with a strong emission line at 9136 Å and no detected continuum flux, which, however, is most likely an [O III] λ5007 source at z=0.824, on the basis of a weak detection of the [O III] λ4959 line. The data presented in this paper were obtained at the Kitt Peak National Observatory, the Gemini Observatory, and the W. M. Keck Observatory. Kitt Peak National Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation (NSF). The Gemini Observatory is operated by AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council, CNPq (Brazil), and CONICET (Argentina). The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the

  7. Chandra-SDSS Normal and Star-Forming Galaxies. I. X-Ray Source Properties of Galaxies Detected by the Chandra X-Ray Observatory in SDSS DR2

    Science.gov (United States)

    Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.

    2005-01-01

    We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03redshift gap'' between local X-ray-studied samples of normal galaxies and those in the deepest X-ray surveys. Our chief purpose is to compare optical spectroscopic diagnostics of activity (both star formation and accretion) with X-ray properties of galaxies. Our work supports a normalization value of the X-ray-star formation rate correlation consistent with the lower values published in the literature. The difference is in the allocation of X-ray emission to high-mass X-ray binaries relative to other components, such as hot gas, low-mass X-ray binaries, and/or active galactic nuclei (AGNs). We are able to quantify a few pitfalls in the use of lower resolution, lower signal-to-noise ratio optical spectroscopy to identify X-ray sources (as has necessarily been employed for many X-ray surveys). Notably, we find a few AGNs that likely would have been misidentified as non-AGN sources in higher redshift studies. However, we do not find any X-ray-hard, highly X-ray-luminous galaxies lacking optical spectroscopic diagnostics of AGN activity. Such sources are members of the ``X-ray-bright, optically normal galaxy'' (XBONG) class of AGNs.

  8. Galaxy clusters in the cosmic web

    Science.gov (United States)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4DAFT/FADA survey, which combines deep large field multi-band imaging and spectroscopic data, in order to detect filaments and/or structures around these clusters. Based on colour-magnitude diagrams, we have selected the galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.

  9. Galaxy masses in large surveys: Connecting luminous and dark matter with weak lensing and kinematics

    Science.gov (United States)

    Reyes, Reinabelle

    2011-01-01

    Galaxy masses are difficult to determine because light traces stars and gas in a non-trivial way, and does not trace dark matter, which extends well beyond the luminous regions of galaxies. In this thesis, I use the most direct probes of dark matter available---weak gravitational lensing and galaxy kinematics---to trace the total mass in galaxies (and galaxy clusters) in large surveys. In particular, I use the large, homogeneous dataset from the Sloan Digital Sky Survey (SDSS), which provides spectroscopic redshifts for a large sample of galaxies at z ≲ 0.2 and imaging data to a depth of r < 22. By combining complementary probes, I am able to obtain robust observational constraints that cannot be obtained from any single technique alone. First, I use weak lensing of galaxy clusters to derive an optimal optical tracer of cluster mass, which was found to be a combination of cluster richness and the luminosity of the brightest cluster galaxy. Next, I combine weak lensing of luminous red galaxies with redshift distortions and clustering measurements to derive a robust probe of gravity on cosmological scales. Finally, I combine weak lensing with the kinematics of disk galaxies to constrain the total mass profile over several orders of magnitude. I derive a minimal-scatter relation between disk velocity and stellar mass (also known as the Tully-Fisher relation) that can be used, by construction, on a similarly-selected lens sample. Then, I combine this relation with halo mass measurements from weak lensing to place constraints on the ratio of the optical to virial velocities, as well as the ratio of halo to stellar masses, both as a function of stellar mass. These results will serve as inputs to and constraints on disk galaxy formation models, which will be explored in future work.

  10. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    Science.gov (United States)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  11. A CATALOG OF DETAILED VISUAL MORPHOLOGICAL CLASSIFICATIONS FOR 14,034 GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Nair, Preethi B.; Abraham, Roberto G.

    2010-01-01

    We present a catalog of detailed visual classifications for 14,034 galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 4 (DR4). Our sample includes nearly all spectroscopically targeted galaxies in the redshift range 0.01 < z < 0.1 down to an apparent extinction-corrected limit of g < 16 mag. In addition to T-Types, we record the existence of bars, rings, lenses, tails, warps, dust lanes, arm flocculence, and multiplicity. This sample defines a comprehensive local galaxy sample which we will use in future papers to study low-redshift morphology. It will also prove useful for calibrating automated galaxy classification algorithms. In this paper, we describe the classification methodology used, detail the systematics and biases of our sample, and summarize the overall statistical properties of the sample, noting the most obvious trends that are relevant for general comparisons of our catalog with previously published work.

  12. The zCOSMOS redshift survey : The three-dimensional classification cube and bimodality in galaxy physical properties

    NARCIS (Netherlands)

    Mignoli, M.; Zamorani, G.; Scodeggio, M.; Cimatti, A.; Halliday, C.; Lilly, S. J.; Pozzetti, L.; Vergani, D.; Carollo, C. M.; Contini, T.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Kneib, J. -P.; Knobel, C.; Kovac, K.; Lamareille, F.; Le Borgne, J. -F.; Le Brun, V.; Maier, C.; Pello, R.; Peng, Y.; Montero, E. Perez; Ricciardelli, E.; Scarlata, C.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Zucca, E.; Abbas, U.; Bottini, D.; Capak, P.; Cappi, A.; Cassata, P.; Fumana, M.; Guzzo, L.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Oesch, P.; Porciani, C.; Scaramella, R.; Scoville, N.

    Aims: We investigate the relationships between three main optical galaxy observables (spectral properties, colors, and morphology), exploiting the data set provided by the COSMOS/zCOSMOS survey. The purpose of this paper is to define a simple galaxy classification cube, with a carefully selected

  13. Testing Star Formation Laws in a Starburst Galaxy At Redshift 3 Resolved with ALMA

    Science.gov (United States)

    Sharda, P.; Federrath, C.; da Cunha, E.; Swinbank, A. M.; Dye, S.

    2018-04-01

    Using high-resolution (sub-kiloparsec scale) data obtained by ALMA, we analyze the star formation rate (SFR), gas content and kinematics in SDP 81, a gravitationally-lensed starburst galaxy at redshift 3. We estimate the SFR surface density (ΣSFR) in the brightest clump of this galaxy to be 357^{+135}_{-85} {M_{⊙}} yr^{-1} kpc^{-2}, over an area of 0.07 ± 0.02 kpc2. Using the intensity-weighted velocity of CO (5-4), we measure the turbulent velocity dispersion in the plane-of-the-sky and find σv, turb = 37 ± 5 km s-1 for the clump, in good agreement with previous estimates along the line of sight, corrected for beam smearing. Our measurements of gas surface density, freefall time and turbulent Mach number allow us to compare the theoretical SFR from various star formation models with that observed, revealing that the role of turbulence is crucial to explaining the observed SFR in this clump. While the Kennicutt Schmidt (KS) relation predicts an SFR surface density of Σ _{SFR,KS} = 52± 17 {M_{⊙}} yr^{-1} kpc^{-2}, the single-freefall model by Krumholz, Dekel and McKee (KDM) predicts Σ _{SFR,KDM} = 106± 37 {M_{⊙ }} yr^{-1} kpc^{-2}. In contrast, the multi-freefall (turbulence) model by Salim, Federrath and Kewley (SFK) gives Σ _{SFR,SFK} = 491^{+139 }_{-194} {M_{⊙ }} yr^{-1} kpc^{-2}. Although the SFK relation overestimates the SFR in this clump (possibly due to the negligence of magnetic fields), it provides the best prediction among the available models. Finally, we compare the star formation and gas properties of this galaxy to local star-forming regions and find that the SFK relation provides the best estimates of SFR in both local and high-redshift galaxies.

  14. Identifying high-redshift gamma-ray bursts with RATIR

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohns, O. M.; Butler, N. R. [School of Earth and Space Exploration, Arizona State University, AZ 85287 (United States); Cucchiara, A. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, 04510 México, D. F. (Mexico); Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klein, C. R.; Fox, O. D.; Bloom, J. S. [Astronomy Department, University of California, Berkeley, CA 94720-7450 (United States); Prochaska, J. X.; Ramirez-Ruiz, E. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  15. Identifying high-redshift gamma-ray bursts with RATIR

    International Nuclear Information System (INIS)

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-01-01

    We present a template-fitting algorithm for determining photometric redshifts, z phot , of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z phot < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z phot in the ranges of 4 < z phot ≲ 8 and 9 < z phot < 10 and can robustly determine when z phot > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z phot < 4 when z sim > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  16. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    Science.gov (United States)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  17. Separating intrinsic alignment and galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Blazek, Jonathan; Seljak, Uroš; Mandelbaum, Rachel; Nakajima, Reiko

    2012-01-01

    The coherent physical alignment of galaxies is an important systematic for gravitational lensing studies as well as a probe of the physical mechanisms involved in galaxy formation and evolution. We develop a formalism for treating this intrinsic alignment (IA) in the context of galaxy-galaxy lensing and present an improved method for measuring IA contamination, which can arise when sources physically associated with the lens are placed behind the lens due to photometric redshift scatter. We apply the technique to recent Sloan Digital Sky Survey (SDSS) measurements of Luminous Red Galaxy lenses and typical ( ∼ L * ) source galaxies with photometric redshifts selected from the SDSS imaging data. Compared to previous measurements, this method has the advantage of being fully self-consistent in its treatment of the IA and lensing signals, solving for the two simultaneously. We find an IA signal consistent with zero, placing tight constraints on both the magnitude of the IA effect and its potential contamination to the lensing signal. While these constraints depend on source selection and redshift quality, the method can be applied to any measurement that uses photometric redshifts. We obtain a model-independent upper-limit of roughly 10% IA contamination for projected separations of r p ≈ 0.1–10 h −1 Mpc. With more stringent photo-z cuts and reasonable assumptions about the physics of intrinsic alignments, this upper limit is reduced to 1–2%. These limits are well below the statistical error of the current lensing measurements. Our results suggest that IA will not present intractable challenges to the next generation of galaxy-galaxy lensing experiments, and the methods presented here should continue to aid in our understanding of alignment processes and in the removal of IA from the lensing signal

  18. Photometric redshifts for the next generation of deep radio continuum surveys - II. Gaussian processes and hybrid estimates

    Science.gov (United States)

    Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.

    2018-04-01

    Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared, X-ray and optically selected AGN - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGN are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole co-evolution and for cosmological studies.

  19. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Science.gov (United States)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Alonso-García, Javier; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Berlind, Andreas A.; Bernardi, Mariangela; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; van den Bosch, Remco; Bovy, Jo; Brandt, William N.; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cappellari, Michele; Delgado Carigi, Maria Leticia; Carlberg, Joleen K.; Carnero Rosell, Aurelio; Carrera, Ricardo; Chanover, Nancy J.; Cherinka, Brian; Cheung, Edmond; Gómez Maqueo Chew, Yilen; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comparat, Johan; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Garrido Cuadra, Daniel; Cunha, Katia; Damke, Guillermo J.; Darling, Jeremy; Davies, Roger; Dawson, Kyle; de la Macorra, Axel; Dell'Agli, Flavia; De Lee, Nathan; Delubac, Timothée; Di Mille, Francesco; Diamond-Stanic, Aleks; Cano-Díaz, Mariana; Donor, John; Downes, Juan José; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Eigenbrot, Arthur D.; Eisenstein, Daniel J.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane K.; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Fredrickson, Alexander; Freischlad, Gordon; Frinchaboy, Peter M.; Fuentes, Carla E.; Galbany, Lluís; Garcia-Dias, R.; García-Hernández, D. A.; Gaulme, Patrick; Geisler, Doug; Gelfand, Joseph D.; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gunn, James E.; Guo, Hong; Guy, Julien; Hagen, Alex; Hahn, ChangHoon; Hall, Matthew; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hearty, Fred; Gonzalez Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Huehnerhoff, Joseph; Hutchinson, Timothy A.; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; da Silva Ilha, Gabriele; Ivans, Inese I.; Ivory, KeShawn; Jackson, Kelly; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Lazarz, Daniel; Lee, Youngbae; Le Goff, Jean-Marc; Liang, Fu-Heng; Li, Cheng; Li, Hongyu; Lian, Jianhui; Lima, Marcos; Lin, Lihwai; Lin, Yen-Ting; Bertran de Lis, Sara; Liu, Chao; de Icaza Lizaola, Miguel Angel C.; Long, Dan; Lucatello, Sara; Lundgren, Britt; MacDonald, Nicholas K.; Deconto Machado, Alice; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, Arturo; Mao, Shude; Maraston, Claudia; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McBride, Cameron K.; McDermid, Richard M.; McGrath, Brianne; McGreer, Ian D.; Medina Peña, Nicolás; Melendez, Matthew; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Miyaji, Takamitsu; More, Surhud; Mulchaey, John; Müller-Sánchez, Francisco; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Correa do Nascimento, Janaina; Negrete, Alenka; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Ntelis, Pierros; O'Connell, Julia E.; Oelkers, Ryan J.; Oravetz, Audrey; Oravetz, Daniel; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Kaike; Parejko, John K.; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Patten, Alim Y.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Poleski, Radosław; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Roman-Lopes, A.; Román-Zúñiga, Carlos; Rosado, Margarita; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Sánchez, Ariel G.; Aguado, D. S.; Sánchez-Gallego, José R.; Santana, Felipe A.; Santiago, Basílio Xavier; Sayres, Conor; Schiavon, Ricardo P.; da Silva Schimoia, Jaderson; Schlafly, Edward F.; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Shao, Zhengyi; Shen, Shiyin; Shetrone, Matthew; Shull, Michael; Simon, Joshua D.; Skinner, Danielle; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobeck, Jennifer S.; Sobreira, Flavia; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan; Stauffer, Fritz; Steinmetz, Matthias; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Suzuki, Nao; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tissera, Patricia; Tojeiro, Rita; Hernandez Toledo, Hector; de la Torre, Sylvain; Tremonti, Christy; Troup, Nicholas W.; Valenzuela, Octavio; Martinez Valpuesta, Inma; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wild, Vivienne; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Xu; Zhou, Zhi-Min; Zhu, Guangtun B.; Zoccali, Manuela; Zou, Hu

    2017-07-01

    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z˜ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z˜ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

  20. Simulating the [CII] emission of high redshift galaxies

    DEFF Research Database (Denmark)

    Olsen, Karen Pardos; Greve, Thomas Rodriguez; Narayanan, Desika

    2016-01-01

    and radiative transfer, the photoionization code CLOUDY isimplemented. I will show results for z=2 star-forming galaxies yet to beobserved, as well as preliminary results for galaxies at z~6-7 whereobservations have presented contradictory detections and non-detectionsof star-forming galaxies....

  1. SAGE-SMC: Surveying the Agents of Galaxy Evolution in the Tidally-Disrupted, Low-Metallicity Small Magellanic Cloud

    Science.gov (United States)

    Gordon, Karl; Babler, Brian; Bernard, Jean-Philippe; Block, Miwa; Blum, Robert; Bolatto, Alberto; Bot, Caroline; Bracker, Steve; Carlson, Lynn; Churchwell, Ed; Clayton, Geoffrey; Cohen, Martin; Engelbracht, Charles; Fukui, Yasuo; Gorjian, Varoujan; Harris, Jason; Hony, Sacha; Hora, Joseph; Indebetouw, Remy; Israel, Frank; Kawamura, Akiko; Leroy, Adam; Li, Aigen; Madden, Suzanne; Markwick-Kemper, Ciska; Meade, Marilyn; Meixner, Margaret; Misselt, Karl; Mizuno, Norikazu; Mizuno, Akira; Muller, Erik; Oliveira, Joana; Olsen, Knut; Onishi, Toshikazu; Paladini, Roberta; Points, Sean; Reach, William; Robitaille, Thomas; Rubin, Douglas; Sandstrom, Karin; Sato, Shuji; Sewilo, Marta; Shibai, Hiroshi; Simon, Josh; Smith, Linda; Srinivasan, Sundar; Tielens, Xander; van Dyk, Schuyler; van Loon, Jacco; Vijh, Uma; Volk, Kevin; Whitney, Barbara; Zaritsky, Dennis

    2007-05-01

    The observable properties of galaxy evolution are largely driven by the life-cycle of baryonic matter: stars precipitate out of a complex, multi-phase interstellar medium; and eventually, evolved stellar populations return enriched material back to the ISM via stellar winds or supernova explosions. As demonstrated by the SAGE-LMC survey, comprehensive Spitzer imaging of a nearby galaxy provides an incredibly rich view of this baryonic lifecycle, allowing for an unprecedented understanding of the physical processes which drive galaxy evolution. This proposal will extend the SAGE analysis to the whole SMC (Bar, Wing, and high-density portion of the Magellanic Bridge), a galaxy whose properties are uniquely similar to those of star-forming galaxies at high redshift. Specifically, the SMC's metallicity is below the critical threshold (1/3-1/4 Z_sun) where interstellar medium properties are observed to change dramatically (sharp reduction in the PAH dust mass fraction, reduced dust-to-gas ratio, and extreme ultraviolet extinction curve variations). In addition, the SMC has been profoundly influenced by past interactions with the LMC and Milky Way, allowing us to study the impact of periodic interactions on the structure of the ISM and the physical processes of star formation. We will gain crucial insight into the ISM and star formation in a known tidal debris structure (Bridge portion of SMC), which has a metallicity 4 times lower than the rest of the SMC. When combined with observations of the Milky Way (GLIMPSE, MIPSGAL) and the LMC (SAGE-LMC), our survey of the SMC (SAGE-SMC) will provide a complete and detailed picture of the life-cycle of baryons in galactic environments spanning orders of magnitude in metallicity, and wide ranges in star formation history. This understanding will equip us to properly interpret the infrared properties of more distant galaxies, both in the local (e.g., SINGS) and high-redshift (e.g., GOODS and SWIRE) universe.

  2. The VIMOS Public Extragalactic Redshift Survey. Measuring the growth rate of structure around cosmic voids

    Science.gov (United States)

    Hawken, A. J.; Granett, B. R.; Iovino, A.; Guzzo, L.; Peacock, J. A.; de la Torre, S.; Garilli, B.; Bolzonella, M.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; Moscardini, L.; Percival, W. J.

    2017-11-01

    We aim to develop a novel methodology for measuring thegrowth rate of structure around cosmic voids. We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The cross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then de-projecting it we are able to estimate the un-distorted cross-correlation function. We propose that given a sufficiently well-measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields suggests that VIPERS is capable of measuring β, the ratio of the linear growth rate to the bias, with an error of around 25%. Applying our method to the VIPERS data, we find a value for the redshift space distortion parameter, β = 0.423-0.108+0.104 which, given the bias of the galaxy population we use, gives a linear growth rate of f σ8 = 0.296-0.078+0.075 at z = 0.727. These results are consistent with values observed in parallel VIPERS analyses that use standard techniques. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in

  3. Groups of galaxies. III. the CfA survey

    International Nuclear Information System (INIS)

    Geller, M.J.; Huchra, J.P.

    1983-01-01

    We present a statistically homogeneous group catalog (CfA) based on the CfA redshift survey (Huchra et al.). Groups in the catalog are all density enhancements in redshift space of a factor greater than 20. Group members are identified according to the procedure described in our previous study (Huchra and Geller) of a shallower whole-sky sample. All groups contain at least three members. Of the 176 groups in the CfA catalog, 102 have been identified in one or more previous studies. Because our algorithm searches for volume rather than surface density enhancements, the groups in a given region generally change only through the addition of fainter members when the magnitude limit of the galaxy catalog increases. In the region of overlap, agreement between our shallow catalog and the CfA catalog is excellent

  4. Early Growth and Efficient Accretion of Massive Black Holes at High Redshift

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2003-01-01

    Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates and the ......Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates...... and the lack of similarly large black-hole masses in the nearby Universe does not rule out their existence at high-z. However, AGN host galaxies do not typically appear fully formed or evolved at these early epochs. This supports scenarios in which black holes build up mass very fast in a radiatively...... inefficient (or obscured) phase relative to the stars in their galaxies. Additionally, upper envelopes of black-hole mass of approximately 10^{10} solar masses and bolometric luminosity of ~ 10^{48} erg/s are observed at all redshifts....

  5. ACTIVE GALACTIC NUCLEI AS MAIN CONTRIBUTORS TO THE ULTRAVIOLET IONIZING EMISSIVITY AT HIGH REDSHIFTS: PREDICTIONS FROM A Λ-CDM MODEL WITH LINKED AGN/GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.

    2012-01-01

    We have evaluated the contribution of the active galactic nuclei (AGN) population to the ionization history of the universe based on a semi-analytic model of galaxy formation and evolution in the cold dark matter cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self-consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs that are in good agreement with those derived from the observations especially at low and intermediate redshifts (z ∼ 3). At higher redshifts (z > 5), the model tends to overestimate the data at faint luminosities. Critical biases in both the data and in the model are discussed to explain such apparent discrepancies. The predicted hydrogen photoionization rate as a function of redshift is found to be consistent with that derived from the observations. All of the above suggests that we should reconsider the role of the AGNs as the main driver of the ionization history of the universe.

  6. THE REDSHIFT EVOLUTION OF OXYGEN AND NITROGEN ABUNDANCES IN EMISSION-LINE SDSS GALAXIES

    International Nuclear Information System (INIS)

    Thuan, Trinh X.; Pilyugin, Leonid S.; Zinchenko, Igor A.

    2010-01-01

    The oxygen and nitrogen abundance evolutions with redshift and galaxy stellar mass in emission-line galaxies from the Sloan Digital Sky Survey (SDSS) are investigated. This is the first such study for nitrogen abundances, and it provides an additional constraint for the study of the chemical evolution of galaxies. We have devised a criterion to recognize and exclude from consideration active galactic nuclei and star-forming galaxies with large errors in the line flux measurements. To select star-forming galaxies with accurate line fluxes measurements, we require that, for each galaxy, the nitrogen abundances derived with various calibrations based on different emission lines agree. Using this selection criterion, subsamples of star-forming SDSS galaxies have been extracted from catalogs of the Max-Planck-Institute for Astrophysics/Johns Hopkins University group. We found that the galaxies of highest masses, those with masses ∼>10 11.2 M sun , have not been enriched in both oxygen and nitrogen over the last ∼3 Gyr: they have formed their stars in the so distant past that these have returned their nucleosynthesis products to the interstellar medium before z = 0.25. The galaxies in the mass range from ∼10 11.0 M sun to ∼10 11.2 M sun do not show an appreciable enrichment in oxygen, but do show some enrichment in nitrogen: they also formed their stars before z = 0.25 but later in comparison to the galaxies of highest masses; these stars have not returned nitrogen to the interstellar medium before z = 0.25 because they have not had enough time to evolve. This suggests that stars with lifetimes of 2-3 Gyr, in the 1.5-2 M sun mass range, contribute to the nitrogen production. Finally, galaxies with masses ∼ 11 M sun show enrichment in both oxygen and nitrogen during the last 3 Gyr: they have undergone appreciable star formation and have converted up to ∼20% of their mass into stars over this period. Both oxygen and nitrogen enrichments increase with decreasing

  7. ALFAZOA Deep HI Survey to Identify Galaxies in the ZOA 37° ≦ l ≦ 43° and -2.5° ≦ b ≦ 3°

    Science.gov (United States)

    Palencia, Kelby; Robert Minchin, Monica Sanchez, Patricia Henning , Rhys Taylor

    2018-01-01

    The area where the galaxy lies, as viewed from the solar system, is called the Zone of Avoidance (ZOA). Due to extinction and confusion in the ZOA sources behind it appear to be blocked. This project is working with data from the Arecibo ALFAZOA Deep survey to identify galaxies in the ZOA amid 37° ≦ l ≦ 43° and -2.5° ≦ b ≦ 3° . The ALFAZOA Deep surveyed a part of the inner galaxy for the first time in the ZOA. The ALFAZOA Deep survey is a more sensitive survey than the previous survey the ALFAZOA Shallow. FRELLED and Miriad were used to identify and analyze the data in this region. With the data 57 sources where identified. Within these 57 sources, 51 were galaxies, which 3 were previously discovered galaxies; leaving 48 as new galaxies. The other 6 remaining sources from the 57, were follow-up sources. Two groups of galaxies were also identified, one lies around 1,500-3,200 km/s and the other between 10,600-11,700 km/s in redshift. The sources from the group in 10,600-11,700 km/s in redshift also need a follow up as they lie near the spectrum where the receiver signal starts to weaken.

  8. A MULTI-WAVELENGTH STUDY OF LOW-REDSHIFT CLUSTERS OF GALAXIES. II. ENVIRONMENTAL IMPACT ON GALAXY GROWTH

    International Nuclear Information System (INIS)

    Atlee, David W.; Martini, Paul

    2012-01-01

    Galaxy clusters provide powerful laboratories for the study of galaxy evolution, particularly the origin of correlations of morphology and star formation rate (SFR) with density. We construct visible to MIR spectral energy distributions of galaxies in eight low-redshift (z * (>99% confidence) with no dependence on R/R 200 or projected local density at fixed mass. A merged sample of galaxies from the five best measured clusters shows (SFR)∝(R/R 200 ) 1.1±0.3 for galaxies with R/R 200 ≤ 0.4. A decline in the fraction of SFGs toward the cluster center contributes most of this effect, but it is accompanied by a reduction in (SFR) for SFGs with R ≤ 0.1 R 200 . The increase in the fraction of SFGs toward larger R/R 200 and the isolation of SFGs with reduced SFRs near the cluster center are consistent with the truncation of star formation by ram-pressure stripping, as is the tendency for more massive SFGs to have higher SFRs. We conclude that stripping is more likely than slower processes to drive the properties of SFGs with R 200 in clusters. We also find that galaxies near the cluster center are more massive than galaxies farther out in the cluster at ∼3.5σ, which suggests that dynamical relaxation significantly impacts the distribution of cluster galaxies as the clusters evolve.

  9. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  10. THE SLOAN DIGITAL SKY SURVEY CO-ADD: CROSS-CORRELATION WEAK LENSING AND TOMOGRAPHY OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Simet, Melanie; Dodelson, Scott; Kubo, Jeffrey M.; Annis, James T.; Hao Jiangang; Johnston, David; Lin, Huan; Soares-Santos, Marcelle; Reis, Ribamar R. R.; Seo, Hee-Jong

    2012-01-01

    The shapes of distant galaxies are sheared by intervening galaxy clusters. We examine this effect in Stripe 82, a 275 deg 2 region observed multiple times in the Sloan Digital Sky Survey (SDSS) and co-added to achieve greater depth. We obtain a mass-richness calibration that is similar to other SDSS analyses, demonstrating that the co-addition process did not adversely affect the lensing signal. We also propose a new parameterization of the effect of tomography on the cluster lensing signal which does not require binning in redshift, and we show that using this parameterization we can detect tomography for stacked clusters at varying redshifts. Finally, due to the sensitivity of the tomographic detection to accurately marginalize over the effect of the cluster mass, we show that tomography at low redshift (where dependence on exact cosmological models is weak) can be used to constrain mass profiles in clusters.

  11. Statistical issues in galaxy cluster cosmology

    DEFF Research Database (Denmark)

    Mantz, Adam; Allen, Steven W.; Rapetti Serra, David Angelo

    2013-01-01

    The number and growth of massive galaxy clusters is a sensitive probe of cosmological structure formation and dark energy. Surveys at various wavelengths can detect clusters to high redshift, but the fact that cluster mass is not directly observable complicates matters, requiring us to simultaneo...

  12. Evolution of the clustering of photometrically selected SDSS galaxies

    OpenAIRE

    Ross, Ashley; Percival, Will; Brunner, R.

    2010-01-01

    We measure the angular auto-correlation functions, ω(θ), of Sloan Digital Sky Survey (SDSS) galaxies selected to have photometric redshifts 0.1 < z < 0.4 and absolute r-band magnitudes Mr < −21.2. We split these galaxies into five overlapping redshift shells of width 0.1 and measure ω(θ) in each subsample in order to investigate the evolution of SDSS galaxies. We find that the bias increases substantially with redshift – much more so than one would expect for a passively evolving sample. We u...

  13. Active galactic nuclei emission line diagnostics and the mass-metallicity relation up to redshift z ∼ 2: The impact of selection effects and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele; Elbaz, David; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc' h, Émeric; Pannella, Maurilio; Schreiber, Corentin [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Charlot, Stéphane; Lehnert, M. D.; Pacifici, Camilla [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, F-75014 Paris (France); Trump, Jonathan R. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Brinchmann, Jarle [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Dickinson, Mark, E-mail: stephanie.juneau@cea.fr [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2014-06-10

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  14. Active galactic nuclei emission line diagnostics and the mass-metallicity relation up to redshift z ∼ 2: The impact of selection effects and evolution

    International Nuclear Information System (INIS)

    Juneau, Stéphanie; Bournaud, Frédéric; Daddi, Emanuele; Elbaz, David; Duc, Pierre-Alain; Gobat, Raphael; Jean-Baptiste, Ingrid; Le Floc'h, Émeric; Pannella, Maurilio; Schreiber, Corentin; Charlot, Stéphane; Lehnert, M. D.; Pacifici, Camilla; Trump, Jonathan R.; Brinchmann, Jarle; Dickinson, Mark

    2014-01-01

    Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish active galactic nuclei (AGN) from purely star-forming galaxies. However, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z ∼ 0 reference sample built from ∼300,000 Sloan Digital Sky Survey galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z ∼ 1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal interstellar medium (ISM) properties out to z ∼ 1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies and may be more important starting at z ≳ 2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams and the MZ relation as a function of emission line luminosity limits is made publicly available.

  15. The Close AGN Reference Survey (CARS)

    Science.gov (United States)

    Husemann, B.; Tremblay, G.; Davis, T.; Busch, G.; McElroy, R.; Neumann, J.; Urrutia, T.; Krumpe, M.; Scharwächter, J.; Powell, M.; Perez-Torres, M.; The CARS Team

    2017-09-01

    The role of active galactic nuclei (AGN) in the evolution of galaxies remains a mystery. The energy released by these accreting supermassive black holes can vastly exceed the entire binding energy of their host galaxies, yet it remains unclear how this energy is dissipated throughout the galaxy, and how that might couple to the galaxy's evolution. The Close AGN Reference Survey (CARS) is a multi-wavelength survey of a representative sample of luminous Type I AGN at redshifts 0.01 connection. These AGN are more luminous than very nearby AGN but are still close enough for spatially resolved mapping at sub-kpc scales with various state- of-the art facilities and instruments, such as VLT-MUSE, ALMA, JVLA, Chandra, SOFIA, and many more. In this article we showcase the power of CARS with examples of a multi-phase AGN outflow, diverse views on star formation activity and a unique changing-look AGN. CARS will provide an essential low-redshift reference sample for ongoing and forthcoming AGN surveys at high redshift.

  16. Automated reliability assessment for spectroscopic redshift measurements

    Science.gov (United States)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  17. HIGH-REDSHIFT DUST OBSCURED GALAXIES: A MORPHOLOGY-SPECTRAL ENERGY DISTRIBUTION CONNECTION REVEALED BY KECK ADAPTIVE OPTICS

    International Nuclear Information System (INIS)

    Melbourne, J.; Matthews, K.; Soifer, B. T.

    2009-01-01

    A simple optical to mid-IR color selection, R - [24]>14, i.e., f ν (24 μm)/f ν (R) ∼> 1000, identifies highly dust obscured galaxies (DOGs) with typical redshifts of z ∼ 2 ± 0.5. Extreme mid-IR luminosities (L IR > 10 12-14 ) suggest that DOGs are powered by a combination of active galactic nuclei (AGNs) and star formation, possibly driven by mergers. In an effort to compare their photometric properties with their rest-frame optical morphologies, we obtained high-spatial resolution (0.''05-0.''1) Keck Adaptive Optics K'-band images of 15 DOGs. The images reveal a wide range of morphologies, including small exponential disks (eight of 15), small ellipticals (four of 15), and unresolved sources (two of 15). One particularly diffuse source could not be classified because of low signal-to-noise ratio. We find a statistically significant correlation between galaxy concentration and mid-IR luminosity, with the most luminous DOGs exhibiting higher concentration and smaller physical size. DOGs with high concentration also tend to have spectral energy distributions (SEDs) suggestive of AGN activity. Thus, central AGN light may be biasing the morphologies of the more luminous DOGs to higher concentration. Conversely, more diffuse DOGs tend to show an SED shape suggestive of star formation. Two of 15 in the sample show multiple resolved components with separations of ∼1 kpc, circumstantial evidence for ongoing mergers.

  18. The Data Reduction Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey

    Science.gov (United States)

    Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D'Souza, Richard; Fu, Hai; Jones, Amy; Kauffmann, Guinevere; MacDonald, Nicholas; Masters, Karen L.; Newman, Jeffrey A.; Parejko, John K.; Sánchez-Gallego, José R.; Sánchez, Sebastian F.; Schlegel, David J.; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Zhang, Kai

    2016-10-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 Å and an average footprint of ˜500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ˜100 million raw-frame spectra and ˜10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ˜8500 Å and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.

  19. THE DATA REDUCTION PIPELINE FOR THE SDSS-IV MaNGA IFU GALAXY SURVEY

    International Nuclear Information System (INIS)

    Law, David R.; Cherinka, Brian; Yan, Renbin; Andrews, Brett H.; Bershady, Matthew A.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Bolton, Adam S.; Brownstein, Joel R.; Bundy, Kevin; Chen, Yanmei; Drory, Niv; D’Souza, Richard; Jones, Amy; Kauffmann, Guinevere; Fu, Hai

    2016-01-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622–10354 Å and an average footprint of ∼500 arcsec 2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ∼100 million raw-frame spectra and ∼10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ∼8500 Å and reach a typical 10 σ limiting continuum surface brightness μ  = 23.5 AB arcsec −2 in a five-arcsecond-diameter aperture in the g -band. The wavelength calibration of the MaNGA data is accurate to 5 km s −1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ  = 72 km s −1 .

  20. The SAGES Legacy Unifying Globulars and Galaxies survey (SLUGGS): sample definition, methods, and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Jean P.; Romanowsky, Aaron J.; Jennings, Zachary G.; Pota, Vincenzo; Kader, Justin; Roediger, Joel C.; Villaume, Alexa; Arnold, Jacob A.; Woodley, Kristin A. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Forbes, Duncan A.; Pastorello, Nicola; Usher, Christopher; Blom, Christina; Kartha, Sreeja S. [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Foster, Caroline; Spitler, Lee R., E-mail: jbrodie@ucsc.edu [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia)

    2014-11-20

    We introduce and provide the scientific motivation for a wide-field photometric and spectroscopic chemodynamical survey of nearby early-type galaxies (ETGs) and their globular cluster (GC) systems. The SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey is being carried out primarily with Subaru/Suprime-Cam and Keck/DEIMOS. The former provides deep gri imaging over a 900 arcmin{sup 2} field-of-view to characterize GC and host galaxy colors and spatial distributions, and to identify spectroscopic targets. The NIR Ca II triplet provides GC line-of-sight velocities and metallicities out to typically ∼8 R {sub e}, and to ∼15 R {sub e} in some cases. New techniques to extract integrated stellar kinematics and metallicities to large radii (∼2-3 R {sub e}) are used in concert with GC data to create two-dimensional (2D) velocity and metallicity maps for comparison with simulations of galaxy formation. The advantages of SLUGGS compared with other, complementary, 2D-chemodynamical surveys are its superior velocity resolution, radial extent, and multiple halo tracers. We describe the sample of 25 nearby ETGs, the selection criteria for galaxies and GCs, the observing strategies, the data reduction techniques, and modeling methods. The survey observations are nearly complete and more than 30 papers have so far been published using SLUGGS data. Here we summarize some initial results, including signatures of two-phase galaxy assembly, evidence for GC metallicity bimodality, and a novel framework for the formation of extended star clusters and ultracompact dwarfs. An integrated overview of current chemodynamical constraints on GC systems points to separate, in situ formation modes at high redshifts for metal-poor and metal-rich GCs.

  1. The Impact of JWST Broadband Filter Choice on Photometric Redshift Estimation

    DEFF Research Database (Denmark)

    Bisigello, L.; Caputi, K. I.; Colina, L.

    2016-01-01

    The determination of galaxy redshifts in the James Webb Space Telescope's (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6–5.0 μm and Mid Infrared Instrument (MIRI) at λ 5.0 μm. In this work we analyze...... the impact of choosing different combinations of NIRCam and MIRI broadband filters (F070W to F770W), as well as having ancillary data at λ 0.6 μm, on the derived photometric redshifts (z phot) of a total of 5921 real and simulated galaxies, with known input redshifts z = 0–10....

  2. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, D.; Sugiyama, N. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Kajisawa, M. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Koekemoer, A. M., E-mail: daichi@nagoya-u.jp [HST and JWST Instruments/Science Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-11-01

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.

  3. Galaxy at a redshift of 3.215 - further studies of the PKS 1614+051 system

    International Nuclear Information System (INIS)

    Djorgovski, S.; Strauss, M.A.; Spinrad, H.; Mccarthy, P.; Perley, R.A.; California Univ., Berkeley; National Radio Astronomy Observatory, Charlottesville, VA)

    1987-01-01

    A narrow-emission-line companion of the quasar PKS 1614+051 was reported earlier as a probable galaxy at a redshift of 3.218, which would have made it by far the most distant galaxy known at the time. New radio and optical imaging, and optical and near-IR spectroscopy of the PKS 1614+051 system is reported here. It is argued that the data support and reinforce the original interpretation of the companion object as a mildly active galaxy, possibly a marginal Seyfert 2. The object has a detectable and marginally resolved optical continuum, but was not detected at radio wavelengths. The ionization state is low, and the emission lines are fairly narrow. The improved redshift for the companion, based on the Ly-alpha line alone, is 3.215 + or - 0.002. New Ly-alpha images show interesting morphology of extended emission-line gas, suggestive of a possible tidal interaction with the neighboring QSO. 24 references

  4. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    International Nuclear Information System (INIS)

    Pérez-González, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Víctor; Cardiel, Nicolás; Espino, Néstor; Gallego, Jesús; Ferreras, Ignacio; Rodríguez-Espinosa, José Miguel; Balcells, Marc; Cepa, Jordi; Alonso-Herrero, Almudena; Cenarro, Javier; Charlot, Stéphane; Cimatti, Andrea; Conselice, Christopher J.; Daddi, Emmanuele; Elbaz, David; Donley, Jennifer; Gobat, R.

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin 2 at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R ∼ 50). The data reach an AB magnitude of 26.5 (at least at a 3σ level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z ∼< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at z = 1.0-1.4 are well

  5. SHARDS: AN OPTICAL SPECTRO-PHOTOMETRIC SURVEY OF DISTANT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gonzalez, Pablo G.; Cava, Antonio; Barro, Guillermo; Villar, Victor; Cardiel, Nicolas; Espino, Nestor; Gallego, Jesus [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ferreras, Ignacio [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Rodriguez-Espinosa, Jose Miguel; Balcells, Marc; Cepa, Jordi [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Alonso-Herrero, Almudena [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander (Spain); Cenarro, Javier [Centro de Estudios de Fisica del Cosmos de Aragon, Plaza San Juan 1, Planta 2, E-44001 Teruel (Spain); Charlot, Stephane [Institut d' Astrophysique de Paris, CNRS, Universite Pierre and Marie Curie, UMR 7095, 98bis bd Arago, F-75014 Paris (France); Cimatti, Andrea [Dipartimento di Astronomia, Universita degli Studi di Bologna, I-40127 Bologna (Italy); Conselice, Christopher J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Daddi, Emmanuele; Elbaz, David [CEA, Laboratoire AIM, Irfu/SAp, F-91191 Gif-sur-Yvette (France); Donley, Jennifer [Los Alamos National Laboratory, Los Alamos, NM (United States); Gobat, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); and others

    2013-01-01

    We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out using the OSIRIS instrument on the 10.4 m Gran Telescopio Canarias (GTC). SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field covering 130 arcmin{sup 2} at wavelengths between 500 and 950 nm with 24 contiguous medium-band filters (providing a spectral resolution R {approx} 50). The data reach an AB magnitude of 26.5 (at least at a 3{sigma} level) with sub-arcsec seeing in all bands. SHARDS' main goal is to obtain accurate physical properties of intermediate- and high-z galaxies using well-sampled optical spectral energy distributions (SEDs) with sufficient spectral resolution to measure absorption and emission features, whose analysis will provide reliable stellar population and active galactic nucleus (AGN) parameters. Among the different populations of high-z galaxies, SHARDS' principal targets are massive quiescent galaxies at z > 1, whose existence is one of the major challenges facing current hierarchical models of galaxy formation. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures which should be applied to the GTC/OSIRIS data. An assessment of the SHARDS data quality is also performed. We present science demonstration results on the detection and study of emission-line galaxies (star-forming objects and AGNs) at z = 0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies with spectroscopic redshifts in the range 1.0 < z {approx}< 1.4. We discuss the improvements introduced by the SHARDS data set in the analysis of their star formation history and stellar properties. We discuss the systematics arising from the use of different stellar population libraries, typical in this kind of study. Averaging the results from the different libraries, we find that the UV-to-MIR SEDs of the massive quiescent galaxies at

  6. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  7. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    International Nuclear Information System (INIS)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim; Retzlaff, Jörg; Meisenheimer, Klaus; Schartel, Norbert

    2017-01-01

    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10 −12 erg s −1 cm −2 (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ 8 and Ω m , yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

  8. The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results

    Energy Technology Data Exchange (ETDEWEB)

    Böhringer, Hans; Chon, Gayoung; Trümper, Joachim [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching (Germany); Retzlaff, Jörg [ESO, D-85748 Garching (Germany); Meisenheimer, Klaus [Max-Planck-Institut für Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schartel, Norbert [ESAC, Camino Bajo del Castillo, Villanueva de la Cañada, E-28692 Madrid (Spain)

    2017-05-01

    As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10{sup −12} erg s{sup −1} cm{sup −2} (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z  = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ {sub 8} and Ω{sub m}, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.

  9. Cold Dark Matter Cosmogony with Hydrodynamics and Galaxy Formation: Galaxy Properties at Redshift Zero

    Science.gov (United States)

    Cen, Renyue; Ostriker, Jeremiah P.

    1993-11-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe, to include not only the dynamics of dark matter (with a standard PM code) and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell, the gas is Jeans-unstable, collapsing and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. We study two representative boxes with sizes L = (80, 8) h-1 Mpc, in both cases utilizing a mesh of 2003 cells containing 2003 dark matter particles and having nominal resolutions of (400, 40) h-1 kpc, respectively, with true resolution approximately 2.5 times worse. We adopt the standard cold dark matter (CDM) perturbation spectrum with an amplitude of σ8 ≡ = (δM/M)rms,8 = 0.77, a compromise between the COBE normalization σ8 = 1.05 and that indicated by the small-scale velocity dispersion (perhaps σ8 = 0.45). We find a mass function which is similar to that observed. There is a strong correlation between galactic age and environment. Identifying the oldest fraction with elliptical and 50 galaxies, we find a density morphology relation of the same type as is observed as well as a correlation between gas mass/total mass ratio and morphology that is similar to observations. In addition, we find that low-mass galaxies contain relatively more dark matter than giants. We present analytic fits to our derived results for "bias," the dependence of ρgal/ on ρtot/. Spatial structures resemble quantitatively those seen in redshift surveys, with galaxies concentrated in clusters and on filaments (or sheets) which surround quite empty voids. The void probability statistics indicate that this model is consistent with magnitude-limited real data. The small-scale velocity field is too large compared with the observed velocity correlation function

  10. GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Liyi [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands); Wen, Zhonglue [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Gandhi, Poshak [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Inada, Naohisa [Department of Physics, Nara National College of Technology, Yamatokohriyama, Nara 639-1080 (Japan); Kawaharada, Madoka [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Kodama, Tadayuki [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Konami, Saori [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Nakazawa, Kazuhiro; Makishima, Kazuo [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Xu, Haiguang [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240 (China)

    2016-07-20

    To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.

  11. Photometric redshift estimation via deep learning. Generalized and pre-classification-less, image based, fully probabilistic redshifts

    Science.gov (United States)

    D'Isanto, A.; Polsterer, K. L.

    2018-01-01

    Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.

  12. High Resolution Studies Of Lensed z ∼ 2 Galaxies: Kinematics And Metal Gradients

    Science.gov (United States)

    Leethochawalit, Nicha

    2016-09-01

    We use the OSIRIS integral field unit (IFU) spectograph to secure spatially-resolved strong emission lines of 15 gravitationally-lensed star-forming galaxies at redshift z ∼ 2. With the aid of gravitational lensing and Keck laser-assisted adaptive optics, the spatial resolution of these sub-luminous galaxies is at a few hundred parsecs. First, we demonstrate that high spatial resolution is crucial in diagnosing the kinematic properties and dynamical maturity of z ∼ 2 galaxies. We observe a significantly lower fraction of rotationally-supported systems than what has been claimed in lower spatial resolution surveys. Second, we find a much larger fraction of z ∼ 2 galaxies with weak metallicity gradients, contrary to the simple picture suggested by earlier studies that well-ordered rotation develops concurrently with established steep metal gradients in all but merging systems. Comparing our observations with the predictions of hydronamical simulations, strong feedback is likely to play a key role in flattening metal gradients in early star-forming galaxies.

  13. ON THE REDSHIFT EVOLUTION OF THE Lyα ESCAPE FRACTION AND THE DUST CONTENT OF GALAXIES

    International Nuclear Information System (INIS)

    Hayes, Matthew; Schaerer, Daniel; Oestlin, Goeran; Mas-Hesse, J. Miguel; Atek, Hakim; Kunth, Daniel

    2011-01-01

    The Lyα emission line has been proven to be a powerful tool for studying evolving galaxies at the highest redshift. However, in order to use Lyα as a physical probe of galaxies, it becomes vital to know the Lyα escape fraction (f Lyα esc ). Unfortunately, due to the resonant nature of Lyα, f Lyα esc may vary unpredictably and requires empirical measurement. Here, we compile Lyα luminosity functions (LFs) between redshifts z = 0 and 8 and, combined with Hα and ultraviolet data, assess how f Lyα esc evolves with redshift. We find a strong upward evolution in f Lyα esc over the range z = 0.3-6, which is well fit by the power law f Lyα esc ∝(1 + z) ξ with ξ = (2.57 +0.19 -0.12 ). This predicts that f Lyα esc should reach unity at z = 11.1. By comparing f Lyα esc and E B-V in individual galaxies we derive an empirical relationship between f Lyα esc and E B-V , which includes resonance scattering and can explain the redshift evolution of f Lyα esc between z = 0 and 6 purely as a function of the evolution in the dust content of galaxies. Beyond z ∼ 6.5, f Lyα esc drops more substantially, an effect attributed to either ionizing photon leakage, or an increase in the neutral gas fraction of the intergalactic medium. While distinguishing between these two scenarios may be extremely challenging, by framing the problem this way we remove the uncertainty of the halo mass from Lyα-based tests of reionization. We finally derive a new method by which to estimate the dust content of galaxies, based purely upon the observed Lyα and UV LFs. These data are characterized by an exponential with an e-folding scale of z EBV ∼ 3.4.

  14. Bright Strongly Lensed Galaxies at Redshift z ~ 6-7 behind the Clusters Abell 1703 and CL0024+16

    Science.gov (United States)

    Zheng, W.; Bradley, L. D.; Bouwens, R. J.; Ford, H. C.; Illingworth, G. D.; Benítez, N.; Broadhurst, T.; Frye, B.; Infante, L.; Jee, M. J.; Motta, V.; Shu, X. W.; Zitrin, A.

    2009-06-01

    We report on the discovery of three bright, strongly lensed objects behind Abell 1703 and CL0024+16 from a dropout search over 25 arcmin2 of deep NICMOS data, with deep ACS optical coverage. They are undetected in the deep ACS images below 8500 Å and have clear detections in the J and H bands. Fits to the ACS, NICMOS, and IRAC data yield robust photometric redshifts in the range z ~ 6-7 and largely rule out the possibility that they are low-redshift interlopers. All three objects are extended, and resolved into a pair of bright knots. The bright i-band dropout in Abell 1703 has an H-band AB magnitude of 23.9, which makes it one of the brightest known galaxy candidates at z > 5.5. Our model fits suggest a young, massive galaxy only ~60 million years old with a mass of ~1010 M sun. The dropout galaxy candidates behind CL0024+16 are separated by 2farcs5 (~2 kpc in the source plane), and have H-band AB magnitudes of 25.0 and 25.6. Lensing models of CL0024+16 suggest that the objects have comparable intrinsic magnitudes of AB ~27.3, approximately one magnitude fainter than L* at z ~ 6.5. Their similar redshifts, spectral energy distribution, and luminosities, coupled with their very close proximity on the sky, suggest that they are spatially associated, and plausibly are physically bound. Combining this sample with two previously reported, similarly magnified galaxy candidates at z ~ 6-8, we find that complex systems with dual nuclei may be a common feature of high-redshift galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities of Research in Astronomy, Inc., under NASA contract NAS5-26555, and at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle

  15. A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field

    Science.gov (United States)

    Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2007-12-01

    We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.

  16. HIGH-n HYDROGEN RECOMBINATION LINES FROM THE FIRST GALAXIES

    International Nuclear Information System (INIS)

    Rule, E.; Loeb, A.; Strelnitski, V. S.

    2013-01-01

    We investigate the prospects of blind and targeted searches in the radio domain (10 MHz to 1 THz) for high-n hydrogen recombination lines from the first generation of galaxies, at z ∼ 4 km s –1 , allow us to assess the blind search time necessary for detection by a given facility. We show that the chances for detection are the highest in the millimeter and submillimeter domains, but finding spontaneous emission in a blind search, especially from redshifts z >> 1, is a challenge even with powerful facilities, such as the Actama Large Millimeter/Submillimeter Array and Square Kilometre Array. The probability of success is higher for a targeted search of lines with principal quantum number n ∼ 10 in Lyman-break galaxies amplified by gravitational lensing. Detection of more than one hydrogen line in such a galaxy will allow for line identification and a precise determination of the galaxy's redshift

  17. GALAXY ENVIRONMENTS OVER COSMIC TIME: THE NON-EVOLVING RADIAL GALAXY DISTRIBUTIONS AROUND MASSIVE GALAXIES SINCE z = 1.6

    International Nuclear Information System (INIS)

    Tal, Tomer; Van Dokkum, Pieter G.; Leja, Joel; Franx, Marijn; Wake, David A.; Whitaker, Katherine E.

    2013-01-01

    We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmic flows and cosmic web from luminous red galaxies

    Science.gov (United States)

    Ata, Metin; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Angulo, Raul E.; Ferraro, Simone; Gil-Marín, Hector; McDonald, Patrick; Hernández Monteagudo, Carlos; Müller, Volker; Yepes, Gustavo; Autefage, Mathieu; Baumgarten, Falk; Beutler, Florian; Brownstein, Joel R.; Burden, Angela; Eisenstein, Daniel J.; Guo, Hong; Ho, Shirley; McBride, Cameron; Neyrinck, Mark; Olmstead, Matthew D.; Padmanabhan, Nikhil; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Sánchez, Ariel G.; Schlegel, David; Schneider, Donald P.; Seo, Hee-Jong; Streblyanska, Alina; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana

    2017-06-01

    We present a Bayesian phase-space reconstruction of the cosmic large-scale matter density and velocity fields from the Sloan Digital Sky Survey-III Baryon Oscillations Spectroscopic Survey Data Release 12 CMASS galaxy clustering catalogue. We rely on a given Λ cold dark matter cosmology, a mesh resolution in the range of 6-10 h-1 Mpc, and a lognormal-Poisson model with a redshift-dependent non-linear bias. The bias parameters are derived from the data and a general renormalized perturbation theory approach. We use combined Gibbs and Hamiltonian sampling, implemented in the argo code, to iteratively reconstruct the dark matter density field and the coherent peculiar velocities of individual galaxies, correcting hereby for coherent redshift space distortions. Our tests relying on accurate N-body-based mock galaxy catalogues show unbiased real space power spectra of the non-linear density field up to k ˜ 0.2 h Mpc-1, and vanishing quadrupoles down to r ˜ 20 h-1 Mpc. We also demonstrate that the non-linear cosmic web can be obtained from the tidal field tensor based on the Gaussian component of the reconstructed density field. We find that the reconstructed velocities have a statistical correlation coefficient compared to the true velocities of each individual light-cone mock galaxy of r ˜ 0.68 including about 10 per cent of satellite galaxies with virial motions (about r = 0.75 without satellites). The power spectra of the velocity divergence agree well with theoretical predictions up to k ˜ 0.2 h Mpc-1. This work will be especially useful to improve, for example, baryon acoustic oscillation reconstructions, kinematic Sunyaev-Zeldovich, integrated Sachs-Wolfe measurements or environmental studies.

  19. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  20. RX J1759.4+6638: An x-ray selected quasars at a redshift of 4.320

    Science.gov (United States)

    Henry, J. P.; Gioia, I. M.; Boehringer, H.; Bower, R. G.; Briel, U. G.; Hasinger, G. H.; Aragon-Salamanca, A.; Castander, F. J.; Ellis, R. S.; Huchra, J. P.

    1994-01-01

    We report the discovery of an x-ray selected Quasi-Stellar Objects (QSO) at a redshift of 4.320 +/- 0.005. This is the most distant x-ray selected object known, and it is the eighth most distant QSO known. The properties of this QSO are very similar to other QSOs at redshifts greater than 4. The x-ray discovery of this object, and that of high redshift clusters of galaxies, shows that present x-ray surveys are reaching depths competitive with other methods.