WorldWideScience

Sample records for high-quality amorphous materials

  1. Radiation amorphization of materials

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Chernyaeva, T.P.

    1993-01-01

    The results of experimental and theoretical research on radiation amorphization are presented in this analytical review. Mechanism and driving forces of radiation amorphization are described, kinetic and thermodynamic conditions of amorphization are formulated. Compositional criteria of radiation amorphization are presented, that allow to predict irradiation behaviour of materials, their tendency to radiation amorphization. Mechanism of transition from crystalline state to amorphous state are considered depending on dose, temperature, structure of primary radiation damage and flux level. (author). 134 refs., 4 tab., 25 fig

  2. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  3. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system/development of technology to manufacture thin film solar cells (development of technology to manufacture materials and substrates (development of technology to manufacture high-quality amorphous materials and substrates)); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu, zairyo kiban seizo gijutsu kaihatsu (kohinshitsu amorphous kei zairyo kiban no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    These technological developments are intended to develop technologies to manufacture with improved quality the silicon-based thin film solar cells. In order to analyze manufacturing conditions for micro crystal silicon thin films as the narrow-gap amorphous silicon-based films, films were manufactured in the vicinity of borders of amorphous/micro crystal silicon film manufacturing conditions. The present film manufacturing did not present effects of suppressing deterioration of hydrogen diluted light. In order to elucidate the light deterioration mechanism in hydrogenated amorphous silicon films and study the suppression thereof, discussions were given on impurities in the film, including oxygen. By using an ultra high vacuum plasma CVD having a thoroughgoing baking system, an oil-free exhaust mechanism, and a raw material gas refining mechanism, impurities were added to and removed from a reaction vessel, and an ultra-high purity Si:H film was manufactured, which has been removed of impurities from the raw material gas, resulting in reduction of O, C and N standing no comparison. According to the result of a light irradiation experiment on an ultra-high purity film obtained under an accelerated deteriorating condition by using a pulse laser, the model assuming the light induced defect and the pair of impure atoms has been denied. (NEDO)

  4. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Development of thin-film solar cell manufacturing technology (Development of material/substrate manufacturing technology - Development of amorphous silicon-based high-quality material/substrate manufacturing technology); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (zairyo kiban seizo gijutsu kaihatsu - amorphous silicon kei kohinshitsu zairyo kiban no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The project aims to enhance the stability of amorphous solar cells. For elevating TCO (transparent conductive oxide) substrate transmittance to an ultrahigh level and for obtaining amorphous layers less to suffer photodegradation, efforts were made to develop substrate materials stable upon exposure to plasma and low in defect density. In the study of TCO, a high-transmittance glass substrate was employed and TCO was made thinner, and the specimen achieved transmittance of 91.3% or 6.3% over that of the conventional type. In the study of low reflection films, it was found that their transmittance came to be stable and remain so after 150 days after a weatherproof test. In the study for stability enhancement, optimization was carried out for a plasma resisting Ga{sub 2}O{sub 3}-added ZnO film for the manufacture of a substrate material capable of properly behaving in a high-speed a-Si film fabrication process. Low-temperature film fabrication was studied to enable low-cost manufacturing, and it was learned that a 4 times 10{sup -4} ohm/cm low-resistance film was obtained by sputtering Ga{sub 2}O{sub 3}-added ZnO where magnetism was intensive at room temperature, that films excellent in crystallinity were obtained by the same method even at low temperatures, and so forth. (NEDO)

  5. Amorphous silicon as high index photonic material

    Science.gov (United States)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  6. Method for depositing high-quality microcrystalline semiconductor materials

    Science.gov (United States)

    Guha, Subhendu [Bloomfield Hills, MI; Yang, Chi C [Troy, MI; Yan, Baojie [Rochester Hills, MI

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  7. 21. Colloquium on metallurgy. Amorphous alloys and materials

    International Nuclear Information System (INIS)

    1979-01-01

    Twenty-two papers were presented at the 21st colloquium on metallurgy of amorphous alloys and materials. They deal with the applications, the various types, the preparation methods, the structure, the magnetic and thermodynamic properties and the structure defects of the amorphous materials [fr

  8. Amorphous and nanocrystalline materials preparation, properties, and applications

    CERN Document Server

    Inoue, A

    2001-01-01

    Amorphous and nanocrystalline materials are a class of their own. Their properties are quite different to those of the corresponding crystalline materials. This book gives systematic insight into their physical properties, structure, behaviour, and design for special advanced applications.

  9. FY 1999 research and development of technologies for commercialization of photovoltaic power generation systems. Development of technologies for fabrication of thin-film solar cells/materials and substrates (Development of technologies for fabrication of high-quality amorphous materials and substrates); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / zairyo kiban seizo gijutsu kaihatsu (kohinshitsu amorphous kei zairyo kiban no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for the amorphous/microcrystalline solar cells with the thin microcrystalline silicon film as the i layer, and the FY 1999 results are reported. The fabrication technologies are investigated for the microcrystalline silicon solar cells of pin or nip structure by RF or VHF plasma CVD using SiH{sub 4} and H{sub 2} as the stock gases. The tests are conducted for evaluating characteristics of the thin microcrystalline silicon film, to investigate the effects of film-making pressure, power and hydrogen dilution rate on the characteristics at a constant film-making temperature of 180 degrees C. The researches on the fabrication technologies for the microcrystalline solar cell of pin structure confirm that use of VHF plasma CVD improves crystallinity, electrical and optical characteristics of the p-type thin microcrystalline silicon film. The researches on the fabrication technologies for the microcrystalline solar cell of nip structure covers transparent substrates, film-making speed of the p layer, power and substrates, and a conversion efficiency of 7.5% is realized by the solar cell formed on a texture substrate. (NEDO)

  10. Recent Progress in Some Amorphous Materials for Supercapacitors.

    Science.gov (United States)

    Li, Qing; Xu, Yuxia; Zheng, Shasha; Guo, Xiaotian; Xue, Huaiguo; Pang, Huan

    2018-05-14

    A breakthrough in technologies having "green" and sustainable energy storage conversion is urgent, and supercapacitors play a crucial role in this area of research. Owing to their unique porous structure, amorphous materials are considered one of the best active materials for high-performance supercapacitors due to their high specific capacity, excellent cycling stability, and fast charging rate. This Review summarizes the synthesis of amorphous materials (transition metal oxides, carbon-based materials, transition metal sulfides, phosphates, hydroxides, and their complexes) to highlight their electrochemical performance in supercapacitors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Obstacles using amorphous materials for volume applications

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Albert [Festo AG and Co. KG, 73734, Esslingen (Germany); Reininger, Thomas, E-mail: drn@de.festo.com [Festo AG and Co. KG, 73734, Esslingen (Germany)

    2012-10-15

    This contribution is especially focussed on the attempt to use amorphous or nanocrystalline metals in position sensor applications and to describe the difficulties and obstacles encountered in coherence with the development of appropriate industrial high volume series products in conjunction with the related quality requirements. The main motivation to do these investigations was to beat the generally known sensors especially silicon based Hall-sensors as well as AMR- and GMR-sensors - well known from mobile phones and electronic storage devices like hard discs and others - in terms of cost-effectiveness and functionality.

  12. Plasma deposition of amorphous silicon-based materials

    CERN Document Server

    Bruno, Giovanni; Madan, Arun

    1995-01-01

    Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Key Features * Focuses on the plasma chemistry of amorphous silicon-based materials * Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced * Features an international group of contributors * Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices.

  13. Amorphous and Nanocomposite Materials for Energy-Efficient Electric Motors

    Science.gov (United States)

    Silveyra, Josefina M.; Xu, Patricia; Keylin, Vladimir; DeGeorge, Vincent; Leary, Alex; McHenry, Michael E.

    2016-01-01

    We explore amorphous soft-magnetic alloys as candidates for electric motor applications. The Co-rich system combines the benefits of low hysteretic and eddy-current losses while exhibiting negligible magnetostriction and robust mechanical properties. The amorphous precursors can be devitrified to form nanocomposite magnets. The superior characteristics of these materials offer the advantages of ease of handling in the manufacturing processing and low iron losses during motor operation. Co-rich amorphous ribbons were laser-cut to build a stator for a small demonstrator permanent-magnet machine. The motor was tested up to ~30,000 rpm. Finite-element analyses proved that the iron losses of the Co-rich amorphous stator were ~80% smaller than for a Si steel stator in the same motor, at 18,000 rpm (equivalent to an electric frequency of 2.1 kHz). These low-loss soft magnets have great potential for application in highly efficient high-speed electric machines, leading to size reduction as well as reduction or replacement of rare earths in permanent-magnet motors. More studies evaluating further processing techniques for amorphous and nanocomposite materials are needed.

  14. (-201) β-Gallium oxide substrate for high quality GaN materials

    KAUST Repository

    Roqan, Iman S.

    2015-03-13

    (-201) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. The key advantages of Ga2O3 are its small lattice mismatches (4.7%), appropriate structural, thermal and electrical properties and a competitive price compared to other substrates. Optical characterization show that GaN layers grown on (-201) oriented β-Ga2O3 are dominated by intense bandedge emission with a high luminescence efficiency. Atomic force microscopy studies show a modest threading dislocation density of ~108 cm-2, while complementary Raman spectroscopy indicates that the GaN epilayer is of high quality with slight compressive strain. Room temperature time-findings suggest that the limitation of the photoluminescence lifetime (~500 ps) is due to nonradiative recombination arising from threading dislocation. Therefore, by optimizing the growth conditions, high quality material with significant optical efficiency can be obtained.

  15. The first Polish conference: Special glasses and amorphous materials. Introduction

    International Nuclear Information System (INIS)

    1993-01-01

    The present issue brings a collection of papers submitted to the 1. Polish Conference on special glasses and amorphous materials, held on June 1993 at the University of Mining and Metallurgy in Cracow. It was a survey of the research topics and attainments of the research teams working in this referring to the nature of the glassy state of the matter and the relation between glasses and other amorphous materials, properties of these materials as well as modern methods of their synthesis both at low and high temperatures. Some of the results presented at the Conference have already found application in industry. Here belong, among others, the works on optic fibres. Several new materials which have been recently elaborated may also find interesting and new practical application. (author)

  16. Aging mechanisms in amorphous phase-change materials.

    Science.gov (United States)

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  17. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane

    International Nuclear Information System (INIS)

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyoung-Koo; Kaplan, S.N.; Perez-Mendez, V.; Mireshghi, Ali; Kitsuno, Yu

    1994-11-01

    Electrical transport properties of the authors PECVD a-Si:H material has been improved by using hydrogen and/or helium dilution of silane and lower substrate temperature for deposition. For hydrogen-diluted material they have measured electron and hole mobilities ∼ 4 times larger, and μτ values 2-3 times higher than for their standard a-Si:H. The density of ionized dangling bonds (N D *) also showed a factor of 5-10 improvement. Due to its higher conductivity, the improved a- Si:H material is more suitable than conventional a-Si:H for TFT applications. However, it is difficult to make thick layers by H-dilution because of high internal stress. On the other hand, thick detectors can be made at a faster rate and lower stress by low temperature deposition with He-dilution and subsequent annealing. The internal stress, which causes substrate bending and delamination, was reduced by a factor of 4 to ∼90 MPa, while the electronic quality was kept as good as that of the standard material. By this technique 35 μm-thick n-i-p diodes were made without significant substrate bending, and the electronic properties, such as electron mobility and ionized dangling bond density, were suitable for detecting minimum ionizing particles

  18. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane

    International Nuclear Information System (INIS)

    Hong, W.S.; Drewery, J.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.; Kitsuno, Y.

    1995-01-01

    Electrical transport properties of the PECVD a-Si:H material has been improved by using hydrogen and/or helium dilution of silane and lower substrate temperature for deposition. For hydrogen-diluted material the authors measured electron and hole mobilities ∼4 times larger, and microτ values 2--3 times higher than for the standard a-Si:H. The density of ionized dangling bonds (N D *) also showed a factor of 5--10 improvement. Due to its higher conductivity, the improved a-Si:H material is more suitable than conventional a-Si:H for TFT applications. However, it is difficult to make thick layers by H-dilution because of high internal stress. On the other hand, thick detectors can be made at a faster rate and lower stress by low temperature deposition with He-dilution and subsequent annealing. The internal stress, which causes substrate bending and delamination, was reduced by a factor of 4 to ∼90 MPa, while the electronic quality was kept as good as that of the standard material. By this technique 35 microm-thick n-i-p diodes were made without significant substrate bending, and the electronic properties, such as electron mobility and ionized dangling bond density, were suitable for detecting minimum ionizing particles

  19. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-01-01

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc. PMID:26569244

  20. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review.

    Science.gov (United States)

    Morón, Carlos; Cabrera, Carolina; Morón, Alberto; García, Alfonso; González, Mercedes

    2015-11-11

    Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a "simple" and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  1. Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-11-01

    Full Text Available Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of sensors, without requiring expensive manufacture investments for the magnetic cores. Furthermore, these are not fragile materials that require special care, favouring the construction of solid and reliable devices. Another important feature is that these sensors can be developed without electric contact between the measuring device and the sensor, making them especially fit for use in harsh environments. In this review we will look at the main types of developed magnetic sensors. This work presents the state of the art of magnetic sensors based on amorphous ferromagnetic materials used in modern technology: security devices, weapon detection, magnetic maps, car industry, credit cards, etc.

  2. Controlled generation of silver nanocolloid in amorphous silica materials

    International Nuclear Information System (INIS)

    Gil, C.; Garcia-Heras, M.; Carmona, N.; Villages, M. A.

    2004-01-01

    Amorphous silica-based materials bulk and superficially doped with silver nano colloids were prepared. Bulk doped glasses were obtained by conventional melting and doped monolithic slabs by sol-gel. Superficially doped glasses were obtained by ion-exchange and doped coatings by sol-gel. The samples were characterised by TEM and UV-VIS spectrometry. Depending on the composition, the silver incorporation process, and the thermal treatments, several colourings were obtained. By controlling these parameters, metallic silver nano colloids can be generated in the matrices studied. Colloids aggregation and growing up depends on the matrix nature and on the experimental process carried out. (Author) 10 refs

  3. On Failure in Polycrystalline and Amorphous Brittle Materials

    Science.gov (United States)

    Bourne, N. K.

    2009-12-01

    The performance of behaviour of brittle materials depends upon discrete deformation mechanisms operating during the loading process. The critical mechanisms determining the behaviour of armour ceramics have not been isolated using traditional ballistics. It has recently become possible to measure strength histories in materials under shock. The data gained for the failed strength of the armour are shown to relate directly to the penetration measured into tiles. Further the material can be loaded and recovered for post-mortem examination. Failure is by micro-fracture that is a function of the defects and then cracking activated by plasticity mechanisms within the grains and failure at grain boundaries in the amorphous intergranular phase. Thus it is the shock-induced plastic yielding of grains at the impact face that determines the later time penetration through the tile.

  4. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  5. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Luckas, Jennifer Maria

    2012-01-01

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  6. High-quality LaVO3 films as solar energy conversion material

    International Nuclear Information System (INIS)

    Zhang, Hai-Tian; Brahlek, Matthew; Ji, Xiaoyu; Lei, Shiming; Lapano, Jason

    2017-01-01

    Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency. With use of the self-regulated growth kinetics in hybrid molecular beam epitaxy, this obstacle can be overcome. High-quality, stoichiometric LaVO 3 films were grown with defect densities of in-gap states up to 2 orders of magnitude lower compared to the films in the literature, and a factor of 3 lower than LaVO 3 bulk single crystals. Photoconductivity measurements revealed a significant photoresponsivity increase as high as tenfold of stoichiometric LaVO 3 films compared to their nonstoichiometric counterparts. Furthermore, this work marks a critical step toward the realization of high-performance Mott insulator solar cells beyond conventional semiconductors.

  7. Quantitative determination of amorphous content in ceramic materials using x-ray powder diffraction

    International Nuclear Information System (INIS)

    Kuchinski, M.A.; Hubbard, C.R.

    1988-01-01

    A quantitative technique which employs a modified method of additions approach to analyze for low amorphous content in crystalline matrices was developed and tested. Known amounts of amorphous material are added to the starting powder. The method uses the ratio of a measure of the intensity of the amorphous phase corrected for background to the background corrected intensity of a reference line from a crystalline phase. The amorphous spiking phase must be close in composition to the amorphous phase existing in the analyte. A critical step of the method is to correctly establish the background intensity. A completely crystalline material of similar scattering power was used to establish background intensity

  8. A process for doping an amorphous semiconductor material by ion implantation

    International Nuclear Information System (INIS)

    Kalbitzer, S.; Muller, G.; Spear, W.E.; Le Comber, P.G.

    1979-01-01

    In a process for doping a body of amorphous semiconductor material, the body is held at a predetermined temperature above 20 deg. C which is below the recrystallization temperature of the amorphous semiconductor material during bombardment by accelerated ions of a predetermined doping material. (U.K.)

  9. Some aspects of hydrogen interaction with amorphous metallic materials

    International Nuclear Information System (INIS)

    Spivak, L.V.; Khonik, V.A.; Skryabina, N.E.

    1995-01-01

    For the first time is considered change of some properties of amorphous metallic materials (AMM) directly in the process of hydrogenation. A supposition is made that many found effects are consequence of accumulation and relief of internal stresses during hydrogenation, exposure or following annealing of AMM. Fe 81 B 14 Si 15 , Fe 52 Co 20 Si 15 B 13 , Fe 5 Co 70 Si 15 B 10 , Fe 5 Co 58 Ni 10 Si 11 B 16 , Co 67 Fe 4 Cr 7 Si 8 B 14 84KChSP, Ni 60 Nb 35 Ti 5 , Ni 60 Nb 40 and Pd 17,5 Cu 6 Si 16.5 AMM were investigated. 24 refs.; 4 figs

  10. Design of multi materials combining crystalline and amorphous metallic alloys

    International Nuclear Information System (INIS)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suéry, M.; Blandin, J.J.

    2012-01-01

    Highlights: ► Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. ► Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. ► Sandwich structures produced by co-pressing. ► Detection of atomic diffusion from the glass to the crystalline alloys during the processes. ► Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  11. Molecular simulation strategy for mechanical modeling of amorphous/porous low-dielectric constant materials

    NARCIS (Netherlands)

    Yuan, C.A.; Sluis, van der O.; Zhang, G.Q.; Ernst, L.J.; Driel, van W.D.; Flower, A.E.; Silfhout, van R.B.R.

    2008-01-01

    We propose an amorphous/porous molecular connection network generation algorithm for simulating the material stiffness of a low-k material (SiOC:H). Based on a given concentration of the basic building blocks, this algorithm will generate an approximate and large amorphous network. The molecular

  12. Materials modeling by design: applications to amorphous solids

    International Nuclear Information System (INIS)

    Biswas, Parthapratim; Tafen, D N; Inam, F; Cai Bin; Drabold, D A

    2009-01-01

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe 1.5 . We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC.

  13. First-principles study of crystalline and amorphous AlMgB14-based materials

    International Nuclear Information System (INIS)

    Ivashchenko, V. I.; Shevchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances

    2016-01-01

    We report first-principles investigations of crystalline and amorphous boron and M1 x M2 y X z B 14−z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm −1 , whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm −1 . The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B 12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  14. First-principles study of crystalline and amorphous AlMgB{sub 14}-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchenko, V. I.; Shevchenko, V. I., E-mail: shev@materials.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky Str. 3, 03142 Kyiv (Ukraine); Turchi, P. E. A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, California 94551 (United States); Veprek, S. [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Leszczynski, Jerzy [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Gorb, Leonid [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Badger Technical Services, LLC, Vicksburg, Mississippi 39180 (United States); Hill, Frances [U.S. Army ERDC, Vicksburg, Mississippi 39180 (United States)

    2016-05-28

    We report first-principles investigations of crystalline and amorphous boron and M1{sub x}M2{sub y}X{sub z}B{sub 14−z} (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm{sup −1}, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm{sup −1}. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B{sub 12} units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.

  15. Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials.

    Science.gov (United States)

    Huang, Yuan; Sutter, Eli; Shi, Norman N; Zheng, Jiabao; Yang, Tianzhong; Englund, Dirk; Gao, Hong-Jun; Sutter, Peter

    2015-11-24

    Mechanical exfoliation has been a key enabler of the exploration of the properties of two-dimensional materials, such as graphene, by providing routine access to high-quality material. The original exfoliation method, which remained largely unchanged during the past decade, provides relatively small flakes with moderate yield. Here, we report a modified approach for exfoliating thin monolayer and few-layer flakes from layered crystals. Our method introduces two process steps that enhance and homogenize the adhesion force between the outermost sheet in contact with a substrate: Prior to exfoliation, ambient adsorbates are effectively removed from the substrate by oxygen plasma cleaning, and an additional heat treatment maximizes the uniform contact area at the interface between the source crystal and the substrate. For graphene exfoliation, these simple process steps increased the yield and the area of the transferred flakes by more than 50 times compared to the established exfoliation methods. Raman and AFM characterization shows that the graphene flakes are of similar high quality as those obtained in previous reports. Graphene field-effect devices were fabricated and measured with back-gating and solution top-gating, yielding mobilities of ∼4000 and 12,000 cm(2)/(V s), respectively, and thus demonstrating excellent electrical properties. Experiments with other layered crystals, e.g., a bismuth strontium calcium copper oxide (BSCCO) superconductor, show enhancements in exfoliation yield and flake area similar to those for graphene, suggesting that our modified exfoliation method provides an effective way for producing large area, high-quality flakes of a wide range of 2D materials.

  16. New class of materials - amorphous metals. Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vuchkov, L. [Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Scinces, Sofia (Bulgaria)

    2008-07-01

    This work presents the result of a cycle of scientific investigations and testing of physicomechanical, physicochemical and electromagnetic shielding properties of both electrochemically and metallurgically produced thin amorphous and crystalline films of Fe, Co, Ni and their alloys and Cr. Key words: microhardness, tensile strength, corrosion resistance, shielding.

  17. Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials

    Science.gov (United States)

    Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.

    2018-05-01

    The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.

  18. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  19. Dangling bonds and crystalline inclusions in amorphous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, L [Ferrara Univ. (Italy). Ist. di Matematica; Russo, G [Bologna Univ. (Italy). Ist. di Fisica

    1981-02-07

    It is suggested that on the surface of crystalline inclusions dangling bond formation is favoured due to unbalanced local stresses. The energy for bond tearings is probably originated from the exothermic process leading to the crystalline inclusion configuration which is more stable than the original amorphous one. A thermodynamical calculation is performed giving the ratio nsub(k) of crystalline inclusions having k dangling bonds on their surface.

  20. Structural characterization of amorphous materials applied to low-k organosilicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Raymunt, Alexandra Cooper, E-mail: amc442@cornell.edu; Clancy, Paulette

    2014-07-01

    We present a methodology to create computational atomistic-level models of porous amorphous materials, in particular, an organosilicate structure for ultra-low dielectric constant (ULK) materials known as “SiCOH.” The method combines the ability to satisfy geometric and chemical constraints with subsequent molecular dynamics (MD) techniques as a way to capture the complexities of the porous and amorphous nature of these materials. The motivation for studying ULK materials arises from a desire to understand the origin of the material's weak mechanical properties. The first step towards understanding how these materials might behave under processing conditions that are intended to improve their mechanical properties is to develop a suitable computational model of the material and hence is the focus of this paper. We define the atomic-scale topology of ULK materials that have been produced by chemical vapor deposition-like experimental techniques. Specifically, we have developed a method of defining the initial atom configurations and interactions, as well as a method to rearrange these starting configurations into relaxed structures. The main advantage of our described approach is the ability of our structure generation method to maintain a random distribution of relevant structural motifs throughout the structure, without relying on large unit cells and periodic boundaries to approximate the behavior of this complex material. The minimization of the different models was accomplished using replica exchange molecular dynamics (REMD). Following the generation of the ‘equilibrium’ configurations that result from REMD for a ULK material of a pre-specified composition, we demonstrate that its structural properties, including bonding topology, porosity and pore size distribution are similar to experimentally used ULK materials. - Highlights: • Method for creating a model of a low dielectric constant organosilicate material • Method of defining porosity in

  1. Hot Water Treatment, Trunk Diseases and Other Critical Factors in the Production of High-Quality Grapevine Planting Material

    Directory of Open Access Journals (Sweden)

    H. Waite

    2007-04-01

    Full Text Available This review describes the critical factors on which successful grapevine propagation depends and discusses the steps that can be taken to improve the quality of planting material available to growers. Spasmodic occurrences of young vine decline and the failure of planting material have plagued the wine industry since the 1990s. The syndrome now described as Petri disease has been identified as the probable cause of many of the failures, but hot water treatment (HWT of dormant cuttings (50°C/30 min, for the control of Phaeomoniella chlamydospora and other endogenous pathogens, has also been implicated in the losses. HWT is known to cause a temporary switch to fermentative respiration and early retarded growth in treated material, particularly in Pinot Noir, but the effects of HWT on dormant vine tissue are not yet fully understood. Poor nursery hygiene and poor storage and handling practices during propagation and planting have also been implicated in vine failure. Demand for planting material has exceeded supply and there has been little incentive for nurseries to improve their standards. The quality of planting material could be significantly improved by changing nursery practices, particularly by discontinuing the practice of soaking cuttings in water, treated or untreated, and by improving general standards of nursery hygiene and the management of cool rooms. There is a need to develop a set of universal quality standards for cuttings and rooted vines. Growers also need to be made aware of the characteristics and benefits of high quality planting material.

  2. Pressure-jump induced rapid solidification of melt: a method of preparing amorphous materials

    Science.gov (United States)

    Liu, Xiuru; Jia, Ru; Zhang, Doudou; Yuan, Chaosheng; Shao, Chunguang; Hong, Shiming

    2018-04-01

    By using a self-designed pressure-jump apparatus, we investigated the melt solidification behavior in rapid compression process for several kinds of materials, such as elementary sulfur, polymer polyether-ether-ketone (PEEK) and poly-ethylene-terephthalate, alloy La68Al10Cu20Co2 and Nd60Cu20Ni10Al10. Experimental results clearly show that their melts could be solidified to be amorphous states through the rapid compression process. Bulk amorphous PEEK with 24 mm in diameter and 12 mm in height was prepared, which exceeds the size obtained by melt quenching method. The bulk amorphous sulfur thus obtained exhibited extraordinarily high thermal stability, and an abnormal exothermic transition to liquid sulfur was observed at around 396 K for the first time. Furthermore, it is suggested that the glass transition pressure and critical compression rate exist to form the amorphous phase. This approach of rapid compression is very attractive not only because it is a new technique of make bulk amorphous materials, but also because novel properties are expected in the amorphous materials solidified by the pressure-jump within milliseconds or microseconds.

  3. Research and development of photovoltaic power system. Study on growth mechanism of a-Si:H and preparation of the stable, high quality films; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon no seimaku kiko to kohinshitsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on a film forming mechanism for amorphous silicon for solar cells and its quality improvement. In in-situ observation on plasma CVD surface reaction by using the total reflection infrared absorbing spectroscopy, an observation on a real time basis was performed on the reaction process of an a-Si:H surface in contact with gas mixture plasma composed of SiH4 + CH4. In microscopic observation on initial processes of amorphous silicon growth, surface morphological change before and after a-Si:H deposition at 200{degree}C was observed by using an inter-atomic force microscope. The observation verified that a-Si:H has grown to an atomic layer. In research on defect density in a-Si:H fabricated under high-speed film forming conditions, analysis was made on correlation between the film forming speed at 250{degree}C and defect density in the film. Other research works include those on a high-quality a-SiGe:H film fabricated by using the nanometer film forming/hydrogen plasma annealing method, modulated doping into multi-layer films of a-Si:H/a-Ge:H, and thin film transistor using very thin multi layer films of a-Si:H/a-Ge:H. 5 refs., 12 figs.

  4. Universal aspects of sonolubrication in amorphous and crystalline materials

    Science.gov (United States)

    Pfahl, V.; Ma, C.; Arnold, W.; Samwer, K.

    2018-01-01

    We studied sonolubricity, a phenomenon reducing the friction between two sliding surfaces by ultrasound. Friction force measurements were performed using an atomic force microscope (AFM) when the tip-surface contact was excited to out-of-plane oscillations by a transducer attached to the rear of the sample or by oscillating the AFM cantilever by the built-in piezoelectric element in the cantilever holder. Experiments were carried out near or at the first cantilever contact-resonance. We studied friction on crystalline and amorphous Pd77.5Cu6Si16.5 ribbons, on a silicon wafer at room temperature, and on a La0.6Sr0.4MnO3 (LSMO) thin film at different temperatures. Measurements were carried out varying the cantilever amplitude, the ultrasonic frequency, and the normal static load. The effect of sonolubrication is explained by the non-linear force-distance curve between the sample and the tip due to the local interaction potential. The reduction of friction in LSMO as a function temperature is due to the direct coupling of the tip's stress-field to the electrons.

  5. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Qingjun [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)]. E-mail: sduzhu@yahoo.com.cn; Qu Shiyao [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Wang Xinhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zou Zengda [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2007-06-30

    Amorphous composite coatings Fe{sub 38}Ni{sub 30-X}Si{sub 16}B{sub 14}V{sub 2}M {sub X} (X = 0, 1, 2) (M contains Al, Ti, Mo, and C) were prepared with low purity of raw materials by laser cladding. X-ray diffraction and transmission electron microscopy results show that the coating have an amorphous structure with a few crystalline phase on it. The amorphous phase is the primary phase. The glass forming ability as well as the microhardness of the Fe-based alloy made from low purity raw materials can be much enhanced by adding small amount of multi-components. However, the elements addition has its optimal quantity. When X is equal to 1, the microstructure of the coating contains 97.93% amorphous phase and 2.07% crystalline phase on it. As a result, the microhardness of the coating reaches maximum. With further increasing of the additions, the amorphous phase in the coating lessens instead of augment and the crystalline phase begins to accumulate, which result in the decrease of the microhardness.

  6. Schottky barrier formation at amorphous-crystalline interfaces of GeSb phase change materials

    NARCIS (Netherlands)

    Kroezen, H. J.; Eising, G.; ten Brink, Gert; Palasantzas, G.; Kooi, B. J.; Pauza, A.

    2012-01-01

    The electrical properties of amorphous-crystalline interfaces in phase change materials, which are important for rewritable optical data storage and for random access memory devices, have been investigated by surface scanning potential microscopy. Analysis of GeSb systems indicates that the surface

  7. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1999-01-01

    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  8. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  9. Amorphous electron-accepting materials for organic optoelectronics

    NARCIS (Netherlands)

    Ganesan, P.

    2007-01-01

    The importance of organic materials for use in electronic devices such as OLEDs, OFETs and photovoltaic cells has increased significantly over the past decade. Organic materials have been attractive candidates for such electronic devices because of their compatibility with high-throughput,

  10. Enhanced photoconductivity by melt quenching method for amorphous organic photorefractive materials

    Science.gov (United States)

    Tsujimura, S.; Fujihara, T.; Sassa, T.; Kinashi, K.; Sakai, W.; Ishibashi, K.; Tsutsumi, N.

    2014-10-01

    For many optical semiconductor fields of study, the high photoconductivity of amorphous organic semiconductors has strongly been desired, because they make the manufacture of high-performance devices easy when controlling charge carrier transport and trapping is otherwise difficult. This study focuses on the correlation between photoconductivity and bulk state in amorphous organic photorefractive materials to probe the nature of the performance of photoconductivity and to enhance the response time and diffraction efficiency of photorefractivity. The general cooling processes of the quenching method achieved enhanced photoconductivity and a decreased filling rate for shallow traps. Therefore, sample processing, which was quenching in the present case, for photorefractive composites significantly relates to enhanced photorefractivity.

  11. Subthreshold electrical transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Gallo, Manuel Le; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-01-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole–Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation. (paper)

  12. Toward electron exit wave tomography of amorphous materials at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, Konstantin B., E-mail: konstantin.borisenko@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Kirkland, Angus I., E-mail: angus.kirkland@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Van Dyck, Dirk [Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Tang, Hsin-Yu; Chen, Fu-Rong [Department of Engineering and System Science, National Tsing Hua University, Kuang-Fu Road, 300 Hsinchu, Taiwan (China)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We suggest a novel electron exit wave tomography approach to obtain three dimensional atomic structures of amorphous materials. Black-Right-Pointing-Pointer Theoretical tests using a model of amorphous Si doped with Au show that it is feasible to reconstruct both Si and Au atoms positions. Black-Right-Pointing-Pointer Reconstructions of the strongly scattering Au atoms positions appear to be insensitive to typical experimental errors. - Abstract: We suggest to use electron exit wave phase for tomographic reconstruction of structure of Au-doped amorphous Si with atomic resolution. In the present theoretical investigation into the approach it is found that the number of projections and the accuracy of defocus in the focal series restoration are the main factors that contribute to the final resolution. Although resolution is ultimately limited by these factors, phase shifts in the exit wave are sufficient to identify the position of Au atoms in an amorphous Si needle model, even when only 19 projections with defocus error of 4 nm are used. Electron beam damage will probably further limit the resolution of such tomographic reconstructions, however beam damage can be mitigated using lower accelerating voltages.

  13. Formation of Micro and Mesoporous Amorphous Silica-Based Materials from Single Source Precursors

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Mohd Sokri

    2016-03-01

    Full Text Available Polysilazanes functionalized with alkoxy groups were designed and synthesized as single source precursors for fabrication of micro and mesoporous amorphous silica-based materials. The pyrolytic behaviors during the polymer to ceramic conversion were studied by the simultaneous thermogravimetry-mass spectrometry (TG-MS analysis. The porosity of the resulting ceramics was characterized by the N2 adsorption/desorption isotherm measurements. The Fourier transform infrared spectroscopy (FT-IR and Raman spectroscopic analyses as well as elemental composition analysis were performed on the polymer-derived amorphous silica-based materials, and the role of the alkoxy group as a sacrificial template for the micro and mesopore formations was discussed from a viewpoint to establish novel micro and mesoporous structure controlling technologies through the polymer-derived ceramics (PDCs route.

  14. High-Quality Medium-Resolution Gamma-Ray Spectra from Certified Reference Uranium and Plutonium Materials

    International Nuclear Information System (INIS)

    Zsigrai, J.; Muehleisen, A.; ); Weber, A.-L.; Funk, P.; Berlizov, A.; Mintcheva, J.

    2015-01-01

    The Institute of Transuranium Elements (ITU) has made an effort to record a collection of medium resolution gamma-ray spectra from well-characterized U and Pu certified reference materials CRM-171 (also known as SRM-969), CBNM-271, and Harwell PIDIE standards. The goal of this exercise was twofold: (i) to complement the international database of reference gamma-ray spectra with high-quality data for medium resolution spectrometers, and (ii) to feed Phase I of the U/Pu isotopic inter-comparison exercise that is being jointly organized by the ESARDA NDA Working Group and IAEA. Phase II of the exercise will be fed by similar spectra recorded by Institute for Radiological Protection and Nuclear Safety (IRSN). These activities are supported through a joint Member State Support Programmes (MSSP) task and aimed at delivering reliable methodologies for the determination of U/Pu isotopic composition using medium resolution gamma-spectrometers. The latter have obvious benefits for in-field applications, amongst which are better usability, portability and maintainability. As the spectra will be made available online for software developers and end users, ultimately this will also contribute to sustainability as well as the improved and validated performance of existing U/Pu isotopic codes. The spectra were recorded using the IAEA's standard Lanthanum Bromide (LaBr3(Ce)) (2.0'' x 0.5'') and Cadmium Zink Telluride (CdZnTe) (500 mm''3) detectors and acquisition electronics. Aiming to acquire the highest quality reference data, the spectra were measured for long acquisition times, ensuring very good counting statistics across potentially useful spectral intervals — up to 1 MeV for the CdZnTe and up to 2.6 MeV for the LaBr3(Ce) detectors. Great attention was also paid to ensure that the measurement geometry was stable and reproducible, and the spectra had minimum influence from background radiation and pile-up effects. The paper will briefly

  15. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g -1 by alloying with Li to form B 4 Li 5 . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g -1 at a current rate of 10 mA g -1 between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li + ) could be ascribed to a capacitive process and at lower potentials (ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.

  16. GLAD: The IPNS (Intense Pulsed Neutron Source) Glass, Liquid, and Amorphous materials Diffractometer

    International Nuclear Information System (INIS)

    Crawford, R.K.; Price, D.L.; Haumann, J.R.; Kleb, R.; Montague, D.G.; Carpenter, J.M.; Susman, S.; Dejus, R.J.

    1989-01-01

    A number of years of experience in diffraction from amorphous materials has now been accumulated at various pulsed neutron sources. Workshops t IPNS and elsewhere have distilled some of this experience to provide a set of criteria for a new diffractometer dedicated to an optimized for structural studies of amorphous materials. This paper discusses the instrument GLAD (Glass, Liquid, and Amorphous Materials Diffractometer) which has been designed to meet these criteria and is now being built at IPNS. This instrument involves the use of relatively short-wavelength neutrons and a sophisticated neutron detection and acquisition system. A preliminary, simplified version of the instrument has been constructed while the final version is still under design, in order to develop the data acquisition and analysis techniques and to develop methods for collection of data with adequate quality (low background) at short wavelengths. This paper will briefly outline the final instrument envisioned and its calculated performance, but will focus mostly on the details of the detection/acquisition system and the calibration and data collection procedures which have been developed. The brief operating experience which has been gained to data with the preliminary instrument version will also be summarized. 6 refs., 12 figs

  17. Si K-edge XANES study of SiOxCyHz amorphous polymeric materials

    International Nuclear Information System (INIS)

    Chaboy, J.; Barranco, A.; Yanguas-Gil, A.; Yubero, F.; Gonzalez-Elipe, A. R.

    2007-01-01

    This work reports on x-ray absorption spectroscopy study at the Si K edge of several amorphous SiO x C y H z polymers prepared by plasma-enhanced chemical-vapor deposition with different C/O ratios. SiO 2 and SiC have been used as reference materials. The comparison of the experimental Si K-edge x-ray absorption near-edge structure spectra with theoretical computations based on multiple scattering theory has allowed us to monitor the modification of the local coordination around Si as a function of the overall C/O ratio in this kind of materials

  18. Omni-directional selective shielding material based on amorphous glass coated microwires.

    Science.gov (United States)

    Ababei, G; Chiriac, H; David, V; Dafinescu, V; Nica, I

    2012-01-01

    The shielding effectiveness of the omni-directional selective shielding material based on CoFe-glass coated amorphous wires in 0.8 GHz-3 GHz microwave frequency range is investigated. The measurements were done in a controlled medium using a TEM cell and in the free space using horn antennas, respectively. Experimental results indicate that the composite shielding material can be developed with desired shielding effectiveness and selective absorption of the microwave frequency range by controlling the number of the layers and the length of microwires.

  19. Amorphous/crystalline (A/C) thermodynamic "rules of thumb": estimating standard thermodynamic data for amorphous materials using standard data for their crystalline counterparts.

    Science.gov (United States)

    Holland, Diane; Jenkins, H Donald Brooke

    2012-05-07

    Standard thermochemical data (in the form of Δ(f)H° and Δ(f)G°) are available for crystalline (c) materials but rarely for their corresponding amorphous (a) counterparts. This paper establishes correlations between the sets of data for the two material forms (where known), which can then be used as a guideline for estimation of missing data. Accordingly, Δ(f)H°(a)/kJ mol(-1) ≈ 0.993Δ(f)H°(c)/kJ mol(-1) + 12.52 (R(2) = 0.9999; n = 50) and Δ(f)G°/kJ mol(-1) ≈ 0.988Δ(f)H°(c)/kJ mol(-1) + 0.70 (R(2) = 0.9999; n = 10). Much more tentatively, we propose that S°(298)(c)/J K(-1) mol(-1) ≈ 1.084S°(298)(c)/J K(-1) mol(-1) + 6.54 (R(2) = 0.9873; n = 11). An amorphous hydrate enthalpic version of the Difference Rule is also proposed (and tested) in the form [Δ(f)H°(M(p)X(q)·nH(2)O,a) - Δ(f)H°(M(p)X(q),a)]/kJ mol(-1) ≈ Θ(Hf)n ≈ -302.0n, where M(p)X(q)·nH(2)O represents an amorphous hydrate and M(p)X(q) the corresponding amorphous anhydrous parent salt.

  20. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  2. Relation between bandgap and resistance drift in amorphous phase change materials.

    Science.gov (United States)

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-12-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.

  3. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    Science.gov (United States)

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    Runchev, Dobre; Dorn, Lutc; Jaferi, Seifolah; Purbst, Detler

    1997-01-01

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  5. Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Kodzuka, M.; Yamamura, H.; Saito, T.; Iba, H.; Hono, K.

    2013-01-01

    Atom probe tomography and high resolution transmission electron microscopy have shown the presence of nano-sized amorphous Si clusters in non-disproportionated amorphous SiO powders are under consideration for anode materials in Li-ion batteries. After Li insertion/extraction, no change was found in the chemistry and structure of the Si clusters. However, Li atoms were found to be trapped at the amorphous SiO phase after Li insertion/extraction, which may be attributed to the large capacity fade after the first charge/discharge cycle

  6. Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Woo; Choi, Soo Chang; Kim, Yong Woo [Department of Nano Fusion Technology, Pusan National University, Miryang 627-706 (Korea, Republic of); Lee, Chae Moon [Samsung Electro-Mechanics, Busan 618-721 (Korea, Republic of); Lee, Deug Woo [Department of Nano System and Process Engineering, Pusan National University, Miryang 627-706 (Korea, Republic of)], E-mail: dwoolee@pusan.ac.kr

    2008-02-27

    This paper demonstrates a micro/nanoscale surface patterning technology for brittle material using mechanical and chemical processes. Fused silica was scratched with a Berkovich tip under various normal loads from several mN to several tens of mN with various tip rotations. The scratched substrate was then chemically etched in hydrofluoric solution to evaluate the chemical properties of the different deformed layers produced under various mechanical scratching conditions. Our results showed that either protruding or depressed patterns could be generated on the scratched surface after chemical etching by controlling the tip rotation, the normal load and the etching condition. In addition, the mask effect of amorphous material after mechanical scratching was controlled by conventional mechanical machining conditions such as contact area, chip formation, plastic flow and material removal.

  7. The disorder effect on the performance of novel waveguides constructed in two-dimensional amorphous photonic materials

    International Nuclear Information System (INIS)

    Chen Xiao; Wang Yi-Quan

    2011-01-01

    On the basis of two-dimensional amorphous photonic materials, we have designed a novel waveguide by inserting thinner cylindrical inclusions in the centre of basic hexagonal units of the amorphous structure along a given path. This waveguide in amorphous structure is similar to the coupled resonator optical waveguides in periodic photonic crystals. The transmission of this waveguide for S-polarized waves is investigated by a multiple-scattering method. Compared with the conventional waveguide by removing a line of cells from amorphous photonic materials, the guiding properties of this waveguide, including the transmissivity and bandwidth, are improved significantly. Then we study the effect of various types of positional disorder on the functionality of this device. Our results show that the waveguide performance is quite sensitive to the disorder located on the boundary layer of the waveguide, but robust against the disorder in the other area in amorphous structure except the waveguide border. This disorder effect in amorphous photonic materials is similar to the case in periodic photonic crystals. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  9. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  10. Development of ultrafine and pure amorphous and crystalline new materials and their fabrication process

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Kim, Y. E.; Kim, J. G.; Gu, J. H.; Yoon, N. K.; Seong, S. Y.; Ryu, S. E.; Lee, J. C.

    1996-07-01

    Based on an estimation of annual rice production of 5.2 Million tons, rice husks by-production reaches to 1.17 Million tons per year in Korea. distinguished to other corns, rice contains a lot of Si; 10 ∼ 20 % by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this researches of the following subjects were performed; decomposition of the organic components, acid treatments, extraction of the organic matter, effect of gamma-ray irradiation on the acid treatment, plasma treatment, crystallization of silica powder, dispersion of amorphous silica powder, fabrication of ultrafine crystalline fibrous materials.. (author). 18 refs., 5 tabs., 55 figs

  11. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  12. Proceedings of the international workshop on structural analyses bridging over between amorphous and crystalline materials (SABAC2008)

    International Nuclear Information System (INIS)

    Shamoto, Shin-ichi; Kodama, Katsuaki

    2008-07-01

    International workshop entitled 'Structural Analyses Bridging over between Amorphous and Crystalline Materials' (SABAC2008) was held on January 10 and 11, 2007 at Techno Community Square 'RICOTTI' in Tokai. Amorphous and crystalline materials are studied historically by various approaches. Recent industrial functional materials such as optical memory material, thermoelectric material, hydrogen storage material, and ionic conductor have intrinsic atomic disorders in their lattices. These local lattice disorders cannot be studied by conventional crystal structure analyses such as Rietveld analysis. Similar difficulty also exists in the structure analysis of nanomaterials. In the workshop, new approaches to the structural analysis on these materials were discussed. This report includes abstracts and materials of the presentations in the workshop. (author)

  13. Amorphous metal composites

    International Nuclear Information System (INIS)

    Byrne, M.A.; Lupinski, J.H.

    1984-01-01

    This patent discloses an improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite

  14. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  15. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.

    Science.gov (United States)

    Zhao, Di; Zheng, Lirong; Xiao, Ying; Wang, Xia; Cao, Minhua

    2015-07-08

    Constructing three-dimensional (3 D) nanostructures with excellent structural stability is an important approach for realizing high-rate capability and a high capacity of the electrode materials in lithium-ion batteries (LIBs). Herein, we report the synthesis of hydrangea-like amorphous mixed-valence VOx microspheres (a-VOx MSs) through a facile solvothermal method followed by controlled calcination. The resultant hydrangea-like a-VOx MSs are composed of intercrossed nanosheets and, thus, construct a 3 D network structure. Upon evaluation as an anode material for LIBs, the a-VOx MSs show excellent lithium-storage performance in terms of high capacity, good rate capability, and long-term stability upon extended cycling. Specifically, they exhibit very stable cycling behavior with a highly reversible capacity of 1050 mA h g(-1) at a rate of 0.1 A g(-1) after 140 cycles. They also show excellent rate capability, with a capacity of 390 mA h g(-1) at a rate as high as 10 A g(-1) . Detailed investigations on the morphological and structural changes of the a-VOx MSs upon cycling demonstrated that the a-VOx MSs went through modification of the local VO coordinations accompanied with the formation of a higher oxidation state of V, but still with an amorphous state throughout the whole discharge/charge process. Moreover, the a-VOx MSs can buffer huge volumetric changes during the insertion/extraction process, and at the same time they remain intact even after 200 cycles of the charge/discharge process. Thus, these microspheres may be a promising anode material for LIBs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nature of phase transitions in crystalline and amorphous GeTe-Sb2Te3 phase change materials.

    Science.gov (United States)

    Kalkan, B; Sen, S; Clark, S M

    2011-09-28

    The thermodynamic nature of phase stabilities and transformations are investigated in crystalline and amorphous Ge(1)Sb(2)Te(4) (GST124) phase change materials as a function of pressure and temperature using high-resolution synchrotron x-ray diffraction in a diamond anvil cell. The phase transformation sequences upon compression, for cubic and hexagonal GST124 phases are found to be: cubic → amorphous → orthorhombic → bcc and hexagonal → orthorhombic → bcc. The Clapeyron slopes for melting of the hexagonal and bcc phases are negative and positive, respectively, resulting in a pressure dependent minimum in the liquidus. When taken together, the phase equilibria relations are consistent with the presence of polyamorphism in this system with the as-deposited amorphous GST phase being the low entropy low-density amorphous phase and the laser melt-quenched and high-pressure amorphized GST being the high entropy high-density amorphous phase. The metastable phase boundary between these two polyamorphic phases is expected to have a negative Clapeyron slope. © 2011 American Institute of Physics

  17. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2015-01-01

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young's modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  18. Computer simulation of radiation-induced nanostructure formation in amorphous materials

    International Nuclear Information System (INIS)

    Li, K.-D.; Perez-Bergquist, Alejandro; Wang, Lumin

    2009-01-01

    In this study, 3D simulations based on a theoretical model were developed to investigate radiation-induced nanostructure formation in amorphous materials. Model variables include vacancy production and recombination rates, ion sputtering effects, and redeposition of sputtered atoms. In addition, a phase field model was developed to predict vacancy diffusion as a function of free energies of mixing and interfacial energies. The distribution profile of the vacancy production rate along the depth of an irradiated matrix was considered as a near Gaussian approximation according to Monte-Carlo TRIM code calculations. Dynamic processes responsible for nanostructure evolution were simulated by updating the vacancy concentration profile over time. Simulated morphologies include cellular nanoholes, nanowalls, nanovoids, and nanofibers, with the resultant morphology dependant upon the incident ion species and ion fluence. These simulated morphologies are consistent with experimental observations achieved under comparable experimental conditions. Our model provides a distinct numerical approach to accurately predicting morphological results for ion-irradiation-induced nanostructures.

  19. Three-terminal nanoelectromechanical switch based on tungsten nitride—an amorphous metallic material

    KAUST Repository

    Mayet, Abdulilah M.

    2015-12-04

    © 2016 IOP Publishing Ltd. Nanoelectromechanical (NEM) switches inherently have zero off-state leakage current and nearly ideal sub-threshold swing due to their mechanical nature of operation, in contrast to semiconductor switches. A challenge for NEM switches to be practical for low-power digital logic application is their relatively large operation voltage which can result in higher dynamic power consumption. Herein we report a three-terminal laterally actuated NEM switch fabricated with an amorphous metallic material: tungsten nitride (WNx). As-deposited WNx thin films have high Young\\'s modulus (300 GPa) and reasonably high hardness (3 GPa), which are advantageous for high wear resistance. The first prototype WNx switches are demonstrated to operate with relatively low control voltage, down to 0.8 V for an air gap thickness of 150 nm.

  20. Chemical and biotechnological processing of collagen-containing raw materials into functional components of feed suitable for production of high-quality meat from farm animals

    Science.gov (United States)

    Baburina, M. I.; Ivankin, A. N.; Stanovova, I. A.

    2017-09-01

    The process of chemical biotechnological processing of collagen-containing raw materials into functional components of feeds for effective pig rearing was studied. Protein components of feeds were obtained as a result of hydrolysis in the presence of lactic acid of the animal collagen from secondary raw materials, which comprised subcutaneous collagen (cuticle), skin and veined mass with tendons from cattle. For comparison, a method is described for preparing protein components of feeds by cultivating Lactobacillus plantarum. Analysis of the kinetic data of the conversion of a high-molecular collagen protein to an aminolyte polypeptide mixture showed the advantage of microbiological synthesis in obtaining a protein for feeds. Feed formulations have been developed to include the components obtained, and which result in high quality pork suitable for the production of quality meat products.

  1. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    Science.gov (United States)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  2. Atomic scale insight into the amorphous structure of Cu doped GeTe phase-change material

    International Nuclear Information System (INIS)

    Zhang, Linchuan; Sa, Baisheng; Zhou, Jian; Sun, Zhimei; Song, Zhitang

    2014-01-01

    GeTe shows promising application as a recording material for phase-change nonvolatile memory due to its fast crystallization speed and extraordinary amorphous stability. To further improve the performance of GeTe, various transition metals, such as copper, have been doped in GeTe in recent works. However, the effect of the doped transition metals on the stability of amorphous GeTe is not known. Here, we shed light on this problem for the system of Cu doped GeTe by means of ab initio molecular dynamics calculations. Our results show that the doped Cu atoms tend to agglomerate in amorphous GeTe. Further, base on analyzing the pair correlation functions, coordination numbers and bond angle distributions, remarkable changes in the local structure of amorphous GeTe induced by Cu are obviously seen. The present work may provide some clues for understanding the effect of early transition metals on the local structure of amorphous phase-change compounds, and hence should be helpful for optimizing the structure and performance of phase-change materials by doping transition metals.

  3. Device and material characterization and analytic modeling of amorphous silicon thin film transistors

    Science.gov (United States)

    Slade, Holly Claudia

    Hydrogenated amorphous silicon thin film transistors (TFTs) are now well-established as switching elements for a variety of applications in the lucrative electronics market, such as active matrix liquid crystal displays, two-dimensional imagers, and position-sensitive radiation detectors. These applications necessitate the development of accurate characterization and simulation tools. The main goal of this work is the development of a semi- empirical, analytical model for the DC and AC operation of an amorphous silicon TFT for use in a manufacturing facility to improve yield and maintain process control. The model is physically-based, in order that the parameters scale with gate length and can be easily related back to the material and device properties. To accomplish this, extensive experimental data and 2D simulations are used to observe and quantify non- crystalline effects in the TFTs. In particular, due to the disorder in the amorphous network, localized energy states exist throughout the band gap and affect all regimes of TFT operation. These localized states trap most of the free charge, causing a gate-bias-dependent field effect mobility above threshold, a power-law dependence of the current on gate bias below threshold, very low leakage currents, and severe frequency dispersion of the TFT gate capacitance. Additional investigations of TFT instabilities reveal the importance of changes in the density of states and/or back channel conduction due to bias and thermal stress. In the above threshold regime, the model is similar to the crystalline MOSFET model, considering the drift component of free charge. This approach uses the field effect mobility to take into account the trap states and must utilize the correct definition of threshold voltage. In the below threshold regime, the density of deep states is taken into account. The leakage current is modeled empirically, and the parameters are temperature dependent to 150oC. The capacitance of the TFT can be

  4. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  5. The detection of amorphous material in a nominally crystalline drug using modulated temperature DSC--a case study.

    Science.gov (United States)

    Saklatvala, R; Royall, P G; Craig, D Q

    1999-12-01

    Two batches (1 and 2) of an experimental drug (L7) which have shown marked differences in their chemical stability profiles were examined with a view to identifying the presence of small quantities of amorphous material using modulated temperature DSC (MTDSC). The external morphological characteristics of the two batches were similar although marked differences were seen in the moisture uptake profiles. MTDSC studies indicated that while no evidence for a glass transition could be seen for Batch 1, a T(g) and accompanying relaxation endotherm were observed for Batch 2. Comparison with a glassy form of the drug indicated that the amorphous content was in the region of 5-6% w/w in Batch 2. Dynamic moisture sorption studies indicated that while Batch 2 showed a higher uptake profile than Batch 1, addition of 5% w/w amorphous material to Batch 1 led to the establishment of a very similar profile to that seen for Batch 2. It was concluded that Batch 2 contains amorphous material which is responsible for the greater moisture uptake (and by implication poor chemical stability) of this sample and that the glass transition of this fraction may be characterised using MTDSC.

  6. Optical spectroscopic characterization of amorphous germanium carbide materials obtained by X-Ray Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Paola Antoniotti

    2015-05-01

    Full Text Available Amorphous germanium carbides have been prepared by X-ray activated Chemical Vapor Deposition from germane/allene systems. The allene percentage and irradiation time (total dose were correlated to the composition, the structural features, and the optical coefficients of the films, as studied by IR and UV-VIS spectroscopic techniques. The materials composition is found to change depending on both the allene percentage in the mixture and the irradiation time. IR spectroscopy results indicate that the solids consist of randomly bound networks of carbon and germanium atoms with hydrogen atoms terminating all the dangling bonds. Moreover, the elemental analysis results, the absence of both unsaturated bonds and CH3 groups into the solids and the absence of allene autocondensation reactions products, indicate that polymerization reactions leading to mixed species, containing Ge-C bonds, are favored. Eopt values around 3.5 eV have been found in most of the cases, and are correlated with C sp3-bonding configuration. The B1/2 value, related to the order degree, has been found to be dependent on solid composition, atoms distribution in the material and hydrogenation degree of carbon atoms.

  7. Neutron scattering study of the magnetism in a nanocrystalline/amorphous material

    Energy Technology Data Exchange (ETDEWEB)

    Rosov, N. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Reactor Radiation Div.; Lynn, J.W. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Reactor Radiation Div.]|[Univ. of Maryland, College Park, MD (United States). Dept. of Physics; Fish, G.E. [Allied Signal Inc., Morristown, NJ (United States)

    1995-12-31

    Recently developed nanocrystalline magnetic systems are of considerable interest fundamentally as well as technologically. One such material is Fe{sub 73.5}B{sub 9}Si{sub 13.5}Cu{sub 1}Nb{sub 3}, which can be produced by heat treating the amorphous precursor. This forms a noncrystalline phase with typical dimension of 350 {angstrom} as determined by neutron diffraction. Small angle neutron scattering (SANS) has been employed to investigate the properties of the nanocrystallized material over the temperature range from 10 K to 725 K, a regime where no significant structural changes are expected to occur. In zero field and low temperature (10 K) the authors obtained an isotropic scattering pattern. The application of a relatively modest field to sweep out the domains changed the scattering to a butterfly wings pattern typical of patterns dominated by magnetic elastic intensity. Up to 450 K this pattern changed only modestly, while for substantially higher temperatures the ratio of inelastic to elastic scattering increased rapidly as the magnetic phase transition of the intergranular component ({approx_equal} 575 K) was approached. Triple axis inelastic measurements showed that the majority of the magnetic inelastic scattering was from the nanocrystalline phase.

  8. Neutron scattering study of the magnetism in a nanocrystalline/amorphous material

    International Nuclear Information System (INIS)

    Rosov, N.

    1995-01-01

    Recently developed nanocrystalline magnetic systems are of considerable interest fundamentally as well as technologically. One such material is Fe 73.5 B 9 Si 13.5 Cu 1 Nb 3 , which can be produced by heat treating the amorphous precursor. This forms a noncrystalline phase with typical dimension of 350 angstrom as determined by neutron diffraction. Small angle neutron scattering (SANS) has been employed to investigate the properties of the nanocrystallized material over the temperature range from 10 K to 725 K, a regime where no significant structural changes are expected to occur. In zero field and low temperature (10 K) the authors obtained an isotropic scattering pattern. The application of a relatively modest field to sweep out the domains changed the scattering to a butterfly wings pattern typical of patterns dominated by magnetic elastic intensity. Up to 450 K this pattern changed only modestly, while for substantially higher temperatures the ratio of inelastic to elastic scattering increased rapidly as the magnetic phase transition of the intergranular component (≅ 575 K) was approached. Triple axis inelastic measurements showed that the majority of the magnetic inelastic scattering was from the nanocrystalline phase

  9. Amorphous-to-crystalline transition in Ge8Sb(2-x)BixTe11 phase-change materials for data recording

    Czech Academy of Sciences Publication Activity Database

    Svoboda, R.; Karabyn, V.; Málek, J.; Frumar, M.; Beneš, L.; Vlček, Milan

    2016-01-01

    Roč. 674, July (2016), s. 63-72 ISSN 0925-8388 Institutional support: RVO:61389013 Keywords : amorphous materials * calorimetry * data strorage materials Subject RIV: CA - Inorganic Chemistry Impact factor: 3.133, year: 2016

  10. Interdispersed amorphous MnO{sub x}-carbon nanocomposites with superior electrochemical performance as lithium-storage material

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Juchen; Wang, Chunsheng [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD (United States); Liu, Qing; Zachariah, Michael R. [Department of Chemistry and Biochemistry, University of Maryland, College Park, MD (United States)

    2012-02-22

    The realization of manganese oxide anode materials for lithium-ion batteries is hindered by inferior cycle stability, rate capability, and high overpotential induced by the agglomeration of manganese metal grains, low conductivity of manganese oxide, and the high stress/strain in the crystalline manganese oxide structure during the repeated lithiation/delithiation process. To overcome these challenges, unique amorphous MnO{sub x}-C nanocomposite particles with interdispersed carbon are synthesized using aerosol spray pyrolysis. The carbon filled in the pores of amorphous MnO{sub x} blocks the penetration of liquid electrolyte to the inside of MnO{sub x}, thus reducing the formation of a solid electrolyte interphase and lowering the irreversible capacity. The high electronic and lithium-ion conductivity of carbon also enhances the rate capability. Moreover, the interdispersed carbon functions as a barrier structure to prevent manganese grain agglomeration. The amorphous structure of MnO{sub x} brings additional benefits by reducing the stress/strain of the conversion reaction, thus lowering lithiation/delithiation overpotential. As the result, the amorphous MnO{sub x}-C particles demonstrated the best performance as an anode material for lithium-ion batteries to date. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) 10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  12. A data reduction program for the linac total-scattering amorphous materials spectrometer (LINDA)

    International Nuclear Information System (INIS)

    Clarke, J.H.

    1976-01-01

    A computer program has been written to reduce the data collected on the A.E.R.E., Harwell linac total-scattering spectrometer (TSS) to the differential scattering cross-section. This instrument, used for studying the structure of amorphous materials such as liquids and glasses, has been described in detail. Time-of-flight spectra are recorded by several arrays of detectors at different angles using a pulsed incident neutron beam with a continuous distribution of wavelengths. The program performs all necessary background and container subtractions and also absorption corrections using the method of Paalman and Pings. The incident neutron energy distribution is obtained from the intensity recorded from a standard vanadium sample, enabling the observed differential scattering cross-section dsigma/dΩ (theta, lambda) and the structure factor S(Q) to be obtained. Various sample and vanadium geometries can be analysed by the program and facilities exist for the summation of data sets, smoothing of data, application of Placzek corrections and the output of processed data onto magnetic tape or punched cards. A set of example data is provided and some structure factors are shown with absorption corrections. (author)

  13. Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4.

    Science.gov (United States)

    Zhu, Changbao; Mu, Xiaoke; Popovic, Jelena; Weichert, Katja; van Aken, Peter A; Yu, Yan; Maier, Joachim

    2014-09-10

    Much attention has been paid to metastable materials in the lithium battery field, especially to nanocrystalline and amorphous materials. Nonetheless, fundamental issues such as lithium potential variations have not been pertinently addressed. Using LiFePO4 as a model system, we inspect such lithium potential variations for various lithium storage modes and evaluate them thermodynamically. The conclusions of this work are essential for an adequate understanding of the behavior of electrode materials and even helpful in the search for new energy materials.

  14. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    Science.gov (United States)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  15. Amorphous infinite coordination polymer microparticles: a new class of selective hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Moon; Heo, Jungseok; Mirkin, Chad A [Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL (United States); Armatas, Gerasimos S [Department of Chemistry, Northwestern University, Evanston, IL (United States); Kanatzidis, Mercouri G [Materials Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2008-06-04

    A new class of micrometer-sized amorphous infinite coordination particles is selectively prepared from the coordination chemistry of a metallo-salen building block and Zn{sup 2+} ions. The particles show moderately high H{sub 2} uptake and almost no N{sub 2} adsorption, even though they are amorphous and do not have the well-defined channels typically used to explain such selectivity in metal-organic framework systems. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. The toxicological mode of action and the safety of synthetic amorphous silica—A nanostructured material

    International Nuclear Information System (INIS)

    Fruijtier-Pölloth, Claudia

    2012-01-01

    Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (μm)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as “nanosilica” and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were

  17. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.

    Science.gov (United States)

    Fruijtier-Pölloth, Claudia

    2012-04-11

    Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (μm)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as "nanosilica" and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were shown

  18. Hydrogenated amorphous silicon radiation detectors: Material parameters; radiation hardness; charge collection

    International Nuclear Information System (INIS)

    Qureshi, S.

    1991-01-01

    Properties of hydrogenated amorphous silicon p-i-n diodes relevant to radiation detection applications were studied. The interest in using this material for radiation detection applications in physics and medicine was motivated by its high radiation hardness and the fact that it can be deposited over large area at relatively low cost. Thick, fully depleted a-Si:H diodes are required for sufficient energy deposition by a charged particle and better signal to noise ratio. A sizeable electric field is essential for charge collection in a -Si:H diodes. The large density of ionized defects that exist in the i layer when the diode is under DC bias causes the electric field to be uniform. Material parameters, namely carrier mobility and lifetime and the ionized defect density in thick a-Si:H p-i-n diodes were studied by the transient photoconductivity method. The increase in diode leakage current with reverse bias over the operating bias was consistent with the Poole-Frenkel effect, involving excitation of carriers from neutral defects. The diode noise over the operating voltage range was completely explained in terms of the shot noise component for CR-(RC) 4 (pseudo-Gaussian) shaping at 3 μs shaping time and the noise component at 0 V bias (delta and thermal noise) added in quadrature. Irradiation with 1 Mev neutrons produced no significant degradation in leakage current and noise at fluences exceeding 4 x 10 14 cm -2 . Irradiation with 1.4 Mev proton fluence of 1 x 10 14 cm -2 decreased carrier lifetime by a factor of ∼4. Degradation in leakage current and noise became significant at proton fluence of ∼10 13 cm -2

  19. Development of Amorphous Filler Alloys for the Joining of Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Young; Kim, Dong Myong; Kang, Yoon Sun; Jung, Jae Han; Yu, Ji Sang; Kim, Hae Yeol; Lee, Ho [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-08-01

    In the case of advanced CANDU fuel being useful in future, the fabrication processes for soundness insurance of a improved nuclear fuel bundle must be developed at the same time because it have three times combustibility as existing fuel. In particular, as the improved nuclear fuel bundle in which a coated layer thickness is thinner than existing that, firmity of a joint part is very important. Therefore, we need to develop a joint technique using new solder which can settle a potential problem in current joining method. As the Zr-Be alloy system is composed with the elements having high neutron permeability, they are suitable for joint of nuclear fuel pack. The various compositions Zr-Be binary metallic glass alloys were applicable to the joining the nuclear fuel bundles. The thickness of joint layer using the Zr{sub 1}-{sub x}Be{sub x} amorphous ribbon as a solder is thinner than that using physical vapor deposited Be. Among the Zr{sub 1}-{sub x}Be{sub x} amorphous binary alloys, Zr{sub 0}.7Be-0.3 binary alloy is the most appropriate for joint of nuclear fuel bundle because its joint layer is smooth and thin due to low degree of Be diffusion. In the case of the Zr{sub (}0.7-y)Ti{sub y}Be{sub 0}.3 and Zr{sub (}0.7-y)Nb{sub y}Be{sub 0}3 ternary amorphous alloys, the crystallization temperature(T{sub x}) and activation energy(E{sub x}) increase as the contents of Nb and Ti increase respectively. In the aspect of thermal stability, the ternary amorphous alloys are superior than Zr-Be binary amorphous alloys and Zr-Ti-Be amorphous alloy is superior than Zr-Nb-Be amorphous alloy. 12 refs., 5 tabs., 25 figs. (author)

  20. Composites of amorphous and nanocrystalline Zr–Cu–Al–Nb bulk materials synthesized by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, P., E-mail: philipp.drescher@uni-rostock.de [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Witte, K. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Yang, B. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Steuer, R.; Kessler, O. [Chair of Materials Science, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany); Burkel, E. [Physics of New Materials, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Schick, C. [Polymer Physics, Institute of Physics, University of Rostock, 18051 Rostock (Germany); Seitz, H. [Fluidic Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock (Germany)

    2016-05-15

    The fabrication of Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} bulk metallic glass composite samples by spark plasma sintering (SPS) process has been successfully realized. The unique characteristics of bulk metallic glasses could lead to the possibility of future applications as new structural and functional materials. The densification of an amorphous Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} powder was realized in a systematic study changing the sintering temperature in the SPS process leading to stable composites characteristic of amorphous and nanocrystalline structures. X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) analysis, transmission electron microscopy (TEM) as well as hardness tests were applied to determine the structural and mechanical properties of the sintered materials. A stable amorphous bulk metallic glass based on Zr{sub 70}Cu{sub 24}Al{sub 4}Nb{sub 2} with a low fraction of crystallites could be fabricated applying a nominal sintering temperature of 400 °C. Higher sintering temperatures lead to composites with high fractions of nanocrystalline material with porosities below 0.5%.

  1. Electron emission from nano-structured carbon composite materials and fabrication of high-quality electron emitters by using plasma technology

    International Nuclear Information System (INIS)

    Hiraki, H.; Hiraki, A.; Jiang, N.; Wang, H. X.

    2006-01-01

    Many trials have been done to fabricate high-quality electron-emitters from nano-composite carbon materials (such as nano-diamond, carbon nano tubes and others) by means of a variety of plasma chemical-vapor-deposition (CVD) techniques. Based upon the mechanism of electron emission, we have proposed several strategic guide lines for the fabrication of good emitters. Then, following these lines, several types of emitters were tried. One of the emitters has shown a worldclass, top ranking for fabricating very bright lamps: namely, a low turn-on voltage (0.5 ∼ 1 V/μm to induce 10 μA/cm 2 emission current) to emit a 1 mA/cm 2 current at 3 V/μm and 100 mA/cm 2 current at a slightly higher applied voltage. The bright lamps are Mercury-free fluorescence lamps to exhibit brightness of ∼10 5 cd/m 2 with high efficiency of ∼100 lm/w.

  2. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults.

    Science.gov (United States)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-09

    The criteria for designating an "Active Fault" not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault's latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  3. First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films

    Energy Technology Data Exchange (ETDEWEB)

    Naserifar, Saber [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 (United States); Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Goddard, William A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Tsotsis, Theodore T.; Sahimi, Muhammad, E-mail: moe@usc.edu [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211 (United States)

    2015-05-07

    Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications require, however, determination of the final structures produced by such complex processes as chemical vapor deposition, atomic layer deposition, and formation of ceramic films by pyrolysis of polymers. This requires the force field to properly describe the formation of other products of the process, in addition to yielding the final structure of the material. We describe a strategy for accomplishing this and present an example of its use for forming amorphous SiC films that have a wide variety of applications. Extensive reactive molecular dynamics (MD) simulations have been carried out to simulate the pyrolysis of hydridopolycarbosilane. The reaction products all agree with the experimental data. After removing the reaction products, the system is cooled down to room temperature at which it produces amorphous SiC film, for which the computed radial distribution function, x-ray diffraction pattern, and the equation of state describing the three main SiC polytypes agree with the data and with the QM calculations. Extensive MD simulations have also been carried out to compute other structural properties, as well the effective diffusivities of light gases in the amorphous SiC film.

  4. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    Science.gov (United States)

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-05

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  5. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. (1) Development of a powder feeding system for the laser cladding. (2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. (3) Development of laser cladding technology with amorphous alloy. (4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. (5) Evaluation of the mechanical properties of the clads. (6) Development of an ultrasonic vibrator for VSR.

  6. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Han, J. H.; Lee, D. H.; Hwang, S. S.

    2000-08-01

    A technology of laser hardfacing of amorphous materials onto materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a powder feeding system for the laser cladding. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phases of the clads. 5) Evaluation of the mechanical properties of the clads. 6) Development of an ultrasonic vibrator for VSR

  7. Development of a technology for amorphous material (Co-free) hardfacing on primary side component materials using laser beam to improve their wear/erosion.corrosion resistance

    International Nuclear Information System (INIS)

    Suh, Jeong Hun; Kim, J. S.; Hwang, S. S.; Lim, Y. S.

    1999-08-01

    A technology of laser hardfacing of amorphous materials on materials used in the primary-side components has been developed in order to improve their integrity and reduce the radiation fluence in the primary system. 1) Development of a power feeding system for the primary system. 2) Modification of the laser system in order to perform cladding the part surfaces with complex 3D geometries through the tool paths determined with CAD/CAM. 3) Development of laser cladding technology with amorphous alloy. 4) Examination and analysis of the microstructure, chemical composition, and phase of the clad. 5) Evaluation of the mechanical properties of the clad. 6) Development of an ultrasonic vibrator for VSR. (author)

  8. Improving Reversible Capacities of High-Surface Lithium Insertion Materials – The Case of Amorphous TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, Swapna [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionucleides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Basak, Shibabrata [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Lefering, Anton; Rogers, Edith [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionucleides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Zandbergen, Henny W. [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands); Wagemaker, Marnix, E-mail: m.wagemaker@tudelft.nl [Fundamental Aspects of Materials and Energy, Department of Radiation, Radionucleides and Reactors, Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-11-28

    Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nano-structured electrodes remains a contributing factor toward capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here, we report a marked improvement in the capacity retention of amorphous TiO{sub 2} by the choice of preparation solvent, control of annealing temperature, and the presence of surface functional groups. Careful heating of the amorphous TiO{sub 2} sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO{sub 2} when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From Fourier transform infra-red spectroscopy and electron energy loss spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface. The present research provides a facile strategy to improve the capacity retention of nano-structured electrode materials.

  9. Improving Reversible Capacities of High-Surface Lithium Insertion Materials – The Case of Amorphous TiO2

    International Nuclear Information System (INIS)

    Ganapathy, Swapna; Basak, Shibabrata; Lefering, Anton; Rogers, Edith; Zandbergen, Henny W.; Wagemaker, Marnix

    2014-01-01

    Chemisorbed water and solvent molecules and their reactivity with components from the electrolyte in high-surface nano-structured electrodes remains a contributing factor toward capacity diminishment on cycling in lithium ion batteries due to the limit in maximum annealing temperature. Here, we report a marked improvement in the capacity retention of amorphous TiO 2 by the choice of preparation solvent, control of annealing temperature, and the presence of surface functional groups. Careful heating of the amorphous TiO 2 sample prepared in acetone under vacuum lead to complete removal of all molecular solvent and an improved capacity retention of 220 mAh/g over 50 cycles at a C/10 rate. Amorphous TiO 2 when prepared in ethanol and heated under vacuum showed an even better capacity retention of 240 mAh/g. From Fourier transform infra-red spectroscopy and electron energy loss spectroscopy measurements, the improved capacity is attributed to the complete removal of ethanol and the presence of very small fractions of residual functional groups coordinated to oxygen-deficient surface titanium sites. These displace the more reactive chemisorbed hydroxyl groups, limiting reaction with components from the electrolyte and possibly enhancing the integrity of the solid electrolyte interface. The present research provides a facile strategy to improve the capacity retention of nano-structured electrode materials.

  10. Amorphous and nanocrystalline titanium nitride and carbonitride materials obtained by solution phase ammonolysis of Ti(NMe2)4

    International Nuclear Information System (INIS)

    Jackson, Andrew W.; Shebanova, Olga; Hector, Andrew L.; McMillan, Paul F.

    2006-01-01

    Solution phase reactions between tetrakisdimethylamidotitanium (Ti(NMe 2 ) 4 ) and ammonia yield precipitates with composition TiC 0.5 N 1.1 H 2.3 . Thermogravimetric analysis (TGA) indicates that decomposition of these precursor materials proceeds in two steps to yield rocksalt-structured TiN or Ti(C,N), depending upon the gas atmosphere. Heating to above 700 deg. C in NH 3 yields nearly stoichiometric TiN. However, heating in N 2 atmosphere leads to isostructural carbonitrides, approximately TiC 0.2 N 0.8 in composition. The particle sizes of these materials range between 4-12 nm. Heating to a temperature that corresponds to the intermediate plateau in the TGA curve (450 deg. C) results in a black powder that is X-ray amorphous and is electrically conducting. The bulk chemical composition of this material is found to be TiC 0.22 N 1.01 H 0.07 , or Ti 3 (C 0.17 N 0.78 H 0.05 ) 3.96 , close to Ti 3 (C,N) 4 . Previous workers have suggested that the intermediate compound was an amorphous form of Ti 3 N 4 . TEM investigation of the material indicates the presence of nanocrystalline regions x (C,N) y crystalline phases

  11. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    International Nuclear Information System (INIS)

    Lin, Y. H.; Chou, J. C.

    2015-01-01

    We investigated amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT_s) using different high-Κ gate dielectric materials such as silicon nitride (Si_3N_4) and aluminum oxide (Al_2O_3) at low temperature process (<300 degree) and compared them with low temperature silicon dioxide (SiO_2). The IGZO device with high-Κ gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, post annealing treatment is an essential process for completing the process. The chemical reaction of the high-κ/IGZO interface due to heat formation in high-Κ/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-Κ gate dielectric materials and explained the interface effect by charge band diagram.

  12. NMR study on the Li diffusion in a cathode material of amorphous vanadium pentoxide-5 mol% phosphorus pentoxide

    International Nuclear Information System (INIS)

    Asai, T.; Sugimoto, S.; Kawai, S.

    1989-01-01

    Diffusion properties of Li ion in a cathode material of amorphous Li chi V 2 O 5 with 5 mol% P 2 O 5 (chi=0.2-2) studied by means of Li NMR. From the relaxation time, the diffusion coefficient at 25 0 C is obtained. From the second moment, Li + ions seemed to occupy sites approximately 2.9 A apart in a large cavity similar to that in the crystalline V 2 O 5 . It is suggested that there are three kinds of sites for the Li + ion in the cavity, and that the ion changes the site of one kind to the others at chi≅0.6

  13. The smoothing and fast Fourier transformation of experimental X-ray and neutron data from amorphous materials

    International Nuclear Information System (INIS)

    Dixon, M.; Wright, A.C.; Hutchinson, P.

    1977-01-01

    The application of fast Fourier transformation techniques to the analysis of experimental X-ray and neutron diffraction patterns from amorphous materials is discussed and compared with conventional techniques using Filon's quadrature. The fast Fourier transform package described also includes cubic spline smoothing and has been extensively tested, using model data to which statistical errors have been added by means of a pseudo-random number generator with Gaussian shaper. Neither cubic spline nor hand smoothing has much effect on the resulting transform since the noise removed is of too high a frequency. (Auth.)

  14. Influence of small metallic particles on the absorption and emission in amorphous materials doped with rare earths

    International Nuclear Information System (INIS)

    Malta, O.L.; Santa Cruz, P.A.; Sa, G.F. de

    1987-01-01

    The influence of small metallic clusters on the absorption and emission processes in molecular species shows a great interest as well the fundamental as the pratical point of view. This subject, which has been recently developed, covers several aspects related to the kinetics of formation of these chusters and to theirs optical properties in amorphous media. A study of this problem developed by the first time for the case of one volumetric distribution of metallic particles is presented. With this aim, fluoborate glasses doped with Eu 3+ ion which fluorescence is well known in several materials are used. (L.C.) [pt

  15. Material parameters in a thick hydrogenated amorphous silicon detector and their effect on signal collection

    International Nuclear Information System (INIS)

    Qureshi, S.; Perez-Mendez, V.; Kaplan, S.N.; Fujieda, I.; Cho, G.; Street, R.A.

    1989-04-01

    Transient photoconductivity and ESR measurements were done to relate the ionized dangling bond density of thick hydrogenated amorphous silicon (a-Si:H) detectors. We found that only a fraction (/approximately/30--35%) of the total defect density as measured by ESR is ionized when the detector is biased into deep depletion. The measurements on annealed samples also show that this fraction is about 0.3. An explanation based on the shift of the Fermi energy is given. The measurements show that the time dependence of relaxation is a stretched exponential. 8 refs., 4 figs., 1 tab

  16. Density model for medium range order in amorphous materials: application to small angle scattering

    International Nuclear Information System (INIS)

    Boucher, B.; Tournarie, M.; Chieux, P.; Convert, P.

    1983-06-01

    We consider a family of randomly spaced parallel planes, each plane dressed with a density function, h(x), where x is the distance from the plane. An expression for the volume scattering power from a system of N such families with random orientations in space is derived from Fourier transform of h(x), which can subsequently be determined from experimental observations. This density model is used to interpret the small angle neutron scattering (SANS) results for the amorphous alloy TbCusub(3.54)

  17. New Methods of Simulation of Mn(II) EPR Spectra: Single Crystals, Polycrystalline and Amorphous (Biological) Materials

    Science.gov (United States)

    Misra, Sushil K.

    Biological systems exhibit properties of amorphous materials. The Mn(II) ion in amorphous materials is characterized by distributions of spin-Hamiltonian parameters around mean values. It has a certain advantage over other ions, being one of the most abundant elements on the earth. The extent to which living organisms utilize manganese varies from one organism to the other. There is a fairly high concentration of the Mn(II) ion in green plants, which use it in the O2 evolution reaction of photosynthesis (Sauer, 1980). Structure-reactivity relationships in Mn(II)-O2 complexes are given in a review article by Coleman and Taylor (1980). Manganese is a trace requirement in animal nutrition; highly elevated levels of manganese in the diet can be toxic, probably because of an interference with iron homeostasis (Underwood, 1971). On the other hand, animals raised with a dietary deficiency of manganese exhibit severe abnormalities in connective tissue; these problems have been attributed to the obligatory role of Mn(II) in mucopolysaccharide metabolism (Leach, 1971). Mn(II) has been detected unequivocally in living organisms.

  18. PHARMACEUTICAL AMORPHOUS ORGANIC MATERIALS CHARACTERIZATION BY USING THE DIFFERENTIAL SCANNING CALORIMETRY AND DYNAMIC MECHANICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ion Dranca

    2011-12-01

    Full Text Available This research has been carried out in order to demonstrate the use of differential scanning calorimetry (DSC in detecting and measuring α- and β-relaxation processes in amorphous pharmaceutical systems. DSC has been employed to study amorphous samples of poly (vinylpyrrolidone (PVP, indomethacin (InM, and ursodeoxycholic acid (UDA that are annealed at temperature (Ta around 0.8 of their glass transition temperature (Tg. Dynamic mechanical analysis (DMA is used to measure β- relaxation in PVP. Yet, the DSC has been used to study the glassy indomethacin aged at 0 and -10 oC for periods of time up to 109 and 210 days respectively. The results demonstrate the emergence of a small melting peak of the α-polymorph after aging for 69 days at 0°C and for 147 days at -10°C (i.e., ~55°C below the glass transition temperature that provides evidence of nucleation occurring in the temperature region of the β-relaxation.

  19. Regularities in eliminating the porosity in some crystalline and amorphous materials

    International Nuclear Information System (INIS)

    Betekhtin, V.I.; Kadomtsev, A.G.; Amosova, O.V.

    2003-01-01

    The results of the number of studies on eliminating the porosity under the effect of increased temperatures and pressures performed on the cast alloys (VT5L; AL2), steels (30KhG5N2A) and amorphous alloys (Co 59 Fe 5 Si 11 Ni 10 B 15 , Fe 61 Co 20 Si 5 B 14 , Fe 77 Ni 1 Si 9 B 13 ) are considered. The change in the porosity parameters was controlled through the small-angle X-ray scattering electron microscopy. It is shown that the effect of the hydrostatic pressure leads to decrease in the excessive free volume in the amorphous alloys, related to the availability of the micropores of about 10 nm dimensions and consequently to the increase in the strength, microhardness and temperature of the viscous-brittle transition. It is noted that the acting forces of the microporosity elimination may be related both to the internal stress and the Laplace pressure conditioned by the pores surface curvature [ru

  20. FY 1999 report on the results of the development of technology of super metal. Development of nano/amorphous structure control materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Nano amorphous kozo seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing the amount of energy consumption of transportation equipment such as automobiles, the development is made of innovative metal materials enabling the weight reduction of members relatively on the basis of simple chemical components and by making more substantial improvement of characteristics such as strength and toughness than in the existing metals. For it, the following R and D are conducted in which nano crystal structure and non-equilibrium phase structure such as amorphous are controlled to the limits: 1) particle micro-dispersion technology; 2) high speed super plastic formation technology; 3) high density energy utilization control technology; 4) control cooling technology. In 1), study was made of alloy components and effects of the creation process which are needed for achievement of the nano level of crystal grain. In 2), conditions of vapor deposition and production in high speed particle deposition method are optimally selected, and amorphous and nano crystal structures can easily be produced. In 3), high corrosion-resistant amorphous alloy bulk materials with 5mm thickness and 10mm diameter were successfully trially manufactured. In 4), a bulk amorphous specimen with 10mm outer diameter, 6mm inner diameter and 1mm thickness which was fabricated in the forging method indicated favorable magnetic properties. A method to make a specimen which is more stable is being studied. (NEDO)

  1. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Wong, F; Ji, X; Day, S D; Branagan, D J; Marshall, M C; Meacham, B E; Buffa, E J; Blue, C A; Rivard, J K; Beardsley, M B; Weaver, D T; Aprigliano, L F; Kohler, L; Bayles, R; Lemieux, E J; Wolejsza, T M; Martin, F J; Yang, N; Lucadamo, G; Perepezko, J H; Hildal, K; Kaufman, L; Heuer, A H; Ernst, F; Michal, G M; Kahn, H; Lavernia, E J

    2004-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an ''integral drip shield'' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  2. Non-stoichiometric mullites from Al2O3-SiO2-ZrO2 amorphous materials by rapid quenching

    International Nuclear Information System (INIS)

    Yoshimura, M.; Hanaue, Y.; Somiya, S.

    1990-01-01

    In order to study the formation of zirconia dispersed mullite ceramics from homogeneous starting materials hot-pressing and heat-treatments have been carried out for rapidly quenched amorphous materials with 0 to 20 wt% ZrO 2 mullite compositions. These amorphous materials crystallized directly to mullite for 0-10 wt% ZrO 2 samples or mullite + t-ZrO 2 for 20 wt% ZrO 2 at about 970 degrees C. An A1 2 O 3 - rich composition (82 wt% A1 2 O 3 ) and also a significant solid solubility of ZrO 2 (>10 wt%) were estimated for these mullites by XRD studies. Amorphous speres of 10 nm which were considered to be SiO 2 - rich phase were produced by a phase separation in mullite grains

  3. Characterization of Amorphous Silicon Advanced Materials and PV Devices: Final Technical Report, 15 December 2001--31 January 2005

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P. C.

    2005-11-01

    The major objectives of this subcontract have been: (1) understand the microscopic properties of the defects that contribute to the Staebler-Wronski effect to eliminate this effect, (2) perform correlated studies on films and devices made by novel techniques, especially those with promise to improve stability or deposition rates, (3) understand the structural, electronic, and optical properties of films of hydrogenated amorphous silicon (a-Si:H) made on the boundary between the amorphous and microcrystalline phases, (4) search for more stable intrinsic layers of a-Si:H, (5) characterize the important defects, impurities, and metastabilities in the bulk and at surfaces and interfaces in a-Si:H films and devices and in important alloy systems, and (6) make state-of-the-art plasma-enhanced chemical vapor deposition (PECVD) devices out of new, advanced materials, when appropriate. All of these goals are highly relevant to improving photovoltaic devices based on a-Si:H and related alloys. With regard to the first objective, we have identified a paired hydrogen site that may be the defect that stabilizes the silicon dangling bonds formed in the Staebler-Wronski effect.

  4. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  5. Probing Amorphous Components in High Temperature TE Materials by in situ Total Scattering and the Pair Distribution Function (PDF) Method

    DEFF Research Database (Denmark)

    Reardon, Hazel; Iversen, Bo Brummerstedt; Blichfeld, Anders Bank

    -I clathrate Ba8Ga16Ge30. This suggests that local structure reorientations in the cage are likely to be the root cause of the degradation of the structure. This deepens our understanding of disordered clathrates, and provides evidence that the PDF technique is an effective method for probing local structure.......e., by measuring both the Bragg and diffuse scattering from a sample. This method has rarely been exploited by the non-oxide thermoelectrics community. , , Treating total scattering data by the Pair Distribution Function method is a logical approach to understanding defects, disorder and amorphous components...... to heating cycles, then we are closer to distinguishing how we may generate materials that do not undergo specific structure reorientation processes, and/or how we may mitigate them before they occur. Here, we will present a total scattering and PDF study that probes the local structure of the Type...

  6. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements

    International Nuclear Information System (INIS)

    Snellings, R.; Salze, A.; Scrivener, K.L.

    2014-01-01

    The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed through comparison to a series of mixes of known phase composition and of increasing complexity. A 2σ precision smaller than 2–3 wt.% and an accuracy better than 2 wt.% were achieved for SCMs in mixes with quartz, anhydrous Portland cement, and hydrated Portland cement. The extent of reaction of SCMs in hydrating binders measured by XRD was 1) internally consistent as confirmed through the standard addition method and 2) showed a linear correlation to the cumulative heat release as measured independently by isothermal conduction calorimetry. The advantages, limitations and applicability of the method are discussed with reference to existing methods that measure the degree of reaction of SCMs in blended cements

  7. Thermally and electrochemically stable amorphous hole-transporting materials based on carbazole dendrimers for electroluminescent devices

    International Nuclear Information System (INIS)

    Promarak, Vinich; Ichikawa, Musubu; Sudyoadsuk, Taweesak; Saengsuwan, Sayant; Jungsuttiwong, Siriporn; Keawin, Tinnagon

    2008-01-01

    Amorphous hole-transporting carbazole dendrimers, 1,4-bis[3,6-di(carbazol-9-yl)carbazol-9-yl]-2,6-di(2-ethylhexyloxy)benzene (G2CB) and 1,4-bis[3,6-di(carbazol-9-yl)carbazol-9-yl]-9-(2-ethylhexyl)carbazole (G2CC), were synthesized by a divergent approach involving bromination and Ullmann coupling reactions. Compounds G2CB and G2CC showed high thermal stability (T g = 206 to 245 deg. C) and excellent electrochemical reversibility. Double-layer organic light-emitting diodes were fabricated by using G2CB and G2CC as hole-transporting layers (HTLs) and tris(8-quinolinato)aluminum (Alq 3 ) as light-emissive layer with the device configuration of indium tin oxide/HTL/Alq 3 /LiF:Al. Both devices exhibited bright green emission from Alq 3 . The device using G2CC as HTL has the best performance with a maximum brightness of 8900 cd/m 2 at 14 V and a low turn-on voltage of 3.5 V

  8. Interface Study on Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using High-k Gate Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-01-01

    Full Text Available We investigated amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using different high-k gate dielectric materials such as silicon nitride (Si3N4 and aluminum oxide (Al2O3 at low temperature process (<300°C and compared them with low temperature silicon dioxide (SiO2. The IGZO device with high-k gate dielectric material will expect to get high gate capacitance density to induce large amount of channel carrier and generate the higher drive current. In addition, for the integrating process of integrating IGZO device, postannealing treatment is an essential process for completing the process. The chemical reaction of the high-k/IGZO interface due to heat formation in high-k/IGZO materials results in reliability issue. We also used the voltage stress for testing the reliability for the device with different high-k gate dielectric materials and explained the interface effect by charge band diagram.

  9. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: a material science approach.

    Science.gov (United States)

    Qi, Sheng; McAuley, William J; Yang, Ziyi; Tipduangta, Pratchaya

    2014-07-01

    Use of the amorphous state is considered to be one of the most effective approaches for improving the dissolution and subsequent oral bioavailability of poorly water-soluble drugs. However as the amorphous state has much higher physical instability in comparison with its crystalline counterpart, stabilization of amorphous drugs in a solid-dosage form presents a major challenge to formulators. The currently used approaches for stabilizing amorphous drug are discussed in this article with respect to their preparation, mechanism of stabilization and limitations. In order to realize the potential of amorphous formulations, significant efforts are required to enable the prediction of formulation performance. This will facilitate the development of computational tools that can inform a rapid and rational formulation development process for amorphous drugs.

  10. Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Gondro J.

    2016-03-01

    Full Text Available Three distinct alloys: Fe86Zr7Nb1Cu1B5, Fe82Zr7Nb2Cu1B8, and Fe81Pt5Zr7Nb1Cu1B5 were characterized both magnetically and structurally. The samples, obtained with spinning roller method as a ribbons 3 mm in width and 20 μm thick, were investigated as-quenched and after each step of a multi steps heating treatment procedure. Each sample was annealed at four steps, fifteen minutes at every temperature, starting from 573K+600K up to +700K depending on type of alloy. Mössbauer spectroscopy data and transmission electron microscope (HRE M pictures confirmed that the as-quenched samples are fully amorphous. This is not changed after the first stages of treatment heating leads to a reduction of free volumes. The heating treatment has a great influence on the magnetic susceptibilities. The treatment up to 600K improves soft magnetic properties: an χ increase was observed, from about 400 to almost 1000 for the samples of alloys without Pt, and from about 200 to 450 at maximum, for the Fe81Pt5Zr7Nb1Cu1B5. Further heating, at more elevated temperatures, leads to magnetic hardening of the samples. Curie temperatures, established from the location of Hopkinson’s maxima on the χ(T curve are in very good agreement with those obtained from the data of specific magnetization, σ(T, measured in a field of 0.75T. As a critical parameter β was chosen to be equal 0.36 for these calculations, it confirmed that the alloys may be considered as ferromagnetic of Heisenberg type. Heating treatment resulted in decreasing of TC. These changes are within a range of several K.

  11. Feasibility study of hydrogenated amorphous alloys as high-damping materials

    International Nuclear Information System (INIS)

    Mizubayashi, H.; Ishikawa, Y.; Tanimoto, H.

    2004-01-01

    The hydrogen internal friction peak (HIFP) and the tensile strength, σ f , in amorphous (denoted by 'a') Zr 60-y Cu 30 Al 10 Si y (y=0, 1) and a-Zr 40 Cu 50-x Al 10 Si x (x=0, 1) alloys are investigated as a function of the hydrogen concentration, C H . The drastic increase in the peak temperature, T p , of the HIFP due to the Si addition by 1 at.% is found for the a-Zr 40 Cu 49 Al 10 Si 1 , where the decrease in 1/τ 0 (τ 0 denotes the pre-exponential factor of the relaxation time for the HIFP) from 1.5x10 12 s -1 to 3.0x10 10 s -1 is observed. On the other hand, the increase in T p due to the Si addition by 1 at.% is much smaller for a-Zr 59 Cu 30 Al 10 Si 1 , where 1/τ 0 for the HIFP in a-Zr 60 Cu 30 Al 10 is already as low as that for a- Zr 40 Cu 49 Al 10 Si 1 . For the HIFP with the peak height, Q p -1 , beyond 1x10 -2 , Q p -1 in the as-charged state decreases after heating to about 380 K because of the hydrogen induced structural relaxation (HISR). The HIFP with Q p -1 below 1x10 -2 is rather stable against the HISR. It is suggested that the highly anisotropic local strain around a hydrogen atom is responsible for the very high Q p -1 and the HISR. For the high-strength and high-damping performance, σ f is higher than 1.5 GPa and Q p -1 after the HISR is slightly lower than 1x10 -2 for the present Zr-Cu-Al-(Si) a-alloys

  12. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Metallic glasses: viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing

    International Nuclear Information System (INIS)

    Henann, David L; Srivastava, Vikas; Taylor, Hayden K; Hale, Melinda R; Hardt, David E; Anand, Lallit

    2009-01-01

    Metallic glasses possess unique mechanical properties which make them attractive materials for fabricating components for a variety of applications. For example, the commercial Zr-based metallic glasses possess high tensile strengths (≈2.0 GPa), good fracture toughnesses (≈10–50 MPa√m) and good wear and corrosion resistances. A particularly important characteristic of metallic glasses is their intrinsic homogeneity to the nanoscale because of the absence of grain boundaries. This characteristic, coupled with their unique mechanical properties, makes them ideal materials for fabricating micron-scale components, or high-aspect-ratio micro-patterned surfaces, which may in turn be used as dies for the hot-embossing of polymeric microfluidic devices. In this paper we consider a commercially available Zr-based metallic glass which has a glass transition temperature of T g ≈ 350 °C and describe the thermoplastic forming of a tool made from this material, which has the (negative) microchannel pattern for a simple microfluidic device. This tool was successfully used to produce the microchannel pattern by micro-hot-embossing of the amorphous polymers poly(methyl methacrylate) (T g ≈ 115 °C) and Zeonex-690R (T g ≈ 136 °C) above their glass transition temperatures. The metallic glass tool was found to be very robust, and it was used to produce hundreds of high-fidelity micron-scale embossed patterns without degradation or failure

  14. Hydrogen in amorphous silicon

    International Nuclear Information System (INIS)

    Peercy, P.S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH 1 ) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon

  15. Dendrimer based hybrid materials : coexistence of amorphous calcium carbonate and calcite

    NARCIS (Netherlands)

    Donners, J.J.J.M.; Heywood, B.R.; Meijer, E.W.; Nolte, R.J.M.; Sommerdijk, N.A.J.M.

    1999-01-01

    The crystn. of inorg. materials using polymers as templates is an interesting method to prep. composite materials with unique properties. Poly(propyleneimine) dendrimers are well-defined and highly-branched macromols. with regular and easily modifiable surfaces. Polyhedral aggregates from

  16. Dendritic azo compounds as a new type amorphous molecular material with quick photoinduced surface-relief-grating formation ability

    Science.gov (United States)

    He, Yaning; Gu, Xinyu; Guo, Miaocai; Wang, Xiaogong

    2008-09-01

    A series of dendritic azobenzene-containing compounds have been synthesized as a new type amorphous molecular material, which can show quick surface-relief-grating (SRG) formation ability upon light irradiation. For the synthesis, the dendritic precursor tris(2-(ethyl(phenyl)amino)ethyl)benzene-1,3,5-tricarboxylate and tris(3,5-bis(2-(ethyl(phenyl)amino)ethoxy)benzyl)benzene-1,3,5-tricarboxylate were prepared by esterification reactions between 1,3,5-benzenetricarbonyl chloride and N-ethyl- N-hydroxyethyl-aniline and 3,5-bis[2-( N-ethylanilino)ethoxy] benzylalcohol. The precursors were, respectively reacted with the diazonium salts of 4-nitroaniline, 4-aminobenzoic acid, and 4-aminobenzonitrile to introduce different types of donor-acceptor azo chromophores at the peripheral positions. The structure and properties of the dendritic azo compounds were characterized by the spectroscopic methods and thermal analysis. The surface-relief-grating (SRG) formation behavior of the dendritic azo compounds was studied by exposing the spin-coated thin films to an interference pattern of laser beams (532 nm) at modest intensity (100 mW/cm 2). The results show that the azo compounds can form stable amorphous glasses in a broad temperature range. The glass transition temperatures ( Tgs) depend on the backbone structures and the type of the peripheral azo chromophors. The type of the electron withdrawing groups in the p-positions of the terminal azobenzene units shows a significant influence on the SRG inscription rate. For the compounds containing the same type azo chromophores, the SRG inscription rate is also affected by the backbone structure.

  17. Non-destructive inspection approach using ultrasound to identify the material state for amorphous and semi-crystalline materials

    Science.gov (United States)

    Jost, Elliott; Jack, David; Moore, David

    2018-04-01

    At present, there are many methods to identify the temperature and phase of a material using invasive techniques. However, most current methods require physical contact or implicit methods utilizing light reflectance of the specimen. This work presents a nondestructive inspection method using ultrasonic wave technology that circumvents these disadvantages to identify phase change regions and infer the temperature state of a material. In the present study an experiment is performed to monitor the time of flight within a wax as it undergoes melting and the subsequent cooling. Results presented in this work show a clear relationship between a material's speed of sound and its temperature. The phase change transition of the material is clear from the time of flight results, and in the case of the investigated material, this change in the material state occurs over a range of temperatures. The range of temperatures over which the wax material melts is readily identified by speed of sound represented as a function of material temperature. The melt temperature, obtained acoustically, is validated using Differential Scanning Calorimetry (DSC), which uses shifts in heat flow rates to identify phase transition temperature ranges. The investigated ultrasonic NDE method has direct applications in many industries, including oil and gas, food and beverage, and polymer composites, in addition to many implications for future capabilities of nondestructive inspection of multi-phase materials.

  18. Flax fibers as a raw material: How to bleach efficiently a non-woody plant to obtain high-quality pulp

    International Nuclear Information System (INIS)

    Fillat, Ursula; Pepio, Montserrat; Vidal, Teresa; Roncero, M. Blanca

    2010-01-01

    Fiber crops constitute a good alternative to wood fiber for manufacturing pulp and paper. In fact, fiber plants like flax surpass wood fiber in some technical respects and also in the environmental benignity of their processing. In this work, flax fiber was subjected to environmentally friendly bleaching sequences in order to obtain a high-quality pulp. The totally chlorine-free sequences (TCF) used for this purpose (LE and LRE) included an enzyme treatment with laccase in the presence of HBT as mediator (L stage), an alkaline extraction (E stage) and a reductive treatment with NaBH 4 (R stage). The operating conditions for the L stage (laccase and HBT doses, reaction time and oxygen pressure) were optimised by using a sequential statistical plan to assess their influence on pulp properties after the E stage. Mathematical models accurately predicting brightness and kappa number in terms of the previous four variables were developed based on which the most influential factors were the laccase and HBT rates, and treatment time. By contrast, oxygen pressures of 0.2-0.6 MPa in the reactor had no effect on brightness or kappa number. The flax pulp obtained contained some oxidized cellulose that was partially degraded in the alkaline extraction step and reduced viscosity as a result. The viscosity loss associated with the presence of oxidized cellulose in the control and enzyme-treated pulp samples was efficiently recovered by using a reductive stage with sodium borohydride. Effluent was also analysed in order to assess the environmental impact of the process.

  19. Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Zhong; Tian Wenhuai; Liu Xiaohe; Yang Rong; Li Xingguo

    2007-01-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use. - Graphical abstract: The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles

  20. Universal control and measuring system for modern classic and amorphous magnetic materials single/on-line strip testers

    Science.gov (United States)

    Zemánek, Ivan; Havlíček, Václav

    2006-09-01

    A new universal control and measuring system for classic and amorphous soft magnetic materials single/on-line strip testing has been developed at the Czech Technical University in Prague. The measuring system allows to measure magnetization characteristic and specific power losses of different tested materials (strips) at AC magnetization of arbitrary magnetic flux density waveform at wide range of frequencies 20 Hz-20 kHz. The measuring system can be used for both single strip testing in laboratories and on-line strip testing during the production process. The measuring system is controlled by two-stage master-slave control system consisting of the external PC (master) completed by three special A/D measuring plug-in boards, and local executing control unit (slave) with one-chip microprocessor 8051, connected with PC by the RS232 serial line. The "user friendly" powerful control software implemented on the PC and the effective program code for the microprocessor give possibility for full automatic measurement with high measuring power and high measuring accuracy.

  1. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors.

    Science.gov (United States)

    Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong

    2013-08-28

    This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.

  2. An Amorphous Carbon Nitride Composite Derived from ZIF-8 as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Fan, Jing-Min; Chen, Jia-Jia; Zhang, Qian; Chen, Bin-Bin; Zang, Jun; Zheng, Ming-Sen; Dong, Quan-Feng

    2015-06-08

    An composite comprising amorphous carbon nitride (ACN) and zinc oxide is derived from ZIF-8 by pyrolysis. The composite is a promising anode material for sodium-ion batteries. The nitrogen content of the ACN composite is as high as 20.4 %, and the bonding state of nitrogen is mostly pyridinic, as determined by X-ray photoelectron spectroscopy (XPS). The composite exhibits an excellent Na(+) storage performance with a reversible capacity of 430 mA h g(-1) and 146 mA h g(-1) at current densities of 83 mA g(-1) and 8.33 A g(-1) , respectively. A specific capacity of 175 mA h g(-1) was maintained after 2000 cycles at 1.67 A g(-1) , with only 0.016 % capacity degradation per cycle. Moreover, an accelerating rate calorimetry (ARC) test demonstrates the excellent thermal stability of the composite, with a low self heating rate and high onset temperature (210 °C). These results shows its promise as a candidate material for high-capacity, high-rate anodes for sodium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A New Approach to the Computer Modeling of Amorphous Nanoporous Structures of Semiconducting and Metallic Materials: A Review

    Science.gov (United States)

    Romero, Cristina; Noyola, Juan C.; Santiago, Ulises; Valladares, Renela M.; Valladares, Alexander; Valladares, Ariel A.

    2010-01-01

    We review our approach to the generation of nanoporous materials, both semiconducting and metallic, which leads to the existence of nanopores within the bulk structure. This method, which we have named as the expanding lattice method, is a novel transferable approach which consists first of constructing crystalline supercells with a large number of atoms and a density close to the real value and then lowering the density by increasing the volume. The resulting supercells are subjected to either ab initio or parameterized—Tersoff-based—molecular dynamics processes at various temperatures, all below the corresponding bulk melting points, followed by geometry relaxations. The resulting samples are essentially amorphous and display pores along some of the “crystallographic” directions without the need of incorporating ad hoc semiconducting atomic structural elements such as graphene-like sheets and/or chain-like patterns (reconstructive simulations) or of reproducing the experimental processes (mimetic simulations). We report radial (pair) distribution functions, nanoporous structures of C and Si, and some computational predictions for their vibrational density of states. We present numerical estimates and discuss possible applications of semiconducting materials for hydrogen storage in potential fuel tanks. Nanopore structures for metallic elements like Al and Au also obtained through the expanding lattice method are reported.

  4. Methods of amorphization and investigation of the amorphous state

    OpenAIRE

    EINFALT, TOMAŽ; PLANINŠEK, ODON; HROVAT, KLEMEN

    2013-01-01

    The amorphous form of pharmaceutical materials represents the most energetic solid state of a material. It provides advantages in terms of dissolution rate and bioavailability. This review presents the methods of solid-state amorphization described in literature (supercooling of liquids, milling, lyophilization, spray drying, dehydration of crystalline hydrates), with the emphasis on milling. Furthermore, we describe how amorphous state of pharmaceuticals differ depending on method of prepara...

  5. Radiation-Induced Fluidity and Glass-Liquid Transition in Irradiated Amorphous Materials

    International Nuclear Information System (INIS)

    Ojovan, M.I.

    2009-01-01

    This paper describes the fluidity behaviour of continuously irradiated glasses using the Congruent Bond Lattice model in which broken bonds 'configurons' facilitate the flow. Irradiation breaks the bonds creating configurons which at high concentrations provide the transition of material from the glassy to liquid state. An explicit equation of viscosity has been derived which gives results in agreement with experimental data. This equation provides correct viscosity data for non-irradiated materials and shows a significant increase of fluidity in radiation fields. It demonstrates a decrease of activation energy of flow for irradiated glasses. A simple equation for glass-transition temperature was also obtained which shows that irradiated glasses have lower glass transition temperatures and are readily transformed from glassy to liquid state e.g. fluidized in strong radiation fields. (authors)

  6. Effect of mating materials on wear properties of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating in base oil boundary lubrication condition

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2017-12-01

    Full Text Available In this study, wear behavior of amorphous hydrogenated carbon (a-C:H coating and tetrahedral amorphous carbon (ta-C coating when sliding against various mating materials in base oil boundary lubrication condition is comparatively investigated to find out the optimal combinations of DLC/mating material and corresponding wear mechanism of both DLC coating. Tribological tests were performed in a cylinder-on-disc tribometer, Field Emission Scanning Electron Microscopy, Raman spectroscopy is used for characterization of ta-C and a-C:H worn surface. The results show that the specific wear rate of ta-C coating increases along with the hardness and roughness of mating material increases, while the specific wear rate of a-C:H coating increases together with an increment in the ID/IG ratio. It is concluded that for ta-C coating, local stress concentration-induced microfracture is the main wear mechanism in relative high wear scenario, along with minor graphitization-induced wear which prevails in low wear scenario. On the other hand, a-C:H coating showed that simultaneous generation and removal of the graphitized layer on the contact surface is the predominant wear mechanism.

  7. Lessons learned from a rigorous peer-review process for building the Climate Literacy and Energy Awareness (CLEAN) collection of high-quality digital teaching materials

    Science.gov (United States)

    Gold, A. U.; Ledley, T. S.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Niepold, F.; Fox, S.; Howell, C. D.; Lynds, S. E.

    2010-12-01

    The topic of climate change permeates all aspects of our society: the news, household debates, scientific conferences, etc. To provide students with accurate information about climate science and energy awareness, educators require scientifically and pedagogically robust teaching materials. To address this need, the NSF-funded Climate Literacy & Energy Awareness Network (CLEAN) Pathway has assembled a new peer-reviewed digital collection as part of the National Science Digital Library (NSDL) featuring teaching materials centered on climate and energy science for grades 6 through 16. The scope and framework of the collection is defined by the Essential Principles of Climate Science (CCSP 2009) and a set of energy awareness principles developed in the project. The collection provides trustworthy teaching materials on these socially relevant topics and prepares students to become responsible decision-makers. While a peer-review process is desirable for curriculum developer as well as collection builder to ensure quality, its implementation is non-trivial. We have designed a rigorous and transparent peer-review process for the CLEAN collection, and our experiences provide general guidelines that can be used to judge the quality of digital teaching materials across disciplines. Our multi-stage review process ensures that only resources with teaching goals relevant to developing climate literacy and energy awareness are considered. Each relevant resource is reviewed by two individuals to assess the i) scientific accuracy, ii) pedagogic effectiveness, and iii) usability/technical quality. A science review by an expert ensures the scientific quality and accuracy. Resources that pass all review steps are forwarded to a review panel of educators and scientists who make a final decision regarding inclusion of the materials in the CLEAN collection. Results from the first panel review show that about 20% (~100) of the resources that were initially considered for inclusion

  8. Amorphous physics and materials: Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials

    International Nuclear Information System (INIS)

    Khonik, V A

    2017-01-01

    A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching. (topical review)

  9. Fundamentals of amorphous solids structure and properties

    CERN Document Server

    Stachurski, Zbigniew H

    2014-01-01

    Long awaited, this textbook fills the gap for convincing concepts to describe amorphous solids. Adopting a unique approach, the author develops a framework that lays the foundations for a theory of amorphousness. He unravels the scientific mysteries surrounding the topic, replacing rather vague notions of amorphous materials as disordered crystalline solids with the well-founded concept of ideal amorphous solids. A classification of amorphous materials into inorganic glasses, organic glasses, glassy metallic alloys, and thin films sets the scene for the development of the model of ideal amorph

  10. Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion

    International Nuclear Information System (INIS)

    Kim, J. S.; Woo, S. S.; Seo, J. H.

    2001-01-01

    A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/erosion-corrosion. The wear/erosion-corrosion properties of ARMACRO M cladded speciemens were characterized in air at room temperature and 300 .deg. C and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laer cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion-corrosion

  11. A Monte Carlo computer code for evaluating energy loss of 10 keV to 10 MeV ions in amorphous silicon materials

    International Nuclear Information System (INIS)

    Erramli, H.; Elbounagui, O.; Misdaq, M.A.; Merzouki, A.

    2007-01-01

    The basic concepts of a computer simulation code for determining the energy loss of ions in the 10 keV to 10 MeV energy range in amorphous silicon materials were presented and discussed. Data obtained were found in good agreement with those obtained by using a SRIM programme. Electronic and nuclear energy losses were evaluated. Variation of the energy loss as a function of the incident ion energy were studied. This new computer code is a good tool for evaluating stopping powers of various materials for light and heavy ions

  12. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  13. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system /development of technology to manufacture solar cells/development of technology to manufacture thin film solar cells (development of technology to manufacture materials and substrates (development of technology to manufacture silicon crystal based high-quality materials and substrates)); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi seizo gijutsu kaihatsu, usumaku taiyo denchi seizo gijutsu kaihatsu, zairyo kiban seizo gijutsu kaihatsu (silicon kesshokei kohinshitsu zairyo kiban no seizo gujutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to develop thin film solar cells capable of mass production with high photo-stability and at low cost. Thus, the objective of the present research is to analyze the growth process of micro crystal silicon based thin films, the crystal being a high quality silicon crystal based material, and develop technology to manufacture high-quality micro crystal silicon thin films based on the findings therefrom. It was found that, when silicon source is available in cathode, pure hydrogen plasma forms micro crystal silicon films by using the plasma as a result of the chemical transportation effect from the silicon source. It was revealed that the crystal formation due to hydrogen plasma exposure is performed substantially by the crystals forming the films due to the chemical transportation effect, rather than crystallization in the vicinity of the surface. The crystal formation under this experiment was concluded that the formation takes place during film growth accompanied by diffusion of film forming precursors on the surface on which the film grows. According to the result obtained so far, the most important issue in the future is particularly the control of crystal growing azimuth by reducing the initially formed amorphous layer by controlling the stress in the initial phase for film formation, and by controlling the film forming precursors. (NEDO)

  14. Preparation and utilization of amorphous siliceous materials from serpentine (Mg3Si2O5(OH)4) by acid treatment; Jamonseki no kofuka kachika ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-30

    Concerning the conversion of serpentine, not only its magnesium component but also silica component, into industrial materials, conditions suitable for the production of porous materials and amorphous silica by acid treatment were evaluated, and the properties of the products were evaluated. The silica resulting from the acid treatment of serpentine comes out in different forms, each reflecting the structure of the parent rock, that is, an amorphous mass of planar particles from antigorite and a fascicular mass of filaments from chrysotile. A microporic structure resulted when a small quantity of magnesium was allowed to remain in the skeleton structure and acid treatment conditions were properly adjusted. Several siliceous compounds were prepared for the purpose of finding use for silica from this rock, and then it was found that high-efficiency production of high-crystallinity compounds was possible and that they were furnished with properties fit for use as materials. Furthermore, study was made about the kaolinite reaction in which serpentine would be directly converted into useful materials. 105 refs., 55 figs., 6 tabs.

  15. The use of amorphous silica-alumina-based additive in the adhesive dry mixes of building materials

    Directory of Open Access Journals (Sweden)

    Loganina VI

    2018-01-01

    Full Text Available Proved the possibility of using amorphous aluminosilicate as a modifying agent for the adhesive dry mixes. Are given the data on the microstructure and chemical composition of the amorphous aluminosilicates. Installed , that the microstructure of the synthetic additives is characterized by particles of round shape, dimensions 5,208-5,704 μm, Also there are particles of elongated shape in size 7.13-8.56 μm. Predominate chemical elements O, Si, Na, S, and Al in quantity 60.69%, 31.26%, 24.23%, 18.69% and 8.29% respectively. Described the character changes in the rheological properties of cement-sand mortar, depending on the percentage of additives. Determined, that the introduction in the cement-sand mortar the additive based on amorphous aluminosilicate leads to higher values of plastic strength. Are given the model of cement stone strength using synthetic additives in the formulation. The results of the evaluation of the frost resistance of cement-based tile adhesives with the use of amorphous aluminosilicates as a modifying additive are presented. In the article is determined the mark on frost resistance of tile glue and frost resistance of the contact zone of tile glue. The evaluation of the performance properties of the layer of tile adhesive on the basis of cement, dry mixes. The calculation of the value of displacement of the adhesive layer made on the basis of the developed recipes cement dry mixes applied to a vertical surface. Experimental data obtained values of displacement tiles relative to the substrate. Described the results of physical and mechanical properties of tile adhesive made on the basis of the developed adhesive dry mix formulations.

  16. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  17. Amorphous superconductors

    International Nuclear Information System (INIS)

    Missell, F.P.

    1985-01-01

    We describe briefly the strong coupling superconductivity observed in amorphous alloys based upon simple metals. For transition metal alloys we discuss the behavior of the superconducting transition temperature T c , the upper critical field H (sub)c2 and the critical current J c . A survey of current problems is presented. (author) [pt

  18. A Study on the quantification of hydration and the strength development mechanism of cementitious materials including amorphous phases by using XRD/Rietveld method

    International Nuclear Information System (INIS)

    Yamada, Kazuo; Hoshino, Seiichi; Hirao, Hiroshi; Yamashita, Hiroki

    2008-01-01

    X-ray diffraction (XRD)/Rietveld method was applied to measure the phase composition of cement. The quantative analysis concerning the progress of hydration was accomplished in an error of about the maximum 2-3% in spite of including amorphous materials such as blast furnace slag, fly ash, silica fume and C-S-H. The influence of the compressive strength on the lime stone fine powder mixture material was studied from the hydration analysis by Rietveld method. The two stages were observed in the strength development mechanism of cement; the hydration promotion of C 3 S in the early stage and the filling of cavities by carbonate hydrate for the longer term. It is useful to use various mixture materials for the formation of the resource recycling society and the durability improvement of concrete. (author)

  19. Fiscal 1999 achievement report. Development of technologies for creating high-quality crystalline materials for low-loss power control devices; 1999 nendo teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Researches are conducted for the advancement of, and loss reduction for, semiconductor devices for controlling electric power. Physical properties of molten semiconductors etc. are accurately measured in a microgravity environment and computer simulations are performed, which are for the production of larger-diameter, higher-quality semiconductor crystal materials. In the measurement of physical properties of molten semiconductors etc. carried out at JAMIC (Japan Microgravity Center) free-fall facilities where a high-quality microgravity environment is available, measurements are made of the surface tension, density, viscosity index, heat conductivity, and vertical spectral factor of the molten silicon. Solubility is measured of silica, silicon nitride, and silicon carbide, and, in equilibrium with these, the oxygen, nitrogen, and carbon in molten silicon, and highly reliable data are obtained. As for the comprehensive analysis code developed under this subject, the X-ray image data of the surface of a solid solution, collected from a crystal growing in a small Cz furnace at the NEC Fundamental Research Laboratories, and data of oxygen concentration in the silicon crystal agree excellently with the result of calculation, which suggests that the code is reliable. (NEDO)

  20. FY 1995 annual report on development of techniques for creating high-quality crystalline materials for low-loss power controlling components; 1995 nendo teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The R and D project is implemented for manufacturing high-quality semiconductor crystalline materials of large size and uniform characteristics, in order to improve semiconductors as components for controlling power systems, and reduce power loss. The semiconductor melts, in particular silicon melt, is highly reactive, readily reacting with the atmosphere and crucible holding the melt, and it is difficult to collect their thermal properties. Therefore, an electro-magnetic levitation furnace working under a microgravity is used, to dispense with a crucible for measurement of their properties in the absence of thermal convection. The preliminary tests using the furnace produce surface tensions of the melts, because Ge is less reactive than silicon, stable in the form of a GeSbTe compound, and not wettable with Al{sub 2}O{sub 3}, MgO, SiO{sub 2} or Si{sub 3}N{sub 4}. The measurement of electric resistance of InSb indicates that InSb has characteristics of a semiconductor when it is solid and a metal when it is liquid, as is the case with Si. The program codes are developed by each researcher, and combined with each other to establish the comprehensive thermal flow analysis program, which includes all of the aspects of the internal CZ furnace structure for growing the crystals. (NEDO)

  1. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  2. Research and development of photovoltaic power system. Study on structural defects in silicon-based amorphous materials; Taiyoko hatsuden system no kenkyu kaihatsu. Amorphous silicon kei zairyo no kozo kekkan ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for structural defects of silicon-based amorphous materials for solar cells. The study on light generation defects of the a-Si:H system and rejuvenation process by annealing establishes the effects of light irradiation time on changed neutral dangling bond density as a result of light irradiation at varying temperature of 77K, room temperature and 393K. The study on annealing to rejuvenate light generation defects of various types of a-Si-H systems establishes the activation energy distribution with respect to annealing to remove light-induced defects, showing that hydrogen affects the distribution of light-induced defects. The study on decaying process of light-induced ESR for undoped and N-doped a-Si:H systems observes the decaying process of light-induced ESR, after light is cut off, extending for a period of several seconds to several hours at 77K for the a-Si-H systems containing N in a range from 0 to 12at%. The other results presented are space distribution of neutral defects of light-irradiated a-Si-H systems, and rejuvenation process of light-induced spin for the a-Si(1-x)N(x):H composition. 6 figs.

  3. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma

    International Nuclear Information System (INIS)

    Barbier, G.

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author)

  4. Hydrogen behaviour study in plasma facing a-C:H and a-SiC:H hydrogenated amorphous materials for fusion reactors

    International Nuclear Information System (INIS)

    Barbier, Gauzelin

    1997-01-01

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. Firstly, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce this interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a-SiC:H substrate can be benefit in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a -SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a-C:H and a-SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modeling of hydrogen diffusion under irradiation has been also proposed. (author)

  5. Fast High-Quality Noise

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Wyvill, Geoff

    2007-01-01

    At the moment the noise functions available in a graphics programmer's toolbox are either slow to compute or they involve grid-line artifacts making them of lower quality. In this paper we present a real-time noise computation with no grid-line artifacts or other regularity problems. In other words......, we put a new tool in the box that computes fast high-quality noise. In addition to being free of artifacts, the noise we present does not rely on tabulated data (everything is computed on the fly) and it is easy to adjust quality vs. quantity for the noise. The noise is based on point rendering (like...... spot noise), but it extends to more than two dimensions. The fact that it is based on point rendering makes art direction of the noise much easier....

  6. Facile synthesis of amorphous FeOOH/MnO2 composites as screen-printed electrode materials for all-printed solid-state flexible supercapacitors

    Science.gov (United States)

    Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei

    2017-09-01

    More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.

  7. Amorphous MoS3 Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodium-Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hualin [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Wang, Lu [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Deng, Shuo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zeng, Xiaoqiao [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA; Nie, Kaiqi [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Duchesne, Paul N. [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Wang, Bo [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Liu, Simon [Department of Chemical Engineering, University of Waterloo, Ontario N2L 3G1 Canada; Zhou, Junhua [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhao, Feipeng [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Han, Na [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Zhang, Peng [Department of Chemistry, Dalhousie University, Halifax NS B3H 4R2 Canada; Zhong, Jun [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Sun, Xuhui [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Youyong [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Li, Yanguang [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 China; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont IL 60439 USA

    2016-11-17

    The search for earth-abundant and high-performance electrode materials for sodium-ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain-like MoS3—can be a better choice as the anode material of sodium-ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g-1), rate capability (235 mA h g-1 at 20 A g-1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm-3 and an areal capacity of >6.0 mA h cm-2 at very high areal loadings of active materials (up to 12 mg cm-2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.

  8. Goldanskii-Karyagin effect and external magnetic field method as tools to measure anisotropy of the recoilless fraction in amorphous materials

    International Nuclear Information System (INIS)

    Ruebenbauer, K.; Sepiol, B.

    1985-01-01

    Diffraction of X-rays or neutrons can not be used to obtain details about the atomic vibrational anisotropy in the case of amorphous materials due to the lack of well-defined Bragg reflections. Moessbauer spectroscopy can yield some information in such cases, either via the Goldanskii-Karyagin effect or by applying a magnetic field, preferably along the beam axis. The latter method can be applied to the (preferably diamagnetic) samples exhibiting an electric quadrupole interaction (preferably non-axial) and the magnetic field should be chosen in such a way as to produce significant off-diagonal elements in the hyperfine hamiltonian. The external magnetic field method is capable of yielding much more information than the Goldanskii-Karyagin effect in most cases, provided sufficiently strong magnetic fields are available. Some examples of the 129 I Moessbauer spectra have been calculated to show the usefulness and sensitivity of the external magnetic field method. (orig.)

  9. Manufacture of amorphous and poly-crystalline materials with the sol-gel process; Fabricacion de materiales amorfos y policristalinos con la ruta sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda-Contreras, J. [Centro Universitario de Los Lagos, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico)

    2006-01-15

    The sun-gel process is a chemical route that allows the manufacture of amorphous and poly-crystalline materials in a relatively simple way. New materials can be obtained, materials that through the traditional manufacture methods, are very difficult to obtain, such as oxide combinations (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), and that, when being produced by traditional methods, they run the risk of being contaminated with rare earth ions or organic dyes. The unique structures, micro- structures and compounds that can be made with the sun-gel process open many possibilities for practical applications, to name a few: the manufacture of optical components, preforms for optical fibers, dielectric coatings, superconductors, waveguides, nanoparticles, solar cells, etc. [Spanish] El proceso sol-gel es una ruta quimica que permite fabricar materiales amorfos y policristalinos de forma relativamente sencilla. Se pueden obtener nuevos materiales que a traves de los metodos tradicionales de fabricacion son muy dificiles de obtener, tales como combinaciones de oxidos (SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, etc.), y que, de ser producidos por metodos tradicionales corren el riesgo de contaminarse con iones de tierras raras o colorantes organicos. Las estructuras unicas, micro estructuras y compuestos que pueden hacerse con el proceso sol-gel abren muchas posibilidades para aplicaciones practicas, por nombrar algunas, la fabricacion de componentes opticos, preformas para fibras opticas, recubrimientos dielectricos, superconductores, guias de onda, nanoparticulas, celdas solares, etc.

  10. Fiscal 2000 report on result of R and D of industrial science and technology that creates new industry. Development of supermetal technology (development of nano-amorphous structured material); 2000 nendo super metal no gijutsu kaihatsu seika hokokusho. Nano amorphous kozo seigyo zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D was conducted for the purpose of manufacturing innovative iron-based alloy materials that excel in high temperature strength, toughness and superplastic forming, with fiscal 2000 results compiled. In the technological study on high-speed grain accumulation and superplastic forming, the researchers were engrossed in developing an aluminum bulk material of nano-crystals. This year, an Al-Fe two-element based alloy using Fe element was evaluated in the composition, thermal processing conditions and physical properties, with a bulk material obtained having a grain size of several tens in nm at 2at% Fe level, a strength of 750-850 MPa and a tenacity (Kc value) of 45-65 MPa(center dot)m{sup 1/2}. In the research of technologies for utilizing and controlling high density energy, design of materials was progressed for strong-acid resistant dew point corrosion materials, leading to the discovery of an alloy composition Ni-10Cr-5Nb-16P-4B whose subcooled liquid zone was wider than the Ta-added alloy of the previous year. Use of He gas as injection gas enabled a quality amorphous powder to be obtained in kg units. In the development of bulk amorphous producing technologies, this powder was thermostatically rolled to make a dense bulk amorphous plate of 2.8 mm thick and about 100 mm long. (NEDO)

  11. Availability of high quality weather data measurements

    DEFF Research Database (Denmark)

    Andersen, Elsa; Johansen, Jakob Berg; Furbo, Simon

    In the period 2016-2017 the project “Availability of high quality weather data measurements” is carried out at Department of Civil Engineering at the Technical University of Denmark. The aim of the project is to establish measured high quality weather data which will be easily available...... for the building energy branch and the solar energy branch in their efforts to achieve energy savings and for researchers and students carrying out projects where measured high quality weather data are needed....

  12. Impact of surface impurity on phase transitions in amorphous micro silica

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2016-01-01

    In this work we study three types of spherically shaped micron and submicron sized amorphous micro silica (MS) as common raw material for production of porous calcium silicate products used for insulation, which are selected on basis of chemical composition and production method. Two of them have...... silica content of 96% (from silicon production) and one has that of 92% (from ferro-silicon production). In order to achieve high quality calcium silicate products, which strongly depends on the characteristics of the raw MS, it is crucial to study the chemical and physical properties of the raw MS...

  13. Amorphization of ceramics by ion beams

    International Nuclear Information System (INIS)

    McHargue, C.J.; Farlow, G.C.; White, C.W.; Williams, J.M.; Appleton, B.R.; Naramoto, H.

    1984-01-01

    The influence of the implantation parameters fluence, substrate temperature, and chemical species on the formation of amorphous phases in Al 2 O 3 and α-SiC was studied. At 300 0 K, fluences in excess of 10 17 ions.cm -2 were generally required to amorphize Al 2 O 3 ; however, implantation of zirconium formed the amorphous phase at a fluence of 4 x 10 16 Zr.cm -2 . At 77 0 K, the threshold fluence was lowered to about 2 x 10 15 Cr.cm -2 . Single crystals of α-SiC were amorphized at 300 0 K by a fluence of 2 x 10 14 Cr.cm -2 or 1 x 10 15 N.cm -2 . Implantation at 1023 0 K did not produce the amorphous phase in SiC. The micro-indentation hardness of the amorphous material was about 60% of that of the crystalline counterpart

  14. Hydrogen in disordered and amorphous solids

    International Nuclear Information System (INIS)

    Bambakidis, G; Bowman, R.C.

    1986-01-01

    This book presents information on the following topoics: elements of the theory of amorphous semiconductors; electronic structure of alpha-SiH; fluctuation induced gap states in amorphous hydrogenated silicon; hydrogen on semiconductor surfaces; the influence of hydrogen on the defects and instabilities in hydrogenated amorphous silicon; deuteron magnetic resonance in some amorphous semiconductors; formation of amorphous metals by solid state reactions of hydrogen with an intermetallic compound; NMR studies of the hydrides of disordered and amorphous alloys; neutron vibrational spectroscopy of disordered metal-hydrogen system; dynamical disorder of hydrogen in LaNi /SUB 5-y/ M /SUB y/ hydrides studied by quasi-elastic neutron scattering; recent studies of intermetallic hydrides; tritium in Pd and Pd /SUB 0.80/ Sg /SUB 0.20/ ; and determination of hydrogen concentration in thin films of absorbing materials

  15. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  16. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  17. Photoconductivity of amorphous silicon-rigorous modelling

    International Nuclear Information System (INIS)

    Brada, P.; Schauer, F.

    1991-01-01

    It is our great pleasure to express our gratitude to Prof. Grigorovici, the pioneer of the exciting field of amorphous state by our modest contribution to this area. In this paper are presented the outline of the rigorous modelling program of the steady-state photoconductivity in amorphous silicon and related materials. (Author)

  18. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  19. Adoption and impact of high quality bambara flour (HQBF ...

    African Journals Online (AJOL)

    Adoption and impact of high quality bambara flour (HQBF) technology in the ... consumer acceptability/quality of products, credit, availability of raw materials, and ... as a result of 12.5 per cent increase in demand for bambara-based products.

  20. FY 1998 annual report on the results of new industry creation type industrial science and technology research and development on the research and development of supermetals. Development of techniques for controlling structures of nano-amorphous materials; 1998 nendo super metal no gijutsu kaihatsu. Nano amorphous kozo seigyo zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Described herein are the FY 1998 results of the development of techniques for controlling structures of nano-amorphous materials. For the development of techniques for finely dispersing fine particles, mechanical alloying (MA) and mechanical milling (MM) are investigated, to structure nano-crystals in common steel, for which hot isostatic pressing is evaluated as a consolidation process for the MA- and MM-prepared powders in the FY 1998. For researches on high-speed particle deposition and super plastic forming, an Al-Ni, Al-Fe and Al-Ti alloy are selected as the nano-structure materials to be prepared by evaporation, and various compositions of these systems are evaporated, in order to investigate their microstructures, mechanical properties and thermal stabilities. For researches on techniques for controlling phases with the aid of high-density energy, the R and D efforts are directed to exploration of composition of high resistance to corrosion by acid at dew point, preparation of non-equilibrium (e.g., amorphous) powders, and development of solidification and forming techniques, with the target of creation of an amorphous alloy showing corrosion resistance at least twice as high as that of the commercial corrosion-resistance material and formable into a bulk shape having a thickness of at least 1 mm. For researches on controlled cooling techniques, the basic data are collected. (NEDO)

  1. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  2. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  3. Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals

    Science.gov (United States)

    Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA

    2009-11-17

    A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).

  4. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  5. Study the quantitative relation between some sedimentary minerals for syrian soil when mixed in equal rates and study the effect of adding amorphous material by X-Ray diffraction

    International Nuclear Information System (INIS)

    Kanbour, M.

    2012-08-01

    During the work of X ray diffraction lab several kinds of local Syrian soil samples were received, the most of them have the same main mineral contents, some samples consist of one mineral. We have got some pure samples from different Syrian places (Quartz, Calcite, Gypsum and Montmorillonite) which have been analyzed to ensure its purity.These samples were mixed in similar weights. Effect of mixing samples on the diffractograms and the percentage of the minerals has been calculated in tow methods, manually and instrumentally, correction factors needed have been fixed for the used minerals. Amorphous material has been added to the used minerals in different ratios, results showed that adding each mineral affects the intensity of the main peak. Quartz has been chosen to study the effect of adding different ratios of amorphous material, comparing diffractograms with each other showed a clear difference in the intensity of the main peak. (author)

  6. Radiation tolerance of amorphous semiconductors

    International Nuclear Information System (INIS)

    Nicolaides, R.V.; DeFeo, S.; Doremus, L.W.

    1976-01-01

    In an attempt to determine the threshold radiation damage in amorphous semiconductors, radiation tests were performed on amorphous semiconductor thin film materials and on threshold and memory devices. The influence of flash x-rays and neutron radiation upon the switching voltages, on- and off-state characteristics, dielectric response, optical transmission, absorption band edge and photoconductivity were measured prior to, during and following irradiation. These extensive tests showed the high radiation tolerance of amorphous semiconductor materials. Electrical and optical properties, other than photoconductivity, have a neutron radiation tolerance threshold above 10 17 nvt in the steady state and 10 14 nvt in short (50 μsec to 16 msec) pulses. Photoconductivity increases by 1 1 / 2 orders of magnitude at the level of 10 14 nvt (short pulses of 50 μsec). Super flash x-rays up to 5000 rads (Si), 20 nsec, do not initiate switching in off-state samples which are voltage biased up to 90 percent of the threshold voltage. Both memory and threshold amorphous devices are capable of switching on and off during nuclear radiation transients at least as high as 2 x 10 14 nvt in 50 μsec pulses

  7. Theory of amorphous ices.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2014-07-01

    We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.

  8. Fabrication of high-quality brazed joints

    International Nuclear Information System (INIS)

    Orlov, A.V.

    1980-01-01

    Problem of ensuring of joint high-quality when brazing different parts in power engineering is considered. To obtain high-quality joints it is necessary to correctly design brazed joint and to choose a gap width, overlap length and fillet radius; to clean up carefully the surfaces to be brazed and fix them properly one relative to another; to apply a solder so as to provide its flowing into the gap and sticking in it; to exactly regulate thermal conditions of brazing. High quality and reliability of brazed joints are ensured by the application of solders based on noble metals, and cheap solders based on nickel, manganese and copper. Joints brazed with nickel base solders may operate at temperatures as high as 888 deg C

  9. Producing high-quality slash pine seeds

    Science.gov (United States)

    James Barnett; Sue Varela

    2003-01-01

    Slash pine is a desirable species. It serves many purposes and is well adapted to poorly drained flatwoods and seasonally flooded areas along the lower Coastal Plain of the Southeastern US. The use of high-quality seeds has been shown to produce uniform seedlings for outplanting, which is key to silvicultural success along the Coastal Plain and elsewhere. We present...

  10. Research report of FY 1997 on the industrial science and technology development. Technology development of super-metal (technology development of nano-amorphous structural control materials); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu Shin Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku seika hokokusho. Super metal no gijutsu kaihatsu (nano-amorphous kozo seigyo zairyo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development of the innovative metals have been conducted, by which the weight reduction of members can be done by drastically improving the strength compared with conventional metals. For the high-rate cluster deposition and super plastic forming technologies, research and development of aluminum-based light-weight materials have been conducted, which provides excellent strength, toughness, and super plastic formability at room temperature. For the high-density energy utilization and control technology (amorphous-A), super-metals have been investigated as high dew point and corrosion resistance materials used for waste incinerators operated under the very severe conditions. These are expected to be applied to the apparatuses and equipment due to their excellent properties. For the controlled cooling technology (amorphous-B), super-metals with excellent soft magnetic characteristics and degree of shape freedom have been investigated for high performance and high efficiency devices including electric/electronic/communication devices, power transmission devices, and various industrial devices and parts. These are expected to contribute to the creation of new markets and the improvement of international competitive force. 123 refs., 160 figs., 33 tabs.

  11. Origin and chemical composition of the amorphous material from the intergrain pores of self-assembled cubic ZnS:Mn nanocrystals

    Science.gov (United States)

    Stefan, Mariana; Vlaicu, Ioana Dorina; Nistor, Leona Cristina; Ghica, Daniela; Nistor, Sergiu Vasile

    2017-12-01

    We have shown in previous investigations that the low temperature collective magnetism observed in mesoporous cubic ZnS:Mn nanocrystalline powders prepared by colloidal synthesis, with nominal doping concentrations above 0.2 at.%, is due to the formation of Mn2+ clusters with distributed antiferromagnetic coupling localized in an amorphous phase found between the cubic ZnS:Mn nanocrystals. Here we investigate the composition, origin and thermal annealing behavior of this amorphous phase in such a mesoporous ZnS:Mn sample doped with 5 at.% Mn nominal concentration. Correlated analytical transmission electron microscopy, multifrequency electron paramagnetic resonance and Fourier transform infrared spectroscopy data show that the amorphous nanomaterial consists of unreacted precursor hydrated zinc and manganese acetates trapped inside the pores and on the surface of the cubic ZnS nanocrystals. The decomposition of the acetates under isochronal annealing up to 270 °C, where the mesoporous structure is still preserved, lead to changes in the nature and strength of the magnetic interactions between the aggregated Mn2+ ions. These results strongly suggest the possibility to modulate the magnetic properties of such transition metal ions doped II-VI mesoporous structures by varying the synthesis conditions and/or by post-synthesis thermochemical treatments.

  12. Creep of FINEMET alloy at amorphous to nanocrystalline transition

    NARCIS (Netherlands)

    Csach, K.; Miškuf, J.; Juríková, A.; Ocelík, V.

    2009-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded with amorphous phase. Then the final macroscopic

  13. Amorphous iron (II) carbonate

    DEFF Research Database (Denmark)

    Sel, Ozlem; Radha, A.V.; Dideriksen, Knud

    2012-01-01

    Abstract The synthesis, characterization and crystallization energetics of amorphous iron (II) carbonate (AFC) are reported. AFC may form as a precursor for siderite (FeCO3). The enthalpy of crystallization (DHcrys) of AFC is similar to that of amorphous magnesium carbonate (AMC) and more...

  14. High-quality compressive ghost imaging

    Science.gov (United States)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  15. Observing the amorphous-to-crystalline phase transition in Ge{sub 2}Sb{sub 2}Te{sub 5} non-volatile memory materials from ab initio molecular-dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.H.; Elliott, S.R. [Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge (United Kingdom)

    2012-10-15

    Phase-change memory is a promising candidate for the next generation of non-volatile memory devices. This technology utilizes reversible phase transitions between amorphous and crystalline phases of a recording material, and has been successfully used in rewritable optical data storage, revealing its feasibility. In spite of the importance of understanding the nucleation and growth processes that play a critical role in the phase transition, this understanding is still incomplete. Here, we present observations of the early stages of crystallization in Ge{sub 2}Sb{sub 2}Te{sub 5} materials through ab initio molecular-dynamics simulations. Planar structures, including fourfold rings and planes, play an important role in the formation and growth of crystalline clusters in the amorphous matrix. At the same time, vacancies facilitate crystallization by providing space at the glass-crystalline interface for atomic diffusion, which results in fast crystal growth, as observed in simulations and experiments. The microscopic mechanism of crystallization presented here may deepen our understanding of the phase transition occurring in real devices, providing an opportunity to optimize the memory performance of phase-change materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Report on results 1998. Technological development to create high quality crystal material for low loss power controlling element; 1998 nendo seika hokokusho. Teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper refers to the development of basic technology for manufacturing crystal materials of a large diameter and uniform properties for the purpose of sophistication and low loss of semiconductor controlling elements for electric power. An experiment was conducted using the drop tower of the underground agravity center. Results in fiscal 1998 were explained. With counter-measures taken in for improving measuring accuracy of an electromagnetic floating furnace, the accumulation and evaluation were performed of the highly reliable data of the surface tension and density of Si. The measurement of the viscosity coefficient of Si under micro-gravity was successful for the first time in the world, as was the measurement of the contact angle between solid/liquid, other than the measurement of specific heat, thermal conductivity and spectral emissivity of Si. The viscosity coefficient, unlike the conventional report, showed Arrhenius' linearity. In the comupter simulation, boundary data were exchanged between element analysis programs, developing a basic general analysis program as scheduled. The result of a micro simulation by molecular dynamics method was in agreement with the observation result by a transmission type electron microscope, bringing the first success in the world. In the Cz furnace model experiment, effect of rotation for example was elucidated on turbulence in the melt by using lasers. (NEDO)

  17. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  18. Using containerless methods to develop amorphous pharmaceuticals.

    Science.gov (United States)

    Weber, J K R; Benmore, C J; Suthar, K J; Tamalonis, A J; Alderman, O L G; Sendelbach, S; Kondev, V; Yarger, J; Rey, C A; Byrn, S R

    2017-01-01

    Many pipeline drugs have low solubility in their crystalline state and require compounding in special dosage forms to increase bioavailability for oral administration. The use of amorphous formulations increases solubility and uptake of active pharmaceutical ingredients. These forms are rapidly gaining commercial importance for both pre-clinical and clinical use. Synthesis of amorphous drugs was performed using an acoustic levitation containerless processing method and spray drying. The structure of the products was investigated using in-situ high energy X-ray diffraction. Selected solvents for processing drugs were investigated using acoustic levitation. The stability of amorphous samples was measured using X-ray diffraction. Samples processed using both spray drying and containerless synthesis were compared. We review methods for making amorphous pharmaceuticals and present data on materials made by containerless processing and spray drying. It was shown that containerless processing using acoustic levitation can be used to make phase-pure forms of drugs that are known to be difficult to amorphize. The stability and structure of the materials was investigated in the context of developing and making clinically useful formulations. Amorphous compounds are emerging as an important component of drug development and for the oral delivery of drugs with low solubility. Containerless techniques can be used to efficiently synthesize small quantities of pure amorphous forms that are potentially useful in pre-clinical trials and for use in the optimization of clinical products. Developing new pharmaceutical products is an essential enterprise to improve patient outcomes. The development and application of amorphous pharmaceuticals to increase absorption is rapidly gaining importance and it provides opportunities for breakthrough research on new drugs. There is an urgent need to solve problems associated with making formulations that are both stable and that provide high

  19. Study of the hydrogen behavior in amorphous hydrogenated materials of type a - C:H and a - SiC:H facing fusion reactor plasma; Etude du comportament de l`hydrogene dans des materiaux amorphes hydrogenes de type a - C:H et a - SiC:H devant faire face au plasma des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, G. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1997-04-10

    Plasma facing components of controlled fusion test devices (tokamaks) are submitted to several constraints (irradiation, high temperatures). The erosion (physical sputtering and chemical erosion) and the hydrogen recycling (retention and desorption) of these materials influence many plasma parameters and thus affect drastically the tokamak running. First, we will describe the different plasma-material interactions. It will be pointed out, how erosion and hydrogen recycling are strongly related to both chemical and physical properties of the material. In order to reduce these interactions, we have selected two amorphous hydrogenated materials (a-C:H and a-SiC:H), which are known for their good thermal and chemical qualities. Some samples have been then implanted with lithium ions at different fluences. Our materials have been then irradiated with deuterium ions at low energy. From our results, it is shown that both the lithium implantation and the use of an a - SiC:H substrate can be beneficial in enhancing the hydrogen retention. These results were completed with thermal desorption studies of these materials. It was evidenced that the hydrogen fixation was more efficient in a-SiC:H than in a-C:H substrate. Results in good agreement with those described above have been obtained by exposing a - C:H and a - SiC:H samples to the scrape off layer of the tokamak of Varennes (TdeV, Canada). A modelling of hydrogen diffusion under irradiation has been also proposed. (author) 176 refs.

  20. Identifying suitable substrates for high-quality graphene-based heterostructures

    Science.gov (United States)

    Banszerus, L.; Janssen, H.; Otto, M.; Epping, A.; Taniguchi, T.; Watanabe, K.; Beschoten, B.; Neumaier, D.; Stampfer, C.

    2017-06-01

    We report on a scanning confocal Raman spectroscopy study investigating the strain-uniformity and the overall strain and doping of high-quality chemical vapour deposited (CVD) graphene-based heterostuctures on a large number of different substrate materials, including hexagonal boron nitride (hBN), transition metal dichalcogenides, silicon, different oxides and nitrides, as well as polymers. By applying a hBN-assisted, contamination free, dry transfer process for CVD graphene, high-quality heterostructures with low doping densities and low strain variations are assembled. The Raman spectra of these pristine heterostructures are sensitive to substrate-induced doping and strain variations and are thus used to probe the suitability of the substrate material for potential high-quality graphene devices. We find that the flatness of the substrate material is a key figure for gaining, or preserving high-quality graphene.

  1. Amorphization within the tablet

    DEFF Research Database (Denmark)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A.

    2017-01-01

    , the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization......, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90 kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements...

  2. Physics of amorphous metals

    CERN Document Server

    Kovalenko, Nikolai P; Krey, Uwe

    2008-01-01

    The discovery of bulk metallic glasses has led to a large increase in the industrial importance of amorphous metals, and this is expected to continue. This book is the first to describe the theoretical physics of amorphous metals, including the important theoretical development of the last 20 years.The renowned authors stress the universal aspects in their description of the phonon or magnon low-energy excitations in the amorphous metals, e.g. concerning the remarkable consequences of the properties of these excitations for the thermodynamics at low and intermediate temperatures. Tunneling

  3. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  4. Boiling curve in high quality flow boiling

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Hein, R.A.; Yadigaroglu, G.

    1980-01-01

    The post dry-out heat transfer regime of the flow boiling curve was investigated experimentally for high pressure water at high qualities. The test section was a short round tube located downstream of a hot patch created by a temperature controlled segment of tubing. Results from the experiment showed that the distance from the dryout point has a significant effect on the downstream temperatures and there was no unique boiling curve. The heat transfer coefficients measured sufficiently downstream of the dryout point could be correlated using the Heineman correlation for superheated steam, indicating that the droplet deposition effects could be neglected in this region

  5. Amorphous Ti-Zr

    International Nuclear Information System (INIS)

    Rabinkin, A.; Liebermann, H.; Pounds, S.; Taylor, T.

    1991-01-01

    This paper is the first report on processing, properties and potential application of amorphous titanium/zirconium-base alloys produced in the form of a good quality continuous and ductile ribbon having up to 12.5 mm width. To date, the majority of titanium brazing is accomplished using cooper and aluminum-base brazing filler metals. The brazements produced with these filler metals have rather low (∼300 degrees C) service temperature, thus impeding progress in aircraft and other technologies and industries. The attempt to develop a generation of high temperature brazing filler metals was made in the late sixties-early seventies studies in detail were a large number of Ti-, Zr-Ti-Zr, Ti-V and Zr-V-Ti based alloys. The majority of these alloys has copper and nickel as melting temperature depressants. The presence of nickel and copper converts them into eutectic alloys having [Ti(Zr)] [Cu(Ni)], intermetallic phases as major structural constituents. This, in turn, results in high alloy brittleness and poor, if any, processability by means of conventional, i.e. melting-ingot casting-deformation technology. In spite of good wettability and high joint strength achieved in dozens of promising alloys, only Ti-15Cu-15Ni is now widely used as a brazing filler metal for high service temperature. Up until now this material could not be produced as a homogeneous foil and is instead applied as a clad strip consisting of three separate metallic layers

  6. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Lin, Liangdong; Xu, Xuena; Chu, Chenxiao; Majeed, Muhammad K; Yang, Jian

    2016-11-02

    Amorphous Si (a-Si) shows potential advantages over crystalline Si (c-Si) in lithium-ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a-Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a-Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g -1 at 3 A g -1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a-Si and c-Si anodes clearly supports the advantages of a-Si in lithium-ion batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Amorphous Terfenol-D films using nanosecond pulsed laser deposition

    International Nuclear Information System (INIS)

    Ma, James; O'Brien, Daniel T.; Kovar, Desiderio

    2009-01-01

    Thin films of Terfenol-D were produced by nanosecond pulsed laser deposition (PLD) at two fluences. Electron dispersive spectroscopy conducted using scanning electron and transmission electron microscopes showed that the film compositions were similar to that of the PLD target. Contrary to previous assertions that suggested that nanosecond PLD results in crystalline films, X-ray diffraction and transmission electron microscopy analysis showed that the films produced at both fluences were amorphous. Splatters present on the film had similar compositions to the overall film and were also amorphous. Magnetic measurements showed that the films had high saturation magnetization and magnetostriction, similar to high quality films produced using other physical vapor deposition methods.

  8. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  9. Superplasticity of amorphous alloy

    International Nuclear Information System (INIS)

    Levin, Yu.B.; Likhachev, V.L.; Sen'kov, O.N.

    1988-01-01

    Results of mechanical tests of Co 57 Ni 10 Fe 5 Si 11 B 17 amorphous alloy are presented and the effect of crystallization, occurring during deformation process, on plastic low characteristics is investiagted. Superplasticity of amorphous tape is investigated. It is shown, that this effect occurs only when during deformation the crystallization takes place. Process model, based on the usage disclination concepts about glass nature, is suggested

  10. Megavoltage imaging with a large-area, flat-panel, amorphous silicon imager

    International Nuclear Information System (INIS)

    Antonuk, Larry E.; Yorkston, John; Huang Weidong; Sandler, Howard; Siewerdsen, Jeffrey H.; El-Mohri, Youcef

    1996-01-01

    Purpose: The creation of the first large-area, amorphous silicon megavoltage imager is reported. The imager is an engineering prototype built to serve as a stepping stone toward the creation of a future clinical prototype. The engineering prototype is described and various images demonstrating its properties are shown including the first reported patient image acquired with such an amorphous silicon imaging device. Specific limitations in the engineering prototype are reviewed and potential advantages of future, more optimized imagers of this type are presented. Methods and Materials: The imager is based on a two-dimensional, pixelated array containing amorphous silicon field-effect transistors and photodiode sensors which are deposited on a thin glass substrate. The array has a 512 x 560-pixel format and a pixel pitch of 450 μm giving an imaging area of ∼23 x 25 cm 2 . The array is used in conjunction with an overlying metal plate/phosphor screen converter as well as an electronic acquisition system. Images were acquired fluoroscopically using a megavoltage treatment machine. Results: Array and digitized film images of a variety of anthropomorphic phantoms and of a human subject are presented and compared. The information content of the array images generally appears to be at least as great as that of the digitized film images. Conclusion: Despite a variety of severe limitations in the engineering prototype, including many array defects, a relatively slow and noisy acquisition system, and the lack of a means to generate images in a radiographic manner, the prototype nevertheless generated clinically useful information. The general properties of these amorphous silicon arrays, along with the quality of the images provided by the engineering prototype, strongly suggest that such arrays could eventually form the basis of a new imaging technology for radiotherapy localization and verification. The development of a clinically useful prototype offering high-quality

  11. Recent advances in co-amorphous drug formulations

    DEFF Research Database (Denmark)

    Dengale, Swapnil Jayant; Grohganz, Holger; Rades, Thomas

    2016-01-01

    with other amorphous stabilization techniques. Because of this, several research groups started to investigate the co-amorphous formulation approach, resulting in an increasing amount of scientific publications over the last few years. This study provides an overview of the co-amorphous field and its recent......Co-amorphous drug delivery systems have recently gained considerable interest in the pharmaceutical field because of their potential to improve oral bioavailability of poorly water-soluble drugs through drug dissolution enhancement as a result of the amorphous nature of the material. A co...... findings. In particular, we investigate co-amorphous formulations from the viewpoint of solid dispersions, describe their formation and mechanism of stabilization, study their impact on dissolution and in vivo performance and briefly outline the future potentials....

  12. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    Science.gov (United States)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  13. Method for synthesis of high quality graphene

    Science.gov (United States)

    Lanzara, Alessandra [Piedmont, CA; Schmid, Andreas K [Berkeley, CA; Yu, Xiaozhu [Berkeley, CA; Hwang, Choonkyu [Albany, CA; Kohl, Annemarie [Beneditkbeuern, DE; Jozwiak, Chris M [Oakland, CA

    2012-03-27

    A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10.sup.-6 Torr, the wafer temperature is raised to about 1500.degree. C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about 1530.degree. C. or more, the carbon atoms self assemble themselves into graphene.

  14. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  15. High Quality Virtual Reality for Architectural Exhibitions

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2016-01-01

    This paper will summarise the findings from creating and implementing a visually high quality Virtual Reality (VR) experiment as part of an international architecture exhibition. It was the aim to represent the architectural spatial qualities as well as the atmosphere created from combining natural...... and artificial lighting in a prominent not yet built project. The outcome is twofold: Findings concerning the integration of VR in an exhibition space and findings concerning the experience of the virtual space itself. In the exhibition, an important aspect was the unmanned exhibition space, requiring the VR...... experience to be self-explanatory. Observations of different visitor reactions to the unmanned VR experience compared with visitor reactions at guided tours with personal instructions are evaluated. Data on perception of realism, spatial quality and light in the VR model were collected with qualitative...

  16. Mechanics of amorphous solids—identification and constitutive modelling

    NARCIS (Netherlands)

    van Dommelen, J.A.W.; Estevez, R.

    2018-01-01

    Both polymers and metals can be in an organised crystalline or amorphous glassy state, where for polymers usually at least a part of the structure is amorphous and metals are in a glassy state only when processed under special conditions. At the 15th European Mechanics of Materials Conference in

  17. Principles and operation of crystalline and amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Chambouleyron, I.

    1983-01-01

    This paper deals with the fundamental aspects of photovoltaic energy conversion. Crystalline silicon solar cell physics together with design criteria and conversion losses are discussed. The general properties of hydrogenated amorphous silicon and the principles of a-Si:H solar cell operation are briefly reviewed. New trends in amorphous materials of photovoltaic interest and novel device structures are finally presented. (Author) [pt

  18. Vibrational spectra for hydrogenated amorphous semiconductors

    International Nuclear Information System (INIS)

    Kamitakahara, W.A.; Bouchard, A.M.; Biswas, R.; Gompf, F.; Suck, J.B.

    1990-01-01

    Hydrogen vibration spectra have been measured by neutron scattering for several amorphous semiconductor materials, including a-Ge:H and a-SiC:H samples containing about 10 at. % H. The data for a-Ge:H are compared in detail with the results of realistic computer simulations

  19. Noise and degradation of amorphous silicon devices

    NARCIS (Netherlands)

    Bakker, J.P.R.

    2003-01-01

    Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the

  20. Paramagnetic defects in hydrogenated amorphous carbon powders

    International Nuclear Information System (INIS)

    Keeble, D J; Robb, K M; Smith, G M; Mkami, H El; Rodil, S E; Robertson, J

    2003-01-01

    Hydrogenated amorphous carbon materials typically contain high concentrations of paramagnetic defects, the density of which can be quantified by electron paramagnetic resonance (EPR). In this work EPR measurements near 9.5, 94, and 189 GHz have been performed on polymeric and diamond-like hydrogenated amorphous carbon (a-C:H) powder samples. A similar single resonance line was observed at all frequencies for the two forms of a-C:H studied. No contributions to the spectrum from centres with resolved anisotropic g-values as reported earlier were detected. An increase in linewidth with microwave frequency was observed. Possible contributions to this frequency dependence are discussed

  1. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-01-01

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO 3 @C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO 3 @C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g −1 after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO 3 (CoSnO 3 @C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO 3 @C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g −1 after 100 cycles

  2. Amorphous selenium based detectors for medical imaging applications

    Science.gov (United States)

    Mandal, Krishna C.; Kang, Sung H.; Choi, Michael; Jellison, Gerald E., Jr.

    2006-08-01

    We have developed and characterized large volume amorphous (a-) selenium (Se) stabilized alloys for room temperature medical imaging devices and high-energy physics detectors. The synthesis and preparation of well-defined and high quality a-Se (B, As, Cl) alloy materials have been conducted using a specially designed alloying reactor at EIC and installed in an argon atmosphere glove box. The alloy composition has been precisely controlled and optimized to ensure good device performance. The synthesis of large volume boron (B) doped (natural and isotopic 10B) a-Se (As, Cl) alloys has been carried out by thoroughly mixing vacuum distilled and zone-refined (ZR) Se with previously synthesized Se-As master alloys, Se-Cl master alloys and B. The synthesized a-Se (B, As, Cl) alloys have been characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infra-red spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectroscopy (ICP-MS), and detector testing. The a- Se alloys have shown high promise for x-ray detectors with its high dark resistivity (10 10-10 13 Ωcm), good charge transport properties, and cost-effective large area scalability. Details of various steps about detector fabrication and testing of these imaging devices are also presented.

  3. Fabrication and application of amorphous semiconductor devices

    International Nuclear Information System (INIS)

    Kumurdjian, Pierre.

    1976-01-01

    This invention concerns the design and manufacture of elecric switching or memorisation components with amorphous semiconductors. As is known some compounds, particularly the chalcogenides, have a resistivity of the semiconductor type in the amorphous solid state. These materials are obtained by the high temperature homogeneisation of several single elements such as tellurium, arsenic, germanium and sulphur, followed by water or air quenching. In particular these compounds have useful switching and memorisation properties. In particular they have the characteristic of not suffering deterioration when placed in an environment subjected to nuclear radiations. In order to know more about the nature and properties of these amorphous semiconductors the French patent No. 71 28048 of 30 June 1971 may be consulted with advantage [fr

  4. 75 FR 70289 - Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China...

    Science.gov (United States)

    2010-11-17

    ...)] Certain Coated Paper Suitable For High-Quality Print Graphics Using Sheet-Fed Presses From China and... paper suitable for high-quality print graphics using sheet-fed presses (``certain coated paper'') from... paper industry is materially injured by reason of imports of the subject merchandise from China and...

  5. Supercapacitors based on high-quality graphene scrolls

    Science.gov (United States)

    Zeng, Fanyan; Kuang, Yafei; Liu, Gaoqin; Liu, Rui; Huang, Zhongyuan; Fu, Chaopeng; Zhou, Haihui

    2012-06-01

    High-quality graphene scrolls (GSS) with a unique scrolled topography are designed using a microexplosion method. Their capacitance properties are investigated by cyclic voltammetry, galvanostatic charge-discharge and electrical impedance spectroscopy. Compared with the specific capacity of 110 F g-1 for graphene sheets, a remarkable capacity of 162.2 F g-1 is obtained at the current density of 1.0 A g-1 in 6 M KOH aqueous solution owing to the unique scrolled structure of GSS. The capacity value is increased by about 50% only because of the topological change of graphene sheets. Meanwhile, GSS exhibit excellent long-term cycling stability along with 96.8% retained after 1000 cycles at 1.0 A g-1. These encouraging results indicate that GSS based on the topological structure of graphene sheets are a kind of promising material for supercapacitors.

  6. A roadmap to high quality chemically prepared graphene

    Energy Technology Data Exchange (ETDEWEB)

    Gengler, Regis Y N; Spyrou, Konstantinos; Rudolf, Petra, E-mail: r.gengler@rug.n, E-mail: p.rudolf@rug.n [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen (Netherlands)

    2010-09-22

    Graphene was discovered half a decade ago and proved the existence of a two-dimensional system which becomes stable as a result of 3D corrugation. It appeared very quickly that this exceptional material had truly outstanding electronic, mechanical, thermal and optical properties. Consequently a broad range of applications appeared, as the graphene science speedily moved forward. Since then, a lot of effort has been devoted not only to the study of graphene but also to its fabrication. Here we review the chemical approaches to graphene production, their advantages as well as their downsides. Our aim is to draw a roadmap of today's most reliable path to high quality graphene via chemical preparation.

  7. A roadmap to high quality chemically prepared graphene

    International Nuclear Information System (INIS)

    Gengler, Regis Y N; Spyrou, Konstantinos; Rudolf, Petra

    2010-01-01

    Graphene was discovered half a decade ago and proved the existence of a two-dimensional system which becomes stable as a result of 3D corrugation. It appeared very quickly that this exceptional material had truly outstanding electronic, mechanical, thermal and optical properties. Consequently a broad range of applications appeared, as the graphene science speedily moved forward. Since then, a lot of effort has been devoted not only to the study of graphene but also to its fabrication. Here we review the chemical approaches to graphene production, their advantages as well as their downsides. Our aim is to draw a roadmap of today's most reliable path to high quality graphene via chemical preparation.

  8. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  9. High Quality Data for Grid Integration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit; Hodge, Bri-Mathias

    2017-01-22

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.

  10. Pressure-induced transformations in amorphous silicon: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Garcez, K. M. S., E-mail: kmgarcez@ufma.br [Universidade Federal do Maranhão, 65700-000 Bacabal, Maranhão (Brazil); Antonelli, A., E-mail: aantone@ifi.unicamp.br [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, São Paulo (Brazil)

    2014-02-14

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  11. Pressure-induced transformations in amorphous silicon: A computational study

    Science.gov (United States)

    Garcez, K. M. S.; Antonelli, A.

    2014-02-01

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  12. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO{sub 3}@C composites as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Fuqiang [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Fang, Guoqing [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000 (China); Zhang, Ruixue [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); Xu, Yanhui; Zheng, Junwei [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China); Li, Decheng, E-mail: lidecheng@suda.edu.cn [Key Laboratory of Lithium Battery Materials of Jiangsu Province, Institute of chemical power sources, Soochow University, Suzhou 215006 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006 (China)

    2014-08-30

    Highlights: • The thickness of carbon coating layers can be successfully controlled through varying molar concentration of aqueous glucose solution. • Coating carbon thickness and carbon content are two important factors on the electrochemical performances of CoSnO3@C. • CoSnO{sub 3}@C under optimized conditions exhibits the optimal balance between the volume buffering effect and reversible capacity. • As-prepared CoSnO{sub 3}@C under optimized conditions shows excellent electrochemical performances, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles. - Abstract: A series of core–shell carbon coated amorphous CoSnO{sub 3} (CoSnO{sub 3}@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge–discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO{sub 3}@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g{sup −1} after 100 cycles.

  13. Structure of amorphous sulfur

    CSIR Research Space (South Africa)

    Eichinger, BE

    2001-06-01

    Full Text Available The lambda-transition of elemental sulfur occurring at about 159°C has long been associated with the conversion of cyclic S8 rings (c-S8) to amorphous polymer (a-S) via a ring opening polymerization. It is demonstrated, with the use of both density...

  14. Designed synthesis of tunable amorphous carbon nanotubes (a ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties by Longlong. Xu et al (pp 1397–1402).

  15. Report on the results of efforts for fiscal 1997. Development of technologies for creating high-quality crystal materials for low-loss power control devices; 1997 nendo seika hokokusho. Teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Basic technologies are developed for the manufacture of high-quality crystal materials large in diameter and homogeneous in property which will allow power control semiconductor devices to grow more sophisticated in function and to be lower in the loss they suffer. Physical properties of molten semiconductor and the like are measured accurately, which include surface tension, density, viscosity, electric conductivity, thermal conductivity, emissivity, diffusion coefficient, vapor pressure, heat capacity, contact angle, and solid solution equilibrium distribution coefficient. In computer-aided simulation, as in the previous year, simulation codes are developed for the analysis of flow, temperature distribution, and diffusion behavior in the gas phase; simulation codes are developed for the analysis of 3D unsteady thermal flows in the melt; and a main program is developed which governs experimental calculations. As for experiments in model Czochralski crucibles, small crucible are used in which experiments are conducted in the temperature range of normal to 200degC for the acquisition of experimental data for verification. Measured by use of the model crucibles are the temperature distribution in the bath, the surface flow speeds, and the flows inside the melt. 140 refs., 153 figs., 10 tabs.

  16. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of material/substrate manufacturing technology - Development of high-quality amorphous material/substrate manufacturing technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / zairyo kiban seizo gijutsu kaihatsu (kohinshitsu amorphous kei zairyo kiban no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A microcrystalline Si thin film is used to form the i-layer of a narrow gap a-Si based thin film solar cell. Since a microcrystalline p-layer is to act as the seeding crystal layer for the microcrystalline i-layer, it has to be very high in crystallinity and therefore is produced under high hydrogen dilution conditions. In this process, a problem arises of the darkening of the underlying transparent SnO{sub 2} electrode. Since this is due to chemical reaction on the SnO{sub 2} surface layer, blackening is prevented by shortening the film fabrication time, and then an excellently microcrystalline p-layer is obtained. Furthermore, by inserting a microcrystalline i-film buffer layer of low fabrication rate into the p/i boundary, plasma damage on the microcrystalline p-layer is inhibited for the fabrication of a microcrystalline i-layer high in crystallinity at high film fabrication rates. A high Voc is then obtained even when the microcrystalline p-layer is very thin. If the hydrogen dilution rate is too low when the i-layer film fabrication rate is high, the initially fabricated layer turns out to be thick to the detriment of film performance. On the other hand, the p-layer or the buffer layer will be etched when the hydrogen dilution rate is too high. The problem is solved by continuously varying the hydrogen dilution rate from high to low during i-layer fabrication. (NEDO)

  17. Development of shear bands in amorphous-crystalline metallic alloys

    International Nuclear Information System (INIS)

    Pozdnyakov, V.A.

    2004-01-01

    A theoretical study is made into conditions of shear band evolution in amorphous-crystalline alloys with various morphological types of structural constituents. The condition of shear band evolution in thin amorphous alloys in the interior of the crystalline matrix is obtained. It is shown that a scale effect exists which manifests itself in suppression of the process of localized plastic flow with amorphous alloy thickness decreasing down to the limit. The analysis of the condition for shear band evolution in an amorphous alloy with nanocrystalline inclusions is accomplished. The relationship of a critical stress of shear band evolution to a volume fraction of disperse crystal inclusions is obtained. A consideration is also given to the evolution of shear bands in the material containing amorphous and crystalline areas of micro meter size. For the alloy with the structure of this type conditions for propagation of localized flows by a relay race type mechanism are determined [ru

  18. Definition and properties of ideal amorphous structures

    International Nuclear Information System (INIS)

    Stachurski, Z.H.

    2002-01-01

    Full text: Amorphous structure is usually defined by what it is not (ie, no crystalline peaks in XRS, no bond correlation in NMR), rather than by what it is. The interest in defining the structure of non-crystalline materials is long standing; packing geometry of spheres, molecular structure of glassy SiO 2 , or the structure of atactic polymers are prime examples. The earliest definitions of amorphous structure were in terms of a microcrystallite model of Valenkov, or continuous random network by Zachariasen. The random close packing of spheres of equal size, and an amorphous structure, composed of freely jointed linear chains of hard spheres, has been described mathematically in terms of a linear homogeneous Poisson process. This paper aims to describe some geometrical, kinematic, and topological properties of these two ideal amorphous structures, which belong to the same amorphous class. The geometry of packing is elucidated, and the use of Voronoi tessellation method for measuring the structures is described. The ideal amorphous solid has no symmetry elements; its volume can not be divided into identical unit cells. However, there is a volume element small enough to allow the distinction of its nanoscopic inhomogeneities, and sufficiently large enough to represent, accurately the overall behaviour. We define this volume element, the representative volume element. Suitable boundary conditions must be prescribed for a choice of RVE, and satisfy certain requirements. Topologically, a catchment region on the Born-Oppenheimer potential energy surface over nuclear configuration space, is defined by Mezey and Bader as an energetically stable geometry of the open region of R 3 traversed by all the trajectories which terminate at a local maximum. Two topological properties will be described: (i) the boundaries of the catchment region as a direct geometrical correspondence to the Voronoi polyhedron for a given atom in a given structure, and (ii) the constriction points

  19. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  20. Amorphous silicon radiation detectors

    Science.gov (United States)

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  1. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Resistance FY05 HPCRM Annual Report No. Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Day, S D

    2007-01-01

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer

  2. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion.

    Science.gov (United States)

    Milne, Marnus; Liebenberg, Wilna; Aucamp, Marique

    2015-10-01

    Zopiclone is a poorly soluble psychotherapeutic agent. The aim of this study was to prepare and characterize an amorphous form of zopiclone as well as the characterization and performance of a stable amorphous solid dispersion. The amorphous form was prepared by the well-known method of quench-cooling of the melt. The solid dispersion was prepared by a solvent evaporation method of zopiclone, polyvinylpyrrolidone-25 (PVP-25), and methanol, followed by freeze-drying. The physico-chemical properties and stability of amorphous zopiclone and the solid dispersion was studied using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), hot-stage microscopy (HSM), X-ray diffractometry (XRD), solubility, and dissolution studies. The zopiclone amorphous solid-state form was determined to be a fragile glass; it was concluded that the stability of the amorphous form is influenced by both temperature and water. Exposure of amorphous zopiclone to moisture results in rapid transformation of the amorphous form to the crystalline dihydrated form. In comparison, the amorphous solid dispersion proved to be more stable with increased aqueous solubility.

  3. Transformation processes during annealing of Al-amorphous alloys

    International Nuclear Information System (INIS)

    Petrescu, N.; Petrescu, M.; Calin, M.; Jianu, A.D.; Fecioru, M.

    1993-01-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.)

  4. Transformation processes during annealing of Al-amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Petrescu, N. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Petrescu, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Calin, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania)); Jianu, A.D. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) IFTM-Bucharest (Romania)); Fecioru, M. (Polytechnic Inst. Bucharest, Faculty Materials Science and Engineering, Bucharest (Romania) DACIA Enterprise-Bucharest (Romania))

    1993-11-01

    As the amorphous aluminum alloys represent the newest achievement in rapid solidification of Al-based high strength heat resistent materials, a study was undertaken on the amorphous alloys in the Al-RE-TM system, the rare-earth metal being a lanthanide mixture and the transition metal a Ni-Fe substitution in definite proportions. The decomposition on heating of the most highly alloyed amorphous alloy in the investigated series is characterized by differential thermal analysis, electron microscopy and X-ray diffraction. (orig.).

  5. Nonaffinity in amorphous solids close to the jamming transition

    Directory of Open Access Journals (Sweden)

    Arévalo Roberto

    2017-01-01

    Full Text Available Nonaffinity is known to be an integral part of the response of amorphous solids. Its role is particularly relevant in particulate systems close to their jamming transition, where it dominates the elastic response. Thus, to determine the elastic properties of amorphous solids it is essential to rationalize the features of their nonaffine response. Via numerical simulations we investigate the relation between the non affine response and the vibrational properties of model amorphous materials. We show that, contrary to previous speculations, modes below the Boson peak are those mostly responsible for the nonaffine response.

  6. Characterization of amorphous and nanocrystalline carbon films

    International Nuclear Information System (INIS)

    Chu, Paul K.; Li Liuhe

    2006-01-01

    Amorphous and nanocrystalline carbon films possess special chemical and physical properties such as high chemical inertness, diamond-like properties, and favorable tribological proprieties. The materials usually consist of graphite and diamond microstructures and thus possess properties that lie between the two. Amorphous and nanocrystalline carbon films can exist in different kinds of matrices and are usually doped with a large amount of hydrogen. Thus, carbon films can be classified as polymer-like, diamond-like, or graphite-like based on the main binding framework. In order to characterize the structure, either direct bonding characterization methods or the indirect bonding characterization methods are employed. Examples of techniques utilized to identify the chemical bonds and microstructure of amorphous and nanocrystalline carbon films include optical characterization methods such as Raman spectroscopy, Ultra-violet (UV) Raman spectroscopy, and infrared spectroscopy, electron spectroscopic and microscopic methods such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, transmission electron microscopy, and electron energy loss spectroscopy, surface morphology characterization techniques such as scanning probe microscopy (SPM) as well as other characterization methods such as X-ray reflectivity and nuclear magnetic resonance. In this review, the structures of various types of amorphous carbon films and common characterization techniques are described

  7. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  8. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  9. Wet chemical synthesis and magnetic properties of single crystal Co nanochains with surface amorphous passivation Co layers

    Directory of Open Access Journals (Sweden)

    Zhou Shao-Min

    2011-01-01

    Full Text Available Abstract In this study, for the first time, high-yield chain-like one-dimensional (1D Co nanostructures without any impurity have been produced by means of a solution dispersion approach under permanent-magnet. Size, morphology, component, and structure of the as-made samples have been confirmed by several techniques, and nanochains (NCs with diameter of approximately 60 nm consisting of single-crystalline Co and amorphous Co-capped layer (about 3 nm have been materialized. The as-synthesized Co samples do not include any other adulterants. The high-quality NC growth mechanism is proposed to be driven by magnetostatic interaction because NC can be reorganized under a weak magnetic field. Room-temperature-enhanced coercivity of NCs was observed, which is considered to have potential applications in spin filtering, high density magnetic recording, and nanosensors. PACS: 61.46.Df; 75.50; 81.07.Vb; 81.07.

  10. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    Science.gov (United States)

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  11. Origins of amorphous interstellar grains

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    The existence of amorphous interstellar grains has been suggested from infrared observations. Some carbon stars show the far infrared emission with a lambda -1 wavelength dependence. Far infrared emission supposed to be due to silicate grains often show the lambda -1 wavelength dependence. Mid infrared spectra around 10 μm have broad structure. These may be due to the amorphous silicate grains. The condition that the condensed grains from the cosmic gas are amorphous is discussed. (author)

  12. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  13. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  14. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  15. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  16. Health hazards due to the inhalation of amorphous silica

    International Nuclear Information System (INIS)

    Merget, R.; Bruening, T.; Bauer, T.; Kuepper, H.U.; Breitstadt, R.; Philippou, S.; Bauer, H.D.

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no

  17. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  18. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  19. Fluctuation microscopy analysis of amorphous silicon models

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.M., E-mail: jmgibson@fsu.edu [Northeastern University, Department of Physics, Boston MA 02115 (United States); FAMU/FSU Joint College of Engineering, 225 Pottsdamer Street, Tallahassee, FL 32310 (United States); Treacy, M.M.J. [Arizona State University, Department of Physics, Tempe AZ 85287 (United States)

    2017-05-15

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  20. Fluctuation microscopy analysis of amorphous silicon models

    International Nuclear Information System (INIS)

    Gibson, J.M.; Treacy, M.M.J.

    2017-01-01

    Highlights: • Studied competing computer models for amorphous silicon and simulated fluctuation microscopy data. • Show that only paracrystalline/random network composite can fit published data. • Specifically show that pure random network or random network with void models do not fit available data. • Identify a new means to measure volume fraction of ordered material. • Identify unreported limitations of the Debye model for simulating fluctuation microscopy data. - Abstract: Using computer-generated models we discuss the use of fluctuation electron microscopy (FEM) to identify the structure of amorphous silicon. We show that a combination of variable resolution FEM to measure the correlation length, with correlograph analysis to obtain the structural motif, can pin down structural correlations. We introduce the method of correlograph variance as a promising means of independently measuring the volume fraction of a paracrystalline composite. From comparisons with published data, we affirm that only a composite material of paracrystalline and continuous random network that is substantially paracrystalline could explain the existing experimental data, and point the way to more precise measurements on amorphous semiconductors. The results are of general interest for other classes of disordered materials.

  1. Correlation of atomic packing with the boson peak in amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. M. [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Liu, H. S., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn; Zhao, Y. C. [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, X. J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Chen, G. X.; Man, Q. K.; Chang, C. T.; Li, R. W., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dun, C. C. [Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States); Shen, B. L., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Inoue, A. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); and others

    2014-09-28

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  2. Intrinsic charge trapping in amorphous oxide films: status and challenges

    Science.gov (United States)

    Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.

    2018-06-01

    We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection

  3. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  4. Analysis of high-quality modes in open chaotic microcavities

    International Nuclear Information System (INIS)

    Fang, W.; Yamilov, A.; Cao, H.

    2005-01-01

    We present a numerical study of the high-quality modes in two-dimensional dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in a stadium billiard, all of the high-quality modes show a 'strong scar' around unstable periodic orbits. When the deformation (ratio of the length of the straight segments over the diameter of the half circles) is small, the high-quality modes correspond to whispering-gallery-type trajectories and their quality factors decrease monotonically with increasing deformation. At large deformation, each high-quality mode is associated with multiple unstable periodic orbits. Its quality factor changes nonmonotonically with the deformation, and there exists an optimal deformation for each mode at which its quality factor reaches a local maximum. This unusual behavior is attributed to the interference of waves propagating along different constituent orbits that could minimize light leakage out of the cavity

  5. Innovative and high quality education through Open Education and OER

    OpenAIRE

    Stracke, Christian M.

    2017-01-01

    Online presentation and webinar by Stracke, C. M. (2017, 18 December) on "Innovative and high quality education through Open Education and OER" for the Belt and Road Open Education Learning Week by the Beijing Normal University, China.

  6. Improving high quality, equitable maternal health services in Malawi ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Improving high quality, equitable maternal health services in Malawi (IMCHA) ... In response, the Ministry of Health implemented a Standards-Based Management and Recognition for Reproductive Health initiative to improve ... Total funding.

  7. High Quality Education and Learning for All through Open Education

    NARCIS (Netherlands)

    Stracke, Christian M.

    2016-01-01

    Keynote at the International Lensky Education Forum 2016, Yakutsk, Republic of Sakha, Russian Federation, by Stracke, C. M. (2016, 16 August): "High Quality Education and Learning for All through Open Education"

  8. Compaction of amorphous iron–boron powder

    DEFF Research Database (Denmark)

    Hendriksen, Peter Vang; Mørup, Steen; Koch, Christian

    1993-01-01

    Large scale practical use of bulk amorphous alloys requires the capability of molding the material to a desired design, for instance by compaction of an amorphous powder. This is a difficult task because the sintering temperature is limited by the crystallization temperature of the alloy.1 Here we......, should facilitate a compaction. The passivation layer, however, impedes a compaction. Isostatic pressing at 540 K at a pressure of 200 MPa clearly illustrated this; pellets pressed from passivated powder were much more brittle than pellets pressed from unpassivated powder. The density of the pellets...... was very low ([approximately-equal-to]25% of the density of bulk FeB). We have designed a die for uniaxial pressing in which the compaction can be performed without exposing the powder to air and have obtained densities larger than 60% of that of bulk FeB. We have reported studies of the dependence...

  9. Study of an amorphous alloy core transformer

    Science.gov (United States)

    Nafalski, A.; Frost, D. C.

    1994-05-01

    Amorphous core transformers (ACT) have become a technological and commercial reality and there are an estimated 400,000 units installed worldwide [1]. Their applications reflect changes in buying practices, where the efficiency evaluation is an important factor in the purchasing decision for distribution transformers. Use of the total ownership cost (TOC) concept facilities the selection of a transformer on the basis of its performance. This concept is used in this paper to investigate the feasibility of applying a distribution ACT in Western Australian (WA). A 10 kVA ACT, evaluated by the TOC method, was compared with a traditional silicon iron core transformer of the same rating. The cost of amorphous metal (relative to alternative materials), the distribution load profile, and the values of capitalised loss costs are factors which affect the cost effectiveness of ACTs.

  10. Study on high quality spectral materials for emitted soft X-ray. Special study on inorganic materials between FY 1991 and FY 1995; Hoshako nan X sen`yo bunko zairyo no kohinshitsuka ni kansuru kenkyu. 1991 nendo - 1995 nendo muki zaishitsu tokubetsu kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-28

    This is No.93 report of National Institute for Research in Inorganic Materials. Single crystal growth of YB66 was investigated to develop the single crystal of YB66 as a spectral material for synchrotron emitted soft X-ray. The emitted light is white light including from visible radiation to hard X-ray. Usually, it is used as homogeneous light through spectra. There are K-absorption edges of Mg and Si in the region ranging from 1 to 2 keV, which is significant for material science. There has been no proper spectral elemental device for application of the emitted spectra. The YB66 is the most suitable for this purpose. For the single crystal growth of high crystalline YB66, high frequency indirect heating floating method has been developed. For the growth furnace, a mechanism has been developed, by which pressurized gas atmosphere can be sealed with magnetic fluid. At the same time, the growth axis can be driven in high accuracy. From evaluation of the elemental device, energy resolution of 0.5{times}10{sup -3} was obtained as expected. By using this spectral device, accurate measurements of XAFS and EXAFS can be conducted with excellent operability for K-absorption edges of Mg and Si. 15 refs., 54 figs., 1 tab.

  11. Study on the substrate-induced crystallisation of amorphous SiC-precursor ceramics. TIB/A; Untersuchungen zur substratinduzierten Kristallisation amorpher SiC-Precursorkeramiken

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C.

    2000-12-01

    In the present thesis the crystallization behaviour of amorphous silicon-carbon materials (SiC{sub x}) was studied. The main topic of the experimental studies formed thereby the epitactical crystallization of thin silicon carbide layers on monocrystalline substrates of silicon carbides or silicon. Furthermore by thermolysis of the polymer amorphous SiC{sub x}-powder was obtained.

  12. Amorphous alloy induction core performance in pulse condition

    International Nuclear Information System (INIS)

    Cheng Hao; Zhang Linwen; Cheng Nian'an

    2002-01-01

    The requirements and the characteristics of magnetic material (amorphous and ferrite) in linac induction accelerators (LIA) are described briefly in this paper. Experimentations are done base on the static conditions, in additional more researches are done in the pulse condition. Come to the conclusion that both materials have higher saturation magnetic swing under pulse conditions in comparison with their static conditions

  13. Pressure induced Amorphization of Ln1/3(Nb,Ta)O3

    International Nuclear Information System (INIS)

    Melchior, A.; Noked, O.; Sterer, E.; Shuker, R.

    2014-01-01

    The research focuses on the phenomenon of pressure induced amorphization (PIA) in Ln1/3MO3, Ln - La,Pr,Nd and M-Nb,Ta. In most pressure induced phase transitions the material changes from a crystalline phase to another crystalline phase. However, if this transition is kinetically hindered, the increased free energy due to the applied pressure will result in a structural collapse to an amorphous intermediate phase. This phenomenon is known as pressure induced amorphization

  14. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  15. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  16. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Energy Technology Data Exchange (ETDEWEB)

    Seacrist, Michael [SunEdison Inc., St. Peters, MO (United States)

    2017-08-15

    The objective of this project was to develop the Electrochemical Solution Growth (ESG) method conceived / patented at Sandia National Laboratory into a commercially viable bulk gallium nitride (GaN) growth process that can be scaled to low cost, high quality, and large area GaN wafer substrate manufacturing. The goal was to advance the ESG growth technology by demonstrating rotating seed growth at the lab scale and then transitioning process to prototype commercial system, while validating the GaN material and electronic / optical device quality. The desired outcome of the project is a prototype commercial process for US-based manufacturing of high quality, large area, and lower cost GaN substrates that can drive widespread deployment of energy efficient GaN-based power electronic and optical devices. In year 1 of the project (Sept 2012 – Dec 2013) the overall objective was to demonstrate crystalline GaN growth > 100um on a GaN seed crystal. The development plan included tasks to demonstrate and implement a method for purifying reagent grade salts, develop the reactor 1 process for rotating seed Electrochemical Solution Growth (ESG) of GaN, grow and characterize ESG GaN films, develop a fluid flow and reaction chemistry model for GaN film growth, and design / build an improved growth reactor capable of scaling to 50mm seed diameter. The first year’s project objectives were met in some task areas including salt purification, film characterization, modeling, and reactor 2 design / fabrication. However, the key project objective of the growth of a crystalline GaN film on the seed template was not achieved. Amorphous film growth on the order of a few tenths of a micron has been detected with a film composition including Ga and N, plus several other impurities originating from the process solution and hardware. The presence of these impurities, particularly the oxygen, has inhibited the demonstration of crystalline GaN film growth on the seed template. However, the

  17. Effect of radiation-induced amorphization on smectite dissolution.

    Science.gov (United States)

    Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G

    2010-04-01

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.

  18. Amorphization, morphological instability and crystallization of krypton ion irradiated germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1991-01-01

    Krypton ion irradiation of crystalline Ge and subsequent thermal annealing were both carried out with in situ transmission electron microscopy observations. The temperature dependence of the amorphization dose, effect of foil thickness, morphological changes during continuous irradiation of the amorphous state as well as the effect of implanted gas have been determined. The dose of 1.5 MeV Kr required for amorphization increases with increasing temperature. At a fixed temperature, the amorphization dose is higher for thicker regions of the specimen. Continuous irradiation of amorphous Ge at room temperature results in a high density of small cavities which grow with increasing dose. Cavities do not coalesce during growth but develop into irregular-shaped holes that eventually transform the amorphous Ge into a sponge-like material. Formation of the spongy structure is independent of Kr implantation. The crystallization temperature and the morphology of recrystallized Ge depend on the Kr + dose. Voids are expelled from recrystallized Ge, while the sponge-like structure is retained after crystallization. (author)

  19. Mechanical response of melt-spun amorphous filaments

    International Nuclear Information System (INIS)

    Leal, A A; Reifler, F A; Hufenus, R; Mohanty, G; Michler, J

    2014-01-01

    High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials. (paper)

  20. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  1. Amorphous Diamond MEMS and Sensors

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater

  2. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  3. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  4. Properties of amorphous rare earth-transition metal thin films relevant to thermomagnetic recording

    International Nuclear Information System (INIS)

    Biesterbos, J.W.M.

    1979-01-01

    Properties of amorphous RE-(Fe, Co) thin films relevant to thermomagnetic recording are reviewed. Attention is paid to the writing-, reading- and erasure process. The advantages and disadvantages of the amorphous materials are considered. Experimental data on the writing process are given

  5. Learning Disabilities and Achieving High-Quality Education Standards

    Science.gov (United States)

    Gartland, Debi; Strosnider, Roberta

    2017-01-01

    This is an official document of the National Joint Committee on Learning Disabilities (NJCLD), of which Council for Learning Disabilities is a long-standing, active member. With this position paper, NJCLD advocates for the implementation of high-quality education standards (HQES) for students with learning disabilities (LD) and outlines the…

  6. extraction of high quality dna from polysaccharides-secreting ...

    African Journals Online (AJOL)

    cistvr

    A DNA extraction method using CTAB was used for the isolation of genomic DNA from ten. Xanthomonas campestris pathovars, ten isolates of Xanthomonas albilineans and one isolate of. Pseudomonas rubrisubalbicans. High quality DNA was obtained that was ideal for molecular analy- ses. Extracellular polysaccharides ...

  7. Negative Binomial charts for monitoring high-quality processes

    NARCIS (Netherlands)

    Albers, Willem/Wim

    Good control charts for high quality processes are often based on the number of successes between failures. Geometric charts are simplest in this respect, but slow in recognizing moderately increased failure rates p. Improvement can be achieved by waiting until r > 1 failures have occurred, i.e. by

  8. Synthesis and spectroscopic study of high quality alloy Cdx S ...

    Indian Academy of Sciences (India)

    Wintec

    In the present study, we report the synthesis of high quality CdxZn1–xS nanocrystals alloy at. 150°C with .... (XRD) using a Siemens model D 500, powder X-ray ... decays were analysed using IBH DAS6 software. 3. ... This alloying process is.

  9. Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-05-01

    Based on a rational classification of defects in amorphous materials, we propose a simplified model to describe intrinsic defects and hydrogen impurities in amorphous indium gallium zinc oxide (a -IGZO). The proposed approach consists of organizing defects into two categories: point defects, generating structural anomalies such as metal—metal or oxygen—oxygen bonds, and defects emerging from changes in the material stoichiometry, such as vacancies and interstitial atoms. Based on first-principles simulations, it is argued that the defects originating from the second group always act as perfect donors or perfect acceptors. This classification simplifies and rationalizes the nature of defects in amorphous phases. In a -IGZO, the most important point defects are metal—metal bonds (or small metal clusters) and peroxides (O - O single bonds). Electrons are captured by metal—metal bonds and released by the formation of peroxides. The presence of hydrogen can lead to two additional types of defects: metal-hydrogen defects, acting as acceptors, and oxygen-hydrogen defects, acting as donors. The impact of these defects is linked to different instabilities observed in a -IGZO. Specifically, the diffusion of hydrogen and oxygen is connected to positive- and negative-bias stresses, while negative-bias illumination stress originates from the formation of peroxides.

  10. Rapidly quenched amorphous and microcrystalline solders for atomic power industry

    International Nuclear Information System (INIS)

    Kalin, V.A.; Fedotov, V.T.; Sevryukov, O.N.; Grigor'ev, A.E.; Skuratov, L.A.; Sulaberidze, V.Sh.; Yurchenko, A.D.; Sokolov, V.F.; Rodionov, V.A.

    1996-01-01

    The possibility of using strip amorphous brazing alloys STEMET on Ni, Cu, Ti or Al base to braze various materials (stainless steels - zirconium, ceramics - metal, copper alloys, titanium alloys, cermets, molybdenum, beryllium) is under study. Experimental bench is designed and brazing regimes are developed for various dissimilar materials. Mechanical and corrosion tests of brazed joints show that rapidly quenching STEMET type brazing alloys are promising materials for manufacturing components of irradiating devices [ru

  11. Formation of a high quality electron beam using photo cathode RF electron gun

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    Formation of a high quality electron beam using photo cathode RF electron gun is expected for formation of a next generation high brilliant X-ray beam and a source for electron and positron collider. And, on a field of material science, as is possible to carry out an experiment under ultra short pulse and extremely high precision in time, it collects large expectation. Recently, formation of high quality beam possible to develop for multi directions and to use by everyone in future has been able to realize. Here were explained on electron beam source, principle and component on RF electron gun, working features on RF gun, features and simulation of RF gun under operation, and some views in near future. (G.K.)

  12. High quality junctions by interpenetration of vapor liquid solid grown nanostructures for microchip integration

    Energy Technology Data Exchange (ETDEWEB)

    Jebril, Seid; Kuhlmann, Hanna; Adelung, Rainer [Funktionale Nanomaterialien, CAU Kiel (Germany); Mueller, Sven [Nanowires and Thin Films, II. Physikalisches Institut, Goettingen (Germany); Ronning, Carsten [Institute for Solid State Physics, Universitaet Jena (Germany); Kienle, Lorenz [Synthese und Realstruktur, CAU Kiel (Germany); Duppel, Viola [MPI fuer Festkoerperforschung, Stuttgart (Germany)

    2009-07-01

    The usability of nanostructures in electrical devices like gas sensors depends critically on the ability to form high quality contacts and junctions. For the fabrication of various nanostructures, vapor-liquid-solid (VLS) growth is a wide spread and very efficient technique. However, forming contacts with the VLS grown structures to utilize them in a device is still tedious, because either the substrate has to be epitaxial to the VLS material or a manual alignment is necessary. Here we demonstrate the contact formation by simply using the ability of individual crystals to interpenetrate each other during the straight forward VLS growth. This allows growing VLS structures directly on two neighboring gold circuit paths of a microchip; bridges over predefined gaps will be formed. Moreover, TEM investigations confirm the high quality of the crystalline junctions that allow demonstrations as UV and hydrogen-sensor. The VLS devices are compared with conventional produced.

  13. Generation of amorphous ceramic capacitor coatings on titanium using a continuous sol-gel process

    International Nuclear Information System (INIS)

    Dixon, B.G.; Walsh, M.A. III; Phillips, P.G.; Morris, R.S.

    1995-01-01

    Thin amorphous films of ceramic capacitor materials were successfully deposited using sol-gel chemistry onto titanium wire using a continuous, computer controlled process. By repeatedly depositing and calcining very thin layers of material, smooth and even coats can be produced. Surface analyses revealed the layered nature of these thin coats, as well as the amorphous nature of the ceramic. The electrical properties of the better coatings, all composed of niobium, bismuth, zinc oxides, were then evaluated. copyright 1995 Materials Research Society

  14. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and

  15. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    Science.gov (United States)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  16. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    Science.gov (United States)

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation

  17. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  18. Theory of structure and properties of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chiarotti, G.L.; Car, R. (International School of Advanced Studies, Trieste (Italy) Interuniversitario Nazionale di Fisica della Materia (INFM), Trieste (Italy). Lab. Tecnologie Avanzate Superfici e Catalisi); Buda, F. (International School of Advanced Studies, Trieste (Italy) Ohio State Univ., Columbus, OH (USA). Dept. of Physics); Parrinello, M. (International School of Advanced Studies, Trieste

    1990-01-01

    We have generated a computer model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data, and provide new insight into the microscopic structure of this material. This should lead to a better understanding of the hydrogenation process. 13 refs., 2 figs.

  19. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torricelli, Gauthier; van Zwol, Peter J.; Shpak, Olex; Palasantzas, George; Svetovoy, Vitaly B.; Binns, Chris; Kooi, Bart J.; Jost, Peter; Wuttig, Matthias

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a significant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and non-volatile

  20. Casimir Force Contrast Between Amorphous and Crystalline Phases of AIST

    NARCIS (Netherlands)

    Torrichelli, G.; van Zwol, P.J.; Shpak, O.; Palasantzas, G.; Svetovoy, Vitaly; Binns, C.; Kooi, B.J.; Jost, P.; Wittig, M.

    2012-01-01

    Phase change materials (PCMs) can be rapidly and reversibly switched between the amorphous and crystalline state. The structural transformation is accompanied by a signifi cant change of optical and electronic properties rendering PCMs suitable for rewritable optical data storage and nonvolatile

  1. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  2. Effect of the milling conditions on the degree of amorphization of selenium by milling in a planetary ball mill

    International Nuclear Information System (INIS)

    Ksiazek, K; Wacke, S; Gorecki, T; Gorecki, Cz

    2007-01-01

    The effect of the milling parameters (rotation speed of the milling device and duration of milling) on the phase composition of the products of milling of fully crystalline selenium has been investigated. The milling was conducted using a planetary micromill and the phase composition of the milling products was determined by differential thermal analysis. It has been found that ball milling leads to the partial amorphization of the starting crystalline material. The content of amorphous phase in the milling products depends, in a rather complicated way, on the milling parameters. At the milling parameters adopted in the present study, the milling product was never fully amorphous. The complicated way the milling parameters affect the content of amorphous phase in the milling products is a result of competition of two processes: amorphization due to deformation and refinement of grains of milled material and crystallization of the already produced amorphous material at the cost of heat evolved in the milling vial during the milling process

  3. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  4. Next Generation High Quality Videoconferencing Service for the LHC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    In recent times, we have witnessed an explosion of video initiatives in the industry worldwide. Several advancements in video technology are currently improving the way we interact and collaborate. These advancements are forcing tendencies and overall experiences: any device in any network can be used to collaborate, in most cases with an overall high quality. To cope with this technology progresses, CERN IT Department has taken the leading role to establish strategies and directions to improve the user experience in remote dispersed meetings and remote collaboration at large in the worldwide LHC communities. Due to the high rate of dispersion in the LHC user communities, these are critically dependent of videoconferencing technology, with a need of robustness and high quality for the best possible user experience. We will present an analysis of the factors that influenced the technical and strategic choices to improve the reliability, efficiency and overall quality of the LHC remote sessions. In particular, ...

  5. Wellbeing Understanding in High Quality Healthcare Informatics and Telepractice.

    Science.gov (United States)

    Fiorini, Rodolfo A; De Giacomo, Piero; L'Abate, Luciano

    2016-01-01

    The proper use of healthcare informatics technology and multidimensional conceptual clarity are fundamental to create and boost outstanding clinical and telepractice results. Avoiding even terminology ambiguities is mandatory for high quality of care service. For instance, well-being or wellbeing is a different way to write the same concept only, or there is a good deal of ambiguity around the meanings of these terms the way they are written. In personal health, healthcare and healthcare informatics, this kind of ambiguity and lack of conceptual clarity has been called out repeatedly over the past 50 years. It is time to get the right, terse scenario. We present a brief review to develop and achieve ultimate wellbeing understanding for practical high quality healthcare informatics and telepractice application. This article presents an innovative point of view on deeper wellbeing understanding towards its increased clinical effective application.

  6. Amorphous titanium-oxide supercapacitors

    OpenAIRE

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-01-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7?mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large r...

  7. Methods and systems for fabricating high quality superconducting tapes

    Science.gov (United States)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  8. Process to Continuously Melt, Refine and Cast High Quality Steel

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    The purpose of this project is to conduct research and development targeted at designing a revolutionary steelmaking process. This process will deliver high quality steel from scrap to the casting mold in one continuous process and will be safer, more productive, and less capital intensive to build and operate than conventional steelmaking. The new process will produce higher quality steel faster than traditional batch processes while consuming less energy and other resources.

  9. High-quality uniform dry transfer of graphene to polymers.

    Science.gov (United States)

    Lock, Evgeniya H; Baraket, Mira; Laskoski, Matthew; Mulvaney, Shawn P; Lee, Woo K; Sheehan, Paul E; Hines, Daniel R; Robinson, Jeremy T; Tosado, Jacob; Fuhrer, Michael S; Hernández, Sandra C; Walton, Scott G

    2012-01-11

    In this paper we demonstrate high-quality, uniform dry transfer of graphene grown by chemical vapor deposition on copper foil to polystyrene. The dry transfer exploits an azide linker molecule to establish a covalent bond to graphene and to generate greater graphene-polymer adhesion compared to that of the graphene-metal foil. Thus, this transfer approach provides a novel alternative route for graphene transfer, which allows for the metal foils to be reused. © 2011 American Chemical Society

  10. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  11. Long quantum channels for high-quality entanglement transfer

    International Nuclear Information System (INIS)

    Banchi, L; Apollaro, T J G; Cuccoli, A; Verrucchi, P; Vaia, R

    2011-01-01

    High-quality quantum-state and entanglement transfer can be achieved in an unmodulated spin bus operating in the ballistic regime, which occurs when the endpoint qubits A and B are nonperturbatively coupled to the chain by a suitable exchange interaction j 0 . Indeed, the transition amplitude characterizing the transfer quality exhibits a maximum for a finite optimal value j opt 0 (N), where N is the channel length. We show that j opt 0 (N) scales as N -1/6 for large N and that it ensures a high-quality entanglement transfer even in the limit of arbitrarily long channels, almost independently of the channel initialization. For instance, for any chain length the average quantum-state transmission fidelity exceeds 90% and decreases very little in a broad neighbourhood of j opt 0 (N). We emphasize that, taking the reverse point of view, should j 0 be experimentally constrained, high-quality transfer can still be obtained by adjusting the channel length to its optimal value. (paper)

  12. High-quality cardiopulmonary resuscitation: current and future directions.

    Science.gov (United States)

    Abella, Benjamin S

    2016-06-01

    Cardiopulmonary resuscitation (CPR) represents the cornerstone of cardiac arrest resuscitation care. Prompt delivery of high-quality CPR can dramatically improve survival outcomes; however, the definitions of optimal CPR have evolved over several decades. The present review will discuss the metrics of CPR delivery, and the evidence supporting the importance of CPR quality to improve clinical outcomes. The introduction of new technologies to quantify metrics of CPR delivery has yielded important insights into CPR quality. Investigations using CPR recording devices have allowed the assessment of specific CPR performance parameters and their relative importance regarding return of spontaneous circulation and survival to hospital discharge. Additional work has suggested new opportunities to measure physiologic markers during CPR and potentially tailor CPR delivery to patient requirements. Through recent laboratory and clinical investigations, a more evidence-based definition of high-quality CPR continues to emerge. Exciting opportunities now exist to study quantitative metrics of CPR and potentially guide resuscitation care in a goal-directed fashion. Concepts of high-quality CPR have also informed new approaches to training and quality improvement efforts for cardiac arrest care.

  13. Integration study of high quality teaching resources in universities

    Directory of Open Access Journals (Sweden)

    Honglu Liu

    2012-12-01

    Full Text Available Purpose: The development level and quality of education depend on the merits and efficiency in the use of teaching resources, especially in the case of obvious contradiction between the demand and supply of teaching resources. So to integrate teaching resources, improve the efficiency in the use of high quality teaching resources, and take the road of content development to enhance the competitiveness of education has become very important and urgent.Design/methodology/approach: On the basis of analysis on the teaching resources of universities and the problems they faced, this paper introduced the basic concepts of cloud storage, and built the integration architecture of high quality teaching resources in universities based on the cloud storage.Findings and Originality/value: The HDFS-based cloud storage proposed in this paper is a dynamically adjustable and Internet-based storage solution, and the users can access storage targets using the network through a common and easy-to-use protocol and application programming interfaces. This new technology is useful for end users benefits. With the continuous development and improvement of cloud storage, it will necessarily result in more and more applications in the institutions of higher learning and education network.Originality/value: This paper introduced the cloud storage into the integration of high quality teaching resources in universities first and as a new form of service, it can be a good solution.

  14. Radiation damage in amorphous solids - a computer simulation

    International Nuclear Information System (INIS)

    Chaki, T.K.; Li, J.C.M.

    1984-01-01

    It is known for crystalline materials that injection of high energy atoms introduces point defects. The nature of defects is not known for amorphous solids. So a molecular dynamic simulation of radiation damage in an amorphous metal was carried out. An amorphous structure of 685 atoms with periodic boundary conditions in all 3 dimensions was equilibrated first. Then one atom on the surface was given a high initial velocity so it was injected inward. Radial temperature distribution around the line of injection was calculated as a function of time. Void distribution and its evolution with time in the direction of injection was calculated by counting the atomic centers in thin slabs perpendicular to the line of injection. The swelling of the whole solid was calculated also. Some results are compared with experiments

  15. Amorphous areas in the cytoplasm of Dendrobium tepal cells

    Science.gov (United States)

    van Doorn, Wouter G.; Kirasak, Kanjana; Ketsa, Saichol

    2013-01-01

    In Dendrobium flowers some tepal mesophyll cells showed cytoplasmic areas devoid of large organelles. Such amorphous areas comprised up to about 40% of the cross-section of a cell. The areas were not bound by a membrane. The origin of these areas is not known. We show data suggesting that they can be formed from vesicle-like organelles. The data imply that these organelles and other material become degraded inside the cytoplasm. This can be regarded as a form of autophagy. The amorphous areas became surrounded by small vacuoles, vesicles or double membranes. These seemed to merge and thereby sequester the areas. Degradation of the amorphous areas therefore seemed to involve macroautophagy. PMID:23823702

  16. Defect kinetics and resistance to amorphization in zirconium carbide

    International Nuclear Information System (INIS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2015-01-01

    To better understand the radiation response of zirconium carbide (ZrC), and in particular its excellent resistance to amorphization, we have used density functional theory methods to study the kinetics of point defects in ZrC. The migration barriers and recombination barriers of the simple point defects are calculated using the ab initio molecular dynamics simulation and the nudged elastic band method. These barriers are used to estimate C and Zr interstitial and vacancy diffusion and Frenkel pair recombination rates. A significant barrier for C Frenkel pair recombination is found but it is shown that a large concentration of C vacancies reduces this barrier dramatically, allowing facile healing of radiation damage. The mechanisms underlying high resistance to amorphization of ZrC were analyzed from the perspectives of structural, thermodynamic, chemical and kinetic properties. This study provides insights into the amorphization resistance of ZrC as well as a foundation for understanding general radiation damage in this material

  17. Cooling rate effects on structure of amorphous graphene

    International Nuclear Information System (INIS)

    Van Hoang, Vo

    2015-01-01

    Simple monatomic amorphous 2D models with Honeycomb structure are obtained from 2D simple monatomic liquids with Honeycomb interaction potential (Rechtsman et al., Phys. Rev. Lett. 95, 228301 (2005)) via molecular dynamics (MD) simulations. Models are observed by cooling from the melt at various cooling rates. Temperature dependence of thermodynamic and structural properties including total energy, mean ring size, mean coordination number is studied in order to show evolution of structure and thermodynamics upon cooling from the melt. Structural properties of the amorphous Honeycomb structures are studied via radial distribution function (RDF), coordination number and ring distributions together with 2D visualization of the atomic configurations. Amorphous Honeycomb structures contain a large amount of structural defects including new ones which have not been previously reported yet. Cooling rate dependence of structural properties of the obtained amorphous Honeycomb structures is analyzed. Although amorphous graphene has been proposed theoretically and/or recently obtained by the experiments, our understanding of structural properties of the system is still poor. Therefore, our simulations highlight the situation and give deeper understanding of structure and thermodynamics of the glassy state of this novel 2D material

  18. Bringing nanomagnetism to the mesoscale with artificial amorphous structures

    Science.gov (United States)

    Muscas, G.; Brucas, R.; Jönsson, P. E.

    2018-05-01

    In the quest for materials with emergent or improved properties, an effective route is to create artificial superstructures. Novel properties emerge from the coupling between the phases, but the strength of this coupling depends on the quality of the interfaces. Atomic control of crystalline interfaces is notoriously complicated and to elude that obstacle, we suggest here an all-amorphous design. Starting from a model amorphous iron alloy, we locally tune the magnetic behavior by creating boron-doped regions by means of ion implantation through a lithographic mask. This process preserves the amorphous environment, creating a non-topographic magnetic superstructure with smooth interfaces and no structural discontinuities. The absence of inhomogeneities acting as pinning centers for the magnetization reversal is demonstrated by the formation of magnetic vortexes for ferromagnetic disks as large as 20 µm in diameter embedded within a paramagnetic matrix. Rigid exchange coupling between two amorphous ferromagnetic phases in a microstructured sample is evidenced by an investigation involving first-order reversal curves. The sample consists of a soft matrix with embedded elements constituting a hard phase where the anisotropy originates from an elongated shape of the elements. We provide an intuitive explanation for the micrometer-range exchange coupling mechanism and discuss how to tailor the properties of all-amorphous superstructures.

  19. Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System.

    Science.gov (United States)

    Xu, Jianbao; Hu, Junxiong; Li, Qi; Wang, Rubing; Li, Weiwei; Guo, Yufen; Zhu, Yongbo; Liu, Fengkui; Ullah, Zaka; Dong, Guocai; Zeng, Zhongming; Liu, Liwei

    2017-07-01

    Chemical vapor deposition (CVD) growth of high-quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high-quality and a large-quantity graphene films, simultaneously, at a fast growth rate, regardless of roll-to-roll (R2R) or batch-to-batch (B2B) methods. Here, a stationary-atmospheric-pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.5 µm s -1 , is demonstrated. The monolayer graphene of batch production is found to nucleate from arrays of well-aligned domains, and the films possess few defects and exhibit high carrier mobility up to 6944 cm 2 V -1 s -1 at room temperature. The results indicate that the SAPCVD system combined with single-domain Cu(111) substrates makes it possible to realize fast batch-growth of high-quality graphene films, which opens up enormous opportunities to use this unique 2D material for industrial device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Production of amorphous alloys by ion implantation

    International Nuclear Information System (INIS)

    Grant, W.A.; Chadderton, L.T.; Johnson, E.

    1978-01-01

    Recent data are reported on the use of ion implantation to produce amorphous metallic alloys. In particular data on the dose dependence of the crystalline to amorphous transition induced by P + implantation of nickel is presented. (Auth.)

  1. Amorphous nanoparticles — Experiments and computer simulations

    International Nuclear Information System (INIS)

    Hoang, Vo Van; Ganguli, Dibyendu

    2012-01-01

    The data obtained by both experiments and computer simulations concerning the amorphous nanoparticles for decades including methods of synthesis, characterization, structural properties, atomic mechanism of a glass formation in nanoparticles, crystallization of the amorphous nanoparticles, physico-chemical properties (i.e. catalytic, optical, thermodynamic, magnetic, bioactivity and other properties) and various applications in science and technology have been reviewed. Amorphous nanoparticles coated with different surfactants are also reviewed as an extension in this direction. Much attention is paid to the pressure-induced polyamorphism of the amorphous nanoparticles or amorphization of the nanocrystalline counterparts. We also introduce here nanocomposites and nanofluids containing amorphous nanoparticles. Overall, amorphous nanoparticles exhibit a disordered structure different from that of corresponding bulks or from that of the nanocrystalline counterparts. Therefore, amorphous nanoparticles can have unique physico-chemical properties differed from those of the crystalline counterparts leading to their potential applications in science and technology.

  2. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; MARTINEZ-MIRANDA,L.J.; BARBOUR,J. CHARLES; SIMPSON,REGINA L.; OVERMYER,DONALD L.

    2000-01-27

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetic and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of 3- and 4-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetic of PLD growth results in films becoming more ``diamondlike'', i.e. increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film.

  3. Fabrication of high quality ordered porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Liu Kai; Du Kai; Chen Jing; Zhou Lan; Zhang Lin; Fang Yu

    2010-01-01

    The preparation of porous anodic aluminum oxide (AAO) templates has been studied with oxalic acid as electrolyte. The morphology of the as-prepared templates has been characterized by field-emission scanning electron microscope (FE-SEM). The pores distributed orderly and uniformly with the diameter ranging from 40 nm to 70 nm. The experimental results indicate that electrolyte concentration, oxidation voltage, oxidation temperature and oxidation time affect the structure of AAO templates. Ordered porous AAO templates can be derived without annealing and finishing. X-ray diffraction (XRD) analysis indicates that the aluminum oxide film is mainly composed of amorphous Al 2 O 3 . (authors)

  4. Optical response of thin amorphous films to infrared radiation

    Science.gov (United States)

    Orosco, J.; Coimbra, C. F. M.

    2018-03-01

    We briefly review the electrical-optical response of materials to radiative forcing within the formalism of the Kramers-Kronig relations. A commensurate set of criteria is described that must be met by any frequency-domain model representing the time-domain response of a real (i.e., physically possible) material. The criteria are applied to the Brendel-Bormann (BB) oscillator, a model that was originally introduced for its fidelity at reproducing the non-Lorentzian peak broadening experimentally observed in the infrared absorption by thin amorphous films but has since been used for many other common materials. We show that the BB model fails to satisfy the established physical criteria. Taking an alternative approach to the model derivation, a physically consistent model is proposed. This model provides the appropriate line-shape broadening for modeling the infrared optical response of thin amorphous films while adhering strictly to the Kramers-Kronig criteria. Experimental data for amorphous alumina (Al2O3 ) and amorphous quartz silica (SiO2) are used to obtain model parametrizations for both the noncausal BB model and the proposed causal model. The proposed model satisfies consistency criteria required by the underlying physics and reproduces the experimental data with better fidelity (and often with fewer parameters) than previously proposed permittivity models.

  5. High-Quality Fe-doped TiO2 films with Superior Visible-Light Performance

    DEFF Research Database (Denmark)

    Su, Ren; Bechstein, Ralf; Kibsgaard, Jakob

    2012-01-01

    We report on high-quality polycrystalline Fe-doped TiO2 (Fe–TiO2) porous films synthesized via one-step electrochemical oxidation. We demonstrate that delicate properties such as the impurity concentration and the microstructure that strongly influence the performance of the material for photovol...

  6. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    Science.gov (United States)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height

  7. Amorphous titanium-oxide supercapacitors

    Science.gov (United States)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko

    2016-10-01

    The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here we show that a supercapacitor, constructed with a distributed constant-equipment circuit of large resistance and small capacitance on the amorphous TiO2-x surface, illuminated a red LED for 37 ms after it was charged with 1 mA at 10 V. The fabricated device showed no dielectric breakdown up to 1,100 V. Based on this approach, further advances in the development of amorphous titanium-dioxide supercapacitors might be attained by integrating oxide ribbons with a micro-electro mechanical system.

  8. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  9. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  10. Growth of high quality large area MgB2 thin films by reactive evaporation

    OpenAIRE

    Moeckly, Brian H.; Ruby, Ward S.

    2006-01-01

    We report a new in-situ reactive deposition thin film growth technique for the production of MgB2 thin films which offers several advantages over all existing methods and is the first deposition method to enable the production of high-quality MgB2 films for real-world applications. We have used this growth method, which incorporates a rotating pocket heater, to deposit MgB2 films on a variety of substrates, including single-crystalline, polycrystalline, metallic, and semiconductor materials u...

  11. High quality-factor fano metasurface comprising a single resonator unit cell

    Science.gov (United States)

    Sinclair, Michael B.; Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Campione, Salvatore; Brener, Igal; Liu, Sheng

    2017-06-20

    A new monolithic resonator metasurface design achieves ultra-high Q-factors while using only one resonator per unit cell. The metasurface relies on breaking the symmetry of otherwise highly symmetric resonators to induce intra-resonator mixing of bright and dark modes (rather than inter-resonator couplings), and is scalable from the near-infrared to radio frequencies and can be easily implemented in dielectric materials. The resulting high-quality-factor Fano metasurface can be used in many sensing, spectral filtering, and modulation applications.

  12. Memristive effects in oxygenated amorphous carbon nanodevices

    Science.gov (United States)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  13. Diffusion in amorphous media

    Science.gov (United States)

    Iotov, Mihail S.

    The goals of this research are twofold: First, to develop methods and tools for studying problems in chemistry, material science and biology, as well as accurate prediction of the properties of structures and materials of importance to those fields. Second, use those tools to apply the methods to practical problems. In terms of methodology development this thesis focuses on two topics: One: Development of a massively parallel computer program to perform electronic, atomic, molecular levels simulations of problems in chemistry, material science and biology. This computer program uses existing and emerging hardware platforms and parallel tools and is based on decades long research in computer modeling and algorithms. We report on that development in Chapter 3. Two: Development of tools for Molecular Dynamics simulation and methods and tools for course-grained meso-scale modeling of transport properties and especially diffusion of gas penetrants in polymers. We have formulated a new method for extracting coarse-grained information from short (0.2-0.5 nanoseconds [ns]) MD simulations and use this in a meso-scale simulation to calculate diffusion constants in polymer matrices. This is a grid-based method, which calculates the average probability of each grid point of being a void and performs constrained and biased Monte Carlo (MC) dynamics to reach much longer time regimes than possible in MD. The MC method mimics the three regimes of mean square deviation (MSD) behavior seen in MD, thus accounting for the proper mobility of the voids and the compressibility of the polymer matrix. Theoretical discussions and justification for the method is presented in chapter 6. Initial results on He diffusion in a low-density polyethylene (PE) matrix are presented in chapter 7. The behavior at different temperatures follows closely the trend observed from calibrating long term MD for this particular system.

  14. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  15. High-quality collection and disposal of WEEE: Environmental impacts and resultant issues.

    Science.gov (United States)

    Baxter, John; Lyng, Kari-Anne; Askham, Cecilia; Hanssen, Ole Jørgen

    2016-11-01

    Life cycle assessment of the collection, transport and recycling of various types of waste electrical and electronic equipment (WEEE) in Norway shows that small amounts of critical materials (refrigerants, precious/trace metals) are vital for the overall environmental accounts of the value chains. High-quality recycling ensures that materials and energy are effectively recovered from WEEE. This recovery means that responsible waste handling confers net environmental benefits in terms of global warming potential (GWP), for all types of WEEE analysed. For refrigeration equipment, the potential reduction of GWP by high-quality recycling is so large as to be of national significance. For all waste types, the magnitude of the net benefit from recovering materials and energy exceeds the negative consequences of irresponsible disposal. One outcome of this may be widespread misunderstanding of the need for recycling. Furthermore, framing public communication on recycling in terms of avoiding negative consequences, as is essentially universal, may not convey an appropriate message. The issue is particularly important where the consumer regards products as relatively disposable and environmentally benign, and/or where the "null option" of retaining the product at end-of-life is especially prevalent. The paper highlights the implications of all these issues for policy-makers, waste collectors and recyclers, and consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Key factors for a high-quality VR experience

    Science.gov (United States)

    Champel, Mary-Luc; Doré, Renaud; Mollet, Nicolas

    2017-09-01

    For many years, Virtual Reality has been presented as a promising technology that could deliver a truly new experience to users. The media and entertainment industry is now investigating the possibility to offer a video-based VR 360 experience. Nevertheless, there is a substantial risk that VR 360 could have the same fate as 3DTV if it cannot offer more than just being the next fad. The present paper aims at presenting the various quality factors required for a high-quality VR experience. More specifically, this paper will focus on the main three VR quality pillars: visual, audio and immersion.

  17. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  18. Methods and systems for fabricating high quality superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Majkic, Goran; Selvamanickam, Venkat

    2018-02-13

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  19. Enhancement of Wound Healing in Normal and Diabetic Mice by Topical Application of Amorphous Polyphosphate. Superior Effect of a Host–Guest Composite Material Composed of Collagen (Host and Polyphosphate (Guest

    Directory of Open Access Journals (Sweden)

    Werner E.G. Müller

    2017-07-01

    Full Text Available The effect of polyphosphate (polyP microparticles on wound healing was tested both in vitro and in a mice model in vivo. Two approaches were used: pure salts of polyphosphate, fabricated as amorphous microparticles (MPs, consisting of calcium and magnesium salts of polyP, “Ca–polyp-MPs” and “Mg–polyp-MPs”, and host–guest composite particles, prepared from amorphous collagen (host and polyphosphate (guest, termed “col/polyp-MPs”. Animal experiments with polyP on healing of excisional wounds were performed using both normal mice and diabetic mice. After a healing period of 7 days “Ca–polyp-MP” significantly improved re-epithelialization in normal mice from 31% (control to 72% (polyP microparticle-treated. Importantly, in diabetic mice, particularly the host–guest particles “col/polyp-MP”, increased the rate of re-epithelialization to ≈40% (control, 23%. In addition, those particles increased the expression of COL-I and COL-III as well as the expression the α-smooth muscle actin and the plasminogen activator inhibitor-1. We propose that “Ca–polyp-MPs”, and particularly the host–guest “col/polyp-MPs” are useful for topical treatment of wounds.

  20. Production and properties of light-metal base amorphous alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Masumoto, Tsuyoshi

    1993-01-01

    Light-metal base alloys with high specific strength and good corrosion resistance were produced through amorphization of Al and Mg-based alloys. The amorphous phase is formed in rapidly solidified Al-TM-Ln and Mg-TM-Ln (TM=transition metal, Ln=lanthanide metal) alloys. The highest tensile strength (σ f ) reaches 1,330 MPa for the Al base and 830 MPa for the Mg base. Furthermore, the Mg-based alloys have a large glass-forming capacity which enables to produce an amorphous phase by a metallic mold casting method. The extrusion of the Al-based amorphous powders at temperatures above crystallization temperature caused the formation of high strength materials with finely mixed structure consisting of dispersed intermetallic compounds in an Al matrix. The highest values of σ f and fatigue limit are as high as 940 and 313 MPa, respectively, at room temperature and 520 and 165 MPa at 473 K. The extruded Al-Ni-Mm alloy has already been used as machine parts and subsequent further development as practical materials is expected by taking these advantages

  1. Percutaneous vertebroplasty with a high-quality rotational angiographic unit

    Energy Technology Data Exchange (ETDEWEB)

    Pedicelli, Alessandro [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: apedicelli@rm.unicatt.it; Rollo, Massimo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mrollo@rm.unicatt.it; Piano, Mariangela [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: mariangela.piano@gmail.com; Re, Thomas J. [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: tomjre@gmail.com; Cipriani, Maria C. [Department of Gerontology, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: alexped@yahoo.com; Colosimo, Cesare [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: colosimo@rm.unicatt.it; Bonomo, Lorenzo [Department of Bioimaging and Radiological Sciences, Catholic University of Sacred Heart, Policl. A.Gemelli, l.go Gemelli 1, 00168 Rome (Italy)], E-mail: lbonomo@rm.unicatt.it

    2009-02-15

    We evaluated the reliability of a rotational angiographic unit (RA) with flat-panel detector as a single technique to guide percutaneous vertebroplasty (PVP) and for post-procedure assessment by 2D and 3D reformatted images. Fifty-five consecutive patients (104 vertebral bodies) were treated under RA fluoroscopy. Rotational acquisitions with 2D and 3D reconstruction were obtained in all patients for immediate post-procedure assessment. In complex cases, this technique was also used to evaluate the needle position during the procedure. All patients underwent CT scan after the procedure. RA and CT findings were compared. In all cases, a safe trans-pedicular access and an accurate control of the bone-cement injection were successfully performed with high-quality fluoroscopy, even at the thoracic levels and in case of vertebra plana. 2D and 3D rotational reconstructions permitted CT-like images that clearly showed needle position and were similar to CT findings in depicting intrasomatic implant-distribution. RA detected 40 cement leakages compared to 42 demonstrated by CT and showed overall 95% sensitivity and 100% specificity compared to CT for final post-procedure assessment. Our preliminary results suggest that high-quality RA is reliable and safe as a single technique for PVP guidance, control and post-procedure assessment. It permits fast and cost-effective procedures avoiding multi-modality imaging.

  2. Computer-aided control of high-quality cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-04-01

    Full Text Available The study discusses the possibility of control of the high-quality grey cast iron and ductile iron using the author’s genuine computer programs. The programs have been developed with the help of algorithms based on statistical relationships that are said to exist between the characteristic parameters of DTA curves and properties, like Rp0,2, Rm, A5 and HB. It has been proved that the spheroidisation and inoculation treatment of cast iron changes in an important way the characteristic parameters of DTA curves, thus enabling a control of these operations as regards their correctness and effectiveness, along with the related changes in microstructure and mechanical properties of cast iron. Moreover, some examples of statistical relationships existing between the typical properties of ductile iron and its control process were given for cases of the melts consistent and inconsistent with the adopted technology.A test stand for control of the high-quality cast iron and respective melts has been schematically depicted.

  3. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  4. A mechanistic model for radiation-induced crystallization and amorphization in U3Si

    International Nuclear Information System (INIS)

    Rest, J.

    1994-06-01

    Radiation-induced amorphization is assessed. A rate-theory model is formulated wherein amorphous clusters are formed by the damage event These clusters are considered centers of expansion (CE), or excess-free-volume zones. Simultaneously, centers of compression (CC) are created in the material. The CCs are local regions of increased density that travel through the material as an elastic (e.g., acoustic) shock wave. The CEs can be annihilated upon contact with CCs (annihilation probability depends on height of the energy barrier), forming either a crystallized region indistinguishable from the host material, or a region with a slight disorientation (recrystallized grain). Recrystallized grains grow by the accumulation of additional CCs. Full amorphization is calculated on the basis of achieving a fuel volume fraction consistent with the close packing of spherical entities. Amorphization of a recrystallized grain is hindered by the grain boundary. Preirradiation of U 3 Si above the critical temperature for amorphization results in of nanometer-size grains. Subsequent reirradiation below the critical temperature shows that the material has developed a resistance to radiation-induced amorphization higher dose needed to amorphize the preirradiated samples than now preirradiated samples. In the model, it is assumed that grain boundaries act as effective defect sinks, and that enhanced defect annihilation is responsible for retarding amorphization at low temperature. The calculations have been validated against data from ion-irradiation experiments with U 3 Si. To obtain additional validation, the model has also been applied to the ion-induced motion of the interface between crystalline and amorphous phases of U 3 Si. Results of this analysis are compared to data and results of calculations for ion bombardment of Si

  5. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Snead, L.L.

    1995-01-01

    Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to ∼7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of ∼0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe 2+ ions at RT produced amorphization in the implanted ion region after damage levels of ∼1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He + ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC

  6. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  7. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  8. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  9. Magnetic excitations in amorphous ferromagnets

    International Nuclear Information System (INIS)

    Continentino, M.A.

    The propagation of magnetic excitations in amorphous ferromagnets is studied from the point of view of the theory of random frequency modulation. It is shown that the spin waves in the hydrodynamic limit are well described by perturbation theory while the roton-like magnetic excitations with wavevector about the peak in the structure factor are not. A criterion of validity of perturbation theory is found which is identical to a narrowing condition in magnetic resonance. (author) [pt

  10. Polarization Stability of Amorphous Piezoelectric Polyimides

    Science.gov (United States)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  11. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  12. Properties of amorphous and microcrystalline superconductors

    International Nuclear Information System (INIS)

    Johnson, W.L.; Poon, S.J.

    1975-01-01

    Results of x-ray diffraction, electrical resistivity, critical field(H/sub c2/) and transport measurements are presented and discussed for bulk amorphous and microcrystalline transition metal alloys (Au--La, Nb--Rh, Nb--Ni--Rh, and Pd--Zr) obtained by liquid quenching. The transition temperature of the alloys is in the range 1.5 to 4.7 0 K. The J/sub c/--H/sub c2/--T/sub c/ relations are rather simple for this class of material and are compared with the theories of type II superconductors. The high resistance of bulk metallic glass to radiation damage might render them suitable for magnetic field applications in high radiation environments

  13. High quality diesel fuels by VO-LSGO hydrotreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stanica-Ezeanu, Dorin; Juganaru, Traian [Petroleum and Gas Univ. of Ploiesti (Romania)

    2013-06-01

    The aim of the paper is to obtain a high quality Diesel fuel by hydro-deoxigenation of vegetable oils (VO) mixed with a low sulfur gasoil (LSGO). The process is possible by using a bi-functional catalyst Ni-Mo supported by an activated Al{sub 2}O{sub 3} containing 2% Ultrastable Y-zeolite. The experimental conditions were: T =340 - 380 C, Pressure = 50 bar, LHSV = 1,5 h{sup -1}, H{sub 2}/Feed ratio = 15 mole H{sub 2} /mole liquid feed. The liquid product was separated in two fractions: a light distillate (similar to gasoline) and a heavy distillate (boiling point > 200 C) with very good characteristics for Diesel engines. The reaction chemistry is very complex, but the de-oxygenation process is decisive for the chemical structure of hydrocarbons from final product. Finally, a schema for the reaction mechanism is proposed. (orig.)

  14. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    Appelbloom, A.M.; Hadley, P.; van der Marel, D.; Mooij, J.E.

    1991-01-01

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  15. Quality management manual for production of high quality cassava flour

    DEFF Research Database (Denmark)

    Dziedzoave, Nanam Tay; Abass, Adebayo Busura; Amoa-Awua, Wisdom K.

    The high quality cassava flour (HQCF) industry has just started to evolve in Africa and elsewhere. The sustainability of the growing industry, the profitability of small- and medium-scale enterprises (SMEs) that are active in the industry and good-health of consumers can best be guaranteed through...... the adoption of proper quality and food safety procedures. Cassava processing enterprises involved in the productionof HQCF must therefore be commited to the quality and food safety of the HQCF. They must have the right technology, appropriate processing machhinery, standard testing instruments...... and the necessary technical expertise. This quality manual was therefore developed to guide small- to medium-scale cassava in the design and implematation of Hazard Analysis Critical Control Point (HACCP) system and Good manufacturing Practices (GMP) plans for HQCF production. It describes the HQCF production...

  16. CHOREOGRAPHIC METHODS FOR CREATING NOVEL, HIGH QUALITY DANCE

    Directory of Open Access Journals (Sweden)

    David Kirsh

    2016-02-01

    Full Text Available We undertook a detailed ethnographic study of the dance creation process of a noted choreographer and his distinguished troupe. All choreographer dancer interactions were videoed, the choreographer and dancers were interviewed extensively each day, as well as other observations and tests performed. The choreographer used three main methods to produce high quality and novel content: showing, making-on, and tasking. We present, analyze and evaluate these methods, and show how these approaches allow the choreographer to increase the creative output of the dancers and him. His methods, although designed for dance, apply more generally to other creative endeavors, especially where brainstorming is involved, and where the creative process is distributed over many individuals. His approach is also a case study in multi-modal direction, owing to the range of mechanisms he uses to communicate and direct.

  17. Biotransformation of Organic Waste into High Quality Fertilizer

    DEFF Research Database (Denmark)

    Bryndum, Sofie

    Agriculture faces several challenges of future provision of nutrients such as limited P reserves and increasing prices of synthetic fertilizers and recycling of nutrients from organic waste can be an important strategy for the long-term sustainability of the agricultural systems. Organically...... and S, is often low; and (3) the unbalanced composition of nutrients rarely matches crop demands. Therefore the objective of this project was to investigate the potential for (1) recycling nutrients from agro-industrial wastes and (2) compost biotransformation into high-quality organic fertilizers...... other uses into fertilizer use would be unlikely. An estimated ~50 % of the total organic waste pool, primarily consisting of animal manure and waste from the processing of sugar cane, coffee, oil palm and oranges, is currently being re-used as “fertilizers”, meaning it is eventually returned...

  18. Formation, Physicochemical Characterization, and Thermodynamic Stability of the Amorphous State of Drugs and Excipients.

    Science.gov (United States)

    Martino, Piera Di; Magnoni, Federico; Peregrina, Dolores Vargas; Gigliobianco, Maria Rosa; Censi, Roberta; Malaj, Ledjan

    2016-01-01

    Drugs and excipients used for pharmaceutical applications generally exist in the solid (crystalline or amorphous) state, more rarely as liquid materials. In some cases, according to the physicochemical nature of the molecule, or as a consequence of specific technological processes, a compound may exist exclusively in the amorphous state. In other cases, as a consequence of specific treatments (freezing and spray drying, melting and co-melting, grinding and compression), the crystalline form may convert into a completely or partially amorphous form. An amorphous material shows physical and thermodynamic properties different from the corresponding crystalline form, with profound repercussions on its technological performance and biopharmaceutical properties. Several physicochemical techniques such as X-ray powder diffraction, thermal methods of analysis, spectroscopic techniques, gravimetric techniques, and inverse gas chromatography can be applied to characterize the amorphous form of a compound (drug or excipient), and to evaluate its thermodynamic stability. This review offers a survey of the technologies used to convert a crystalline solid into an amorphous form, and describes the most important techniques for characterizing the amorphous state of compounds of pharmaceutical interest.

  19. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  20. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  1. Automated Theorem Proving in High-Quality Software Design

    Science.gov (United States)

    Schumann, Johann; Swanson, Keith (Technical Monitor)

    2001-01-01

    The amount and complexity of software developed during the last few years has increased tremendously. In particular, programs are being used more and more in embedded systems (from car-brakes to plant-control). Many of these applications are safety-relevant, i.e. a malfunction of hardware or software can cause severe damage or loss. Tremendous risks are typically present in the area of aviation, (nuclear) power plants or (chemical) plant control. Here, even small problems can lead to thousands of casualties and huge financial losses. Large financial risks also exist when computer systems are used in the area of telecommunication (telephone, electronic commerce) or space exploration. Computer applications in this area are not only subject to safety considerations, but also security issues are important. All these systems must be designed and developed to guarantee high quality with respect to safety and security. Even in an industrial setting which is (or at least should be) aware of the high requirements in Software Engineering, many incidents occur. For example, the Warshaw Airbus crash, was caused by an incomplete requirements specification. Uncontrolled reuse of an Ariane 4 software module was the reason for the Ariane 5 disaster. Some recent incidents in the telecommunication area, like illegal "cloning" of smart-cards of D2GSM handies, or the extraction of (secret) passwords from German T-online users show that also in this area serious flaws can happen. Due to the inherent complexity of computer systems, most authors claim that only a rigorous application of formal methods in all stages of the software life cycle can ensure high quality of the software and lead to real safe and secure systems. In this paper, we will have a look, in how far automated theorem proving can contribute to a more widespread application of formal methods and their tools, and what automated theorem provers (ATPs) must provide in order to be useful.

  2. Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp diffraction peak, photodarkening, and Boson peak

    Science.gov (United States)

    Lukyanov, Alexey; Lubchenko, Vassiliy

    2017-09-01

    We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in

  3. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    International Nuclear Information System (INIS)

    Pol'dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret'yakov, B.N.

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit σsub(0.01) and yield limit σsub(0.2)) of three amorphous alloys on iron base Fe 80 B 20 , Fe 70 Cr 10 B 20 and Fe 70 Cr 5 Ni 5 B 20 are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials

  4. Pressure-induced preferential growth of nanocrystals in amorphous Nd9Fe85B6

    International Nuclear Information System (INIS)

    Wu Wei; Li Wei; Sun Hongyu; Li Hui; Zhang Xiangyi; Li Xiaohong; Liu Baoting

    2008-01-01

    Control over the growth and crystallographic orientation of nanocrystals in amorphous alloys is of particular importance for the development of advanced nanocrystalline materials. In the present study, Nd 2 Fe 14 B nanocrystals with a strong crystallographic texture along the [410] direction have been produced in Nd-lean amorphous Nd 9 Fe 85 B 6 under a high pressure of 6 GPa at 923 K. This is attributed to the high pressure inducing the preferential growth of Nd 2 Fe 14 B nanocrystals in the alloy. The present study demonstrates the potential application of high-pressure technology in controlling nanocrystalline orientation in amorphous alloys

  5. Elastic characteristics and microplastic deformation of amorphous alloys on iron base

    Energy Technology Data Exchange (ETDEWEB)

    Pol' dyaeva, G.P.; Zakharov, E.K.; Ovcharov, V.P.; Tret' yakov, B.N. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1983-01-01

    Investigation results of elasticity and microplasticity properties (modulus of normal elasticity E, elasticity limit sigmasub(0.01) and yield limit sigmasub(0.2)) of three amorphous alloys on iron base Fe/sub 80/B/sub 20/, Fe/sub 70/Cr/sub 10/B/sub 20/ and Fe/sub 70/Cr/sub 5/Ni/sub 5/B/sub 20/ are given. Amorphous band of the alloys is obtained using the method of melt hardening. It is shown that amorphous alloys on iron base possess high elasticity and yield limits and hardness and are very perspective for the use as spring materials.

  6. Characterization of the hidden glass transition of amorphous cyclomaltoheptaose.

    Science.gov (United States)

    Tabary, Nicolas; Mahieu, Aurélien; Willart, Jean-François; Dudognon, Emeline; Danède, Florence; Descamps, Marc; Bacquet, Maryse; Martel, Bernard

    2011-10-18

    An amorphous solid of cyclomaltoheptaose (β-cyclodextrin, β-CD) was formed by milling its crystalline form using a high-energy planetary mill at room temperature. The glass transition of this amorphous solid was found to occur above the thermal degradation point of the material preventing its direct observation and thus its full characterization. The corresponding glass transition temperature (T(g)) and the ΔC(p) at T(g) have, however, been estimated by extrapolation of T(g) and ΔC(p) of closely related amorphous compounds. These compounds include methylated β-CD with different degrees of substitution and molecular alloys obtained by co-milling β-CD and methylated β-CD (DS 1.8) at different ratios. The physical characterization of the amorphous states have been performed by powder X-ray diffraction and differential scanning calorimetry, while the chemical integrity of β-CD upon milling was checked by NMR spectroscopy and mass spectrometry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Oxidation influence on crystallisation in iron-based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gloriant, T.; Surinach, S.; Munoz, J.S.; Baro, M.D. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica; Inoue, A. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2001-07-01

    The partially crystalline iron-based nanophase composites elaborated by rapid solidification techniques are very attractive for their excellent soft magnetic properties and their potential for industrial applications. In these nanocomposite materials a control of both the structure (size, shape and distribution of the nanoparticles in the amorphous matrix) and the kinetic behaviour (nucleation and growth mechanism) is essential in order to obtain the best properties and to be able to produce them at the industrial scale. Our group has been working in this research area for a long time and the investigation presented here is the result of an international collaboration. This study deals with the effect of cobalt addition in Fe-Nb-B melt-spun amorphous alloys on the devitrification/crystallisation processes induced by thermal treatments and characterised by X-ray diffraction analysis (XRD), thermomagnetic analysis (TMG) and transmission electron microscopy observations (TEM). The transformation sequences, from the initial amorphous phase to the fully crystallised final state, were carried out using different annealing experiments (under vacuum and in air) and have revealed a strong influence of the environmental atmosphere during devitrification. It is shown that oxidation can greatly affect the crystallisation behaviour as a result of the high metastable state of the initial amorphous phase. The results and observations of this phenomenon will be presented. (orig.)

  8. Radiation-induced formation of cavities in amorphous germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  9. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    Science.gov (United States)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  10. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A K [Department of Physics, Washington University in St Louis, MO 63130 (United States); Krishna, H [Department of Physics, Washington University in St Louis, MO 63130 (United States); Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Miller, C [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, R [Department of Physics, Washington University in St Louis, MO 63130 (United States)

    2007-12-05

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe{sub 64.5}Cr{sub 10}Si{sub 13.5}B{sub 9}Nb{sub 3} alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen.

  11. Heterogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D patterned nanocrystal arrays

    International Nuclear Information System (INIS)

    Gangopadhyay, A K; Krishna, H; Favazza, C; Miller, C; Kalyanaraman, R

    2007-01-01

    Templates are widely used to produce artificial nanostructures. Here, laser-assisted self-organization has been used to form one- and two-dimensional (D) nanoarrays of Cu nanocrystals. Using these nanoarrays as a template, a 2D patterned ferromagnetic nanostructure of FeCrSi nanocrystals has been produced by heterogeneous nucleation and growth of nanocrystals by partial devitrification from an amorphous Fe 64.5 Cr 10 Si 13.5 B 9 Nb 3 alloy with the Cu nanoparticles acting as catalytic nucleation sites. The interaction among the ferromagnetic nanocrystals via the residual amorphous matrix can be controlled by suitable choice of the amorphous alloy composition. Although demonstrated for a ferromagnetic system, the processing method may have much wider applicability for producing artificial nanostructures of a wide variety of materials when materials-specific catalysts and amorphous alloy compositions are judiciously chosen

  12. Recent developments in hard magnetic materials

    International Nuclear Information System (INIS)

    Asti, G.

    1989-01-01

    Hard magnetic materials find ever-increasing uses in modern technology. Their importance is mainly in the domain of permanent magnets, but a variety of other applications is being offered to this class of materials, especially for what regards the areas of information storage, telecommunications and special electronic devices. These developments are connected to the emphasis that is more and more given to thin films having high magnetic anisotropy. The recent advancement in the field of hard magnetic materials is among the best examples where technology depends to a great extent upon the continuous progress in the scientific knowledge. The research activity is characterized by the introduction of new classes of materials and continuous improvements in the preparation techniques both for what regards industrial processing and method for obtaining high quality materials in form of crystals, films or amorphous specimens. In this respect a special place must be reserved to rare earth transition metal compounds, a class of materials that attracted enormeous attention after the discovery by Hoffer and Strnat in 1966 of the large uniaxial magnetocrystalline anisotropy of the compound YCo 5 . Beside the so called 1:5 phase, other compositions of technical importance are the 2:17 and the recently discovered Nd 2 Fe 14 B, which is a real new ternary phase having tetragonal crystal structure. Great efforts have been done to gain a better understanding of the magnetic anisotropy and its relationship to the coercivity is of leading importance for a further development in this important area of magnetism. (orig.)

  13. Characterization of Two Distinct Amorphous Forms of Valsartan by Solid-State NMR.

    Science.gov (United States)

    Skotnicki, Marcin; Apperley, David C; Aguilar, Juan A; Milanowski, Bartłomiej; Pyda, Marek; Hodgkinson, Paul

    2016-01-04

    Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.

  14. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  15. Engineering Amorphous Systems, Using Global-to-Local Compilation

    Science.gov (United States)

    Nagpal, Radhika

    Emerging technologies are making it possible to assemble systems that incorporate myriad of information-processing units at almost no cost: smart materials, selfassembling structures, vast sensor networks, pervasive computing. How does one engineer robust and prespecified global behavior from the local interactions of immense numbers of unreliable parts? We discuss organizing principles and programming methodologies that have emerged from Amorphous Computing research, that allow us to compile a specification of global behavior into a robust program for local behavior.

  16. Giant magnetoimpedance in glass-coverd amorphous microwires

    Czech Academy of Sciences Publication Activity Database

    Kraus, Luděk; Frait, Zdeněk; Pirota, K. R.; Chiriac, H.

    254-255, - (2003), s. 399-403 ISSN 0304-8853. [Soft Magnetic Material Conference ( SMM 15). Bilbao, 05.09.2001-07.09.2001] R&D Projects: GA MŠk ME 355 Institutional research plan: CEZ:AV0Z1010914 Keywords : amorphous systems-soft magnetics * giant magnetoimpedance * ferromagnetic resonance * magnetomechanical coupling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.910, year: 2003

  17. Effect of amorphous lamella on the crack propagation behavior of crystalline Mg/amorphous Mg-Al nanocomposites

    Science.gov (United States)

    Hai-Yang, Song; Yu-Long, Li

    2016-02-01

    The effects of amorphous lamella on the crack propagation behavior in crystalline/amorphous (C/A) Mg/Mg-Al nanocomposites under tensile loading are investigated using the molecular dynamics simulation method. The sample with an initial crack of orientation [0001] is considered here. For the nano-monocrystal Mg, the crack growth exhibits brittle cleavage. However, for the C/A Mg/Mg-Al nanocomposites, the ‘double hump’ behavior can be observed in all the stress-strain curves regardless of the amorphous lamella thickness. The results indicate that the amorphous lamella plays a critical role in the crack deformation, and it can effectively resist the crack propagation. The above mentioned crack deformation behaviors are also disclosed and analyzed in the present work. The results here provide a strategy for designing the high-performance hexagonal-close-packed metal and alloy materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372256 and 11572259), the 111 Project (Grant No. B07050), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1046), and the Program for New Scientific and Technological Star of Shaanxi Province, China (Grant No. 2012KJXX-39).

  18. Evidence of the extended orientational order in amorphous alloys obtained from magnetic measurements

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Tejada, J.

    1993-01-01

    Magnetic measurements of R-Fe-B (R = rare earth) amorphous alloys show that magnetic anisotropy axes are correlated on the scale ∼ 100 A. The X-ray study of these materials does not reveal any positional correlations beyond the 10 A scale. These observations support theoretical suggestions that the orientational order in amorphous systems can be much more extended than the positional order. (orig.)

  19. Converting sunlight into red light in fluorosilicate glass for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Chengguo, E-mail: mingchengguo1978@163.com [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Song, Feng [Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); Ren, Xiaobin [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Yuan, Fengying; Qin, Yueting [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China); Photonics Center, College of Physical Science, Nankai University, Tianjin 300071 (China); An, Liqun; Cai, Yuanxue [Physics Department, School of Sciences, Tianjin University of Science & Technology, Tianjin 300457 (China)

    2017-03-15

    Fluorosilicate glass was prepared by high-temperature melting method to explore highly efficient luminescence materials for amorphous silicon solar cells. Absorption, excitation and emission spectra of the glass were measured. The optical characters of the glass were discussed in details. The glass can efficiently convert sunlight into red light. Our glass can be applied to amorphous silicon solar cells as a converter of solar spectrum.

  20. Characterization of ZSM-5 zeolites synthesized by amorphous seed method by 29 Si solid state NMR

    International Nuclear Information System (INIS)

    Souza, Claudia M.G. de; Lau, Yiu Lam; Menezes, Sonia Cabral de

    1993-01-01

    The main objective of this analysis was to study the structure of samples synthesised by the amorphous seed method. The implications of this process upon the synthesized material were unknown. In the synthesis it was used ethanol and amorphous seed, which were added to the final synthesis mixture. It was observed a very significant reduction in the reaction time when compared to conventional synthesis. NMR was used to study the defects in the crystal lattice. Results are presented and discussed

  1. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  2. Inelastic scattering from amorphous solids

    International Nuclear Information System (INIS)

    Price, D.L.

    1985-08-01

    The potential of inelastic neutron scattering techniques for surveying various aspects of the dynamics of amorphous solids is briefly reviewed. The recent use of the Intense Pulsed Neutron Source to provide detailed information on the optical vibrations of glasses is discussed in more detail. The density of states represents an averaged quantity which gives information about the general characteristics of the structure and bonding. More extensive information can be obtained by studying the detailed wavevector dependence of the dynamic structure factor. 15 refs., 7 figs

  3. Anharmonicity Rise the Thermal Conductivity in Amorphous Silicon

    Science.gov (United States)

    Lv, Wei; Henry, Asegun

    We recently proposed a new method called Direct Green-Kubo Modal Analysis (GKMA) method, which has been shown to calculate the thermal conductivity (TC) of several amorphous materials accurately. A-F method has been widely used for amorphous materials. However, researchers have found out that it failed on several different materials. The missing component of A-F method is the harmonic approximation and considering only the interactions of modes with similar frequencies, which neglect interactions of modes with large frequency difference. On the contrary, GKMA method, which is based on molecular dynamics, intrinsically includes all types of phonon interactions. In GKMA method, each mode's TC comes from both mode self-correlations (autocorrelations) and mode-mode correlations (crosscorrelations). We have demonstrated that the GKMA predicted TC of a-Si from Tersoff potential is in excellent agreement with one of experimental results. In this work, we will present the GKMA applications on a-Si using multiple potentials and gives us more insight of the effect of anharmonicity on the TC of amorphous silicon. This research was supported Intel grant AGMT DTD 1-15-13 and computational resources by NSF supported XSEDE resources under allocations DMR130105 and TG- PHY130049.

  4. Emission of blue light from hydrogenated amorphous silicon carbide

    Science.gov (United States)

    Nevin, W. A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y.

    1994-04-01

    THE development of new electroluminescent materials is of current technological interest for use in flat-screen full-colour displays1. For such applications, amorphous inorganic semiconductors appear particularly promising, in view of the ease with which uniform films with good mechanical and electronic properties can be deposited over large areas2. Luminescence has been reported1 in the red-green part of the spectrum from amorphous silicon carbide prepared from gas-phase mixtures of silane and a carbon-containing species (usually methane or ethylene). But it is not possible to achieve blue luminescence by this approach. Here we show that the use of an aromatic species-xylene-as the source of carbon during deposition results in a form of amorphous silicon carbide that exhibits strong blue luminescence. The underlying structure of this material seems to be an unusual combination of an inorganic silicon carbide lattice with a substantial 'organic' π-conjugated carbon system, the latter dominating the emission properties. Moreover, the material can be readily doped with an electron acceptor in a manner similar to organic semiconductors3, and might therefore find applications as a conductivity- or colour-based chemical sensor.

  5. High-quality ZnO growth, doping, and polarization effect

    Science.gov (United States)

    Kun, Tang; Shulin, Gu; Jiandong, Ye; Shunming, Zhu; Rong, Zhang; Youdou, Zheng

    2016-03-01

    The authors have reported their recent progress in the research field of ZnO materials as well as the corresponding global advance. Recent results regarding (1) the development of high-quality epitaxy techniques, (2) the defect physics and the Te/N co-doping mechanism for p-type conduction, and (3) the design, realization, and properties of the ZnMgO/ZnO hetero-structures have been shown and discussed. A complete technology of the growth of high-quality ZnO epi-films and nano-crystals has been developed. The co-doping of N plus an iso-valent element to oxygen has been found to be the most hopeful path to overcome the notorious p-type hurdle. High mobility electrons have been observed in low-dimensional structures utilizing the polarization of ZnMgO and ZnO. Very different properties as well as new physics of the electrons in 2DEG and 3DES have been found as compared to the electrons in the bulk. Project supported by the National Natural Science Foundation of China (Nos. 61025020, 61274058, 61322403, 61504057, 61574075), the Natural Science Foundation of Jiangsu Province (Nos. BK2011437, BK20130013, BK20150585), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

  6. Development of a biotechnological process for the production of high quality linen fibers.

    Science.gov (United States)

    Valladares Juárez, Ana Gabriela; Rost, Gernot; Heitmann, Uwe; Heger, Egon; Müller, Rudolf

    2011-10-01

    A novel biotechnological process for the production of high-quality flax fibers was developed. In this process, decorticated fibers from green flax were washed with 0.5% soda solution and treated with the pectinolytic strain Geobacillus thermoglucosidasius PB94A. Before drying the fibers, they were treated with the textile softener Adulcinol BUN. If the fibers contained contaminant shives, a bleaching step with hydrogen peroxide was performed before the softener treatment. In experiments where fibers were treated by the new process, and in which the bacterial solutions were reused seven times, the fiber quality was similar in all batches. The resolution of the treated fibers was 2.7 ± 0.4 and the fineness was 11.1 ± 1.1 dtex, while the starting material had a resolution of 7.3 and a fineness of 37 dtex. The new biotechnological treatment eliminates the weather-associated risks of the traditional fiber retting completely and produces consistently high-quality fibers that can be used to produce fine linen yarns.

  7. Frequency of chromosomal aneuploidy in high quality embryos from young couples using preimplantation genetic screening

    Directory of Open Access Journals (Sweden)

    Farzaneh Fesahat

    2017-09-01

    Full Text Available Background: Selection of the best embryo for transfer is very important in assisted reproductive technology (ART. Using morphological assessment for this selection demonstrated that the correlation between embryo morphology and implantation potential is relatively weak. On the other hand, aneuploidy is a key genetic factor that can influence human reproductive success in ART. Objective: The aim of this lab trial study was to evaluate the incidence of aneuploidies in five chromosomes in the morphologically high-quality embryos from young patients undergoing ART for sex selection. Materials and Methods: A total of 97 high quality embryos from 23 women at the age of 37or younger years that had previously undergone preimplantation genetic screening for sex selection were included in this study. After washing, the slides of blastomeres from embryos of patients were reanalyzed by fluorescence in-situ hybridization for chromosomes 13, 18 and 21. Results: There was a significant rate of aneuploidy determination in the embryos using preimplantation genetic screening for both sex and three evaluated autosomal chromosomes compared to preimplantation genetic screening for only sex chromosomes (62.9% vs. 24.7%, p=0.000. The most frequent detected chromosomal aneuploidy was trisomy or monosomy of chromosome 13. Conclusion: There is considerable numbers of chromosomal abnormalities in embryos generated in vitro which cause in vitro fertilization failure and it seems that morphological characterization of embryos is not a suitable method for choosing the embryos without these abnormalities

  8. 76 FR 45397 - Export Inspection and Weighing Waiver for High Quality Specialty Grain Transported in Containers

    Science.gov (United States)

    2011-07-29

    ...-AB18 Export Inspection and Weighing Waiver for High Quality Specialty Grain Transported in Containers... permanent a waiver due to expire on July 31, 2012, for high quality specialty grain exported in containers... of high quality specialty grain exported in containers are small entities that up until recently...

  9. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    International Nuclear Information System (INIS)

    Tokarski, Tomasz; Cios, Grzegorz; Kula, Anna; Bała, Piotr

    2016-01-01

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis of very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.

  10. Structure-Property Relationships in Amorphous Transparent Conducting Oxides

    Science.gov (United States)

    Moffitt, Stephanie Lucille

    Over the last 20 years a new field of amorphous transparent conducting oxides (a-TCOs) has developed. The amorphous nature of these films makes them well suited for large area applications. In addition, a-TCOs can be made at low temperatures and through solution processing methods. These assets provide promising opportunities to improve applications such as solar cells and back-lit displays where traditional crystalline TCOs are used. In addition, it opens the door for new technological applications including the possibility for transparent, flexible electronics. Despite the recent growth in this field, fundamental understanding of the true nature of conductivity and the amorphous structure in this materials system is still progressing. To develop a greater understanding of a-TCOs, structure-property relationships were developed in the a-IGO and a-IZO systems. From the combination of element-specific local structure studies and liquid quench molecular dynamics simulations it is clear that a degree of structure remains in a-TCOs. By understanding this structure, the effect of gallium on thermal stability, carrier concentration and carrier mobility is understood. The source of charge carriers in a-IZO is identified as oxygen vacancies through the application of in situ Brouwer analysis. The continued development of the Brouwer analysis technique for use in amorphous oxides adds to the available methods for studying defects in amorphous systems. Finally, the foundational knowledge gained from the in-depth study of a-IGO was extended to understand the role of combustion processing and pulsed laser deposition as growth methods for transistors based on a-IGO.

  11. High-Quality Seismic Observations of Sonic Booms

    Science.gov (United States)

    Wurman, Gilead; Haering, Edward A., Jr.; Price, Michael J.

    2011-01-01

    The SonicBREWS project (Sonic Boom Resistant Earthquake Warning Systems) is a collaborative effort between Seismic Warning Systems, Inc. and NASA Dryden Flight Research Center. This project aims to evaluate the effects of sonic booms on Earthquake Warning Systems in order to prevent such systems from experiencing false alarms due to sonic booms. The airspace above the Antelope Valley, California includes the High Altitude Supersonic Corridor and the Black Mountain Supersonic Corridor. These corridors are among the few places in the US where supersonic flight is permitted, and sonic booms are commonplace in the Antelope Valley. One result of this project is a rich dataset of high-quality accelerometer records of sonic booms which can shed light on the interaction between these atmospheric phenomena and the solid earth. Nearly 100 sonic booms were recorded with low-noise triaxial MEMS accelerometers recording 1000 samples per second. The sonic booms had peak overpressures ranging up to approximately 10 psf and were recorded in three flight series in 2010 and 2011. Each boom was recorded with up to four accelerometers in various array configurations up to 100 meter baseline lengths, both in the built environment and the free field. All sonic booms were also recorded by nearby microphones. We present the results of the project in terms of the potential for sonic-boom-induced false alarms in Earthquake Warning Systems, and highlight some of the interesting features of the dataset.

  12. Construction of High-Quality Camel Immune Antibody Libraries.

    Science.gov (United States)

    Romão, Ema; Poignavent, Vianney; Vincke, Cécile; Ritzenthaler, Christophe; Muyldermans, Serge; Monsion, Baptiste

    2018-01-01

    Single-domain antibodies libraries of heavy-chain only immunoglobulins from camelids or shark are enriched for high-affinity antigen-specific binders by a short in vivo immunization. Thus, potent binders are readily retrieved from relatively small-sized libraries of 10 7 -10 8 individual transformants, mostly after phage display and panning on a purified target. However, the remaining drawback of this strategy arises from the need to generate a dedicated library, for nearly every envisaged target. Therefore, all the procedures that shorten and facilitate the construction of an immune library of best possible quality are definitely a step forward. In this chapter, we provide the protocol to generate a high-quality immune VHH library using the Golden Gate Cloning strategy employing an adapted phage display vector where a lethal ccdB gene has to be substituted by the VHH gene. With this procedure, the construction of the library can be shortened to less than a week starting from bleeding the animal. Our libraries exceed 10 8 individual transformants and close to 100% of the clones harbor a phage display vector having an insert with the length of a VHH gene. These libraries are also more economic to make than previous standard approaches using classical restriction enzymes and ligations. The quality of the Nanobodies that are retrieved from immune libraries obtained by Golden Gate Cloning is identical to those from immune libraries made according to the classical procedure.

  13. High-quality remote interactive imaging in the operating theatre

    Science.gov (United States)

    Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan

    2009-02-01

    We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.

  14. Production of high quality water for oil sands application

    Energy Technology Data Exchange (ETDEWEB)

    Beaudette-Hodsman, C.; Macleod, B. [Pall Corp., Mississauga, ON (Canada); Venkatadri, R. [Pall Corp., East Hills, NY (United States)

    2008-10-15

    This paper described a pressurized microfiltration membrane system installed at an oil sands extraction site in Alberta. The system was designed to complement a reverse osmosis (RO) system installed at the site to produce the high quality feed water required by the system's boilers. Groundwater in the region exhibited moderate total suspended solids and high alkalinity and hardness levels, and the RO system required feed water with a silt density index of 3 or less. The conventional pretreatment system used at the site was slowing down production due to the severe fouling of the RO membranes. The new microfiltration system contained an automated PVDF hollow fiber microfiltration membrane system contained in a trailer. Suspended particles and bacteria were captured within the filter, and permeate was sent to the RO unit. Within 6 hours of being installed, the unit was producing water with SDI values in the range of 1.0 to 2.5. It was concluded that the microfiltration system performed reliably regardless of wide variations in feed water quality and flow rates. 3 refs., 1 tab., 8 figs.

  15. CCD Astrophotography High-Quality Imaging from the Suburbs

    CERN Document Server

    Stuart, Adam

    2006-01-01

    This is a reference book for amateur astronomers who have become interested in CCD imaging. Those glorious astronomical images found in astronomy magazines might seem out of reach to newcomers to CCD imaging, but this is not the case. Great pictures are attainable with modest equipment. Adam Stuart’s many beautiful images, reproduced in this book, attest to the quality of – initially – a beginner’s efforts. Chilled-chip astronomical CCD-cameras and software are also wonderful tools for cutting through seemingly impenetrable light-pollution. CCD Astrophotography from the Suburbs describes one man’s successful approach to the problem of getting high-quality astronomical images under some of the most light-polluted conditions. Here is a complete and thoroughly tested program that will help every CCD-beginner to work towards digital imaging of the highest quality. It is equally useful to astronomers who have perfect observing conditions, as to those who have to observe from light-polluted city skies.

  16. Tunneling measurements in amorphous layers of superconducting transition metals: molybdenum, vanadium, and niobium

    International Nuclear Information System (INIS)

    Roll, U.

    1981-01-01

    Tunneling experiments with amorphous Molybdenum and Vanadium layers are presented, showing no significant increase of the reduced energy gap 2δ(O)/kTsub(c)(δ) compared with the BCS-value, in contrast to all previous measurement on amorphous superconducting materials of simple s-p-metals, showing on enhanced electron-phonon-interaction. This fact may lead to the conclusion that the strong electron-phonon coupling is caused by the amorphous structure of the superconductor. The present results, however, indicate that the strong electron-phonon interaction cannot be explained only ba the amorphous structure of the superconductor. In the measurements of the second derivative d 2 U/dI 2 no phonon-induced structures have been observed for amorphous molybdenum, vanadium and niobium films. Apparently the phonon density of states F(#betta#) of amorphous transition metals has no structure, thus the longitudinal and transverse phonons cannot be identified in the measured (d 2 U/dI 2 )-curves. This particular behaviour of the amorphous transition metals in contrast to the simple s-p-metals may be interpreted by the strongly localized d-electrons. (orig./GG) [de

  17. Amorphous Semiconductors Characteristics and Their Modern Application

    International Nuclear Information System (INIS)

    Elshazly, A.A.

    2013-01-01

    Chalcogenide glasses are a recognized group of inorganic glassy materials which always contain one or more of the chalcogenide elements S, Se or Te but not O, in conjunction with more electro positive elements as As, Sb, etc. Chalcogenide glasses are generally less robust, more weakly bonded materials than oxide glasses. Glasses were prepared from Sb, Se, Bi and In elements with purity 99.999%. These glasses are reactive at high temperature with oxygen. Therefore, synthesis was accomplished in evacuated clean silica tubes. The tubes were washed by distilled water, and then dried in a furnace whose temperature was about 100 degree C . The weighted materials were introduced into the cleaned silica tubes and then evacuated to about 10-4 torr and sealed. The sealed tubes were placed inside the furnace and the temperature of the furnace was raised gradually up to 90 C within 1 hour and kept constant for 10 hours. Moreover, shaking of the constituent materials inside the tube in the furnace was necessary for realizing the homogeneity of the composition. After synthesis, the tube was quenched into ice water. The glassy ingots could be obtained by drastic quenching. Then materials were removed from the tubes and kept in dry atmosphere. The proper ingot was confirmed to be completely amorphous using x-ray diffraction and differential thermal analysis. Thin films of the selected compositions were prepared by thermal evaporation technique under vacuum 10-4 torr with constant thickness 100 nm. The effect of radiation, optical and some other effects on composition were studied.

  18. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for thin substrate polycrystalline solar cells (alloy-base amorphous materials, PIN layers, strains in the interface, and effects of impurities); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Usumaku taiyo denchi jitsuyoka no tame no kaiseki hyoka (gokinkei amorphous zairyo pin kakuso kaimen ni okeru yugami fujunbutsu nado no eikyo)

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, A; Oeda, H; Yamasaki, S; Hata, N; Kondo, M; Toshima, Y; Sakata, I; Ganguly, G; Suzuki, A; Kamei, T; Okushi, H; Nonaka, H; Oda, N; Katagiri, H; Ichimura, N; Kokubu, K; Nakamura, K; Sekikawa, T; Yamanaka, M [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation for thin film solar cells. The study on quantitative analysis of hydrogen atoms in a plasma determines quantity of hydrogen atoms in the plasma of monosilane diluted with hydrogen. It is found, contrary to expectation, that quantity of hydrogen atoms in the plasma decreases as it is more diluted with hydrogen. The study on light-induced degradation of the thin chlorine-base amorphous silicon films confirms that the plasma CVD method with 20% of dichlorosilane gas added to monosilane gas produces the thin amorphous silicon film 3 times faster than the conventional method. The thin film has essentially the same defect density as the one prepared by the conventional method, showing good photoelectric characteristics. The thin film of chlorinated amorphous silicon has a 1 digit lower defect density than the conventional one of amorphous silicon, as revealed by the accelerated degradation test with irradiated laser light and the constant current method to determine saturated defect density. 3 figs.

  20. Conversion of South African clays into high quality zeolites

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-08-01

    Full Text Available Clays obtained from South Africa were used as feedstock materials for the synthesis of zeolites. The conventional alkaline hydrothermal treatment of the starting material (90 °C for 8 h)was preceded by a fusion step (550 °C for 1.5 h) to improve...

  1. Photoexcitation-induced processes in amorphous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai [School of Engineering and Logistics, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jai.singh@cdu.edu.au

    2005-07-30

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories.

  2. Analytical theory of noncollinear amorphous metallic magnetism

    International Nuclear Information System (INIS)

    Kakehashi, Y.; Uchida, T.

    2001-01-01

    Analytical theory of noncollinear magnetism in amorphous metals is proposed on the basis of the Gaussian model for the distribution of the interatomic distance and the saddle-point approximation. The theory removes the numerical difficulty in the previous theory based on the Monte-Carlo sampling method, and reasonably describes the magnetic properties of amorphous transition metals

  3. Challenges in amorphous silicon solar cell technology

    NARCIS (Netherlands)

    Swaaij, van R.A.C.M.M.; Zeman, M.; Korevaar, B.A.; Smit, C.; Metselaar, J.W.; Sanden, van de M.C.M.

    2000-01-01

    Hydrogenated amorphous silicon is nowadays extensively used for a range of devices, amongst others solar cells, Solar cell technology has matured over the last two decades and resulted in conversion efficiencies in excess of 15%. In this paper the operation of amorphous silicon solar cells is

  4. Colors and the evolution of amorphous galaxies

    International Nuclear Information System (INIS)

    Gallagher, J.S. III; Hunter, D.A.

    1987-01-01

    UBVRI and H-alpha photometric observations are presented for 16 amorphous galaxies and a comparison sample of Magellanic irregular (Im) and Sc spiral galaxies. These data are analyzed in terms of star-formation rates and histories in amorphous galaxies. Amorphous galaxies have mean global colors and star-formation rates per unit area that are similar to those in giant Im systems, despite differences in spatial distributions of star-forming centers in these two galactic structural classes. Amorphous galaxies differ from giant Im systems in having somewhat wider scatter in relationships between B - V and U - B colors, and between U - B and L(H-alpha)/L(B). This scatter is interpreted as resulting from rapid variations in star-formation rates during the recent past, which could be a natural consequence of the concentration of star-forming activity into centrally located, supergiant young stellar complexes in many amorphous galaxies. While the unusual spatial distribution and intensity of star formation in some amorphous galaxies is due to interactions with other galaxies, several amorphous galaxies are relatively isolated and thus the processes must be internal. The ultimate evolutionary fate of rapidly evolving amorphous galaxies remains unknown. 77 references

  5. Photoexcitation-induced processes in amorphous semiconductors

    International Nuclear Information System (INIS)

    Singh, Jai

    2005-01-01

    Theories for the mechanism of photo-induced processes of photodarkening (PD), volume expansion (VE) in amorphous chalcogenides are presented. Rates of spontaneous emission of photons by radiative recombination of excitons in amorphous semiconductors are also calculated and applied to study the excitonic photoluminescence in a-Si:H. Results are compared with previous theories

  6. Development of nuclear safety class filter elements with long life and high quality

    International Nuclear Information System (INIS)

    Zhang Jinghua

    2009-04-01

    This paper describes the development on nuclear safety class filter elements with long life and high quality used for collecting radioactive contaminants, fragments of resin and impurities in primary systems of NPPs. The filter elements made of glass fibre elements are used for PWR, and of paper elements are used for PHWR. During the research, a series of tests for optimization were performed for selection of filter material and the improvement of binder. The flow rate and comprehensive performance have been measured in simulated conditions. The result shows that the application requirements for operational NPPs can be met, and the reliability and safety of the frame are also be verified. The comprehensive performance of the filter elements is equivalent to that of oversea similar products. The products have been used in NPPs in operation. (authors)

  7. PMG: online generation of high-quality molecular pictures and storyboarded animations

    Science.gov (United States)

    Autin, Ludovic; Tufféry, Pierre

    2007-01-01

    The Protein Movie Generator (PMG) is an online service able to generate high-quality pictures and animations for which one can then define simple storyboards. The PMG can therefore efficiently illustrate concepts such as molecular motion or formation/dissociation of complexes. Emphasis is put on the simplicity of animation generation. Rendering is achieved using Dino coupled to POV-Ray. In order to produce highly informative images, the PMG includes capabilities of using different molecular representations at the same time to highlight particular molecular features. Moreover, sophisticated rendering concepts including scene definition, as well as modeling light and materials are available. The PMG accepts Protein Data Bank (PDB) files as input, which may include series of models or molecular dynamics trajectories and produces images or movies under various formats. PMG can be accessed at http://bioserv.rpbs.jussieu.fr/PMG.html. PMID:17478496

  8. Nanostructural characterization of amorphous diamondlike carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Martinez-Miranda, L. J. [University of Maryland, Department of Materials and Nuclear Engineering, College Park, Maryland 20742 (United States); Barbour, J. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2000-04-15

    Nanostructural characterization of amorphous diamondlike carbon (a-C) films grown on silicon using pulsed-laser deposition (PLD) is correlated to both growth energetics and film thickness. Raman spectroscopy and x-ray reflectivity probe both the topological nature of three- and four-fold coordinated carbon atom bonding and the topographical clustering of their distributions within a given film. In general, increasing the energetics of PLD growth results in films becoming more ''diamondlike,'' i.e., increasing mass density and decreasing optical absorbance. However, these same properties decrease appreciably with thickness. The topology of carbon atom bonding is different for material near the substrate interface compared to material within the bulk portion of an a-C film. A simple model balancing the energy of residual stress and the free energies of resulting carbon topologies is proposed to provide an explanation of the evolution of topographical bonding clusters in a growing a-C film. (c) 2000 The American Physical Society.

  9. Recruiting and retaining high-quality teachers in rural areas.

    Science.gov (United States)

    Monk, David H

    2007-01-01

    In examining recruitment and retention of teachers in rural areas, David Monk begins by noting the numerous possible characteristics of rural communities--small size, sparse settlement, distance from population concentrations, and an economic reliance on agricultural industries that are increasingly using seasonal and immigrant workers to minimize labor costs. Many, though not all, rural areas, he says, are seriously impoverished. Classes in rural schools are relatively small, and teachers tend to report satisfaction with their work environments and relatively few problems with discipline. But teacher turnover is often high, and hiring can be difficult. Monk observes that rural schools have a below-average share of highly trained teachers. Compensation in rural schools tends to be low, perhaps because of a lower fiscal capacity in rural areas, thus complicating efforts to attract and retain teachers. Several student characteristics, including relatively large shares of students with special needs and with limited English skills and lower shares of students attending college, can also make it difficult to recruit and retain high-quality teachers. Other challenges include meeting the needs of highly mobile children of low-income migrant farm workers. With respect to public policy, Monk asserts a need to focus on a subcategory of what might be called hard-to-staff rural schools rather than to develop a blanket set of policies for all rural schools. In particular, he recommends a focus on such indicators as low teacher qualifications, teaching in fields far removed from the area of training, difficulty in hiring, high turnover, a lack of diversity among teachers in the school, and the presence of migrant farm workers' children. Successful efforts to stimulate economic growth in these areas would be highly beneficial. He also calls attention to the potential for modern telecommunication and computing technologies to offset some of the drawbacks associated with teaching

  10. High-quality endoscope reprocessing decreases endoscope contamination.

    Science.gov (United States)

    Decristoforo, P; Kaltseis, J; Fritz, A; Edlinger, M; Posch, W; Wilflingseder, D; Lass-Flörl, C; Orth-Höller, D

    2018-02-24

    Several outbreaks of severe infections due to contamination of gastrointestinal (GI) endoscopes, mainly duodenoscopes, have been described. The rate of microbial endoscope contamination varies dramatically in literature. The aim of this multicentre prospective study was to evaluate the hygiene quality of endoscopes and automated endoscope reprocessors (AERs) in Tyrol/Austria. In 2015 and 2016, a total of 463 GI endoscopes and 105 AERs from 29 endoscopy centres were analysed by a routine (R) and a combined routine and advanced (CRA) sampling procedure and investigated for microbial contamination by culture-based and molecular-based analyses. The contamination rate of GI endoscopes was 1.3%-4.6% according to the national guideline, suggesting that 1.3-4.6 patients out of 100 could have had contacts with hygiene-relevant microorganisms through an endoscopic intervention. Comparison of R and CRA sampling showed 1.8% of R versus 4.6% of CRA failing the acceptance criteria in phase I and 1.3% of R versus 3.0% of CRA samples failing in phase II. The most commonly identified indicator organism was Pseudomonas spp., mainly Pseudomonas oleovorans. None of the tested viruses were detected in 40 samples. While AERs in phase I failed (n = 9, 17.6%) mainly due to technical faults, phase II revealed lapses (n = 6, 11.5%) only on account of microbial contamination of the last rinsing water, mainly with Pseudomonas spp. In the present study the contamination rate of endoscopes was low compared with results from other European countries, possibly due to the high quality of endoscope reprocessing, drying and storage. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Amorphous silica maturation in chemically weathered clastic sediments

    Science.gov (United States)

    Liesegang, Moritz; Milke, Ralf; Berthold, Christoph

    2018-03-01

    A detailed understanding of silica postdepositional transformation mechanisms is fundamental for its use as a palaeobiologic and palaeoenvironmental archive. Amorphous silica (opal-A) is an important biomineral, an alteration product of silicate rocks on the surface of Earth and Mars, and a precursor material for stable silica phases. During diagenesis, amorphous silica gradually and gradationally transforms to opal-CT, opal-C, and eventually quartz. Here we demonstrate the early-stage maturation of several million year old opal-A from deeply weathered Early Cretaceous and Ordovician sedimentary rocks of the Great Artesian Basin (central Australia). X-ray diffraction, scanning electron microscopy, and electron probe microanalyses show that the mineralogical maturation of the nanosphere material is decoupled from its chemical properties and begins significantly earlier than micromorphology suggests. Non-destructive and locally highly resolved X-ray microdiffraction (μ-XRD2) reveals an almost linear positive correlation between the main peak position (3.97 to 4.06 Å) and a new asymmetry parameter, AP. Heating experiments and calculated diffractograms indicate that nucleation and growth of tridymite-rich nanodomains induce systematic peak shifts and symmetry variations in diffraction patterns of morphologically juvenile opal-A. Our results show that the asymmetry parameter traces the early-stage maturation of amorphous silica, and that the mineralogical opal-A/CT stage extends to smaller d-spacings and larger FWHM values than previously suggested.

  12. Structure, thermodynamics, and crystallization of amorphous hafnia

    International Nuclear Information System (INIS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-01-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO 2 . The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia

  13. Particle-induced amorphization of complex ceramics. Final report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1998-01-01

    The crystalline-to-amorphous (c-a) phase transition is of fundamental importance. Particle irradiations provide an important, highly controlled means of investigating this phase transformation and the structure of the amorphous state. The interaction of heavy-particles with ceramics is complex because these materials have a wide range of structure types, complex compositions, and because chemical bonding is variable. Radiation damage and annealing can produce diverse results, but most commonly, single crystals become aperiodic or break down into a polycrystalline aggregate. The authors continued the studies of the transition from the periodic-to-aperiodic state in natural materials that have been damaged by α-recoil nuclei in the uranium and thorium decay series and in synthetic, analogous structures. The transition from the periodic to aperiodic state was followed by detailed x-ray diffraction analysis, in-situ irradiation/transmission electron microscopy, high resolution transmission electron microscopy, extended x-ray absorption fine structure spectroscopy/x-ray absorption near edge spectroscopy and other spectroscopic techniques. These studies were completed in conjunction with bulk irradiations that can be completed at Los Alamos National Laboratory or Sandia National Laboratories. Principal questions addressed in this research program included: (1) What is the process at the atomic level by which a ceramic material is transformed into a disordered or aperiodic state? (2) What are the controlling effects of structural topology, bond-type, dose rate, and irradiation temperature on the final state of the irradiated material? (3) What is the structure of the damaged material? (4) What are the mechanisms and kinetics for the annealing of interstitial and aggregate defects in these irradiated ceramic materials? (5) What general criteria may be applied to the prediction of amorphization in complex ceramics?

  14. Maxwell rigidity and topological constraints in amorphous phase-change networks

    International Nuclear Information System (INIS)

    Micoulaut, M.; Otjacques, C.; Raty, J.-Y.; Bichara, C.

    2011-01-01

    By analyzing first-principles molecular-dynamics simulations of different telluride amorphous networks, we develop a method for the enumeration of radial and angular topological constraints, and show that the phase diagram of the most popular system Ge-Sb-Te can be split into two compositional elastic phases: a tellurium rich flexible phase and a stressed rigid phase that contains most of the materials used in phase-change applications. This sound atomic scale insight should open new avenues for the understanding of phase-change materials and other complex amorphous materials from the viewpoint of rigidity.

  15. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...... (PDF) analysis of the XRPD pattern. When compared to XRPD and Raman spectroscopy, the PDF analysis was superior in displaying the difference between the amorphous samples prepared by milling and quench cooling approaches of the two starting materials....

  16. Electron-irradiation-induced crystallization of amorphous orthophosphates

    International Nuclear Information System (INIS)

    Meldrum, A.; Ewing, R.C.; Boatner, L.A.

    1996-12-01

    Amorphous LaPO 4 , EuPO 4 , GdPO 4 , ScPO 4 , and fluorapatite [Ca 5 (PO 4 ) 3 F] were irradiated by electron beam in a TEM. Irradiations were done at -150 to 300 C, 80 to 200 keV, and current densities from 0.3 to 16 A/cm 2 . In all cases, the materials crystallized to form a randomly oriented polycrystalline assemblage. Crystallization is driven dominantly by inelastic processes, although ballistic collisions with target nuclei can be important above 175 keV, particularly in apatite. Using a high current density, crystallization is so fast that continuous lines of crystallites can be ''drawn'' on the amorphous matrix

  17. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  18. Hydrogen-induced amorphization of SmFe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, M.; Handstein, A.; Gebel, B.; Gutfleisch, O.; Mueller, K.-H.; Schultz, L. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany). Inst. fuer Metallische Werkstoffe

    2000-07-01

    The hydrogen absorption behavior of SmFe{sub 3} (PuNi{sub 3}-type structure) was observed in the range from 0.05 to 4 MPa by differential scanning calorimetry. The structural changes were observed by X-ray diffraction measurements. For pressures below 0.8 MPa two exothermic reactions were found which are attributed (i) to the interstitial absorption and (ii) to the disproportionation into SmH{sub 2} and {alpha}-Fe. For higher hydrogen pressures, the second exothermic peak occured at significantly lower temperatures and splitted into two peaks. The first one was identified as the exothermic signal of the hydrogen-induced amorphization of the SmFe{sub 3} hydride. The second peak is caused by the precipitation of SmH{sub 2} and {alpha}-Fe from the amorphous material. (orig.)

  19. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  20. Relaxation Time of High-Density Amorphous Ice

    Science.gov (United States)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  1. XRD and SEM study on the phase separation and crystallization behavior for an amorphous Cu+ conductor

    International Nuclear Information System (INIS)

    Yang Yuan; Hou Jianguo; Yu Wenhai

    1990-01-01

    The X-ray diffraction (XRD) and scanning electron microscopy (SEM) study was carried out for an amorphous Cu + conductor 0.4 CuI-0.3 Cu 2 O-0.3 P 2 O 5 with the simultaneous conductivity measurement in the isothermal heat treament process. The results indicated that the initial amorphous material was phase-separated. In the course of time the separated amorphous phase disappeared, the crystalline γ-CuI and Cu 2 P 2 O 7 formed in sequence and grew up gradually. The correlation of the phase separation and crystallization behavior with the conductivity anomaly confirmed again the interface effect between different phases in amorphous fast ionic conductors and its universality

  2. Mechanical instability in non-uniform atomic structure: Application to amorphous metal

    International Nuclear Information System (INIS)

    Umeno, Yoshitaka; Kitamura, Takayuki; Tagawa, Motoki

    2007-01-01

    It is important to reveal the deformation of amorphous metal in the atomistic scale level as materials with non-crystal structure have been attracting attention with their prominent functions. In this paper atomistic simulations of tensile deformation of an amorphous model are conducted and local mechanical instability is analyzed to clarify the deformation mechanism of the amorphous structure. Instability causing sharp stress drop is associated with unstable motion of atoms within local region. The size of the region where the unstable atomic motion occurs corresponds to the magnitude of total stress decrease. At instability with large stress decrease the deformation at the onset of the instability propagates to surrounding region, which gives rise to a hysteresis loop in the stress-strain relation. This manifests the microscopic mechanism of the plasticity of amorphous structure

  3. Achievement report for fiscal 1984 on Sunshine Program-entrusted research and development. Research and development of amorphous solar cells (Theoretical research on amorphous silicon electronic states by computer-aided simulation); 1984 nendo amorphous taiyo denchi no kenkyu kaihatsu seika hokokusho. Keisanki simulation ni yoru amorphous silicon no denshi jotai no rironteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-04-01

    Research on the basic physical properties of amorphous silicon materials and for the development of materials for thermally stable amorphous silicon is conducted through theoretical reasoning and computer-aided simulation. In the effort at achieving a high conversion efficiency using an amorphous silicon alloy, a process of realizing desired photoabsorption becomes possible when the correlation between the atomic structure and the photoabsorption coefficient is clearly established and the atomic structure is manipulated. In this connection, analytical studies are conducted to determine how microscopic structures are reflected on macroscopic absorption coefficients. In the computer-aided simulation, various liquid structures and amorphous structures are worked out, which is for the atom-level characterization of structures with topological disturbances, such as amorphous structures. Glass transition is simulated using a molecular kinetic method, in particular, and the melting of crystals, crystallization of liquids, and vitrification (conversion into the amorphous state) are successfully realized, though in a computer-aided simulation, for the first time in the world. (NEDO)

  4. In situ observation of shear-driven amorphization in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  5. Characteristics of heterojunctions of amorphous LaAlO2.73 on Si

    International Nuclear Information System (INIS)

    Huang Yanhong; Zhao Kun; Lu Huibin; Jin Kuijuan; He Meng; Chen Zhenghao; Zhou Yueliang; Yang Guozhen

    2006-01-01

    High-quality heterojunctions consisting of n-type amorphous LaAlO 3- δ and p-type Si without Si interfacial layer were prepared using a thin film deposition system normally used for laser-molecular beam epitaxy. Good I-V rectifying property, ferroelectricity of interface enhancement and fast photovoltaic effect have been observed in the LaAlO 3- δ /Si p-n heterojunctions. We expect that the multifunctional properties of rectification, ferroelectricity and photovoltaic effect should open up new possibilities in device development and other applications

  6. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    studies and our collaborative research projects with other UK and international groups will be discussed. Keywords. Crystal growth; floating zone method; neutron scattering. ... of single crystals of new materials is a highly competitive business.

  7. Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Energy Technology Data Exchange (ETDEWEB)

    SOKOLOWSKI-TINTEN,K.; VON DER LINDE,D.; SIEGAL,MICHAEL P.; OVERMYER,DONALD L.

    2000-02-07

    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration.

  8. Locomotion of Amorphous Surface Robots

    Science.gov (United States)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  9. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    Science.gov (United States)

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  10. X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.

    2015-01-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials

  11. New developments in high quality grey cast irons

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2014-07-01

    Full Text Available The paper reviews original data obtained by the present authors, revealed in recent separate publications, describing specific procedures for high quality grey irons, and reflecting the forecast needs of the worldwide iron foundry industry. High power, medium frequency coreless induction furnaces are commonly used in electric melting grey iron foundries. This has resulted in low sulphur (1,500 °C, contributing to unfavourable conditions for graphite nucleation. Thin wall castings are increasingly produced by these electric melt shops with a risk of greater eutectic undercooling during solidification. The paper focused on two groups of grey cast irons and their specific problems: carbides and graphite morphology control in lower carbon equivalent high strength irons (CE=3.4%-3.8%, and austenite dendrite promotion in eutectic and slightly hypereutectic irons (CE=4.1%-4.5%, in order to increase their strength characteristics. There are 3 stages and 3 steps involving graphite formation, iron chemistry and iron processing that appear to be important. The concept in the present paper sustains a threestage model for nucleating flake graphite [(Mn,XS type nuclei]. There are three important groups of elements (deoxidizer, Mn/S, and inoculant and three technological stages in electric melting of iron (superheat, pre-conditioning of base iron, final inoculation. Attention is drawn to a control factor (%Mn x (%S ensuring it equals to 0.03 – 0.06, accompanied by 0.005wt.%–0.010wt.% Al and/or Zr content in inoculated irons. It was found that iron powder addition promotes austenite dendrite formation in eutectic and slightly eutectic, acting as reinforcement for the eutectic cells. But, there is an accompanying possible negative influence on the characteristics of the (Mn,XS type graphite nuclei (change the morphology of nuclei from polygonal compact to irregular polygonal, and therefore promote chill tendency in treated irons. A double addition (iron

  12. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  13. High quality mask storage in an advanced Logic-Fab

    Science.gov (United States)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  14. Crystallization processes in an amorphous Co-Fe-Cr-Si-B alloy under isothermal annealing

    Science.gov (United States)

    Fedorets, A. N.; Pustovalov, E. V.; Plotnikov, V. S.; Modin, E. B.; Kraynova, G. S.; Frolov, A. M.; Tkachev, V. V.; Tsesarskaya, A. K.

    2017-09-01

    Research present the crystallization processes investigation of the amorphous Co67Fe3Cr3Si15B12 alloy. In-situ experiments on heating in a transmission electron microscope (TEM) column were carried out. Critical temperatures influencing material structure are determined. The onset temperature of material crystallization was determined.

  15. Effects of amorphous nano-silica additions on mechanical and durability performance of SCC mixtures

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.; Justnes, H.; Jacobsen, S.

    2012-01-01

    In the recent years the application of nanotechnology in building materials has increased exponentially. One of the most referred and used nano-materials is amorphous silica with particles size in the nano-range, even though its application and effect in concrete has not been fully understood yet.

  16. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available . It is generally included as part of a structurally insulated panel (SIP) where the foam is sandwiched between external skins of steel, wood or cement. Cement composites Cement bonded composites are an important class of building materials. These products... for their stone buildings, including the Egyptians, Aztecs and Inca’s. As stone is a very dense material it requires intensive heating to become warm. Rocks were generally stacked dry but mud, and later cement, can be used as a mortar to hold the rocks...

  17. Crystalline to amorphous transformation in silicon

    International Nuclear Information System (INIS)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects

  18. Use of artificial intelligence in the production of high quality minced meat

    Science.gov (United States)

    Kapovsky, B. R.; Pchelkina, V. A.; Plyasheshnik, P. I.; Dydykin, A. S.; Lazarev, A. A.

    2017-09-01

    A design for an automatic line for minced meat production according to new production technology based on an innovative meat milling method is proposed. This method allows the necessary degree of raw material comminution at the stage of raw material preparation to be obtained, which leads to production intensification due to the traditional meat mass comminution equipment being unnecessary. To ensure consistent quality of the product obtained, the use of on-line automatic control of the technological process for minced meat production is envisaged. This system has been developed using artificial intelligence methods and technologies. The system is trainable during the operation process, adapts to changes in processed raw material characteristics and to external impacts that affect the system operation, and manufactures meat shavings with minimal dispersion of the typical particle size. The control system includes equipment for express analysis of the chemical composition of the minced meat and its temperature after comminution. In this case, the minced meat production process can be controlled strictly as a function of time, which excludes subjective factors for assessing the degree of finished product readiness. This will allow finished meat products with consistent, targeted high quality to be produced.

  19. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  20. Corrosion-resistant amorphous alloy ribbons for electromagnetic filtration of iron rusts from water

    International Nuclear Information System (INIS)

    Kawashima, Asahi; Asami, Katsuhiko; Sato, Takeaki; Hashimoto, Koji

    1985-01-01

    An attempt was made to use corrosion-resistant amorphous Fe-9Cr-13P-7C alloy ribbons as an electromagnetic filter material for trapping various iron rusts suspended in water at 40 0 C. The ferrimagnetic Fe 3 O 4 rust was trapped with the 100 % efficiency and paramagnetic rusts such as α-Fe 2 O 3 , α-FeOOH and amorphous ferric oxyhydroxide were trapped with certain efficiencies at the magnetic field strength of 0.5-10 kOe. The regeneration of the filter by back-washing was easy. The trapping capacity of electromagnetic filter was proportional to the edge length of the filter material where the high magnetic field strength existed. Therefore, melt-spun thin and narrow amorphous alloy ribbons having the high corrosion resistance have the potential utility as electromagnetic filter material. (author)

  1. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film ... amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive -phase spots surrounded by amorphous regions. Scanning ...

  2. Pressure-induced amorphization of NaVO/sub 3 at room temperature and its re-crystallization

    International Nuclear Information System (INIS)

    Shen, Z.X.; Ong, C.W.; Tang, S.H.; Kuok, M.H.

    1994-01-01

    Pressure-induced amorphization is the subject of intense study for the past few years because of its importance in material science and in solid state physics. We reported a crystalline-amorphous phase transition at ca 60kbar in NaVO1/3, which is the lowest pressure for such transitions in ionic crystals. The transition is marked by the sudden appearance of very broad bands at the 800 and 350 cm/sup -1 regions. The amorphization includes the complete breaking up of the infinite chains of corner-linked tetrahedral VO/sub 4, most likely into VO/sup -/sub 3. On decompression, the amorphous phase transforms to another phase, probably also amorphous at ca 40 kbar. It reverts to the stable ambient condition α-phase upon heating. Here we report on the details of the transtitional region and the re-linking of the VO/sub 4 chains upon heating. (authors)

  3. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuanyong; Chu, Paul K.; Ding Chuanxian

    2007-01-01

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans

  4. Formation of apatite on hydrogenated amorphous silicon (a-Si:H) film deposited by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuanyong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China) and Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: xyliu@mail.sic.ac.cn; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: paul.chu@cityu.edu.hk; Ding Chuanxian [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2007-01-15

    Hydrogenated amorphous silicon films were fabricated on p-type, 100 mm diameter <1 0 0> silicon wafers by plasma-enhanced chemical vapor deposition (PECVD) using silane and hydrogen. The structure and composition of the hydrogenated amorphous silicon films were investigated using micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM). The hydrogenated amorphous silicon films were subsequently soaked in simulated body fluids to evaluate apatite formation. Carbonate-containing hydroxyapatite (bone-like apatite) was formed on the surface suggesting good bone conductivity. The amorphous structure and presence of surface Si-H bonds are believed to induce apatite formation on the surface of the hydrogenated amorphous silicon film. A good understanding of the surface bioactivity of silicon-based materials and means to produce a bioactive surface is important to the development of silicon-based biosensors and micro-devices that are implanted inside humans.

  5. Synthesis of amorphous acid iron phosphate nanoparticles

    International Nuclear Information System (INIS)

    Palacios, E.; Leret, P.; Fernández, J. F.; Aza, A. H. De; Rodríguez, M. A.

    2012-01-01

    A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.

  6. Structure of a new dense amorphous ice

    International Nuclear Information System (INIS)

    Finney, J.L.; Bowron, D.T.; Soper, A.K.; Loerting, T.; Mayer, E.; Hallbrucker, A.

    2002-01-01

    The detailed structure of a new dense amorphous ice, VHDA, is determined by isotope substitution neutron diffraction. Its structure is characterized by a doubled occupancy of the stabilizing interstitial location that was found in high density amorphous ice, HDA. As would be expected for a thermally activated unlocking of the stabilizing 'interstitial', the transition from VHDA to LDA (low-density amorphous ice) is very sharp. Although its higher density makes VHDA a better candidate than HDA for a physical manifestation of the second putative liquid phase of water, as for the HDA case, the VHDA to LDA transition also appears to be kinetically controlled

  7. Peculiarities of Vibration Characteristics of Amorphous Ices

    Science.gov (United States)

    Gets, Kirill V.; Subbotin, Oleg S.; Belosludov, Vladimir R.

    2012-03-01

    Dynamic properties of low (LDA), high (HDA) and very high (VHDA) density amorphous ices were investigated within the approach based on Lattice Dynamics simulations. In this approach, we assume that the short-range molecular order mainly determines the dynamic and thermodynamic properties of amorphous ices. Simulation cell of 512 water molecules with periodical boundary conditions and disordering allows us to study dynamical properties and dispersion curves in the Brillouin zone of pseudo-crystal. Existence of collective phenomena in amorphous ices which is usual for crystals but anomalous for disordered phase was confirmed in our simulations. Molecule amplitudes of delocalized (collective) as well as localized vibrations have been considered.

  8. A roadmap to high quality chemically prepared graphene

    NARCIS (Netherlands)

    Gengler, Regis Y. N.; Spyrou, Konstantinos; Rudolf, Petra

    2010-01-01

    Graphene was discovered half a decade ago and proved the existence of a two-dimensional system which becomes stable as a result of 3D corrugation. It appeared very quickly that this exceptional material had truly outstanding electronic, mechanical, thermal and optical properties. Consequently a

  9. Radiochemical studies on amorphous zirconium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A; Moores, G E [Salford Univ. (UK). Dept. of Chemistry and Applied Chemistry

    1981-01-01

    Amorphous zirconium phosphate (ZrP) is used in some hemodialysis machines for the regeneration of dialysate. Its function is to adsorb ammonium ions formed by the pretreatment of urea by urease. It also adsorbs Ca, Mg and K ions but leaches phosphate ions which are then removed (along with F/sup -/ ions) by a bed of hydrous zirconium oxide. The sodium form of ZrP is used although other forms have been suggested for use. The work reported here describes some preliminary radiochemical studies on the mechanism of release of phosphate ions and its possible relationship to sodium ion-exchange. /sup 32/P labelled material (HHZrP) was used for elution experiments with deionized water and buffer solutions having the pH's 4.2, 7.0 and 9.2. Buffer solutions used were as supplied by BDH. Elution was at four different temperatures in the range 293 to 363/sup 0/C. In the second series of experiments HHZrP was suspended in a NaCl solution labelled with /sup 22/Na. From this, /sup 22/Na labelled ZrP (NaHZrP) was prepared and eluted in the same way as the HHZrP. Results are given and discussed.

  10. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  11. Physics and material science of ultra-high quality factor superconducting resonator

    International Nuclear Information System (INIS)

    Vostrikov, Alexander

    2015-01-01

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS-II requirements on quality factor of 2.7 · 10 10 at acceleration field of 16 MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS-II.

  12. Physics and material science of ultra-high quality factor superconducting resonator

    Energy Technology Data Exchange (ETDEWEB)

    Vostrikov, Alexander [Univ. of Chicago, IL (United States)

    2015-08-01

    The nitrogen doping into niobium superconducting radio frequency cavity walls aiming to improve the fundamental mode quality factor is the subject of the research in the given work. Quantitative nitrogen diffusion into niobium model calculating the concentration profile was developed. The model estimations were confirmed with secondary ion mass spectrometry technique measurements. The model made controlled nitrogen doping recipe optimization possible. As a result the robust reproducible recipe for SRF cavity walls treatment with nitrogen doping was developed. The cavities produced with optimized recipe met LCLS–II requirements on quality factor of 2.7 ∙ 1010 at acceleration field of 16 MV/m. The microscopic effects of nitrogen doping on superconducting niobium properties were studied with low energy muon spin rotation technique and magnetometer measurements. No significant effect of nitrogen on the following features was found: electron mean free path, magnetic field penetration depth, and upper and surface critical magnetic fields. It was detected that for nitrogen doped niobium samples magnetic flux starts to penetrate inside the superconductor at lower external magnetic field value compared to the low temperature baked niobium ones. This explains lower quench field of SRF cavities treated with nitrogen. Quality factor improvement of fundamental mode forced to analyze the high order mode (HOM) impact on the particle beam dynamics. Both resonant and cumulative effects caused by monopole and dipole HOMs respectively are found to be negligible within the requirements for LCLS–II.

  13. (-201) β-Gallium oxide substrate for high quality GaN materials

    KAUST Repository

    Roqan, Iman S.; Mumthaz Muhammed, Mufasila

    2015-01-01

    (-201) oriented β-Ga2O3 has the potential to be used as a transparent and conductive substrate for GaN-growth. The key advantages of Ga2O3 are its small lattice mismatches (4.7%), appropriate structural, thermal and electrical properties and a

  14. The bonding of protective films of amorphic diamond to titanium

    Science.gov (United States)

    Collins, C. B.; Davanloo, F.; Lee, T. J.; Jander, D. R.; You, J. H.; Park, H.; Pivin, J. C.

    1992-04-01

    Films of amorphic diamond can be deposited from laser plasma ions without the use of catalysts such as hydrogen or fluorine. Prepared without columnar patterns of growth, the layers of this material have been reported to have ``bulk'' values of mechanical properties that have suggested their usage as protective coatings for metals. Described here is a study of the bonding and properties realized in one such example, the deposition of amorphic diamond on titanium. Measurements with Rutherford backscattering spectrometry and transmission electron microscopy showed that the diamond coatings deposited from laser plasmas were chemically bonded to Ti substrates in 100-200-Å-thick interfacial layers containing some crystalline precipitates of TiC. Resistance to wear was estimated with a modified sand blaster and in all cases the coating was worn away without any rupture or deterioration of the bonding layer. Such wear was greatly reduced and lifetimes of the coated samples were increased by a factor of better than 300 with only 2.7 μm of amorphic diamond.

  15. Continuous amorphization of Cu-Zr studied by positron lifetime

    International Nuclear Information System (INIS)

    Wilde, G.; Wuerschum, R.; Rabitsch, H.; Puff, W.

    2006-01-01

    Full text: Solid state amorphization by cold-rolling represents an attractive alternative to commonly used ball-milling. The present work aimed at a free volume study of the process of amorphization. To study the amorphization process binary Cu-Zr alloys were mechanically intermixed by cold rolling. Foils of pure Cu and Zr were stacked to form arrays of composition Cu 60 Zr 40 and folded four times. The folded samples were rolled at a strain rate of approximately 0.1 s -1 to a thickness of about 80 μm and then folded to double the thickness and rolled again to a minimum thickness of 80 μm. This procedure was repeated until the final material was cold-rolled for up to 80 passes. The microstructural changes during cold-rolling were investigated at different stages of the mechanical intermixing process by positron lifetime and 2-dimensional Doppler broadening measurements. The obtained Doppler results are discussed analysing the S-W-plot as well as a two-component fit and the shape of the ratio curves. Finally the results are compared to the lifetime results. (author)

  16. Achievement report for fiscal 1997 on development of practical application technology for photovoltaic power generation systems. Development of technologies to manufacture thin film solar cells (development of technologies to manufacture silicon crystal based high-quality materials and substrates / survey and research on analysis of practical application); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (zairyo kiban seizo gijutsu kaihatsu / silicon kesshokei kohinshitsu zairyo kiban no seizo gijutsu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As a plan to develop technologies to manufacture materials and substrates for thin film solar cells, it is intended to reduce defect density, enhance film forming speed, largely improve the photo-electric conversion efficiency and increase manufacturing productivity. These goals will be realized by establishing methods to control defect density, crystal particle diameters and crystallization rate in silicon crystal systems. A technology to form micro-crystal silicon-based thin films will be developed, that have superior photo-stability, and are capable of realizing low cost and mass production. Discussions will be given on a high-density plasma control technology, a fundamental property evaluation technology for micro crystal silicon thin films, and a device design simulation technology. A technology will be developed to form amorphous silicon layer on a stainless steel substrate by using the plasma CVD process. At the same time, discussions will be given on optical annealing and thermal annealing as reformation methods. Fiscal 1997 has surveyed component technologies to identify and analyze quickly and accurately the technical trends inside and outside the country, and to mass produce thin film solar cells. The Material and Substrate System Technology Subcommittee (silicon crystals) was held to deliberate the four-year development program and its progress. (NEDO)

  17. Amorphization and the effect of implanted ions in SiC

    International Nuclear Information System (INIS)

    Snead, L.L.; Zinkle, S.J.

    1994-01-01

    The effects of implanted ion chemistry and displacement damage on the amorphization threshold dose of SiC were studied using cross-section transmission electron microscopy. Room temperature as well as 200 and 400 C irradiations were carried out with 3.6 MeV Fe, 1.8 MeV Cl, 1 MeV He or 0.56 MeV Si ions. The room temperature amorphization threshold dose in irradiated regions well separated from the implanted ions was found to range from 0.3 to 0.5 dpa for the four different ion species. The threshold dose for amorphization in the He, Si and Fe ion-implanted regions was also ∼0.3 to 0.5 dpa. On the other hand, the amorphization threshold in the Cl-implanted region was only about 0.1 dpa. The volume change associated with amorphization was ∼17%. No evidence for amorphization was obtained in specimens irradiated at 200 or 400 C. An understanding of the microstructural evolution of SiC under irradiation is critical to the application of these materials in fusion energy systems

  18. Unipolar time-differential charge sensing in non-dispersive amorphous solids

    International Nuclear Information System (INIS)

    Goldan, A. H.; Rowlands, J. A.; Tousignant, O.; Karim, K. S.

    2013-01-01

    The use of high resistivity amorphous solids as photodetectors, especially amorphous selenium, is currently of great interest because they are readily produced over large area at substantially lower cost compared to grown crystalline solids. However, amorphous solids have been ruled out as viable radiation detection media for high frame-rate applications, such as single-photon-counting imaging, because of low carrier mobilities, transit-time-limited photoresponse, and consequently, poor time resolution. To circumvent the problem of poor charge transport in amorphous solids, we propose unipolar time-differential charge sensing by establishing a strong near-field effect using an electrostatic shield within the material. For the first time, we have fabricated a true Frisch grid inside a solid-state detector by evaporating amorphous selenium over photolithographically prepared multi-well substrates. The fabricated devices are characterized with optical, x-ray, and gamma-ray impulse-like excitations. Results prove the proposed unipolar time-differential property and show that time resolution in non-dispersive amorphous solids can be improved substantially to reach the theoretical limit set by spatial spreading of the collected Gaussian carrier cloud.

  19. Amorphous uranium alloy and use thereof

    International Nuclear Information System (INIS)

    Gambino, R.J.; McElfresh, M.W.; McGuire, T.R.; Plaskett, T.S.

    1991-01-01

    An amorphous alloy containing uranium and a member selected from the group N, P, As, Sb, Bi, S, Se, Te, Po and mixtures thereof; and use thereof for storage medium, light modulator or optical isolator. (author) figs

  20. Magnetomechanical coupling in thermal amorphous solids

    Science.gov (United States)

    Hentschel, H. George E.; Ilyin, Valery; Mondal, Chandana; Procaccia, Itamar

    2018-05-01

    Standard approaches to magnetomechanical interactions in thermal magnetic crystalline solids involve Landau functionals in which the lattice anisotropy and the resulting magnetization easy axes are taken explicitly into account. In glassy systems one needs to develop a theory in which the amorphous structure precludes the existence of an easy axis, and in which the constituent particles are free to respond to their local amorphous surroundings and the resulting forces. We present a theory of all the mixed responses of an amorphous solid to mechanical strains and magnetic fields. Atomistic models are proposed in which we test the predictions of magnetostriction for both bulk and nanofilm amorphous samples in the paramagnetic phase. The application to nanofilms with emergent self-affine free interfaces requires a careful definition of the film "width" and its change due to the magnetostriction effect.

  1. Amorphization Mechanism of Icosahedral Platinum Clusters

    International Nuclear Information System (INIS)

    Apra, Edoardo; Baletto, Francesca; Ferrando, Riccardo; Fortunelli, Alessandro

    2004-01-01

    The amorphization mechanism of high-symmetry pt nanoclusters is investigated by a combination of Molecular Dynamics simulations and Density Functional calculations. A general mechanism for amorphization, involving rosette-like structural transformations at fivefold vertices, is proposed. IN the tosette, a fivefold vertex is transformed into a hexagonal ring. We show that for icosahedral Pt nanoclusters, this transformation is associated with an energy gain, so that their most favorable structures have a low symmetry even at icosahedral magic numbers

  2. Immobilization technology for krypton in amorphous zeolite

    International Nuclear Information System (INIS)

    Takusagawa, Atsushi; Ishiyama, Keiichi

    1989-01-01

    Radioactive krypton recovered from the offgas of a reprocessing plant requires long-term storage on the order of 100 years. Immobilization technology for krypton into amorphous zeolite 5A is considered one of the best methods for long-term storage. In this report, conditions for immobilization treatment and stability of amorphous zeolite 5A loaded krypton against heat, radiation and water are discussed, and a treatment system using this technology is described. (author)

  3. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  4. Publishing high-quality climate data on the semantic web

    Science.gov (United States)

    Woolf, Andrew; Haller, Armin; Lefort, Laurent; Taylor, Kerry

    2013-04-01

    The effort over more than a decade to establish the semantic web [Berners-Lee et. al., 2001] has received a major boost in recent years through the Open Government movement. Governments around the world are seeking technical solutions to enable more open and transparent access to Public Sector Information (PSI) they hold. Existing technical protocols and data standards tend to be domain specific, and so limit the ability to publish and integrate data across domains (health, environment, statistics, education, etc.). The web provides a domain-neutral platform for information publishing, and has proven itself beyond expectations for publishing and linking human-readable electronic documents. Extending the web pattern to data (often called Web 3.0) offers enormous potential. The semantic web applies the basic web principles to data [Berners-Lee, 2006]: using URIs as identifiers (for data objects and real-world 'things', instead of documents) making the URIs actionable by providing useful information via HTTP using a common exchange standard (serialised RDF for data instead of HTML for documents) establishing typed links between information objects to enable linking and integration Leading examples of 'linked data' for publishing PSI may be found in both the UK (http://data.gov.uk/linked-data) and US (http://www.data.gov/page/semantic-web). The Bureau of Meteorology (BoM) is Australia's national meteorological agency, and has a new mandate to establish a national environmental information infrastructure (under the National Plan for Environmental Information, NPEI [BoM, 2012a]). While the initial approach is based on the existing best practice Spatial Data Infrastructure (SDI) architecture, linked-data is being explored as a technological alternative that shows great promise for the future. We report here the first trial of government linked-data in Australia under data.gov.au. In this initial pilot study, we have taken BoM's new high-quality reference surface

  5. High-quality total RNA isolation from melon (Cucumis melo L. fruits rich in polysaccharides

    Directory of Open Access Journals (Sweden)

    Gabrielle Silveira de Campos

    2017-08-01

    Full Text Available Melon, a member of the family Cucurbitaceae, is the fourth most important fruit in the world market and, on a volume basis, is Brazil’s main fresh fruit export. Many molecular techniques used to understand the maturation of these fruits require high concentrations of highly purified RNA. However, melons are rich in polyphenolic compounds and polysaccharides, which interfere with RNA extraction. This study aimed to determine the most appropriate method for total RNA extraction from melon fruits. Six extraction buffers were tested: T1 guanidine thiocyanate/phenol/chloroform; T2 sodium azide/?-mercaptoethanol; T3 phenol/guanidine thiocyanate; T4 CTAB/PVP/?-mercaptoethanol; T5 SDS/sodium perchlorate/PVP/?-mercaptoethanol, and T6 sarkosyl/PVP/guanidine thiocyanate, using the AxyPrepTM Multisource Total RNA Miniprep Kit. The best method for extracting RNA from both mature and green fruit was based on the SDS/PVP/?-mercaptoethanol buffer, because it rapidly generated a high quality and quantity of material. In general, higher amounts of RNA were obtained from green than mature fruits, probably due to the lower concentration of polysaccharides and water. The purified material can be used as a template in molecular techniques, such as microarrays, RT-PCR, and in the construction of cDNA and RNA-seq data.

  6. High quality long-wavelength lasers grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine

    International Nuclear Information System (INIS)

    Miller, B.I.; Young, M.G.; Oron, M.; Koren, U.; Kisker, D.

    1990-01-01

    High quality long-wavelength InGaAsP/InP lasers were grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine (TBA) as a substitute for AsH 3 . Electrical and photoluminescence measurements on InGaAs and InGaAsP showed that TBA-grown material was at least as good as AsH 3 material in terms of suitability for lasers. From two wafers grown by TBA, current thresholds I th as low as 11 mA were obtained for a 2-μm-wide semi-insulating blocking planar buried heterostructure laser lasing near 1.3 μm wavelength. The differential quantum efficiencies η D were as high as 21%/facet with a low internal loss α=21 cm -1 . In addition I th as low as 18 mA and η D as high as 18% have been obtained for multiplequantum well lasers at 1.54 μm wavelength. These results show that TBA might be used to replace AsH 3 without compromising on laser performance

  7. CESAME: Providing High Quality Professional Development in Science and Mathematics for K-12 Teachers

    Science.gov (United States)

    Hickman, Paul

    2002-04-01

    It is appropriate that after almost half a century of Science and Mathematics education reform we take a look back and a peek forward to understand the present state of this wonderfully complex system. Each of the components of this system including teaching, professional development, assessment, content and the district K-12 curriculum all need to work together if we hope to provide quality science, mathematics and technology education for ALL students. How do the state and national standards drive the system? How do state policies on student testing and teacher licensure come into play? How do we improve the preparation, retention and job satisfaction of our K-12 teachers? What initiatives have made or are making a difference? What else needs to be done? What can the physics community do to support local efforts? This job is too big for any single organization or individual but we each can contribute to the effort. Our Center at Northeastern University, with support from the National Science Foundation, has a sharply defined focus: to get high quality, research-based instructional materials into the hands of K-12 classroom teachers and provide the support they need to use the materials effectively in their classrooms.

  8. Fiscal 2000 survey report. Basic research on hot molding of amorphous ceramics; 2000 nendo amorphous netsukan ceramics seikeiho ni kansuru kiso kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Experiments were conducted on the plasticity processing of heat resistant ceramics making use of the viscous deformation of amorphous ceramics in the supercooled liquid temperature domain. Concerning the preparation of powder of amorphous ceramics, the plasma rotating electrode method of Institute for Materials Research, Tohoku University, was employed, and a bamboo leaf shaped amorphous flake was successfully fabricated by increasing the arc discharge current. In a search of texture easy to turn amorphous, it was observed that Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} had a supercooled liquid domain of as large as 70K, and this enabled a conclusion that it was a promising candidate for hot molding in a supercooled liquid domain. In an experiment of molding in a supercooled liquid domain, Al{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} was used in a press molding process. As the result, a compact bulk mold was obtained in a temperature domain far lower than in the case of conventional sintering. Crystallization had already advanced in all the molds experimentally fabricated by press molding, and this disabled a study of characteristics to be exhibited by an amorphous mold, but it was found that they had a compressive strength of approximately 1,800MPa. (NEDO)

  9. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  10. Method to quantify the delocalization of electronic states in amorphous semiconductors and its application to assessing charge carrier mobility of p -type amorphous oxide semiconductors

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-01-01

    Amorphous semiconductors are usually characterized by a low charge carrier mobility, essentially related to their lack of long-range order. The development of such material with higher charge carrier mobility is hence challenging. Part of the issue comes from the difficulty encountered by first-principles simulations to evaluate concepts such as the electron effective mass for disordered systems since the absence of periodicity induced by the disorder precludes the use of common concepts derived from condensed matter physics. In this paper, we propose a methodology based on first-principles simulations that partially solves this problem, by quantifying the degree of delocalization of a wave function and of the connectivity between the atomic sites within this electronic state. We validate the robustness of the proposed formalism on crystalline and molecular systems and extend the insights gained to disordered/amorphous InGaZnO4 and Si. We also explore the properties of p -type oxide semiconductor candidates recently reported to have a low effective mass in their crystalline phases [G. Hautier et al., Nat. Commun. 4, 2292 (2013), 10.1038/ncomms3292]. Although in their amorphous phase none of the candidates present a valence band with delocalization properties matching those found in the conduction band of amorphous InGaZnO4, three of the seven analyzed materials show some potential. The most promising candidate, K2Sn2O3 , is expected to possess in its amorphous phase a slightly higher hole mobility than the electron mobility in amorphous silicon.

  11. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm

    Science.gov (United States)

    Artrith, Nongnuch; Urban, Alexander; Ceder, Gerbrand

    2018-06-01

    The atomistic modeling of amorphous materials requires structure sizes and sampling statistics that are challenging to achieve with first-principles methods. Here, we propose a methodology to speed up the sampling of amorphous and disordered materials using a combination of a genetic algorithm and a specialized machine-learning potential based on artificial neural networks (ANNs). We show for the example of the amorphous LiSi alloy that around 1000 first-principles calculations are sufficient for the ANN-potential assisted sampling of low-energy atomic configurations in the entire amorphous LixSi phase space. The obtained phase diagram is validated by comparison with the results from an extensive sampling of LixSi configurations using molecular dynamics simulations and a general ANN potential trained to ˜45 000 first-principles calculations. This demonstrates the utility of the approach for the first-principles modeling of amorphous materials.

  12. Inequality in Preschool Quality? Community-Level Disparities in Access to High-Quality Learning Environments

    Science.gov (United States)

    Bassok, Daphna; Galdo, Eva

    2016-01-01

    In recent years, unequal access to high-quality preschool has emerged as a growing public policy concern. Because of data limitations, it is notoriously difficult to measure disparities in access to early learning opportunities across communities and particularly challenging to quantify gaps in access to "high-quality" programs. Research…

  13. Local order origin of thermal stability enhancement in amorphous Ag doping GeTe

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Li, Y.; Yu, N. N.; Zhong, Y. P.; Miao, X. S., E-mail: miaoxs@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-01-19

    We demonstrate the impacts of Ag doping on the local atomic structure of amorphous GeTe phase-change material. The variations of phonon vibrational modes, boding nature, and atomic structure are shown by Raman, X-ray photoelectron spectroscopy, and ab initio calculation. Combining the experiments and simulations, we observe that the number of Ge atoms in octahedral site decreases and that in tetrahedral site increases. This modification in local order of GeTe originating from the low valence element will affect the crystallization behavior of amorphous GeTe, which is verified by differential scanning calorimetry and transmission electron microscope results. This work not only gives the analysis on the structural change of GeTe with Ag dopants but also provides a method to enhance the thermal stability of amorphous phase-change materials for memory and brain-inspired computing applications.

  14. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator

    Science.gov (United States)

    Amstad, Esther; Gopinadhan, Manesh; Holtze, Christian; Osuji, Chinedum O.; Brenner, Michael P.; Spaepen, Frans; Weitz, David A.

    2015-08-01

    Amorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficult to formulate in an amorphous structure without stabilizers. We fabricated a microfluidic nebulator that can produce amorphous NPs from a wide range of materials, even including pure table salt (NaCl). By using supersonic air flow, the nebulator produces drops that are so small that they dry before crystal nuclei can form. The small size of the resulting spray-dried a-NPs limits the probability of crystal nucleation in any given particle during storage. The kinetic stability of the a-NPs—on the order of months—is advantageous for hydrophobic drug molecules.

  15. Electron emission induced modifications in amorphous tetrahedral diamondlike carbon

    International Nuclear Information System (INIS)

    Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.

    1998-01-01

    The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics

  16. Amorphous silicon prepared from silane-hydrogen mixture

    International Nuclear Information System (INIS)

    Pietruszko, S.M.

    1982-09-01

    Amorphous silicon films prepared from a d.c. discharge of 10% SiH 4 - 90% H 2 mixture are found to have properties similar to those made from 100% SiH 4 . These films are found to be quite stable against prolonged light exposure. The effect of nitrogen on the properties of these films was investigated. It was found that instead of behaving as a classical donor, nitrogen introduces deep levels in the material. Field effect experiments on a-Si:H films at the bottom (film-substrate interface) and the top (film-vacuum interface) of the film are also reported. (author)

  17. High Quality Rapeseed Products as Feed for Sensitive Monogastrics

    DEFF Research Database (Denmark)

    Frandsen, Heidi Blok

    in plants of the order Brassicales (former known as Capparales), which include rapeseed, rype (Brassica campestris L.) Indian mustard (Brassica juncea L.), broccoli (Brassica oleracea L.var. italica) and many other plants. Glucosinolates have been studied widely for their biologic effects ranging from...... by xenobiotica enzymes in the liver. The last study (manuscript IV) deals with the novel processing techniques, pulsed electric field (PEF) and high pressure treatment (HPT) and the processing effects on glucosinolates in broccoli. The largest effects were observed to be a result of the different handling...... of the plant materials prior to the process treatment. It was thus found that a great amount of the glucosinolate loss has occurred in the broccoli juice and purée prior to PEF processing. Only a minor loss was observed in broccoli flowers prior to processing, and HP treatment at 700 MPa for 10 min. was found...

  18. Achieving Ohmic Contact for High-quality MoS2 Devices on Hexagonal Boron Nitride

    Science.gov (United States)

    Cui, Xu

    highly stable device performance, even at elevated temperatures. Both optical and electrical characterization confirms our high quality devices, including an ultra-clean interface, a record-high Hall mobility reaching 34,000 cm. 2/Vs, and first observation of Shubnikov–de Haas oscillations. The development of Ohmic contact and fabrication of high quality devices are critical to MoS2 application and studying its intrinsic properties. Therefore, the progress made in this work will facilitate efforts to study novel physical phenomena of MoS2 that were not accessible before.

  19. Effect of ball mill treatment on kinetics of amorphous Ni78Si10B12 alloy crystallization

    International Nuclear Information System (INIS)

    Tomilin, I.A.; Mochalova, T.Yu.; Kaloshkin, S.D.; Kostyukovich, T.G.; Lopatina, E.A.

    1993-01-01

    The effect of the parameters of Ni 78 Si 10 B 12 alloy amorphous strip milling in a ball planetary mill on the stability of powder amorphous state, crytallization kinetics and dispersity is studied by the methods of differential scanning microcaloremetry and X-ray diffraction analysis. Energy intensity of milling conditions is assessed. An increase of input energy results in a decrease of activation energy of powder crystallization. Strip milling parameters which enable to avaintain the amorphous state of the material are determined

  20. Structure-property relations in amorphous carbon for photovoltaics

    International Nuclear Information System (INIS)

    Risplendi, Francesca; Cicero, Giancarlo; Bernardi, Marco; Grossman, Jeffrey C.

    2014-01-01

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  1. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    Science.gov (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  2. Crystalline and amorphous rare-earth metallic compounds

    International Nuclear Information System (INIS)

    Burzo, E.

    1975-01-01

    During the last years the study of magnetic behaviour of rare-earth (or yttrium) compounds with cobalt and iron has growth of interest. This interest of justified by a large area of experimental and theoretical problems coming into being in the study of some rare-earth materials as well as in their technical applications. In the last three years a great number of new rare earth materials were studied and also new models explaining the magnetic behaviour of these systems have been used. In this paper we refer especially to some typical systems in order to analyse the magnetic behaviour of iron and cobalt and also the part played by the magnetic interactions in the values of the cobalt or iron moments. The model used will be generally the molecular field model. In the second chapter we present comparatively the structure of crystalline and amorphous compounds for further correlation with the magnetic properties. In chapter III we analyse the magnetic interactions in some crystalline and amorphous rare-earth alloys. Finally, we exemplify the ways in which we ensure better requried characteristics by the technical utilizations of these materials. These have in view the modifications of the magnetic interactions and are closely related with the analysis made in chapter III

  3. Determination of the fraction of amorphous phases in superconducting samples

    International Nuclear Information System (INIS)

    Gomes Junior, G.G.; Ogasawara, T.; Amorim, H.S.

    2010-01-01

    The study phase formation of high critical temperature superconducting (Bi, Pb) - 2223 by partial melting and recrystallization aims to improve the microstructure of the material. Was used for X-ray diffraction characterization of the phases present. The DDM method (Derivative Difference Minimization) was used for the refinement of structures, quantification of the phases and determination the fraction of this amorphous. The advantage this method is not necessary to introduce an internal standard to determine the amorphous fraction. Were observed in the powder precursor phases (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O x (Bi, Pb) -2223, 93% of the sample, Bi 2 Sr 2 CaCu 2 O y (Bi-2212) and Bi 2 Sr 2 CuO z (Bi-2201). The powder precursor was heat treated at 820-870 deg C. To minimize volatilization of lead, the material was placed in silver crucibles closed. To get a high recovery of (Bi, Pb) - 2223, the material was cooled slowly, due to slow kinetic of formation of this phase. We observed a partial recovery phase (Bi, Pb) -2223. (author)

  4. Structure-property relations in amorphous carbon for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Risplendi, Francesca; Cicero, Giancarlo [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, 10129 Torino (Italy); Bernardi, Marco [Department of Physics, University of California, Berkeley, California 94720 (United States); Grossman, Jeffrey C., E-mail: jcg@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28

    Carbon is emerging as a material with great potential for photovoltaics (PV). However, the amorphous form (a-C) has not been studied in detail as a PV material, even though it holds similarities with amorphous Silicon (a-Si) that is widely employed in efficient solar cells. In this work, we correlate the structure, bonding, stoichiometry, and hydrogen content of a-C with properties linked to PV performance such as the electronic structure and optical absorption. We employ first-principles molecular dynamics and density functional theory calculations to generate and analyze a set of a-C structures with a range of densities and hydrogen concentrations. We demonstrate that optical and electronic properties of interest in PV can be widely tuned by varying the density and hydrogen content. For example, sunlight absorption in a-C films can significantly exceed that of a same thickness of a-Si for a range of densities and H contents in a-C. Our results highlight promising features of a-C as the active layer material of thin-film solar cells.

  5. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    International Nuclear Information System (INIS)

    Zemcik, T.

    1994-01-01

    Fe-Tm-B base (TM = transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100 C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline ''Finemet'' alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Moessbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems. (orig.)

  6. Bonding tungsten, W–Cu-alloy and copper with amorphous Fe–W alloy transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song, E-mail: wangsongrain@163.com [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Zhao, Pei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zang, Nanzhi [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Wang, Jianjun [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Guo, Shibin [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Jun [Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Xu, Guiying [Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-05-15

    W/Cu graded materials are the leading candidate materials used as the plasma facing components in a fusion reactor. However, tungsten and copper can hardly be jointed together due to their great differences in physical properties such as coefficient of thermal expansion and melting point, and the lack of solid solubility between them. To overcome those difficulties, a new amorphous Fe–W alloy transitional coating and vacuum hot pressing (VHP) method were proposed and introduced in this paper. The morphology, composition and structure of the amorphous Fe–W alloy coating and the sintering interface of the specimens were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The thermal shock resistance of the bonded composite was also tested. The results demonstrated that amorphous structure underwent change from amorphous to nano grains during joining process, and the joined W/Cu composite can endued plasma thermal shock resistance with energy density more than 5.33 MW/m{sup 2}. It provides a new feasible technical to join refractory tungsten to immiscible copper with amorphous Fe–W alloy coating.

  7. Hall effect measurements of high-quality M n3CuN thin films and the electronic structure

    Science.gov (United States)

    Matsumoto, Toshiki; Hatano, Takafumi; Urata, Takahiro; Iida, Kazumasa; Takenaka, Koshi; Ikuta, Hiroshi

    2017-11-01

    The physical properties of M n3CuN were studied using thin films. We found that an annealing process was very effective to improve the film quality, the key of which was the use of Ti that prevented the formation of oxide impurities. Using these high-quality thin films, we found strong strain dependence for the ferromagnetic transition temperature (TC) and a sign change of the Hall coefficient at TC. The analysis of Hall coefficient data revealed a sizable decrease of hole concentration and a large increase of electron mobility below TC, which is discussed in relation to the electronic structure of this material.

  8. "Liquid-liquid-solid"-type superoleophobic surfaces to pattern polymeric semiconductors towards high-quality organic field-effect transistors.

    Science.gov (United States)

    Wu, Yuchen; Su, Bin; Jiang, Lei; Heeger, Alan J

    2013-12-03

    Precisely aligned organic-liquid-soluble semiconductor microwire arrays have been fabricated by "liquid-liquid-solid" type superoleophobic surfaces directed fluid drying. Aligned organic 1D micro-architectures can be built as high-quality organic field-effect transistors with high mobilities of >10 cm(2) ·V(-1) ·s(-1) and current on/off ratio of more than 10(6) . All these studies will boost the development of 1D microstructures of organic semiconductor materials for potential application in organic electronics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system

    International Nuclear Information System (INIS)

    Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de

    2009-01-01

    We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail

  10. Phase Field Theory and Analysis of Pressure-Shear Induced Amorphization and Failure in Boron Carbide Ceramic

    Directory of Open Access Journals (Sweden)

    John D. Clayton

    2014-07-01

    Full Text Available A nonlinear continuum phase field theory is developed to describe amorphization of crystalline elastic solids under shear and/or pressure loading. An order parameter describes the local degree of crystallinity. Elastic coefficients can depend on the order parameter, inelastic volume change may accompany the transition from crystal to amorphous phase, and transitional regions parallel to bands of amorphous material are penalized by interfacial surface energy. Analytical and simple numerical solutions are obtained for an idealized isotropic version of the general theory, for an element of material subjected to compressive and/or shear loading. Solutions compare favorably with experimental evidence and atomic simulations of amorphization in boron carbide, demonstrating the tendency for structural collapse and strength loss with increasing shear deformation and superposed pressure.

  11. Ab initio simulation of amorphous silicon

    International Nuclear Information System (INIS)

    Cooper, N.C.; McKenzie, D.R.; Goringe, C.M.

    1999-01-01

    Full text: A first-principles Car-Parrinello molecular dynamics simulation of amorphous silicon is presented. Density Functional Theory is used to describe the forces between the atoms in a 64 atom supercell which is periodically repeated throughout space in order to generate an infinite network of atoms (a good approximation to a real solid). A quench from the liquid phase is used to achieve a quenched amorphous structure, which is subjected to an annealing cycle to improve its stability. The final, annealed network is in better agreement with experiment than any previous simulation of amorphous silicon. Significantly, the predicted average first-coordination numbers of 3.56 and 3.84 for the quenched and annealed structures from this simulation agree very closely with the experimental values of 3.55 and 3.90 respectively, whereas all previous simulations yielded first coordination numbers greater than 4. This improved agreement in coordination numbers is important because it supports the experimental finding that dangling bonds (which are associated with under-coordinated atoms) are more prevalent than floating bonds (the strained, longer bond of a five coordinate atom) in pure amorphous silicon. Finally, the effect of adding hydrogen to amorphous silicon was investigated by specifically placing hydrogen atoms at the likely defect sites. After a structural relaxation to optimise the positions of these hydrogen atoms, the localised electronic states associated with these defects are absent. Thus hydrogen is responsible for removing these defect states (which are able to trap carriers) from the edge of the band gap of the amorphous silicon. These results confirm the widely held ideas about the effect of hydrogen in producing remarkable improvements in the electronic properties of amorphous silicon

  12. Characterization of non equilibrium effects on high quality critical flows

    International Nuclear Information System (INIS)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-01-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness

  13. High-quality CdTe films from nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.L.; Pehnt, M.; Urgiles, E. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  14. Characterization of non equilibrium effects on high quality critical flows

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  15. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  16. Coating of calcia-doped ceria with amorphous silica shell by seeded polymerization technique

    International Nuclear Information System (INIS)

    El-Toni, Ahmed Mohamed; Yin, Shu; Yabe, Shinryo; Sato, Tsugio

    2005-01-01

    Calcia-doped ceria is of potential interest as an ultraviolet (UV) radiation blocking material in personal care products. However, its high catalytic ability for oxidation of organic materials makes it difficult to use as a sunscreen material. Therefore, calcia-doped ceria was coated with amorphous silica by means of seeded polymerization technique in order to depress its oxidation catalytic ability. The catalytic ability as well as UV-shielding ability was investigated for coated particles

  17. Amorphization of complex ceramics by heavy-particle irradiations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1994-11-01

    Complex ceramics, for the purpose of this paper, include materials that are generally strongly bonded (mixed ionic and covalent), refractory and frequently good insulators. They are distinguished from simple, compact ceramics (e.g., MgO and UO 2 ) by structural features which include: (1) open network structures, best characterized by a consideration of the shape, size and connectivity of coordination polyhedra; (2) complex compositions which characteristically lead to multiple cation sites and lower symmetry; (3) directional bonding; (4) bond-type variations within the structure. The heavy particle irradiations include ion-beam irradiations and recoil-nucleus damage resulting from a-decay events from constituent actinides. The latter effects are responsible for the radiation-induced transformation to the metamict state in minerals. The responses of these materials to irradiation are complex, as energy may be dissipated ballistically by transfer of kinetic energy from an incident projectile or radiolytically by conversion of radiation-induced electronic excitations into atomic motion. This results in isolated Frenkel defect pairs, defect aggregates, isolated collision cascades or bulk amorphization. Thus, the amorphization process is heterogeneous. Only recently have there been systematic studies of heavy particle irradiations of complex ceramics on a wide variety of structure-types and compositions as a function of dose and temperature. In this paper, we review the conditions for amorphization for the tetragonal orthosilicate, zircon [ZrSiO 4 ]; the hexagonal orthosilicate/phosphate apatite structure-type [X 10 (ZO 4 ) 6 (F,Cl,O) 2 ]; the isometric pyrochlores [A 1-2 B 2 O 6 (O,OH,F) 0-1p H 2 O] and its monoclinic derivative zirconotite [CaZrTi 2 O 7 ]; the olivine (derivative - hcp) structure types, α- VI A 2 IV BO 4 , and spinel (ccp), γ- VI A 2 IV BO 4

  18. Amorphous-to-crystalline transition in Ge{sub 8}Sb{sub (2-x)}Bi{sub x}Te{sub 11} phase-change materials for data recording

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, Roman, E-mail: roman.svoboda@upce.cz [Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Karabyn, Vasyl [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Málek, Jiří [Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Frumar, Miloslav [Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice (Czech Republic); Beneš, Ludvík; Vlček, Milan [Joint Laboratory of Solid State Chemistry of Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic v.v.i. and the University of Pardubice 532 10 Pardubice (Czech Republic)

    2016-07-25

    Structural and thermokinetic analyses were used to study the crystallization behavior of Ge{sub 8}Sb{sub (2-x)}Bi{sub x}Te{sub 11}thin films, promising materials for phase-change memory recording applications. By exploring the full compositional range, it was found that the Sb→Bi substitution leads to a decrease of crystallization enthalpy and activation energy of the main crystallization phase-change process. These trends were explained in terms of the changing structural ordering within the recently proposed new phase-change atomic switching mechanism. All of the compositions exhibited very similar transformation kinetics, confirming the uniformity of the phase-change mechanisms involved. It was further shown that rapid energy delivery achieved during heating, in the case of all investigated materials, leads to a transition from the classical nucleation/growth-based formation of 3D crystallites towards an autocatalytic phase-change process with an enormously increased speed of crystallization. Rapidity of the crystallization process was quantified for all of the studied compositions based on a novel Index of Crystallization Rapidity criterion – the results provided by this criterion showed that the highest crystallization speed was produced by the Ge{sub 8}Sb{sub 0.8}Bi{sub 1.2}Te{sub 11} composition, which therefore from this point of view appears to be a suitable candidate for the new generation of phase-change memory recording devices. - Highlights: • Crystallization behavior of Ge{sub 8}Sb{sub (2-x)}Bi{sub x}Te{sub 11} thin films was studied by DSC. • Sb → Bi substitution leads to a decrease of crystallization enthalpy and activation energy. • All compositions exhibited very similar transformation kinetics. • Rapidity of the crystallization process was quantified for the studied compositions. • Highest crystallization speed was produced by the Ge{sub 8}Sb{sub 0.8}Bi{sub 1.2}Te{sub 11} composition.

  19. Fe based amorphous and compounds metallic alloys for magnetic and structural use

    International Nuclear Information System (INIS)

    Lavorato, G; Bassi, F; De Rosa, H; Moya, J

    2008-01-01

    Massive amorphous metals (thicker than 1mm) are new types of material that could have a wide range of future applications due to a unique combination of their physical properties, mechanics and magnetics. Among these are the elevated tension of fracture and hardness, and excellent soft magnetic properties. Since 1960, when an amorphous metallic alloy was first discovered, progress has continued on the application possibilities for these materials. One of their main limitations, maximum obtainable thickness, has continued to increase, since at first thicknesses of a few microns were obtained. Now amorphous alloys more than 70 mm thick are obtained using different metallic elements. Since 1995 massive amorphous metals can be produced using Fe as the base element. At first they were made in order to achieve good soft magnetic properties (thicknesses of ∼5 mm) and later a renewed interest in their use as structural material led to the development of materials with thicknesses of 16 mm and paramagnetics at room temperature. Increasing the toughness of these materials is also a challenge and investigators have proposed several solutions, among them is the development of composite materials where dendrites from a solid solution act as crack stoppers of fissures that are spread by an amorphous matrix. This work presents the results of studies with two types of synthesized materials using the rapid cooling technique from injection copper mold casting at air temperature: 1) a massive amorphous metallic alloy with composition (Fe 0.375 Co 0 .375 B 0.2 Si 0.05 )96Nb 4 (at.%) and 2) a composite of solid solution dendrites α-(FeCo) scattered in an amorphous matrix with a composition similar to alloy 1. Using the samples obtained structural studies were made (optic and electronic microscopy SEM, XRD, EDAX, DTA), magnetic studies (coercive field and saturation magnetization) and mechanical studies (Vickers microhardness). The fully amorphous alloy could be obtained with a

  20. Preparation of hydrogenated amorphous silicon and its characterization by transient photoconductivity

    International Nuclear Information System (INIS)

    Walker, C.M.

    1992-01-01

    Hydrogenated amorphous silicon (a-Si:H) is a semiconductor material that has generated recent widespread interest because of its low manufacturing and processing costs compared with other semiconducting materials. The performance of devices incorporating a-Si:H depends to a large extent on the photoresponse of the a-Si:H. The work in this thesis involves the construction of an a-Si:H plasma-enhanced chemical vapor deposition (PECVD) system, characterization of the quality of the a-Si:H produced by this system, and measurement of the transient photoconductivity n response to pulses of laser illumination with different durations. The relationship of the design of the PECVD system to the quality of the a-Si:H is treated, emphasizing the features included in the system to reduce the incorporation of defects in the a-Si:H layers. These features include an ultra-high-vacuum deposition chamber, a load-lock chamber enabling samples to be loaded under vacuum, and an electrode assembly designed to produce a uniform electric field for decomposing the reactant gases. The quality of the A-Si:H films is examined. The dark conductivity activation energy, optical absorption, and photoconductivity are measured to characterize intrinsic, p-doped, and n-doped a-Si:H layers. The current vs. voltage characteristics under illuminated and dark conditions, and the quantum efficiency are measured on a-Si:H p-i-n diodes made in our system, and the results show that these diodes compare favorably to similar high-quality p-i-n diodes produced at other laboratories. An investigation into the effect of the light-induced degradation associated with a-Si:H on the performance of OASLMs is also presented. Finally, the transient photoresponse to laser pulses ranging in duration from 1 μs to 1 s over a range of temperatures from 100 to 300 K is investigated. We have discovered that the response time of the initial photoconductivity decay increases as the excitation-pulse duration increases