WorldWideScience

Sample records for high-quality polycrystalline specimens

  1. Monokinetic electron backsttering from amorphous or polycrystalline specimens

    International Nuclear Information System (INIS)

    Ahmed, H.E.D.H.

    1983-06-01

    We have considered the interaction of electrons with thin amorphous specimens: one part of these electrons is transmitted through the substance, the other being backscattered. This last phenomena, which is not perfectly understood, has been studied in the energy range from 0.3 to 3 MeV. First this work deals with the realization of a fully automatic apparatus which has been adapted to the column of the 3 MeV electron microscope of the HVFM laboratory in Toulouse. The variation of the transmission and backscattering coefficients, for amorphous and polycrystalline specimens, is determined. From this coefficient the electron range in this substance can be deduced. In addition the experimental results can be used to understand the image contrast in scanning electron microscopy. A short presentation of the cross-section, introduces the theoretical study of Monte-Carlo calculation. The Monte-Carlo calculation is used to take into account all elementary processus, which take place during electron scattering [fr

  2. Growth of high-quality CuInSe sub 2 polycrystalline films by magnetron sputtering and vacuum selenization

    CERN Document Server

    Xie Da Tao; Wang Li; Zhu Feng; Quan Sheng Wen; Meng Tie Jun; Zhang Bao Cheng; Chen J

    2002-01-01

    High-quality CuInSe sub 2 thin films have been prepared using a two stages process. Cu and In were co-deposited onto glass substrates by magnetron sputtering method to produce a predominant Cu sub 1 sub 1 In sub 9 phase. The alloy films were selenised and annealed in vacuum at different temperature in the range of 200-500 degree C using elemental selenium in a closed graphite box. X-ray diffraction and scanning electron microscopy were used to characterize the films. It is found that the polycrystalline and single-phase CuInSe sub 2 films were uniform and densely packed with a grain size of about 3.0 mu m

  3. Zeeman perturbed nuclear quadrupole spin echo envelope modulations for spin 3/2 nuclei in polycrystalline specimens

    Science.gov (United States)

    Ramachandran, R.; Narasimhan, P. T.

    The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.

  4. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    Science.gov (United States)

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  5. High-quality graphene grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition and its electrical transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, He; Shen, Chengmin, E-mail: cmshen@iphy.ac.cn; Tian, Yuan; Bao, Lihong; Chen, Peng; Yang, Rong; Yang, Tianzhong; Li, Junjie; Gu, Changzhi; Gao, Hong-Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-08

    High-quality continuous uniform monolayer graphene was grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition. The morphology of graphene was investigated by Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. Analysis results confirm that high quality single-layer graphene was fabricated on PtRh{sub 20} foil at 1050 °C using a lower flux of methane under low pressure. Graphene films were transferred onto the SiO{sub 2}/Si substrate by the bubbling transfer method. The mobility of a test field effect transistor made of the graphene grown on PtRh{sub 20} was measured and reckoned at room temperature, showing that the carrier mobility was about 4000 cm{sup 2} V{sup −1} s{sup −1}. The results indicate that desired quality of single-layer graphene grown on PtRh{sub 20} foils can be obtained by tuning reaction conditions.

  6. Overcoming challenges to the formation of high-quality polycrystalline TiO{sub 2}:Ta transparent conducting films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, M.; Cornelius, S.; Fiedler, J. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); Gebel, T.; Liepack, H. [DTF Technology GmbH, 01108 Dresden (Germany); Kolitsch, A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); HZDR Innovation GmbH, 01328 Dresden (Germany); Vinnichenko, M. [Fraunhofer-Institut für Keramische Technologien und Systeme, 01277 Dresden (Germany)

    2013-08-28

    The work is focused on understanding the physical processes responsible for the modification of the structure, electrical and optical properties of polycrystalline TiO{sub 2}:Ta films formed by annealing of initially amorphous films grown by direct current magnetron sputtering of electrically conductive ceramic targets. It is shown that fine tuning of the oxygen content during deposition of amorphous TiO{sub 2}:Ta films is critical to achieving low resistivity and high optical transmittance after annealing. Increasing the total pressure during magnetron sputter deposition is shown to decrease the sensitivity of the annealed films to the oxygen flow variation during deposition of the initially amorphous layers. Polycrystalline anatase TiO{sub 2}:Ta films of low electrical resistivity (ρ{sub H} = 1.5 × 10{sup −3}Ω cm), high free electron mobility (μ{sub H} = 8 cm{sup 2}/Vs), and low extinction (k{sub 550nm} = 0.006) are obtained in this way at a total pressure of 2 Pa. The dependence of the polycrystalline film electrical properties on the oxygen content is discussed in terms of Ta dopant electrical activation/deactivation taking into account the formation of compensating defects at different oxygen pressures. The temperature-dependent transport of the polycrystalline anatase TiO{sub 2}:Ta films is investigated showing the dominant role of the optical phonon scattering in the case of films with an optimum Ti/O ratio.

  7. Influence of specimen size and grain orientation to the life of a polycrystalline Ni-base alloy at LCF stress

    International Nuclear Information System (INIS)

    Seibel, Thomas

    2014-01-01

    In the present work the LCF (Low Cycle Fatigue) crack initiation life of the conventionally cast Ni-base alloy RENE 80 was analyzed as a function of specimen size and grain orientation. Five specimen geometries with distinctly different gauge sections were used: 3 geometries with cylindrical gauge section (G1-G3) and two notched geometries with a stress concentration factor of α 1 = 1,62 (KG1) and α 2 = 2,60 (KG2), resulting in a maximum difference of the damage relevant surface area up to a factor of approximately 72. Correction factors were determined by FEM calculations for all specimen geometries with highly reduced gauge sections where direct strain measurement was not possible. Additionally a uniform failure criterion with a relatively small crack size of 0,962 mm 2 was defined. Totally, 116 isothermal LCF tests were carried out at the different specimen types at a temperature of 850 C in total strain control with a load ratio (minimum strain / maximum strain) of R ε = -1. The load cycles were applied with triangular waveform at a frequency of 0.1 Hz for high strain amplitudes and 1 Hz for low strain amplitudes, respectively. After the LCF-Tests the fracture surfaces of all samples were analyzed in more detail by SEM to identify the crack initiation mechanisms as well as the crack initiation sites. In this context it could be shown, that fatigue cracks were generally initiated at slip bands in surface grains. Accordingly, the grain orientations at the crack initiation sites were measured by electron back scatter diffraction (EBSD) and the maximum shear stresses in the respective principal slip system (111) <110> was calculated using the Schmid approach. For this, longitudinal sections were be prepared exactly at the crack initiation sites of samples loaded with low strain amplitudes where clearly defined single crack initiation sites were observed. Afterwards the maximum shear stress in the principal slip system at the crack initiation site was correlated

  8. Polycrystalline strengthening

    DEFF Research Database (Denmark)

    Hansen, Niels

    1985-01-01

    for the understanding of polycrystalline strengthening is obtained mainly from surface relief patterns and from bulk structures observed by transmission electron microscopy of thin foils. The results obtained by these methods are discussed and correlations are proposed. A number of features characterizing the deformed...... structure are summarized and the behavior of a number of metals and alloys is reviewed with emphasis on the structural changes in the interior of the grains and in the vicinity of the grain boundaries. The models for strain accommodation during deformation are discussed on the basis of the microstructures...

  9. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  10. Influence of specimen size and grain orientation to the life of a polycrystalline Ni-base alloy at LCF stress; Einfluss der Probengroesse und der Kornorientierung auf die Lebensdauer einer polykristallinen Ni-Basislegierung bei LCF-Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Seibel, Thomas

    2014-07-01

    In the present work the LCF (Low Cycle Fatigue) crack initiation life of the conventionally cast Ni-base alloy RENE 80 was analyzed as a function of specimen size and grain orientation. Five specimen geometries with distinctly different gauge sections were used: 3 geometries with cylindrical gauge section (G1-G3) and two notched geometries with a stress concentration factor of α{sub 1} = 1,62 (KG1) and α{sub 2} = 2,60 (KG2), resulting in a maximum difference of the damage relevant surface area up to a factor of approximately 72. Correction factors were determined by FEM calculations for all specimen geometries with highly reduced gauge sections where direct strain measurement was not possible. Additionally a uniform failure criterion with a relatively small crack size of 0,962 mm{sup 2} was defined. Totally, 116 isothermal LCF tests were carried out at the different specimen types at a temperature of 850 C in total strain control with a load ratio (minimum strain / maximum strain) of R{sub ε} = -1. The load cycles were applied with triangular waveform at a frequency of 0.1 Hz for high strain amplitudes and 1 Hz for low strain amplitudes, respectively. After the LCF-Tests the fracture surfaces of all samples were analyzed in more detail by SEM to identify the crack initiation mechanisms as well as the crack initiation sites. In this context it could be shown, that fatigue cracks were generally initiated at slip bands in surface grains. Accordingly, the grain orientations at the crack initiation sites were measured by electron back scatter diffraction (EBSD) and the maximum shear stresses in the respective principal slip system (111) <110> was calculated using the Schmid approach. For this, longitudinal sections were be prepared exactly at the crack initiation sites of samples loaded with low strain amplitudes where clearly defined single crack initiation sites were observed. Afterwards the maximum shear stress in the principal slip system at the crack initiation

  11. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    Science.gov (United States)

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  12. Mechanical properties of porous PNZT polycrystalline ceramics

    International Nuclear Information System (INIS)

    Biswas, D.R.; Fulrath, R.M.

    1977-08-01

    Niobium-doped lead zirconate-titanate (PNZT) was used to investigate the effect of porosity on the mechanical properties of a polycrystalline ceramic. Spherical pores (110 to 150 μm diameter) were introduced by using organic materials in the initial specimen fabrication. The matrix grain size (2 to 5 μm) was kept constant. Small pores (2 to 3 μm diameter) of the order of the grain size were formed by varying the sintering conditions. The effect of porosity on strength was predicted quite well by Weibull's probabilistic approach. The Young's modulus showed a linear relationship with increase in porosity. A decrease in fracture toughness with increase in porosity was also observed. It was found that at equivalent porosities, small pore specimens gave higher strength, Young's modulus and fracture toughness compared to specimens containing large pores. Fracture surface analysis, by scanning electron microscopy, showed fracture originated either at the tensile surface or at the edge of the specimen

  13. Numerical simulation of large deformation polycrystalline plasticity

    International Nuclear Information System (INIS)

    Inal, K.; Neale, K.W.; Wu, P.D.; MacEwen, S.R.

    2000-01-01

    A finite element model based on crystal plasticity has been developed to simulate the stress-strain response of sheet metal specimens in uniaxial tension. Each material point in the sheet is considered to be a polycrystalline aggregate of FCC grains. The Taylor theory of crystal plasticity is assumed. The numerical analysis incorporates parallel computing features enabling simulations of realistic models with large number of grains. Simulations have been carried out for the AA3004-H19 aluminium alloy and the results are compared with experimental data. (author)

  14. Anelasticity of polycrystalline indium

    Energy Technology Data Exchange (ETDEWEB)

    Sapozhnikov, K., E-mail: k.sapozhnikov@mail.ioffe.ru [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Golyandin, S. [A.F.Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Kustov, S. [Dept. de Fisica, Universitat de les Illes Balears, Cra Valldemossa km 7.5, E 07122 Palma de Mallorca (Spain)

    2009-09-15

    Mechanisms of anelasticity of polycrystalline indium have been studied over wide ranges of temperature (7-320 K) and strain amplitude (2 x 10{sup -7}-3.5 x 10{sup -4}). Measurements of the internal friction and Young's modulus have been performed by means of the piezoelectric resonant composite oscillator technique using longitudinal oscillations at frequencies of about 100 kHz. The stages of the strain amplitude dependence of the internal friction and Young's modulus defect, which can be attributed to dislocation - point defect and dislocation - dislocation interactions, have been revealed. It has been shown that thermal cycling gives rise to microplastic straining of polycrystalline indium due to the anisotropy of thermal expansion and to appearance of a 'recrystallization' internal friction maximum in the temperature spectra of amplitude-dependent anelasticity. The temperature range characterized by formation of Cottrell's atmospheres of point defects around dislocations has been determined from the acoustic data.

  15. Development of surface relief on polycrystalline metals due to sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.S. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Balden, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Bardamid, A.F. [Taras Shevchenko National University, 01033 Kiev (Ukraine); Bondarenko, V.N. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin St., Toronto, ON, Canada M3H5T6 (Canada); Konovalov, V.G.; Ryzhkov, I.V.; Skoryk, O.O.; Solodovchenko, S.I. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Zhang-jian, Zhou [University of Science and Technology Beijing, Beijing 100 083 (China)

    2013-05-01

    The characteristics of surface microrelief that appear in sputtering experiments with polycrystalline metals of various grain sizes have been studied. Specimens with grain sizes varying from 30–70 nm in the case of crystallized amorphous alloys, to 1–3 μm for technical tungsten grade and 10–100 μm for recrystallized tungsten were investigated. A model is proposed for the development of roughness on polycrystalline metals which is based on the dependence of sputtering rate on crystal orientation. The results of the modeling are in good agreement with experiments showing that the length scale of roughness is much larger than the grain size.

  16. Application of polycrystalline diffusion barriers

    International Nuclear Information System (INIS)

    Tsymbal, V.A.; Kolupaev, I.N.

    2010-01-01

    Degradation of contacts of the electronic equipment at the raised temperatures is connected with active diffusion redistribution of components contact - metalized systems (CMS) and phase production on interphase borders. One of systems diffusion barriers (DB) are polycrystalline silicide a film, in particular silicides of the titan. Reception disilicide the titan (TiSi 2 ) which on the parameters is demanded for conditions of microelectronics from known silicides of system Ti-Si, is possible as a result of direct reaction of a film of the titan and a substrate of silicon, and at sedimentation of layer Ti-Si demanded stoichiometric structure. Simultaneously there is specific problem polycrystalline diffusion a barrier (PDB): the polycrystalline provides structural balance and metastability film disilicide, but leaves in it borders of grains - easy local ways of diffusion. In clause the analysis diffusion permeability polycrystalline and polyphase DB is made and recommendations for practical methods of increase of blocking properties PDB are made.

  17. Gelcasting polycrystalline alumina

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  18. Thermomechanical characterization of pure polycrystalline tantalum

    International Nuclear Information System (INIS)

    Rittel, D.; Bhattacharyya, A.; Poon, B.; Zhao, J.; Ravichandran, G.

    2007-01-01

    The thermomechanical behavior of pure polycrystalline tantalum has been characterized over a wide range of strain rates, using the recently developed shear compression specimen [D. Rittel, S. Lee, G. Ravichandran, Experimental Mechanics 42 (2002) 58-64]. Dynamic experiments were carried out using a split Hopkinson pressure bar, and the specimen's temperature was monitored throughout the tests using an infrared radiometer. The results of the mechanical tests confirm previous results on pure Ta. Specifically, in addition to its significant strain rate sensitivity, it was observed that pure Ta exhibits very little strain hardening at high strain rates. The measured temperature rise in the specimen's gauge was compared to theoretical predictions which assume a total conversion of the mechanical energy into heat (β = 1) [G.I. Taylor, H. Quinney, Proceedings of the Royal Society of London, vol. A, 1934, pp. 307-326], and an excellent agreement was obtained. This result confirms the previous result of Kapoor and Nemat-Nasser [R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27 (1998) 1-12], while a different experimental approach was adopted here. The assumption that β = 1 is found to be justified in this specific case by the lack of dynamic strain hardening of pure Ta. However, this assumption should be limited to non-hardening materials, to reflect the fact that strain hardening implies that part of the mechanical energy is stored into the material's microstructure

  19. High-Quality Fe-doped TiO2 films with Superior Visible-Light Performance

    DEFF Research Database (Denmark)

    Su, Ren; Bechstein, Ralf; Kibsgaard, Jakob

    2012-01-01

    We report on high-quality polycrystalline Fe-doped TiO2 (Fe–TiO2) porous films synthesized via one-step electrochemical oxidation. We demonstrate that delicate properties such as the impurity concentration and the microstructure that strongly influence the performance of the material for photovol...

  20. Fast High-Quality Noise

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Wyvill, Geoff

    2007-01-01

    At the moment the noise functions available in a graphics programmer's toolbox are either slow to compute or they involve grid-line artifacts making them of lower quality. In this paper we present a real-time noise computation with no grid-line artifacts or other regularity problems. In other words......, we put a new tool in the box that computes fast high-quality noise. In addition to being free of artifacts, the noise we present does not rely on tabulated data (everything is computed on the fly) and it is easy to adjust quality vs. quantity for the noise. The noise is based on point rendering (like...... spot noise), but it extends to more than two dimensions. The fact that it is based on point rendering makes art direction of the noise much easier....

  1. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  2. DNA extraction from herbarium specimens.

    Science.gov (United States)

    Drábková, Lenka Záveská

    2014-01-01

    With the expansion of molecular techniques, the historical collections have become widely used. Studying plant DNA using modern molecular techniques such as DNA sequencing plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods or microsatellites, AFLP).

  3. Grain tracing and strain determination in a Be compact tension specimen using synchrotron radiation

    International Nuclear Information System (INIS)

    Varma, R.; Green, R.; Garcia, M.D.; Satyam, P.V.; Yun, W.B.; Maser, J.; Kai, Z.; Lai, B.; Sinha, S.K.

    1999-01-01

    X-ray synchrotron radiation of high (11 KeV) energy and high flux (10 10 photons per square centimeter per second) has been used to measure strains and polycrystallinity in 6-mm thick polycrystalline beryllium compact tension (CT) specimens at and around the crack tip (for fatigue-precracked sample) or at chevron notch point under load or no-load conditions. The authors demonstrated the feasibility strain field mapping as well as determining the polycrystallinity at or near the points of maximum load in beryllium CT specimens. The experimental techniques and results will be discussed

  4. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  5. Availability of high quality weather data measurements

    DEFF Research Database (Denmark)

    Andersen, Elsa; Johansen, Jakob Berg; Furbo, Simon

    In the period 2016-2017 the project “Availability of high quality weather data measurements” is carried out at Department of Civil Engineering at the Technical University of Denmark. The aim of the project is to establish measured high quality weather data which will be easily available...... for the building energy branch and the solar energy branch in their efforts to achieve energy savings and for researchers and students carrying out projects where measured high quality weather data are needed....

  6. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  7. Recent advances in FIB-TEM specimen preparation techniques

    International Nuclear Information System (INIS)

    Li Jian; Malis, T.; Dionne, S.

    2006-01-01

    Preparing high-quality transmission electron microscopy (TEM) specimens is of paramount importance in TEM studies. The development of the focused ion beam (FIB) microscope has greatly enhanced TEM specimen preparation capabilities. In recent years, various FIB-TEM foil preparation techniques have been developed. However, the currently available techniques fail to produce TEM specimens from fragile and ultra-fine specimens such as fine fibers. In this paper, the conventional FIB-TEM specimen preparation techniques are reviewed, and their advantages and shortcomings are compared. In addition, a new technique suitable to prepare TEM samples from ultra-fine specimens is demonstrated

  8. Complex strain paths in polycrystalline copper: microstructural aspects

    Directory of Open Access Journals (Sweden)

    M.F. Vieira

    1999-07-01

    Full Text Available Microstructural aspects of polycrystalline copper sheets subjected to complex strain paths were analysed in this work. Dislocation structures developed during the strain paths (rolling and tension and the evolution of this microstructure during reloading have been studied. The active slip systems developed in each strain path were used to explain the microstructural evolution. The heterogeneous surface deformation observed on polished tensile specimens prestrained in rolling was also analysed. The structural aspects are related with the mechanical behaviour of the material, namely with the increase in yield stress in reloading, the work hardening evolution and the premature occurrence of plastic instability for some prestrain values.

  9. Deuterium transport and trapping in polycrystalline tungsten

    International Nuclear Information System (INIS)

    Anderl, R.A.; Holland, D.F.; Longhurst, G.R.; Pawelko, R.J.; Trybus, C.L.; Sellers, C.H.

    1992-01-01

    This paper reports that deuterium permeation studies for polycrystalline tungsten foil have been conducted to provide data for estimating tritium transport and trapping in tungsten-clad divertors proposed for advanced fusion-reactor concepts. Based on a detailed transmission electron microscopy (TEM) microstructural characterization of the specimen material and on analyses of permeation data measured at temperatures ranging form 610 to 823 K for unannealed and annealed tungsten foil (25 μm thick), the authors note the following key results: deuterium transport in tungsten foil is dominated by extensive trapping that varies inversely with prior anneal temperatures of the foil material, the reduction in the trapped fraction correlates with a corresponding elimination of a high density of dislocations in cell-wall structures introduced during the foil fabrication process, trapping behavior in these foils can be modelled using trap energies between 1.3 eV and 1.5 eV and trap densities ranging from 1 x 10 -5 atom fraction

  10. Urine culture - catheterized specimen

    Science.gov (United States)

    Culture - urine - catheterized specimen; Urine culture - catheterization; Catheterized urine specimen culture ... urinary tract infections may be found in the culture. This is called a contaminant. You may not ...

  11. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    International Nuclear Information System (INIS)

    Yao, Huizhen; Ma, Jinwen; Mu, Yannan; Su, Shi; Lv, Pin; Zhang, Xiaoling; Zhou, Liying; Li, Xue; Liu, Li; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm 2 , which is higher than that of samples prepared at other temperatures. Furthermore, CdCl 2 treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl 2 treatment improved to 2.97 mA/cm 2 , indicating a potential application in photovoltaic devices

  12. Growth of high quality large area MgB2 thin films by reactive evaporation

    OpenAIRE

    Moeckly, Brian H.; Ruby, Ward S.

    2006-01-01

    We report a new in-situ reactive deposition thin film growth technique for the production of MgB2 thin films which offers several advantages over all existing methods and is the first deposition method to enable the production of high-quality MgB2 films for real-world applications. We have used this growth method, which incorporates a rotating pocket heater, to deposit MgB2 films on a variety of substrates, including single-crystalline, polycrystalline, metallic, and semiconductor materials u...

  13. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  14. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  15. Process Research on Polycrystalline Silicon Material (PROPSM)

    Science.gov (United States)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  16. Impurity composition effect on work function in cylindrical specimens of niobium and low zirconium niobium base alloys

    International Nuclear Information System (INIS)

    Kobyakov, V.P.

    2000-01-01

    A study is made into poly- and single crystal cylindrical niobium specimens, prepared by various methods as well as into polycrystalline specimens of niobium base alloys doped with 1.2 and 1.6 % Zr. Thermionic work function is measured using a full current method. Several techniques are applied to determine the content of substitutional and interstitial impurities in specimens. The phase composition of polished section surface is also investigated. A work function increase is observed when a considerable amount of carbide phases occurs at the surface. This increase is comparable with the effect of going from a polycrystalline niobium specimen to a single crystal with (110) surface orientation [ru

  17. Polycrystalline Silicon: a Biocompatibility Assay

    International Nuclear Information System (INIS)

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-01

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  18. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  19. Fabrication of high-quality brazed joints

    International Nuclear Information System (INIS)

    Orlov, A.V.

    1980-01-01

    Problem of ensuring of joint high-quality when brazing different parts in power engineering is considered. To obtain high-quality joints it is necessary to correctly design brazed joint and to choose a gap width, overlap length and fillet radius; to clean up carefully the surfaces to be brazed and fix them properly one relative to another; to apply a solder so as to provide its flowing into the gap and sticking in it; to exactly regulate thermal conditions of brazing. High quality and reliability of brazed joints are ensured by the application of solders based on noble metals, and cheap solders based on nickel, manganese and copper. Joints brazed with nickel base solders may operate at temperatures as high as 888 deg C

  20. Producing high-quality slash pine seeds

    Science.gov (United States)

    James Barnett; Sue Varela

    2003-01-01

    Slash pine is a desirable species. It serves many purposes and is well adapted to poorly drained flatwoods and seasonally flooded areas along the lower Coastal Plain of the Southeastern US. The use of high-quality seeds has been shown to produce uniform seedlings for outplanting, which is key to silvicultural success along the Coastal Plain and elsewhere. We present...

  1. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Polycrystalline diamond coatings; hot filament CVD; high vacuum tribology. 1. Introduction .... is a characteristic of graphite. We mark the (diamond ... coefficient of friction due to changes in substrate temperature. The average coefficient of.

  2. Laparoscopic specimen retrieval bags.

    Science.gov (United States)

    Smorgick, Noam

    2014-10-01

    Specimen retrieval bags have long been used in laparoscopic gynecologic surgery for contained removal of adnexal cysts and masses. More recently, the concerns regarding spread of malignant cells during mechanical morcellation of myoma have led to an additional use of specimen retrieval bags for contained "in-bag" morcellation. This review will discuss the indications for use retrieval bags in gynecologic endoscopy, and describe the different specimen bags available to date.

  3. High-quality compressive ghost imaging

    Science.gov (United States)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  4. X-ray stress analysis in textured polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi; Harada, Jimpei

    2010-01-01

    The relationship between stress and strain in polycrystalline materials with fibre texture is examined on the basis of the strain analysis in the constituent crystallites within the Reuss approximation. By introducing the symmetry of reciprocal lattices for the constituent crystallites, the physical meaning of taking an average of the strains observed by X-ray diffraction (XRD) is made clear. By using formulae obtained by the present treatment for the stress-strain relation in cubic specimens with fibre texture in the Laue classes m3-bar m hkl Bragg reflections with h≠k≠l split into doublets owing to the existence of crystallites with two different orientations under the stress field. This technique was confirmed by the profile analysis in XRD data observed for reflections of 222 and 420 in a cubic TiN thin film sputtered on a polyimide film. The technique of the stress analysis and its confirmation are introduced. (author)

  5. Dislocation structures around crack tips of fatigued polycrystalline copper

    International Nuclear Information System (INIS)

    Kaneko, Yoshihisa; Ishikawa, Masao; Hashimoto, Satoshi

    2005-01-01

    Dislocation structures near fatigue cracks of polycrystalline copper specimens were analyzed using the electron channelling contrast imaging (ECCI) technique. Prior to the ECCI observations, optical microscopy was conducted to classify the fatigue crack morphologies into several kinds. It was found that the dislocation structures were correlated with the slip morphologies observed using the optical microscope. The cell structure almost corresponded to the severely deformed plastic zone where the individual slip bands could not be identified. The labyrinth dislocation structure was detected at the double-slip region. Ladder-like dislocation structure was detected ahead of the Stage I type fatigue crack. Hence, it can be said that the persistent slip band (PSB) was a favorable crack path. However, the microscopic route of the crack growth was not along the PSB but along the cell structure, which was developed locally in the vicinity of the crack tip

  6. Georeferencing Animal Specimen Datasets

    NARCIS (Netherlands)

    van Erp, M.G.J.; Hensel, R.; Ceolin, D.; van der Meij, M.

    2014-01-01

    For biodiversity research, the field of study that is concerned with the richness of species of our planet, it is of the utmost importance that the location of an animal specimen find is known with high precision. Due to specimens often having been collected over the course of many years, their

  7. Study of EBSD Experiment Parameters Influence on Computation of Polycrystalline Pole Figures and Orientation Distribution Function

    Directory of Open Access Journals (Sweden)

    Antonova Anastasia O.

    2016-01-01

    Full Text Available Mathematical model for a polycrystalline specimen and EBSD experiment is proposed. As the measurement parameters, the scanning step and the threshold disorientation angle are considered. To study the impact of the measurement parameters Pole Figures and Orientation Distribution Function of model specimen and corresponding ones, calculated from model EBSD measurements, are compared. The real EBSD experiment was also performed. The results of the model experiment are correlated with such detected in the real EBSD data. The most significant results are formulated in the given work.

  8. Dislocation Substructures Formed After Fracture of Deformed Polycrystalline Cu-Al Alloys

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.

    2017-08-01

    The paper deals with the dislocation substructure of polycrystalline FCC alloys modified by plastic deformation at a distance from the area of the specimen fracture. Observations are performed using the transmission electron microscopy. Cu-Al alloys with grain size ranging from 10 to 240 μm are studied in this paper. The parameters of the dislocation substructure are measured and their variation is determined by the increasing distance from the fracture area. It is shown how the grain size influences these processes. The different dislocation substructures which determine the specimen fracture at a mesocscale level are found herein.

  9. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  10. Boiling curve in high quality flow boiling

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Hein, R.A.; Yadigaroglu, G.

    1980-01-01

    The post dry-out heat transfer regime of the flow boiling curve was investigated experimentally for high pressure water at high qualities. The test section was a short round tube located downstream of a hot patch created by a temperature controlled segment of tubing. Results from the experiment showed that the distance from the dryout point has a significant effect on the downstream temperatures and there was no unique boiling curve. The heat transfer coefficients measured sufficiently downstream of the dryout point could be correlated using the Heineman correlation for superheated steam, indicating that the droplet deposition effects could be neglected in this region

  11. Low-temperature internal friction in high-purity monocrystalline and impure polycrystalline niobium after plastic deformation

    International Nuclear Information System (INIS)

    Wasserbaech, W.; Thompson, E.

    2001-01-01

    The internal friction Q -1 of plastically deformed, high-purity monocrystalline and impure polycrystalline niobium specimens was measured in the temperature range between 65 mK and about 2 K. Plastic deformation has a pronounced effect on the internal friction Q -1 of the high-purity monocrystalline specimens, and the effect has been found to be almost temperature independent. By contrast, surprisingly, the internal friction Q -1 of the impure polycrystalline specimens was found to be almost independent of the extent of plastic deformation. Comparison of the experimental results with different models of a dynamic scattering of acoustic phonons by dislocations leads to the conclusion that the results cannot be explained with the two-level tunneling model. Instead it is suggested that a strong interaction between acoustic phonons and geometrical kinks in non-screw dislocations is responsible for the observed internal friction Q -1 . (orig.)

  12. Method for synthesis of high quality graphene

    Science.gov (United States)

    Lanzara, Alessandra [Piedmont, CA; Schmid, Andreas K [Berkeley, CA; Yu, Xiaozhu [Berkeley, CA; Hwang, Choonkyu [Albany, CA; Kohl, Annemarie [Beneditkbeuern, DE; Jozwiak, Chris M [Oakland, CA

    2012-03-27

    A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10.sup.-6 Torr, the wafer temperature is raised to about 1500.degree. C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about 1530.degree. C. or more, the carbon atoms self assemble themselves into graphene.

  13. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  14. High Quality Virtual Reality for Architectural Exhibitions

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2016-01-01

    This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural...... and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR...... experience to be self-explanatory. Observations of different visitor reactions to the unmanned VR experience compared with visitor reactions at guided tours with personal instructions are evaluated. Data on perception of realism, spatial quality and light in the VR model were collected with qualitative...

  15. Comparisons of Fabric Strength and Development in Polycrystalline Ice at Atmospheric and Basal Hydrostatic Pressures

    Science.gov (United States)

    Breton, Daniel; Baker, Ian; Cole, David

    2013-04-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests to ~10% strain on 917 kg m-3, initially randomly-oriented polycrystalline ice specimens at 0.1 (atmospheric) and 20 MPa (simulating ~2,000 m depth) hydrostatic pressures, performing microstructural analyses on the resulting deformed specimens to characterize the evolution and strength of crystal fabric. Our microstructural analysis technique simultaneously collects grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtains crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and orientation data. We present creep and microstructural data to demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice and discuss possible mechanisms for the observed differences.

  16. Extremal Overall Elastic Response of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Lipton, Robert

    1997-01-01

    Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...

  17. Controlled Environment Specimen Transfer

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Zandbergen, Henny W.; Hansen, Thomas Willum

    2014-01-01

    an environmental transmission electron microscope to an in situ X-ray diffractometer through a dedicated transmission electron microscope specimen transfer holder, capable of sealing the specimen in a gaseous environment at elevated temperatures. Two catalyst material systems have been investigated; Cu/ZnO/Al2O3...... transferred in a reactive environment to the environmental transmission electron microscope where further analysis on the local scale were conducted. The Co/Al2O3 catalyst was reduced in the environmental microscope and successfully kept reduced outside the microscope in a reactive environment. The in situ......Specimen transfer under controlled environment conditions, such as temperature, pressure, and gas composition, is necessary to conduct successive complementary in situ characterization of materials sensitive to ambient conditions. The in situ transfer concept is introduced by linking...

  18. Observations of Fabric Development in Polycrystalline Ice at Basal Pressures: Methods and Initial Results

    Science.gov (United States)

    Breton, D. J.; Baker, I.; Cole, D. M.

    2012-12-01

    Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.

  19. CVD-graphene growth on different polycrystalline transition metals

    Directory of Open Access Journals (Sweden)

    M. P. Lavin-Lopez

    2017-01-01

    Full Text Available The chemical vapor deposition (CVD graphene growth on two polycrystalline transition metals (Ni and Cu was investigated in detail using Raman spectroscopy and optical microscopy as a way to synthesize graphene of the highest quality (i.e. uniform growth of monolayer graphene, which is considered a key issue for electronic devices. Key CVD process parameters (reaction temperature, CH4/H2flow rate ratio, total flow of gases (CH4+H2, reaction time were optimized for both metals in order to obtain the highest graphene uniformity and quality. The conclusions previously reported in literature about the performance of low and high carbon solubility metals in the synthesis of graphene and their associated reaction mechanisms, i.e. surface depositionand precipitation on cooling, respectively, was not corroborated by the results obtained in this work. Under the optimal reaction conditions, a large percentage of monolayer graphene was obtained over the Ni foil since the carbon saturation was not complete, allowing carbon atoms to be stored in the bulk metal, which could diffuse forming high quality monolayer graphene at the surface. However, under the optimal reaction conditions, the formation of a non-uniform mixture of few layers and multilayer graphene on the Cu foil was related to the presence of an excess of active carbon atoms on the Cu surface.

  20. Elasticity and hardness of nano-polycrystalline boron nitrides: The apparent Hall-Petch effect

    International Nuclear Information System (INIS)

    Nagakubo, A.; Ogi, H.; Hirao, M.; Sumiya, H.

    2014-01-01

    Nano-polycrystalline boron nitride (BN) is expected to replace diamond as a superhard and superstiff material. Although its hardening was reported, its elasticity remains unclear and the as-measured hardness could be significantly different from the true value due to the elastic recovery. In this study, we measured the longitudinal-wave elastic constant of nano-polycrystalline BNs using picosecond ultrasound spectroscopy and confirmed the elastic softening for small-grain BNs. We also measured Vickers and Knoop hardness for the same specimens and clarified the relationship between hardness and stiffness. The Vickers hardness significantly increased as the grain size decreased, while the Knoop hardness remained nearly unchanged. We attribute the apparent increase in Vickers hardness to the elastic recovery and propose a model to support this insight.

  1. Preserve specimens for reproducibility

    Czech Academy of Sciences Publication Activity Database

    Krell, F.-T.; Klimeš, Petr; Rocha, L. A.; Fikáček, M.; Miller, S. E.

    2016-01-01

    Roč. 539, č. 7628 (2016), s. 168 ISSN 0028-0836 Institutional support: RVO:60077344 Keywords : reproducibility * specimen * biodiversity Subject RIV: EH - Ecology, Behaviour Impact factor: 40.137, year: 2016 http://www.nature.com/nature/journal/v539/n7628/full/539168b.html

  2. Equilibrium shapes of polycrystalline silicon nanodots

    Energy Technology Data Exchange (ETDEWEB)

    Korzec, M. D., E-mail: korzec@math.tu-berlin.de; Wagner, B., E-mail: bwagner@math.tu-berlin.de [Department of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin (Germany); Roczen, M., E-mail: maurizio.roczen@physik.hu-berlin.de [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schade, M., E-mail: martin.schade@physik.uni-halle.de [Zentrum für Innovationskompetenz SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Germany); Rech, B., E-mail: bernd.rech@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany)

    2014-02-21

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  3. Obtaining of polycrystalline silicon for semiconductor industry

    International Nuclear Information System (INIS)

    Mukashev, F.; Nauryzbaev, M.; Kolesnikov, B.; Ivanov, Y.

    1996-01-01

    The purpose of the project is to create pilot equipment and optimize the process of obtaining polycrystalline silicon on semi-industrial level. In the past several decades, the historical experience in the developing countries has shown that one of the most promising ways to improve the economy,of a country is to establish semiconductor industry. First of all, the results can help increase defense, national security and create industrial production. The silane method, which has been traditionally' used for obtaining technical and polycrystalline silicon, is to obtain and then to pyrolyzed mono-and poly silanes. Although the traditional methods of obtaining silicon hydrides have specific advantages, such as utilizing by-products, they also have clear shortcomings, i.e. either low output of the ultimate product ( through hydrolysis of Mg 2 Si) or high contents of by-products in it or high contents of dissolving vapors (through decomposing Mg 2 Si in non-water solutions)

  4. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  5. Effective polycrystalline sensor of ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    S.Yu. Pavelets

    2017-10-01

    Full Text Available Deposition of special thin layers with high and low resistance in space charge region of surface barrier photoconverters based on the p-Cu1.8S/n-CdS structure leads to a sufficient increase in photosensitivity and decrease in dark tunneling-recombination current. Highly efficient and stable polycrystalline photoconverters of ultraviolet radiation based on polycrystalline CdS have been obtained. Electrical and photoelectric properties have been investigated, and the main operational parameters of ultraviolet sensors have been adduced. The reasons for high stability of the parameters inherent to the p-Cu1.8S/n-CdS sensors are as follows: the absence of impurity components additionally doped to the barrier structure and stability of the photocurrent photoemission component.

  6. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  7. High Quality Data for Grid Integration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit; Hodge, Bri-Mathias

    2017-01-22

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.

  8. Extremal Overall Elastic Response of Polycrystalline Materials

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Lipton, Robert

    1996-01-01

    Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...... values.We show that the extremal overall elastic response is alwaysachieved by a configuration consisting of a single properlyoriented crystal. This result is compared to results for isotropicpolycrystals....

  9. Hydrogen solubility in polycrystalline - and nonocrystalline niobium

    International Nuclear Information System (INIS)

    Ishikawa, T.T.; Silva, J.R.G. da

    1981-01-01

    Hydrogen solubility in polycrystalline and monocrystalline niobium was measured in the range 400 0 C to 1000 0 C at one atmosphere hydrogen partial pressure. The experimental technique consists of saturation of the solvent metal with hydrogen, followed by quenching and analysis of the solid solution. It is presented solubility curves versus reciprocal of the absolute doping temperature, associated with their thermodynamical equation. (Author) [pt

  10. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  11. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  12. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  13. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  14. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  15. Effects of neutron irradiation on microstructure and deformation behaviour of mono- and polycrystalline molybdenum and its alloys

    DEFF Research Database (Denmark)

    Singh, B.N.; Evans, J.H.; Horsewell, A.

    1998-01-01

    The influence of neutron irradiation on microstructural evolution and mechanical properties of mono- and polycrystalline molybdenum and its alloys has been investigated. Tensile specimens and 3 mm diameter discs of monocrystals of pure molybdenum and Mo-5%Re were irradiated with fission neutrons...... microscopy are presented and discussed in terms of intracascade clustering of self-interstitial atoms and the role of one-dimensional glide of these clusters in controlling microstructural evolution and the resulting mechanical properties....

  16. Integrated Pathology Informatics Enables High-Quality Personalized and Precision Medicine: Digital Pathology and Beyond.

    Science.gov (United States)

    Volynskaya, Zoya; Chow, Hung; Evans, Andrew; Wolff, Alan; Lagmay-Traya, Cecilia; Asa, Sylvia L

    2018-03-01

    - The critical role of pathology in diagnosis, prognosis, and prediction demands high-quality subspecialty diagnostics that integrates information from multiple laboratories. - To identify key requirements and to establish a systematic approach to providing high-quality pathology in a health care system that is responsible for services across a large geographic area. - This report focuses on the development of a multisite pathology informatics platform to support high-quality surgical pathology and hematopathology using a sophisticated laboratory information system and whole slide imaging for histology and immunohistochemistry, integrated with ancillary tools, including electron microscopy, flow cytometry, cytogenetics, and molecular diagnostics. - These tools enable patients in numerous geographic locations access to a model of subspecialty pathology that allows reporting of every specimen by the right pathologist at the right time. The use of whole slide imaging for multidisciplinary case conferences enables better communication among members of patient care teams. The system encourages data collection using a discrete data synoptic reporting module, has implemented documentation of quality assurance activities, and allows workload measurement, providing examples of additional benefits that can be gained by this electronic approach to pathology. - This approach builds the foundation for accurate big data collection and high-quality personalized and precision medicine.

  17. NASA Biological Specimen Repository

    Science.gov (United States)

    McMonigal, K. A.; Pietrzyk, R. A.; Sams, C. F.; Johnson, M. A.

    2010-01-01

    The NASA Biological Specimen Repository (NBSR) was established in 2006 to collect, process, preserve and distribute spaceflight-related biological specimens from long duration ISS astronauts. This repository provides unique opportunities to study longitudinal changes in human physiology spanning may missions. The NBSR collects blood and urine samples from all participating ISS crewmembers who have provided informed consent. These biological samples are collected once before flight, during flight scheduled on flight days 15, 30, 60, 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days after landing. The number of in-flight sessions is dependent on the duration of the mission. Specimens are maintained under optimal storage conditions in a manner that will maximize their integrity and viability for future research The repository operates under the authority of the NASA/JSC Committee for the Protection of Human Subjects to support scientific discovery that contributes to our fundamental knowledge in the area of human physiological changes and adaptation to a microgravity environment. The NBSR will institute guidelines for the solicitation, review and sample distribution process through establishment of the NBSR Advisory Board. The Advisory Board will be composed of representatives of all participating space agencies to evaluate each request from investigators for use of the samples. This process will be consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. Operations supporting the NBSR are scheduled to continue until the end of U.S. presence on the ISS. Sample distribution is proposed to begin with selections on investigations beginning in 2017. The availability of the NBSR will contribute to the body of knowledge about the diverse factors of spaceflight on human physiology.

  18. Rotating specimen rack repair

    International Nuclear Information System (INIS)

    Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.

    1984-01-01

    In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors

  19. Method for thinning specimen

    Science.gov (United States)

    Follstaedt, David M.; Moran, Michael P.

    2005-03-15

    A method for thinning (such as in grinding and polishing) a material surface using an instrument means for moving an article with a discontinuous surface with an abrasive material dispersed between the material surface and the discontinuous surface where the discontinuous surface of the moving article provides an efficient means for maintaining contact of the abrasive with the material surface. When used to dimple specimens for microscopy analysis, a wheel with a surface that has been modified to produce a uniform or random discontinuous surface significantly improves the speed of the dimpling process without loss of quality of finish.

  20. The thermoviscoplastic response of polycrystalline tungsten in compression

    International Nuclear Information System (INIS)

    Lennon, A.M.; Ramesh, K.T.

    2000-01-01

    The thermomechanical response of commercially pure polycrystalline tungsten was investigated over a wide range of strain rates and temperatures. The material was examined in two forms: one an equiaxed recrystallized microstructure and the other a heavily deformed extruded microstructure that was loaded in compression along the extrusion axis. Low strain rate (10 -3 -10 0 s -1 ) compression experiments were conducted on an MTS servo-hydraulic load frame equipped with an infra-red furnace capable of sustaining specimen temperatures in excess of 600 C. High strain rate (10 3 -10 4 s -1 ) experiments were performed on a compression Kolsky bar equipped with an infra-red heating system capable of developing specimen temperatures as high as 800 C. Pressure-shear plate impact experiments were used to obtain shear stress versus shear strain curves at very high rates (∝10 4 -10 5 s -1 ). The recrystallized material was able to sustain very substantial plastic deformations in compression (at room temperature), with a flow stress that appears to be rate-dependent. Intergranular microcracks were developed during the compressive deformations. Under quasi-static loadings a few relatively large axial splitting cracks were formed, while under dynamic loadings a very large number of small, uniformly distributed microcracks (that did not link up to form macrocracks) were developed. The rate of nucleation of microcracks increased dramatically with strain rate. The extruded tungsten is also able to sustain large plastic deformations in compression, with a flow stress that increases with the rate of deformation. The strain hardening of the extruded material is lower than that of the recrystallized material, and is relatively insensitive to the strain rate. (orig.)

  1. Estimating minimum polycrystalline aggregate size for macroscopic material homogeneity

    International Nuclear Information System (INIS)

    Kovac, M.; Simonovski, I.; Cizelj, L.

    2002-01-01

    During severe accidents the pressure boundary of reactor coolant system can be subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme deformations can be crucial to determine the consequences of severe accidents. Important drawback of classical continuum mechanics is idealization of inhomogenous microstructure of materials. Classical continuum mechanics therefore cannot predict accurately the differences between measured responses of specimens, which are different in size but geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate above which it can be considered macroscopically homogeneous. The main idea is to divide continuum into a set of sub-continua. Analysis of macroscopic element is divided into modeling the random grain structure (using Voronoi tessellation and random orientation of crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to 2D models.(author)

  2. Correlation between some mechanical and physical properties of polycrystalline graphites

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Fujisaki, Katsuo

    1982-01-01

    Mechanical and physical properties of polycrystalline graphites, tensile strength, compressive strength, flexural strength, Young's modulus, thermal expansion coefficient, electrical resistivity, volume fraction of porosity, and graphitisation were measured for ten brand graphites. Correlation between the mechanical and physical properties of the graphites were studied. Young's modulus and thermal expansion coefficient of the graphites depend on volume fraction of porosity. The Young's modulus of the graphites tended to increase with increasing the thermal expansion coefficient. For an anisotropic graphite, an interesting relationship between the Young's modulus E and the thermal expansion coefficient al pha was found in any specimen orientations; alpha E=constant. The value of alphah E was dependent upon the volume fraction of porosity. It should be noted here that the electrical resistivity increased with decreasing grain size. The flexural and the compressive strength were related with the volume fraction of porosity while the tensile strength was not, The relationships between the tensile, the compressive and the flexural strength can be approximately expressed as linear functions over a wide range of the stresses. (author)

  3. Helium-induced hardening effect in polycrystalline tungsten

    Science.gov (United States)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  4. Study on the Cross Plane Thermal Transport of Polycrystalline Molybdenum Nanofilms by Applying Picosecond Laser Transient Thermoreflectance Method

    Directory of Open Access Journals (Sweden)

    Tingting Miao

    2014-01-01

    Full Text Available Thin metal films are widely used as interconnecting wires and coatings in electronic devices and optical components. Reliable thermophysical properties of the films are required from the viewpoint of thermal management. The cross plane thermal transport of four polycrystalline molybdenum nanofilms with different thickness deposited on glass substrates has been studied by applying the picosecond laser transient thermoreflectance technique. The measurement is performed by applying both front pump-front probe and rear pump-front probe configurations with high quality signal. The determined cross plane thermal diffusivity of the Mo films greatly decreases compared to the corresponding bulk value and tends to increase as films become thicker, exhibiting significant size effect. The main mechanism responsible for the thermal diffusivity decrease of the present polycrystalline Mo nanofilms is the grain boundary scattering on the free electrons. Comparing the cross plane thermal diffusivity and inplane electrical conductivity indicates the anisotropy of the transport properties of the Mo films.

  5. Blood specimen labelling errors: Implications for nephrology nursing practice.

    Science.gov (United States)

    Duteau, Jennifer

    2014-01-01

    Patient safety is the foundation of high-quality health care, as recognized both nationally and worldwide. Patient blood specimen identification is critical in ensuring the delivery of safe and appropriate care. The practice of nephrology nursing involves frequent patient blood specimen withdrawals to treat and monitor kidney disease. A critical review of the literature reveals that incorrect patient identification is one of the major causes of blood specimen labelling errors. Misidentified samples create a serious risk to patient safety leading to multiple specimen withdrawals, delay in diagnosis, misdiagnosis, incorrect treatment, transfusion reactions, increased length of stay and other negative patient outcomes. Barcode technology has been identified as a preferred method for positive patient identification leading to a definitive decrease in blood specimen labelling errors by as much as 83% (Askeland, et al., 2008). The use of a root cause analysis followed by an action plan is one approach to decreasing the occurrence of blood specimen labelling errors. This article will present a review of the evidence-based literature surrounding blood specimen labelling errors, followed by author recommendations for completing a root cause analysis and action plan. A failure modes and effects analysis (FMEA) will be presented as one method to determine root cause, followed by the Ottawa Model of Research Use (OMRU) as a framework for implementation of strategies to reduce blood specimen labelling errors.

  6. Discrete Tomography and Imaging of Polycrystalline Structures

    DEFF Research Database (Denmark)

    Alpers, Andreas

    High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...... Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way....

  7. Hydrogenation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Knížek, Karel; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2006-01-01

    Roč. 501, - (2006), s. 144-148 ISSN 0040-6090 R&D Projects: GA MŠk ME 537; GA MŽP(CZ) SM/300/1/03; GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon * atmospheric pressure chemical vapour deposition * hydrogen passivation * photoluminescence * Raman spectroscopy * Si-H 2 bonding * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  8. Field performance of a polycrystalline silicon module

    International Nuclear Information System (INIS)

    Adegboyega, G.A.; Kuku, T.A.; Salau, A.A.M.

    1985-12-01

    The field performance of a polycrystalline silicon module is reported. The recorded data include the ambient temperature, solar insolation and the module output power. The module has given efficiencies in the range of 2-4% and has demonstrated good stability over a ten month period. From the field data, equations that could be used to predict performance for various seasons of the year for this location have been developed and the fit between predicted and actual performance has been found to be quite good. (author)

  9. Creep cavitation effects in polycrystalline alumina

    International Nuclear Information System (INIS)

    Porter, J.R.; Blumenthal, W.; Evans, A.G.

    1981-01-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed nonuniformly throughout the material. The role of these cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate

  10. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  11. Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations

    International Nuclear Information System (INIS)

    Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong

    2017-01-01

    Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)

  12. Representative volume element size of a polycrystalline aggregate with embedded short crack

    International Nuclear Information System (INIS)

    Simonovski, I.; Cizelj, L.

    2007-01-01

    A random polycrystalline aggregate model is proposed for evaluation of a representative volume element size (RVE) of a 316L stainless steel with embedded surface crack. RVE size is important since it defines the size of specimen where the influence of local microstructural features averages out, resulting in the same macroscopic response for geometrically similar specimen. On the other hand macroscopic responses of specimen with size smaller than RVE will, due to the microstructural features, differ significantly. Different sizes and orientations of grains, inclusions, voids,... etc are examples of such microstructural features. If a specimen size is above RVE size, classical continuum mechanics can be applied. On the other hand, advanced material models should be used for specimen with size below RVE. This paper proposes one such model, where random size, shape and orientation of grains are explicitly modeled. Crystal plasticity constitutive model is used to account for slip in the grains. RVE size is estimated by calculating the crack tip opening displacements of aggregates with different grain numbers. Progressively larger number of grains are included in the aggregates until the crack tip displacements for two consecutive aggregates of increasing size differ less than 1 %. At this point the model has reached RVE size. (author)

  13. Giant 1/f noise in two-dimensional polycrystalline media

    International Nuclear Information System (INIS)

    Snarskii, A.; Bezsudnov, I.

    2008-01-01

    The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant

  14. Polycrystalline diamond RF MOSFET with MoO3 gate dielectric

    Directory of Open Access Journals (Sweden)

    Zeyang Ren

    2017-12-01

    Full Text Available We report the radio frequency characteristics of the diamond metal-oxide-semiconductor field effect transistor with MoO3 gate dielectric for the first time. The device with 2-μm gate length was fabricated on high quality polycrystalline diamond. The maximum drain current of 150 mA/mm at VGS = -5 V and the maximum transconductance of 27 mS/mm were achieved. The extrinsic cutoff frequency of 1.2 GHz and the maximum oscillation frequency of 1.9 GHz have been measured. The moderate frequency characteristics are attributed to the moderate transconductance limited by the series resistance along the channel. We expect that the frequency characteristics of the device can be improved by increasing the magnitude of gm, or fundamentally decreasing the gate-controlled channel resistance and series resistance along the channel, and down-scaling the gate length.

  15. Wavelength-tunable waveguides based on polycrystalline organic-inorganic perovskite microwires

    Science.gov (United States)

    Wang, Ziyu; Liu, Jingying; Xu, Zai-Quan; Xue, Yunzhou; Jiang, Liangcong; Song, Jingchao; Huang, Fuzhi; Wang, Yusheng; Zhong, Yu Lin; Zhang, Yupeng; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-03-01

    Hybrid organic-inorganic perovskites have emerged as new photovoltaic materials with impressively high power conversion efficiency due to their high optical absorption coefficient and long charge carrier diffusion length. In addition to high photoluminescence quantum efficiency and chemical tunability, hybrid organic-inorganic perovskites also show intriguing potential for diverse photonic applications. In this work, we demonstrate that polycrystalline organic-inorganic perovskite microwires can function as active optical waveguides with small propagation loss. The successful production of high quality perovskite microwires with different halogen elements enables the guiding of light with different colours. Furthermore, it is interesting to find that out-coupled light intensity from the microwire can be effectively modulated by an external electric field, which behaves as an electro-optical modulator. This finding suggests the promising applications of perovskite microwires as effective building blocks in micro/nano scale photonic circuits.

  16. Research and development of photovoltaic power system. Development of novel technologies for fabrication of high quality silicon thin films for solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Kohinshitsu silicon usumaku sakusei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for development of novel technologies for fabrication of high quality thin films of silicon for solar cells. The study on the mechanisms and effects of chemical annealing reveals that the film structure greatly varies depending on substrate temperature during the hydrotreatment process, based on the tests with substrate temperature, deposition of superthin film (T1) and hydrotreatment (T2) as the variable parameters. Chemical annealing at low temperature produces a high-quality a-Si:H film of low defect content. The study on fabrication of thin polycrystalline silicon films at low temperature observes on real time the process of deposition of the thin films on polycrystalline silicon substrates, where a natural oxide film is removed beforehand from the substrate. The results indicate that a thin polycrystalline silicon film of 100% crystallinity can be formed even on a polycrystalline silicon substrate by controlling starting gas composition and substrate temperature. The layer-by-layer method is used as the means for forming the seed crystals on a glass substrate, where deposition and hydrotreatment are repeated alternately, to produce the thin crystalline silicon films of high crystallinity. 3 figs.

  17. Enhanced thermoelectric properties of N-type polycrystalline In4Se3-x compounds via thermally induced Se deficiency

    Science.gov (United States)

    Zhao, Ran; Shu, Yu-Tian; Guo, Fu

    2014-03-01

    In4Se3-x compound is considered as a potential thermoelectric material due to its comparably low thermal conductivity among all existing ones. While most studies investigated In4Se3-x thermoelectric properties by controlling selennium or other dopants concentrations, in the current study, it was found that even for a fixed initial In/Se ratio, the resulting In/Se ratio varied significantly with different thermal processing histories (i.e., melting and annealing), which also resulted in varied thermoelectric properties as well as fracture surface morphologies of In4Se3-x polycrystalline specimens. Single phase polycrystalline In4Se3-x compounds were synthesized by combining a sequence of melting, annealing, pulverizing, and spark plasma sintering. The extension of previous thermal history was observed to significantly improve the electrical conductivity (about 121%) and figure of merit (about 53%) of In4Se3-x polycrystalline compounds. The extended thermal history resulted in the increase of Se deficiency (x) from 0.39 to 0.53. This thermally induced Se deficiency was observed to associate with increasing carrier mobility but decreasing concentration, which differs from the general trend observed for the initially adjusted Se deficiency at room temperature. Unusually large dispersed grains with nanosize layers were observed in specimens with the longest thermal history. The mechanism(s) by which previous thermal processing enhances carrier mobility and affect microstructural evolution are briefly discussed.

  18. Considerations for improved polycrystalline cuprate superconductors

    International Nuclear Information System (INIS)

    Shinde, S.L.; Shaw, T.M.

    1990-01-01

    Polycrystalline cuprate superconductors exhibit two-stage superconducting transitions, that are characteristic of granular systems. This behaviour suggests approaches involving improvements in intra and inter-grain properties in order to improve the technologically important superconducting properties such as the magnetic remanent moment and transport critical current density. This paper reports results of our studies on oxygenation, twin density control through grain size and changes in flux pinning within the YBa 2 Cu 3 O 7-δ matrix with Ag substitution under the heading of intra-grain properties and the detrimental effect of grain boundary phases and the effect of Ag substitution on grain boundary pinning under the heading of inter-grain properties

  19. Process Research of Polycrystalline Silicon Material (PROPSM)

    Science.gov (United States)

    Culik, J. S.

    1984-01-01

    An investigation was begun into the usefulness of molecular hydrogen annealing on polycrystalline solar cells. No improvement was realized even after twenty hours of hydrogenation. Thus, samples were chosen on the basis of: (1) low open circuit voltage; (2) low shunt conductance; and (3) high light generated current. These cells were hydrogenated in molecular hydrogen at 300 C. The differences between the before and after hydrogenation values are so slight as to be negligible. These cells have light generated current densities that indicate long minority carrier diffusion lengths. The open circuit voltage appears to be degraded, and quasi-neutral recombination current enhanced. Therefore, molecular hydrogen is not usful for passivating electrically active defects.

  20. Magnetostrictive properties of polycrystalline iron cobalt films

    International Nuclear Information System (INIS)

    Cooke, M.D.

    2000-10-01

    This thesis is concerned with the magnetic properties of magnetostrictive FeCo polycrystalline alloy films produced by RF magnetron sputter deposition. The bulk material is known to have highly magnetostrictive properties, coupled with the possibility of a low anisotropy with the correct thermal treatment to allow ordering. Significant reduction in the anisotropy was found by using post depostional thermal treatment in Ar/H. It has been demonstrated that it is possible to produce FeCo films with magnetostrictive properties similar to those found in the bulk. Detailed examination showed an increased peak in the magnetostriction with composition which had not been previously viewed in the bulk materials. Initial development was also made of a novel co-depositional technique to allow magnetostrictive determination as a function of composition in a single deposition. Development was made of a technique using the Daresbury Synchrotron research facility and the XRD equipment to allow determination of the magnetostriction coefficients of polycrystalline films. This is the first time this has been achieved for thin film materials and provides exciting new possibilities for the future. A critique was made of the optical cantilever technique for determining magnetostriction. Clear consideration has to be made of rotational and frequency effects. A new analytical theory was devised which allowing determination of the cantilever deflection for similar substrate and film thickness. This is essential for development of current trends in nanotechnology. The results were then optimised for use in sensor and actuator devices providing novel results. Finally investigation was made of the possible effects of surfaces on the magnetic properties. The magnetostriction of FeCo/Ag multilayers and Ag embedded in an FeCo matrix are compared. These clearly show the influence of surface and illustrate the importance of considering the technique used to determine the magnetostriction. (author)

  1. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  2. Analysis of high-quality modes in open chaotic microcavities

    International Nuclear Information System (INIS)

    Fang, W.; Yamilov, A.; Cao, H.

    2005-01-01

    We present a numerical study of the high-quality modes in two-dimensional dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in a stadium billiard, all of the high-quality modes show a 'strong scar' around unstable periodic orbits. When the deformation (ratio of the length of the straight segments over the diameter of the half circles) is small, the high-quality modes correspond to whispering-gallery-type trajectories and their quality factors decrease monotonically with increasing deformation. At large deformation, each high-quality mode is associated with multiple unstable periodic orbits. Its quality factor changes nonmonotonically with the deformation, and there exists an optimal deformation for each mode at which its quality factor reaches a local maximum. This unusual behavior is attributed to the interference of waves propagating along different constituent orbits that could minimize light leakage out of the cavity

  3. Innovative and high quality education through Open Education and OER

    OpenAIRE

    Stracke, Christian M.

    2017-01-01

    Online presentation and webinar by Stracke, C. M. (2017, 18 December) on "Innovative and high quality education through Open Education and OER" for the Belt and Road Open Education Learning Week by the Beijing Normal University, China.

  4. Improving high quality, equitable maternal health services in Malawi ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving high quality, equitable maternal health services in Malawi (IMCHA) ... In response, the Ministry of Health implemented a Standards-Based Management and Recognition for Reproductive Health initiative to improve ... Total funding.

  5. High Quality Education and Learning for All through Open Education

    NARCIS (Netherlands)

    Stracke, Christian M.

    2016-01-01

    Keynote at the International Lensky Education Forum 2016, Yakutsk, Republic of Sakha, Russian Federation, by Stracke, C. M. (2016, 16 August): "High Quality Education and Learning for All through Open Education"

  6. Splitting tests on rock specimens

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J D; Stagg, K G

    1970-01-01

    Splitting tests are described for a square-section sandstone specimens line loaded through steel or timber packings on the top face and supported on the bottom face either on similar packings (type A specimen) or directly on the lower platen plate of the testing machine (type B specimens). The stress distribution across the vertical central plane and the horizontal central plane were determined from a linear elastic finite element analysis for both types. Two solutions were obtained for the type B specimen: one assuming no friction between the base of the specimen and the platen plate and the other assuming no relative slip between the surfaces. Vertical and horizontal strains were measured at the center of the specimens for all loads up to failure.

  7. Growth of high-quality large-area MgB2 thin films by reactive evaporation

    International Nuclear Information System (INIS)

    Moeckly, B H; Ruby, W S

    2006-01-01

    We report a new in situ reactive deposition thin film growth technique for the production of MgB 2 thin films which offers several advantages over all existing methods and is the first deposition method to enable the production of high-quality MgB 2 films for real-world applications. We have used this growth method, which incorporates a rotating pocket heater, to deposit MgB 2 films on a variety of substrates, including single-crystalline, polycrystalline, metallic, and semiconductor materials up to 4 inch in diameter. This technique allows growth of double-sided, large-area films in the intermediate temperature range of 400-600 deg. C. These films are clean, well-connected, and consistently display T c values of 38-39 K with low resistivity and residual resistivity values. They are also robust and uncommonly stable upon exposure to atmosphere and water. (rapid communication)

  8. Janka hardness using nonstandard specimens

    Science.gov (United States)

    David W. Green; Marshall Begel; William Nelson

    2006-01-01

    Janka hardness determined on 1.5- by 3.5-in. specimens (2×4s) was found to be equivalent to that determined using the 2- by 2-in. specimen specified in ASTM D 143. Data are presented on the relationship between Janka hardness and the strength of clear wood. Analysis of historical data determined using standard specimens indicated no difference between side hardness...

  9. Structural evolution and mechanisms of fatigue in polycrystalline brass

    International Nuclear Information System (INIS)

    Vejloe Carstensen, J.

    1998-03-01

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic strain controlled fatigue of brass. This complicates the contstruction of a cyclic stress-strain (CSS) curve and thus the comparison with copper. A method to overcome this complication has been suggested. Surface observations on fatigued brass specimens show that individual grains tend to deform by Sachs type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass. It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the secondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn in a pure planar slip alloy, while Cu-15%Zn displays both planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This emphasizes brass as being a convenient model system for the industrially important austenitic steels. (au)

  10. Structural evolution and mechanisms of fatigue in polycrystalline brass

    Energy Technology Data Exchange (ETDEWEB)

    Vejloe Carstensen, J

    1998-03-01

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic strain controlled fatigue of brass. This complicates the contstruction of a cyclic stress-strain (CSS) curve and thus the comparison with copper. A method to overcome this complication has been suggested. Surface observations on fatigued brass specimens show that individual grains tend to deform by Sachs type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass. It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the secondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence of short-range order (SRO). SRO promote the formation of extended dipole arrays which hardens the material. The formation of intense shear bands destroy the dipole arrays, which explains the cyclic softening. The present results reveal that Cu-30%Zn in a pure planar slip alloy, while Cu-15%Zn displays both planar and wavy slip. The mechanical and structural behaviour observed in brass resembles recent observations in 316L austenitic stainless steels, and the present results reveal that Cu-30%Zn and 316L have approximately the same fatigue life curve. This emphasizes brass as being a convenient model system for the industrially important austenitic steels. (au) 9 tabs., 94 ills., 177 refs.; The thesis is also available as DCAMM-R-S80 and as an electronic document on http://www.risoe.dk/rispubl

  11. Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate

    International Nuclear Information System (INIS)

    Tsukamoto, K.; Akasaka, Y.; Horie, K.

    1977-01-01

    Arsenic implantation into polycrystalline silicon and drive-in diffusion to silicon substrate have been investigated by MeV He + backscattering analysis and also by electrical measurements. The range distributions of arsenic implanted into polycrystalline silicon are well fitted to Gaussian distributions over the energy range 60--350 keV. The measured values of R/sub P/ and ΔR/sub P/ are about 10 and 20% larger than the theoretical predictions, respectively. The effective diffusion coefficient of arsenic implanted into polycrystalline silicon is expressed as D=0.63 exp[(-3.22 eV/kT)] and is independent of the arsenic concentration. The drive-in diffusion of arsenic from the implanted polycrystalline silicon layer into the silicon substrate is significantly affected by the diffusion atmosphere. In the N 2 atmosphere, a considerable amount of arsenic atoms diffuses outward to the ambient. The outdiffusion can be suppressed by encapsulation with Si 3 N 4 . In the oxidizing atmosphere, arsenic atoms are driven inward by growing SiO 2 due to the segregation between SiO 2 and polycrystalline silicon, and consequently the drive-in diffusion of arsenic is enhanced. At the interface between the polycrystalline silicon layer and the silicon substrate, arsenic atoms are likely to segregate at the polycrystalline silicon side

  12. Formation of polycrystalline MgB2 synthesized by powder in sealed tube method with different initial boron phase

    Science.gov (United States)

    Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar

    2018-04-01

    Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).

  13. Electromechanical properties of polycrystalline cadmium pyroniobate

    International Nuclear Information System (INIS)

    Isupov, V.A.; Tarasova, G.I.

    1983-01-01

    Temperature dependences of electromechanical properties (piezoelectric modulus, elastic pliability, mechanical high quality and dielectric permittivity) as well as thermal expansion of polycristalline samples of Cd 2 Nb 2 O 7 cadmium pyroniobate are investigated. On curves obtained a considerable number of maxima is observed which when electric field applied to samples shiff, αin in strength or weaken, appear or disappear. A part of these maxima undoubtedly is related to phase transitions. Some of them are manifested probably only when the electric field of sufficient value is applied. A part of maxima possibly is related to domain-relaxation processes

  14. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    Science.gov (United States)

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  15. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  16. Tritium diffusion in polycrystalline lithium tungstate

    International Nuclear Information System (INIS)

    Krutyakov, A.N.; Shadrin, A.A.; Saunin, E.I.; Gromov, V.V.; Shafiev, A.I.

    1984-01-01

    Using radiometric method the investigation of tritium separation from neutron irradiated (neutron flux density 1.2x10 13 n/cm 2 xs) polycrystalline Li 2 WO 4 in the temperature range 200-680 deg C has been carried out. It is established that the use of helium as gas-carrier of flow-type gas-discharge counter permits to conduct continuous stable measurements of concentrations of tritium extracted depending on its chemical state. It is shown that volume diffusion is the process, limiting tritiated particle separation rate from Li 2 WO 4 . It is found that the process of tritium volume diffusion in Li 2 WO 4 corresponds to two different mechanisms respectively in low- (200-300 deg C) and high-temperature (350-680 deg C) ranges. A supposition is made that in the low-temperature range the process of diffusion is conditioned by the dissociation of the radiation defect-tritiated particle complex, which is confirmed by the data on radiation defect annealing in Li 2 WO 4 . The value of activation energy of tritium separation process in the range 350-680 deg C, proved to be equal to 13.3 kJ/mol. Possible role of crystal structure peculiarities of Li 2 WO 4 for diffusion process is pointed out

  17. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  18. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  19. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  20. Screen-film specimen radiography

    International Nuclear Information System (INIS)

    Shepard, S.J.; Hogan, J.; Schreck, B.

    1990-01-01

    This paper reports on the reproducibility and quality of biopsy specimen radiographs, a unique phototimed cabinet x-ray system is being developed. The system utilizes specially modified Kodal Min-R cassettes and will be compatible with current mammographic films. Tube voltages are in the 14-20-kVp range with 0.1-1.0-second exposure times. A top-hat type compression device is used (1) to compress the specimen to uniform thickness, (2) to measure the specimen thickness and determine optimum kVp, and (3) to superimpose a grid over the specimen for identification of objects of radiographic interest. The phototiming circuit developed specifically for this purpose will be described along with the modified Min-R cassette. Characteristics of the generator and cabinet will also be described. Tests will be performed on phantoms to evaluate the system limitations

  1. Estimation of Single-Crystal Elastic Constants of Polycrystalline Materials from Back-Scattered Grain Noise

    International Nuclear Information System (INIS)

    Haldipur, P.; Margetan, F. J.; Thompson, R. B.

    2006-01-01

    Single-crystal elastic stiffness constants are important input parameters for many calculations in material science. There are well established methods to measure these constants using single-crystal specimens, but such specimens are not always readily available. The ultrasonic properties of metal polycrystals, such as velocity, attenuation, and backscattered grain noise characteristics, depend in part on the single-crystal elastic constants. In this work we consider the estimation of elastic constants from UT measurements and grain-sizing data. We confine ourselves to a class of particularly simple polycrystalline microstructures, found in some jet-engine Nickel alloys, which are single-phase, cubic, equiaxed, and untextured. In past work we described a method to estimate the single-crystal elastic constants from measured ultrasonic velocity and attenuation data accompanied by metallographic analysis of grain size. However, that methodology assumes that all attenuation is due to grain scattering, and thus is not valid if appreciable absorption is present. In this work we describe an alternative approach which uses backscattered grain noise data in place of attenuation data. Efforts to validate the method using a pure copper specimen are discussed, and new results for two jet-engine Nickel alloys are presented

  2. Learning Disabilities and Achieving High-Quality Education Standards

    Science.gov (United States)

    Gartland, Debi; Strosnider, Roberta

    2017-01-01

    This is an official document of the National Joint Committee on Learning Disabilities (NJCLD), of which Council for Learning Disabilities is a long-standing, active member. With this position paper, NJCLD advocates for the implementation of high-quality education standards (HQES) for students with learning disabilities (LD) and outlines the…

  3. extraction of high quality dna from polysaccharides-secreting ...

    African Journals Online (AJOL)

    cistvr

    A DNA extraction method using CTAB was used for the isolation of genomic DNA from ten. Xanthomonas campestris pathovars, ten isolates of Xanthomonas albilineans and one isolate of. Pseudomonas rubrisubalbicans. High quality DNA was obtained that was ideal for molecular analy- ses. Extracellular polysaccharides ...

  4. Negative Binomial charts for monitoring high-quality processes

    NARCIS (Netherlands)

    Albers, Willem/Wim

    Good control charts for high quality processes are often based on the number of successes between failures. Geometric charts are simplest in this respect, but slow in recognizing moderately increased failure rates p. Improvement can be achieved by waiting until r > 1 failures have occurred, i.e. by

  5. Adoption and impact of high quality bambara flour (HQBF ...

    African Journals Online (AJOL)

    Adoption and impact of high quality bambara flour (HQBF) technology in the ... consumer acceptability/quality of products, credit, availability of raw materials, and ... as a result of 12.5 per cent increase in demand for bambara-based products.

  6. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)

    Wintec

    In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with .... (XRD) using a Siemens model D 500, powder X-ray ... decays were analysed using IBH DAS6 software. 3. ... This alloying process is.

  7. High temperature deformation of polycrystalline NiO and CoO

    International Nuclear Information System (INIS)

    Krishnamachari, V.; Notis, M.R.

    1977-01-01

    High temperature creep of polycrystalline NiO appears to be controlled by oxygen lattice diffusion at temperatures between 1273 and 1373 K and at stress levels from 34.5 to 79.8 MPa (5 to 11 ksi). Experimentally observed creep rates agree well with predictions obtained from deformation maps based on self-diffusion data. TEM examination indicates that dislocations present in crept NiO specimens are predominantly glide-type rather than climb-type dislocations as found in CoO. The difference in creep behavior of these materials is believed to be due to the difference in stacking fault energies and the nature of charge associated with lattice defects. 2 tables. 7 figs., 34 references

  8. A model of electric breakdown in polycrystalline semiconductors with highly nonlinear I - V characteristics

    International Nuclear Information System (INIS)

    Yildirim, E.H.; Tanatar, B.; Canessa, E.

    1993-07-01

    A deterministic algorithm to study the nonlinear current-voltage characteristics of polycrystalline semiconductors, such as ZnO-based metal oxide varistors, under dc bias and at room temperature is developed based on the electrical properties of individual grain boundaries. Assuming a thermionic emission type mechanism between individual grains and a nonuniform distribution of barrier heights at grain boundaries, the set of nonlinear Kirchhoff equations that determines the macroscopic current across the specimen and the nonlinearity coefficient α is solved numerically. The applied voltage dependence of the barrier height is found to be crucial to obtain α values reaching ∼50, indicating high nonlinearity as required by potential commercial applications. (author). 20 refs, 3 figs

  9. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    International Nuclear Information System (INIS)

    Tokarski, Tomasz; Cios, Grzegorz; Kula, Anna; Bała, Piotr

    2016-01-01

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis of very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.

  10. Next Generation High Quality Videoconferencing Service for the LHC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In recent times, we have witnessed an explosion of video initiatives in the industry worldwide. Several advancements in video technology are currently improving the way we interact and collaborate. These advancements are forcing tendencies and overall experiences: any device in any network can be used to collaborate, in most cases with an overall high quality. To cope with this technology progresses, CERN IT Department has taken the leading role to establish strategies and directions to improve the user experience in remote dispersed meetings and remote collaboration at large in the worldwide LHC communities. Due to the high rate of dispersion in the LHC user communities, these are critically dependent of videoconferencing technology, with a need of robustness and high quality for the best possible user experience. We will present an analysis of the factors that influenced the technical and strategic choices to improve the reliability, efficiency and overall quality of the LHC remote sessions. In particular, ...

  11. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    Science.gov (United States)

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  12. Methods and systems for fabricating high quality superconducting tapes

    Science.gov (United States)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  13. Process to Continuously Melt, Refine and Cast High Quality Steel

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  14. High-quality uniform dry transfer of graphene to polymers.

    Science.gov (United States)

    Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G

    2012-01-11

    In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society

  15. Atomistic modeling of mechanical properties of polycrystalline graphene

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-01-01

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1–10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets. (papers)

  16. Polycrystalline Materials as a Cold Neutron and Gamma Radiation Filter

    International Nuclear Information System (INIS)

    Habib, N.

    2009-01-01

    The total neutron cross-section of polycrystalline beryllium, graphite and iron has been calculated beyond their cut-off wavelength using a general formula. The computer Cold Filter code was developed in order to provide the required calculations. The code also permits the calculation of attenuation of reactor gamma radiation, The calculated neutron transmissions through polycrystalline Be graphite and iron at different temperatures were compared with the experimental data measured at the ETRR-1 reactor using two TOF spectrometers. An overall agreement is obtained between the formula fits and experimental data at different temperatures. A feasibility study is carried on using polycrystalline Be, graphite and iron an efficient filter for cold neutrons and gamma radiation.

  17. Atomistic modeling of mechanical properties of polycrystalline graphene.

    Science.gov (United States)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  18. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  19. Long quantum channels for high-quality entanglement transfer

    International Nuclear Information System (INIS)

    Banchi, L; Apollaro, T J G; Cuccoli, A; Verrucchi, P; Vaia, R

    2011-01-01

    High-quality quantum-state and entanglement transfer can be achieved in an unmodulated spin bus operating in the ballistic regime, which occurs when the endpoint qubits A and B are nonperturbatively coupled to the chain by a suitable exchange interaction j 0 . Indeed, the transition amplitude characterizing the transfer quality exhibits a maximum for a finite optimal value j opt 0 (N), where N is the channel length. We show that j opt 0 (N) scales as N -1/6 for large N and that it ensures a high-quality entanglement transfer even in the limit of arbitrarily long channels, almost independently of the channel initialization. For instance, for any chain length the average quantum-state transmission fidelity exceeds 90% and decreases very little in a broad neighbourhood of j opt 0 (N). We emphasize that, taking the reverse point of view, should j 0 be experimentally constrained, high-quality transfer can still be obtained by adjusting the channel length to its optimal value. (paper)

  20. High-quality cardiopulmonary resuscitation: current and future directions.

    Science.gov (United States)

    Abella, Benjamin S

    2016-06-01

    Cardiopulmonary resuscitation (CPR) represents the cornerstone of cardiac arrest resuscitation care. Prompt delivery of high-quality CPR can dramatically improve survival outcomes; however, the definitions of optimal CPR have evolved over several decades. The present review will discuss the metrics of CPR delivery, and the evidence supporting the importance of CPR quality to improve clinical outcomes. The introduction of new technologies to quantify metrics of CPR delivery has yielded important insights into CPR quality. Investigations using CPR recording devices have allowed the assessment of specific CPR performance parameters and their relative importance regarding return of spontaneous circulation and survival to hospital discharge. Additional work has suggested new opportunities to measure physiologic markers during CPR and potentially tailor CPR delivery to patient requirements. Through recent laboratory and clinical investigations, a more evidence-based definition of high-quality CPR continues to emerge. Exciting opportunities now exist to study quantitative metrics of CPR and potentially guide resuscitation care in a goal-directed fashion. Concepts of high-quality CPR have also informed new approaches to training and quality improvement efforts for cardiac arrest care.

  1. Integration study of high quality teaching resources in universities

    Directory of Open Access Journals (Sweden)

    Honglu Liu

    2012-12-01

    Full Text Available Purpose: The development level and quality of education depend on the merits and efficiency in the use of teaching resources, especially in the case of obvious contradiction between the demand and supply of teaching resources. So to integrate teaching resources, improve the efficiency in the use of high quality teaching resources, and take the road of content development to enhance the competitiveness of education has become very important and urgent.Design/methodology/approach: On the basis of analysis on the teaching resources of universities and the problems they faced, this paper introduced the basic concepts of cloud storage, and built the integration architecture of high quality teaching resources in universities based on the cloud storage.Findings and Originality/value: The HDFS-based cloud storage proposed in this paper is a dynamically adjustable and Internet-based storage solution, and the users can access storage targets using the network through a common and easy-to-use protocol and application programming interfaces. This new technology is useful for end users benefits. With the continuous development and improvement of cloud storage, it will necessarily result in more and more applications in the institutions of higher learning and education network.Originality/value: This paper introduced the cloud storage into the integration of high quality teaching resources in universities first and as a new form of service, it can be a good solution.

  2. Nucleation and growth of polycrystalline SiC

    DEFF Research Database (Denmark)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.

    2014-01-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15......R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar...

  3. Hall measurements and grain-size effects in polycrystalline silicon

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Rose, A.; Maruska, H.P.; Eustace, D.J.; Feng, T.

    1980-01-01

    The effects of grain size on Hall measurements in polycrystalline silicon are analyzed and interpreted, with some modifications, using the model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge regions. For materials with large grain sizes, the carrier concentration is independent of the intergrain boundary barrier, whereas the mobility is dependent on it. However, for small grains, both the carrier density and mobility depend on the barrier. These predictions are consistent with experimental results of mm-size Wacker and μm-size neutron-transmutation-doped polycrystalline silicon

  4. Spectral response of a polycrystalline silicon solar cell

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1994-10-01

    A theoretical study of the spectral response of a polycrystalline silicon n-p junction solar cell is presented. The case of a fibrously oriented grain structure, involving grain boundary recombination velocity and grain size effects is discussed. The contribution of the base region on the internal quantum efficiency Q int is computed for different grain sizes and grain boundary recombination velocities in order to examine their influence. Suggestions are also made for the determination of base diffusion length in polycrystalline silicon solar cells using the spectral response method. (author). 15 refs, 4 figs

  5. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, G.; Ludwig, R. [Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 (United States); Wiggins, J.; Bertagnolli, K. [US Synthetic, 1260 South 1600 West, Orem, UT 84058 (United States)

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  6. Laser induced single-crystal transition in polycrystalline silicon

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.; Rimini, E.

    1978-01-01

    Transition to single crystal of polycrystalline Si material underlying a Si crystal substrate of 100 orientation was obtained via laser irradiation. The changes in the structure were analyzed by reflection high energy electron diffraction and by channeling effect technique using 2.0 MeV He Rutherford scattering. The power density required to induce the transition in a 4500 A thick polycrystalline layer is about 70 MW/cm 2 (50ns). The corresponding amorphous to single transition has a threshold of about 45 MW/cm 2 . (orig.) 891 HPOE [de

  7. Low-temperature transport properties of chemical solution deposited polycrystalline La0.7Sr0.3MnO3 ferromagnetic films under a magnetic field

    International Nuclear Information System (INIS)

    Zhu, Junyu; Chen, Ying; Xu, Wenfei; Yang, Jing; Bai, Wei; Wang, Genshui; Duan, Chungang; Tang, Zheng; Tang, Xiaodong

    2011-01-01

    Polycrystalline La 0.7 Sr 0.3 MnO 3 (LSMO) films were prepared on SiO 2 /Si (001) substrates by chemical solution deposition technique. Electrical and magnetic properties of LSMO were investigated. A minimum phenomenon in resistivity is found at the low temperature ( 0.7 Sr 0.3 MnO 3 films were grown by a modified chemical solution deposition route. → High quality LSMO thin films were prepared directly onto SiO 2 /Si substrates. → Abnormality in resistivity of LSMO films at low temperatures was studied in detail. → The abnormality was mainly attributed to Kondo-like spin dependent scattering.

  8. The influence of microstructure on surface strain distributions in a nickel micro-tension specimen

    International Nuclear Information System (INIS)

    Turner, T J; Shade, P A; Schuren, J C; Groeber, M A

    2013-01-01

    This work presents an integrated experimental and modeling approach for examining the deformation of a pure nickel polycrystal utilizing micro-mechanical testing and a crystal-based elasto-viscoplastic finite-element model (CPFEM). The objective is to study the influence of microstructure on the heterogeneous deformation in polycrystalline materials, and to utilize a modeling framework to explore aspects of the deformation that are difficult or impossible to measure experimentally. To accomplish this, a micro-tension specimen containing 259 grains was created from a pure nickel foil material and deformed in uniaxial tension. After the deformation, the specimen was destructively serial sectioned in concert with electron back scattering diffraction, and these data were used to instantiate a CPFEM simulation. The material parameters in the CPFEM model were calibrated by matching the experimental macroscopic stress-strain response of the micro-tension specimen, and then the simulation results were compared with experimental surface deformations measured with digital image correlation. After validating the simulation results by comparing measured and predicted surface strain distributions, a parametric study of the influence of both crystallographic texture and grain morphology is presented to better understand the influence of microstructure on the development of heterogeneous deformation in the pure nickel polycrystalline material. (paper)

  9. Evaluation of local stress and local hydrogen concentration at grain boundary using three-dimensional polycrystalline model

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Itakura, Mitsuhiro; Yamaguchi, Masatake; Kaburaki, Hideo; Suzudo, Tomoaki

    2010-01-01

    The decohesion model in which hydrogen segregating at grain boundaries reduces cohesive energy is considered to explain hydrogen embrittlement. Although there are several experimental and theoretical supports of this model, its total process is still unclear. In order to understand hydrogen embrittlement in terms of the decohesion model, therefore, it is necessary to evaluate stress and hydrogen concentration at grain boundaries under experimental conditions and to verify the grain boundary decohesion process. Under this consideration, we evaluated the stress and the hydrogen concentration at grain boundaries in the three-dimensional polycrystalline model which was generated by the random Voronoi tessellation. The crystallographic anisotropy was given to each grain. As the boundary conditions of the calculations, data extracted from the results calculated in the notched round-bar specimen model under the tensile test condition in which fracture of the steel specimen is observed was given to the polycrystalline model. As a result, it was found that the evaluated stress does not reach the fracture stress which was estimated under the condition of the evaluated hydrogen concentration by first principles calculations. Therefore, it was considered that the initiation of grain boundary fracture needs other factors except the stress concentration due to the crystallographic anisotropy. (author)

  10. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Herbig, M.

    2011-01-01

    The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density (diff...

  11. Thin polycrystalline diamond films protecting zirconium alloys surfaces: From technology to layer analysis and application in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashcheulov, P. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Škoda, R.; Škarohlíd, J. [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, Prague 6, CZ-160 07 (Czech Republic); Taylor, A.; Fekete, L.; Fendrych, F. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Vega, R.; Shao, L. [Texas A& M University, Department of Nuclear Engineering TAMU-3133, College Station, TX TX 77843 (United States); Kalvoda, L.; Vratislav, S. [Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic); Cháb, V.; Horáková, K.; Kůsová, K.; Klimša, L.; Kopeček, J. [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Sajdl, P.; Macák, J. [University of Chemistry and Technology, Power Engineering Department, Technická 3, Prague 6, CZ-166 28 (Czech Republic); Johnson, S. [Nuclear Fuel Division, Westinghouse Electric Company, 5801 Bluff Road, Hopkins, SC 29209 (United States); Kratochvílová, I., E-mail: krat@fzu.cz [Institute of Physics, Academy of Sciences Czech Republic v.v.i, Na Slovance 2, CZ-182 21, Prague 8 (Czech Republic); Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, CZ-115 19, Prague 1 (Czech Republic)

    2015-12-30

    Graphical abstract: - Highlights: • In this work we showed that films prepared by MW-LA-PECVD technology can be used as anticorrosion protective layer for Zircaloy2 nuclear fuel claddings at elevated temperatures (950 °C) when α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). Quality of PCD films was examined by Raman spectroscopy, XPS, SEM, AFM and SIMS analysis. • The polycrystalline diamond films were of high quality - without defects and contaminations. After hot steam oxidation (950 °C) a high level of structural integrity of PCD layer was observed. Both sp{sup 2} and sp{sup 3} C phases were present in the protective PCD layer. Higher resistance and a lower degree of impedance dispersion was found in the hot steam oxidized PCD coated Zircaloy2 samples, which may suggest better protection of the Zircaloy2 surface. The PCD layer blocks the hydrogen diffusion into the Zircaloy2 surface thus protecting the material from degradation. • Hot steam oxidation tests confirmed that PCD coated Zircaloy2 surfaces were effectively protected against corrosion. Presented results demonstrate that the PCD anticorrosion protection can significantly prolong service life of Zircaloy2 nuclear fuel claddings in nuclear reactors even at elevated temperatures. - Abstract: Zirconium alloys can be effectively protected against corrosion by polycrystalline diamond (PCD) layers grown in microwave plasma enhanced linear antenna chemical vapor deposition apparatus. Standard and hot steam oxidized PCD layers grown on Zircaloy2 surfaces were examined and the specific impact of polycrystalline Zr substrate surface on PCD layer properties was investigated. It was found that the presence of the PCD coating blocks hydrogen diffusion into the Zircaloy2 surface and protects Zircaloy2 material from degradation. PCD anticorrosion protection of Zircaloy2 can significantly prolong life of Zircaloy2 material in nuclear reactors even at temperatures above Zr

  12. Key factors for a high-quality VR experience

    Science.gov (United States)

    Champel, Mary-Luc; Doré, Renaud; Mollet, Nicolas

    2017-09-01

    For many years, Virtual Reality has been presented as a promising technology that could deliver a truly new experience to users. The media and entertainment industry is now investigating the possibility to offer a video-based VR 360 experience. Nevertheless, there is a substantial risk that VR 360 could have the same fate as 3DTV if it cannot offer more than just being the next fad. The present paper aims at presenting the various quality factors required for a high-quality VR experience. More specifically, this paper will focus on the main three VR quality pillars: visual, audio and immersion.

  13. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  14. Methods and systems for fabricating high quality superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  15. Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide

    Science.gov (United States)

    2014-07-14

    Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n

  16. Electroreduction of CO on Polycrystalline Copper at Low Overpotentials

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Vagn Hogg, Thomas; Abghoui, Younes

    2018-01-01

    C uis the only monometallic electrocatalyst to produce highly reduced products from CO2 selectively because of its intermediate binding of CO. We investigate the performance of polycrystalline Cu for the electroreduction of CO in alkaline media (0.1 M KOH) at low overpotentials (−0.4 to −0.6 V vs...

  17. A study of ultrasonic velocity and attenuation on polycrystalline Ni ...

    Indian Academy of Sciences (India)

    Unknown

    tion of Fe3O4 particles at 800°C. Industrial grade particles of Ni and Zn oxides were ..... domain wall movements, which leads to electronic migrations: this can ... properties of polycrystalline Mn–Zn Ferrites, Ph.D. Thesis,. Osmania University ...

  18. Influence of hydrogen on high cycle fatigue of polycrystalline vanadium

    International Nuclear Information System (INIS)

    Chung, D.W.; Lee, K.S.; Stoloff, N.S.

    1977-02-01

    The room temperature fatigue behavior of several polycrystalline V-H 2 alloys is described. Hydrogen extends the life of unnotched vanadium but has a deleterious effect in notched materials. Crack propagation data are correlated with tensile yield stress and cyclic strain hardening data

  19. Percutaneous vertebroplasty with a high-quality rotational angiographic unit

    Energy Technology Data Exchange (ETDEWEB)

    Pedicelli, Alessandro [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: apedicelli@rm.unicatt.it; Rollo, Massimo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mrollo@rm.unicatt.it; Piano, Mariangela [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mariangela.piano@gmail.com; Re, Thomas J. [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: tomjre@gmail.com; Cipriani, Maria C. [Department of Gerontology, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: alexped@yahoo.com; Colosimo, Cesare [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: colosimo@rm.unicatt.it; Bonomo, Lorenzo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: lbonomo@rm.unicatt.it

    2009-02-15

    We evaluated the reliability of a rotational angiographic unit (RA) with flat-panel detector as a single technique to guide percutaneous vertebroplasty (PVP) and for post-procedure assessment by 2D and 3D reformatted images. Fifty-five consecutive patients (104 vertebral bodies) were treated under RA fluoroscopy. Rotational acquisitions with 2D and 3D reconstruction were obtained in all patients for immediate post-procedure assessment. In complex cases, this technique was also used to evaluate the needle position during the procedure. All patients underwent CT scan after the procedure. RA and CT findings were compared. In all cases, a safe trans-pedicular access and an accurate control of the bone-cement injection were successfully performed with high-quality fluoroscopy, even at the thoracic levels and in case of vertebra plana. 2D and 3D rotational reconstructions permitted CT-like images that clearly showed needle position and were similar to CT findings in depicting intrasomatic implant-distribution. RA detected 40 cement leakages compared to 42 demonstrated by CT and showed overall 95% sensitivity and 100% specificity compared to CT for final post-procedure assessment. Our preliminary results suggest that high-quality RA is reliable and safe as a single technique for PVP guidance, control and post-procedure assessment. It permits fast and cost-effective procedures avoiding multi-modality imaging.

  20. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  1. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  2. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    Science.gov (United States)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.

    2018-03-01

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

  3. Microcolumnar and polycrystalline growth of LaBr3:Ce scintillator

    Science.gov (United States)

    Nagarkar, V. V.; Miller, S.; Sia, R.; Gaysinskiy, V.

    2011-05-01

    While a wide variety of new scintillators are now available, cerium-doped lanthanide halide scintillators have shown a strong potential toward fulfilling the needs of highly demanding applications such as radioisotope identification at room temperature, homeland security, quantitative molecular imaging for medical diagnostics, and disease staging and research. Despite their extraordinary advantages in terms of light yield and response uniformity over a wide energy range, issues related to reliable, large volume manufacturing of these high-light-yield materials in a rapid and economic manner has not been resolved or purposefully addressed. Here we report on synthesizing LaBr3:Ce scintillator using a thermal evaporation technique, which offers the potential to synthesize large quantities of small-to-large volume, high-quality material in a time-efficient and cost-effective manner. To date we have successfully applied this method to form both microcolumnar films and thick polycrystalline slabs of LaBr3:Ce, and have characterized their light yield, response linearity, decay time and afterglow.

  4. Near-infrared refractive index of synthetic single crystal and polycrystalline diamonds at high temperatures

    Science.gov (United States)

    Yurov, V. Yu.; Bushuev, E. V.; Popovich, A. F.; Bolshakov, A. P.; Ashkinazi, E. E.; Ralchenko, V. G.

    2017-12-01

    We measured the refractive index n(T) and thermo-optical coefficient β(T) = (1/n)(dn/dT) of high quality synthetic diamonds from room temperature to high temperatures, up to 1520 K, in near-infrared spectral range at wavelength 1.56 μm, using a low-coherence interferometry. A type IIa single crystal diamond produced by high pressure-high temperature technique and a transparent polycrystalline diamond grown by chemical vapor deposition were tested and revealed a very close n(T) behavior, with n = 2.384 ± 0.001 at T = 300 K, monotonically increasing to 2.428 at 1520 K. The n(T) data corrected to thermal expansion of diamond are well fitted with 3rd order polynomials, and alternatively, with the Bose-Einstein model with an effective oscillator frequency of 970 cm-1. Almost linear n(T) dependence is observed above 800 K. The thermo-optical coefficient is found to increase monotonically from (0.6 ± 0.1) × 10-5 K-1 (300 K) to (2.0 ± 0.1) × 10-5 K-1 (1300 K) with a tendency to saturation at >1200 K. These β(T) values are an order of magnitude lower than those known for Si, GaAs, and InP. The obtained results significantly extend the temperature range, where the refractive index of diamond was previously measured.

  5. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    Science.gov (United States)

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Characterization of high quality Cu(In,Ga)Se{sub 2} thin films prepared by rf-magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bouchama, Idris [Departement d' Electronique, Faculte de Technologie, Universite de Msila (Algeria); Djessas, Kamal [Laboratoire Procedes Materiaux et Energie Solaire, PROMES-CNRS, Rambla de la Thermodynamique, Technosud, 66100 Perpignan (France); Bouloufa, Abdeslam [Laboratoire d' Electrochimie et Materiaux, Universite Ferhat Abbas de Setif (Algeria); Gauffier, Jean-Luc [Departement de Physique, INSA de Toulouse, 135, Avenue de Rangueil, 31077 Toulouse Cedex 4 (France)

    2013-01-15

    This paper reports the production of high quality polycrystalline thin layers of CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2} (CIGS), using rf-magnetron sputtering, from a powder target. These films are designed to be used as absorbers in solar cells. The depositions were carried out at substrate temperatures below 250 C and glass substrates was used. The influence of the substrate temperatures on the crystalline quality as well as structural, optical and electrical properties of thin layers obtained has been studied. X-ray diffraction showed that the films were highly orientated in the (112) and/or (204)/(220) direction. In{sub 2}Se{sub 3} secondary phase was observed on the samples grown at lower substrate temperatures. The surface morphology of CIGS layers studied by Atomic Force Microscopy (AFM) and Scanning Electronic Microscopy (SEM) has been also discussed. The most surprising and exciting outcome of this study was that the as grown films were of near stoichiometric composition. Resistivity measurements were carried out using the four point probe method. The optical absorption showed that energy gap values are between 1.13 and 1.18 eV and rather sharp absorption fronts. Thin film resistivities are between 10.7 and 60.9 {Omega}.cm depending on the experimental growth conditions (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. High quality diesel fuels by VO-LSGO hydrotreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stanica-Ezeanu, Dorin; Juganaru, Traian [Petroleum and Gas Univ. of Ploiesti (Romania)

    2013-06-01

    The aim of the paper is to obtain a high quality Diesel fuel by hydro-deoxigenation of vegetable oils (VO) mixed with a low sulfur gasoil (LSGO). The process is possible by using a bi-functional catalyst Ni-Mo supported by an activated Al{sub 2}O{sub 3} containing 2% Ultrastable Y-zeolite. The experimental conditions were: T =340 - 380 C, Pressure = 50 bar, LHSV = 1,5 h{sup -1}, H{sub 2}/Feed ratio = 15 mole H{sub 2} /mole liquid feed. The liquid product was separated in two fractions: a light distillate (similar to gasoline) and a heavy distillate (boiling point > 200 C) with very good characteristics for Diesel engines. The reaction chemistry is very complex, but the de-oxygenation process is decisive for the chemical structure of hydrocarbons from final product. Finally, a schema for the reaction mechanism is proposed. (orig.)

  8. Supercapacitors based on high-quality graphene scrolls

    Science.gov (United States)

    Zeng, Fanyan; Kuang, Yafei; Liu, Gaoqin; Liu, Rui; Huang, Zhongyuan; Fu, Chaopeng; Zhou, Haihui

    2012-06-01

    High-quality graphene scrolls (GSS) with a unique scrolled topography are designed using a microexplosion method. Their capacitance properties are investigated by cyclic voltammetry, galvanostatic charge-discharge and electrical impedance spectroscopy. Compared with the specific capacity of 110 F g-1 for graphene sheets, a remarkable capacity of 162.2 F g-1 is obtained at the current density of 1.0 A g-1 in 6 M KOH aqueous solution owing to the unique scrolled structure of GSS. The capacity value is increased by about 50% only because of the topological change of graphene sheets. Meanwhile, GSS exhibit excellent long-term cycling stability along with 96.8% retained after 1000 cycles at 1.0 A g-1. These encouraging results indicate that GSS based on the topological structure of graphene sheets are a kind of promising material for supercapacitors.

  9. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.

    1991-01-01

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  10. A roadmap to high quality chemically prepared graphene

    Energy Technology Data Exchange (ETDEWEB)

    Gengler, Regis Y N; Spyrou, Konstantinos; Rudolf, Petra, E-mail: r.gengler@rug.n, E-mail: p.rudolf@rug.n [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen (Netherlands)

    2010-09-22

    Graphene was discovered half a decade ago and proved the existence of a two-dimensional system which becomes stable as a result of 3D corrugation. It appeared very quickly that this exceptional material had truly outstanding electronic, mechanical, thermal and optical properties. Consequently a broad range of applications appeared, as the graphene science speedily moved forward. Since then, a lot of effort has been devoted not only to the study of graphene but also to its fabrication. Here we review the chemical approaches to graphene production, their advantages as well as their downsides. Our aim is to draw a roadmap of today's most reliable path to high quality graphene via chemical preparation.

  11. Quality management manual for production of high quality cassava flour

    DEFF Research Database (Denmark)

    Dziedzoave, Nanam Tay; Abass, Adebayo Busura; Amoa-Awua, Wisdom K.

    The high quality cassava flour (HQCF) industry has just started to evolve in Africa and elsewhere. The sustainability of the growing industry, the profitability of small- and medium-scale enterprises (SMEs) that are active in the industry and good-health of consumers can best be guaranteed through...... the adoption of proper quality and food safety procedures. Cassava processing enterprises involved in the productionof HQCF must therefore be commited to the quality and food safety of the HQCF. They must have the right technology, appropriate processing machhinery, standard testing instruments...... and the necessary technical expertise. This quality manual was therefore developed to guide small- to medium-scale cassava in the design and implematation of Hazard Analysis Critical Control Point (HACCP) system and Good manufacturing Practices (GMP) plans for HQCF production. It describes the HQCF production...

  12. A roadmap to high quality chemically prepared graphene

    International Nuclear Information System (INIS)

    Gengler, Regis Y N; Spyrou, Konstantinos; Rudolf, Petra

    2010-01-01

    Graphene was discovered half a decade ago and proved the existence of a two-dimensional system which becomes stable as a result of 3D corrugation. It appeared very quickly that this exceptional material had truly outstanding electronic, mechanical, thermal and optical properties. Consequently a broad range of applications appeared, as the graphene science speedily moved forward. Since then, a lot of effort has been devoted not only to the study of graphene but also to its fabrication. Here we review the chemical approaches to graphene production, their advantages as well as their downsides. Our aim is to draw a roadmap of today's most reliable path to high quality graphene via chemical preparation.

  13. CHOREOGRAPHIC METHODS FOR CREATING NOVEL, HIGH QUALITY DANCE

    Directory of Open Access Journals (Sweden)

    David Kirsh

    2016-02-01

    Full Text Available We undertook a detailed ethnographic study of the dance creation process of a noted choreographer and his distinguished troupe. All choreographer dancer interactions were videoed, the choreographer and dancers were interviewed extensively each day, as well as other observations and tests performed. The choreographer used three main methods to produce high quality and novel content: showing, making-on, and tasking. We present, analyze and evaluate these methods, and show how these approaches allow the choreographer to increase the creative output of the dancers and him. His methods, although designed for dance, apply more generally to other creative endeavors, especially where brainstorming is involved, and where the creative process is distributed over many individuals. His approach is also a case study in multi-modal direction, owing to the range of mechanisms he uses to communicate and direct.

  14. Biotransformation of Organic Waste into High Quality Fertilizer

    DEFF Research Database (Denmark)

    Bryndum, Sofie

    Agriculture faces several challenges of future provision of nutrients such as limited P reserves and increasing prices of synthetic fertilizers and recycling of nutrients from organic waste can be an important strategy for the long-term sustainability of the agricultural systems. Organically...... and S, is often low; and (3) the unbalanced composition of nutrients rarely matches crop demands. Therefore the objective of this project was to investigate the potential for (1) recycling nutrients from agro-industrial wastes and (2) compost biotransformation into high-quality organic fertilizers...... other uses into fertilizer use would be unlikely. An estimated ~50 % of the total organic waste pool, primarily consisting of animal manure and waste from the processing of sugar cane, coffee, oil palm and oranges, is currently being re-used as “fertilizers”, meaning it is eventually returned...

  15. Automated Theorem Proving in High-Quality Software Design

    Science.gov (United States)

    Schumann, Johann; Swanson, Keith (Technical Monitor)

    2001-01-01

    The amount and complexity of software developed during the last few years has increased tremendously. In particular, programs are being used more and more in embedded systems (from car-brakes to plant-control). Many of these applications are safety-relevant, i.e. a malfunction of hardware or software can cause severe damage or loss. Tremendous risks are typically present in the area of aviation, (nuclear) power plants or (chemical) plant control. Here, even small problems can lead to thousands of casualties and huge financial losses. Large financial risks also exist when computer systems are used in the area of telecommunication (telephone, electronic commerce) or space exploration. Computer applications in this area are not only subject to safety considerations, but also security issues are important. All these systems must be designed and developed to guarantee high quality with respect to safety and security. Even in an industrial setting which is (or at least should be) aware of the high requirements in Software Engineering, many incidents occur. For example, the Warshaw Airbus crash, was caused by an incomplete requirements specification. Uncontrolled reuse of an Ariane 4 software module was the reason for the Ariane 5 disaster. Some recent incidents in the telecommunication area, like illegal "cloning" of smart-cards of D2GSM handies, or the extraction of (secret) passwords from German T-online users show that also in this area serious flaws can happen. Due to the inherent complexity of computer systems, most authors claim that only a rigorous application of formal methods in all stages of the software life cycle can ensure high quality of the software and lead to real safe and secure systems. In this paper, we will have a look, in how far automated theorem proving can contribute to a more widespread application of formal methods and their tools, and what automated theorem provers (ATPs) must provide in order to be useful.

  16. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-09-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol% TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol% it is approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999% HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  17. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-01-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol percent TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol percent approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999 percent HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  18. Surface Potential of Polycrystalline Hematite in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Tajana Preočanin

    2011-01-01

    Full Text Available The surface potential of polycrystalline hematite in aqueous sodium perchlorate environment as a function of pH was examined. Surface potential of hematite was obtained from measured electrode potential of a nonporous polycrystalline hematite electrode. Acidic solution was titrated with base, and the backward titration with acid was performed. Substantial hysteresis was obtained which enabled location of the point of zero potential and equilibrium values of surface potentials. The theoretical interpretation of the equilibrium data was performed by applying the surface complexation model and the thermodynamic equilibrium constants for the first and the second step of surface protonation was obtained as logK1∘=11.3;logK2∘=2.8.

  19. Inelastic x-ray scattering from polycrystalline materials

    International Nuclear Information System (INIS)

    Fischer, I.

    2008-09-01

    Inelastic X-ray scattering (IXS) is a tool to determine the phonon dispersion along high symmetry directions in single crystals. However, novel materials and crystals under extreme conditions are often only available in form of polycrystalline samples. Thus the investigation is limited to orientation-averaged properties. To overcome these limitations, a methodology to extract the single crystal phonon dispersion from polycrystalline materials was developed. The approach consists of recording IXS spectra over a large momentum transfer region and confront them with a Born - von Karman model calculation. A least-square refinement of the model IXS spectra then provides the single crystal dispersion scheme. In this work the method is developed on the test case Be. Further studies were performed on more and more complex systems, in order to explore the limitations. This novel application of IXS promises to be a valuable tool in cases where single crystalline materials are not available. (author)

  20. Ultrathin polycrystalline 6,13-Bis(triisopropylsilylethynyl)-pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.; Lee, Michael V.; Qi, Yabing, E-mail: Yabing.Qi@oist.jp [Energy Materials and Surface Sciences Unit (EMSS), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Joo Shin, Tae; Ahn, Docheon; Lee, Han-Koo; Baik, Jaeyoon; Shin, Hyun-Joon [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-03-15

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  1. Effect of hydrogen passivation on polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Oswald, Jiří; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2005-01-01

    Roč. 487, - (2005), s. 152-156 ISSN 0040-6090 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogen passivation * polycrystalline silicon * photoluminescence * Raman spectroscopy * Si-H 2 * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.569, year: 2005

  2. Formation of photovoltaic modules based on polycrystalline solar cells

    OpenAIRE

    L. A. Dobrzański; A. Drygała; A. Januszka

    2009-01-01

    Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current an...

  3. Polycrystalline diamond film UV detectors for excimer lasers

    International Nuclear Information System (INIS)

    Ralchenko, V G; Savel'ev, A V; Konov, Vitalii I; Mazzeo, G; Spaziani, F; Conte, G; Polyakov, V I

    2006-01-01

    Photoresistive metal-semiconductor-metal detectors based on polycrystalline diamond films are fabricated for recording cw and pulsed UV radiation. The detectors have a high spectral selectivity (the UV-to-VIS response ratio is ∼10 5 ) and a temporal resolution of the order of 10 9 s. 'Solar-blind' photostable diamond detectors are promising for applications in UV lithography, laser micromachining, medicine, and space research. (letters)

  4. Ferromagnetic clusters in polycrystalline BaCoO3

    International Nuclear Information System (INIS)

    Botta, P.M.; Pardo, V.; Calle, C. de la; Baldomir, D.; Alonso, J.A.; Rivas, J.

    2007-01-01

    Polycrystalline BaCoO 3 was synthesized by a citrate technique using thermal treatments at high oxygen pressure. Magnetic susceptibility measurements on the compound were carried out under AC conditions. The magnetic properties of the material at low temperatures were found to be determined by the appearance of nanoscale ferromagnetic (FM) regions and not by a true magnetic phase transition. These clusters have a mean size of about 1 nm in diameter and obey an Arrhenius-like thermal relaxation

  5. Magneto-optical imaging of polycrystalline FeTe1-xSex prepared at various conditions

    International Nuclear Information System (INIS)

    Ding, Q.; Taen, T.; Mohan, S.; Nakajima, Y.; Tamegai, T.

    2011-01-01

    High-quality FeTe 1-x Se x polycrystals with T c ∼ 14 K were prepared by sintering at different temperatures. Intragranular critical current density of FeTe 1-x Se x polycrystals estimated from M-H curve is 5 x 10 4 A/cm 2 at 5 K under zero field. The observed intragranular J c value was confirmed by the magneto-optical images in the remanent state. The weak-link feature of FeTe 1-x Se x polycrystals is also revealed through magneto-optical imaging. We have prepared high-quality polycrystalline FeTe 1-x Se x by sintering at different temperatures and characterized their structural and magnetic properties with X-ray diffraction, magnetization measurements, and magneto-optical imaging. The intragranular J c was estimated to be 5 x 10 4 A/cm 2 , which is smaller than the single crystal, but still in the range for practical applications.

  6. Collagen Quantification in Tissue Specimens.

    Science.gov (United States)

    Coentro, João Quintas; Capella-Monsonís, Héctor; Graceffa, Valeria; Wu, Zhuning; Mullen, Anne Maria; Raghunath, Michael; Zeugolis, Dimitrios I

    2017-01-01

    Collagen is the major extracellular protein in mammals. Accurate quantification of collagen is essential in the biomaterials (e.g., reproducible collagen scaffold fabrication), drug discovery (e.g., assessment of collagen in pathophysiologies, such as fibrosis), and tissue engineering (e.g., quantification of cell-synthesized collagen) fields. Although measuring hydroxyproline content is the most widely used method to quantify collagen in biological specimens, the process is very laborious. To this end, the Sircol™ Collagen Assay is widely used due to its inherent simplicity and convenience. However, this method leads to overestimation of collagen content due to the interaction of Sirius red with basic amino acids of non-collagenous proteins. Herein, we describe the addition of an ultrafiltration purification step in the process to accurately determine collagen content in tissues.

  7. Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    2001-01-01

    Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)

  8. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); Li, Chen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Poplawsky, Jonathan [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Zhiwei [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  9. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    Science.gov (United States)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  10. Notch effects in uniaxial tension specimens

    International Nuclear Information System (INIS)

    Delph, T.J.

    1979-03-01

    Results of a literature survey on the effect of notches on the time-dependent failure of uniaxial tension specimens at elevated temperatures are presented. Particular attention is paid to the failure of notched specimens containing weldments

  11. Measurements and Counts for Notacanthidae Specimens

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Taxonomic data were collected for specimens of deep-sea spiny eels (Notacanthidae) from the Hawaiian Ridge by Bruce C. Mundy. Specimens were collected off the north...

  12. Design of high quality doped CeO2 solid electrolytes with nanohetero structure

    International Nuclear Information System (INIS)

    Mori, T.; Ou, D.R.; Ye, F.; Drennan, J.

    2006-01-01

    Doped cerium (CeO 2 ) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650 o C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO 2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO 2 electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO 2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO 2 . It is essential that the electrolytic properties in doped CeO 2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO 2 electrolytes in the fuel cells. (author)

  13. Techniques in human airway inflammation - Quantity and morphology of bronchial biopsy specimens taken by forceps of three sizes

    NARCIS (Netherlands)

    Aleva, RM; Kraan, J; Smith, M; ten Hacken, NHT; Postma, DS; Timens, W

    Background: In recent years, fiberoptic bronchoscopy has been introduced successfully in the research of bronchial asthma. Bronchial biopsy specimens obtained by this procedure are small, and an optimal biopsy technique is necessary to obtain high-quality tissue samples, as sufficient length of

  14. An electronic specimen collection protocol schema (eSCPS). Document architecture for specimen management and the exchange of specimen collection protocols between biobanking information systems.

    Science.gov (United States)

    Eminaga, O; Semjonow, A; Oezguer, E; Herden, J; Akbarov, I; Tok, A; Engelmann, U; Wille, S

    2014-01-01

    The integrity of collection protocols in biobanking is essential for a high-quality sample preparation process. However, there is not currently a well-defined universal method for integrating collection protocols in the biobanking information system (BIMS). Therefore, an electronic schema of the collection protocol that is based on Extensible Markup Language (XML) is required to maintain the integrity and enable the exchange of collection protocols. The development and implementation of an electronic specimen collection protocol schema (eSCPS) was performed at two institutions (Muenster and Cologne) in three stages. First, we analyzed the infrastructure that was already established at both the biorepository and the hospital information systems of these institutions and determined the requirements for the sufficient preparation of specimens and documentation. Second, we designed an eSCPS according to these requirements. Finally, a prospective study was conducted to implement and evaluate the novel schema in the current BIMS. We designed an eSCPS that provides all of the relevant information about collection protocols. Ten electronic collection protocols were generated using the supplementary Protocol Editor tool, and these protocols were successfully implemented in the existing BIMS. Moreover, an electronic list of collection protocols for the current studies being performed at each institution was included, new collection protocols were added, and the existing protocols were redesigned to be modifiable. The documentation time was significantly reduced after implementing the eSCPS (5 ± 2 min vs. 7 ± 3 min; p = 0.0002). The eSCPS improves the integrity and facilitates the exchange of specimen collection protocols in the existing open-source BIMS.

  15. 76 FR 45397 - Export Inspection and Weighing Waiver for High Quality Specialty Grain Transported in Containers

    Science.gov (United States)

    2011-07-29

    ...-AB18 Export Inspection and Weighing Waiver for High Quality Specialty Grain Transported in Containers... permanent a waiver due to expire on July 31, 2012, for high quality specialty grain exported in containers... of high quality specialty grain exported in containers are small entities that up until recently...

  16. Tungsten silicide contacts to polycrystalline silicon and silicon-germanium alloys

    International Nuclear Information System (INIS)

    Srinivasan, G.; Bain, M.F.; Bhattacharyya, S.; Baine, P.; Armstrong, B.M.; Gamble, H.S.; McNeill, D.W.

    2004-01-01

    Silicon-germanium alloy layers will be employed in the source-drain engineering of future MOS transistors. The use of this technology offers advantages in reducing series resistance and decreasing junction depth resulting in reduction in punch-through and SCE problems. The contact resistance of metal or metal silicides to the raised source-drain material is a serious issue at sub-micron dimensions and must be minimised. In this work, tungsten silicide produced by chemical vapour deposition has been investigated as a contact metallization scheme to both boron and phosphorus doped polycrystalline Si 1- x Ge x , with 0 ≤x ≤ 0.3. Cross bridge Kelvin resistor (CKBR) structures were fabricated incorporating CVD WSi 2 and polycrystalline SiGe. Tungsten silicide contacts to control polysilicon CKBR structures have been shown to be of high quality with specific contact resistance ρ c values 3 x 10 -7 ohm cm 2 and 6 x 10 -7 ohm cm 2 obtained to boron and phosphorus implanted samples respectively. The SiGe CKBR structures show that the inclusion of Ge yields a reduction in ρ c for both dopant types. The boron doped SiGe exhibits a reduction in ρ c from 3 x 10 -7 to 5 x 10 -8 ohm cm 2 as Ge fraction is increased from 0 to 0.3. The reduction in ρ c has been shown to be due to (i) the lowering of the tungsten silicide Schottky barrier height to p-type SiGe resulting from the energy band gap reduction, and (ii) increased activation of the implanted boron with increased Ge fraction. The phosphorus implanted samples show less sensitivity of ρ c to Ge fraction with a lowest value in this work of 3 x 10 -7 ohm cm 2 for a Ge fraction of 0.3. The reduction in specific contact resistance to the phosphorus implanted samples has been shown to be due to increased dopant activation alone

  17. Modeling the thermal deformation of TATB-based explosives. Part 1: Thermal expansion of “neat-pressed” polycrystalline TATB

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Darby J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-08

    We detail a modeling approach to simulate the anisotropic thermal expansion of polycrystalline (1,3,5-triamino-2,4,6-trinitrobenzene) TATB-based explosives that utilizes microstructural information including porosity, crystal aspect ratio, and processing-induced texture. This report, the first in a series, focuses on nonlinear thermal expansion of “neat-pressed” polycrystalline TATB specimens which do not contain any binder; additional complexities related to polymeric binder and irreversible ratcheting behavior are briefly discussed, however detailed investigation of these aspects are deferred to subsequent reports. In this work we have, for the first time, developed a mesoscale continuum model relating the thermal expansion of polycrystal TATB specimens to their microstructural characteristics. A self-consistent homogenization procedure is used to relate macroscopic thermoelastic response to the constitutive behavior of single-crystal TATB. The model includes a representation of grain aspect ratio, porosity, and crystallographic texture attributed to the consolidation process. A quantitative model is proposed to describe the evolution of preferred orientation of graphitic planes in TATB during consolidation and an algorithm constructed to develop a discrete representation of the associated orientation distribution function. Analytical and numerical solutions using this model are shown to produce textures consistent with previous measurements and characterization for isostatic and uniaxial “die-pressed” specimens. Predicted thermal strain versus temperature for textured specimens are shown to be in agreement with corresponding experimental measurements. Using the developed modeling approach, several simulations have been run to investigate the influence of microstructure on macroscopic thermal expansion behavior. Results from these simulations are used to identify qualitative trends. Implications of the identified trends are discussed in the context of

  18. High-Quality Seismic Observations of Sonic Booms

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  19. Construction of High-Quality Camel Immune Antibody Libraries.

    Science.gov (United States)

    Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste

    2018-01-01

    Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

  20. High-quality remote interactive imaging in the operating theatre

    Science.gov (United States)

    Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan

    2009-02-01

    We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.

  1. Production of high quality water for oil sands application

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette-Hodsman, C.; Macleod, B. [Pall Corp., Mississauga, ON (Canada); Venkatadri, R. [Pall Corp., East Hills, NY (United States)

    2008-10-15

    This paper described a pressurized microfiltration membrane system installed at an oil sands extraction site in Alberta. The system was designed to complement a reverse osmosis (RO) system installed at the site to produce the high quality feed water required by the system's boilers. Groundwater in the region exhibited moderate total suspended solids and high alkalinity and hardness levels, and the RO system required feed water with a silt density index of 3 or less. The conventional pretreatment system used at the site was slowing down production due to the severe fouling of the RO membranes. The new microfiltration system contained an automated PVDF hollow fiber microfiltration membrane system contained in a trailer. Suspended particles and bacteria were captured within the filter, and permeate was sent to the RO unit. Within 6 hours of being installed, the unit was producing water with SDI values in the range of 1.0 to 2.5. It was concluded that the microfiltration system performed reliably regardless of wide variations in feed water quality and flow rates. 3 refs., 1 tab., 8 figs.

  2. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  3. Fabrication of Polycrystalline Lanthanum Manganite (La0.99 Mn0.01 O3) Powder and Fibres by Electrospinning Method

    International Nuclear Information System (INIS)

    Yin Yin Win; That Htar Lwin; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Lanthanum manganite (La0.99 Mn0.01 O3) powder have been prepared by using pyrolysis methods. Lanthanum manganite fibres were successfully fabricated by electro-spinning utilizing precursors. Polycrystalline perovskite structure lanthanum manganite powder and fibres showed that the grain size and crystal grain increased significantly with the increase in calcination temperature. A variety of techniques (SEM, FT-IR and TG-DTA) were employed to study the morphology and fibre quality, crystal structure, and thermal analysis of La0.99 Mn0.01 O3 specimen respectively.

  4. Development of Reconstitution Technology for Surveillance Specimens

    International Nuclear Information System (INIS)

    Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka

    2002-01-01

    The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)

  5. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    Energy Technology Data Exchange (ETDEWEB)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S. [U.S. Army Research Laboratory, WMRD, Aberdeen Proving Ground, Maryland 21005 (United States); Shanholtz, E. R. [ORISE, Belcamp, Maryland 21017 (United States)

    2016-07-14

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  6. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    International Nuclear Information System (INIS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-01-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  7. X-ray measurements of elastic deformation of individual crystallites in polycrystalline Al-Cu alloys

    International Nuclear Information System (INIS)

    Kato, Hiroshi; Urashima, Ken-ichi; Miyawaki, Noburo; Yoshikawa, Keiji

    1982-01-01

    Equations and angular limits for X-ray stress measurements of individual crystallites in polycrystalline aggregates are obtained, and the stresses in grains of Al-4 -- 5 mass% Cu alloys containing large grains are measured under tension to compare the analytical results. Stresses in grains are not affected by the aging treatment, but diffraction spots are blurred out by the eigen strain occurred during the aging. Deviation angles theta 1 of the principal stress from the tensile direction have a linear relation to the shear factor F sub(S), which consists of the direction cosines of axes of the specimen with respect to axes of the crystallographic grain, and the proportional constant α is about 10 0 . The principal stress σ 1 is not affected by the factor F sub(S). Stress distributions are numerically analized for rectangular grains to clarify quantitatively the relations obtained experimentally. Numerical results also show the linear relation between the angle theta 1 and the factor F sub(S). The proportional constant α increases from zero to a constant αinfinity with the ratio R of the width to the length of the grain. The principal stress σ 1 is not affected by the shear factor F sub(S), but varies with the ratio R. (author)

  8. Recruiting and retaining high-quality teachers in rural areas.

    Science.gov (United States)

    Monk, David H

    2007-01-01

    In examining recruitment and retention of teachers in rural areas, David Monk begins by noting the numerous possible characteristics of rural communities--small size, sparse settlement, distance from population concentrations, and an economic reliance on agricultural industries that are increasingly using seasonal and immigrant workers to minimize labor costs. Many, though not all, rural areas, he says, are seriously impoverished. Classes in rural schools are relatively small, and teachers tend to report satisfaction with their work environments and relatively few problems with discipline. But teacher turnover is often high, and hiring can be difficult. Monk observes that rural schools have a below-average share of highly trained teachers. Compensation in rural schools tends to be low, perhaps because of a lower fiscal capacity in rural areas, thus complicating efforts to attract and retain teachers. Several student characteristics, including relatively large shares of students with special needs and with limited English skills and lower shares of students attending college, can also make it difficult to recruit and retain high-quality teachers. Other challenges include meeting the needs of highly mobile children of low-income migrant farm workers. With respect to public policy, Monk asserts a need to focus on a subcategory of what might be called hard-to-staff rural schools rather than to develop a blanket set of policies for all rural schools. In particular, he recommends a focus on such indicators as low teacher qualifications, teaching in fields far removed from the area of training, difficulty in hiring, high turnover, a lack of diversity among teachers in the school, and the presence of migrant farm workers' children. Successful efforts to stimulate economic growth in these areas would be highly beneficial. He also calls attention to the potential for modern telecommunication and computing technologies to offset some of the drawbacks associated with teaching

  9. High-quality endoscope reprocessing decreases endoscope contamination.

    Science.gov (United States)

    Decristoforo, P; Kaltseis, J; Fritz, A; Edlinger, M; Posch, W; Wilflingseder, D; Lass-Flörl, C; Orth-Höller, D

    2018-02-24

    Several outbreaks of severe infections due to contamination of gastrointestinal (GI) endoscopes, mainly duodenoscopes, have been described. The rate of microbial endoscope contamination varies dramatically in literature. The aim of this multicentre prospective study was to evaluate the hygiene quality of endoscopes and automated endoscope reprocessors (AERs) in Tyrol/Austria. In 2015 and 2016, a total of 463 GI endoscopes and 105 AERs from 29 endoscopy centres were analysed by a routine (R) and a combined routine and advanced (CRA) sampling procedure and investigated for microbial contamination by culture-based and molecular-based analyses. The contamination rate of GI endoscopes was 1.3%-4.6% according to the national guideline, suggesting that 1.3-4.6 patients out of 100 could have had contacts with hygiene-relevant microorganisms through an endoscopic intervention. Comparison of R and CRA sampling showed 1.8% of R versus 4.6% of CRA failing the acceptance criteria in phase I and 1.3% of R versus 3.0% of CRA samples failing in phase II. The most commonly identified indicator organism was Pseudomonas spp., mainly Pseudomonas oleovorans. None of the tested viruses were detected in 40 samples. While AERs in phase I failed (n = 9, 17.6%) mainly due to technical faults, phase II revealed lapses (n = 6, 11.5%) only on account of microbial contamination of the last rinsing water, mainly with Pseudomonas spp. In the present study the contamination rate of endoscopes was low compared with results from other European countries, possibly due to the high quality of endoscope reprocessing, drying and storage. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    between the various layers. The defect density in GaAs was reduced by a factor of five by adding a step of in-situ deposition of Ge by MBE on the sputtered Ge prior to GaAs growth. We have investigated device design strategies that would support development of high-efficiency devices in presence of dislocation densities of 10^8 cm^-2 present in our epitaxial GaAs films. Results from modeling work show that with a proper emitter, base and doping selection, the modeled efficiency of a GaAs cells with dislocation densities of 10^9 and 10^8 cm^-2 could be increased from 1% and 7% to 11% and 17% respectively. Under AM0, this single junction GaAs solar cell, has optimized value of emitter and base thickness of around 0.7 and 1.7 microns respectively, to give a maximum efficiency of 24.2%. We have fabricated complete GaAs solar cells using our Ge films on metal substrates. Pattern resolution of few microns with well-defined grid line of 30 microns has been realized on few cm square flexible templates. The ability to grow single-crystalline-like Ge films on flexible, polycrystalline substrates by reel-to-reel tape processing now provides an immense potential to fabricate high quality III-V photovoltaics on flexible, inexpensive substrates.

  11. Histopathologic analysis of appendectomy specimens

    Directory of Open Access Journals (Sweden)

    R Shrestha

    2012-03-01

    Full Text Available Background: Acute appendicitis is one of the common conditions requiring emergency surgery. A retrospective study was performed to determine various histopathological diagnoses, their demographics and the rates of perforated appendicitis, negative appendectomy and incidental appendectomy. Materials and Methods: Histopathological records of resected appendices submitted to histopathology department Chitwan medical college teaching hospital over the period of 2 yrs from May, 2009 to April 2011 were reviewed retrospectively. Results: Out of 930 specimens of appendix, appendicitis accounted for 88.8% with peak age incidence in the age group of 11 to 30 yrs in both sexes. Histopathologic diagnoses included acute appendicitis (45.6%, acute suppurative (20.8%, gangrenous (16.3%, perforated (1.7%, resolving /recurrent/non specific chronic appendicitis (2.5%, acute eosinophilic appendicitis (1.2%, periappendicitis (0.2%, and carcinoid tumour (0.1%. Other important coexisting pathologies were parasitic infestation (0.2% and Meckel’s diverticulum (0.2%. Negative appendectomy rate was 10.8% and three times more common in females with peak occurrence in the age group of 21-30 yrs. There were 10 cases of acute appendicitis in incidental appendectomies (2.5%, 24 cases with 7 times more common in females of age group of 31- 60 yrs. Conclusion: There is a high incidence of appendicitis in adolescents and young adults in central south region of Nepal. Negative appendectomy is also very common in females. Incidental appendectomy in elderly females may have preventive value. DOI: http://dx.doi.org/10.3126/jpn.v2i3.6025 JPN 2012; 2(3: 215-219

  12. Specimen size effects in Charpy impact testing

    International Nuclear Information System (INIS)

    Alexander, D.J.; Klueh, R.L.

    1989-01-01

    Full-size , half-size, and third-size specimens from several different steels have been tested as part of an ongoing alloy development program. The smaller specimens permit more specimens to be made from small trail heats and are much more efficient for irradiation experiments. The results of several comparisons between the different specimen sizes have shown that the smaller specimens show qualitatively similar behavior to large specimens, although the upper-shelf energy level and ductile-to-ductile transition temperature are reduced. The upper-shelf energy levels from different specimen sizes can be compared by using a simple volume normalization method. The effect of specimen size and geometry on the ductile-to-ductile transition temperature is more difficult to predict, although the available data suggest a simple shift in the transition temperature due to specimen size changes.The relatively shallower notch used in smaller specimens alters the deformation pattern, and permits yielding to spread back to the notched surface as well as through to the back. This reduces the constraint and the peak stresses, and thus the initiation of cleavage is more difficult. A better understanding of the stress and strain distributions is needed. 19 refs., 3 figs., 3 tabs

  13. Palladium assisted silver transport in polycrystalline SiC

    Energy Technology Data Exchange (ETDEWEB)

    Neethling, J.H., E-mail: Jan.Neethling@nmmu.ac.za [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); O' Connell, J.H.; Olivier, E.J. [Physics Department, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-10-15

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd-Ag compound at temperatures of 800 and 1000 Degree-Sign C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC-SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag-Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag-Pd compound if present at the IPyC-SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  14. Palladium assisted silver transport in polycrystalline SiC

    International Nuclear Information System (INIS)

    Neethling, J.H.; O’Connell, J.H.; Olivier, E.J.

    2012-01-01

    The transport of silver in polycrystalline 3C-SiC and hexagonal 6H-SiC has been investigated by annealing the SiC samples in contact with a Pd–Ag compound at temperatures of 800 and 1000 °C and times of 24 and 67 h. The Pd was added in an attempt to improve the low wetting of SiC by Ag and further because Pd is produced in measurable concentrations in coated particles during reactor operation. Pd is also known to coalesce at the IPyC–SiC interface and to chemically attack the SiC layer. SEM, TEM and EDS were used to show that the Ag penetrates polycrystalline SiC along grain boundaries together with Pd. It is suggested that Ag transport in SiC takes place along grain boundaries in the form of moving nodules consisting of a Ag–Pd mixture. It is assumed that the nodules move along grain boundaries by dissolving the SiC at the leading edge followed by the reprecipitation of SiC at the trailing edge. Since the solubility of Cs in Ag and Pd is extremely low, it is unlikely that Cs will penetrate the SiC together with the Ag–Pd compound if present at the IPyC–SiC interface. If it is assumed that the dominant transport mechanism of Ag in intact polycrystalline SiC is indeed the Pd assisted mechanism, then the stabilization of Pd (and other metallic fission products) in the kernel could be a way of mitigating Ag release from TRISO-coated particles.

  15. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Kamal P. [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Mahyavanshi, Rakesh D. [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2017-01-30

    Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal

  16. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    International Nuclear Information System (INIS)

    Sharma, Kamal P.; Mahyavanshi, Rakesh D.; Kalita, Golap; Tanemura, Masaki

    2017-01-01

    Graphical abstract: Hexagonal hole formation with anisotropic etching independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. - Highlights: • Reveal the influence of copper polycrystalline structure on anisotropic etching of graphene. • Hexagonal hole formation with etching is observed to be independent of stripes and wrinkles in graphene. • Variation in etched pattern of graphene depending on the base Cu grain is confirmed. • This finding will help to understand the nature of microscopic etched pattern in graphene. - Abstract: Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal

  17. Hydrogen retention properties of polycrystalline tungsten and helium irradiated tungsten

    International Nuclear Information System (INIS)

    Hino, T.; Koyama, K.; Yamauchi, Y.; Hirohata, Y.

    1998-01-01

    The hydrogen retention properties of a polycrystalline tungsten and tungsten irradiated by helium ions with an energy of 5 keV were examined by using an ECR ion irradiation apparatus and a technique of thermal desorption spectroscopy, TDS. The polycrystalline tungsten was irradiated at RT with energetic hydrogen ions, with a flux of 10 15 H cm -2 and an energy of 1.7 keV up to a fluence of 5 x 10 18 H cm -2 . Subsequently, the amount of retained hydrogen was measured by TDS. The heating temperature was increased from RT to 1000 C, and the heating rate was 50 C min -1 . Below 1000 C, two distinct hydrogen desorption peaks were observed at 200 C and 400 C. The retained amount of hydrogen was observed to be five times smaller than that of graphite, but the concentration in the implantation layer was comparable with that of graphite. Also, the polycrystalline tungsten was irradiated with 5 keV helium ions up to a fluence of 1.4 x 10 18 He cm -2 , and then re-irradiated with 1.7 keV hydrogen ions. The amount of retained hydrogen in this later experiment was close to the value in the case without prior helium ion irradiation. However, the amount of hydrogen which desorbed around the low temperature peak, 200 C, was largely enhanced. The desorption amount at 200 C saturated for the helium fluence of more than 5 x 10 17 He cm -2 . The present data shows that the trapping state of hydrogen is largely changed by the helium ion irradiation. Additionally, 5 keV helium ion irradiation was conducted on a sample pre-implanted with hydrogen ions to simulate a helium ion impact desorption of hydrogen retained in tungsten. The amount of the hydrogen was reduced as much as 50%. (orig.)

  18. Preliminary investigation of candidate specimens for the Egyptian environmental specimen bank

    International Nuclear Information System (INIS)

    Shawky, S.; Amer, H.; Schladot, J.D.; Ostapczuk, P.; Emons, H.; Abou El-Nour, F.

    2000-01-01

    In the frame of establishing an environmental monitoring program related to environmental specimen banking in egypt, some candidate specimens from the aquatic environment (Fish muscle, fish liver; mussels) were investigated. The selection of specimens and sampling sites is described. Specimens are chemically characterised with respect to some major and trace elements and the results are compared with data obtained from comparable specimens collected in aquatic ecosystems of germany

  19. Trace diffusion of different nuclear reactions products in polycrystalline tantalum

    International Nuclear Information System (INIS)

    Beyer, G.J.; Fromm, W.D.; Novgorodov, A.F.

    1976-07-01

    Measurements of the lattice diffusion coefficients for carrier free isotopes of Hf, Lu, Yb, Tm, Tb, Gd, Eu, Ba, Cs, Y, Sr, Rb and As in polycrystalline tantalum were made over the temperature range 1700 Fsub(As)>Fsub(lanthanides)>Fsub(Sr)>Fsub(Ba)>Fsub(Hf)>Fsub(Rb)>Fsub(Cs). The data indicate, that the Arrhenius relation was obeyed over the entire temperature range. Within the lanthanide-group no differences in the diffusion velocities could be detected, this fact points to a diffusion mechanism of Me 3+ -ions of lanthanides, Me 2+ -ions of earth alkaline elements and Me + -ions of alkaline elements. (author)

  20. Progress and issues in polycrystalline thin-film PV technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.; Ullal, H.S.; Roedern, B. von [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  1. Compensation for thermally induced birefringence in polycrystalline ceramic active elements

    International Nuclear Information System (INIS)

    Kagan, M A; Khazanov, E A

    2003-01-01

    Polycrystalline ceramics differ significantly from single crystals in that the crystallographic axes (and hence of the axes of thermally induced birefringence) are oriented randomly in each granule of the ceramic. The quaternion formalism is employed to calculate the depolarisation in the ceramics and the efficiency of its compensation. The obtained analytic expressions are in good agreement with the numerical relations. It is shown that the larger the ratio of the sample length to the granule size, the closer the properties of the ceramics to those of a single crystal with the [111] orientation (in particular, the uncompensated depolarisation is inversely proportional to this ratio). (active media)

  2. Modeling chemisorption kinetics of carbon monoxide on polycrystalline platinum

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, R.G.; Modell, M.; Baddour, R.F.

    1978-04-01

    Seven distinct desorption surface states of carbon monoxide on polycrystalline platinum were detected by deconvoluting temperature-programed desorption spectra of 4-100% carbon monoxide monolayer coverage. The adstates had fixed activation energies of desorption (22.5-32.6 kcal/mole) over the entire coverage range. Rates of formation and populations were derived. The chemisorption was modeled by a Hinshelwood-type expression which allowed for site creation and suggested that adsorbed molecules are sufficiently mobile during desorption heating to fill ordered states of minimum energy and that chemisorption into these states is noncompetitive and determined by the surface. Spectra, diagrams, graphs, tables, and 49 references.

  3. Laser beam machining of polycrystalline diamond for cutting tool manufacturing

    Science.gov (United States)

    Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold

    2017-10-01

    The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.

  4. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  5. New deformation model of grain boundary strengthening in polycrystalline metals

    International Nuclear Information System (INIS)

    Trefilov, V.I.; Moiseev, V.F.; Pechkovskij, Eh.P.

    1988-01-01

    A new model explaining grain boundary strengthening in polycrystalline metals and alloys by strain hardening due to localization of plastic deformation in narrow bands near grain boundaries is suggested. Occurrence of localized deformation is caused by different flow stresses in grains of different orientation. A new model takes into account the active role of stress concentrator, independence of the strengthening coefficient on deformation, influence of segregations. Successful use of the model suggested for explanation of rhenium effect in molybdenum and tungsten is alloys pointed out

  6. An acoustic emission study of plastic deformation in polycrystalline aluminium

    Science.gov (United States)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  7. An electrical conductivity inspection methodology of polycrystalline diamond cutters

    Science.gov (United States)

    Bogdanov, G.; Wiggins, J.; Bertagnolli, K.; Ludwig, R.

    2012-05-01

    The polycrystalline diamond cutter (PDC) is widely used in oil and gas drilling operations. It is manufactured by sintering diamond powder onto a tungsten carbide substrate at 6 GPa and 1500 C. During sintering, molten cobalt from the substrate infiltrates the diamond table. The residual metal content correlates with cutter performance. We present an instrument that employs electrical impedance tomography capable of imaging the 3D metal content distribution in the diamond table. These images can be used to predict cutter performance as well as detect flaws.

  8. High energy argon ion irradiations of polycrystalline iron

    International Nuclear Information System (INIS)

    Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Boulanger, L.

    1986-09-01

    We present here the results of our recent irradiations of polycrystalline iron targets with very energetic (1.76 GeV) Ar ions. The targets consist of piles of thin iron samples, the total thickness of each target being somewhat greater than the theoretical range (450 μm) of the ions. We can thus separate the phenomena which occur at different average energies of the ions and study during the slowing-down process: the different types of induced nuclear reactions. They allow us to determine the experimental range of the ions, the defect profiles in the targets, the structure of the displacement cascades (electron microscopy) and their stability

  9. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  10. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  11. High quality mask storage in an advanced Logic-Fab

    Science.gov (United States)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  12. Production of iodine-123 radiobiological specimen on 25 MeV electron beam

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Starodub, G.Ya.; Buklanov, G.V.; Korotkin, Yu.S.; Belov, A.G.

    1988-01-01

    The technique is described and experimental results are presented for production of radioactive specimen-iodine-123 for medical biological investigations. It is shown that in ten hour irradiation of 124 Xe enriched target of 10 g weight by the 25 MeV electron beam at MT-25 microtron short lived 123 I with activity of about 200 mCl can be accumulated. The procedure was developed for extraction of radioactive atoms and preparing the solution that permits to obtain during 1-1.5 h after the end of irradiation the specimen which satisfies all pharmacopeia requirements. It follows from the results that using small-size electron accelerators with the beam energy up to 25 MeV permits to organize economical and large-scale production of high quality radioactive specimen of 123 I for servicing a large region of this country. 14 refs.; 4 figs.; 1 tab

  13. Fracture properties of polycrystalline YBa2Cu3Ox

    International Nuclear Information System (INIS)

    Cook, R.F.; Shaw, T.M.; Duncombe, P.R.

    1987-01-01

    Polycrystalline YBa 2 Cu 3 O x has been prepared by sintering pre-reacted powder in oxygen to yield a material with 15 μm grain size, 86% relative density and which superconducts above liquid nitrogen temperatures. Indentation crack length measurements give a toughness K c = 1.3 ± 0.2 MPa m 1/2 , above a threshold contact load for radial crack initiation of approximately 5 N (compared with 1.1 MPa m 1/2 and < 0.1 N, respectively, for single crystals). The increased toughness and threshold contact load are controlled by the deviation of cracks from the plane of maximum driving force for fracture by weak grain boundaries and preferred fracture planes within grains. Optical microscopy of indentation cracks and scanning electron microscopy of fracture surfaces reveals approximately 50% intergranular fracture. The hardness of the polycrystal was H = 2.0 ± 0.5 GPa (compared with 8.7 GPa for single crystals). The decreased hardness arises from the porosity of the polycrystalline material and grain boundary sliding under the indentation contact. Time dependent growth of lateral cracks at the indentation contacts suggests that these materials are susceptible to moisture controlled non-equilibrium crack growth

  14. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  15. Microdamage in polycrystalline ceramics under dynamic compression and tension

    International Nuclear Information System (INIS)

    Zhang, K.S.; Zhang, D.; Feng, R.; Wu, M.S.

    2005-01-01

    In-grain microplasticity and intergranular microdamage in polycrystalline hexagonal-structure ceramics subjected to a sequence of dynamic compression and tension are studied computationally using the Voronoi polycrystal model, by which the topological heterogeneity and material anisotropy of the crystals are simulated explicitly. The constitutive modeling considers crystal plasticity by basal slip, intergranular shear damage during compression, and intergranular mode-I cracking during tension. The model parameters are calibrated with the available shock compression and spall strength data on polycrystalline α-6H silicon carbide. The numerical results show that microplasticity is a more plausible micromechanism for the inelastic response of the material under shock compression. On the other hand, the spallation behavior of the shocked material can be well predicted by intergranular mode-I microcracking during load reversal from dynamic compression to tension. The failure process and the resulting spall strength are, however, affected strongly by the intensity of local release heterogeneity induced by heterogeneous microplasticity, and by the grain-boundary shear damage during compression

  16. Electrostrain in excess of 1% in polycrystalline piezoelectrics

    Science.gov (United States)

    Narayan, Bastola; Malhotra, Jaskaran Singh; Pandey, Rishikesh; Yaddanapudi, Krishna; Nukala, Pavan; Dkhil, Brahim; Senyshyn, Anatoliy; Ranjan, Rajeev

    2018-05-01

    Piezoelectric actuators transform electrical energy into mechanical energy, and because of their compactness, quick response time and accurate displacement, they are sought after in many applications. Polycrystalline piezoelectric ceramics are technologically more appealing than single crystals due to their simpler and less expensive processing, but have yet to display electrostrain values that exceed 1%. Here we report a material design strategy wherein the efficient switching of ferroelectric-ferroelastic domains by an electric field is exploited to achieve a high electrostrain value of 1.3% in a pseudo-ternary ferroelectric alloy system, BiFeO3-PbTiO3-LaFeO3. Detailed structural investigations reveal that this electrostrain is associated with a combination of several factors: a large spontaneous lattice strain of the piezoelectric phase, domain miniaturization, a low-symmetry ferroelectric phase and a very large reverse switching of the non-180° domains. This insight for the design of a new class of polycrystalline piezoceramics with high electrostrains may be useful to develop alternatives to costly single-crystal actuators.

  17. Semantic modeling of plastic deformation of polycrystalline rock

    Science.gov (United States)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  18. Dielectric and conducting behaviour of polycrystalline holmium octa-molybdate

    International Nuclear Information System (INIS)

    Want, Basharat; Zahoor Ahmad, Bhat; Hamid Bhat, Bilal

    2014-01-01

    Polycrystalline holmium octa-molybdate spherulites have been obtained by using gel diffusion technique and characterized by different physio-chemical techniques. The surfaces of these spherulites are composed of nano-rod with an average diameter of about 80 nm. At room temperature the initial crystal structure is triclinic, space group P1. Thermal studies suggested a phase transition occurring in holmium octa-molybdate crystals at about 793 K. The electrical properties of the system have been studied as a function of frequency and temperature in the ranges of 20 Hz–3 MHz and 290–570 K, respectively. A giant dielectric constant and two loss peaks have been observed in the permittivity formalism. The conducting behaviour of the material is also discussed. The conductivity was found to be 1572 μ Ω −1 m −1 at room temperature and 3 MHz frequency. The conductivity of the polycrystalline material was attributed to the fact that it arises due to the migration of defects on the oxygen sub-lattice. Impedance studies were also performed in the frequency domain to infer the bulk and grain boundary contributions to the overall electric response of the material. The electrical responses have been attributed to the grain, grain-boundary, and interfacial effects. (paper)

  19. Shear strength of shock-loaded polycrystalline tungsten

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Dandekar, D.P.

    1980-01-01

    Previous experiments have suggested that tungsten undergoes a significant loss of shear strength when shock loaded to stresses greater than 7 GPa. In order to investigate this effect in more detail, a series of experiments was conducted in which polycrystalline tungsten was first shock loaded to approximately 10 GPa and then either unloaded or reloaded from the shocked state. Analysis of measured time-resolved wave profiles indicates that during initial compression to 9.7 GPa, the shear stress in polycrystalline tungsten increases to a maximum value of 1.1 GPA near a longitudinal stress of 5 GPa, but decreases to a final value of 0.8 GPa for stresses approaching 10 GPa. During reloading from a longitudinal stress of 9.7 GPa to a final value of approx.14 GPa, the shear stress increases to a peak value of 1.2 GPa and softens to 1.0 GPa in the final state. During unloading from the shocked state, the initial response is elastic with a strong Baushinger effect. Examination of a recovered sample shows evidence for both deformation slipping and twinning, which may be responsible for the observed softening

  20. Three dimensional grain boundary modeling in polycrystalline plasticity

    Science.gov (United States)

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  1. The fabrication of YBCO superconductor polycrystalline powder by CCSO

    International Nuclear Information System (INIS)

    Martirosyan, K S; Luss, D; Galstyan, E; Xue, Y Y

    2008-01-01

    We present a novel, cost-effective and simple method to produce polycrystalline superconductor YBa 2 Cu 3 O 7-δ (YBCO) powder by a self-sustaining one-step process called carbon combustion synthesis of oxides (CCSO). In this process the exothermic oxidation of carbon nanoparticles generates a thermal wave that propagates at a velocity of about 1 mm s -1 through the solid yttrium, barium, and copper precursors, converting them rapidly (in the order of seconds) to polycrystalline YBCO. The carbon is not incorporated in the product and is emitted as carbon dioxide (CO 2 ) from the sample, generating a highly porous (∼70%) and friable product. Most of the grains have a plate-like shape, are well connected, and have a size of between 1 and 3 μm. The concentration of the residual carbon was less than 0.06 wt%. The magnetization of as-synthesized samples (without external post-annealing in oxygen), as determined by a SQUID magnetometer, showed an onset of the superconducting (SC) transition at ∼91 K, with a 44% shielding fraction of the -1/(4π) value

  2. Grain-boundary unzipping by oxidation in polycrystalline graphene

    Science.gov (United States)

    Alexandre, Simone; Lucio, Aline; Nunes, Ricardo

    2011-03-01

    The need for large-scale production of graphene will inevitably lead to synthesis of the polycrystalline material [1,2]. Understanding the chemical, mechanical, and electronic properties of grain boundaries in graphene polycrystals will be crucial for the development of graphene-based electronics. Oxidation of this material has been suggested to lead to graphene ribbons, by the oxygen-driven unzipping mechanism. A cooperative-strain mechanism, based on the formation of epoxy groups along lines of parallel bonds in the hexagons of graphene's honeycomb lattice, was proposed to explain the unzipping effect in bulk graphene In this work we employ ab initio calculations to study the oxidation of polycrystalline graphene by chemisorption of oxygen at the grain boundaries. Our results indicate that oxygen tends to segregate at the boundaries, and that the unzipping mechanism is also operative along the grain boundaries, despite the lack of the parallel bonds due to the presence of fivefold and sevenfold carbon rings along the boundary core. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  3. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    Science.gov (United States)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height

  4. 7 CFR 97.8 - Specimen requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Specimen requirements. 97.8 Section 97.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... required by the examiner to furnish representative specimens of the variety, or its flower, fruit, or seeds...

  5. Electromechanical Response of Polycrystalline Barium Titanate Resolved at the Grain Scale

    DEFF Research Database (Denmark)

    Majkut, Marta; Daniels, John E.; Wright, Jonathan P.

    2017-01-01

    critical for understanding bulk polycrystalline ferroic behavior. Here, three-dimensional X-ray diffraction is used to reconstruct a 3D grain map (grain orientations and neighborhoods) of a polycrystalline barium titanate sample and track the grain-scale non-180° ferroelectric domain switching strains...

  6. Friction and dynamically dissipated energy dependence on temperature in polycrystalline silicon MEMS devices

    NARCIS (Netherlands)

    Gkouzou, A.; Kokorian, J.; Janssen, G.C.A.M.; van Spengen, W.M.

    2017-01-01

    In this paper, we report on the influence of capillary condensation on the sliding friction of sidewall surfaces in polycrystalline silicon micro-electromechanical
    systems (MEMS). We developed a polycrystalline silicon MEMS tribometer, which is a microscale test device with two components

  7. Recent advances on Charpy specimen reconstitution techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J., E-mail: aandrade@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  8. Recent advances on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J.

    2017-01-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  9. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  10. LPTR irradiation of LLL vanadium tensile specimens and LLL Nb--1Zr tensile specimens

    International Nuclear Information System (INIS)

    MacLean, S.C.; Rowe, C.L.

    1977-01-01

    The LPTR irradiation of 14 LLL vanadium tensile specimens and 14 LLL Nb-1Zr tensile specimens is described. Sample packaging, the irradiation schedule and neutron fluences for three energy ranges are given

  11. Publishing high-quality climate data on the semantic web

    Science.gov (United States)

    Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry

    2013-04-01

    The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface

  12. 16 CFR Figure 3 to Part 1610 - Specimen Holder Supported in Specimen Rack

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Specimen Holder Supported in Specimen Rack 3 Figure 3 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT... Holder Supported in Specimen Rack ER25MR08.002 ...

  13. Strain Amount Dependent Grain Size and Orientation Developments during Hot Compression of a Polycrystalline Nickel Based Superalloy

    Directory of Open Access Journals (Sweden)

    Guoai He

    2017-02-01

    Full Text Available Controlling grain size in polycrystalline nickel base superalloy is vital for obtaining required mechanical properties. Typically, a uniform and fine grain size is required throughout forging process to realize the superplastic deformation. Strain amount occupied a dominant position in manipulating the dynamic recrystallization (DRX process and regulating the grain size of the alloy during hot forging. In this article, the high-throughput double cone specimen was introduced to yield wide-range strain in a single sample. Continuous variations of effective strain ranging from 0.23 to 1.65 across the whole sample were achieved after reaching a height reduction of 70%. Grain size is measured to be decreased from the edge to the center of specimen with increase of effective strain. Small misorientation tended to generate near the grain boundaries, which was manifested as piled-up dislocation in micromechanics. After the dislocation density reached a critical value, DRX progress would be initiated at higher deformation region, leading to the refinement of grain size. During this process, the transformations from low angle grain boundaries (LAGBs to high angle grain boundaries (HAGBs and from subgrains to DRX grains are found to occur. After the accomplishment of DRX progress, the neonatal grains are presented as having similar orientation inside the grain boundary.

  14. Inequality in Preschool Quality? Community-Level Disparities in Access to High-Quality Learning Environments

    Science.gov (United States)

    Bassok, Daphna; Galdo, Eva

    2016-01-01

    In recent years, unequal access to high-quality preschool has emerged as a growing public policy concern. Because of data limitations, it is notoriously difficult to measure disparities in access to early learning opportunities across communities and particularly challenging to quantify gaps in access to "high-quality" programs. Research…

  15. Resistive switching in polycrystalline YMnO3 thin films

    Directory of Open Access Journals (Sweden)

    A. Bogusz

    2014-10-01

    Full Text Available We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.

  16. Mueller matrix mapping of biological polycrystalline layers using reference wave

    Science.gov (United States)

    Dubolazov, A.; Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Grytsyuk, M.; Prysyazhnyuk, P. V.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 1st order of polycrystalline structure of the histological section of brain tissue. It was defined the statistical moments of the 1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of mice liver tissue (normal and with diabetes). It were defined the objective criteria of differential diagnostics of diabetes.

  17. Analysis of Operating Temperature of the Polycrystalline Solar Cell

    Directory of Open Access Journals (Sweden)

    Vladimír GÁLL

    2017-12-01

    Full Text Available This work deals with the solar cells with orientation on the calculation of operating temperature of the polycrystalline solar cell, which is under actual load. Operating conditions have a significant effect on the efficiency of solar cells. In the summer with increasing temperature, the efficiency decreases. In the winter, efficiency and output voltage are rising. The operating temperature is determined by intensity of solar radiation, the types of materials used by construction and operating condition. The aim of this work was simplify of the calculation of operating temperature of solar cells. The result of this work is a derived equation that allows a more accurate and faster calculation this temperature with using Matlab software.

  18. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  19. Microcracking in polycrystalline YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Smith, D.S.; Suasmoro, S.; Huger, M.; Gault, C.

    1991-01-01

    The presence of microcracks can have a significant role for the electrical properties of polycrystalline YBa 2 Cu 3 O 7-δ due to the reduction of the effective current carrying cross section. This results in an increase of the normal state resistivity and a decrease of the critical current density, j c . Shaw et.al have reported an onset of microcracking for grain sizes greater than 1-2 μm. In this work we focus attention on the geometrical aspects of the microstructure by using ultrasonic measurements to characterize the mechanical properties of the ceramic for comparison to the electrical data. The studies have been extended with experiments as a function of temperature and atmosphere in order to investigate the origins of the microcracks. (orig./BHO)

  20. Characterization of CdSe polycrystalline films by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Brasil, M.J.S.P.

    1985-01-01

    The characterization of CdSe polycristalline films were done by photoluminescence spectroscopy, X-ray diffraction analysis, diagrams IxV, and efficiency of solar energy conversion for cells done by these films. The experimental data shown strong temperature dependence of annealing, and the optimum temperature around 650 0 C was determined. The films did not present photoluminescence before heat treatment, but the annealed sample spectrum showed fine structures in the excitonic region, crystal phase transformation, enhancement of grain size, and better efficiency of the cell. Measurements of photoluminescence between 2 and 300 K, showed two bands of infrared emission, width and intense enough. The shape, at half-width, and the integrated intensity of one these bands were described by a configuration coordinate model for deep centers. Based on obtained results, some hypothesis about the origin of these bands and its correlation with efficiency of cells done with CdSe polycrystalline films, are proposed. (M.C.K.) [pt

  1. Mechanical properties of amorphous and polycrystalline multilayer systems

    International Nuclear Information System (INIS)

    Barzen, I.; Edinger, M.; Scherer, J.; Ulrich, S.; Jung, K.; Ehrhardt, H.

    1993-01-01

    Amorphous and polycrystalline multilayer structures containing materials with metallic (Cr, Cr 3 C 2 ), ionic (Al 2 O 3 ) and covalent (SiC) bonding have been prepared by magnetron sputtering and ion plating in a dual-source apparatus. Up to 1000 layers have been deposited with a constant total thickness of 2.3 μm. Below a single-layer thickness of 10-30 nm the mechanical properties stress and hardness show strong variations. On one hand it is possible that below a certain thickness the mechanical properties of a single layer change. On the other hand electrical resistance and electron spin density measurements indicate that electronic effects may be involved. An attempt is made to explain the observed correlations by transport mechanisms of the electrons, by saturation of dangling bonds with delocalized electrons and by changes in the electronic band structure. (orig.)

  2. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    Science.gov (United States)

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  3. Structural Evolution and Mechanisms of Fatigue in Polycrystalline Brass

    DEFF Research Database (Denmark)

    Carstensen, Jesper Vejlø

    The plastic strain controlled fatigue behaviour of polycrystalline Cu-15%Zn and Cu-30%Zn has been investigated with the aim of studying the effect of slip mode modification by the addition of zinc to copper. It has been clearly demonstrated, that true cyclic saturation does not occur in the plastic...... type single slip. This behaviour has been described by the self-consistent Sachs-Eshelby model, which provides estimates of the CSS curve for brass polycrystals. Successive stages of primary hardening, softening and secondary hardening has been observed in the plastic strain controlled fatigue of brass....... It has been found that the primary hardening is attributed to an increase of intergranular stresses whereas the sec-ondary hardening apparently is attributed to an increase of friction stresses. Investigations of the structural evolution show that the softening behaviour can be explained by the presence...

  4. Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion

    Institute of Scientific and Technical Information of China (English)

    LIU Zuming(刘祖明); Souleymane K Traore; ZHANG Zhongwen(张忠文); LUO Yi(罗毅)

    2004-01-01

    The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utilization is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime's minority carriers are increased greatly after such treatment.

  5. Wavelet analysis of polarization maps of polycrystalline biological fluids networks

    Science.gov (United States)

    Ushenko, Y. A.

    2011-12-01

    The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.

  6. Effect of localized polycrystalline silicon properties on solar cell performance

    Science.gov (United States)

    Leung, D.; Iles, P. A.; Hyland, S.; Kachare, A.

    1984-01-01

    Several forms of polycrystalline silicon, mostly from cast ingots, (including UCP, SILSO and HEM) were studied. On typical slices, localized properties were studied in two ways. Small area (about 2.5 sq mm) mesa diodes were formed, and localized photovoltaic properties were measured. Also a small area (about .015 sq mm) light spot was scanned across the cells; the light spot response was calibrated to measure local diffusion length directly. Using these methods, the effects of grain boundaries, or of intragrain imperfections were correlated with cell performance. Except for the fine grain portion of SILSO, grain boundaries played only a secondary role in determining cell performance. The major factor was intra-grain material quality and it varied with position in ingots and probably related to solidification procedure.

  7. Slip activity of persistent slip bands in polycrystalline nickel

    International Nuclear Information System (INIS)

    Weidner, A.; Beyer, R.; Blochwitz, C.; Holste, C.; Schwab, A.; Tirschler, W.

    2006-01-01

    The appearance of glide localizations after cyclic deformation in the saturation stage was investigated for polycrystalline nickel. It was shown that persistent slip bands (PSBs) are formed in a wide range of grain orientations. Concerning the grain size it was found, that the probability for the appearance of PSBs is higher for larger grains. The local slip activity of the formed PSBs was studied after half-cycle deformation using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The fraction of grains with glide-active PSBs and the glide-active PSB volume itself is very small after the half-cycle loading. The obtained local shear strain amplitudes are quite high and vary in the range of 0.2-5%. They are comparable with those found in nickel single crystals at the same loading procedure

  8. Surface roughness effects on blister formation in polycrystalline molybdenum

    International Nuclear Information System (INIS)

    Saidoh, Masahiro; Sone, Kazuho; Yamada, Rayji; Ohtsuka, Hidewo; Murakami, Yoshio

    1977-07-01

    Polycrystalline molybdenum targets with electropolished and roughened surfaces were bombarded with 100 keV He + and 200 keV H 2 + ions at room temperature. It has been demonstrated that the blister formation is largely or completely suppressed by roughening the electropolished surface with emery paper of No. 1200, No. 400 and No. 100. Up to a He + fluence of 1.0 x 10 19 particles/cm 2 , no blisters are observed in the targets with the two roughest surfaces, while on the smooth surface blisters begin to occur at a fluence of 7.5 x 10 17 particles/cm 2 . The surface roughness effect on blister suppression is discussed in relation to the projected range of incident particles. (auth.)

  9. Sputtering mechanisms of polycrystalline platinum by low energy ions

    International Nuclear Information System (INIS)

    Chernysh, V.S.; Eckstein, W.; Haidarov, A.A.; Kulikauskas, V.S.; Mashkova, E.S.; Molchanov, V.A.

    1999-01-01

    The results of an experimental study and a computer simulation with the TRIM.SP code of the angular distributions of atoms sputtered from polycrystalline platinum under 1.5-9 keV He + bombardment at the normal ion incidence are presented. It has been found that angular distributions of sputtered atoms are overcosine and that their shape is practically independent of the bombarding ion species and ion energy. Good agreement between experimental results and computer simulation data was found. Computer simulations of the partial angular distributions of Pt atoms ejected due to various sputtering mechanisms for He and Ar bombardments were performed. The role of different mechanisms in the formation of angular distributions of sputtered atoms has been analyzed

  10. Incorporation, diffusion and segregation of impurities in polycrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Deville, J.P.; Soltani, M.L. (Universite Louis Pasteur, 67 - Strasbourg (France)); Quesada, J. (Laboratoire de Metallurgie-Chimie des Materiaux, E.N.S.A.I.S., 67 - Strasbourg (France))

    1982-01-01

    We studied by means of X-Ray photoelectron Spectroscopy the nature, distribution and, when possible, the chemical bond of impurities at the surface of polycrystalline silicon samples grown on a carbon ribbon. Besides main impurities (carbon and oxygen), always present at concentrations around their limit of solubility in silicon, metal impurities have been found: their nature varies from one sample to another. Their spatial distribution is not random: some are strictly confined at the surface (sodium), whereas others are in the superficial oxidized layer (calcium, magnesium) or localized at the oxide-bulk silicon interface (iron). Metal impurities are coming from the carbon ribbon and are incorporated to silicon during the growth process. It is not yet possible to give a model of diffusion processes of impurities since they are too numerous and interact one with the other. However oxygen seems to play a leading role in the spatial distribution of metal impurities.

  11. Polycrystalline CdTe solar cells on elastic substrates

    International Nuclear Information System (INIS)

    Sibinski, M.; Lisik, Z.

    2007-01-01

    The presented article is a report on progress in photovoltaic devices and material processing. A cadmium telluride solar cell as one of the most attractive option for thin-film polycrystalline cell constructions is presented. All typical manufacturing steps of this device, including recrystallisation and junction activation are explained. A new potential field of application for this kind of device - the BIPV (Building Integrated Photovoltaic) is named and discussed. All possible configuration options for this application, according to material properties and exploitation demands are considered. The experimental part of the presented paper is focused on practical implementation of the high - temperature polymer foil as the substrate of the newly designed device by the help of ICSVT (Isothermal Close Space Vapour Transport) technique. The evaluation of the polyester and polyamide foils according to the ICSVT/CSS manufacturing process parameters is described and discussed. A final conclusion on practical verification of these materials is also given. (authors)

  12. Electronic properties of polycrystalline graphene under large local strain

    International Nuclear Information System (INIS)

    He, Xin; Tang, Ning; Duan, Junxi; Mei, Fuhong; Meng, Hu; Lu, Fangchao; Xu, Fujun; Yang, Xuelin; Gao, Li; Wang, Xinqiang; Shen, Bo; Ge, Weikun

    2014-01-01

    To explore the transport properties of polycrystalline graphene under large tensile strain, a strain device has been fabricated using piezocrystal to load local strain onto graphene, up to 22.5%. Ionic liquid gate whose capability of tuning carrier density being much higher than that of a solid gate is used to survey the transfer characteristics of the deformed graphene. The conductance of the Dirac point and field effect mobility of electrons and holes is found to decrease with increasing strain, which is attributed to the scattering of the graphene grain boundaries, the strain induced change of band structure, and defects. However, the transport gap is still not opened. Our study is helpful to evaluate the application of graphene in stretchable electronics.

  13. Improved orientation sampling for indexing diffraction patterns of polycrystalline materials

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Schmidt, Søren

    2017-01-01

    to that of optimally distributing points on a four‐dimensional sphere. In doing so, the number of orientation samples needed to achieve a desired indexing accuracy is significantly reduced. Orientation sets at a range of sizes are generated in this way for all Laue groups and are made available online for easy use.......Orientation mapping is a widely used technique for revealing the microstructure of a polycrystalline sample. The crystalline orientation at each point in the sample is determined by analysis of the diffraction pattern, a process known as pattern indexing. A recent development in pattern indexing...... in the presence of noise, it has very high computational requirements. In this article, the computational burden is reduced by developing a method for nearly optimal sampling of orientations. By using the quaternion representation of orientations, it is shown that the optimal sampling problem is equivalent...

  14. Handling of biological specimens for electron microscopy

    International Nuclear Information System (INIS)

    Bullock, G.

    1987-01-01

    There are many different aspects of specimen preparation procedure which need to be considered in order to achieve good results. Whether using the scanning or transmission microscope, the initial handling procedures are very similar and are selected for the information required. Handling procedures and techniques described are: structural preservation; immuno-and histo-chemistry; x-ray microanalysis and autoradiography; dehydration and embedding; mounting and coating specimens for scanning electron microscopy; and sectioning of resin embedded material. With attention to detail and careful choice of the best available technique, excellent results should be obtainable whatever the specimen. 6 refs

  15. Evaluation of irradiated coating material specimens

    International Nuclear Information System (INIS)

    Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon

    2007-12-01

    Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10 4 Gy/hr, and radiated TID 2.0 X 10 6 Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10 6 Gy)

  16. Polycrystalline CVD diamond device level modeling for particle detection applications

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  17. Brine migration in hot-pressed polycrystalline sodium chloride

    International Nuclear Information System (INIS)

    Biggers, J.V.; Dayton, G.O.

    1982-12-01

    This report describes experiments designed to provide data on brine migration in polycrystalline salt. Polycrystalling samples of various grain sizes, density, and purity were prepared from several commercial-grade salts by hot-pressing. Three distinct experimental set-ups were used to place salt billets in an induced thermal gradient in contact with brine source. The test designs varied primarily in the way in which the thermal gradient was applied and monitored and the way in which brine migration was determined. All migration was in enclosed vessels which precluded visual observation of brine movement through the microstructure. Migration velocities were estimated either by the timed appearance of brine at the hot face of the sample, or by determination of the penetration distance of migration artifacts in the microstructure after tests of fixed duration. For various reasons both of these methods were subject to a large degree of error. Our results suggest, however, that the migration velocity in dense polycrystalline salt may be at least an order of magnitude greater than that suggested by single-crystal experiments. Microstructural analysis shows that brine prefers to migrate along paths of high crystalline activity such as grain and subgrain boundaries and is dispersed rather quickly in the microstructure. A series of tests were performed using various types of tracers in brine in order to flag migration paths and locate brine in the microstructure more decisively. These attempts failed and it appears that only the aqueous portion of the brine moves through the microstructure with the dissolved ions being lost and replaced rather quickly. This suggests the use of deuterium as a tracer in future work

  18. Polycrystalline CVD diamond device level modeling for particle detection applications

    International Nuclear Information System (INIS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-01-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  19. Physically-based modelling of polycrystalline semiconductor devices

    International Nuclear Information System (INIS)

    Lee, S.

    2000-01-01

    Thin-film technology using polycrystalline semiconductors has been widely applied to active-matrix-addressed liquid crystal displays (AMLCDs) where thin-film transistors act as digital pixel switches. Research and development is in progress to integrate the driver circuits around the peripheral of the display, resulting in significant cost reduction of connections between rows and columns and the peripheral circuitry. For this latter application, where for instance it is important to control the greyscale voltage level delivered to the pixel, an understanding of device behaviour is required so that models can be developed for analogue circuit simulation. For this purpose, various analytical models have been developed based on that of Seto who considered the effect of monoenergetic trap states and grain boundaries in polycrystalline materials but not the contribution of the grains to the electrical properties. The principal aim of this thesis is to describe the use of a numerical device simulator (ATLAS) as a tool to investigate the physics of the trapping process involved in the device operation, which additionally takes into account the effect of multienergetic trapping levels and the contribution of the grain into the modelling. A study of the conventional analytical models is presented, and an alternative approach is introduced which takes into account the grain regions to enhance the accuracy of the analytical modelling. A physically-based discrete-grain-boundary model and characterisation method are introduced to study the effects of the multienergetic trap states on the electrical characteristics of poly-TFTs using CdSe devices as the experimental example, and the electrical parameters such as the density distribution of the trapping states are extracted. The results show excellent agreement between the simulation and experimental data. The limitations of this proposed physical model are also studied and discussed. (author)

  20. Measurement on the density resolution of industrial computerized tomography by using disc specimen with holes

    International Nuclear Information System (INIS)

    Tian, Y.; Gao, D.; Zhang, W.; Xia, Z.; Yang, C.

    2004-01-01

    Several ways mainly used for measuring the density resolution of industrial computerized tomography (ICT) are briefly introduced. Based on the equivalent conversion between volume variation and density variation, a kind of disc specimen with holes is designed to measure the density resolution of ICT. In this experiment, a kind of high quality polymethyl methacylate (PMMA) is selected to make specimens with diameter of 250mm, in which six sets of holes with diameter separately 0.5mm, 1.0mm, 1.5mm, 2.0mm, 2.5mm, and 3.0mm are distributed in the radial directions with interval of 60 o between two neighboring sets, and in the same set, the distances of holes departing the center of the specimen are respectively 20mm, 40mm, 60mm, 80mm, and 100mm. The experiment shows that the method is sensitive, simple, flexible, and practical. About 0.2% density resolution of region of interest (ROI) with diameter 20mm can be verified, the relationship between CT value of ROI and its position can be obtained, and at the same time the spatial resolution of ICT can be measured in high quality. (author)

  1. Stress distribution in the 16MND5 bainitic steel. Experimental analysis and polycrystalline modelling

    International Nuclear Information System (INIS)

    Pesci, R.; Inal, K.; Berveiller, M.; Masson, R.

    2003-01-01

    The 16MND5 bainitic steel being a two-phase material (ferrite/cementite), the X-Ray Diffraction (XRD) is the most efficient tool to determine the stress states into the ferritic phase (sin 2 ψ method). The latter, coupled to the observations realized during tensile tests (specimen surface and facies), have permitted to establish criteria to describe the behavior and the damaging processes of the material on a crystallographic scale, in the lower part of the ductile-to-brittle transition region and at lower temperatures [-196 deg. C;-60 deg. C]. During the loading, the damage is observed with a Scanning Electron Microscope, while the internal stresses are determined by XRD: the stress states are less important in ferrite than in bainite (macroscopic stress), the difference not exceeding 150 MPa. A multi-scale polycrystalline model is developed concurrently with the experimental measurements: a Mori-Tanaka formulation is used to describe the elastoplastic behavior of a ferritic single crystal reinforced by cementite precipitates, while the transition to the polycrystal is achieved by a self-consistent approach. The developed modeling takes into account the temperature effects on the stress states in each phase and includes a cleavage criterion (critical value of the stress normal to [100] planes), which expresses the damage of the material: thus, it enables to predict the actual experimental behavior of the 16MND5 steel in relation to temperature, and to take into account the failure process which is fragile from -120 deg. C. Besides, it is also possible to calculate the strains of the diffracting planes, which can be compared to those measured by XRD: this enables to evaluate the heterogeneity of the strains for each crystallographic orientation. (authors)

  2. 50 CFR 14.24 - Scientific specimens.

    Science.gov (United States)

    2010-10-01

    ..., POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS... international mail system. Provided, that this exception will not apply to any specimens or parts thereof taken...

  3. Impact of specimen adequacy on the assessment of renal allograft biopsy specimens.

    Science.gov (United States)

    Cimen, S; Geldenhuys, L; Guler, S; Imamoglu, A; Molinari, M

    2016-01-01

    The Banff classification was introduced to achieve uniformity in the assessment of renal allograft biopsies. The primary aim of this study was to evaluate the impact of specimen adequacy on the Banff classification. All renal allograft biopsies obtained between July 2010 and June 2012 for suspicion of acute rejection were included. Pre-biopsy clinical data on suspected diagnosis and time from renal transplantation were provided to a nephropathologist who was blinded to the original pathological report. Second pathological readings were compared with the original to assess agreement stratified by specimen adequacy. Cohen's kappa test and Fisher's exact test were used for statistical analyses. Forty-nine specimens were reviewed. Among these specimens, 81.6% were classified as adequate, 6.12% as minimal, and 12.24% as unsatisfactory. The agreement analysis among the first and second readings revealed a kappa value of 0.97. Full agreement between readings was found in 75% of the adequate specimens, 66.7 and 50% for minimal and unsatisfactory specimens, respectively. There was no agreement between readings in 5% of the adequate specimens and 16.7% of the unsatisfactory specimens. For the entire sample full agreement was found in 71.4%, partial agreement in 20.4% and no agreement in 8.2% of the specimens. Statistical analysis using Fisher's exact test yielded a P value above 0.25 showing that - probably due to small sample size - the results were not statistically significant. Specimen adequacy may be a determinant of a diagnostic agreement in renal allograft specimen assessment. While additional studies including larger case numbers are required to further delineate the impact of specimen adequacy on the reliability of histopathological assessments, specimen quality must be considered during clinical decision making while dealing with biopsy reports based on minimal or unsatisfactory specimens.

  4. Specimen environments in thermal neutron scattering experiments

    International Nuclear Information System (INIS)

    Cebula, D.J.

    1980-11-01

    This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)

  5. Magnetic properties of polycrystalline PrxY1-xBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Stari, C.; Rivera, V.A.G.; Lanfredi, A.J.C.; Cardoso, C.A.; Leite, E.R.; Mombru, A.W.; Araujo-Moreira, F.M.

    2008-01-01

    In this work, we report a part of a systematic study of the influence of the synthesis routes on the properties of polycrystalline samples of Pr x Y 1-x Ba 2 Cu 3 O 7-δ . We have prepared high-quality samples of this material by following a sol-gel method, associated with heat treatment in both an inert argon and an oxygen atmospheres in order to compare their influence on the formation of the superconducting phase. Magnetic measurement (AC susceptibility) show that the superconducting transition temperature (T C ) increases in samples prepared in argon when compared to those prepared in oxygen, for the same composition and Pr fraction less than 0.5. In addition to this, preliminary results of AC and DC magnetic susceptibility show superconductivity for samples with Pr fraction higher than 0.5 (and up to 0.9) prepared under argon flux, which may indicate the existence of stable superconductivity for all compositions, including pure Pr-123

  6. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate

    International Nuclear Information System (INIS)

    Qin, Guoxuan; Yuan, Hao-Chih; Ma, Zhenqiang; Yang, Hongjun; Zhou, Weidong

    2011-01-01

    Inexpensive polycrystalline Si (poly-Si) with large grain size is highly desirable for flexible electronics applications. However, it is very challenging to directly deposit high-quality poly-Si on plastic substrates due to processing constrictions, such as temperature tolerance and residual stress. In this paper, we present our study on poly-Si membranes that are stress free and most importantly, are transferrable to any substrate including a low-temperature polyethylene terephthalate (PET) substrate. We formed poly-Si-on-insulator by first depositing small-grain size poly-Si on an oxidized Si wafer. We then performed high-temperature annealing for recrystallization to obtain larger grain size. After selective doping on the poly-Si-on-insulator, buried oxide was etched away. By properly patterning the poly-Si layer, residual stress in the released poly-Si membranes was completely relaxed. The flat membrane topology allows the membranes to be print transferred to any substrates. High-performance TFTs were demonstrated on the transferred poly-Si membranes on a PET substrate

  7. Characteristics of Schottky-barrier source/drain metal-oxide-polycrystalline thin-film transistors on glass substrates

    International Nuclear Information System (INIS)

    Jung, Seung-Min; Cho, Won-Ju; Jung, Jong-Wan

    2012-01-01

    Polycrystalline-silicon (poly-Si) Schottky-barrier thin-film transistors (SB-TFTs) with Pt-silicided source /drain junctions were fabricated on glass substrates, and the electrical characteristics were examined. The amorphous silicon films on glass substrates were converted into high-quality poly-Si by using excimer laser annealing (ELA) and solid phase crystallization (SPC) methods. The crystallinity of poly-Si was analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. The silicidation process was optimized by measuring the electrical characteristics of the Pt-silicided Schottky diodes. The performances of Pt-silicided SB-TFTs using poly-Si films on glass substrates and crystallized by using ELA and SPC were demonstrated. The SB-TFTs using the ELA poly-Si film demonstrated better electrical performances such as higher mobility (22.4 cm 2 /Vs) and on/off current ratio (3 x 10 6 ) and lower subthreshold swing value (120 mV/dec) than the SPC poly-Si films.

  8. Thermal property testing technique on micro specimen

    International Nuclear Information System (INIS)

    Baba, Tetsuya; Kishimoto, Isao; Taketoshi, Naoyuki

    2000-01-01

    This study aims at establishment of further development on some testing techniques on the nuclear advanced basic research accumulated by the National Research Laboratory of Metrology for ten years. For this purpose, a technology to test heat diffusion ratio and specific heat capacity of less than 3 mm in diameter and 1 mm in thickness of micro specimen and technology to test heat diffusion ratio at micro area of less than 1 mm in area along cross section of less than 10 mm in diameter of column specimen were developed to contribute to common basic technology supporting the nuclear power field. As a result, as an element technology to test heat diffusion ratio and specific heat capacity of the micro specimen, a specimen holding technique stably to hold a micro specimen with 3 mm in diameter could be developed. And, for testing the specific heat capacity by using the laser flush differential calorimetry, a technique to hold two specimen of 5 mm in diameter at their proximities was also developed. In addition, by promoting development of thermal property data base capable of storing thermal property data obtained in this study and with excellent workability in this 1998 fiscal year a data in/out-put program with graphical user interface could be prepared. (G.K.)

  9. Comparative study on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Bourdiliau, B.; Decroix, G.-M.; Averty, X.; Wident, P.; Bienvenu, Y.

    2011-01-01

    Highlights: → Welding processes are used to reconstitute previously tested Charpy specimens. → Stud welding is preferred for a quick installation, almost immediately operational. → Friction welding produces better quality welds, but requires a development effort. - Abstract: Reconstitution techniques are often used to allow material from previously fractured Charpy-V specimens to be reused for additional experiments. This paper presents a comparative experimental study of various reconstitution techniques and evaluates the feasibility of these methods for future use in shielded cells. The following techniques were investigated: arc stud welding, 6.0 kW CO 2 continuous wave laser welding, 4.5 kW YAG continuous wave laser welding and friction welding. Subsize Charpy specimens were reconstituted using a 400 W YAG pulsed wave laser. The best result was obtained with arc stud welding; the resilience of the reconstituted specimens and the load-displacement curves agreed well with the reference specimens, and the temperature elevation caused by the welding process was limited to the vicinity of the weld. Good results were also obtained with friction welding; this process led to the best quality welds. Laser welding seems to have affected the central part of the specimens, thus leading to different resilience values and load-displacement curves.

  10. High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy

    Directory of Open Access Journals (Sweden)

    Gobert Geoffrey N

    2011-05-01

    Full Text Available Abstract Background Laser microdissection microscopy (LMM has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti. Results Total RNA was isolated from Ae. aegypti midguts that were either fresh-frozen or fixed with histological fixatives. Generally, fresh-frozen tissue sections are a common source of quality LMM-derived RNA; however, our aim was to develop an LMM protocol that could inactivate pathogenic viruses by fixation, while simultaneously preserving RNA from arbovirus-infected mosquitoes. Three groups (10 - 15 mosquitoes per group of female Ae. aegypti at 24 or 48-hours post-blood meal were intrathoracically injected with one of seven common fixatives (Bouin's, Carnoy's, Formoy's, Cal-Rite, 4% formalin, 10% neutral buffered formalin, or zinc formalin to evaluate their effect on RNA quality. Total RNA was isolated from the fixed abdomens using a Trizol® method. The results indicated that RNA from Carnoy's and Bouin's fixative samples was comparable to that of fresh frozen midguts (control in duplicate experiments. When Carnoy's and Bouin's were used to fix the midguts for the LMM procedure, however, Carnoy's-fixed RNA clearly showed much less degradation than Bouin's-fixed RNA. In addition, a sample of 5 randomly chosen transcripts were amplified more efficiently using the Carnoy's treated LMM RNA than Bouin's-fixed RNA in quantitative real-time PCR (qRT-PCR assays, suggesting there were more intact target mRNAs in the Carnoy's fixed RNA. The yields of total RNA ranged from 0.3 to 19.0 ng per ~3.0 × 106 μm2 in the LMM procedure. Conclusions Carnoy's fixative was found to be highly compatible with LMM, producing high quality RNA from Ae. aegypti midguts while

  11. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    International Nuclear Information System (INIS)

    Jiménez, David; Chaves, Ferney; Cummings, Aron W.; Van Tuan, Dinh; Kotakoski, Jani; Roche, Stephan

    2014-01-01

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices

  12. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, David; Chaves, Ferney [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193-Bellaterra (Spain); Cummings, Aron W.; Van Tuan, Dinh [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Kotakoski, Jani [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien (Austria); Department of Physics, University of Helsinki, P.O. Box 43, 00014 University of Helsinki (Finland); Roche, Stephan [ICN2, Institut Català de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); ICREA, Institució Catalana de Recerca i Estudis Avançats, 08070 Barcelona (Spain)

    2014-01-27

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices.

  13. Hydrogen-induced structural changes in polycrystalline silicon as revealed by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Arole, V.M.; Takwale, M.G.; Bhide, V.G.

    1989-01-01

    Hydrogen passivation of polycrystalline silicon wafer is carried out in order to reduce the deleterious effects of grain boundaries. A systematic variation is made in the process parameters implemented during hydrogen passivation and the results of room temperature resistivity measurements are reported. As an efficient tool to study the structure change, positron lifetime spectroscopic measurements are performed on original and hydrogenated polycrystalline silicon wafers and a systematic correlation is sought between the changes that take place in the electrical and structural properties of polycrystalline silicon wafer, brought about by hydrogen passivation. (author)

  14. Real-World Solutions for Developing High-Quality PHP Frameworks and Applications

    CERN Document Server

    Bergmann, Sebastian

    2011-01-01

    Learn to develop high-quality applications and frameworks in PHP Packed with in-depth information and step-by-step guidance, this book escorts you through the process of creating, maintaining and extending sustainable software of high quality with PHP. World-renowned PHP experts present real-world case studies for developing high-quality applications and frameworks in PHP that can easily be adapted to changing business requirements. . They offer different approaches to solving  typical development and quality assurance problems that every developer needs to know and master.Details the process

  15. Closeout of JOYO-1 Specimen Fabrication Efforts

    International Nuclear Information System (INIS)

    ME Petrichek; JL Bump; RF Luther

    2005-01-01

    Fabrication was well under way for the JOYO biaxial creep and tensile specimens when the NR Space program was canceled. Tubes of FS-85, ASTAR-811C, and T-111 for biaxial creep specimens had been drawn at True Tube (Paso Robles, CA), while tubes of Mo-47.5 Re were being drawn at Rhenium Alloys (Cleveland, OH). The Mo-47.5 Re tubes are now approximately 95% complete. Their fabrication and the quantities produced will be documented at a later date. End cap material for FS-85, ASTAR-811C, and T-111 had been swaged at Pittsburgh Materials Technology, Inc. (PMTI) (Large, PA) and machined at Vangura (Clairton, PA). Cutting of tubes, pickling, annealing, and laser engraving were in process at PMTI. Several biaxial creep specimen sets of FS-85, ASTAR-811C, and T-111 had already been sent to Pacific Northwest National Laboratory (PNNL) for weld development. In addition, tensile specimens of FS-85, ASTAR-811C, T-111, and Mo-47.5 Re had been machined at Kin-Tech (North Huntington, PA). Actual machining of the other specimen types had not been initiated. Flowcharts 1-3 detail the major processing steps each piece of material has experienced. A more detailed description of processing will be provided in a separate document [B-MT(SRME)-51]. Table 1 lists the in-process materials and finished specimens. Also included are current metallurgical condition of these materials and specimens. The available chemical analyses for these alloys at various points in the process are provided in Table 2

  16. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    Science.gov (United States)

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  17. Thermal processing of polycrystalline NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Frick, Carl P.; Ortega, Alicia M.; Tyber, Jeffrey; Maksound, A.El.M.; Maier, Hans J.; Liu Yinong; Gall, Ken

    2005-01-01

    The objective of this study is to examine the effect of heat treatment on polycrystalline Ti-50.9 at.% Ni in hot-rolled and cold-drawn states. In particular, we examine microstructure, transformation temperatures as well as mechanical behavior in terms of both uniaxial monotonic testing and instrumented Vickers micro-indentation. The results constitute a fundamental understanding of the effect of heat treatment on thermal/stress-induced martensite and resistance to plastic flow in NiTi, all of which are critical for optimizing the mechanical properties. The high temperature of the hot-rolling process caused recrystallization, recovery, and hindered precipitate formation, essentially solutionizing the NiTi. The subsequent cold-drawing-induced a high density of dislocations and martensite. Heat treatments were carried out on hot-rolled, as well as, hot-rolled then cold-drawn materials at various temperatures for 1.5 h. Transmission Electron Microscopy observations revealed that Ti 3 Ni 4 precipitates progressively increased in size and changed their interface with the matrix from being coherent to incoherent with increasing heat treatment temperature. Accompanying the changes in precipitate size and interface coherency, transformation temperatures were observed to systematically shift, leading to the occurrence of the R-phase and multiple-stage transformations. Room temperature stress-strain tests illustrated a variety of mechanical responses for the various heat treatments, from pseudoelasticity to shape memory. The changes in stress-strain behavior are interpreted in terms of shifts in the primary martensite transformation temperatures, rather then the occurrence of the R-phase transformation. The results confirm that Ti 3 Ni 4 precipitates can be used to elicit a desired isothermal stress-strain behavior in polycrystalline NiTi. Instrumented micro-indention tests revealed that Martens (Universal) Hardness values are more dependent on the resistance to dislocation

  18. Clinical evaluation of a mobile digital specimen radiography system for intraoperative specimen verification.

    Science.gov (United States)

    Wang, Yingbing; Ebuoma, Lilian; Saksena, Mansi; Liu, Bob; Specht, Michelle; Rafferty, Elizabeth

    2014-08-01

    Use of mobile digital specimen radiography systems expedites intraoperative verification of excised breast specimens. The purpose of this study was to evaluate the performance of a such a system for verifying targets. A retrospective review included 100 consecutive pairs of breast specimen radiographs. Specimens were imaged in the operating room with a mobile digital specimen radiography system and then with a conventional digital mammography system in the radiology department. Two expert reviewers independently scored each image for image quality on a 3-point scale and confidence in target visualization on a 5-point scale. A target was considered confidently verified only if both reviewers declared the target to be confidently detected. The 100 specimens contained a total of 174 targets, including 85 clips (49%), 53 calcifications (30%), 35 masses (20%), and one architectural distortion (1%). Although a significantly higher percentage of mobile digital specimen radiographs were considered poor quality by at least one reviewer (25%) compared with conventional digital mammograms (1%), 169 targets (97%), were confidently verified with mobile specimen radiography; 172 targets (98%) were verified with conventional digital mammography. Three faint masses were not confidently verified with mobile specimen radiography, and conventional digital mammography was needed for confirmation. One faint mass and one architectural distortion were not confidently verified with either method. Mobile digital specimen radiography allows high diagnostic confidence for verification of target excision in breast specimens across target types, despite lower image quality. Substituting this modality for conventional digital mammography can eliminate delays associated with specimen transport, potentially decreasing surgical duration and increasing operating room throughput.

  19. Biobanking of fresh frozen tissue from clinical surgical specimens: transport logistics, sample selection, and histologic characterization.

    Science.gov (United States)

    Botling, Johan; Micke, Patrick

    2011-01-01

    Access to high-quality fresh frozen tissue is critical for translational cancer research and molecular -diagnostics. Here we describe a workflow for the collection of frozen solid tissue samples derived from fresh human patient specimens after surgery. The routines have been in operation at Uppsala University Hospital since 2001. We have integrated cryosection and histopathologic examination of each biobank sample into the biobank manual. In this way, even small, macroscopically ill-defined lesions can be -procured without a diagnostic hazard due to the removal of uncharacterized tissue from a clinical -specimen. Also, knowledge of the histomorphology of the frozen tissue sample - tumor cell content, stromal components, and presence of necrosis - is pivotal before entering a biobank case into costly molecular profiling studies.

  20. Sequencing historical specimens: successful preparation of small specimens with low amounts of degraded DNA.

    Science.gov (United States)

    Sproul, John S; Maddison, David R

    2017-11-01

    Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens. © 2017 John Wiley & Sons Ltd.

  1. Identifying suitable substrates for high-quality graphene-based heterostructures

    Science.gov (United States)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  2. Production of high quality sodium iodide preparations labelled with carrier free iodine-125

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Chistyakov, P.G.; Shilin, E.A.

    2001-01-01

    Work is related to the problem of high-quality Sodium Iodide preparation production and to the choice of the peptids iodination methods with the purpose of control test developing to determine the Biological activity of the above mentioned preparation

  3. The Role of Dosimetry in High-Quality EMI Risk Assessment

    National Research Council Canada - National Science Library

    2006-01-01

    The Final Proceedings for The role of EMF dosimetry in high quality risk assessment 13 September 2006 - 15 September 2006 In the last three decades the use of devices that emit electromagnetic fields (EMF...

  4. Synthesis and nonlinear optical property of polycrystalline MnTeMoO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chengguo [Yibin University, Key Laboratory of Computational Physics of Sichuan Province, Yibin (China); Yibin University, School of Physics and Electronic Engineering, Yibin (China)

    2017-04-15

    Polycrystalline MnTeMoO{sub 6} powder has been synthesized by a new approach that MnO{sub 2} is used as the manganese source. The transformation mechanism of manganese ions in the new approach has been discussed. The nonlinear optical property of polycrystalline MnTeMoO{sub 6} has been investigated, and compared with single-crystalline samples. The transformation Mn{sup 4+} → Mn{sup 2+} may be formed directly without stable intermediates, and TeO{sub 2} may serve as catalyst. The SHG response of polycrystalline MnTeMoO{sub 6} powder is worse than that of single-crystalline powder in the same particle size distribution as its pseudo-size. The results indicate that it should pay special attention with the pseudo-size of polycrystalline powder when the potential nonlinear optical materials are screened by powder second harmonic generation measurements. (orig.)

  5. Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2015-06-01

    Full Text Available Polycrystalline SnSe was synthesized by a melting-annealing-sintering process. X-ray diffraction reveals the sample possesses pure phase and strong orientation along [h00] direction. The degree of the orientations was estimated and the anisotropic thermoelectric properties are characterized. The polycrystalline sample shows a low electrical conductivity and a positive and large Seebeck coefficient. The low thermal conductivity is also observed in polycrystalline sample, but slightly higher than that of single crystal. The minimum value of thermal conductivity was measured as 0.3 W/m·K at 790 K. With the increase of the orientation factor, both electrical and thermal conductivities decrease, but the thermopowers are unchanged. As a consequence, the zT values remain unchanged in the polycrystalline samples despite the large variation in the degree of orientation.

  6. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  7. The adhesion and tribology analysis of polycrystalline diamond coated on Si3N4 substrate

    International Nuclear Information System (INIS)

    Hamzah, E.; Purniawan, A.

    2007-01-01

    Cauliflower and octahedral structure of polycrystalline diamond was deposited on silicon nitride (Si 3 N 4 ) substrate by microwave plasma assisted chemical vapor deposition (MPACVD). In our earlier work, the effects of deposition parameters namely, % Methane (CH 4 ) diluted in hydrogen (H 2 ), microwave power and chamber pressure on surface morphology were studied. In the present work the polycrystalline diamond coating adhesion and tribology behaviour were investigated. Rockwell C hardness tester and pin-on-disk tribometer were used to determine the adhesion and tribology properties on diamond coating, respectively. The morphology of the diamond before and after indentation was observed using field emission scanning electron microscopy (FESEM). Based on the adhesion analysis results, it was found that octahedral morphology has better adhesion than cauliflower structure. It was indicated by few cracks and less peel-off than cauliflower structure of polycrystalline diamond after indentation. Based on tribology analysis, polycrystalline diamond coated on substrate has better tribology properties than uncoated substrate. (author)

  8. Synthesis and nonlinear optical property of polycrystalline MnTeMoO_6

    International Nuclear Information System (INIS)

    Jin, Chengguo

    2017-01-01

    Polycrystalline MnTeMoO_6 powder has been synthesized by a new approach that MnO_2 is used as the manganese source. The transformation mechanism of manganese ions in the new approach has been discussed. The nonlinear optical property of polycrystalline MnTeMoO_6 has been investigated, and compared with single-crystalline samples. The transformation Mn"4"+ → Mn"2"+ may be formed directly without stable intermediates, and TeO_2 may serve as catalyst. The SHG response of polycrystalline MnTeMoO_6 powder is worse than that of single-crystalline powder in the same particle size distribution as its pseudo-size. The results indicate that it should pay special attention with the pseudo-size of polycrystalline powder when the potential nonlinear optical materials are screened by powder second harmonic generation measurements. (orig.)

  9. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.

    OpenAIRE

    Aljanabi, S M; Martinez, I

    1997-01-01

    A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even i...

  10. [Quality management is associated with high quality services in health care].

    Science.gov (United States)

    Nielsen, Tenna Hassert; Riis, Allan; Mainz, Jan; Jensen, Anne-Louise Degn

    2013-12-09

    In these years, quality management has been the focus in order to meet high quality services for the patients in Danish health care. This article provides information on quality management and quality improvement and it evaluates its effectiveness in achieving better organizational structures, processes and results in Danish health-care organizations. Our findings generally support that quality management is associated with high quality services in health care.

  11. Polycrystalline Mn-alloyed indium tin oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Schmidt, Heidemarie; Xu, Qingyu; Vinnichenko, Mykola; Kolitsch, Andreas; Helm, Manfred; Iacomi, Felicia

    2008-01-01

    Magnetic ITO films are interesting for integrating ITO into magneto-optoelectronic devices. We investigated n-conducting indium tin oxide (ITO) films with different Mn doping concentration which have been grown by chemical vapour deposition using targets with the atomic ratio In:Sn:Mn=122:12:0,114:12:7, and 109:12:13. The average film roughness ranges between 30 and 50 nm and XRD patterns revealed a polycrystalline structure. Magnetotransport measurements revealed negative magnetoresistance for all the samples, but high field positive MR can be clearly observed at 5 K with increasing Mn doping concentration. Spectroscopic ellipsometry (SE) has been used to prove the existence of midgap states in the Mn-alloyed ITO films revealing a transmittance less than 80%. A reasonable model for the ca. 250 nm thick Mn-alloyed ITO films has been developed to extract optical constants from SE data below 3 eV. Depending on the Mn content, a Lorentz oscillator placed between 1 and 2 eV was used to model optical absorption below the band gap

  12. Correlation length estimation in a polycrystalline material model

    International Nuclear Information System (INIS)

    Simonovski, I.; Cizelj, L.

    2005-01-01

    This paper deals with the correlation length estimated from a mesoscopic model of a polycrystalline material. The correlation length can be used in some macroscopic material models as a material parameter that describes the internal length. It can be estimated directly from the strain and stress fields calculated from a finite-element model, which explicitly accounts for the selected mesoscopic features such as the random orientation, shape and size of the grains. A crystal plasticity material model was applied in the finite-element analysis. Different correlation lengths were obtained depending on the used set of crystallographic orientations. We determined that the different sets of crystallographic orientations affect the general level of the correlation length, however, as the external load is increased the behaviour of correlation length is similar in all the analyzed cases. The correlation lengths also changed with the macroscopic load. If the load is below the yield strength the correlation lengths are constant, and are slightly higher than the average grain size. The correlation length can therefore be considered as an indicator of first plastic deformations in the material. Increasing the load above the yield strength creates shear bands that temporarily increase the values of the correlation lengths calculated from the strain fields. With a further load increase the correlation lengths decrease slightly but stay above the average grain size. (author)

  13. Creep behavior for advanced polycrystalline SiC fibers

    International Nuclear Information System (INIS)

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-01-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep open-quotes mclose quotes curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261 degrees C), Nicalon S (1256 degrees C), annealed Hi Nicalon (1215 degrees C), Hi Nicalon (1078 degrees C), Nicalon CG (1003 degrees C) and Tyranno E (932 degrees C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests

  14. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    Science.gov (United States)

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  15. Platinum-induced structural collapse in layered oxide polycrystalline films

    International Nuclear Information System (INIS)

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2015-01-01

    Effect of a platinum bottom electrode on the SrBi 5 Fe 1−x Co x Ti 4 O 18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO 2 , which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO 2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO 2 , the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties

  16. Creep behavior for advanced polycrystalline SiC fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Pacific Northwest National Lab., Richland, WA (United States); Kohyama, Akira [Kyoto Univ. (Japan)] [and others

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  17. Synthesis, characterization and structural refinement of polycrystalline uranium substituted zirconolite

    International Nuclear Information System (INIS)

    Shrivastava, O.P.; Narendra Kumar; Sharma, I.B.

    2005-01-01

    Ceramic precursors of Zirconolite (CaZrTi 2 O 7 ) family have a remarkable property of substitution Zr 4+ cationic sites. This makes them potential material for nuclear waste management in 'synroc' technology. In order to simulate the mechanism of partial substitution of zirconium by tetravalent actinides, a solid phase of composition CaZr 0.95 U 0.5 Ti 2 O 7 has been synthesized through ceramic route by taking calculated quantities of oxides of Ca, Ti and nitrates of uranium and zirconium respectively. Solid state synthesis has been carried out by repeated pelletizing and sintering the finely powdered oxide mixture in a muffle furnace at 1050 degC. The polycrystalline solid phase has been characterized by its typical powder diffraction pattern. Step analysis data has been used for ab initio calculation of structural parameters. The uranium substituted zirconolite crystallizes in monoclinic symmetry with space group C2/c (15). The following unit cell parameters have been calculated: a =12.4883(15), b =7.2448(5), c 11.3973(10) and β = 100.615(9)0. The structure was refined to satisfactory completion. The Rp and Rwp are found to be 7.48% and 9.74% respectively. (author)

  18. Preparation and characterization of polycrystalline n-CdSe photoelectrode

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, T. K.

    1979-01-01

    Thin layers of polycrystalline p-CdSe were prepared by the simultaneous eletrodeposition of cadmium and selenium from cadmium sulfate and selenious acid in a sulfuric acid solution at pH 0-1 on a titanium substrate. The adherence of the layers to the substrate, stoichiometric ratio of Cd:Se and photovoltaic property of the film depend upon the molar ratio of CdSO/sub 4/ and H/sub 2/SeO/sub 3/ and current density as well as on the pH and temperature of the electrolysis bath. On increasing the current density or the ratio of CdSO/sub 4/:H/sub 2/SeO/sub 3/ in the electrolysis bath, the Cd:Se of the electrodeposit increased. The semiconductor films so prepared were annealed at 550/sup 0/C in a nitrogen atmosphere, followed by etching in an acid solution and then used to construct the photo-electrochemical cell, Ti/CdSe/Na/sub 2/S-Na/sub 2/S/sub x/(aq.)/Pt, and the current-voltage curves have been studied. 11 references.

  19. Internal friction and elastic softening in polycrystalline Nb3Sn

    International Nuclear Information System (INIS)

    Bussiere, J.F.; Faucher, B.; Snead, C.L. Jr.; Welch, D.O.

    1981-01-01

    The vibrating-reed technique was used to measure internal friction and Young's modulus of polycrystalline Nb 3 Sn in the form of composite Nb/Nb 3 Sn tapes from 6 to 300 K. In tapes with only small residual strain in the A15 layers, a dramatic increase in internal friction with decreasing temperature is observed with an abrupt onset at approx.48 K. The internal friction Q -1 between 6 and 48 K is believed to be associated with stress-induced motion of martensitic-domain walls. In this temperature range, Q -1 is approximately proportional to the square of the tetragonal strain of the martensitic phase; Q -1 α (c/a-1) 2 . With residual compressive strains of approx.0.2%, the internal friction associated with domain-wall motion is considerably reduced. This is attributed to a biasing of domain-wall orientation with residual stress, which reduces wall motion induced by the (much smaller) applied stress. The transformation temperature, however, is unchanged (within +- 1 K) by residual strains of up to 0.2%. Young's modulus exhibits substantial softening on cooling from 300 to 6 K. This softening, is substantially reduced in the presence of small residual compressive strains, indicating a highly nonlinear stress-strain relationship as previously reported for V 3 Si

  20. Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

    Directory of Open Access Journals (Sweden)

    H. H. Xiong

    2014-01-01

    Full Text Available Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, x=0.06 polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/2 → 6H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters Ωt  (t=2, 4 of Eu3+ in the phosphor matrix are derived to be 3.62×10-20 and 1.97×10-20 cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs illumination.

  1. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  2. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    Directory of Open Access Journals (Sweden)

    Donna H. Wang

    2011-08-01

    Full Text Available Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM. The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA, due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors.

  3. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  4. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets

    OpenAIRE

    de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini J?nior, Luiz Gonzaga

    2014-01-01

    OBJECTIVE: The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. METHODS: Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a...

  5. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    Science.gov (United States)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  6. Virus isolation: Specimen type and probable transmission

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Virus isolation: Specimen type and probable transmission. Over 500 CHIK virus isolations were made. 4 from male Ae. Aegypti (?TOT). 6 from CSF (neurological involvement). 1 from a 4-day old child (transplacental transmission.

  7. Some recent innovations in small specimen testing

    International Nuclear Information System (INIS)

    Odette, G.R.; He, M.; Gragg, D.; Klingensmith, D.; Lucas, G.E.

    2002-01-01

    New innovative small specimen test techniques are described. Finite element simulations show that combinations of cone indentation pile-up geometry and load-penetration depth relations can be used to determine both the yield stress and strain-hardening behavior of a material. Techniques for pre-cracking and testing sub-miniaturized fracture toughness bend bars, with dimensions of 1.65x1.65x9 mm 3 , or less, are described. The corresponding toughness-temperature curves have a very steep transition slope, primarily due to rapid loss of constraint, which has advantages in some experiments to characterize the effects of specified irradiation variables. As one example of using composite specimens, an approach to evaluating helium effects is proposed, involving diffusion bonding small wires of a 54 Fe-based ferritic-martensitic alloy to a surrounding fracture specimen composed of an elemental Fe-based alloy. Finally, we briefly outline some potential approaches to multipurpose specimens and test automation

  8. Mechanical properties and deformation of polycrystalline lithium orthosilicate

    International Nuclear Information System (INIS)

    Bar, K.; Chu, C.Y.; Singh, J.P.; Goretta, K.C.; Routbort, J.L.; Billone, M.C.; Poeppel, R.B.

    1988-02-01

    Room-temperature strength, fracture toughness, Young's modulus, and thermal-shock resistance were determined for 68--98% dense lithium orthosilicate (Li 4 SiO 4 ) specimens. In the low-density regime, both strength and fracture toughness were controlled by the density of the specimen. At high density, the strength depends on grain size. Young's modulus values ranged from 30--103 GPa at densities between 68 and 98% TD. A critical quenching temperature difference in the range of 150--170/degree/C was observed in thermal-shock tests of bar specimens. Steady-state creep tests indicated 90% dense Li 4 SiO 4 fractures at T ≤ 800/degree/C before reaching steady state and deforms plastically at 900/degree/C. It is more creep-resistant at 900/degree/C than Li 2 O, about equal to Li 2 Zr) 3 , and less than LiA10 2 . 13 refs., 4 figs., 1 tab

  9. Rehydration of forensically important larval Diptera specimens.

    Science.gov (United States)

    Sanford, Michelle R; Pechal, Jennifer L; Tomberlin, Jeffery K

    2011-01-01

    Established procedures for collecting and preserving evidence are essential for all forensic disciplines to be accepted in court and by the forensic community at large. Entomological evidence, such as Diptera larvae, are primarily preserved in ethanol, which can evaporate over time, resulting in the dehydration of specimens. In this study, methods used for rehydrating specimens were compared. The changes in larval specimens with respect to larval length and weight for three forensically important blow fly (Diptera: Calliphoridae) species in North America were quantified. Phormia regina (Meigen), Cochliomyia macellaria (F.), and Chrysomya rufifacies (Macquart) third-instar larvae were collected from various decomposing animals and preserved with three preservation methods (80% ethanol, 70% isopropyl alcohol, and hot-water kill then 80% ethanol). Preservative solutions were allowed to evaporate. Rehydration was attempted with either of the following: 80% ethanol, commercial trisodium phosphate substitute solution, or 0.5% trisodium phosphate solution. All three methods partially restored weight and length of specimens recorded before preservation. Analysis of variance results indicated that effects of preservation, rehydration treatment, and collection animal were different in each species. The interaction between preservative method and rehydration treatment had a significant effect on both P. regina and C. macellaria larval length and weight. In addition, there was a significant interaction effect of collection animal on larval C. macellaria measurements. No significant effect was observed in C. rufifacies larval length or weight among the preservatives or treatments. These methods could be used to establish a standard operating procedure for dealing with dehydrated larval specimens in forensic investigations.

  10. Simultaneous specimen and stage cleaning device for analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  11. Micromechanical simulation of Uranium dioxide polycrystalline aggregate behaviour under irradiation

    International Nuclear Information System (INIS)

    Pacull, J.

    2011-02-01

    In pressurized water nuclear power reactor (PWR), the fuel rod is made of dioxide of uranium (UO 2 ) pellet stacked in a metallic cladding. A multi scale and multi-physic approaches are needed for the simulation of fuel behavior under irradiation. The main phenomena to take into account are thermomechanical behavior of the fuel rod and chemical-physic behavior of the fission products. These last years one of the scientific issue to improve the simulation is to take into account the multi-physic coupling problem at the microscopic scale. The objective of this ph-D study is to contribute to this multi-scale approach. The present work concerns the micro-mechanical behavior of a polycrystalline aggregate of UO 2 . Mean field and full field approaches are considered. For the former and the later a self consistent homogenization technique and a periodic Finite Element model base on the 3D Voronoi pattern are respectively used. Fuel visco-plasticity is introduced in the model at the scale of a single grain by taking into account specific dislocation slip systems of UO 2 . A cohesive zone model has also been developed and implemented to simulate grain boundary sliding and intergranular crack opening. The effective homogenous behaviour of a Representative Volume Element (RVE) is fitted with experimental data coming from mechanical tests on a single pellet. Local behavior is also analyzed in order to evaluate the model capacity to assess micro-mechanical state. In particular, intra and inter granular stress gradient are discussed. A first validation of the local behavior assessment is proposed through the simulation of intergranular crack opening measured in a compressive creep test of a single fuel pellet. Concerning the impact of the microstructure on the fuel behavior under irradiation, a RVE simulation with a representative transient loading of a fuel rod during a power ramp test is achieved. The impact of local stress and strain heterogeneities on the multi

  12. The Relationship Between Debris and Grain Growth in Polycrystalline Ice

    Science.gov (United States)

    Rivera, A.; McCarthy, C.

    2017-12-01

    An understanding of the mechanisms of ice flow, as well as the factors that affect it, must be improved in order to make more accurate predictions of glacial melting rates, and hence, sea level rise. Both field and laboratory studies have made an association between smaller grain sizes of ice and more rapid deformation. Therefore, it is essential to understand the different factors that affect grain size. Observations from ice cores have shown a correlation between debris content in layers of ice with smaller grain sizes, whereas layers with very little debris have larger grain sizes. Static grain growth rates for both pure ice and ice containing bubbles are well constrained, but the effect of small rock/dust particles has received less attention. We tested the relationship between debris and grain growth in polycrystalline ice with controlled annealing at -5°C and microstructural characterization. Three samples, two containing fine rock powder and one without, were fabricated, annealed, and imaged over time. The samples containing powder had different initial grain sizes due to solidification temperature during fabrication. Microstructural analysis was done on all samples after initial fabrication and at various times during the anneal using a light microscope housed in a cold room. Microstructural images were analyzed by the linear-intercept method. When comparing average grain size over time between pure ice and ice with debris, it was found that the rate of growth for the pure ice was larger than the rate of growth for the ice with debris at both initial grain sizes. These results confirm the observations seen in nature, and suggest that small grain size is indeed influenced by debris content. By understanding this, scientists could gain a more in-depth understanding of internal ice deformation and the mechanisms of ice flow. This, in turn, helps improve the accuracy of glacial melting predictions, and sea level rise in the future.

  13. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-01-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte-Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometer for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. Also other neutron related applications have been suggested. (author)

  14. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-07-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation-hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometry for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. (author)

  15. Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates

    Science.gov (United States)

    Kasioptas, Argyrios; Geisler, Thorsten; Perdikouri, Christina; Trepmann, Claudia; Gussone, Nikolaus; Putnis, Andrew

    2011-06-01

    Aragonite and calcite single crystals can be readily transformed into polycrystalline hydroxyapatite pseudomorphs by hydrothermal treatment in a (NH 4) 2HPO 4 solution. Scanning electron microscopy of the reaction products showed that the transformation of aragonite to apatite is characterised by the formation of a sharp interface between the two phases and by the development of intracrystalline porosity in the hydroxyapatite phase. In addition, electron backscattered diffraction (EBSD) imaging showed that the c-axis of apatite is predominantly oriented perpendicular to the reaction front with no crystallographic relationship to the aragonite lattice. However, the Ca isotopic composition of the parent aragonite, measured by thermal ionization mass spectrometry was inherited by the apatite product. Hydrothermal experiments conducted with use of phosphate solutions prepared with water enriched in 18O (97%) further revealed that the 18O from the solution is incorporated in the product apatite, as measured by micro-Raman spectroscopy. Monitoring the distribution of 18O with Raman spectroscopy was possible because the incorporation of 18O in the PO 4 group of apatite generates four new Raman bands at 945.8, 932, 919.7 and 908.8 cm -1, in addition to the ν1(PO 4) symmetric stretching band of apatite located at 962 cm -1, which can be assigned to four 18O-bearing PO 4 species. The relative intensities of these bands reflect the 18O content in the PO 4 group of the apatite product. By using equilibrated and non-equilibrated solutions, with respect to the 18O distribution between aqueous phosphate and water, we could show that the concentration of 18O in the apatite product is linked to the degree of 18O equilibration in the solution. The textural and chemical observations are indicative of a coupled mechanism of aragonite dissolution and apatite precipitation taking place at a moving reaction interface.

  16. Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents

    International Nuclear Information System (INIS)

    Terranova, M L; Orlanducci, S; Tamburri, E; Guglielmotti, V; Toschi, F; Hampai, D; Rossi, M

    2008-01-01

    Surface assisted self-assembly of detonation nanodiamond particles (with typical sizes in the range 4-10 nm) has been obtained using different fractions of colloidal aqueous dispersions as starting material. The relationship between dispersion properties and structure/geometry of the aggregates deposited on Si or glass plates has been investigated. A series of differently shaped free-standing nanodiamond structures has been prepared, analysed and used as templates for the growth of polycrystalline diamond layers by the chemical vapour deposition (CVD) technique. The possibility of obtaining textured coating with a relatively strong preferred orientation (within a solid angle of about 0.6 srad) is also reported. Overall, the coupling of nanodiamond self-assembling to the CVD diamond growth enables one to produce specimens with complex 3D architectures. The proposed microfabrication methodology could represent a viable route for the production of free-standing all-diamond microcomponents, with tailored shapes and predefined crystalline features, to be used for advanced electronic applications

  17. Polycrystalline diamond on self-assembled detonation nanodiamond: a viable route for fabrication of all-diamond preformed microcomponents

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M L; Orlanducci, S; Tamburri, E; Guglielmotti, V; Toschi, F [Dipartimento di Scienze e Tecnologie Chimiche, MINASlab, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Hampai, D [INFN-LNF Via E Fermi 40, Frascati (Italy); Rossi, M [Dipartimento di Energetica, Universita di Roma ' Sapienza' , Via Antonio Scarpa 16, 00161 Roma (Italy)

    2008-10-15

    Surface assisted self-assembly of detonation nanodiamond particles (with typical sizes in the range 4-10 nm) has been obtained using different fractions of colloidal aqueous dispersions as starting material. The relationship between dispersion properties and structure/geometry of the aggregates deposited on Si or glass plates has been investigated. A series of differently shaped free-standing nanodiamond structures has been prepared, analysed and used as templates for the growth of polycrystalline diamond layers by the chemical vapour deposition (CVD) technique. The possibility of obtaining textured coating with a relatively strong <110> preferred orientation (within a solid angle of about 0.6 srad) is also reported. Overall, the coupling of nanodiamond self-assembling to the CVD diamond growth enables one to produce specimens with complex 3D architectures. The proposed microfabrication methodology could represent a viable route for the production of free-standing all-diamond microcomponents, with tailored shapes and predefined crystalline features, to be used for advanced electronic applications.

  18. Standard guide for preparation of metallographic specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 The primary objective of metallographic examinations is to reveal the constituents and structure of metals and their alloys by means of a light optical or scanning electron microscope. In special cases, the objective of the examination may require the development of less detail than in other cases but, under nearly all conditions, the proper selection and preparation of the specimen is of major importance. Because of the diversity in available equipment and the wide variety of problems encountered, the following text presents for the guidance of the metallographer only those practices which experience has shown are generally satisfactory; it cannot and does not describe the variations in technique required to solve individual specimen preparation problems. Note 1—For a more extensive description of various metallographic techniques, refer to Samuels, L. E., Metallographic Polishing by Mechanical Methods, American Society for Metals (ASM) Metals Park, OH, 3rd Ed., 1982; Petzow, G., Metallographic Etchin...

  19. Natural History Specimen Digitization: Challenges and Concerns

    Directory of Open Access Journals (Sweden)

    Ana Vollmar

    2010-10-01

    Full Text Available A survey on the challenges and concerns invovled with digitizing natural history specimens was circulated to curators, collections managers, and administrators in the natural history community in the Spring of 2009, with over 200 responses received. The overwhelming barrier to digitizing collections was a lack of funding, based on a limited number of sources, leaving institutions mostly responsible for providing the necessary support. The uneven digitization landscape leads to a patchy accumulation of records at varying qualities, and based on different priorities, ulitimately influencing the data's fitness for use. The survey also found that although the kind of specimens found in collections and their storage can be quite varible, there are many similar challenges when digitizing including imaging, automated text scanning and parsing, geo-referencing, etc. Thus, better communication between domains could foster knowledge on digitization leading to efficiencies that could be disseminated through documentation of best practices and training.

  20. High Quality RNA Isolation from Leaf, Shell, Root Tissues and Callus of Hazelnut (Corylus avellana L.

    Directory of Open Access Journals (Sweden)

    Hossein Khosravi

    2017-12-01

    Full Text Available Extraction of high quality RNA is a critical step in molecular genetics studies. Hazelnut is one of the most important nuts plants in the world. The presence of the taxol and other taxanes in hazelnut plant necessitates explaining their biosynthesis pathway and identifying the candidate genes. Therefore, an easy and practical method is necessary for RNA extraction from hazelnuts. Hazelnut has high levels of phenolic compounds. High amounts of polyphenolic and polysaccharide compounds in plants could be causing problems in RNA extraction procedures.  To avoid these problems, a simple and efficient method can be used based on cetyltrimethylammonium bromide (CTAB extraction buffer and lithium chloride for extraction of high quality RNA from different parts of hazelnut plant. Using this method, a high-quality RNA sample (light absorbed in the A260/A280 was 2.04

  1. Development of a high-quality cut-off wall using electrophoresis

    International Nuclear Information System (INIS)

    Kawachi, T.; Murahashi, H.

    1991-01-01

    Techniques to build a high-quality cut-off wall have been developed for storage facilities of low-level radioactive waste (LLW) as an emergency measures to prevent leakages. The cut-off wall is highly impermeable, nucleid-adsorptive and have long-term durability. Electrophoresis is used to form impermeable membrane of bentonite as main features of the cut-off wall. First of all, laboratory tests have been conducted to study ways of building barriers on site and to collect data on the barriers properties. Afterwards, on-site construction tests of a high-quality cut-off wall have been carried out. In this paper, we describe the process and results on the studies of the high-quality cut-off wall using electrophoresis

  2. Thermal endurance tests on silicone rubber specimens

    International Nuclear Information System (INIS)

    Warburton, C.

    1977-07-01

    Thermal endurance tests have been performed on a range of silicone rubber specimens at temperature above 300 0 C. It is suggested that the rubber mix A2426, the compound from which Wylfa sealing rings are manufactured, will fail at temperatures above 300 0 C within weeks. Hardness measurements show that this particular rubber performs in a similar manner to Walker's S.I.L./60. (author)

  3. The working procedure of human autopsy specimens

    International Nuclear Information System (INIS)

    Chen Rusong; Liu Guodong

    2000-01-01

    In order to perform the Coordinated Research Program for the Reference Asian Man (phase 2): Ingestion and body content of trace elements of importance in Radiation Protection, study on elemental content in organs of normal Chinese has been worked by China Institute for Radiation Protection and Institute of Radiation Medicine - CAMS in recent two years. Sampling and sample collection of human tissues and the procedures of sample preparation of human autopsy specimens are enlisted

  4. Bireflectance imaging of coal and carbon specimens

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C. [Department of Geology, 1259 Lincoln Drive, Southern Illinois University, Carbondale, Illinois 62901 (United States); Glasspool, I.J.; Gibbins, J.R.; Seitz, M. [Department of Mechanical Engineering, Imperial College, Exhibition Road, London, SW7 2BX (United Kingdom)

    2005-11-10

    Although bireflectance measurements are routine, to date they have been limited to selected single point measurements. This study uses a 360{sup o} rotating polarizer in the incident light path combined with digital imaging to map the optical bireflectance of a polished specimen over the complete field of view, a system herein referred to as 'Bireflectance Imaging of Coal and Carbon Specimens' (BRICCS). True maximum reflectance maps and maps of polarizer angle for maximum reflectance (to identify co-ordered regions) are obtainable from the same data. A variety of coal, coke, char, graphite, and carbon/carbon specimens have been examined with the BRICCS system and the results demonstrate that the system can produce accurate maximum and apparent minimum reflectance, bireflectance, and extinction angle images. For example, flakes of natural graphite show no bireflectance along their long axis except in areas that have been strained. The images are maps showing the value of every pixel that has been calibrated by mineral reflectance standards. The maps are unique in that they show fields of view that cannot be seen by normal viewing through the microscope. For example, the bireflectance maps show the maximum difference between the maximum and apparent minimum reflectance for each of the million pixels at twenty orientations of the polarizer. (author)

  5. Specimen loading list for the varying temperature experiment

    International Nuclear Information System (INIS)

    Qualls, A.L.; Sitterson, R.G.

    1998-01-01

    The varying temperature experiment HFIR-RB-13J has been assembled and inserted in the reactor. Approximately 5300 specimens were cleaned, inspected, matched, and loaded into four specimen holders. A listing of each specimen loaded into the steady temperature holder, its position in the capsule, and the identification of the corresponding specimen loaded into the varying temperature holder is presented in this report

  6. Stainless steel fabrication for high quality requirements in the nuclear industry

    International Nuclear Information System (INIS)

    Wareing, A.J.

    1990-01-01

    In this paper the author explains the welding procedures and practices adopted within the nuclear industry to achieve the high quality and standards of welds required. The changeover to mechanised welding, orbital TIG welding and synergic MIG welding, has resulted in consistent achievement of high quality standards as well as optimising the productivity. However, the use of mechanised welding machines does require the welder operating them to be fully trained and qualified. The formally organised training courses are described and the cost savings and production rates achieved by utilising the mechanised method are discussed. (author)

  7. HMSRP Hawaiian Monk Seal Specimen Data (includes physical specimens, collection information, status, storage locations, and laboratory results associated with individual specimens)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes physical specimens, paper logs and Freezerworks database of all logged information on specimens collected from Hawaiian monk seals since 1975....

  8. Electrical properties of grain boundaries in polycrystalline materials under intrinsic or low doping

    International Nuclear Information System (INIS)

    Chowdhury, M H; Kabir, M Z

    2011-01-01

    An analytical model is developed to study the electrical properties (electric field and potential distributions, potential energy barrier height and polarization phenomenon) of polycrystalline materials at intrinsic or low doping for detector and solar cell applications by considering an arbitrary amount of grain boundary charge and a finite width of grain boundary region. The general grain boundary model is also applicable to highly doped polycrystalline materials. The electric field and potential distributions are obtained by solving Poisson's equation in both depleted grains and grain boundary regions. The electric field and potential distributions across the detector are analysed under various doping, trapping and applied biases. The electric field collapses, i.e. a nearly zero-average electric field region exists in some part of the biased detector at high trapped charge densities at the grain boundaries. The model explains the conditions of existence of a zero-average field region, i.e. the polarization mechanisms in polycrystalline materials. The potential energy barrier at the grain boundary exists if the electric field changes its sign at the opposite side of the grain boundary. The energy barrier does not exist in all grain boundaries in the low-doped polycrystalline detector and it never exists in intrinsic polycrystalline detectors under applied bias condition provided that there is no charge trapping in the grain.

  9. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.

    2013-01-08

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation from metallic Cr2N to semiconducting CrN appears in both polycrystalline and epitaxial CrNx films. At fN2= 100 sccm, the low-temperature conductance mechanism is dominated by both Mott and Efros-Shklovskii variable-range hopping in either polycrystalline or epitaxial CrN films. In all of the polycrystalline and epitaxial films, only the polycrystalline CrNx films fabricated at fN2 = 30 and 50 sccm exhibit a discontinuity in ρ(T) curves at 260-280 K, indicating that both the N-vacancy concentration and grain boundaries play important roles in the metal-insulator transition. © 2013 American Institute of Physics.

  10. PROPERTIES AND OPTICAL APPLICATION OF POLYCRYSTALLINE ZINC SELENIDE OBTAINED BY PHYSICAL VAPOR DEPOSITION

    Directory of Open Access Journals (Sweden)

    A. A. Dunaev

    2015-05-01

    Full Text Available Findings on production technology, mechanical and optical properties of polycrystalline zinc selenide are presented. The combination of its physicochemical properties provides wide application of ZnSe in IR optics. Production technology is based on the method of physical vapor deposition on a heated substrate (Physical Vapor Deposition - PVD. The structural features and heterogeneity of elemental composition for the growth surfaces of ZnSe polycrystalline blanks were investigated using CAMEBAX X-ray micro-analyzer. Characteristic pyramid-shaped crystallites were recorded for all growth surfaces. The measurements of the ratio for major elements concentrations show their compliance with the stoichiometry of the ZnSe compounds. Birefringence, optical homogeneity, thermal conductivity, mechanical and optical properties were measured. It is established that regardless of polycrystalline condensate columnar and texturing, the optical material is photomechanically isotropic and homogeneous. The actual performance of parts made of polycrystalline optical zinc selenide in the thermal spectral ranges from 3 to 5 μm and from 8 to 14 μm and in the CO2 laser processing plants with a power density of 500 W/cm2 is shown. The developed technology gives the possibility to produce polycrystalline optical material on an industrial scale.

  11. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    Science.gov (United States)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  12. A new computer-aided simulation model for polycrystalline silicon film resistors

    Science.gov (United States)

    Ching-Yuan Wu; Weng-Dah Ken

    1983-07-01

    A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.

  13. A Power Case Study for Monocrystalline and Polycrystalline Solar Panels in Bursa City, Turkey

    Directory of Open Access Journals (Sweden)

    Ayşegül Taşçıoğlu

    2016-01-01

    Full Text Available It was intended to reveal the time dependent power generation under different loads for two different solar panels under the conditions of Bursa province in between August 19 and 25, 2014. The testing sets include solar panels, inverter, multimeter, accumulator, regulator, pyranometer, pyrheliometer, temperature sensor, and datalogger. The efficiency of monocrystalline and polycrystalline solar panels was calculated depending on the climatic data’s measurements. As the result of the study, the average performances of monocrystalline and polycrystalline panels are 42.06 and 39.80 Wh, respectively. It was seen that 87.14 W instantaneous power could be obtained from monocrystalline solar panel and that 80.17 W instantaneous power could be obtained from polycrystalline solar panel under maximum total radiation (1001.13 W/m2. Within this frame, it was determined that monocrystalline solar panel is able to operate more efficiently under the conditions of Bursa compared to polycrystalline solar panel. When the multivariate correlations coefficients were examined statistically, a significant relationship in positive direction was detected between total and direct radiation and ambient temperature on energy generation from monocrystalline and polycrystalline panel.

  14. Hydrogen passivation of polycrystalline Si thin film solar cells

    International Nuclear Information System (INIS)

    Gorka, Benjamin

    2010-01-01

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V OC of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V brk of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V brk . Plasma simulations were carried out, which indicate that best V OC corresponds to a minimum in ion energy. V OC was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range (≤400 C) is slow and takes several hours for the V OC to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V OC , which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T dep =200-700 C and were characterized by Raman, ESR and V OC measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration of 2.5.10 16 cm -3 after passivation was

  15. The latent fingerprint in mass transport of polycrystalline materials

    Science.gov (United States)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni

  16. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide

    Science.gov (United States)

    Sangwan, Vinod K.; Lee, Hong-Sub; Bergeron, Hadallia; Balla, Itamar; Beck, Megan E.; Chen, Kan-Sheng; Hersam, Mark C.

    2018-02-01

    Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing. Memristors have higher endurance and faster read/write times than flash memory and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow-Hoff memristor and field-effect transistors with nanoionic gates or floating gates, did not achieve memristive switching in the transistor. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS2) in a scalable fabrication process. The two-dimensional MoS2 memtransistors show gate tunability in individual resistance states by four orders of magnitude, as well as large switching ratios, high cycling endurance and long-term retention of states. In addition to conventional neural learning behaviour of long-term potentiation/depression, six-terminal MoS2 memtransistors have gate-tunable heterosynaptic functionality, which is not achievable using two-terminal memristors. For example, the conductance between a pair of floating electrodes (pre- and post-synaptic neurons) is varied by a factor of about ten by applying voltage pulses to modulatory terminals. In situ scanning probe microscopy, cryogenic charge transport measurements and device modelling reveal that the bias-induced motion of MoS2 defects drives resistive switching by dynamically varying Schottky barrier heights. Overall, the seamless integration of a memristor and transistor into one multi-terminal device could

  17. Surface finish and subsurface damage in polycrystalline optical materials

    Science.gov (United States)

    Shafrir, Shai Negev

    We measure and describe surface microstructure and subsurface damage (SSD) induced by microgrinding of hard metals and hard ceramics used in optical applications. We examine grinding of ceramic materials with bonded abrasives, and, specifically, deterministic microgrinding (DMG). DMG, at fixed nominal infeed rate and with bound diamond abrasive tools, is the preferred technique for optical fabrication of ceramic materials. In DMG material removal is by microcracking. DMG provides cost effective high manufacturing rates, while attaining higher strength and performance, i.e., low level of subsurface damage (SSD). A wide range of heterogeneous materials of interest to the optics industry were studied in this work. These materials include: A binderless tungsten carbide, nonmagnetic Ni-based tungsten carbides, magnetic Co-based tungsten carbides, and, in addition, other hard optical ceramics, such as aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (Al2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). These materials are all commercially available. We demonstrate that spots taken with magnetorheological finishing (MRF) platforms can be used for estimating SSD depth induced by the grinding process. Surface morphology was characterized using various microscopy techniques, such as: contact interferometer, noncontact white light interferometer, light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The evolution of surface roughness with the amount of material removed by the MRF process, as measured within the spot deepest point of penetration, can be divided into two stages. In the first stage the induced damaged layer and associated SSD from microgrinding are removed, reaching a low surface roughness value. In the second stage we observe interaction between the MRF process and the material's microstructure as MRF exposes the subsurface without introducing new damage. Line scans taken parallel to the MR

  18. Facile Formation of High-quality InGaN/GaN Quantum-disks-in-Nanowires on Bulk-Metal Substrates for High-power Light-emitters

    KAUST Repository

    Zhao, Chao; Ng, Tien Khee; Wei, Nini; Prabaswara, Aditya; Alias, Mohd Sharizal; Janjua, Bilal; Shen, Chao; Ooi, Boon S.

    2016-01-01

    High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled directly on metal-substrate. The LEDs exhibited a low turn-on voltage of ~2 V without efficiency droop up to injection current of 500 mA (1.6 kA/cm2) at ~5 V. This is achieved through the direct growth and optimization of high-quality nanowires on titanium (Ti) coated bulk polycrystalline-molybdenum (Mo) substrates. We performed extensive studies on the growth mechanisms, obtained high-crystal-quality nanowires, and confirmed the epitaxial relationship between the cubic titanium nitride (TiN) transition layer and the hexagonal nanowires. The growth of nanowires on all-metal stack of TiN/Ti/Mo enables simultaneous implementation of n-metal contact, reflector and heat-sink, which greatly simplifies the fabrication process of high-power light emitters. Our work ushers in a practical platform for high-power nanowires light emitters, providing versatile solutions for multiple cross-disciplinary applications that are greatly enhanced by leveraging on the chemical stability of nitride materials, large specific surface of nanowires, chemical lift-off ready layer structures, and reusable Mo substrates.

  19. Facile Formation of High-quality InGaN/GaN Quantum-disks-in-Nanowires on Bulk-Metal Substrates for High-power Light-emitters

    KAUST Repository

    Zhao, Chao

    2016-01-08

    High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled directly on metal-substrate. The LEDs exhibited a low turn-on voltage of ~2 V without efficiency droop up to injection current of 500 mA (1.6 kA/cm2) at ~5 V. This is achieved through the direct growth and optimization of high-quality nanowires on titanium (Ti) coated bulk polycrystalline-molybdenum (Mo) substrates. We performed extensive studies on the growth mechanisms, obtained high-crystal-quality nanowires, and confirmed the epitaxial relationship between the cubic titanium nitride (TiN) transition layer and the hexagonal nanowires. The growth of nanowires on all-metal stack of TiN/Ti/Mo enables simultaneous implementation of n-metal contact, reflector and heat-sink, which greatly simplifies the fabrication process of high-power light emitters. Our work ushers in a practical platform for high-power nanowires light emitters, providing versatile solutions for multiple cross-disciplinary applications that are greatly enhanced by leveraging on the chemical stability of nitride materials, large specific surface of nanowires, chemical lift-off ready layer structures, and reusable Mo substrates.

  20. Use of globally unique identifiers (GUIDs) to link herbarium specimen records to physical specimens.

    Science.gov (United States)

    Nelson, Gil; Sweeney, Patrick; Gilbert, Edward

    2018-02-01

    With the advent of the U.S. National Science Foundation's Advancing Digitization of Biodiversity Collections program and related worldwide digitization initiatives, the rate of herbarium specimen digitization in the United States has expanded exponentially. As the number of electronic herbarium records proliferates, the importance of linking these records to the physical specimens they represent as well as to related records from other sources will intensify. Although a rich and diverse literature has developed over the past decade that addresses the use of specimen identifiers for facilitating linking across the internet, few implementable guidelines or recommended practices for herbaria have been advanced. Here we review this literature with the express purpose of distilling a specific set of recommendations especially tailored to herbarium specimen digitization, curation, and management. We argue that associating globally unique identifiers (GUIDs) with physical herbarium specimens and including these identifiers in all electronic records about those specimens is essential to effective digital data curation. We also address practical applications for ensuring these associations.

  1. Development of fatigue life evaluation technique using miniature specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Fujiwara, Masaharu; Hisaka, Tomoaki

    2012-01-01

    To develop the fatigue life evaluation technique using miniature specimen, the investigation of the effect of specimen size and specimen shape on the fatigue life and the development of the fatigue testing machine, especially the extensometer, were carried out. The effect of specimen size on the fatigue life was almost negligible for the round-bar specimens. The shorter fatigue life at relatively low strain range conditions for the hourglass specimen that the standard specimen were observed. Therefore the miniature round-bar specimen was considered to be adequate for the fatigue life evaluation using small specimen. Several types of the extensometer system using a strain gauge and a laser has been developed for realizing the fatigue test of the miniature round-bar specimen at high temperature in vacuum. (author)

  2. The importance of stress percolation patterns in rocks and other polycrystalline materials.

    Science.gov (United States)

    Burnley, P C

    2013-01-01

    A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.

  3. Producing high-quality negatives from ERTS black-and-white transparancies

    Science.gov (United States)

    Richard J. Myhre

    1973-01-01

    A method has been devised for producing high-quality black-and-white negatives quickly and efficiently from dense transparencies orgininating from Earth Resources Technology Satellite imagery. Transparencies are evaluated on a standard light source to determine exposure and processing information needed for making negatives. A “System ASA Rating” was developed by...

  4. Study on the Introduction of High-Quality Educational Resources for Sino-Foreign Cooperative Education

    Science.gov (United States)

    Jinhui, Lin

    2016-01-01

    In Sino-foreign cooperative education, high-quality introduced educational resources must benefit the growth and development of students, facilitate the school's capacity building and the improvement of overall educational standards, and promote national socioeconomic development. It is necessary to establish and perfect the various working…

  5. High quality ion channels recordings on an injection molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone

    In this thesis we demonstrate high quality recordings of the ion channel activity across the cell membrane in a biological cell by employing the so called patch clamping technique on an injection molded polymer microfluidic device. Such recordings are traditionally made using glass micropipettes,...

  6. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Banavoth, Murali; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tao; Mohammed, Omar F.; Bakr, Osman

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process

  7. Animated Cell Biology: A Quick and Easy Method for Making Effective, High-Quality Teaching Animations

    Science.gov (United States)

    O'Day, Danton H.

    2006-01-01

    There is accumulating evidence that animations aid learning of dynamic concepts in cell biology. However, existing animation packages are expensive and difficult to learn, and the subsequent production of even short animations can take weeks to months. Here I outline the principles and sequence of steps for producing high-quality PowerPoint…

  8. Emotional Experience, Expression, and Regulation of High-Quality Japanese Elementary School Teachers

    Science.gov (United States)

    Hosotani, Rika; Imai-Matsumura, Kyoko

    2011-01-01

    The present study investigates the emotional experience, expression, and regulation processes of high-quality Japanese elementary school teachers while they interact with children, in terms of teachers' emotional competence. Qualitative analysis of interview data demonstrated that teachers had various emotional experiences including self-elicited…

  9. High quality factor GaAs microcavity with buried bullseye defects

    DEFF Research Database (Denmark)

    Winkler, K.; Gregersen, Niels; Hayrynen, T.

    2018-01-01

    The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid...

  10. 75 FR 41693 - Export Inspection and Weighing Waiver for High Quality Specialty Grains Transported in Containers

    Science.gov (United States)

    2010-07-19

    ... Specialty Grains Transported in Containers AGENCY: Grain Inspection, Packers and Stockyards Administration... rule to potentially make permanent the current waiver for high quality grain exported in containers... exported in containers that was established by a final rule on December 13, 2005 (70 FR 73556). This...

  11. A safe inexpensive method to isolate high quality plant and fungal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... quality DNA from plant and fungal species. This method uses potassium acetate to remove proteins and polysaccharides in an SDS extraction buffer. Further DNA purification is achieved using a low salt. CTAB treatment. This SDS/CTAB protocol was used to isolate high quality genomic DNA subject to.

  12. Student Writing Accepted as High-Quality Responses to Analytic Text-Based Writing Tasks

    Science.gov (United States)

    Wang, Elaine; Matsumura, Lindsay Clare; Correnti, Richard

    2018-01-01

    Literacy standards increasingly emphasize the importance of analytic text-based writing. Little consensus exists, however, around what high-quality student responses should look like in this genre. In this study, we investigated fifth-grade students' writing in response to analytic text-based writing tasks (15 teachers, 44 writing tasks, 88 pieces…

  13. Toward High Quality Family Day Care for Infants and Toddlers. Final Report.

    Science.gov (United States)

    Rauch, Marian D.; Crowell, Doris C.

    Reported were the results of a project which established a cluster of family day care homes in Hawaii in which caregivers were selected, trained, and provided with supportive services and salaries. The primary objective of the program was to provide a replicable, high quality program for preschool children that would maximize social, emotional,…

  14. Optimization of nitridation conditions for high quality inter-polysilicon dielectric layers

    NARCIS (Netherlands)

    Klootwijk, J.H.; Bergveld, H.J.; van Kranenburg, H.; Woerlee, P.H.; Wallinga, Hans

    1996-01-01

    Nitridation of deposited high temperature oxides (HTO) was studied to form high quality inter-polysilicon dielectric layers for embedded non volatile memories. Good quality dielectric layers were obtained earlier by using an optimized deposition of polysilicon and by performing a post-dielectric

  15. 10 Principles for Building a High-Quality System of Assessments

    Science.gov (United States)

    Jobs for the Future, 2018

    2018-01-01

    Many states and districts are working toward developing and implementing high-quality systems that align assessments with each other, and to college and career readiness, and a comprehensive set of higher-order thinking skills. In order to support states, districts, and communities in this, the following 10 principles as guidance and common…

  16. Access, Participation, and Supports: The Defining Features of High-Quality Inclusion

    Science.gov (United States)

    Buysse, Virginia

    2011-01-01

    This article describes current knowledge about early childhood inclusion, summarizing research and the DEC/NAEYC joint position statement on inclusion. The article also describes effective or promising educational practices that promote access, participation, and supports--the defining features of high-quality inclusion. Future efforts to improve…

  17. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project

    NARCIS (Netherlands)

    Carithers, Latarsha J.; Ardlie, Kristin; Barcus, Mary; Branton, Philip A.; Britton, Angela; Buia, Stephen A.; Compton, Carolyn C.; Deluca, David S.; Peter-Demchok, Joanne; Gelfand, Ellen T.; Guan, Ping; Korzeniewski, Greg E.; Lockhart, Nicole C.; Rabiner, Chana A.; Rao, Abhi K.; Robinson, Karna L.; Roche, Nancy V.; Sawyer, Sherilyn J.; Segrè, Ayellet V.; Shive, Charles E.; Smith, Anna M.; Sobin, Leslie H.; Undale, Anita H.; Valentino, Kimberly M.; Vaught, Jim; Young, Taylor R.; Moore, Helen M.; Barker, Laura; Basile, Margaret; Battle, Alexis; Boyer, Joy; Bradbury, Debra; Bridge, Jason P.; Brown, Amanda; Burges, Robin; Choi, Christopher; Colantuoni, Deborah; Cox, Nancy; Dermitzakis, Emmanouil T.; Derr, Leslie K.; Dinsmore, Michael J.; Erickson, Kenyon; Fleming, Johnelle; Flutre, Timothée; Foster, Barbara A.; Gamazon, Eric R.; Getz, Gad; Gillard, Bryan M.; Guigo, Roderic; Hambright, Kenneth W.; Hariharan, Pushpa; Hasz, Rick; Im, Hae K.; Jewell, Scott; Karasik, Ellen; Kellis, Manolis; Kheradpour, Pouya; Koester, Susan; Koller, Daphne; Konkashbaev, Anuar; Lappalainen, Tuuli; Little, Roger; Liu, Jun; Lo, Edmund; Lonsdale, John T.; Lu, Chunrong; MacArthur, Daniel G.; Magazine, Harold; Maller, Julian B.; Marcus, Yvonne; Mash, Deborah C.; McCarthy, Mark I.; McLean, Jeffrey; Mestichelli, Bernadette; Miklos, Mark; Monlong, Jean; Mosavel, Magboeba; Moser, Michael T.; Mostafavi, Sara; Nicolae, Dan L.; Pritchard, Jonathan; Qi, Liqun; Ramsey, Kimberly; Rivas, Manuel A.; Robles, Barnaby E.; Rohrer, Daniel C.; Salvatore, Mike; Sammeth, Michael; Seleski, John; Shad, Saboor; Siminoff, Laura A.; Stephens, Matthew; Struewing, Jeff; Sullivan, Timothy; Sullivan, Susan; Syron, John; Tabor, David; Taherian, Mehran; Tejada, Jorge; Temple, Gary F.; Thomas, Jeffrey A.; Thomson, Alexander W.; Tidwell, Denee; Traino, Heather M.; Tu, Zhidong; Valley, Dana R.; Volpi, Simona; Walters, Gary D.; Ward, Lucas D.; Wen, Xiaoquan; Winckler, Wendy; Wu, Shenpei; Zhu, Jun

    2015-01-01

    The Genotype-Tissue Expression (GTEx) project, sponsored by the NIH Common Fund, was established to study the correlation between human genetic variation and tissue-specific gene expression in non-diseased individuals. A significant challenge was the collection of high-quality biospecimens for

  18. High quality data: An evaluation of AIM data quality and data quality procedures

    Science.gov (United States)

    The goal of every monitoring program is to collect high-quality data which can then be used to provide information to decision makers. The Bureau of Land Management (BLM) Assessment, Inventory, and Monitoring (AIM) program is one such data set which provides rangeland status, condition, and trend in...

  19. Timing of high-quality child care and cognitive, language, and preacademic development.

    Science.gov (United States)

    Li, Weilin; Farkas, George; Duncan, Greg J; Burchinal, Margaret R; Vandell, Deborah Lowe

    2013-08-01

    The effects of high- versus low-quality child care during 2 developmental periods (infant-toddlerhood and preschool) were examined using data from the National Institute of Child Health and Human Development Study of Early Child Care. Propensity score matching was used to account for differences in families who used different combinations of child care quality during the 2 developmental periods. Findings indicated that cognitive, language, and preacademic skills prior to school entry were highest among children who experienced high-quality care in both the infant-toddler and preschool periods, somewhat lower among children who experienced high-quality child care during only 1 of these periods, and lowest among children who experienced low-quality care during both periods. Irrespective of the care received during infancy-toddlerhood, high-quality preschool care was related to better language and preacademic outcomes at the end of the preschool period; high-quality infant-toddler care, irrespective of preschool care, was related to better memory skills at the end of the preschool period. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  20. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  1. Dare to share? How people share high-quality knowledge in online communities

    NARCIS (Netherlands)

    Rotundo, Enrico; Blank, M.; Moser, C.; Leopold, H.

    The Internet has fundamentally changed how work gets done in the 21st century. For example, people increasingly spend time on the Internet where they share and develop knowledge in online communities. Yet, little is known about how high-quality knowledge comes about in these communities. This is

  2. Emblems of Quality in Higher Education. Developing and Sustaining High-Quality Programs.

    Science.gov (United States)

    Haworth, Jennifer Grant; Conrad, Clifton F.

    This book proposes an "engagement" theory of program quality to evaluate and improve higher education programs at all degree levels. Based on interviews with 781 participants in a national study of Masters degree programs, it focuses on the interactive roles of students, faculty, and administrators in developing high-quality programs…

  3. Histological evaluation of 400 cholecystectomy specimens

    Directory of Open Access Journals (Sweden)

    H Kumar

    2015-09-01

    Full Text Available Background: A majority of gallbladder specimens show changes associated with chronic cholecystitis; however few harbour a highly lethal carcinoma. This study was conducted to review the significant histopathological findings encountered in gallbladder specimens received in our laboratory.Materials and Methods: Four hundred cholecystectomy specimens were studied over a period of five years (May, 2002 to April, 2007 received at department of pathology, Kasturba Medical College, Mangalore, India. Results: Gallstones and associated diseases were more common in women in the 4th to 5th decade as compared to men with M: F ratio of 1:1.33. Maximum number of patients (28.25% being 41 to 50 years old. Histopathologically, the most common diagnosis was chronic cholecystitis (66.75%, followed by chronic active cholecystitis (20.25%, acute cholecystitis (6%, gangrenous cholecystitis (2.25%,xanthogranulomatous cholecystitis (0.50%, empyema (1%, mucocele (0.25%, choledochal cyst (0.25%, adenocarcinoma gallbladder (1.25% and  normal  gallbladders (1%.Conclusion: All lesions were found more frequently in women except chronic active cholecystitis. Gallstones were present in (80.25% cases, and significantly associated with various lesions (P value 0.009. Pigment stones were most common, followed by cholesterol stones and mixed stones. Adequate  sectioning  is  mandatory  in  all  cases  to  assess  epithelial changes arising from cholelithiasis and chronic cholecystitis as it has been known to progress to malignancy in some cases.

  4. Wildlife specimen collection, preservation, and shipment

    Science.gov (United States)

    White, C. LeAnn; Dusek, Robert J.; Franson, J. Christian; Friend, Milton; Gibbs, Samantha E.J.; Wild, Margaret A.

    2015-01-01

    Specimens are used to provide supporting information leading to the determination of the cause of disease or death in wildlife and for disease monitoring or surveillance. Commonly used specimens for wildlife disease investigations include intact carcasses, tissues from carcasses, euthanized or moribund animals, parasites, ingested food, feces, or environmental samples. Samples from live animals or the environment (e.g., contaminated feed) in the same vicinity as a mortality event also may be helpful. The type of specimen collected is determined by availability of samples and biological objectives. Multiple fresh, intact carcasses from affected species are the most useful in establishing a cause for a mortality event. Submission of entire carcasses allows observation of gross lesions and abnormalities, as well as disease testing of multiple tissues. Samples from live animals may be more appropriate when sick animals cannot be euthanized (e.g., threatened or endangered species) or for research and monitoring projects examining disease or agents circulating in apparently healthy animals or those not exhibiting clinical signs. Samples from live animals may include collections of blood, hair, feathers, feces, or ectoparasites, or samples obtained by swabbing lesions or orifices. Photographs and videos are useful additions for recording field and clinical signs and conveying conditions at the site. Collection of environmental samples (e.g., feces, water, feed, or soil) may be appropriate when animals cannot be captured for sampling or the disease agent may persist in the environment. If lethal collection is considered necessary, biologists should refer to the policies, procedures, and permit requirements of their institution/facility and the agency responsible for species management (U.S. Fish and Wildlife Service or State natural resource agency) prior to use in the field. If threatened or endangered species are found dead, or there is evidence of illegal take, field

  5. Bright field electron microscopy of biological specimens

    International Nuclear Information System (INIS)

    Johansen, B.V.

    1976-01-01

    A preirradiation procedure is described which preserves negatively stained morphological features in bright field electron micrographs to a resolution of about 1.2 nm. Prior to microscopy the pre-irradiation dose (1.6 x 10 -3 C cm -2 ) is given at low electron optical magnification at five different areas on the grid (the centre plus four 'corners'). This pre-irradiation can be measured either with a Faraday cage or through controlled exposure-developing conditions. Uranyl formate stained T2 bacteriophages and stacked disk aggregates of Tobacco Mosaic Virus (TMV) protein served as test objects. A comparative study was performed on specimens using either the pre-irradiation procedure or direct irradiation by the 'minimum beam exposure' technique. Changes in the electron diffraction pattern of the stain-protein complex and the disappearance of certain morphological features in the specimens were both used in order to compare the pre-irradiation method with the direct exposure technique. After identical electron exposures the pre-irradiation approach gave a far better preservation of specimen morphology. Consequently this procedure gives the microscopist more time to select and focus appropriate areas for imaging before deteriorations take place. The investigation also suggested that microscopy should be carried out between 60,000 and 100,000 times magnification. Within this magnification range, it is possible to take advantage of the phase contrast transfer characteristics of the objective lens while the electron load on the object is kept at a moderate level. Using the pre-irradiation procedure special features of the T2 bacteriophage morphology could be established. (author)

  6. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  7. Instant Transport Media for Biopsied Soft Tissue Specimens: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Shankargouda Patil

    2015-01-01

    Full Text Available Background. Formalin, a traditionally preferred fixative in the field of pathology, has restricted usage in private settings. Since its toxicity violates the Occupational Safety and Health Administration regulations, an eco-friendly alternative would be the need of the hour. Hence an instant media which is economical and nontoxic and enables easy transport of biopsied soft tissue specimens in its original state is of vital importance. Materials and Methods. Commercially available fresh goat buccal mucosa specimens were sliced into smaller bits of equal dimensions and placed in six different containers containing 20% honey, 30% jaggery, milk, and ice for 1 hr, 6 hours, 12 hours, and 24 hours each with formalin as a positive control. After the set time interval, the specimens were fixed in 10% buffered formalin for 24 hours followed by routine processing and staining. The histologic interpretations were a blinded procedure and evaluated by two experts. Results were statistically analysed. Results. 30% jaggery proved to be an ideal transport media showing high quality preservation after 24 hours. 20% honey and ice showed optimal tissue preservation up to 6 hours following which quality deteriorated. Tissues transported in milk showed poor preservation. Conclusion. 30% jaggery can be endorsed in routine histopathological analysis as a transport media.

  8. Exome sequencing generates high quality data in non-target regions

    Directory of Open Access Journals (Sweden)

    Guo Yan

    2012-05-01

    Full Text Available Abstract Background Exome sequencing using next-generation sequencing technologies is a cost efficient approach to selectively sequencing coding regions of human genome for detection of disease variants. A significant amount of DNA fragments from the capture process fall outside target regions, and sequence data for positions outside target regions have been mostly ignored after alignment. Result We performed whole exome sequencing on 22 subjects using Agilent SureSelect capture reagent and 6 subjects using Illumina TrueSeq capture reagent. We also downloaded sequencing data for 6 subjects from the 1000 Genomes Project Pilot 3 study. Using these data, we examined the quality of SNPs detected outside target regions by computing consistency rate with genotypes obtained from SNP chips or the Hapmap database, transition-transversion (Ti/Tv ratio, and percentage of SNPs inside dbSNP. For all three platforms, we obtained high-quality SNPs outside target regions, and some far from target regions. In our Agilent SureSelect data, we obtained 84,049 high-quality SNPs outside target regions compared to 65,231 SNPs inside target regions (a 129% increase. For our Illumina TrueSeq data, we obtained 222,171 high-quality SNPs outside target regions compared to 95,818 SNPs inside target regions (a 232% increase. For the data from the 1000 Genomes Project, we obtained 7,139 high-quality SNPs outside target regions compared to 1,548 SNPs inside target regions (a 461% increase. Conclusions These results demonstrate that a significant amount of high quality genotypes outside target regions can be obtained from exome sequencing data. These data should not be ignored in genetic epidemiology studies.

  9. A Narrative Review of High-Quality Literature on the Effects of Resident Duty Hours Reforms.

    Science.gov (United States)

    Lin, Henry; Lin, Emery; Auditore, Stephanie; Fanning, Jon

    2016-01-01

    To summarize current high-quality studies evaluating the effect and efficacy of resident duty hours reforms (DHRs) on patient safety and resident education and well-being. The authors searched PubMed and Medline in August 2012 and again in May 2013 for literature (1987-2013) about the effects of DHRs. They assessed the quality of articles using the Medical Education Research Study Quality Instrument (MERSQI) scoring system. They considered randomized controlled trials (RCTs), partial RCTs, and all studies with a MERSQI score ≥ 14 to be "high-quality" methodology studies. A total of 72 high-quality studies met inclusion criteria. Most studies showed no change or slight improvement in mortality and complication rates after DHRs. Resident well-being was generally improved, but there was a perceived negative impact on education (knowledge acquisition, skills, and cognitive performance) following DHRs. Eleven high-quality studies assessed the impact of DHR interventions; all reported a neutral to positive impact. Seven high-quality studies assessed costs associated with DHRs and demonstrated an increase in hospital costs. The results of most studies that allow enough time for DHR interventions to take effect suggest a benefit to patient safety and resident well-being, but the effect on the quality of training remains unknown. Additional methodologically sound studies on the impact of DHRs are necessary. Priorities for future research include approaches to optimizing education and clinical proficiency and studies on the effect of intervention strategies on both education and patient safety. Such studies will provide additional information to help improve duty hours policies.

  10. Providing high-quality care in primary care settings: how to make trade-offs.

    Science.gov (United States)

    Beaulieu, Marie-Dominique; Geneau, Robert; Del Grande, Claudio; Denis, Jean-Louis; Hudon, Eveline; Haggerty, Jeannie L; Bonin, Lucie; Duplain, Réjean; Goudreau, Johanne; Hogg, William

    2014-05-01

    To gain a deeper understanding of how primary care (PC) practices belonging to different models manage resources to provide high-quality care. Multiple-case study embedded in a cross-sectional study of a random sample of 37 practices. Three regions of Quebec. Health care professionals and staff of 5 PC practices. Five cases showing above-average results on quality-of-care indicators were purposefully selected to contrast on region, practice size, and PC model. Data were collected using an organizational questionnaire; the Team Climate Inventory, which was completed by health care professionals and staff; and 33 individual interviews. Detailed case histories were written and thematic analysis was performed. The core common feature of these practices was their ongoing effort to make trade-offs to deliver services that met their vision of high-quality care. These compromises involved the same 3 areas, but to varying degrees depending on clinic characteristics: developing a shared vision of high-quality care; aligning resource use with that vision; and balancing professional aspirations and population needs. The leadership of the physician lead was crucial. The external environment was perceived as a source of pressure and dilemmas rather than as a source of support in these matters. Irrespective of their models, PC practices' pursuit of high-quality care is based on a vision in which accessibility is a key component, balanced by appropriate management of available resources and of external environment expectations. Current PC reforms often create tensions rather than support PC practices in their pursuit of high-quality care. Copyright© the College of Family Physicians of Canada.

  11. Isolation of high-quality total RNA from leaves of Myrciaria dubia "CAMU CAMU".

    Science.gov (United States)

    Gómez, Juan Carlos Castro; Reátegui, Alina Del Carmen Egoavil; Flores, Julián Torres; Saavedra, Roberson Ramírez; Ruiz, Marianela Cobos; Correa, Sixto Alfredo Imán

    2013-01-01

    Myrciaria dubia is a main source of vitamin C for people in the Amazon region. Molecular studies of M. dubia require high-quality total RNA from different tissues. So far, no protocols have been reported for total RNA isolation from leaves of this species. The objective of this research was to develop protocols for extracting high-quality total RNA from leaves of M. dubia. Total RNA was purified following two modified protocols developed for leaves of other species (by Zeng and Yang, and by Reid et al.) and one modified protocol developed for fruits of the studied species (by Silva). Quantity and quality of purified total RNA were assessed by spectrophotometric and electrophoretic analysis. Additionally, quality of total RNA was evaluated with reverse-transcription polymerase chain reaction (RT-PCR). With these three modified protocols we were able to isolate high-quality RNA (A260nm/A280nm >1.9 and A260nm/A230nm >2.0). Highest yield was produced with the Zeng and Yang modified protocol (384±46µg ARN/g fresh weight). Furthermore, electrophoretic analysis showed the integrity of isolated RNA and the absence of DNA. Another proof of the high quality of our purified RNA was the successful cDNA synthesis and amplification of a segment of the M. dubia actin 1 gene. We report three modified protocols for isolation total RNA from leaves of M. dubia. The modified protocols are easy, rapid, low in cost, and effective for high-quality and quantity total RNA isolation suitable for cDNA synthesis and polymerase chain reaction.

  12. Simulation of inter- and transgranular crack propagation in polycrystalline aggregates due to stress corrosion cracking

    International Nuclear Information System (INIS)

    Musienko, Andrey; Cailletaud, Georges

    2009-01-01

    The motivation of the study is the development of a coupled approach able to account for the interaction between environment and plasticity in a polycrystalline material. The paper recalls first the constitutive equations used to describe the behavior of the grain core and of the grain boundary (GB). The procedure that is applied to generate synthetic polycrystalline aggregates with an explicit representation of the grain boundary area by 2D or 3D finite elements is then described. The approach is applied to the modeling of iodine-assisted stress corrosion cracking (IASCC) in Zircaloy tubes used in nuclear power plants.

  13. Computer studies of the scattering of low energy hydrogen ions from polycrystalline solids

    International Nuclear Information System (INIS)

    Oen, O.S.; Robinson, M.T.

    1976-02-01

    Reflection of 50 eV to 10 keV H atoms from polycrystalline Cu, Nb and Au targets has been calculated using the binary collision cascade program MARLOWE. The fractions of particles and energy reflected (backscattered) increase with increasing atomic number of the target and decrease with increasing incident energy. The results indicate that the effects of polycrystallinity are modest, reducing the amorphous reflection coefficients by about 25 percent. The calculations agree quite well with the experimental data for Cu and Au, but are about a factor of two larger than is observed for Nb

  14. Characterization of Polycrystalline Materials Using Synchrotron X-ray Imaging and Diffraction Techniques

    DEFF Research Database (Denmark)

    Ludwig, Wolfgang; King, A.; Herbig, M.

    2010-01-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using...... propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray...

  15. The X-ray sensitivity of semi-insulating polycrystalline CdZnTe thick films

    International Nuclear Information System (INIS)

    Won, Jae Ho; Kim, Ki Hyun; Suh, Jong Hee; Cho, Shin Hang; Cho, Pyong Kon; Hong, Jin Ki; Kim, Sun Ung

    2008-01-01

    The X-ray sensitivity is one of the important parameters indicating the detector performance. The X-ray sensitivity of semi-insulating polycrystalline CdZnTe:Cl thick films was investigated as a function of electric field, mean photon energy, film thickness, and charge carrier transport parameters and, compared with another promising detector materials. The X-ray sensitivities of the polycrystalline CdZnTe films with 350 μm thickness were about 2.2 and 6.2 μC/cm 2 /R in the ohmic-type and Schottky-type detector at 0.83 V/μm, respectively

  16. Visible and ultraviolet emission from pulse irradiated amorphous and polycrystalline H2O ice

    International Nuclear Information System (INIS)

    Freeman, C.G.; Quickenden, T.I.; Litjens, R.A.J.; Sangster, D.F.

    1984-01-01

    Luminescence peaking at 405 nm was observed when thin films of amorphous or polycrystalline ice at 97 K were irradiated with a pulsed beam of 0.53 MeV electrons. These emissions differed from the luminescence emitted by crystalline ice in that memory effects were not observed; the peak wavelengths were red shifted by approx.20 nm; and the half-lives were 6--9 ns instead of approx.400 ns. The emission spectra of polycrystalline ice samples produced by rapid deposition or by annealing amorphous ice were similar, but both had substantially lower intensities than amorphous ice spectra

  17. Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applications

    International Nuclear Information System (INIS)

    Adamska, A.M.; Bright, E. Lawrence; Sutcliffe, J.; Liu, W.; Payton, O.D.; Picco, L.; Scott, T.B.

    2015-01-01

    Polycrystalline uranium dioxide thin films were grown on nickel substrates via aqueous electrodeposition of a precursor uranyl salt. The arising semiconducting uranium dioxide thin films exhibited a tower-like morphology, which may be suitable for future application in 3D solar cell applications. The thickness of the homogenous, tower-like films reached 350 nm. Longer deposition times led to the formation of thicker (up to 1.5 μm) and highly porous films. - Highlights: • Electrodeposition of polycrystalline UO_2 thin films • Tower-like morphology for 3D solar cell applications • Novel technique for separation of heavy elements from radioactive waste streams

  18. Development of fatigue life evaluation method using small specimen

    International Nuclear Information System (INIS)

    Nogami, Shuhei; Nishimura, Arata; Wakai, Eichi; Tanigawa, Hiroyasu; Itoh, Takamoto; Hasegawa, Akira

    2013-01-01

    For developing the fatigue life evaluation method using small specimen, the effect of specimen size and shape on the fatigue life of the reduced activation ferritic/martensitic steels (F82H-IEA, F82H-BA07 and JLF-1) was investigated by the fatigue test at room temperature in air using round-bar and hourglass specimens with various specimen sizes (test section diameter: 0.85–10 mm). The round-bar specimen showed no specimen size and no specimen shape effects on the fatigue life, whereas the hourglass specimen showed no specimen size effect and obvious specimen shape effect on it. The shorter fatigue life of the hourglass specimen observed under low strain ranges could be attributed to the shorter micro-crack initiation life induced by the stress concentration dependent on the specimen shape. On the basis of this study, the small round-bar specimen was an acceptable candidate for evaluating the fatigue life using small specimen

  19. Hydrogen passivation of polycrystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, Benjamin

    2010-12-15

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V{sub OC} of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V{sub brk} of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V{sub brk}. Plasma simulations were carried out, which indicate that best V{sub OC} corresponds to a minimum in ion energy. V{sub OC} was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range ({<=}400 C) is slow and takes several hours for the V{sub OC} to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V{sub OC}, which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T{sub dep}=200-700 C and were characterized by Raman, ESR and V{sub OC} measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration

  20. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    Science.gov (United States)

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    understanding of thermal conductivity inhomogeneity in high-quality CVD polycrystalline diamond that is important for applications in the thermal management of high-power electronics.

  1. High quality-factor quartz tuning fork glass probe used in tapping mode atomic force microscopy for surface profile measurement

    Science.gov (United States)

    Chen, Yuan-Liu; Xu, Yanhao; Shimizu, Yuki; Matsukuma, Hiraku; Gao, Wei

    2018-06-01

    This paper presents a high quality-factor (Q-factor) quartz tuning fork (QTF) with a glass probe attached, used in frequency modulation tapping mode atomic force microscopy (AFM) for the surface profile metrology of micro and nanostructures. Unlike conventionally used QTFs, which have tungsten or platinum probes for tapping mode AFM, and suffer from a low Q-factor influenced by the relatively large mass of the probe, the glass probe, which has a lower density, increases the Q-factor of the QTF probe unit allowing it to obtain better measurement sensitivity. In addition, the process of attaching the probe to the QTF with epoxy resin, which is necessary for tapping mode AFM, is also optimized to further improve the Q-factor of the QTF glass probe. The Q-factor of the optimized QTF glass probe unit is demonstrated to be very close to that of a bare QTF without a probe attached. To verify the effectiveness and the advantages of the optimized QTF glass probe unit, the probe unit is integrated into a home-built tapping mode AFM for conducting surface profile measurements of micro and nanostructures. A blazed grating with fine tool marks of 100 nm, a microprism sheet with a vertical amplitude of 25 µm and a Fresnel lens with a steep slope of 90 degrees are used as measurement specimens. From the measurement results, it is demonstrated that the optimized QTF glass probe unit can achieve higher sensitivity as well as better stability than conventional probes in the measurement of micro and nanostructures.

  2. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Awadallah, Ahmed E., E-mail: ahmedelsayed_epri@yahoo.com [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Aboul-Enein, Ateyya A. [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Kandil, Usama F. [Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Taha, Mahmoud Reda [Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2017-04-15

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  3. Delivering high quality hip fracture rehabilitation: the perspective of occupational and physical therapy practitioners.

    Science.gov (United States)

    Leland, Natalie E; Lepore, Michael; Wong, Carin; Chang, Sun Hwa; Freeman, Lynn; Crum, Karen; Gillies, Heather; Nash, Paul

    2018-03-01

    The majority of post-acute hip fracture rehabilitation in the US is delivered in skilled nursing facilities (SNFs). Currently, there are limited guidelines that equip occupational and physical therapy practitioners with a summary of what constitutes evidence-based high quality rehabilitation. Thus, this study aimed to identify rehabilitation practitioners' perspectives on the practices that constitute high quality hip fracture rehabilitation. Focus groups were conducted with 99 occupational and physical therapy practitioners working in SNFs in southern California. Purposive sampling of facilities was conducted to capture variation in key characteristics known to impact care delivery for this patient population (e.g., financial resources, staffing, and patient case-mix). Questions aimed to elicit practitioners' perspectives on high quality hip fracture rehabilitation practices. Each session was audio-recorded and transcribed. Data were systematically analyzed using a modified grounded theory approach. Seven themes emerged: objectives of care; first 72 h; positioning, pain, and precautions; use of standardized assessments; episode of care practices; facilitating insight into progress; and interdisciplinary collaboration. Clinical guidelines are critical tools to facilitate clinical decision-making and achieve desired patient outcomes. The findings of this study highlight the practitioners' perspective on what constitutes high quality hip fracture rehabilitation. This work provides critical information to advance the development of stakeholder-driven rehabilitation clinical guidelines. Future research is needed to verify the findings from other stakeholders (e.g., patients), ensure the alignment of our findings with current evidence, and develop measures for evaluating their delivery and relationship to desired outcomes. Implications for Rehabilitation This study highlights occupational and physiotherapy therapy practitioners' perspectives on the cumulative best

  4. Marine Corps Contract Supply Model for High Quality Male Enlistment Contracts at the Recruiting Sub Station Level

    National Research Council Canada - National Science Library

    Welsh, Brian K

    2008-01-01

    .... This research develops contract production models at the Recruiting Sub Station level to estimate the effects of local economic conditions, demographics, and recruiting resources on new high quality...

  5. Corrosion testing of uranium silicide fuel specimens

    International Nuclear Information System (INIS)

    Bourns, W.T.

    1968-09-01

    U 3 Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300 o C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U 3 5i specimen which corrodes at less than 2 mg/cm 2 h in 300 o C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U 3 Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300 o C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  6. A system for mapping radioactive specimens

    International Nuclear Information System (INIS)

    Britten, R.J.; Davidson, E.H.

    1988-01-01

    A system for mapping radioactive specimens comprises an avalanche counter, an encoder, pre-amplifier circuits, sample and hold circuits and a programmed computer. The parallel plate counter utilizes avalanche event counting over a large area with the ability to locate radioactive sources in two dimensions. When a beta ray, for example, enters a chamber, an ionization event occurs and the avalanche effect multiplies the event and results in charge collection on the anode surface for a limited period of time before the charge leaks away. The encoder comprises a symmetrical array of planar conductive surfaces separated from the anode by a dielectric material. The encoder couples charge currents, the amlitudes of which define the relative position of the ionization event. The amplitude of coupled current, delivered to pre-amplifiers, defines the location of the event. (author) 12 figs

  7. Corrosion testing of uranium silicide fuel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Bourns, W T

    1968-09-15

    U{sub 3}Si is the most promising high density natural uranium fuel for water-cooled power reactors. Power reactors fuelled with this material are expected to produce cheaper electricity than those fuelled with uranium dioxide. Corrosion tests in 300{sup o}C water preceded extensive in-reactor performance tests of fuel elements and bundles. Proper heat-treatment of U-3.9 wt% Si gives a U{sub 3}5i specimen which corrodes at less than 2 mg/cm{sup 2} h in 300{sup o}C water. This is an order of magnitude lower than the maximum corrosion rate tolerable in a water-cooled reactor. U{sub 3}Si in a defected unbonded Zircaloy-2 sheath showed only a slow uniform sheath expansion in 300{sup o}C water. All tests were done under isothermal conditions in an out-reactor loop. (author)

  8. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    DEFF Research Database (Denmark)

    Verdaguer Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E.L.

    2012-01-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction...

  9. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  10. Magnetoresistance and anomalous Hall effect of reactive sputtered polycrystalline Ti1 - XCrxN films

    KAUST Repository

    Duan, Xiaofei; Mi, Wenbo; Guo, Zaibing; Bai, Haili

    2013-01-01

    The reactive-sputtered polycrystalline Ti1 - xCrxN films with 0.17 ≤ x ≤ 0.51 are ferromagnetic and at x = 0.47 the Curie temperature TC shows a maximum of ~ 120 K. The films are metallic at 0 ≤ x ≤ 0.47, while the films with x = 0.51 and 0

  11. Determining grain resolved stresses in polycrystalline materials using three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2010-01-01

    An algorithm is presented for characterization of the grain resolved (type II) stress states in a polycrystalline sample based on monochromatic X-ray diffraction data. The algorithm is a robust 12-parameter-per-grain fit of the centre-of-mass grain positions, orientations and stress tensors...

  12. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets

    Directory of Open Access Journals (Sweden)

    Min Sun

    2018-03-01

    Full Text Available Bi2Te3-based materials have been reported to be one of the best room-temperature thermoelectric materials, and it is a challenge to substantially improve their thermoelectric properties. Here novel Bi2Te3 core fibers with borosilicate glass cladding were fabricated utilizing a modified molten core drawing method. The Bi2Te3 core of the fiber was found to consist of hexagonal polycrystalline nanosheets, and polycrystalline nanosheets had a preferential orientation; in other words, the hexagonal Bi2Te3 lamellar cleavage more tended to be parallel to the symmetry axis of the fibers. Compared with a homemade 3-mm-diameter Bi2Te3 rod, the polycrystalline nanosheets’ preferential orientation in the 89-μm-diameter Bi2Te3 core increased its electrical conductivity, but deduced its Seebeck coefficient. The Bi2Te3 core exhibits an ultrahigh ZT of 0.73 at 300 K, which is 232% higher than that of the Bi2Te3 rod. The demonstration of fibers with oriented nano-polycrystalline core and the integration with an efficient fabrication technique will pave the way for the fabrication of high-performance thermoelectric fibers.

  13. On the evolution of surface roughness during deformation of polycrystalline aluminum alloys

    NARCIS (Netherlands)

    Vellinga, WP; van Tijum, Redmer; de Hosson, JTM

    Surface roughening of polycrystalline Al-Mg alloys during tensile deformation is investigated using white light confocal microscopy. Materials are tested that differ only in grain size. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length

  14. Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals

    NARCIS (Netherlands)

    Wouters, Onne; Vellinga, WP; van Tijum, Redmer; De Hosson, JTM

    Surface roughening during tensile deformation of polycrystalline aluminum, iron and zinc is investigated using white light confocal microscopy and orientation imaging microscopy. A height-height correlation technique is used to analyze the data. The surface obeys self-affine scaling on length scales

  15. Carrier transport in polycrystalline silicon thin films solar cells grown on a highly textured structure

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Takakura, H.; Hamakawa, Y.; Muhida, R.; Kawamura, T.; Harano, T.; Toyama, T.; Okamoto, H.

    2004-01-01

    Roč. 43, 9A (2004), s. 5955-5959 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon thin film * solar cells * substrate texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2004

  16. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO(2) electroreduction

    DEFF Research Database (Denmark)

    Tang, Wei; Peterson, Andrew A; Varela Gasque, Ana Sofia

    2012-01-01

    This communication examines the effect of the surface morphology of polycrystalline copper on electroreduction of CO(2). We find that a copper nanoparticle covered electrode shows better selectivity towards hydrocarbons compared with the two other studied surfaces, an electropolished copper elect...

  17. Analytical approximate equations for the resistivity and its temperature coefficient in thin polycrystalline metallic films

    International Nuclear Information System (INIS)

    Tellier, C.R.; Tosser, A.J.

    1977-01-01

    In the usual thickness range of sputtered metallic films, analytical linearized approximate expressions of polycrystalline film resistivity and its t.c.r. are deduced from the Mayadas-Shatzkes theoretical equations. A good experimental fit is observed for Al rf sputtered metal films. (orig.) [de

  18. Statistic derivation of Taylor factors for polycrystalline metals with application to pure magnesium

    International Nuclear Information System (INIS)

    Shen, J.H.; Li, Y.L.; Wei, Q.

    2013-01-01

    We have investigated the Taylor factors of textured as well as texture-free polycrystalline aggregates. We begin with examining the Schmid factors of single crystals. A statistical model is then introduced to describe the distribution of grain orientations as well as the Schmid factor of individual grains of the polycrystalline system. The grains are classified into “soft” and “hard” ones. Based on this, a model is proposed for the derivation of the Taylor factors of textured as well as texture-free polycrystalline metals, and as a case study it is applied to polycrystalline magnesium. The model predictions are in very good agreement with the available experimental results. No free parameters have been involved in the development of this model, and the physical processes are clearly defined. Based on the fundamental assumption that grains can be classified into “soft” and “hard” in metals, this model should also be applicable to other hexagonal close packed metals such as α-titanium, beryllium and zirconium, as well as metals of other lattice structures such as face-centered cubic and body-centered cubic. It will also be interesting to see if this model can be incorporated into existing crystal plasticity models for the prediction of texture evolution under mechanical loading

  19. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.; Mi, Wenbo; Guo, Zaibing; Bai, Haili

    2013-01-01

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation

  20. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)

    2016-11-15

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  1. Synthesis and characterization of silicon-doped polycrystalline GaN ...

    Indian Academy of Sciences (India)

    Silicon-doped polycrystalline GaN films were successfully deposited at temperatures ranging from 300 to 623 K on fused silica and silicon substrates by radio frequency (r.f.) magnetron sputtering at a system pressure of ~ 5 Pa. The films were characterized by optical as well as microstructural measurements. The optical ...

  2. Misoriented dislocation substructures and the fracture of polycrystalline Cu-Al alloys

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.; Kozlov, E. V.

    2016-10-01

    The evolution of the dislocation substructure in polycrystalline Cu-Al alloys with various grain sizes is studied during deformation to failure. A relation between the fracture of the alloys and the forming misorientation dislocation substructures is revealed. Microcracks in the alloy are found to form along grain boundaries and the boundaries of misoriented dislocation cells and microtwins.

  3. Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation

    KAUST Repository

    Wang, Chongqing

    2016-09-09

    Continuous ZIF-67 polycrystalline membranes with effective propylene/propane separation performances were successfully fabricated through the incorporation of zinc ions into the ZIF-67 framework. The separation factor increases from 1.4 for the pure ZIF-67 membrane to 50.5 for the 90% zinc-substituted ZIF-67 membrane.

  4. Attempt at cloning high-quality goldfish breed 'Ranchu' by fin-cultured cell nuclear transplantation.

    Science.gov (United States)

    Tanaka, Daisuke; Takahashi, Akito; Takai, Akinori; Ohta, Hiromi; Ueno, Koichi

    2012-02-01

    The viability of ornamental fish culture relies on the maintenance of high-quality breeds. To improve the profitability of culture operations we attempted to produce cloned fish from the somatic nucleus of the high-quality Japanese goldfish (Carassius auratus auratus) breed 'Ranchu'. We transplanted the nucleus of a cultured fin-cell from an adult Ranchu into the non-enucleated egg of the original goldfish breed 'Wakin'. Of the 2323 eggs we treated, 802 underwent cleavage, 321 reached the blastula stage, and 51 reached the gastrula stage. Two of the gastrulas developed until the hatching stage. A considerable number of nuclear transplants retained only the donor nucleus. Some of these had only a 2n nucleus derived from the same donor fish. Our results provide insights into the process of somatic cell nuclear transplantation in teleosts, and the cloning of Ranchu.

  5. (-201) β-Gallium oxide substrate for high quality GaN materials

    KAUST Repository

    Roqan, Iman S.

    2015-03-13

    (-201) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. The key advantages of Ga2O3 are its small lattice mismatches (4.7%), appropriate structural, thermal and electrical properties and a competitive price compared to other substrates. Optical characterization show that GaN layers grown on (-201) oriented β-Ga2O3 are dominated by intense bandedge emission with a high luminescence efficiency. Atomic force microscopy studies show a modest threading dislocation density of ~108 cm-2, while complementary Raman spectroscopy indicates that the GaN epilayer is of high quality with slight compressive strain. Room temperature time-findings suggest that the limitation of the photoluminescence lifetime (~500 ps) is due to nonradiative recombination arising from threading dislocation. Therefore, by optimizing the growth conditions, high quality material with significant optical efficiency can be obtained.

  6. A design technique of low cost but high quality peak stretcher

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H Y; Su, C S; Hsu, J Y; Wang, L

    1981-03-01

    This paper presents the design of low cost but high quality pulse peak stretcher incorporated with a LSI of 12 bit ADC and SKD-85 microcomputer. The conflict between the capacitor high charging speed and longer holding time for realizing a high quality stretcher is discussed and solved. For a lager number of channels available in a dual ramp Wilkinson-type ADC, two-stage stretchers connected in series are designed. The first stage is a fast-discharge to keep the output stretched pulse follow-up the input quickly and the second-stage (main stretcher) is a slow-discharge to keep the transient of the circuit minimum. Both of these two peak stretchers are described and the experiment results are photographically recorded.

  7. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  8. Recent developments in high-quality drying of vegetables, fruits, and aquatic products.

    Science.gov (United States)

    Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan

    2017-04-13

    Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.

  9. Formation of a high quality electron beam using photo cathode RF electron gun

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    Formation of a high quality electron beam using photo cathode RF electron gun is expected for formation of a next generation high brilliant X-ray beam and a source for electron and positron collider. And, on a field of material science, as is possible to carry out an experiment under ultra short pulse and extremely high precision in time, it collects large expectation. Recently, formation of high quality beam possible to develop for multi directions and to use by everyone in future has been able to realize. Here were explained on electron beam source, principle and component on RF electron gun, working features on RF gun, features and simulation of RF gun under operation, and some views in near future. (G.K.)

  10. Selection of process parameters for producing high quality defatted sesame flour at pilot scale.

    Science.gov (United States)

    Manikantan, M R; Sharma, Rajiv; Yadav, D N; Gupta, R K

    2015-03-01

    The present work was undertaken to study the effect of pearling duration, soaking time, steaming duration and drying temperature on the quality of sesame seeds and mechanically extracted partially defatted sesame cake. On the basis of quality attributes i.e. high protein, low crude fibre, low residual oil and low oxalic acid, the optimum process parameters were selected. The combination of 20 min of pearling duration, 15 min of soaking, 15 min of steaming at 100 kPa pressure and drying at 50 °C yielded high quality partially defatted protein rich sesame flour as compared to untreated defatted sesame flour. The developed high quality partially defatted protein rich sesame flour may be used in various food applications as a vital ingredient to increase the nutritional significance of the prepared foodstuffs.

  11. The Barriers to High-Quality Inpatient Pain Management: A Qualitative Study.

    Science.gov (United States)

    Lin, Richard J; Reid, M Carrington; Liu, Lydia L; Chused, Amy E; Evans, Arthur T

    2015-09-01

    The current literature suggests deficiencies in the quality of acute pain management among general medical inpatients. The aim of this qualitative study is to identify potential barriers to high-quality acute pain management among general medical inpatients at an urban academic medical center during a 2-year period. Data are collected using retrospective chart reviews, survey questionnaires, and semistructured, open-ended interviews of 40 general medical inpatients who have experienced pain during their hospitalization. Our results confirm high prevalence and disabling impacts of pain and significant patient- and provider-related barriers to high-quality acute pain management. We also identify unique system-related barriers such as time delay and pain management culture. Efforts to improve the pain management experience of general medical inpatients will need to address all these barriers. © The Author(s) 2014.

  12. High quality junctions by interpenetration of vapor liquid solid grown nanostructures for microchip integration

    Energy Technology Data Exchange (ETDEWEB)

    Jebril, Seid; Kuhlmann, Hanna; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany); Mueller, Sven [Nanowires and Thin Films, II. Physikalisches Institut, Goettingen (Germany); Ronning, Carsten [Institute for Solid State Physics, Universitaet Jena (Germany); Kienle, Lorenz [Synthese und Realstruktur, CAU Kiel (Germany); Duppel, Viola [MPI fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The usability of nanostructures in electrical devices like gas sensors depends critically on the ability to form high quality contacts and junctions. For the fabrication of various nanostructures, vapor-liquid-solid (VLS) growth is a wide spread and very efficient technique. However, forming contacts with the VLS grown structures to utilize them in a device is still tedious, because either the substrate has to be epitaxial to the VLS material or a manual alignment is necessary. Here we demonstrate the contact formation by simply using the ability of individual crystals to interpenetrate each other during the straight forward VLS growth. This allows growing VLS structures directly on two neighboring gold circuit paths of a microchip; bridges over predefined gaps will be formed. Moreover, TEM investigations confirm the high quality of the crystalline junctions that allow demonstrations as UV and hydrogen-sensor. The VLS devices are compared with conventional produced.

  13. 10 CFR 26.165 - Testing split specimens and retesting single specimens.

    Science.gov (United States)

    2010-01-01

    ... (c), as applicable. If the specimen in Bottle A is free of any evidence of drugs or drug metabolites... suitable inquiry conducted under the provisions of § 26.63 or to any other inquiry or investigation... records must be provided to personnel conducting reviews, inquiries into allegations, or audits under the...

  14. Production of high-quality polydisperse construction mixes for additive 3D technologies.

    Science.gov (United States)

    Gerasimov, M. D.; Brazhnik, Yu V.; Gorshkov, P. S.; Latyshev, S. S.

    2018-03-01

    The paper describes a new design of a mixer allowing production of high quality polydisperse powders, used in additive 3D technologies. A new principle of dry powder particle mixing is considered, implementing a possibility of a close-to-ideal distribution of such particles in common space. A mathematical model of the mixer is presented, allowing evaluating quality indicators of the produced mixture. Experimental results are shown and rational values of process parameters of the mixer are obtained.

  15. Project outline of high quality electron beam generation at Waseda University

    Energy Technology Data Exchange (ETDEWEB)

    Washio, M.; Hama, Y.; Kashiwagi, S.; Kuroda, R.; Kobuki, T. [Waseda Univ., Advanced Research Institute for Science and Engineering, Shinjuku, Tokyo (Japan); Hirose, T. [Tokyo Metropolitan Univ. (Japan). Dept. of Physics

    2000-03-01

    High quality electron beam generation project has been started at Waseda University under the grant of Ministry of Education, named High-Tech Research Center Project. In the project, we will install a laser photo-cathode RF Gun system with 1.6 accelerating structure cells of s-band and a stabilized RF power source. This RF Gun is expected to produce single electron bunch up to 1 or 2nC with around 10ps pulse duration. (author)

  16. Project outline of high quality electron beam generation at Waseda University

    International Nuclear Information System (INIS)

    Washio, M.; Hama, Y.; Kashiwagi, S.; Kuroda, R.; Kobuki, T.; Hirose, T.

    2000-01-01

    High quality electron beam generation project has been started at Waseda University under the grant of Ministry of Education, named High-Tech Research Center Project. In the project, we will install a laser photo-cathode RF Gun system with 1.6 accelerating structure cells of s-band and a stabilized RF power source. This RF Gun is expected to produce single electron bunch up to 1 or 2nC with around 10ps pulse duration. (author)

  17. Fabrication of high quality GaN nanopillar arrays by dry and wet chemical etching

    OpenAIRE

    Paramanik, Dipak; Motayed, Abhishek; King, Matthew; Ha, Jong-Yoon; Kryluk, Sergi; Davydov, Albert V.; Talin, Alec

    2013-01-01

    We study strain relaxation and surface damage of GaN nanopillar arrays fabricated using inductively coupled plasma (ICP) etching and post etch wet chemical treatment. We controlled the shape and surface damage of such nanopillar structures through selection of etching parameters. We compared different substrate temperatures and different chlorine-based etch chemistries to fabricate high quality GaN nanopillars. Room temperature photoluminescence and Raman scattering measurements were carried ...

  18. Teaching Surgical Procedures with Movies: Tips for High-quality Video Clips

    OpenAIRE

    Jacquemart, Mathieu; Bouletreau, Pierre; Breton, Pierre; Mojallal, Ali; Sigaux, Nicolas

    2016-01-01

    Summary: Video must now be considered as a precious tool for learning surgery. However, the medium does present production challenges, and currently, quality movies are not always accessible. We developed a series of 7 surgical videos and made them available on a publicly accessible internet website. Our videos have been viewed by thousands of people worldwide. High-quality educational movies must respect strategic and technical points to be reliable.

  19. Teaching Surgical Procedures with Movies: Tips for High-quality Video Clips.

    Science.gov (United States)

    Jacquemart, Mathieu; Bouletreau, Pierre; Breton, Pierre; Mojallal, Ali; Sigaux, Nicolas

    2016-09-01

    Video must now be considered as a precious tool for learning surgery. However, the medium does present production challenges, and currently, quality movies are not always accessible. We developed a series of 7 surgical videos and made them available on a publicly accessible internet website. Our videos have been viewed by thousands of people worldwide. High-quality educational movies must respect strategic and technical points to be reliable.

  20. Characteristics of primary care practices associated with high quality of care.

    Science.gov (United States)

    Beaulieu, Marie-Dominique; Haggerty, Jeannie; Tousignant, Pierre; Barnsley, Janet; Hogg, William; Geneau, Robert; Hudon, Éveline; Duplain, Réjean; Denis, Jean-Louis; Bonin, Lucie; Del Grande, Claudio; Dragieva, Natalyia

    2013-09-03

    No primary practice care model has been shown to be superior in achieving high-quality primary care. We aimed to identify the organizational characteristics of primary care practices that provide high-quality primary care. We performed a cross-sectional observational study involving a stratified random sample of 37 primary care practices from 3 regions of Quebec. We recruited 1457 patients who had 1 of 2 chronic care conditions or 1 of 6 episodic care conditions. The main outcome was the overall technical quality score. We measured organizational characteristics by use of a validated questionnaire and the Team Climate Inventory. Statistical analyses were based on multilevel regression modelling. The following characteristics were strongly associated with overall technical quality of care score: physician remuneration method (27.0; 95% confidence interval [CI] 19.0-35.0), extent of sharing of administrative resources (7.6; 95% CI 0.8-14.4), presence of allied health professionals (15.3; 95% CI 5.4-25.2) and/or specialist physicians (19.6; 95% CI 8.3-30.9), the presence of mechanisms for maintaining or evaluating competence (7.7; 95% CI 3.0-12.4) and average organizational access to the practice (4.9; 95% CI 2.6-7.2). The number of physicians (1.2; 95% CI 0.6-1.8) and the average Team Climate Inventory score (1.3; 95% CI 0.1-2.5) were modestly associated with high-quality care. We identified a common set of organizational characteristics associated with high-quality primary care. Many of these characteristics are amenable to change through practice-level organizational changes.

  1. Quantitative Analysis of High-Quality Officer Selection by Commandants Career-Level Education Board

    Science.gov (United States)

    2017-03-01

    impact on the organization and allocate resources to improve the human capital of this select group. From 2011 onward, CCLEB revamped the application...ANALYSIS OF HIGH-QUALITY OFFICER SELECTION BY COMMANDANT’S CAREER - LEVEL EDUCATION BOARD by Clifton N. Rateike March 2017 Thesis Advisor...of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE March

  2. High-quality AlN films grown on chemical vapor-deposited graphene films

    Directory of Open Access Journals (Sweden)

    Chen Bin-Hao

    2016-01-01

    Full Text Available We report the growth of high-quality AlN films on graphene. The graphene films were synthesized by CVD and then transferred onto silicon substrates. Epitaxial aluminum nitride films were deposited by DC magnetron sputtering on both graphene as an intermediate layer and silicon as a substrate. The structural characteristics of the AlN films and graphene were investigated. Highly c-axis-oriented AlN crystal structures are investigated based on the XRDpatterns observations.

  3. Burnout in boiling heat transfer. Part III. High-quality forced-convection systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1979-01-01

    This is the final part of a review of burnout during boiling heat transfer. The status of burnout in high-quality forced-convection systems is reviewed, and recent developments are summarized in detail. A general guide to the considerable literature is given. Parametric effects and correlations for water in circular and noncircular ducts are presented. Other topics discussed include transients, steam-generator applications, correlations for other fluids, fouling, and augmentation

  4. High-quality poly-dispersed mixtures applied in additive 3D technologies.

    Science.gov (United States)

    Gerasimov, M. D.; Brazhnik, Yu V.; Gorshkov, P. S.; Latyshev, S. S.

    2018-03-01

    The paper describes the new mixer design to obtain high-quality poly-dispersed powders applied in additive 3D technologies. It also considers a new mixing principle of dry powder particles ensuring the distribution of such particles in the total volume, which is close to ideal. The paper presents the mathematical model of mixer operation providing for the quality assessment of the ready mixtures. Besides, it demonstrates experimental results and obtained rational values of mixer process parameters.

  5. Generating high-quality single droplets for optical particle characterization with an easy setup

    Science.gov (United States)

    Xu, Jie; Ge, Baozhen; Meng, Rui

    2018-06-01

    The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.

  6. Effect of monitoring strategies and reference data of the German Environmental Specimen Banking Program

    International Nuclear Information System (INIS)

    Paulus, M.; Bartel, M.; Klein, R.; Nentwich, K.; Quack, M.; Teubner, D.; Wagner, G.

    2005-01-01

    The constitution of the German Environmental Specimen Bank (ESB) has started in 1985, subsequent to a successful pilot study concerning the feasibility. Since that time, a multitude of technological and methodical standards have been developed, which allow for a high quality of the storage-samples and of the specimen characterization. While the storage-samples are kept for retrospective analysis, by now, already comprehensive data on the material-developing in the environment are available due to a real time monitoring of selected environmental chemicals over a period of up to twenty years. Thus, spatial and temporal trends can be described. Since the state of knowledge on critical tissue concentrations in the sublethal range is extremely low at present, it is however not possible to accomplish a direct assessment of relevancy of the substance concentrations. Hence, within the scope of the German ESB Program, the following strategies on assessment of relevancy are observed: use of biomarkers, histopathological examinations, biometric specimen characterization, use of ecological indicator groups, and development of a reference system with analytical and biometric data. Thus, for example endocrine effects in male breams in the river Saar, which correlate directly to operational discharges from municipal sewage plants, could be detected. By histopathological examinations, fibrotic and necrotic tissue adaptations on the gonads had been ascertained cumulatively, which unambiguously imply a restricted fertility of the male breams. In the river Rhine, an improved growth along the timeline could be described on the basis of biometric characterization of breams, which is regarded as rate for the reaction to all structural and material changes in the water body. Presently, with the development of a reference system based on the data collected in the scope of the Environmental Specimen Bank, a basis for the assessment of monitoring results with accumulation indicators is

  7. A non-destructive DNA sampling technique for herbarium specimens.

    Science.gov (United States)

    Shepherd, Lara D

    2017-01-01

    Herbarium specimens are an important source of DNA for plant research but current sampling methods require the removal of material for DNA extraction. This is undesirable for irreplaceable specimens such as rare species or type material. Here I present the first non-destructive sampling method for extracting DNA from herbarium specimens. DNA was successfully retrieved from robust leaves and/or stems of herbarium specimens up to 73 years old.

  8. Miniature tensile test specimens for fusion reactor irradiation studies

    International Nuclear Information System (INIS)

    Klueh, R.L.

    1985-01-01

    Three miniature sheet-type tensile specimens and a miniature rod-type specimen are being used to determine irradiated tensile properties for alloy development for fusion reactors. The tensile properties of type 316 stainless steel were determined with these different specimens, and the results were compared. Reasonably good agreement was observed. However, there were differences that led to recommendations on which specimens are preferred. 4 references, 9 figures, 6 tables

  9. Elastic-plastic analysis of the SS-3 tensile specimen

    International Nuclear Information System (INIS)

    Majumdar, S.

    1998-01-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior

  10. Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System.

    Science.gov (United States)

    Xu, Jianbao; Hu, Junxiong; Li, Qi; Wang, Rubing; Li, Weiwei; Guo, Yufen; Zhu, Yongbo; Liu, Fengkui; Ullah, Zaka; Dong, Guocai; Zeng, Zhongming; Liu, Liwei

    2017-07-01

    Chemical vapor deposition (CVD) growth of high-quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high-quality and a large-quantity graphene films, simultaneously, at a fast growth rate, regardless of roll-to-roll (R2R) or batch-to-batch (B2B) methods. Here, a stationary-atmospheric-pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.5 µm s -1 , is demonstrated. The monolayer graphene of batch production is found to nucleate from arrays of well-aligned domains, and the films possess few defects and exhibit high carrier mobility up to 6944 cm 2 V -1 s -1 at room temperature. The results indicate that the SAPCVD system combined with single-domain Cu(111) substrates makes it possible to realize fast batch-growth of high-quality graphene films, which opens up enormous opportunities to use this unique 2D material for industrial device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular Auditing: An Evaluation of Unsuspected Tissue Specimen Misidentification.

    Science.gov (United States)

    Demetrick, Douglas J

    2018-06-18

    Context Specimen misidentification is the most significant error in laboratory medicine, potentially accounting for hundreds of millions of dollars in extra health care expenses and significant morbidity in patient populations in the United States alone. New technology allows the unequivocal documentation of specimen misidentification or contamination; however, the value of this technology currently depends on suspicion of the specimen integrity by a pathologist or other health care worker. Objective To test the hypothesis that there is a detectable incidence of unsuspected tissue specimen misidentification among cases submitted for routine surgical pathology examination. Design To test this hypothesis, we selected specimen pairs that were obtained at different times and/or different hospitals from the same patient, and compared their genotypes using standardized microsatellite markers used commonly for forensic human DNA comparison in order to identify unsuspected mismatches between the specimen pairs as a trial of "molecular auditing." We preferentially selected gastrointestinal, prostate, and skin biopsies because we estimated that these types of specimens had the greatest potential for misidentification. Results Of 972 specimen pairs, 1 showed an unexpected discordant genotype profile, indicating that 1 of the 2 specimens was misidentified. To date, we are unable to identify the etiology of the discordance. Conclusions These results demonstrate that, indeed, there is a low level of unsuspected tissue specimen misidentification, even in an environment with careful adherence to stringent quality assurance practices. This study demonstrates that molecular auditing of random, routine biopsy specimens can identify occult misidentified specimens, and may function as a useful quality indicator.

  12. Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films

    International Nuclear Information System (INIS)

    Gervacio-Arciniega, J.J.; Flores-Ruiz, F.J.; Diliegros-Godines, C.J.; Broitman, E.; Enriquez-Flores, C.I.; Espinoza-Beltrán, F.J.; Siqueiros, J.; Cruz, M.P.

    2016-01-01

    Highlights: • Friction coefficient (μ) of ferroelectric textured and polycrystalline YCrO_3 films. • A simple method to evaluate μ from a single AFM image is presented. • The AFM-cantilever spring constant was determined from its dynamic response. • Polycrystalline and amorphous films have a lower μ than textured samples. - Abstract: Differences in friction coefficients (μ) of ferroelectric YCrO_3, textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB"® software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO_3 film deposited on a Pt(150 nm)/TiO_2(30 nm)/SiO_2/Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO_3 (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO_3 films seem to be the best candidates due to their lower μ.

  13. Influence of ammonia flow rate for improving properties of polycrystalline GaN

    Science.gov (United States)

    Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.

    2018-06-01

    Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.

  14. Influence of lattice distortion on phase transition properties of polycrystalline VO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tiegui [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Langping, E-mail: aplpwang@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Wang, Xiaofeng; Zhang, Yufen [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Yu, Yonghao, E-mail: yhyu@hit.edu.cn [Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-30

    Highlights: • Polycrystalline VO{sub 2} thin films were fabricated by high power impulse magnetron sputtering. • The reported lowest phase transition temperature for undoped polycrystalline VO{sub 2} thin film was reduced to 32 °C by this research. • XRD patterns at varied temperatures revealed that the main structual change was a gradual shift in interplanar spacing with temperature. - Abstract: In this work, high power impulse magnetron sputtering was used to control the lattice distortion in polycrystalline VO{sub 2} thin film. SEM images revealed that all the VO{sub 2} thin films had crystallite sizes of below 20 nm, and similar configurations. UV–vis-near IR transmittance spectra measured at different temperatures showed that most of the as-deposited films had a typical metal–insulator transition. Four-point probe resistivity results showed that the transition temperature of the films varied from 54.5 to 32 °C. The X-ray diffraction (XRD) patterns of the as-deposited films revealed that most were polycrystalline monoclinic VO{sub 2}. The XRD results also confirmed that the lattice distortions in the as-deposited films were different, and the transition temperature decreased with the difference between the interplanar spacing of the as-deposited thin film and standard rutile VO{sub 2}. Furthermore, a room temperature rutile VO{sub 2} thin film was successfully synthesized when this difference was small enough. Additionally, XRD patterns measured at varied temperatures revealed that the phase transition process of the polycrystalline VO{sub 2} thin film was a coordinative deformation between grains with different orientations. The main structural change during the phase transition was a gradual shift in interplanar spacing with temperature.

  15. Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films

    Energy Technology Data Exchange (ETDEWEB)

    Gervacio-Arciniega, J.J. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Flores-Ruiz, F.J., E-mail: fcojfloresr@gmail.com [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Diliegros-Godines, C.J. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Broitman, E. [Thin Film Physics Division, IFM, Linköping University, SE-58183 Linköping (Sweden); Enriquez-Flores, C.I.; Espinoza-Beltrán, F.J. [CINVESTAV Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, 76230 Querétaro, Qro. (Mexico); Siqueiros, J.; Cruz, M.P. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico)

    2016-08-15

    Highlights: • Friction coefficient (μ) of ferroelectric textured and polycrystalline YCrO{sub 3} films. • A simple method to evaluate μ from a single AFM image is presented. • The AFM-cantilever spring constant was determined from its dynamic response. • Polycrystalline and amorphous films have a lower μ than textured samples. - Abstract: Differences in friction coefficients (μ) of ferroelectric YCrO{sub 3}, textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB{sup ®} software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO{sub 3} film deposited on a Pt(150 nm)/TiO{sub 2}(30 nm)/SiO{sub 2}/Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO{sub 3} (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO{sub 3} films seem to be the best candidates due to their lower μ.

  16. Specimen holder for an electron microscope and device and method for mounting a specimen in an electron microscope

    NARCIS (Netherlands)

    Zandbergen, H.W.; Latenstein van Voorst, A.; Westra, C.; Hoveling, G.H.

    1996-01-01

    A specimen holder for an electron microscope, comprising a bar-shaped body provided adjacent one end with means for receiving a specimen, with means being present for screening the specimen from the environment at least temporarily in airtight and moisture-proof manner in a first position, which

  17. 75 FR 70289 - Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Science.gov (United States)

    2010-11-17

    ...)] Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China and... paper suitable for high-quality print graphics using sheet-fed presses (``certain coated paper'') from... paper industry is materially injured by reason of imports of the subject merchandise from China and...

  18. [Development of rapid setting-drying device for herbarium specimens and its application in survey of Chinese materia medica resources in Anhui].

    Science.gov (United States)

    Zheng, Han; Xu, Tao; Li, Chuan-Run; Sun, Xiao-Mei; Xiang, Long; Zhao, Wei-Bo; Liu, He-Ling; Zhou, Jian-Li; Yang, Qing-Shan; Peng, Dai-Yin

    2016-07-01

    Herbarium specimens are the basis for the plant classification and indispensable media in teaching, scientific research and resources investigation. They have also played an important role in identifying and producing traditional Chinese medicine. High-quality herbarium specimens shall meet high requirements for integrity, smoothness, color and fabricating efficiency. Therefore, we designed a rapid setting and drying device for herbarium specimens, which could make the herbarium specimens smooth, colorful and not easy to mildew. In this paper, we pointed out the deficiency of traditional methods in making herbarium specimens, and introduced the structure and working principle of the device. Besides, we also discussed the effect of the device in setting and drying herbarium specimens and its application in the fourth national survey of the Chinese material medica resources (CMMR) in Anhui province. As a result, the device provides new ideas for producing herbarium specimens, with a reasonable design, good uniformity, high efficiency, safety and portability, and so is worthy of promotion and application in the national survey of CMMR. Copyright© by the Chinese Pharmaceutical Association.

  19. Design of specimen for weld residual stress simulation

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Jong Sun; Lee, Kyung Soo

    2008-01-01

    The objective of this study is to design a laboratory specimen for simulating residual stress of circumferential butt welding of pipe. Specimen type and method for residual stress generation were proposed based on the review of prior studies and parametric finite element simulation. To prove the proposed specimen type and loading method, the residual stress was generated using the designed specimen by applying proposed method and was measured. The measured residual stress using X-ray diffraction reasonably agreed with the results of finite element simulation considered in the specimen design. Comparison of residual strains measured at several locations of specimen and given by finite element simulation also showed good agreement. Therefore, it is indicated that the designed specimen can reasonably simulate the residual stress of circumferential butt welding of pipe

  20. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuker; Carlton, Victoria E.H.; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C.; Richardson, Andrea L.; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A.; Spellman, Paul T.; Gray, Joe W.; Mills, Gordon B.; Faham, Malek

    2009-02-24

    A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small ({approx}40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

  1. Preparation of high-quality iodine-125-labeled pituitary luteinizing hormone for radioimmunoassay

    International Nuclear Information System (INIS)

    Pinto, H.; Wajchenberg, B.L.; Higa, O.Z.; Toledo e Souza, I.T. de; Werner, R.S.; Pieroni, R.R.

    1974-01-01

    High quality pituitary luteinizing hormone labeled with 125 I was obtained after separating out the more heavily iodinated fractions, through starch gel electrophoresis, using the cathodal component (fraction 1) which was further purified on Sephadex G-100, with the obtention of an almost pure 125 I-LH preparation, presenting excellent immunoreactivity and low levels of damage on incubation in plasma. The quality control of the steps of the technique was done with plasma-coated talc (200 mg) which compared favorably, as far indicating undamaged labeled LH, with the more time-consuming chromatoelectrophoresis

  2. Production of high-quality marketing applications: strategies for biotechnology companies working with contract research organizations.

    Science.gov (United States)

    Hecker, Sandra J; Preston, Christopher; Foote, MaryAnn

    2003-01-01

    Many biotechnology and pharmaceutical companies use clinical research organizations (CROs) to assist in the writing and preparation of clinical documents intended for submission to health authorities. Start-up companies often require the expertise of a CRO to prepare their first regulatory documents. Larger or more experienced companies often require CRO staff to assist at times of multiple simultaneous submissions. The timely production of high-quality new drug marketing applications requires close collaborations between the drug company and the CRO. The views of both CRO and industry in ensuring best practices are discussed.

  3. Joining forces: collaborating internationally to deliver high-quality, online postgraduate education in pain management.

    Science.gov (United States)

    Devonshire, Elizabeth; Siddall, Philip

    2011-01-01

    The effective management of pain is a complex and costly global issue, requiring a range of innovative educational strategies to enable culturally appropriate and high-quality health care provision. In response to this issue, the Pain Management Research Institute at the University of Sydney (Sydney, Australia) has established several strategic alliances with other overseas universities to deliver online postgraduate education in pain management. The present article discusses the rationale for joining forces, and the approach adopted in creating and maintaining these alliances. It also provides insights into the benefits, challenges and opportunities associated with collaborative educational initiatives of this nature, from institutional, academic and student perspectives.

  4. Isolation of high quality graphene from Ru by solution phase intercalation

    Science.gov (United States)

    Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.

    2013-09-01

    We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.

  5. Experience in melting of high-quality chromium-nickel-molybdenum steel in oxygen converter

    Energy Technology Data Exchange (ETDEWEB)

    Kosoi, L F; Yaburov, S I; Shul' kin, M L; Vedernikov, G G; Bragin, E D; Filork' yan, B K

    1978-10-01

    Technology of melting high-quality medium-carbon constructional chromium-nickel-molybdenum steel has been developed and tested in 130-t converters. The technology envisages metal refinement in a casting laddle using synthetic lime-aluminous slag and argon blowing, as well as liquid ferroallys (master alloys) for steel deoxidation and alloying. Due to a smaller content of sulfur, phosphorus, arsenic and sulphide inclusions, and to a smaller grain size (N 11-12), the steel, produced according to this technology possesses higher plastic properties and impact strength than conventional open-hearth furnace metal after heat treatment for the same strength.

  6. Availability and Price of High Quality Day Care and Female Employment

    DEFF Research Database (Denmark)

    Simonsen, Marianne

    In this paper I analyse to what degree availability and price of high quality publicly subsidised childcare affects female employment for women living in couples following maternity leave. The results show that unrestricted access to day care has a significantly positive effct on female employment.......The price effect is significantly negative: An increase in the price of child care of C=1 will decrease the female employment with 0.08% corresponding to a price elasticity of −0.17. This effect prevails during the first 12 months after childbirth....

  7. Low-cost high-quality crystalline germanium based flexible devices

    KAUST Repository

    Nassar, Joanna M.

    2014-06-16

    High performance flexible electronics promise innovative future technology for various interactive applications for the pursuit of low-cost, light-weight, and multi-functional devices. Thus, here we show a complementary metal oxide semiconductor (CMOS) compatible fabrication of flexible metal-oxide-semiconductor capacitors (MOSCAPs) with high-κ/metal gate stack, using a physical vapor deposition (PVD) cost-effective technique to obtain a high-quality Ge channel. We report outstanding bending radius ~1.25 mm and semi-transparency of 30%.

  8. Facilitating the openEHR approach - organizational structures for defining high-quality archetypes.

    Science.gov (United States)

    Kohl, Christian Dominik; Garde, Sebastian; Knaup, Petra

    2008-01-01

    Using openEHR archetypes to establish an electronic patient record promises rapid development and system interoperability by using or adopting existing archetypes. However, internationally accepted, high quality archetypes which enable a comprehensive semantic interoperability require adequate development and maintenance processes. Therefore, structures have to be created involving different health professions. In the following we present a model which facilitates and governs distributed but cooperative development and adoption of archetypes by different professionals including peer reviews. Our model consists of a hierarchical structure of professional committees and descriptions of the archetype development process considering these different committees.

  9. Assessment of bird populations in a high quality savanna/woodland: a banding approach

    Science.gov (United States)

    Wilmore, Sandra L.; Glowacki, Gary A.; Grundel, Ralph

    2005-01-01

    Between 1999 and 2004, Save the Dunes Conservation Fund's Miller Woods Bird Banding Program monitored migrating and breeding bird populations within a high quality black oak, dry-mesic sand savanna/woodland with ridge and swale topography. The objectives of this program were to collect consistent and reliable demographic and abundance data on the bird populations, to investigate long-term population trends, and to contribute to improved land management decisions at regional and national scales. The technique employed involved capturing birds in mist nets that were deployed for set periods of time at 17 net sites in two banding areas in Miller Woods.

  10. Low-cost high-quality crystalline germanium based flexible devices

    KAUST Repository

    Nassar, Joanna M.; Hussain, Aftab M.; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2014-01-01

    High performance flexible electronics promise innovative future technology for various interactive applications for the pursuit of low-cost, light-weight, and multi-functional devices. Thus, here we show a complementary metal oxide semiconductor (CMOS) compatible fabrication of flexible metal-oxide-semiconductor capacitors (MOSCAPs) with high-κ/metal gate stack, using a physical vapor deposition (PVD) cost-effective technique to obtain a high-quality Ge channel. We report outstanding bending radius ~1.25 mm and semi-transparency of 30%.

  11. Fast Synthesis of High Quality Biodiesel from ‘Waste Fish Oil’ by Single Step Transesterification

    Directory of Open Access Journals (Sweden)

    Yogesh C. Sharma

    2014-09-01

    Full Text Available A large volume of fish wastes is produced on a daily basis in the Indian sub-continent. This abundant waste source could serve as an economic feedstock for bioenergy generation. In the present study, oil extracted from discarded fish parts was used for high quality biodiesel production. More specifically, a single step transesterification of ‘waste fishoil’ with methanol using sodium methoxide (CH3ONa as homogeneous catalyst under moderate operational conditions resulted in highly pure biodiesel of > 98% of fatty acid methyl ester (FAME content. Characterization was performed by Fourier Transform-Nuclear Magnetic Resonance (FT-NMR.

  12. HIGH QUALITY FACADE SEGMENTATION BASED ON STRUCTURED RANDOM FOREST, REGION PROPOSAL NETWORK AND RECTANGULAR FITTING

    Directory of Open Access Journals (Sweden)

    K. Rahmani

    2018-05-01

    Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  13. ATR-FTIR as a potential tool for controlling high quality vinegar categories

    DEFF Research Database (Denmark)

    Ríos-Reina, Rocío; Callejón, Raquel M.; Oliver-Pozo, Celia

    2017-01-01

    potential as a rapid, cost-effective and non-destructive tool for characterizing different categories of high-quality vinegars. Spectra from 67 wine vinegars belonging to the PDOs “Vinagre de Jerez” and “Vinagre Condado de Huelva”, including their different established categories, were analyzed in the 4000......–600 cm−1 infrared region. Changes associated to categories were observed in the region 1800–900 cm−1. These changes were assigned to certain compounds that increase during aging (e.g. acetic acids, alcohols, esters) or are characteristic of Pedro Ximenez category (e.g. sugars, furfural). Principal...

  14. High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.

    Science.gov (United States)

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong

    2013-03-01

    An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.

  15. THE ACADEMIC PERSONNEL MOTIVATION - A FACTOR FOR HIGH QUALITY EDUCATIONAL PRODUCT

    Directory of Open Access Journals (Sweden)

    Viara Slavianska

    2014-06-01

    Full Text Available The present paper consecutively puts an accent on 1 the quality of higher education as a national priority, 2 the qualification and motivation of the academic staff as factors for offering an educational product of high quality, 3 the strategies, policies and practices for motivating the academic personnel. The necessity of education improvement is adduced, the strategies and politics in the field of academic personnel training are presented, and the possible effects from a wrong approach to employees’ motivation in academic environment are commented.

  16. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling

    Science.gov (United States)

    Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong

    2018-04-01

    We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.

  17. High quality-factor fano metasurface comprising a single resonator unit cell

    Science.gov (United States)

    Sinclair, Michael B.; Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Campione, Salvatore; Brener, Igal; Liu, Sheng

    2017-06-20

    A new monolithic resonator metasurface design achieves ultra-high Q-factors while using only one resonator per unit cell. The metasurface relies on breaking the symmetry of otherwise highly symmetric resonators to induce intra-resonator mixing of bright and dark modes (rather than inter-resonator couplings), and is scalable from the near-infrared to radio frequencies and can be easily implemented in dielectric materials. The resulting high-quality-factor Fano metasurface can be used in many sensing, spectral filtering, and modulation applications.

  18. A hybrid plasmonic microresonator with high quality factor and small mode volume

    International Nuclear Information System (INIS)

    Lu, Qijing; Chen, Daru; Wu, Genzhu; Peng, Baojin; Xu, Jiancheng

    2012-01-01

    We propose a novel hybrid plasmonic microcavity which is composed of a silver nanoring and a silica toroidal microcavity. The hybrid mode of the proposed hybrid plasmonic microcavity due to the coupling between the surface plasmon polaritons (SPPs) and the dielectric mode is demonstrated with a high quality factor (>1000) and an ultrasmall mode volume (∼0.8 μm 3 ). This microcavity shows great potential in fundamental studies of nonlinear optics and cavity quantum electrodynamics (cQED) and applications in low-threshold plasmonic microlasers. (paper)

  19. Improvement of rotary specimen rack design

    International Nuclear Information System (INIS)

    Batch, J.M.; Gietzen, A.J.

    1978-01-01

    A redesign and verification test program has been completed on a new Rotary Specimen Rack ('Lazy Susan') design for the TRIGA Mark III. The purpose of the redesign was to solve a rotation problem which occurred at power levels of about 1 MW and above. The previous redesign effort on the Mark II-type lazy susan was made in 1967 when the bearing was changed to use stellite balls, spring-type separators and stainless-steel bearing races. An extensive test program at that time showed that the design gave excellent service under all anticipated operating conditions. Fifteen of these units have been installed in the past ten years and have been essentially trouble-free. Although the bearing design for the Mark III was very similar, the component layout was such that irradiation-induced heating with associated thermal expansion resulted in decreased bearing clearance and an increase in the required driving torque. The solution involved redesign and re-arrangement of the rack drive mechanism. A series of stringent operational proof tests were made under high temperature and temperature differential conditions which proved successful operation of the new design. The severe conditions under which these tests were performed uncovered further difficulties with the bearing and led to a re-evaluation of the bearing design. A new design was developed in which the spring separators were replaced by similar sized, cylindrical graphite spacers. The entire series of operational and life tests were repeated and the performance was outstanding. Acceptable wear characteristics of the spacers were verified and the bearing was noticeably smoother and quieter than with previous designs. A Mark III lazy susan of this new design was installed in a TRIGA about one year ago and operated at power levels up to 2 MW with excellent performance. The Mark II design has now been changed to incorporate the new drive and bearing design proven for the Mark III. (author)

  20. Technique of manufacturing specimen of irradiated fuel rods

    International Nuclear Information System (INIS)

    Min, Duck Seok; Seo, Hang Seok; Min, Duck Kee; Koo, Dae Seo; Lee, Eun Pyo; Yang, Song Yeol

    1999-04-01

    Technique of manufacturing specimen of irradiated fuel rods to perform efficient PIE is developed by analyzing the relation between requiring time of manufacturing specimen and manufacturing method in irradiated fuel rods. It takes within an hour to grind 1 mm of specimen thickness under 150 rpm in speed of grinding, 600 g gravity in force using no.120, no.240, no.320 of grinding paper. In case of no.400 of grinding paper, it takes more an hour to grind the same thickness as above. It takes up to a quarter to grind 80-130 μm in specimen thickness using no.400 of grinding paper. When grinding time goes beyond 15 minutes, the grinding thickness of specimen does not exist. The polishing of specimen with 150 Rpms in speed of grinding machine, 600 g gravity in force, 10 minutes in polishing time using diamond paste 15 μm on polishing cloths amounts to 50 μm in specimen thickness. In case of diamond paste 9 μm on polishing cloth, the polishing of specimen amounts to 20 μm. The polishing thickness of specimen with 15 minutes in polishing time using 6 μm, 3 μm, 1 μm, 1/4 μm does not exist. Technique of manufacturing specimen of irradiated fuel rods will have application to the destructive examination of PIE. (author). 6 refs., 1 tab., 10 figs

  1. Comparative Analytical Utility of DNA Derived from Alternative Human Specimens for Molecular Autopsy and Diagnostics

    Science.gov (United States)

    Klassen, Tara L.; von Rüden, Eva-Lotta; Drabek, Janice; Noebels, Jeffrey L.; Goldman, Alica M.

    2013-01-01

    Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card–based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms. PMID:22796560

  2. Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering

    Science.gov (United States)

    Chen, Liang-xian; Liu, Hao; Liu, Sheng; Li, Cheng-ming; Wang, Yi-chao; An, Kang; Hua, Chen-yi; Liu, Jin-long; Wei, Jun-jun; Hei, Li-fu; Lv, Fan-xiu

    2018-02-01

    A highly oriented AlN layer has been successfully grown along the c-axis on a polycrystalline chemical vapor deposited (CVD) diamond by RF reactive magnetron sputtering. Structural, morphological and mechanical properties of the heterostructure were investigated by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Nano-indentation and Four-probe meter. A compact AlN film was demonstrated on the diamond layer, showing columnar grains and a low surface roughness of 1.4 nm. TEM results revealed a sharp AlN/diamond interface, which was characterized by the presence of a distinct 10 nm thick buffer layer resulting from the initial AlN growth stage. The FWHM of AlN (002) diffraction peak and its rocking curve are as low as 0.41° and 3.35° respectively, indicating a highly preferred orientation along the c-axis. AlN sputtered films deposited on glass substrates show a higher bulk resistivity (up to 3 × 1012 Ω cm), compared to AlN films deposited on diamond (∼1010 Ω cm). Finally, the film hardness and Young's modulus of AlN films on diamond are 25.8 GPa and 489.5 GPa, respectively.

  3. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  4. Weak antilocalization and low-temperature characterization of sputtered polycrystalline bismuth selenide

    Science.gov (United States)

    Sahu, Protyush; Chen, Jun-Yang; Myers, Jason C.; Wang, Jian-Ping

    2018-03-01

    We report a thorough crystal and transport characterization of sputtered polycrystalline BixSe1 -x (20 nm), grown on a thermally oxidized silicon substrate. The crystal and grain structures of the sample are characterized by transmission electron microscopy. Selected-area electron diffraction shows a highly polycrystalline structure. Transport measurements suggest semiconducting behavior of the BixSe1 -x film with a very high carrier concentration (˜1020 cm3) and low mobility [˜8 cm2/(V s)]. High-field magnetoresistance measurements reveal weak antilocalization, to which both the low mobility and the angular dependence suggest an impurity-dominated contribution. Fitting parameters are obtained from 2D magnetoconductivity using the Hikami-Larkin-Nagaoka equation. The variation of the phase coherence length with temperature suggests electron-electron scattering for phase decoherence. Electron-electron interaction theory is used to analyze the low-temperature conductivity.

  5. Impact of Joule heating, roughness, and contaminants on the relative hardness of polycrystalline gold

    International Nuclear Information System (INIS)

    Freeze, Christopher R; Ji, Xiaoyin; Irving, Douglas L; Kingon, Angus I

    2013-01-01

    Asperities play a central role in the mechanical and electrical properties of contacting surfaces. Changes in trends of uniaxial compression of an asperity tip in contact with a polycrystalline substrate as a function of substrate geometry, compressive stress and applied voltage are investigated here by implementation of a coupled continuum and atomistic approach. Surprisingly, an unmodified Au polycrystalline substrate is found to be softer than one containing a void for conditions of high stress and an applied voltage of 0.2 V. This is explained in terms of the temperature distribution and weakening of Au as a function of temperature. The findings in this communication are important to the design of materials for electrical contacts because applied conditions may play a role in reversing relative hardness of the materials for conditions experienced during operation. (fast track communication)

  6. Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Institute of Nanoscience, Nanotechnology and Molecular Materials, University of Castilla-La Mancha, Campus de la Fabrica de Armas, Toledo 45071 (Spain); Arranz, Miguel A. [Facultad de Ciencias Quimicas, University of Castilla-La Mancha, Ciudad Real 13071 (Spain)

    2011-02-15

    We have grown both polycrystalline and partially textured cobalt films by magnetron sputter deposition in the range of thickness (50-200 nm). Kinetic roughening of the growing film leads to a controlled rms surface roughness values (1-6 nm) increasing with the as-grown film thickness. Ion erosion of a low energy 1 keV Ar+ beam at glancing incidence (80{sup o}) on the cobalt film changes the surface morphology to a ripple pattern of nanometric wavelength. The wavelength evolution at relatively low fluency is strongly dependent on the initial surface topography (a wavelength selection mechanism hereby confirmed in polycrystalline rough surfaces and based on the shadowing instability). At sufficiently large fluency, the ripple wavelength steadily increases on a coarsening regime and does not recall the virgin surface morphology. Remarkably, the use of a rough virgin surface makes the ripple amplitude in the final pattern can be controllably increased without affecting the ripple wavelength.

  7. Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review

    Science.gov (United States)

    Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás

    2014-04-01

    Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.

  8. The effect of crystal symmetry on the maximum polarization of polycrystalline ferroelectric materials

    International Nuclear Information System (INIS)

    Jones, Jacob L.

    2010-01-01

    In polycrystalline ceramics, the degree of domain orientation in all possible crystal orientations contributes to the total realizable polarization. The extent to which domains are oriented towards an applied field can be described by a polarization distribution function. Such representations are calculated and presented in the present work for several different crystal systems including monoclinic symmetries that exhibit a polarization rotation mechanism. The relationship between the polarization distribution functions and the attainable macroscopic polarization is also developed for polycrystalline ceramics that are initially randomly oriented. In these cases, polarization rotation allows a significant degree of preferred orientation parallel to the electric field (>1000 multiples of a random distribution). However, the fraction of single crystal polarization that can be achieved (97.5%) is only marginally better than those of higher crystal symmetry.

  9. Modeling elasto-plastic behavior of polycrystalline grain structure of steels at mesoscopic level

    International Nuclear Information System (INIS)

    Kovac, Marko; Cizelj, Leon

    2005-01-01

    The multiscale model is proposed to explicitly account for the inhomogeneous structure of polycrystalline materials. Grains and grain boundaries are modeled explicitly using Voronoi tessellation. The constitutive model of crystal grains utilizes anisotropic elasticity and crystal plasticity. Commercially available finite element code is applied to solve the boundary value problem defined at the macroscopic scale. No assumption regarding the distribution of the mesoscopic strain and stress fields is used, apart the finite element discretization. The proposed model is then used to estimate the minimum size of polycrystalline aggregate of selected reactor pressure vessel steel (22 NiMoCr 3 7), above which it can be considered macroscopically homogeneous. Elastic and rate-independent plastic deformation modes are considered. The results are validated by the experimental and simulation results from the literature

  10. The three-dimensional microstructure of polycrystalline materials unravelled by synchrotron light

    International Nuclear Information System (INIS)

    Ludwig, W.; Herbig, M.; Ludwig, W.; King, A; Reischig, P.; Marrow, J.; Babout, L.; Mejdal Lauridsen, E.; Proudhon, H.

    2011-01-01

    Synchrotron radiation X-ray imaging and diffraction techniques offer new possibilities for non-destructive bulk characterization of polycrystalline materials. Minute changes in electron density (different crystallographic phases, cracks, porosities) can be detected using 3D imaging modes exploiting Fresnel diffraction and the coherence properties of third generation synchrotron beams. X-ray diffraction contrast tomography, a technique based on Bragg diffraction imaging, provides access to the 3D shape, orientation and elastic strain state of the individual grains from polycrystalline sample volumes containing several hundred up to a few thousand grains. Combining both imaging modalities allows a comprehensive description of the microstructure of the material at the micrometer length scale. Repeated observations during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystal deformation and degradation mechanisms in materials, fulfilling some conditions on grain size and deformation state. (authors)

  11. Effect of texture on grain boundary misorientation distributions in polycrystalline high temperature superconductors

    International Nuclear Information System (INIS)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.; Mason, T.A.

    1996-01-01

    Computer simulations were performed to determine the most probable grain boundary misorientation distribution (GBMD) in model polycrystalline superconductors. GBMDs in polycrystalline superconductors can be expected to dictate the macroscopic transport critical current density, J c . Calculations were performed by simulating model polycrystals and then determining the GBMD. Such distributions were calculated for random materials having cubic, tetragonal, and orthorhombic crystal symmetry. In addition, since most high temperature superconductors are tetragonal or pseudotetragonal, the effect of macroscopic uniaxial and biaxial grain orientation texture on the GBMD was determined for tetragonal materials. It is found that macroscopic texture drastically alters the grain boundary misorientation distribution. The fraction of low angle boundaries increases significantly with uniaxial and biaxial texture. The results of this study are important in correlating the macroscopic transport J c with the measured grain orientation texture as determined by x-ray diffraction copyright 1996 American Institute of Physics

  12. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    Science.gov (United States)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  13. Oxygen deficiency in MoO{sub 3} polycrystalline nanowires and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Varlec, Ana, E-mail: ana.varlec@ijs.si [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Arčon, Denis [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Jadranska cesta 19, SI-1000 Ljubljana (Slovenia); Škapin, Srečo D. [Advanced Materials Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Remškar, Maja [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2016-02-15

    We report on the synthesis of polycrystalline molybdenum oxide (MoO{sub 3}) nanowires via oxidation of molybdenum-sulfur-iodine (Mo{sub 6}S{sub 2}I{sub 8}) nanowires. This unique synthesis route results in an interesting morphology comprising porous nanowires and nanotubes. We found the nanowires to have the orthorhombic MoO{sub 3} structure. The structure is slightly oxygen deficient which results in the appearance of a new resonant Raman band (1004 cm{sup −1}) and paramagnetic defects (Mo{sup 5+}) of both the point and crystallographic shear plane nature. - Highlights: • Polycrystalline MoO{sub 3} nanowires were obtained via oxidation of Mo{sub 6}S{sub 2}I{sub 8} nanowires. • Nanowires are porous and tubular with either filled or empty interior. • Nanowires are slightly oxygen deficient which leads to a new Raman band.

  14. Diffusion phenomena in polycrystalline chromium near the upper homological temperature of intercrystalline diffusion manifestation

    International Nuclear Information System (INIS)

    Kajgorodov, V.N.; Klothman, S.M.; Kurkin, M.I.; Dyakin, V.V.; Zherebthov, D.V.

    1997-01-01

    A study is made into the temperature dependences of density of states in a zone of intercrystalline diffusion of atomic probes 57 Co in polycrystalline chromium as well as in the temperature dependences of isomer shift and line width in Moessbauer spectra near the upper temperature boundary of manifestation of intercrystalline diffusion. In polycrystalline chromium the release of states in the core of the crystallite conjugation region (CCR) takes place only at high temperatures due to the fact that a stationary zone of high point defect concentration in the vicinity of CCR is conserved up to high temperatures. The atomic probe escape from the core of CCR starts at the temperatures at which the equilibrium vacancy concentration in the bulk of crystallite is equal to that in a stationary zone of high defect concentration

  15. Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy.

    Science.gov (United States)

    Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco

    2018-01-11

    Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.

  16. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    International Nuclear Information System (INIS)

    Qiu, S.; Clausen, B.; Padula, S.A.; Noebe, R.D.; Vaidyanathan, R.

    2011-01-01

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  17. On elastic moduli and elastic anisotropy in polycrystalline martensitic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S. [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States); Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Padula, S.A.; Noebe, R.D. [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Vaidyanathan, R., E-mail: raj@mail.ucf.edu [Advanced Materials Processing and Analysis Center (AMPAC), Mechanical, Materials and Aerospace Engineering Department, University of Central Florida, Orlando, FL 32816 (United States)

    2011-08-15

    A combined experimental and computational effort was undertaken to provide insight into the elastic response of B19' martensitic NiTi variants as they exist in bulk, polycrystalline aggregate form during monotonic tensile and compressive loading. The experimental effort centered on using in situ neutron diffraction during loading to measure elastic moduli in several directions along with an average Young's modulus and a Poisson's ratio. The measurements were compared with predictions from a 30,000 variant, self-consistent polycrystalline deformation model that accounted for the elastic intergranular constraint, and also with predictions of single crystal behavior from previously published ab initio studies. Variant conversion and detwinning processes that influenced the intergranular constraint occurred even at stresses where the macroscopic stress-strain response appeared linear. Direct evidence of these processes was revealed in changes in texture, which were captured in inverse pole figures constructed from the neutron diffraction measurements.

  18. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    International Nuclear Information System (INIS)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-01-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy ( + on the low temperature ( + ions to silicon neutrals (J + /J 0 ) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO 2 coated Si at temperatures below 400 degree sign C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects

  19. 'Observation' of dislocation motion in single crystal and polycrystalline aluminum during uniaxial deformation using photoemission technique

    International Nuclear Information System (INIS)

    Cai, M.; Levine, L.E.; Langford, S.C.; Dickinson, J.T.

    2005-01-01

    We report measurements of photostimulated electron emission (PSE) from single-crystalline aluminum (99.995%) and high-purity polycrystalline aluminum (>99.9%) during uniaxial tensile deformation. Photoelectron intensities are sensitive to changes in surface morphology accompanying deformation, including slip line and slip band formation. In the single crystalline material, the PSE intensity increases linearly with strain. In the polycrystalline material, the PSE intensity increases exponentially with strain. In both materials, time-resolved PSE measurements show step-like increases in intensity consistent with the heterogeneous nucleation and growth of slip bands during tensile deformation. In this sense, we have 'observed' dislocation motion by this technique. Slip bands on the surfaces of deformed samples were subsequently imaged by atomic-force microscopy (AFM). Photoelectron measurements can provide reliable, quantitative information for dislocation dynamics

  20. EPR of gamma-irradiated polycrystalline alanine-in-glass dosimeter

    International Nuclear Information System (INIS)

    Al-Karmi, Anan M.; Morsy, M.A.

    2008-01-01

    This study attempts to overcome some of the reported discrepancies in alanine-EPR reproducibility that may be related to alanine dosimeter preparation and/or EPR spectrometer settings. The dosimeters were prepared by packing pure polycrystalline L-α-alanine directly as supplied by the manufacturer in glass tubes. This dosimeter production scheme avoids any possible contribution to the EPR signal from a binding material. The dosimeters were irradiated with gamma ray to low-dose ranges typical for medical therapy (0-20 Gy). Special attention has been paid to the study of minimum detectable dose, measurement repeatability and reproducibility, and post-irradiation stability. The dosimeter exhibited a linear dose response in the dose range from 0.1 to 20 Gy. These positive properties favor the polycrystalline alanine-in-glass tube as a radiation dosimeter