WorldWideScience

Sample records for high-q superconductor electromechanical

  1. Electromechanical properties of superconductors for DOE/OFE applications. Final report

    International Nuclear Information System (INIS)

    Ekin, J.W.; Bray, S.L.

    1998-01-01

    In many superconductor applications, especially large magnets, the superconductor is required to perform while under the influence of strong mechanical forces. These forces are commonly due to residual fabrication stress, differential thermal contraction of dissimilar materials, and electromagnetic forces generated within an energized magnet coil. Thorough knowledge of a superconductor's electrical performance under the influence of these forces (electromechanical properties) is required for successful magnet engineering. This report presents results of research conducted during the period from august 1993 through March 1997 on the electromechanical properties of superconductors for DOE/OFE fusion applications

  2. Electromechanical properties of superconductors for DOE fusion applications

    International Nuclear Information System (INIS)

    Ekin, J.W.; Bray, S.L.; Lutgen, C.L.; Bahn, W.L.

    1994-01-01

    The electrical performance of many superconducting materials is strongly dependent on mechanical load. This report presents electromechanical data on a broad range of high-magnetic-field superconductors. The conductors that were studied fall into three general categories: Candidate conductors, experimental conductors, and reference conductors. Research on candidate conductors for fusion applications provides screening data for superconductor selection as well as engineering data for magnet design and performance analysis. The effect of axial tensile strain on critical-current density was measured for several Nb 3 Sn candidate conductors including the US-DPC (United States Demonstration Poloidal Coil) cable strand and an ITER (International Thermonuclear Experimental Reactor) candidate conductor. Also, data are presented on promising experimental superconductors that have strong potential for fusion applications. Axial strain measurements were made on a V 3 Ga tape conductor that has good performance at magnetic fields up to 20 T. Axial strain data are also presented for three experimental Nb 3 Sn conductors that contain dispersion hardened copper reinforcement for increased tensile strength. Finally, electromechanical characteristics were measured for three different Nb 3 Sn reference conductors from the first and second VAMAS (Versailles Project on Advanced Materials and Standards) international Nb 3 Sn critical-current round robins. Published papers containing key results, including the first measurement of the transverse stress effect in Nb 3 Sn, the effect of stress concentration at cable-strand crossovers, and electromechanical characteristics of Nb 3 Al, are included throughout the report

  3. Comparison of electromechanical properties and lattice distortions of different cuprate high temperature superconductors

    CERN Document Server

    Scheuerlein, C.; Grether, A; Rikel, M O; Hudspeth, J; Sugano, M; Ballarino, A; Bottura, L

    2016-01-01

    The electromechanical properties of different cuprate high-temperature superconductors, notably two ReBCO tapes, a reinforced and a nonreinforced Bi-2223 tape, and a Bi-2212 wire, have been studied. The axial tensile stress and strain, as well as the transverse compressive stress limits at which an irreversible critical current degradation occurs, are compared. The experimental setup has been integrated in a high-energy synchrotron beamline, and the self-field critical current and lattice parameter changes as a function of tensile stress and strain of a reinforced Bi-2223 tape have been measured simultaneously. Initially, the Bi-2223 filaments exhibit nearly linear elastic behavior up to the strain at which an irreversible degradation is observed. At 77 K, an axial Bi-2223 filament precompression of 0.09% in the composite tape and a Bi-2223 Poisson ratio ν = 0.21 have been determined.

  4. Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor

    Science.gov (United States)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.

    2008-05-01

    High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.

  5. A superconductor electromechanical oscillator and its potential application in energy storage

    International Nuclear Information System (INIS)

    Schilling, Osvaldo F

    2004-01-01

    We discuss theoretically the properties of an electromechanical oscillating system whose operation is based upon the cyclic conservative conversion between gravitational potential, kinetic and magnetic energies. The system consists of a superconducting coil subjected to a constant external force and to magnetic fields. The coil oscillates and has induced in it a rectified electrical current whose magnitude may reach hundreds of amperes. The design differs from that of most conventional superconductor machines since the motion is linear (and practically unnoticeable depending on frequency) rather than rotatory and it does not involve high speeds. Furthermore, there is no need for an external electrical power source to start up the system. We also show that the losses for such a system can be made extremely small for certain operational conditions, so that by reaching and keeping resonance the system's main application should be in the generation and storage of electromagnetic energy. (rapid communication)

  6. An explanation of the irreversibility behavior in the highly- anisotropic high-temperature superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kim, D.H.

    1991-01-01

    The wide temperature range of the reversible, lossy state of the new high-temperature superconductors in a magnetic field was recognized soon after their discovery. This behavior, which had gone virtually undetected in conventional superconductors, has generated considerable interest, both for a fundamental understanding of the HTS and because it degrades the performance of HTS for finite-field applications. We show that recently proposed explanation of this behavior for the highly-anisotropic high-temperature superconductors, as a dimensional crossover of the magnetic vortices, is strongly supported by recent experiments on a Bi 2 Sr 2 CaCu 2 O x single crystal using the high-Q mechanical oscillator techniques

  7. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  8. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    CERN Document Server

    Bayer, Christoph M

    2017-01-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  9. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  10. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  11. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  12. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  13. Investigations of a voltage-biased microwave cavity for quantum measurements of nanomechanical resonators

    Science.gov (United States)

    Rouxinol, Francisco; Hao, Hugo; Lahaye, Matt

    2015-03-01

    Quantum electromechanical systems incorporating superconducting qubits have received extensive interest in recent years due to their promising prospects for studying fundamental topics of quantum mechanics such as quantum measurement, entanglement and decoherence in new macroscopic limits, also for their potential as elements in technological applications in quantum information network and weak force detector, to name a few. In this presentation we will discuss ours efforts toward to devise an electromechanical circuit to strongly couple a nanomechanical resonator to a superconductor qubit, where a high voltage dc-bias is required, to study quantum behavior of a mechanical resonator. Preliminary results of our latest generation of devices integrating a superconductor qubit into a high-Q voltage biased microwave cavities are presented. Developments in the circuit design to couple a mechanical resonator to a qubit in the high-Q voltage bias CPW cavity is discussed as well prospects of achieving single-phonon measurement resolution. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  14. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  15. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  16. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  17. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  18. Electromechanical Componentry. High-Technology Training Module.

    Science.gov (United States)

    Lindemann, Don

    This training module on electromechanical components contains 10 units for a two-year vocational program packaging system equipment control course at Wisconsin Indianhead Technical College. This module describes the functions of electromechanical devices essential for understanding input/output devices for Programmable Logic Control (PLC)…

  19. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  20. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  1. The evidence of unconventional pairing in heavy fermion superconductors and high-Tc superconductors

    International Nuclear Information System (INIS)

    Tien, C.; Wur, C.S.; Jiang, I.M.

    1989-01-01

    Recently there has been a great deal of interest in two classes of superconductors, heavy fermion superconductors and high T c copper oxide superconductors. The behavior and nature of superconductivity in these two classes of materials are very similar. The temperature dependences of spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 ) of 9 Be in UBe 13 are quite similar to those of 63 Cu and 89 Y in YBa 2 Cu 3 O 7-δ . The Knight shift of UBe 13 is unchanged during the superconducting phase transition. The Knight shift of YBa 2 Cu 3 O 7-δ changes from the value in the normal state K n /K s = 1 at T ≥ T c to K n /K s = 0.5 at T = 6 K. Both do not approach zero as expected in BCS theory. The acoustic attenuation is enhanced just below T c instead of rapid drop near T c for these two superconducting system. Neither the enhancement, the temperature variation, nor any other anomalous behaviors appear to be mirrored in EPR data for heavy Fermion superconductors and high T c superconductors. This strongly suggests that the unconventional pairing mechanism which induces superconductivity in heavy fermion materials might also involve in high T c superconductors

  2. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  3. Superconductors in the High School Classroom

    Science.gov (United States)

    Lincoln, James

    2017-01-01

    In this article, we discuss the behavior of high-temperature superconductors and how to demonstrate them safely and effectively in the high school or introductory physics classroom. Included here is a discussion of the most relevant physics topics that can be demonstrated, some safety tips, and a bit of the history of superconductors. In an effort…

  4. Two classes of superconductors discovered in our material research: Iron-based high temperature superconductor and electride superconductor

    International Nuclear Information System (INIS)

    Hosono, Hideo

    2009-01-01

    We discovered two new classes of superconductors in the course of material exploration for electronic-active oxides. One is 12CaO . 7Al 2 O 3 crystal in which electrons accomodate in the crystallographic sub-nanometer-sized cavities. This material exhibiting metal-superconductor transition at 0.2 K is the first electride superconductor. The other is iron oxypnicitides with a layered structure. This superconductor is rather different from high T c cuprates in several respects. The high T c is emerged by doping carriers to the metallic parent phases which undergo crystallographic transition (tetra to ortho) and Pauli para to antiferromagnetic transition at ∼150 K. The T c is robust to impurity doping to the Fe sites or is induced by partial substitution of the Fe 2+ sites with Co 2+ or Ni 2+ . This article gives a brief summary of these discoveries and recent advances.

  5. Pinning and creep in high-Tc superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.; Ivlev, B.I.

    1992-01-01

    The angular and magnetic field dependence of a critical current parallel to the layers in the layered superconductors is studied. The critical current value is found for a superconductor with strong pinning centers. Quantum flux creep in sufficiently perfect layered high-Tc superconductors is discussed. The cross-over temperature between activated and quantum creep is found. (orig.)

  6. Non-equilibrium spectroscopy of high-Tc superconductors

    International Nuclear Information System (INIS)

    Krasnov, V M

    2009-01-01

    In superconductors, recombination of two non-equilibrium quasiparticles into a Cooper pair results in emission of excitation that mediates superconductivity. This is the basis of the proposed new type of 'non-equilibrium' spectroscopy of high T c superconductors, which may open a possibility for direct and unambiguous determination of the coupling mechanism of high T c superconductivity. In case of low T c superconductors, the feasibility of such the non-equilibrium spectroscopy was demonstrated in classical phonon generation-detection experiments almost four decades ago. Recently it was demonstrated that a similar technique can be used for high T c superconductors, using natural intrinsic Josephson junctions both for injection of non-equilibrium quasiparticles and for detection of the non-equilibrium radiation. Here I analyze theoretically non-equilibrium phenomena in intrinsic Josephson junctions. It is shown that extreme non-equilibrium state can be achieved at bias equal to integer number of the gap voltage, which can lead to laser-like emission from the stack. I argue that identification of the boson type, constituting this non-equilibrium radiation would unambiguously reveal the coupling mechanism of high Tc superconductors.

  7. Design study of SMES system using high temperature superconductors

    International Nuclear Information System (INIS)

    Yoshihara, T.; Masuda, M.; Shintomi, T.; Hasegawa, J.

    1988-01-01

    Various studies of high Tc superconductors are being energetically pursued all over the world, since IBM Zurich Research Laboratory reported on the superconducting oxide. A new design using a high Tc superconductor is under study for 5000 MWh, on the assumption that it is available like conventional superconductors. Problems related to the Tc SMES system, mainly thermal insulation, refrigeration system, stability of superconductors, etc., are considered. Some design examples of high Tc SMES system are proposed

  8. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  9. Fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  10. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  11. High Temperature Electro-Mechanical Devices For Nuclear Applications

    International Nuclear Information System (INIS)

    Robertson, D.

    2010-01-01

    Nuclear power plants require a number of electro-mechanical devices, for example, Control Rod Drive Mechanisms (CRDM's) to control the raising and lowering of control rods and Reactor Coolant Pumps (RCP's) to circulate the primary coolant. There are potential benefits in locating electro-mechanical components in areas of the plant with high ambient temperatures. One such benefit is the reduced need to make penetrations in pressure vessels leading to simplified plant design and improved inherent safety. The feature that limits the ambient temperature at which most electrical machines may operate is the material used for the electrical insulation of the machine windings. Conventional electrical machines generally use polymer-based insulation that limits the ambient temperature they can operate in to below 200 degrees Celsius. This means that when a conventional electrical machine is required to operate in a hot area it must be actively cooled necessitating additional systems. This paper presents data gathered during investigations undertaken by Rolls-Royce into the design of high temperature electrical machines. The research was undertaken at Rolls-Royce's University Technology Centre in Advanced Electrical Machines and Drives at Sheffield University. Rolls- Royce has also been investigating high temperature wire and encapsulants and latterly techniques to provide high temperature insulation to terminations. Rolls-Royce used the experience gained from these tests to produce a high temperature electrical linear actuator at sizes representative of those used in reactor systems. This machine was tested successfully at temperatures equivalent to those found inside the reactor vessel of a pressurised water reactor through a full series of operations that replicated in service duty. The paper will conclude by discussing the impact of the findings and potential electro-mechanical designs that may utilise such high temperature technologies. (authors)

  12. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  13. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  14. Identifying the genes of unconventional high temperature superconductors.

    Science.gov (United States)

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  15. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  16. High-Tc superconductor applications

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    There has been much speculation about new products and business opportunities which high-Tc superconductors might make possible. However, with the exception of one Japanese survey, there have not been any recognized forecasts suggesting a timeframe and relative economic impact for proposed high-Tc products. The purpose of this survey is to provide definitive projections of the timetable for high-Tc product development, based on the combined forecasts of the leading U.S. superconductivity experts. The FTS panel of experts on high-Tc superconductor applications, representing both business and research, forecast the commercialization and economic impact for 28 classes of electronic, magnetic, communications, instrumentation, transportation, industrial, and power generation products. In most cases, forecasts predict the occurrence of developments within a 90% statistical confidence limit of 2-to-3 years. The report provides background information on the 28 application areas, as well as other information useful for strategic planners. The panel also forecast high-Tc research spending, markets, and international competitiveness, and provide insight into how the industry will evolve

  17. High-T/sub c/ superconductor and its use in superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1988-02-01

    Many of the proposed uses for the high-T/sub c/ superconductor involve the creation of a magnetic field using superconducting coils. This report will assess what is known about the high-T/sub c/ superconductors and take a realistic look at their potential use in various kinds of superconducting magnets. Based on what is known about the high-T/sub c/ superconductors, one can make a ''wish list'' of things that will make such materials useful for magnets. Then, the following question is asked. If one had a high-T/sub c/ superconductor with the same properties as modern niobium-titanium superconductor, how would the superconductor work in a magnet environment? Finally, this report will show the potential impact of the ideal high-T/sub c/ superconductor on: 1) accelerator dipole and quadrupole magnets, 2) superconducting magnets for use in space, and 3) superconducting solenoids for magnetic resonance imaging. 78 refs., 11 tabs

  18. Potentialities in electronics of new high critical temperature superconductors

    International Nuclear Information System (INIS)

    Hartemann, P.

    1989-01-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed [fr

  19. Atomic hydrogen effects on high-Tc superconductors

    International Nuclear Information System (INIS)

    Frantskevich, N.V.; Ulyashin, A.G.; Alifanov, A.V.; Stepanenko, A.V.; Fedotova, V.V.

    1999-01-01

    The atomic hydrogen effects on the properties of bulk high-temperature superconductors were investigated. It is shown that the insertion of the atomic hydrogen into the bulk of these materials from a DC plasma leads to the increase of the critical current density J c for YBaCuO(123) as well as for BiSrCaCuO(2223) high-temperature superconductors. It is found that the hydrogenation of the He implanted samples with following annealing leads to the optically detected blistering on the surface. It means that the textured thin subsurface layers of high-temperature superconductors can be formed by this method. The improvement of superconductivity by atomic hydrogen can be explained by the passivation of dangling bonds and defects on grain boundaries of these materials

  20. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  1. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  2. Powder processing of high Tc oxide superconductors and their properties

    International Nuclear Information System (INIS)

    Vajpei, A.C.; Upadhyaya, G.S.

    1992-01-01

    Powder processing of ceramics is an established technology and in the area of high T c superconductors, its importance is felt even more significantly. The present monograph is an attempt in this direction to explore the perspectives and practice of powder processing routes towards control and optimization of the microstructure and pertinent properties of high T c oxide superconductors. The monograph consists of 6 chapters. After a very brief introduction (Chapter 1), Chapter 2 describes various classes of high T c oxide superconductors and their phase equilibria. Chapter 3 highlights the preparation of oxide superconductor powders through various routes and details their subtle distinctions. Chapter 4 briefly covers characterisation of the oxide superconductors, laying emphasis on the process-analysis and microstructure. Chapter 5 describes in detail various fabrication techniques for bulk superconductors through the powder routes. The last Chapter (Chapter 6) describing properties of bulk oxide superconductors, discusses the role of subtituents, compositional variations and processing methods on such properties. References are given at the end of each chapter. (orig.)

  3. Five-fold way to new high Tc superconductors

    Indian Academy of Sciences (India)

    Discovery of high c superconductivity in La2−BaCuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence ...

  4. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  5. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  6. Contact spectroscopy of high-temperature superconductors. Review

    International Nuclear Information System (INIS)

    Yanson, I.K.

    1991-01-01

    We have attempted to systematize the research of high temperature superconductors by means of tunneling and point-contact spectroscopy. The theoretical grounds of the methods are briefly described. The deviations of current-voltage characteristics from ordinary superconductors are considered. The properties of point contacts with direct energy gap measurfements and the fine structure of derivatives of i(v) curves at the overlap energies are reviewed for the high-T c La 2-x Sr x CuO 4 materials

  7. Weak links in high critical temperature superconductors

    Science.gov (United States)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  8. Weak links in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Tafuri, Francesco; Kirtley, John R

    2005-01-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  9. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  10. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  11. Temperature dependence of high field electromechanical coupling in ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P M; Cain, M G; Stewart, M, E-mail: paul.weaver@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-04-28

    A study of the temperature dependence of the electromechanical response of ferroelectric lead zirconate titanate (PZT) ceramics at high electric fields (up to 1.3 kV mm{sup -1}) is reported. Simultaneous measurements were performed of strain, electric field and polarization to form a complete response map from room temperature up to 200 {sup 0}C. An electrostrictive model is shown to provide an accurate description of the electromechanical response to high levels of induced polarization and electric field. This provides a method for decoupling strain contributions from thermal expansion and polarization changes. Direct measurements of electrostriction and thermal expansion, above and below the Curie temperature, are reported. Electrostriction coefficients are shown to be temperature dependent in these ceramic materials, with different values above and below the Curie temperature.

  12. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  13. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  14. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  15. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  16. High-temperature cuprate superconductors. Experiment, theory, and applications

    International Nuclear Information System (INIS)

    Plakida, Nikolay

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials. (orig.)

  17. High-Tc ferroelectrics and superconductors

    International Nuclear Information System (INIS)

    Muller, K.A.

    1990-01-01

    The meaning of the title refers to transition temperatures T c in ferroelectrics (FE) and superconductors (S). The highest T c 's in either field are observed in oxides: 1770 K in the ferroelectric La 2 TiO 7 and 125 K in the superconductor Tl 2 Ca 2 Cu 3 O 10 . Therefore, the question can be asked whether the observed high T c 's in oxide FE and S are a pure coincidence or whether there may be an underlying reason for it. This question is addressed first by recalling recent advances concerning anharmonic FE-properties and then by reviewing S-findings in the new compounds related to these properties

  18. On the electronegativity of the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    We employ a very useful quantity, the electronegativity, to classify the superconductor. The value of the group average electronegativity to separate superconductor into two categories is 2. Each category has unique chemical bond features. The high-T c oxide superconductor belongs to the second category with group average electronegativity being larger than 2. Their unusual bond nature also gives new insight into some essential factors beneficial to enhance superconductivity. (author). 9 refs, 2 tabs

  19. Stress analysis in high-temperature superconductors under pulsed field magnetization

    Science.gov (United States)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  20. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  1. Proceedings, phenomenology and applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Bedell, K.S.

    1991-01-01

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely related to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions

  2. TECHNICAL TRAINING SEMINAR: High Temperature Superconductors: Progress and Issues

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Monday 24 June from 14:30 to 15:30 - Training Centre Auditorium - bldg. 593-11 High Temperature Superconductors: Progress and Issues Prof. Jan Evetts / UNIVERSITY OF CAMBRIDGE, Department of Materials Science and Metallurgy, UK Grappling with grain boundaries: Current transport processes in granular High Temperature Superconductors (HTS) The development of High Temperature Superconductors, seen from a materials scientist's point of view, is relevant to the superconductivity community at CERN: their possible high current applications can include high performance magnets for future accelerators. There is an urgent need to develop a quantitative description of HTS conductors in terms of their complex anisotropy, inhomogeneity and dimensionality. This is essential both for the practical specification of a conductor and for charting routes to conductor optimisation. The critical current, the n-value, dissipation and quenching characteristics are amongst most important parameters that make up an engineering specifi...

  3. Open questions in the magnetic behaviour of high-temperature superconductors

    International Nuclear Information System (INIS)

    Cohen, L.F.; Jensen, Henrik Jeldtoft

    1997-01-01

    A principally experimental review of vortex behaviour in high-temperature superconductors is presented. The reader is first introduced to the basic concepts needed to understand the magnetic properties of type II superconductors. The concepts of vortex melting, the vortex glass, vortex creep, etc are also discussed briefly. The bulk part of the review relates the theoretical predictions proposed for the vortex system in high temperature superconductors to experimental findings. The review ends with an attempt to direct the reader to those areas which still require further clarification. (author)

  4. Experimental constraints on theories of high Tc superconductors

    International Nuclear Information System (INIS)

    Little, W.A.

    1989-01-01

    Recent experiments on the high-T c superconductors have begun to narrow the possible theoretical explanations of the phenomenon. Experimental evidence on the size, structure and symmetry of the charge carriers will be reviewed; evidence for and against strong coupling; and, recent results on a search for direct evidence of magnetic signature in the coupling mechanism will be presented. The authors show how these experiments impose strong constraints on the theories of these superconductors. A new type of experiment is also discussed which appears capable of identifying the true nature of the coupling mechanism if the superconductors prove to be BCS-like in nature

  5. Ceramic high temperature superconductor levitating motor with laser commutator

    International Nuclear Information System (INIS)

    Roslan Abd Shukor; Lee Keng Heong

    1996-01-01

    The design of a magnetically levitating motor using a ceramic high temperature superconductor with laser commutator is discussed. A YBa sub 2 Cu sub 3 O sub 7-δ high temperature superconductor with 25 mm diameter and 6 mm thickness is used to levitate a Nd-Fe-B magnet (19.0 mm diameter and 4.8 mm thickness) which is attached symmetrically to a 150 mm long graphite rod. A smaller magnet (5.5 mm diameter and 2.0 mm thickness) is attached at each end of the rod with the appropriate poles arrangements. A suitable laser beam chopper is used to optically drive a solenoid which repels the smaller magnets thus driving the motor. A simple and efficient liquid nitrogen supply system is designed to cool the superconductor. The stability of the bearing is provided by the flux pinning in this type-II superconductor. Some characteristics of the motor are discussed

  6. Study of the glass formation of high temperature superconductors

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  7. The Born-Mayer-Huggins potential in high temperature superconductors

    Science.gov (United States)

    Singh, Hempal; Singh, Anu; Indu, B. D.

    2016-07-01

    The Born-Mayer-Huggins potential which has been found the best suitable potential to study the YBa2Cu3O7-δ type high temperature superconductors is revisited in a new framework. A deeper insight in it reveals that the Born-Mayer parameters for different interactions in high temperature superconductor are not simple quantities but several thermodynamic and spatial functions enter the problem. Based on the new theory, the expressions for pressure, bulk modulus and Born-Mayer parameters have been derived and it is established that these quantities depend upon Gruneisen parameter which is the measure of the strength of anharmonic effects in high temperature superconductors. This theory has been applied to a specific model YBa2Cu3O7-δ crystal for the purpose of numerical estimates to justify the new results.

  8. Advanced technologies related to a high temperature superconductor for small laboratory experiments

    International Nuclear Information System (INIS)

    Ogawa, Yuichi; Mito, Toshiyuki; Yanagi, Nagato

    2006-01-01

    Advanced technologies related to a high temperature superconductor materials and small refrigerator are reviewed. Mini-RT/RT-1 is designed and constructed as a plasma examination device. The element technology of low temperature apparatus, the results of performance tests and application examples are explained. The superconductors such as Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) for the low temperature phase, Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) for the high temperature phase, and YBa 2 Cu 3 O y (YBCO or Y123) are described. Advanced 4K-Giford-Mcmahon (GM) refrigerator on the market put superconductor coil made of low temperature superconductor metals to practical use and extends its application field. Small laboratory is able to experiment on the high temperature superconductor materials. (S.Y.)

  9. High-Tc superconductor quantum interference devices

    International Nuclear Information System (INIS)

    1991-01-01

    This patent describes a superconductive quantum interferometric device for sensing a characteristic of a magnetic field. It comprises a substrate having a surface, the substrate being selected from the group which consists of strontium titanate, aluminum oxide, sapphire, ZrO 2 and mixtures thereof; a coating of MgO on the surface of the substrate; two identical thin-strip films of a high-critical temperature superconductor on the coating, each of the films having a pair of mutually parallel arms in the form of superconductor strips extending toward and aligned with super conductor strips forming corresponding arms of the other thin-strip film, and a crossbar strip connecting the arms of each thin-strip film at right angles to the arms, the high-critical-temperature superconductor being selected from the group which consists of yttrium-barium-calcium-copper-oxides, bismuth-strontium-calcium-copper-oxides, thallium-barium-copper-oxides, thallium-barium-calcium-copper-oxides, barium oxide: potassium oxide: bismuth oxides, and calcium oxide: zinc oxide: iron oxides; and insulating films on the coating between corresponding free ends of the arms thin-strip films, the insulating films being composed of a material selected from the group which consists of silicon dioxide, silicon nitride, magnesium oxide and mixture thereof

  10. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    Science.gov (United States)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  11. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2018-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This interesting book aims to provide some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a short coherence length, a small superfluid density and an inhomogeneous structure.

  12. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2006-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This book aims to give some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a maximum of their critical temperature near the metal-insulator transition.

  13. The Goettingen high-Tc superconductivity research pool: the effects of structure and structural defects on the performance of high-Tc superconductors. Final reports

    International Nuclear Information System (INIS)

    1992-02-01

    The compilation presents the final reports prepared by the various teams of the Goettingen research pool for high-Tc superconductivity. The reports are entitled: Structure and phase transition in high-Tc superconductors (Krebs/Freyhardt). Preparation and critical properties of high-Tc superconductors (Freyhardt/Heinemann/Zimmermann). EMC measurements in high-Tc superconductors (Bormann/Noelting). Phase analysis of the various phases observed in the preparation of high-Tc superconductors (Faupel/Hehenkamp). Positron annihilation in high-Tc superconductors (Hehenkamp). Preparation and characterization of thin films consisting of superconducting oxide ceramics (v. Minnigerode/Samwer). High-Tc superconductivity in monocrystals (Winzer/Beuermann). Microwave conductivity in high-Tc superconductors (Helberg). High-resolution structural analyses in high-Tc superconductors (Kupcik/Bente). Synthesis, structural analyses and spectroscopy of high-Tc superconductors (Bente). Synthesis, monocrystal growing, crystal structure of high-Tc superconductors (Schwarzmann). Ion-beam-aided studies in high-Tc superconductors (Uhrmacher). (orig./MM) [de

  14. High-temperature superconductors in application - fight for the top

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    For the superconductor market two-digit growth rates are predicted until after the year 2000. The decrosslinking of the high temperature superconductors initiated a worldwide race for first applications. The report considers the situation of raw materials and the application potentials in the USA, Japan and Western Europe. (orig.) [de

  15. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  16. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-07-26

    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  17. Electrochemical investigations of high-Tc superconductors - low-temperature electrochemistry

    International Nuclear Information System (INIS)

    Lorenz, W.J.

    1992-01-01

    This research report presents a summary of results obtained by electrochemical investigations of high-Tc superconductors at room temperature and below the critical temperature (Tc). The studies were to reveal the behaviour of the ceramic superconducting materials at the interface between superconductor and ionic conductor. (MM) With 4 tabs., 8 figs [de

  18. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  19. Quantum Monte Carlo simulations for high-Tc superconductors

    International Nuclear Information System (INIS)

    Muramatsu, A.; Dopf, G.; Wagner, J.; Dieterich, P.; Hanke, W.

    1992-01-01

    Quantum Monte Carlo simulations for a multi-band model of high-Tc superconductors are reviewed with special emphasis on the comparison of different observabels with experiments. It is shown that a give parameter set of the three-band Hubbard model leads to a consistent description of normal-state propteries as well as pairing correlation function for the copper-oxide superconductors as a function of doping and temperature. (orig.)

  20. ASM Inaugural Lecture 2009: High temperature superconductors: Materials, mechanisms and applications

    International Nuclear Information System (INIS)

    Roslan Abdul Shukor

    2009-01-01

    A surprising variety of new superconducting materials has been discovered in recent years. Many compounds with light elements such as fullerenes, oxides, borides, nitrides, some organic materials and also heavy fermions have been found to superconductor at various temperatures. Hitherto, superconductors have proven to be highly varied in composition but elusive and mysterious. The juxtaposition of superconductivity and magnetism at the nano scale in some of these new materials has paved the way to a rich and exciting new field in condensed matter and materials research. An overview of superconductor research in Malaysian institutions is presented in this paper. Some of the new superconducting materials and their possible mechanisms, conventional and exotic, are presented. The possible role of lattice vibrations in the mechanisms of high temperature superconductivity and the study of this via acoustic methods are discussed. Frozen flux superconductors in a nano magnet-superconductor hybrid system are also discussed. (author)

  1. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  2. High precision determination of 16O in high Tc superconductors by DIGME

    International Nuclear Information System (INIS)

    Vickridge, I.; Tallon, J.; Presland, M.

    1994-01-01

    A method is described for measuring the 16 O content of high T c superconductors with better than 1% precision by exploiting the detection of gamma rays emitted when they are irradiated by an MeV deuterium beam. The method is presently less accurate than the widely used titration and thermogravimetric methods, however it is rapid, and may be applied to materials such as Tl-containing high T c superconductors which pose serious problems for the usual analytical methods. (orig.)

  3. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  4. Anomalous Hall effect from vortex motion in high-Tc superconductors

    International Nuclear Information System (INIS)

    Chen, J.L.; Yang, T.J.

    1994-01-01

    In this work, the unusual Seebeck effect is taken into consideration in explaining the possible origin of the anomalous Hall effect for high-T c superconductors. Combining Maki's theory of transport entropy and Tinkham's theory of resistive transition, we explain why the anomalous Hall effect can be observed in high-T c superconductors, but is absent in most conventional superconductors. The behavior of ρ xy (H,T) in our theory is qualitatively consistent with experiments. In addition, our theory not only predicts that ρ xy will become positive from ρ xy xy |∝ρ xx 2 in the region of ρ xy xy will diminish with increasing defect concentration

  5. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  6. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  7. High Temperature Superconductor Bolometers for Planetary Science

    Data.gov (United States)

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  8. Transport measurements in superconductors: critical current of granular high TC ceramic superconductor samples

    International Nuclear Information System (INIS)

    Passos, W.A.C.

    2016-01-01

    This work presents a method to obtain critical current of granular superconductors. We have carried out transport measurements (ρxT curves and VxI curves) in a YBa_2Cu_3O_7_-_δ sample to determine critical current density of it. Some specimens reveal a 'semiconductor-like' behavior (electrical resistivity decreases with increasing temperatures above critical temperature T_c of material) competing with superconductor behavior. Due to high granular fraction of the sample, these competition is clearly noted in ρxT curves. Measurements carried out from 0 to 8500 Oe of applied field show the same behavior, and the critical current density of the samples is shown. (author)

  9. An exponential universal scaling law for the volume pinning force of high temperature superconductors

    International Nuclear Information System (INIS)

    Hampshire, D.P.

    1993-01-01

    The exponential magnetic field dependence of the critical current density (J c (B,T)) found in many high temperature superconductors, given by: J c (B,T) α(T)exp(-B/β(T)) where α(T) and β(T) are functions of temperature alone, necessarily implies a Universal Scaling Law for the volume pinning force (F p ) of the form: F p /F PMAX exp(+1).(B/β(T)).exp(-B/β(T)). If the Upper Critical Field is not explicitly measured but is artificially determined by smooth extrapolation of J c (B,T) to zero on a linear J c (B,T) vs B plot, this exponential scaling law can be closely approximated by the Kramer dependence given by: F p /F PMAX C.b p .(1-b) q where p = 0.5, q = 2, C ∼ 3.5 and b = B/B C2 (T). The implications for flux pinning studies are discussed. (orig.)

  10. Bottlenecks reduction using superconductors in high voltage transmission lines

    Directory of Open Access Journals (Sweden)

    Daloub Labib

    2016-01-01

    Full Text Available Energy flow bottlenecks in high voltage transmission lines known as congestions are one of the challenges facing power utilities in fast developing countries. Bottlenecks occur in selected power lines when transmission systems are operated at or beyond their transfer limits. In these cases, congestions result in preventing new power supply contracts, infeasibility in existing contracts, price spike and market power abuse. The “Superconductor Technology” in electric power transmission cables has been used as a solution to solve the problem of bottlenecks in energy transmission at high voltage underground cables and overhead lines. The increase in demand on power generation and transmission happening due to fast development and linked to the intensive usage of transmission network in certain points, which in turn, lead to often frequent congestion in getting the required power across to where it is needed. In this paper, a bottleneck in high voltage double overhead transmission line with Aluminum Conductor Steel Reinforced was modeled using conductor parameters and replaced by Gap-Type Superconductor to assess the benefit of upgrading to higher temperature superconductor and obtain higher current carrying capacity. This proved to reduce the high loading of traditional aluminum conductors and allow more power transfer over the line using superconductor within the same existing right-of-way, steel towers, insulators and fittings, thus reducing the upgrade cost of building new lines.

  11. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  12. Internal friction of flux motion in Hg-system high-Tc superconductors

    International Nuclear Information System (INIS)

    Tian, W.; Zhu, J.S.; Shao, H.M.; Li, J.; Wang, Y.N.

    1996-01-01

    The internal friction(IF) and modulus as functions of temperature were measured for several Hg-system high-Tc superconductors(Hg1201, Hg1223, Hg1223 doped with Fe and Pb), under the applied magnetic field, with vibrating reed technique. An IF peak associated with flux motion can be found below Tc for all samples. The temperature of the IF peak increases with reducing vibrating amplitude. This amplitude dependence of IF indicates that the flux motion is characterized by nonlinear behavior. No apparent shift of IF peak position can be detected by varying the frequency in the range from 10 2 Hz to 10 3 Hz. Furthermore, the IF peak height satisfies a scaling law Q -1 ∝ω -n . This may be originated from phase transition of flux line lattice(FLL) rather than a thermally activated diffusion process. (orig.)

  13. High temperature superconductivity: Concept, preparation and testing of high Tc superconductor compounds, and applications

    International Nuclear Information System (INIS)

    Harara, Wafik

    1992-06-01

    Many studies have been carried out on high temperature superconductors with transition temperature above that of the liquid nitrogen. In this scientific study the concept and the mechanism of this phenomena are discussed, in addition the examples of preparation and testing of high temperature superconductors compounds are shown. Also the most important applications in industry are explained. (author). 15 refs., 2 tabs., 18 figs

  14. Bearing design for flywheel energy storage using high-TC superconductors

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  15. Computer modelling of high-temperature superconductors using an A-V formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Alonso, D; Coombs, T; Campbell, A M [Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2004-05-01

    Numerical methods for calculating the current and field distribution in high-temperature superconductors under non-uniform time-varying fields are being investigated. The highly non-linear behaviour of superconductors makes them difficult to analyse and computationally expensive. This non-linear behaviour is often accounted for through a non-linear E-J constitutive law. This paper proposes a fast method based on the finite element method to solve 2D and axially symmetric problems that contain superconducting materials. An E-J power law together with an A-V formulation is used to calculate the induction of currents in the superconductor due to time-varying external magnetic fields or forced transport current. Experimental data of a magnet-above-superconductor system is obtained in order to validate the model. In the experimental set-up a magnet is brought towards a superconducting puck at different speed rates and is also vibrated on top of it. The force between the magnet and the superconductor is measured and is found to vary with both time and frequency of excitation.

  16. Computer modelling of high-temperature superconductors using an A-V formulation

    International Nuclear Information System (INIS)

    Ruiz-Alonso, D; Coombs, T; Campbell, A M

    2004-01-01

    Numerical methods for calculating the current and field distribution in high-temperature superconductors under non-uniform time-varying fields are being investigated. The highly non-linear behaviour of superconductors makes them difficult to analyse and computationally expensive. This non-linear behaviour is often accounted for through a non-linear E-J constitutive law. This paper proposes a fast method based on the finite element method to solve 2D and axially symmetric problems that contain superconducting materials. An E-J power law together with an A-V formulation is used to calculate the induction of currents in the superconductor due to time-varying external magnetic fields or forced transport current. Experimental data of a magnet-above-superconductor system is obtained in order to validate the model. In the experimental set-up a magnet is brought towards a superconducting puck at different speed rates and is also vibrated on top of it. The force between the magnet and the superconductor is measured and is found to vary with both time and frequency of excitation

  17. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, R. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Baccam, N. [Department of Mathematics, Southwestern University, Georgetown, Texas 78626 (United States); Dayal, Kaushik [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Sharma, P. [Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  18. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  19. Critical current enhancement in high Tc superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Graebner, J.E.; Tiefel, T.H.

    1990-01-01

    Progress toward major technological applications of the bulk, high T c superconductors has been hindered by two major barriers, i.e., the Josephson weak-links at grain boundaries and the lack of sufficient intragrain flux pinning. It has been demonstrated that the weak link problem can be overcome by extreme alignment of grains such as in melt-textured-growth (MTG) materials. Modified or improved processing by various laboratories has produced further increased critical currents. However, the insufficient flux pinning seems to limit the critical current density in high fields to about 10 4 --10 5 A/cm 2 at 77K, which is not satisfactory for many applications. In this paper, processing, microstructure, and critical current behavior of the MTG type superconductors are described, and various processing possibilities for flux pinning enhancement are discussed

  20. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  1. The design of high-Tc superconductors - Room-temperature superconductivity?

    International Nuclear Information System (INIS)

    Tallon, J.L.; Storey, J.G.; Mallett, B.

    2012-01-01

    This year is the centennial of the discovery of superconductivity and the 25th anniversary of the discovery of high-T c superconductors (HTS). Though we still do not fully understand how HTS work, the basic rules of design can be determined from studying their systematics. We know what to do to increase T c and, more importantly, what to do to increase critical current density J c . This in turn lays down a challenge for the chemist. Can the ideal design be synthesized? More importantly, what are the limits? Can one make a room-temperature superconductor? In fact fluctuations place strict constraints on this objective and provide important guidelines for the design of the ideal superconductor.

  2. The local structure of high-temperature superconductors

    International Nuclear Information System (INIS)

    Mustre de Leon, J.; Conradson, S.D.; Bishop, A.R.; Raistrick, I.D.

    1992-01-01

    We show how x-ray absorption fine structure (XAFS) has been successfully used in the determination of the local crystal structure of high-temperature superconductors, with advantages over traditional diffraction techniques. We review the experimental results that yielded the first evidence for an axial-oxygen-centered lattice instability connected with the superconductivity transition. The interpretation of this instability in terms of a dynamical tunneling model suggests the presence of polarons in these materials. XAFS on Tl 2 Ba 2 CuO 6 and other Tl-based superconductors indicate the presence of local instabilities in the CuO 2 planes of these materials, in addition to axial-oxygen instabilities

  3. Alloy model for high temperature superconductors

    International Nuclear Information System (INIS)

    Weissmann, M.; Saul, A.

    1991-07-01

    An alloy model is proposed for the electronic structure of high temperature superconductors. It is based on the assumption that holes and extra electrons are localized in small copper oxygen clusters, that would be the components of such alloy. This model, when used together with quantum chemical calculations on small clusters, can explain the structure observed in the experimental densities of states of both hole and electron superconductors close to the Fermi energy. The main point is the strong dependence of the energy level distribution and composition on the number of electrons in a cluster. The alloy model also suggests a way to correlate Tc with the number of holes, or extra electrons, and the number of adequate clusters to locate them. (author). 21 refs, 4 figs, 1 tab

  4. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  5. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  6. Josephson junction between two high Tc superconductors with arbitrary transparency of interface

    Directory of Open Access Journals (Sweden)

    GhR Rashedi

    2010-03-01

    Full Text Available In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave with arbitrary reflection coefficient has been investigated theoretically. For the case of high Tc superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The physics of potential barrier will be demonstrated by a transparency coefficient via which the tunneling will occur. We have solved the nonlocal Eilenberger equations and obtained the corresponding and suitable Green functions analytically. Then, using the obtained Green functions, the current-phase diagrams have been calculated. The effect of the potential barrier and mis-orientation on the currents is studied analytically and numerically. It is observed that, the current phase relations are totally different from the case of ideal transparent Josephson junctions between d-wave superconductors and two s-wave superconductors. This apparatus can be used to demonstrate d-wave order parameter in high Tc superconductors.

  7. Proposal of Magnetic Circuit using Magnetic Shielding with Bulk-Type High Tc Superconductors

    Science.gov (United States)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo; Tomita, Masaru; Murakami, Masato

    Recently, bulk-type high Tc superconductors having a characteristic of critical current density over 104 A/cm2 in liquid nitrogen temperature (77K) on 1T, can be produced. They are promising for many practical applications such as a magnetic bearing, a magnetic levitation, a flywheel, a magnetic shielding and others. In this research, we propose a magnetic circuit that is able to use for the magnetic shield of plural superconductors as an application of bulk-type high Tc superconductors. It is a closed magnetic circuit by means of a toroidal core. Characteristics of the magnetic circuit surrounded with superconductors are evaluated and the possibility is examined. As the magnetic circuit of the ferrite core is surrounded with superconductors, the magnetic flux is shielded even if it leaked from the ferrite core.

  8. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  9. Plasma resonance and flux dynamics in layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S.

    2000-01-01

    Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments.......Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments....

  10. Low-energy physics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1992-01-01

    It is argued that the low-energy properties of high temperature superconductors are dominated by the interaction between the mobile holes and a particular class of collective modes, corresponding to local large-amplitude low-energy fluctuations in the hole density. The latter are a consequence of the competition between the effects of long-range Coulomb interactions and the tendency of a low concentration of holes in an antiferromagnet to phase separate. The low-energy behavior of the system is governed by the same fixed point as the two-channel Kondo problem, which accounts for the ''universality'' of the properties of the cuprate superconductors. Predictions of the optical properties and the spin dynamics are compared with experiment. The pairing resonance of the two Kondo problem gives a mechanism of high temperature superconductivity with an unconventional symmetry of the order parameter

  11. Boundary conditions in Ginsburg Landau theory and critical temperature of high-T superconductors

    Science.gov (United States)

    Lykov, A. N.

    2008-06-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature ( T) of high- T superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T of cuprate superconductors.

  12. High T(c) superconductors: Technical and commercial challenge

    Science.gov (United States)

    Kirschner, I.; Horvath, E.; Vajda, I.; Bencze, L.; Goebl, N.

    1995-01-01

    Some basic questions of the way which leads from the discovery of high-T(c) superconductors to their applications is surveyed. The influence of high-T(c) superconducting technology on the industrial and social development is also briefly analyzed.

  13. Boundary conditions in Ginsburg-Landau theory and critical temperature of high-Tc superconductors

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2008-01-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature (T c ) of high-T c superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T c of cuprate superconductors

  14. Research On Bi-Based High-Temperature Superconductors

    Science.gov (United States)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  15. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  16. Optimization of superconductor--normal-metal--superconductor Josephson junctions for high critical-current density

    International Nuclear Information System (INIS)

    Golub, A.; Horovitz, B.

    1994-01-01

    The application of superconducting Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 wires or tapes to electronic devices requires the optimization of the transport properties in Ohmic contacts between the superconductor and the normal metal in the circuit. This paper presents results of tunneling theory in superconductor--normal-metal--superconductor (SNS) junctions, in both pure and dirty limits. We derive expressions for the critical-current density as a function of the normal-metal resistivity in the dirty limit or of the ratio of Fermi velocities and effective masses in the clean limit. In the latter case the critical current increases when the ratio γ of the Fermi velocity in the superconductor to that of the weak link becomes much less than 1 and it also has a local maximum if γ is close to 1. This local maximum is more pronounced if the ratio of effective masses is large. For temperatures well below the critical temperature of the superconductors the model with abrupt pair potential on the SN interfaces is considered and its applicability near the critical temperature is examined

  17. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  18. Survey of potential electronic applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Hammond, R.B.; Bourne, L.C.

    1991-01-01

    In this paper the authors present a survey of the potential electronic applications of high temperature superconductor (HTSC) thin films. During the past four years there has been substantial speculation on this topic. The authors will cover only a small fraction of the potential electronic applications that have been identified. Their treatment is influenced by the developments over the past few years in materials and device development and in market analysis. They present their view of the most promising potential applications. Superconductors have two important properties that make them attractive for electronic applications. These are (a) low surface resistance at high frequencies, and (b) the Josephson effect

  19. Superconductors

    International Nuclear Information System (INIS)

    1988-01-01

    The chapter 6.3 p. 143 to 153 of this book deals with superconductors 19 items are briefly presented with address of manufacturer or laboratory to contact, mainly in the USA or Japan. In particular magnets, films, high temperature superconductors and various applications are presented [fr

  20. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  1. Surface electrostatic waves in bounded high temperature superconductors

    International Nuclear Information System (INIS)

    Averkov, Yu.O.; Yakovenko, V.M.

    2008-01-01

    The dispersion relations of surface electrostatic waves propagating along the surface of semi bounded layered superconductor and in the slab of layered superconductor are theoretically investigated. An arbitrary inclination of superconductor layers to the interface of a vacuum - crystal and an arbitrary direction of propagation of surface waves in the plane of the interface are taking into account. The possibility of initiation of an absolute instability during the propagation of a non-relativistic plasma stream above the surface of the layered superconductor is shown

  2. High critical magnetic field superconductor La3S4

    International Nuclear Information System (INIS)

    Westerholt, K.; Bach, H.; Wendemuth, R.; Methfessel, S.

    1979-01-01

    A report is presented on electrical conductivity, specific heat and magnetization measurements on La 3 S 4 single crystals. The results show that La 3 S 4 is a strong coupling superconductor with a BCS coherence length of 132 A. This extremely low value makes La 3 S 4 an intrinsic high critical magnetic field superconductor with a Landau-Ginsburg parameter of 20. For the temperature gradient of the upper critical magnetic field at the transition temperature values are found up to 35 kG/K. (author)

  3. Impact of high temperature superconductors on the possibility of radio-frequency confinement

    International Nuclear Information System (INIS)

    Dean, S.O.

    1989-01-01

    Recent discoveries of superconducting materials that operate at high temperatures may have both technical and economic consequences for magnetic confinement fusion. In addition, they could also open up the possibility of plasma confinement by radio-frequency fields. The new, high temperature superconductors may impact the feasibility of rf confinement in two important ways: (1) higher temperature superconductors should have higher critical B fields and consequently may allow higher critical electric fields to be sustained in the cavity, thus allowing the necessary confining pressure to be achieved; and (2) the higher temperature superconductors lower the refrigeration power necessary to maintain the superconducting cavity, thus allowing a favorable energy balance

  4. Preparation of silver doped high temperature superconductors

    International Nuclear Information System (INIS)

    Stavek, Jiri; Zapletal, Vladimir

    1989-01-01

    High temperature superconductors were prepared by the controlled double-jet precipitation to manipulate the chemical composition, composition gradients, average grain size, grain size distribution, and other factors which contribute to the actual properties and performance of HTSC. The cations (Y-Ba-Cu or Bi-Pb-Ca-Sr-Cu) and oxalic anions solutions were simultaneously separately introduced to the crystallizer with a stirred solution of gelatin under conditions where the temperature, excess of oxalic anions in solution, pH, reactant addition rate, and other reaction conditions were tightly controlled to prepare the high sinterability powder. To increase the sinterability of submicron particles of produced precursor, the silver ions were introduced at the end of the controlled double-jet precipitation. This approach improves the electrical and mechanical properties of produced HTSC specimens. The controlled double jet precipitation provides a viable technique for preparation of oxide superconductors and the process is amenable for scaling up

  5. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  6. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  7. Creation of the best performance high-$T_{c}$ superconductor based on Cu-1234

    CERN Document Server

    Ihara, H; Iyo, A; Kito, H; Terada, N; Tokumoto, M; Ishida, K; Sekita, Y; Yamamoto, H; Hayashi, H; Khan, N A; Sundaresan, A; Nie, J; Harashima, E; Ishiura, Y; Tateai, F; Kawamura, M

    1999-01-01

    The purpose of this project is to create the best performance superconductor on the basis of our original Cu-1234 (CuBa/sub 2/Ca /sub 3/Cu/sub 4/O/sub 12-y/) superconductor. Its best performance superconductor will be realized by the modification of superconducting wave function (MSWF) and application of new preparation techniques of thin films. The MSWF leads to the enhancement of coherence length along the c-axis and transformation from d-wave to (d+is)-wave, and then low superconducting anisotropy. The thin film techniques are APE (amorphous phase epitaxy) method and SAE (self assembling epitaxy) method by using a structure stabilizer such as Tl. The best superconductor with long coherence length, low anisotropy, high T/sub c/, high J/sub c/ and high H/sub irr/ will be realized for wire and Josephson junctions and microwave device application at 77 K. (16 refs).

  8. Can positron 2D-ACAR resolve the electronic structure of high-Tc superconductors

    International Nuclear Information System (INIS)

    Chan, L.P.; Lynn, K.G.; Harshman, D.R.

    1992-01-01

    In this paper, the authors examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-T c cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-T c superconductors, are given. The authors briefly review recent 2D-ACAR experiments on YBa 2 Cu 3 O 7-x , Bi 2 Sr 2 CaCuO 8+δ and La 2-x Sr x CuO 4 . The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-T c cuprate superconductors

  9. Development of fabrication technique of bulk high superconductor

    International Nuclear Information System (INIS)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil.

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs

  10. Spins in the vortices of a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Clausen, K.N.

    2001-01-01

    Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...

  11. Macroscopic phase separation in high-temperature superconductors

    Science.gov (United States)

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  12. Investigation on the bisoliton mechanism of high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang Lingyun; Li Bozang; Pu Fucho; Lin Jiatih

    1996-01-01

    Microscopic parameters in the Davydov model are calculated on the basis of the bisoliton idea. The energy gap is obtained from combining the condition for the solution of Davydov's equation with the condensation energy of the superconductive state in zero field, and some characteristic parameters of high-temperature superconductors such as coherence length, penetration depth, and density of critical current for a thin film in weak magnetic field are given. It is also proved that lattice displacement in Davydov's equation satisfies the φ 4 field form. The critical temperature and the coefficient of linear specific heat of high-temperature superconductors are studied from the statistics of lattice kinks. The agreement between theoretical and experimental values for YBaCuO oxide ceramics suggests that the bisoliton model gives a reasonable explanation of high-temperature superconductivity. (orig.)

  13. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  14. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    Science.gov (United States)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    Elastic theory for the vortex-lattice melting in iron-based high-Tc superconductors Q-H Chen, Q-M Nie, J-P Lv and T-C Au Yeung Electronic properties of LaO1-xFxFeAs in the normal state probed by NMR/NQR H-J Grafe, G Lang, F Hammerath, D Paar, K Manthey, K Koch, H Rosner, N J Curro, G Behr, J Werner, N Leps, R Klingeler, H-H Klauss, F J Litterst and B Büchner AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-xTMxAs2 (TM = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity Deepa Kasinathan, Alim Ormeci, Katrin Koch, Ulrich Burkhardt, Walter Schnelle, Andreas Leithe-Jasper and Helge Rosner Impurity states in a family of antiferromagnetic iron arsenides Qiang Han and Z D Wang Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund's rule coupling K Haule and G Kotliar Electronic structure of heavily electron-doped BaFe1.7Co0.3As2 studied by angle-resolved photoemission Y Sekiba, T Sato, K Nakayama, K Terashima, P Richard, J H Bowen, H Ding, Y-M Xu, L J Li, G H Cao, Z-A Xu and T Takahashi Absorption and photoemission spectroscopy of rare-earth oxypnictides T Kroll, F Roth, A Koitzsch, R Kraus, D R Batchelor, J Werner, G Behr, B Büchner and M Knupfer Superconductivity in LnFePO (Ln = La, Pr and Nd) single crystals R E Baumbach, J J Hamlin, L Shu, D A Zocco, N M Crisosto and M B Maple Unconventional pairing originating from disconnected Fermi surfaces in the iron-based superconductor Kazuhiko Kuroki, Seiichiro Onari, Ryotaro Arita, Hidetomo Usui, Yukio Tanaka, Hiroshi Kontani and Hideo Aoki Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides S Graser, T A Maier, P J Hirschfeld and D J Scalapino Investigation of superconducting gap structure in TbFeAsO0.9F0.1 using point contact Andreev reflection K A Yates, K Morrison, J A Rodgers, G B S Penny, J-W G Bos, J P Attfield and L F Cohen Competition of magnetism and superconductivity in underdoped (Ba1-xKx)Fe2As2 Marianne Rotter, Marcus

  15. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Eschrig, M.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-10-01

    Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-δ inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.

  16. Magnetization hysteresis and history effects in conventional and high temperature superconductors

    International Nuclear Information System (INIS)

    Chaddah, P.

    1990-01-01

    The magnetization in hard superconductors is irreversible and history-dependent, and cannot be a priori compared with the equilibrium magnetization. These features have gained prominence in the high T c superconductors (HTSC) where the short coherence length presumably leads to intrinsic pinning. Various experimental features, first noticed in the HTSC, are explained by an extension of Bean's macroscopic model to include temperature variations and the field dependence of J c . This paper discusses recent measurements of history effects in niobium and show their similarities with other published data on HTSC. The authors also present our calculations of magnetization behaviour in hard superconductors of sample-shapes having a non-zero demagnetization factor

  17. Finding high-temperature superconductors by metallizing the σ-bonding electrons

    International Nuclear Information System (INIS)

    Gao Miao; Lu Zhongyi; Xiang Tao

    2015-01-01

    Raising superconducting transition temperature (T_c) is an important task of fundamental research on superconductivity. It is also a prerequisite for the large scale application of superconductors. Since the microscopic mechanism of high-T_c superconductivity is unknown, the conventional approach for increasing T_c is either to apply high pressure to a material which has the potential to become superconducting, or to push it close to an antiferromagnetic or some other quantum instability point by chemical doping. In this article, the authors point out that another general approach for raising T_c is to lift the σ-bonding bands to the Fermi level, or to metallize the σ-bonding elections. This approach can increase the probability of finding a novel high-T_c superconductor because the coupling of σ-bonding electrons with phonons is generally strong and the superconducting transition induced by this interaction can occur at relatively high temperatures. After elucidating the underlying mechanism, the authors discuss a number of schemes to metallize σ-bonding electrons, and present their recent prediction for the crystalline and electronic structures of two potential high-T_c superconductors, Li_2B_3C and Li_3B_4C_2, with T_c higher than 50 K. (authors)

  18. New application of superconductors: High sensitivity cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544 Princeton, NJ (United States); Bellini, F.; Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Castellano, M.G. [Istituto di Fotonica e Nanotecnologie – CNR, Via Cineto Romano 42, 00156 Roma (Italy); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cosmelli, C.; Cruciani, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); D' Addabbo, A. [INFN – Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) 67010 (Italy); Di Domizio, S. [INFN – Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Martinez, M. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009 (Spain); Tomei, C. [INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); and others

    2017-02-11

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm{sup 2} substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  19. New application of superconductors: High sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M.G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.

    2017-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm"2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  20. Observation of magnetooptical effects in several high Tc superconductors

    International Nuclear Information System (INIS)

    Dillon, J.F. Jr; Lyons, K.B.

    1992-01-01

    Recent so called 'anyon' theories of high temperature superconductivity in layer structure materials suggested that at some temperature T TP ≥T c there is a symmetry breaking transition below which these materials may be in either of two distinct states related to each other by time reversal. The study of magneto-optical effects in superconductors reviewed here was undertaken to explore time reversal symmetry of these materials. Using novel technique with rotating λ/2 plate at 525 nm, 'circular dichroism' was observed on reflection from epitaxial films and single crystals of cuprate superconductor with layer structures. The onset of dichroism was at temperatures of ∼ 180K to ∼ 300K. These results appear to support the 'anyon' theories. However, circular dichroism was also seen in films and single crystals of bismuthate superconductors with cubic structure, to which the theories seem inapplicable. In sharp contrast, Spielman et al., at Stanford in a very sensitive experiment at 1060 nm have seen no evidence of non-reciprocal circular birefringence in epitaxial cuprate superconducting films. Weber et al. at Dortmund have recently reported the observation at 633 nm of non-reciprocal magneto-optical effects on single crystals of cuprate superconductors, but none on films. (author). 15 refs., 5 figs

  1. Maglev system concept using 20-K high-temperature superconductors and hyperconductors

    Science.gov (United States)

    Hull, J. R.; He, Jianliang

    A magnetically levitated high-speed ground transportation concept is proposed that uses high-temperature superconductors or hyperconductors, cooled by liquid hydrogen at 20 K, to provide levitation. An on-board hydrogen-powered turbine/generator provides electricity for propulsion by linear induction motors. The liquid hydrogen is used to cool the superconductors and the windings of the generator and motors before combusting in the turbine. The principal advantage of this system is the potential to greatly reduce the cost of the guideway, which is completely passive.

  2. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  3. Theory of quantum metal to superconductor transitions in highly conducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  4. Chapter 27. Superconductors

    International Nuclear Information System (INIS)

    Vavra, O.

    2007-01-01

    In this chapter author deals with superconductors and superconductivity. Different chemical materials used as high-temperature superconductors are presented. Some applications of superconductivity are presented.

  5. Plasma resonance in anisotropic layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Sakai, Shigeki; Pedersen, Niels Falsig

    1999-01-01

    The plasma resonance is described theoretically by the inductive coupling model for a large stacked Josephson-junction system such as the intrinsic Josephson-junction array in anisotropic high- T-c superconductors. Eigenmodes of the plasma oscillation are analytically described and a numerical...

  6. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2015-07-01

    The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.

  7. Proof-of-principle demonstration of Nb3Sn superconducting radiofrequency cavities for high Q0 applications

    Science.gov (United States)

    Posen, S.; Liepe, M.; Hall, D. L.

    2015-02-01

    Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb3Sn. In this paper, we present results for single cell cavities coated with Nb3Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q0 out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q0 at quench of 8 × 109. In each case, the peak surface magnetic field at quench was well above Hc1, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q0 values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb3Sn cavities in future applications.

  8. On the electronic structure of high Tc superconductors

    International Nuclear Information System (INIS)

    Fink, J.; Nuecker, N.; Romberg, H.; Alexander, M.; Knupfer, M.; Mante, J.; Claessen, R.; Buslaps, T.; Harm, S.; Manzke, R.; Skibowski, M.

    1992-01-01

    Studies of the electronic structure of high-T c superconductors and related compounds by high-energy spectroscopies are reviewed. In particular, we report on investigations by electron energy-loss, angle-resolved photoemission, and inverse angle-resolved photoemission spectroscopy. Information on the symmetry and the character of states close to the Fermi level has been obtained. 25 refs., 8 figs

  9. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  10. Charged vortices in high-Tc superconductors

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kumagai, K.

    2002-01-01

    It is well known that a vortex in type II superconductors traps a magnetic flux. Recently the possibility that a vortex can accumulate a finite electric charge as well has come to be realized. The sign and magnitude of the vortex charge not only is closely related to the microscopic electronic structure of the vortex, but also strongly affects the dynamical properties of the vortex. In this chapter we demonstrate that a vortex in high-T c superconductors (HTSC) indeed traps a finite electronic charge, using the high resolution measurements of the nuclear quadrupole frequencies. We then discuss the vortex Hall anomaly whose relation with the vortex charging effect has recently received considerable attention. We show that the sign of the trapped charge is opposite to the sign predicted by the conventional BCS theory and deviation of the magnitude of the charge from the theory is also significant. We also show that the electronic structure of underlying system is responsible for the Hall sign in the vortex state and again the Hall sign is opposite to the sign predicted by the BCS theory. It appears that these unexpected features observed in both electrostatics and dynamics of the vortex may be attributed to the novel electronic structure of the vortex in HTSC. (orig.)

  11. Critical fields in high temperature superconductors

    International Nuclear Information System (INIS)

    Finnemore, D.K.

    1991-01-01

    An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary

  12. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  13. Transport phenomena in high Tc superconductors. Resume of Ph.D thesis

    International Nuclear Information System (INIS)

    Crisan, I.A.

    1994-01-01

    This is an extended abstract of the Ph. D. thesis devoted to the transport phenomena in high-Tc superconductors. There are three chapters. The first chapter presents an overview of the essential theoretical aspects concerning the vortex dynamics particularly in ceramic superconductors. The chapter two gives a description of the preparation methods of superconductor samples used by the author as well as the measurement devices for volt-ampere characteristics and the associated electronic circuitry. In the third chapter there are presented the experimental data obtained from different samples prepared in different temperature and magnetic field conditions. The obtained results are finally interpreted in the frame of existent or original models. (M.I.C.). 31 Refs

  14. A TECHNIQUE OF EXPERIMENTAL INVESTIGATIONS OF LINEAR IMPULSE ELECTROMECHANICAL CONVERTERS

    Directory of Open Access Journals (Sweden)

    V.F. Bolyukh

    2017-04-01

    Full Text Available Purpose. Development of a technique of experimental studies linear pulse electromechanical converters parameters, which are used as shock-power devices and electromechanical accelerators, and comparing the experimental results with the calculated indices obtained using the mathematical model. Methodology. Method of experimental investigations of linear electromechanical converter is that the electrical parameters are recorded simultaneously (inductor winding current and mechanical parameters characterizing the power and speed indicators of the joke with actuator. Power indicators are primarily important for shock-power devices, and high velocity - for electromechanical accelerators. Power indices were investigated using piezoelectric sensors, a system of strain sensors, pressure pulsation sensor and high-speed videorecording. Velocity indicators were investigated using a resistive movement sensor which allows to record character of the armature movement with actuating element in each moment. Results. The technique of experimental research, which is the simultaneous recording of electrical and mechanical power and velocity parameters of the linear electromechanical converter pulse, is developed. In the converter as a shock-power device power indicators are recorded using a piezoelectric transducer, strain sensors system, pressure pulsation sensor and high-speed video. The parameters of the inductor winding current pulse, the time lag of mechanical processes in relation to the time of occurrence of the inductor winding current, the average speed of the joke, the magnitude and momentum of electrodynamics forces acting on the plate strikes are experimentally determined. In the converter as an electromechanical accelerator velocity performance recorded using resistive displacement sensors. It is shown that electromechanical converter processes have complex spatial-temporal character. The experimental results are in good agreement with the calculated

  15. Transport properties of high-temperature superconductors: Surface vs bulk effect

    International Nuclear Information System (INIS)

    Burlachkov, L.; Koshelev, A.E.; Vinokur, V.M.

    1996-01-01

    We investigate surface-related transport properties of high-temperature superconductors. We find the mean vortex velocity under applied transport current determined by the activation energies for vortex penetration and exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of superconductor and the field and current dependencies of the transport activation energies. For a three-dimensional superconductor the transport activation energy, U s 3D , is found to decrease with the external field, H, and transport current, J, as U s 3D ∝H -1/2 and U s 3D ∝J -1/2 , respectively. In the quasi-two-dimensional compounds, U s 2D decays logarithmically with field and current. The interplay between the surface and the bulk contributions to the transport properties, such as current-voltage characteristics, is discussed. copyright 1996 The American Physical Society

  16. Ceramic high-temperature superconductors

    International Nuclear Information System (INIS)

    Marquart, R.

    1989-01-01

    The contribution presents an overview treatment of the structure of the new superconductors (YBa 2 Cu 3 O 7-x ). Methods of powder production and processing technology are described, with current development projects by Dornier being taken into consideration. (orig.) [de

  17. Far infrared spectroscopy of high-Tc superconductors at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Perkowitz, S.; Williams, G.P.

    1989-01-01

    This paper reports the first far infrared transmission spectra for micron-thick films of high-T c rare-earth superconductors such as DyBaCuO, with implications for the superconducting gap. Spectra were obtained at Brookhaven's National Synchrotron Light Source, a new high-intensity, broad-band millimeter to infrared source. The National Synchrotron Light Source at Brookhaven National Laboratory, known for powerful X-ray and UV output, is also a high-intensity (10 to 1000 times above a black body), high-brightness (intensity per solid angle), broad-band, picosecond, millimeter to infrared source. These features make it valuable for far-infrared condensed matter experiments, especially those in highly absorbing or extremely small systems. A first application has been to measure very small infrared transmissions through thick bulk-like high-T c superconducting films. Preliminary measurements through films of the conventional superconductor Nb 3 Ge established techniques. These were followed by the first measurements (to the author's knowledge) through micron-thick films of high-T c rare-earth superconductors such as DyBaCuO over 10-300 cm -1 , which includes the superconducting gap according to BCS or moderately strong-coupled theory. The authors discuss the transmission evidence bearing on the existence of a gap and other important features of high-T c superconductors, and describe the synchrotron and instrumentation features which make possible these unusual measurements

  18. Group Delay of High Q Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2013-01-01

    Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....

  19. Studies of superconductors using a low-temperature, high-field scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Feenstra, R.M.; Fein, A.P.

    1988-01-01

    We have developed a scanning tunneling microscope (STM) capable of operating at temperatures as low as 0.4 K and fields as high as 8 T. We have used this STM to study the energy gap of the high-T/sub c/ superconductors La--Sr--Cu--O and Y--Ba--Cu--O. We find that the reduced gap for these oxide superconductors falls in the range 3<2Δ/k/sub B/T/sub c/<7, for polycrystalline, single-crystal, and thin-film samples. We have also simultaneously imaged the surface topography and superconducting energy gap for thin films of the granular superconductor NbN. We occasionally see regions with smaller best-fit gaps that correlate with surface topographical features, but have been unable so far to image flux vortices

  20. Development of augmented reality system for servicing electromechanical equipment

    Science.gov (United States)

    Zhukovskiy, Y.; Koteleva, N.

    2018-05-01

    Electromechanical equipment is widely used. It is used in industrial enterprises, in the spheres of public services, in everyday life, etc. Maintenance servicing of electromechanical equipment is an important part of its life cycle. High-quality and timely service can extend the life of the electromechanical equipment. The creation of special systems that simplify the process of servicing electromechanical equipment is an urgent task. Such systems can shorten the time for maintenance of electrical equipment, and, therefore, reduce the cost of maintenance in general. This article presents an analysis of information on the operation of service services for maintenance and repair of electromechanical equipment, identifies the list of services, and estimates the time required to perform basic service operations. The structure of the augmented reality system is presented, the ways of interaction of the augmented reality system with the automated control systems working at the enterprise are presented.

  1. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Damien Thuau

    2018-04-01

    Full Text Available Polymer Micro ElectroMechanical Systems (MEMS have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions. Piezoresistive transduction made of carbon nanotube-based nanocomposites with a gauge factor of 200 was embedded within U-shaped polymeric cantilevers operating either in static or dynamic modes. Flexible resonators with integrated piezoelectric transduction were also realized and used as efficient viscosity sensors. Finally, piezoelectric-based organic field effect transistor (OFET electromechanical transduction exhibiting a record sensitivity of over 600 was integrated into polymer cantilevers and used as highly sensitive strain and humidity sensors. Such advances in integrated electromechanical transduction schemes should favor the development of novel all-polymer MEMS devices for flexible and wearable applications in the future.

  2. On the superconducting phase diagram of high Tc superconductors

    International Nuclear Information System (INIS)

    de la Cruz, F.

    1990-01-01

    The tendency of oxide superconductors to show granularity has been pointed out since the beginning of research on superconductivity in this type of materials. Nevertheless, only very recently the full phase diagram and characteristics of the grains have been determined. In this paper, the authors review and discuss the different critical fields and their relation to the transport of superconducting current. The superconducting response of single crystals of High Tc superconductors is discussed. Special attention is devoted to the behavior of the vortex lattice and, in particular, to the recent discovery of the quenching of H c1 in YBaCuO, several degrees below Tc

  3. Asymmetry in the normal-metal to high-Tc superconductor tunnel junction

    International Nuclear Information System (INIS)

    Flensberg, K.; Hedegaard, P.; Brix, M.

    1988-01-01

    We show that the observed asymmetry in the I-V characteristics of high-T c material to normal metal junctions can be explained within the Resonating-Valence-Bond model. For a bias current with electrons moving from the superconductor to the normal metal the current is quadratic in the bias voltage, and in the opposite case with electrons moving from the normal metal to the superconductor the current is linear in V. (orig.)

  4. Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors

    Science.gov (United States)

    Kaukler, William F.

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods.

  5. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  6. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites.

    Science.gov (United States)

    Boland, Conor S; Khan, Umar; Ryan, Gavin; Barwich, Sebastian; Charifou, Romina; Harvey, Andrew; Backes, Claudia; Li, Zheling; Ferreira, Mauro S; Möbius, Matthias E; Young, Robert J; Coleman, Jonathan N

    2016-12-09

    Despite its widespread use in nanocomposites, the effect of embedding graphene in highly viscoelastic polymer matrices is not well understood. We added graphene to a lightly cross-linked polysilicone, often encountered as Silly Putty, changing its electromechanical properties substantially. The resulting nanocomposites display unusual electromechanical behavior, such as postdeformation temporal relaxation of electrical resistance and nonmonotonic changes in resistivity with strain. These phenomena are associated with the mobility of the nanosheets in the low-viscosity polymer matrix. By considering both the connectivity and mobility of the nanosheets, we developed a quantitative model that completely describes the electromechanical properties. These nanocomposites are sensitive electromechanical sensors with gauge factors >500 that can measure pulse, blood pressure, and even the impact associated with the footsteps of a small spider. Copyright © 2016, American Association for the Advancement of Science.

  7. Electronic properties of high-Tc superconductors. The normal and the superconducting state of high-Tc materials. Proceedings

    International Nuclear Information System (INIS)

    Kuzmany, H.; Mehring, M.; Fink, J.

    1993-01-01

    The International Winter School on Electronic Properties of High-Temperature Superconductors, held between March 7-14, 1992, in Kirchberg, (Tyrol) Austria, was the sixth in a series of meetings to be held at this venue. Four of the earlier meetings were dedicated to issues in the field of conducting polymers, while the winter school held in 1990 was devoted to the new discipline of high-Tc superconductivity. This year's meeting constituted a forum not only for the large number of scientists engaged in high-Tc research, but also for those involved in the new and exciting field of fullerenes. Many of the issues raised during the earlier winter schools on conducting polymers, and the last one on high-Tc superconductivity, have taken on a new significance in the light of the discovery of superconducting C 60 materials. The Kirchberg meetings are organized in the style of a school where experienced scientists from universities, research laboratories and industry have the opportunity to discuss their most recent results, and where students and young scientists can learn about the present status of research and applications from some of the most eminent workers in their field. In common with the previous winter school on high-Tc superconductors, the present one focused on the electronic properties of the cuprate superconductors. In addition, consideration was given to related compounds which are relevant to the understanding of the electronic structure of the cuprates in the normal state, to other oxide superconductors and to fulleride superconductors. Contributions dealing with their preparation, transport and thermal properties, high-energy spectroscopies, nuclear magnetic resonance, inelastic neutron scattering, and optical spectroscopy are presented in this volume. The theory of the normal and superconducting states also occupies a central position. (orig.)

  8. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  9. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  10. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    Science.gov (United States)

    Hu, Jiangping; Ding, Hong

    2012-01-01

    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479

  11. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    International Nuclear Information System (INIS)

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Knoška, J.; Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M.

    2017-01-01

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga"3"+ focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa_2Cu_3O_x (YBCO) and half-metallic ferromagnet La_0_._6_7Sr_0_._3_3MnO_3 (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga"3"+ focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO_2.

  12. Oxide superconductors

    International Nuclear Information System (INIS)

    Cava, R.J.

    2000-01-01

    This article briefly reviews ceramic superconductors from historical and materials perspectives. It describes the factors that distinguish high-temperature cuprate superconductors from most electronic ceramics and places them in the context of other families of superconducting materials. Finally, it describes some of the scientific issues presently being actively pursued in the search for the mechanism for high-temperature superconductivity and the directions of research into new superconducting ceramics in recent years

  13. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  14. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  15. Condensate localization by mesoscale disorder in high-Tc superconductors

    International Nuclear Information System (INIS)

    Kumar, N.

    1994-06-01

    We propose and solve approximately a phenomenological model for Anderson localization of the macroscopic wavefunction for an inhomogeneous superconductor quench-disordered on the mesoscale of the order of the coherence length ξ 0 . Our treatment is based on the non-linear Schroedinger equation resulting from the Ginzburg-Landau free-energy functional having a spatially random coefficient representing spatial disorder of the pairing interaction. Linearization of the equation, valid close to the critical temperature T c , or to the upper critical field H c2 (T c ) maps it to the Anderson localization problem with T c identified with the mobility edge. For the highly anisotropic high-T c materials and thin (2D) films in the quantum Hall geometry, we predict windows of re-entrant superconductivity centered at integrally spaced temperature values. Our model treatment also provides a possible explanation for the critical current J c perpendicular becoming non-zero on cooling before J c parallel does in some high-T c superconductors. (author). 18 refs

  16. High critical temperature superconductors: Progress achieved after two years

    International Nuclear Information System (INIS)

    Maillard, J.M.; Rammal, R.; Vittorge, M.C.

    1989-01-01

    Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given [fr

  17. Utilizing atomic force spectroscopy to test an alternative electrodynamic theory of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Peronio, Angelo; Giessibl, Franz J. [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2016-07-01

    In the traditional theoretical description of superconductivity, a static electric field cannot penetrate a superconductor, since screening occurs like in a normal metal. This can be traced back to the fact that the London equations, the phenomenological equations describing the electrodynamics of superconductors, are derived within the Coulomb gauge. J. E. Hirsch proposes to use the Lorenz gauge instead [2], deriving a consistent solution where the electric field penetrates the superconductor up to the London penetration depth. We report on initial experiments to test Hirsch's hypothesis, performed with a combined STM/AFM qPlus sensor equipped with a superconducting tip. If a superconductor screens electric fields differently from a normal metal, the electrostatic interaction between tip and sample should change when the tip becomes superconductive.

  18. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  19. Electronic-structure Fermi-liquid theory of high-Tc superconductors: Comparison of predictions with experiments

    International Nuclear Information System (INIS)

    Yu, Jaejun; Freeman, A.J.

    1991-01-01

    Predictions of local density functional (LDF) calculations of the electronic structure and transport properties of high T(sub c) superconductors are presented. As evidenced by the excellent agreement with both photoemission and positron annihilation experiments, a Fermi liquid nature of the 'normal' state of the high T(sub c) superconductors become clear for the metallic phase of these oxides. In addition, LDF predictions on the normal state transport properties are qualitatively in agreement with experiments on single crystals. It is emphasized that the signs of the Hall coefficients for the high T(sub c) superconductors are not consistent with the types of dopants (e.g., electron-doped or hole-doped) but are determined by the topology of the Fermi surfaces obtained from the LDF calculations

  20. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    Energy Technology Data Exchange (ETDEWEB)

    Štrbík, V., E-mail: vladimir.strbik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Knoška, J. [Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607, Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607, Hamburg (Germany); Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga{sup 3+} focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) and half-metallic ferromagnet La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga{sup 3+} focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO{sub 2}.

  1. Limiting stable states of high-Tc superconductors in the alternating current modes

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.

    2014-01-01

    The limiting current-carrying capacity of high-T c superconductor and superconducting tape has been studied in the alternating current states. The features that are responsible for their stable formation have been investigated under the conduction-cooled conditions when the operating peak values of the electric field and the current may essentially exceed the corresponding critical values of superconductor. Besides, it has been proved that these peak values are higher than the values of the electric field and the current, which lead to the thermal runaway phenomenon when the current instability onset occurs in the operating modes with direct current. As a result, the stable extremely high heat generation exists in these operating states, which can be called as overloaded states. The limiting stable peak values of charged currents and stability conditions have been determined taking into account the flux creep states of superconductors. The analysis performed has revealed that there exist characteristic times defining the corresponding time windows in the stable development of overloaded states of the alternating current. In order to explain their existence, the basic thermo-electrodynamics mechanisms have been formulated, which have allowed to explain the high stable values of the temperature and the induced electric field before the onset of alternating current instability. In general, it has been shown that the high-T c superconductors may stably operate in the overloaded alternating current states even under the not intensive cooling conditions at a very high level of heat generation, which is not considered in the existing theory of losses. (authors)

  2. Electromechanical Engineering Technology Curriculum.

    Science.gov (United States)

    Georgia State Univ., Atlanta. Dept. of Vocational and Career Development.

    This guide offers information and procedures necessary to train electromechanical engineering technicians. Discussed first are the rationale and objectives of the curriculum. The occupational field of electromechanical engineering technology is described. Next, a curriculum model is set forth that contains information on the standard…

  3. Response functions of a superlattice with a basis: A model for oxide superconductors

    International Nuclear Information System (INIS)

    Griffin, A.

    1988-01-01

    The new high-T/sub c/ oxide superconductors appear to be superlattice structures with a basis composed of metallic sheets as well as metallic chains. Using a simple free-electron-gas model for the sheets and chains, we obtain the dielectric function ε(q,ω) of such a multilayer system within the random-phase approximation (RPA). We give results valid for arbitrary wave vector q appropriate to sheets and chains (as in the orthorhombic phase of Y-Ba-Cu-O) as well as for two different kinds of sheets (such as may be present in the Bi-Ca-Sr-Cu-O superconductors). The occurrence of acoustic plasmons is a general phenomenon in such superlattices, as shown by an alternative formulation based on the exact response functions for the individual sheets and chains, in which only the interchain (sheet) Coulomb interaction is treated in the RPA. These results generalize the long-wavelength expressions recently given in the literature. We also briefly discuss the analogous results for two arrays of mutually perpendicular chains, such as found in Hg chain compounds

  4. Melted flux liquids in high-Tc superconductors

    International Nuclear Information System (INIS)

    Nelson, D.R.

    1989-01-01

    A theory of the entangles flux liquids which arise in the new high-T c superconductors is reviewed. New physics appears because of the weak interplanar couplings and high critical temperatures in these materials. Flux line wandering melts the conventional Abrikosov flux lattice over large portions of the phase diagram and leads to a novel entangled vortex state. The authors suggest that a heavily entangled flux liquid could exhibit glassy behavior on experimental time scales, in analogy with viscoelastic behavior in dense polymer melts

  5. Induction linear accelerators with high-Tc bulk superconductor lenses

    International Nuclear Information System (INIS)

    Matsuzawa, Hidenori; Wada, Haruhisa; Mori, Satoshi; Yamamoto, Tadashi

    1991-01-01

    Solenoidal coils in a one-stage induction accelerator were replaced by a high-T c bulk superconductor lens (Supertron). The accelerator postaccelerated injected electron beams to ∼ 400 keV, ∼ 0.35 kA, and ∼ 10 ns of duration time. (author)

  6. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  7. Searching for superconductors with high critical temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C

    1977-08-18

    Critical temperature of superconductors can be and must be raised so that their range of application can be broadened. It was estimated that, in 3 to 5 years, superconductor electric generators might be used in nuclear submarines and/or other applications where the requirements of small volume and light weight are critical. The BCS theory was recapitulated. Possible methods of achieving higher critical temperature were proposed and discussed.

  8. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  9. Flux motion and dissipation in high-temperature superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kim, D.H.

    1991-01-01

    The effects on flux motion and dissipation of interlayer coupling of the Cu-O planes along the c-axis are considered for the high-temperature superconductors (HTS). It is argued that for the highly-anisotropic HTS, the weak interlayer coupling plays a dominant role that can be described by incoherent Josephson tunneling between superconducting Cu-O bi- or tri-layers. In YBa 2 Cu 3 O 7 , the layers are strongly coupled, presumably because the conducting Cu-O chains short circuit the Josephson tunneling, so that these effects are weak or missing. Recently, the effects of anisotropy and fluctuations on critical current densities, J c (T,H) and the field-induced broadening of resistivity transitions, ρ(T,H), have been studied in high-temperature superconductors (HTS). Although the broadening looks similar for the applied field, H, oriented either parallel to the superconducting Cu-O layers (H parallel ab) or parallel to the c-axis (H parallel c), its width and the detailed shape of ρ(T,H) are different. The explanations given in this paper for the highly anisotropic HTS differ in detail for the two cases, but have a crucial feature in common: they result from fluctuations affecting the Josephson coupling across the interlayer junctions

  10. On the role of doping in High-Tc superconductors

    International Nuclear Information System (INIS)

    Mei, C.; Smith, V.H. Jr.

    1994-01-01

    High-T c superconductors (HTSCS) are usually obtained by doping electron donors or acceptors into parent materials. The actual role played by doping is still uncertain with various interpretations. The present electronic structure study provides some hints which may help to solve the mystery

  11. Photothermal measurements of high T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Fanton, J.T.; Mitzi, D.B.; Kapitulnik, A.; Khuri-Yakub, B.T.; Kino, G.S.; Gazit, D.; Feigelson, R.S.; Center for Materials Research, Stanford University, Stanford, California 94305-4085)

    1989-01-01

    We demonstrate a photothermal method for making point measurements of the thermal conductivities of high T/sub c/ superconductors. Images made at room temperature on polycrystalline materials show the thermal inhomogeneities. Measurements on single-crystal Bi 2 Sr 2 CaCu 2 O/sub x/ compounds reveal a very large anisotropy of about 7:1 in the thermal conductivity

  12. Rugged Low-Resistance Contacts To High-Tc Superconductors

    Science.gov (United States)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  13. Magnetization studies in high temperature and conventional superconductors

    International Nuclear Information System (INIS)

    Grover, A.K.; Chaddah, P.

    1991-01-01

    In this paper, the authors state the contemporary view of the physical basis of a celebrated phenomenological model for hard superconductors. The authors highlight the qualitative and general predictions of this model relevant to various magnetic measurements. The authors give prescriptions to correlate data of different experiments with the predictions of the model with the intention of extracting information on material parameters, like J c (H), pinning potential, etc. These prescriptions will be illustrated with the data on both conventional and HTSC superconductors. The correlation of these data with the predictions of the model underscores the similarity in behaviour between the two classes of hard superconductors

  14. X-ray photoelectron spectroscopy of high-temperature superconductor clean surfaces and interfaces

    International Nuclear Information System (INIS)

    Hill, D.M.

    1989-01-01

    X-ray photoelectron spectroscopy was used to determine the characteristic spectra for the high temperature superconductors La 1.85 Sr 0.15 CuO 4 , YBa 2 Cu 3 O 7-x , and Bi 2 Sr 2-x Ca 1+x Cu 2 O 8+y and their impurity phases. The oxidation state of Cu in all of these materials was predominantly Cu 2+ . The O 1s emission for clean surfaces was a single broad peak near 529 eV derived from emission from inequivalent O sites in the superconductors. The valence bands were a -6 eV wide manifold of Cu 3d-O 2p hybrid bands in the ∼ 1-7 eV binding energy range, with very low emission at E F arising from antibonding Cu 3d-O 2p orbitals. Emission from grain boundary and other impurity phases appeared at 531 eV for the O 1s core level, and in general ∼ 1-2 eV higher energy than the superconductor peak for other core levels except for Cu 2p. Impurity phases appeared in the valence bands as a shoulder at ∼ 5 eV. The amount of impurities detected was shown to be dependent on the fracture properties of the superconductors. All of the materials were shown to be stable under vacuum. The products and spatial extent of chemical reactions with Ag, Al, Al oxide, Au, Bi, Bi oxide, CaF 2 , Cu, Fe, Si, and Si oxide overlayers on these materials also were examined. Au, CaF 2 , and metal oxides deposited by activated oxidation during evaporation were non-reactive and non-disruptive of the superconductor surfaces. Ag overlayers were unique in that they disrupted the superconductor during deposition, but exhibited no evidence of any chemical reactions. Overlayers with an affinity for oxygen withdrew O from the superconductor. The O loss occurred preferentially from Cu atoms in the superconductor and disrupted the planar bonding structure

  15. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  16. Numerical and Experimental Study of the Q Factor of High-Q Micropillar Cavities

    DEFF Research Database (Denmark)

    Gregersen, Niels; Reitzenstein, S.; Kistner, C.

    2010-01-01

    Micropillar cavities are potential candidates for high-efficiency single-photon sources and are testbeds for cavity quantum electrodynamics experiments. In both applications a high quality (Q) factor is desired. It was recently shown that the Q of high-Q semiconductor micropillar cavities exhibit...

  17. Current sharing effect on the current instability and allowable temperature rise of composite high-TC superconductors

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.; Nishijima, G.; Takahashi, Ken-ichiro

    2004-01-01

    To understand the basic mechanisms of the thermal runaway phenomenon, the limiting margin of the current instability, which may spontaneously occur in composite high-T C superconductors like multifilament Bi-based wire or tape, is derived under DC magnetic field. The current sharing and allowable temperature rise effects were considered. A static zero-dimensional model was utilized to describe the basic formulae dealing with the peculiarities of the non-isothermal change of superconducting composite voltage-current characteristic. The boundary of allowable stable values of the temperature, electric field and current are derived analytically. It was shown that permissible values of the current and electric field might be higher than those determined by use of the standard critical current criterion. In consequence of this feature, the noticeable allowable temperature rise of the composite superconductor before its transition to the normal state may be seen. The criterion for complete thermal stability condition is written describing the state when temperature of the composite equals critical temperature of a superconductor and the transport current flows stably only in matrix. The performed analysis also proves the existence of value of the volume fraction of a superconductor in composite at which its current-carrying capacity has minimum. These peculiarities are due to the stable current redistribution between superconductor and stabilizing matrix. Therefore, the current sharing not only leads to the matrix/superconductor ratio effect on the stable operating characteristics of the composite high-T C superconductors but also becomes important in the adequate description of quench process in the high-T C superconducting magnets

  18. Reply to the ''Comment on 'Observation of trapped O2 in high-Tc metal oxide superconductors' ''

    International Nuclear Information System (INIS)

    Chen, C.H.; Phillips, R.C.; Payne, M.G.

    1990-01-01

    Desorption of O 2 in certain high-T c superconductors was observed from scraping the surfaces of superconductors by Rosenberg and Wen. Their conclusion agrees with the results from the observation of O 2 trapping by a laser ablation of superconductors. However, the local heating due to the scraping process can possibly raise the local surface temperature significantly higher than the temperature of the bulk

  19. To Crack or Not to Crack: Strain in High Temperature Superconductors

    International Nuclear Information System (INIS)

    Godeke, Arno

    2007-01-01

    Round wire Bi 2212 is emerging as a viable successor of Nb3Sn in High Energy Physics and Nuclear Magnetic Resonance, to generate magnetic fields that surpass the intrinsic limitations of Nb3Sn. Rather bold claims are made on achievable magnetic fields in applications using Bi 2212, due to the materials' estimated critical magnetic field of 100 Tor higher. High transport currents in high magnetic fields, however, lead to large stress on, and resulting large strain in the superconductor. The effect of strain on the critical properties of Bi-2212 is far from understood, and strain is, as with Nb3Sn, often treated as a secondary parameter in the design of superconducting magnets. Reversibility of the strain induced change of the critical surface of Nb3Sn, points to an electronic origin of the observed strain dependence. Record breaking high field magnets are enabled by virtue of such reversible behavior. Strain effects on the critical surface of Bi-2212, in contrast, are mainly irreversible and suggest a non-electronic origin of the observed strain dependence, which appears to be dominated by the formation of cracks in the superconductor volumes. A review is presented of available results on the effects of strain on the critical surface of Bi-2212, Bi-2223 and YBCO. It is shown how a generic behavior emerges for the (axial) strain dependence of the critical current density, and how the irreversible reduction of the critical current density is dominated by strain induced crack formation in the superconductor. From this generic model it becomes clear that magnets using high temperature superconductors will be strain limited far before the intrinsic magnetic field limitations will be approached, or possibly even before the magnetic field limitation of Nb3Sn can be surpassed. On a positive note, in a very promising recent result from NIST on the axial strain dependence of the critical current density in extremely well aligned YBCO, reversible behavior was observed. This

  20. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    Science.gov (United States)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  1. Quasiparticle current in superconductor-semiconductor-superconductor junctions

    International Nuclear Information System (INIS)

    Tartakovskij, A.V.; Fistul', M.V.

    1988-01-01

    It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated

  2. WOHLLEBEN EFFECT (PARAMAGNETIC MEISSNER EFFECT) IN HIGH-TEMPERATURE SUPERCONDUCTORS

    NARCIS (Netherlands)

    KHOMSKII, D

    Recently a quite unexpected phenomenon was observed during the study of the magnetic properties of High-T(c) superconductors: In the field-cooled regime the magnetic response of some HTSC at very low fields (less than or similar to 1 Oe), instead of being diamagnetic, becomes paramagnetic. Such

  3. Magnetic properties of high temperature superconductors and their interaction with high energy permanent magnets

    International Nuclear Information System (INIS)

    Agarwala, A.K.

    1990-01-01

    Magnetic properties of sintered samples of YBCO ceramic superconductors at various temperatures were measured using a vibrating sample magnetometer (VSM). Also, measurements of forces experienced by a well characterized rare earth-transition metal (RE-TM) permanent magnet (PM) interacting with the superconducting YBCO sample cooled in liquid nitrogen, were performed. Based upon the observed hysteretic magnetization properties of these high temperature superconductors (HTS), the HTS-PM interaction force at liquid nitrogen temperature was calculated from first principle, and finally correlated to the force measurement results. With this analysis, magnetic forces between the same HTS and PM system including the levitation as well as suspension effects at liquid-helium temperature are predicted

  4. A phenomenological approach to high Tc oxide superconductors

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Das, M.P.; Saif, A.G.

    1987-06-01

    Oxide superconductors are described in terms of macroscopic wave functions Ψ and Φ corresponding, respectively, to electron pairs of the superconducting and insulating states. In terms of the total free energy of the system, including the effect of interaction, we discuss the electrodynamic responses of the oxide superconductors in relation with the experiments to data. (author). 10 refs

  5. Hydrostatic high pressures for material deformations. Application to Chevrel phase superconductors

    International Nuclear Information System (INIS)

    Massat, H.

    1984-01-01

    The effect of hydrostatic high pressures on the ductility of materials is reviewed and applications are made to powder metallurgy under isostatic pressure and hydrostatic extrusion of superconductors [fr

  6. FINAL REPORT. DOE Grant Award Number DE-SC0004062

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, Luisa [Tufts Univ., Medford, MA (United States)

    2015-07-15

    With the support of the DOE-OFES Early Career Award and the Tufts startup support the PI has developed experimental and analytical expertise on the electromechanical characterization of Low Temperature Superconductor (LTS) and High Temperature Superconductor (HTS) for high magnetic field applications. These superconducting wires and cables are used in fusion and high-energy physics magnet applications. In a short period of time, the PI has built a laboratory and research group with unique capabilities that include both experimental and numerical modeling effort to improve the design and performance of superconducting cables and magnets. All the projects in the PI’s laboratory explore the fundamental electromechanical behavior of superconductors but the types of materials, geometries and operating conditions are chosen to be directly relevant to real machines, in particular fusion machines like ITER.

  7. Leaders in high temperature superconductivity commercialization win superconductor industry award

    CERN Multimedia

    2007-01-01

    CERN's Large Hadron Collider curretn leads project head Amalia Ballarino named superconductor industry person of the year 2006. Former high temperature superconductivity program manager at the US Department of energy James Daley wins lifetime achievement award. (1,5 page)

  8. Levitation Experiment Using a High-Temperature Superconductor Coil for a Plasma Confinement Device

    Science.gov (United States)

    Morikawa, Junji; Ozawa, Daisaku; Ogawa, Yuichi; Yanagi, Nagato; Hamaguchi, Sinji; Mito, Toshiyuki

    2001-10-01

    Levitation experiments using a high-temperature superconductor coil have been carried out. A coil with a minor radius of 42 mm was fabricated with a Bi-2223 tape conductor, and immersed in the liquid nitrogen. The coil current was induced by the field-cooling method up to the critical current value. The current decay of the coil can be accounted for by the flux flow resistance and the normal resistance at the lap joint. The high-temperature superconductor coil can be levitated for 4 min or more within an accuracy of 25-30 μm.

  9. As-Grown Gallium Nitride Nanowire Electromechanical Resonators

    Science.gov (United States)

    Montague, Joshua R.

    Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size. In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values---in vacuum at room temperature---indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors. We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of

  10. Pairing theory of high and low temperature superconductors

    International Nuclear Information System (INIS)

    Nam, Sang Boo

    1997-01-01

    A scenario which can account for all observed features of both high-Tc superconductors (HTS) and low-Tc superconductors (LTS) is discussed. This scenario is based on the fact that a finite pairing interaction energy range Td is required to have a finite value of Tc and that not all carriers participate in pairings, yielding multiconnected superconductors (MS). A new density of states, derived by keeping the order parameter zero outside of Td, is shown to account for the observed low energy states in HTS and for the temperature dependences in the specific heat, the penetration depth, the optical conductivity, and the tunneling conductance data. I argue that the notion of MS can account for the tunneling data along the a(or b)-, ab-, and c-axis, and the 1/2 flux quantum observed in HTS. The region occupied by unpaired carriers can be considered as a vortex with a fluxoid quantum number equal to 1 (VF), 0 (VZF), or -1 (VAF) when the magnetic flux around the vortex is greater than, equal to, or less than the effective flux produced by the supercurrent, respectively. The Hall anomaly depends on the relative strengths of the contributions via VF and VAF. The fact that the present scenario can account for all observed features of HTS and LTS suggests that the symmetry of the order parameter in HTS may not be different from one in LTS. (author)

  11. Evaluating superconductors for microwave applications

    International Nuclear Information System (INIS)

    Hammond, B.; Bybokas, J.

    1989-01-01

    It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described

  12. Creation of electromechanical device for electric vehicle traction

    Directory of Open Access Journals (Sweden)

    Денис Юрьевич Зубенко

    2016-10-01

    Full Text Available The problems of creation of electromechanical device for electric vehicle traction are considered in the article. The aim of creation this design are the replacement of the internal combustion engine on electromechanical device. For this electromechanical device are constructed model, which describe processes that occur in the electric drive of electromechanical device. Characteristics of the main modes of motion were recorded. The introduction of electromechanical device will reduce the level of emissions and reduce noise in the cities

  13. High-temperature superconductors. Les supraconducteurs a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bontemps, N; Combescot, R; Monod, P [Ecole Normale Superieure, 75 - Paris (France)

    1992-02-01

    High-tc superconductivity was discovered in 1986. The prospects of being able to dispose of superconductors cooled by liquid nitrogen instead of liquid helium, and fundamental physics questions raised by these new compounds drag an unprecedented scientific mobilization. Today, the super conductive state nature become clearer. But, to all expectations, their normal state nature is proved to present quite more difficulties. 20 refs., 5 figs.

  14. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  15. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  16. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  17. Electronic components with yttrium- and bismuth-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Daginnus, M.; Guettler, B.

    1992-01-01

    This project investigates the fabrication of microwave components by use of high-Tc superconductors. Detailed descriptions are given of the manufacturing and use of active Y-Ba-Cu-O components. The surface resistance of thin films used in high-quality passive microwave components such as resonators and filters is measured and optimized. (orig./MM) [de

  18. Scanning tunneling spectroscopy on vortex cores in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B.W.; Maggio-Aprile, I.; Fischer, Oe. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Renner, C. [NEC Research Inst., Princeton, NJ (United States)

    2002-07-01

    Scanning tunneling spectroscopy (STS) with its unique capacity for tunneling spectroscopy with sub-nanometer spatial resolution, has opened new ways to look at the flux lines and their distribution in superconductors. In contrast to all other imaging techniques, which are sensitive to the local magnetic field, STM relies on local changes in the density of states near the Fermi level to generate a real space image of the vortex distribution. It is thus sensitive to the vortex cores, which in high temperature superconductors have a size approaching the interatomic distances. The small size of the vortex cores and the anisotropic character of the high temperature superconductors allow pinning to play a large role in determining the vortex core positions. Vortex hopping between different pinning sites, again down to a sub-nanometer scale, has been studied by STM imaging as a function of time. These studies give microscopic indications for quantum tunneling of vortices. Moreover, STM provides new insights into the detailed electronic vortex core structure, revealing localized quasiparticles. (orig.)

  19. Experimental Set-Up for Evaluation of Electro-Magnetic Characteristics of High-Tc Superconductors Cooled by Liquid Hydrogen

    OpenAIRE

    Shirai, Yasuyuki; Hikawa, Kyosuke; Shiotsu, Masahiro; Tatsumoto, Hideki; Hata, Koichi; Kobayashi, Hiroaki; Nonaka, Satoshi; Naruo, Yoshihiro; Inatani, Yoshifumi

    2013-01-01

    Liquid hydrogen (LH2) has excellent properties as a coolant, such as large latent heat, low viscosity coefficient, etc. Not only MgB2 but also other high-Tc superconductors are expected to have excellent properties when cooled by LH2. It is necessary for a stability design of a high-Tc superconductor cooled by LH2 to make an electro-magnetic characteristic clear. However, due to the handling difficulties of LH2, there are only few papers on the properties of LH2-cooled superconductors, especi...

  20. Common phase diagram for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Michalak, Rudi

    2003-01-01

    A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality

  1. Hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Zhou, J.P., Jones, C.

    1993-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the initial two composite molecule/semiconductor devices will be reported. Consequently, light sensors based on dye-coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor microbridges will be discussed. Moreover, molecule/superconductor energy and electron transfer phenomena will be illustrated also for the first time

  2. Eight-fold quantum states blossom in a high-temperature superconductor

    CERN Multimedia

    2003-01-01

    "Researchers based at Lawrence Berkeley National Laboratory and the University of California at Berkeley have used a scanning tunneling microscope (STM) to reveal eight-fold patterns of quasiparticle interference in the high-temperature superconductor Bi-2212 (bismuth strontium calcium copper oxide)" (2 pages).

  3. Proof-of-principle demonstration of Nb{sub 3}Sn superconducting radiofrequency cavities for high Q{sub 0} applications

    Energy Technology Data Exchange (ETDEWEB)

    Posen, S., E-mail: sep93@cornell.edu; Liepe, M.; Hall, D. L. [Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York 14853 (United States)

    2015-02-23

    Many future particle accelerators require hundreds of superconducting radiofrequency (SRF) cavities operating with high duty factor. The large dynamic heat load of the cavities causes the cryogenic plant to make up a significant part of the overall cost of the facility. This contribution can be reduced by replacing standard niobium cavities with ones coated with a low-dissipation superconductor such as Nb{sub 3}Sn. In this paper, we present results for single cell cavities coated with Nb{sub 3}Sn at Cornell. Five coatings were carried out, showing that at 4.2 K, high Q{sub 0} out to medium fields was reproducible, resulting in an average quench field of 14 MV/m and an average 4.2 K Q{sub 0} at quench of 8 × 10{sup 9}. In each case, the peak surface magnetic field at quench was well above H{sub c1}, showing that it is not a limiting field in these cavities. The coating with the best performance had a quench field of 17 MV/m, exceeding gradient requirements for state-of-the-art high duty factor SRF accelerators. It is also shown that—taking into account the thermodynamic efficiency of the cryogenic plant—the 4.2 K Q{sub 0} values obtained meet the AC power consumption requirements of state-of-the-art high duty factor accelerators, making this a proof-of-principle demonstration for Nb{sub 3}Sn cavities in future applications.

  4. High Tc superconductors at microwave frequencies

    International Nuclear Information System (INIS)

    Gruener, G.

    1991-01-01

    The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance R s is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below T c . Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen

  5. Strong-coupling interaction in high-Tc superconductors

    International Nuclear Information System (INIS)

    Ray, D.K.

    1991-01-01

    Extensive experimental and theoretical work have been done to understand the mechanisms of superconductivity. Until 1986 when Bednorz and Muller discovered superconductivity in the copper oxide perovskite, the principal mechanism was found to be electron-phonon interaction and the characteristics of superconductivity vary depending on the strength of the electron-phonon interaction and the electronic structure. The essential characteristic of these conventional superconductors could be divided into two groups: wide band metals with low density of states N(E F ) at the Fermi energy E F and a rather weak electron-phonon coupling V obeying the universal characteristics of the BCS theory and narrow d band metals, compounds, and alloys with high values of N(E F ), electron-phonon coupling V and non negligible Coulomb interaction between the electrons. In this paper a short summary and the important results of these theories are discussed. The inherent limitations of these theories based on electron-phonon interaction will be discussed. The authors indicate the major characteristics of the new superconductors. These characteristics are difficult to explain on the basis of either the conventional electron-phonon theory or theories based on magnetic interactions alone

  6. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    Science.gov (United States)

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  7. Operating modes of high-Tc composite superconductors and thermal runaway conditions under current charging

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K

    2006-01-01

    The operating thermal and electric modes of a high-T c superconducting composite in partially and fully penetrated states induced by the charging current are investigated. They were studied under conditions in which the current charging rate, the volume fraction of the superconductor in a composite or the temperature of the cooling bath were changed. The transient behaviour of the voltage-current dependence, which is characteristic during stable and unstable increases in electric field inside the composite under a continuous current charging, is discussed. Simulations were done using zero- and one-dimensional steady and unsteady thermoelectric models with a power equation describing the virgin voltage-current characteristic of a superconductor. It is found that some thermoelectric trends underlie the shape of the voltage-current characteristic of the high-T c superconducting composite. These have to be considered during experiments in which the critical or quench currents are defined. First, in the initial stage of the fully penetrated regime (in the low voltage range), the electric field distribution does not have a uniform character. These states depend on the volume fraction of the superconductor and the current charging rate: the higher these quantities, the higher the heterogeneity of the electric field. Second, during the stable over-critical regime (in the high voltage range) occurring in complete penetration modes, the evolution of the electric field may depend on the relevant temperature increase of a composite according to the corresponding increase in its temperature-dependent heat capacity. Consequently, the shape of the voltage-current characteristic of a composite high-T c superconductor during continuous current charging, both before and after thermal runaway, has only a positive slope. Moreover, it is proved that the growth of the fully penetrated part of the voltage-current characteristic becomes less intensive when the current charging rate or the

  8. Unconventional Andreev reflection on the quasi-one-dimensional superconductor Nb2PdxSe5

    Directory of Open Access Journals (Sweden)

    Yeping Jiang

    2016-04-01

    Full Text Available We have carried out Andreev reflection measurements on point contact junctions between normal metal and single crystals of the quasi-one-dimensional (Q1D superconductor Nb2PdxSe5 (Tc ∼ 5.5 K. The contacts of the junctions were made on either self-cleaved surfaces or crystal edges so that the current flow directions in the two types of junctions are different, and the measurements provide a directional probe for the order parameter of the superconductor. Junctions made in both configurations show typical resistances of ∼20-30 Ohms, and a clear double-gap Andreev reflection feature was consistently observed at low temperatures. Quantitative analysis of the conductance spectrum based on a modified Blonder-Tinkham-Klapwijk (BTK model suggests that the amplitudes of two order parameters may have angular dependence in the a-c plane. Moreover, the gap to transition temperature ratio (Δ/TC for the larger gap is substantially higher than the BCS ratio expected for phonon-mediated s-wave superconductors. We argue that the anisotropic superconducting order parameter and the extremely large gap to transition temperature ratio may be associated with an unconventional pairing mechanism in the inorganic Q1D superconductor.

  9. PR IN HIGH-TEMPERATURE SUPERCONDUCTORS - INSULATING PLANES, METALLIC CHAINS

    NARCIS (Netherlands)

    KHOMSKII, D

    Critical discussion is given of the properties of Pr-containing high-T(c) superconductors, especially Y1-xPrxBa2Cu3O7. It is argued that the models proposed to explain suppression of T(c) and other properties of this system (pairbreaking; hole filling; strong p-f hybridization) are inadequate and

  10. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  11. High pressure studies up to 50 GPa of Bi-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Staun Olsen, J.; Steenstrup, S.; Gerward, L.; Sundqvist, B.

    1991-01-01

    The high-T c superconductor with nominal composition BiSrCaCu 2 O x has been studied at high pressure, i.e. up to 50 GPa. A tetragonal structure was compatible with the measurements at all pressures, and no phase change was observed. The bulk modulus, B o =62.5 GPa, obtained has a somewhat smaller value than the one estimated earier. (orig.)

  12. Fine uniform filament superconductors

    Science.gov (United States)

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  13. Two decades on[Research into high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-04-15

    Research into high-temperature superconductors should focus on experiment, not theory. While the world looked on in horror at the events unfolding at the Chernobyl nuclear-power plant in the Soviet Union 20 years ago this month, another significant - but far less reported - development in the world of physics had just taken place. On 17 April 1986 a short paper by Georg Bednorz and Alexander Mueller arrived at the offices of Zeitschrift fuer Physik in Heidelberg, Germany. The two physicists, based at IBM's Zurich Research Laboratory in Switzerland, announced they had made a material from barium, lanthanum, copper and oxygen that could conduct electricity without resistance when cooled below a transition temperature, T{sub c}, of about 30 K. It was the world's first 'high-temperature' superconductor. Driven by the dream of materials that can superconduct at room temperature, experimentalists scurried back to their labs. Within a year, a T{sub c} of 90 K in another material had been reported and by October 1987 Bednorz and Mueller had been crowned with a Nobel prize. While papers on high-temperature superconductivity have continued to stream out since those heady days, progress has been slower than expected. Applications like levitating trains and resistance-free power cables are only now starting to come to market. Scientists have been unable to make superconducting wires that work much above 130 K, while a reliable theory of high-temperature superconductivity remains elusive. Even if we had such a theory, it is not clear that it would predict which materials might superconduct at room temperature. After all, the Bardeen-Cooper-Schrieffer theory, which explains the behaviour of low-temperature superconductors with admirable success, said nothing about the superconducting properties of Bednorz and Mueller's copper-oxide ceramics. What successes there have been over the last 20 years - such as the recent discoveries that iron, single crystals

  14. Levitation experiment using a high-temperature superconductor coil for a plasma confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Junji; Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Tokyo (Japan); Ozawa, Daisaku [Tokyo Univ., School of Engineering, Tokyo (Japan); Yanagi, Nagato; Hamaguchi, Sinji; Mito, Toshiyuki [National Institute for Fusion Science, Toki, Gifu (Japan)

    2001-10-01

    Levitation experiments using a high-temperature superconductor coil have been carried out. A coil with a minor radius of 42 mm was fabricated with a Bi-2223 tape conductor, and immersed in the liquid nitrogen. The coil current was induced by the field-cooling method up to the critical current value. The current decay of the coil can be accounted for by the flux flow resistance and the normal resistance at the lap joint. The high-temperature superconductor coil can be levitated for 4 min or more within an accuracy of 25-30 {mu}m. (author)

  15. Levitation experiment using a high-temperature superconductor coil for a plasma confinement device

    International Nuclear Information System (INIS)

    Morikawa, Junji; Ogawa, Yuichi; Ozawa, Daisaku; Yanagi, Nagato; Hamaguchi, Sinji; Mito, Toshiyuki

    2001-01-01

    Levitation experiments using a high-temperature superconductor coil have been carried out. A coil with a minor radius of 42 mm was fabricated with a Bi-2223 tape conductor, and immersed in the liquid nitrogen. The coil current was induced by the field-cooling method up to the critical current value. The current decay of the coil can be accounted for by the flux flow resistance and the normal resistance at the lap joint. The high-temperature superconductor coil can be levitated for 4 min or more within an accuracy of 25-30 μm. (author)

  16. Potentialities in electronics of new high critical temperature superconductors. Potentialites en electronique des nouveaux supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, P [Thomson-CSF, 75 - Paris (FR)

    1989-09-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed.

  17. The superconductor revolutions and the (slow) applications evolution

    International Nuclear Information System (INIS)

    Foner, S.

    1990-01-01

    The discovery in the 1960's of type 2 superconductors with high critical current densities in high magnetic fields (and the development of NbTi in particular) led to the first revolution. The discovery of high temperature superconductors (HTS) started the second revolution. At this stage ceramists became involved with superconductors. I will assess the status of various superconductor applications, progress of HTS and their possible applications at 4.2K, and near-term needs for superconducting materials operating at 30T in specialized facilities. Reasons for the slow growth of superconductor applications will be reviewed

  18. An infrared view of high Tc superconductors

    International Nuclear Information System (INIS)

    Tanner, D.B.; Timusk, T.; McMaster Univ., Hamilton, ON

    1989-01-01

    Studies of the infrared properties of the high T c superconductors are reviewed, with particular emphasis on attempts to determine the energy gap by far infrared spectroscopy and on the properties of the strong absorption that occurs in the mid infrared. The authors argue that this mid-infrared absorption is a direct particle-hole excitation rather than a Holstein emission process. In addition, they conclude that although the energy gap is not easily observed, several recent experiments place it in the weak to moderate strong coupling range

  19. Low temperature X-ray imaging of magnetic flux patterns in high temperature superconductors

    Science.gov (United States)

    Stahl, Claudia; Ruoß, Stephen; Weigand, Markus; Bechtel, Michael; Schütz, Gisela; Albrecht, Joachim

    2015-05-01

    We present X-ray magnetic circular dichroism (XMCD) microscopy results obtained at liquid nitrogen temperatures on the high-Tc superconductor YBCO (YBa2Cu3O7-δ). The magnetic flux distribution arising from electric currents in the superconductor is detected and visualized using soft-magnetic Co40Fe40B20 (CoFeB) as sensor layer and XMCD as contrast mechanism. It has been shown that the XMCD contrast in the sensor layer directly corresponds to magnetic flux distribution of the superconductor and hence can be used to image magnetic structures in superconductors [Stahl et al., Phys. Rev. B 90, 104515 (2014)]. The existing scanning UHV X-ray microscopy setup MAXYMUS at the synchrotron BESSY II in Berlin has been upgraded for that purpose: we use a nitrogen based MMR Micro Miniature Joule-Thompson Cryostat with temperature range from 75 K to 580 K. The capability of the method is demonstrated on two different superconducting samples, an optimally doped thin film and a melt-textured block.

  20. Applications of superconductors to electric motors

    International Nuclear Information System (INIS)

    McConnell, B.W.

    1988-01-01

    This paper reviews previous experience in applying superconductors to electric motors and examines the difficulties encountered. While motors and generators have a common basis, several significant differences exist. The application of high temperature superconductors to the major electric motor types is discussed and expected difficulties are presented. The limitations imposed by various motor designs are reflected in a statement of the desired material properties for high temperature superconductor electric motor applications

  1. Electron-gamma perturbed angular correlation studies on high-TC superconductors

    International Nuclear Information System (INIS)

    Correia, J.G.; Araujo, J.P.; Marques, J.G.; Ramos, A.R.; Lourenco, A.A.; Amaral, V.; Galindo, V.; Senateur, J.P.; Weiss, F.; Wahl, U.; Melo, A.A.; Soares, J.C.; Sousa, J.B.

    2000-01-01

    Recent results on the study of high-T C superconductors using the e - -γperturbed angular correlation technique are presented. The basic features of the experimental equipment and its installation at the ISOLDE facility are briefly described. Results obtained from 197m Hg implanted into high quality Y 1 Ba 2 Cu 3 O 6+δ epitaxy thin films are presented and discussed

  2. Flux motion and dissipation in high-temperature superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kim, D.H.

    1991-08-01

    The effects on flux motion and dissipation of interlayer coupling of the Cu-O planes along the c-axis are considered for the high- temperature superconductors (HTS). It is argued that for the highly-anisotropic HTS, the weak interlayer coupling plays a dominant role that can be described by incoherent Josephson tunneling between superconducting Cu-O bi- or tri-layers. In YBa 2 Cu 3 O 7 , the layers are strongly coupled, presumably because the conducting Cu-O chains short circuit the Josephson tunneling, so that these effects are weak or missing

  3. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    Science.gov (United States)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  4. Quench properties of high current superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  5. Infrared properties of high Tc superconductors

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Rotter, L.D.; Collins, R.T.; Holtzberg, F.; Feild, C.

    1991-01-01

    Over the past several years a coherent phenomenology of the high T c cuprate superconductors has begun to emerge. Infrared measurements have contributed several important ingredients to this picture including: (1) the inference of a scattering rate that is linear in frequency for ω>T, and of order ω, (2) a characteristic energy scale in the superconducting state of 500 cm -1 (60 meV), which can be interpreted as a superconducting pair excitation threshold or energy gap, and (3) evidence for very unusual temperature dependence in the vicinity of T c . An attempt to describe these aspects of the data is presented here

  6. Microstructural factors influencing critical-current densities of high-temperature superconductors

    International Nuclear Information System (INIS)

    Suenaga, M.

    1992-01-01

    Microstructural defects are the primary determining factors for the values of critical current densities in superconductors. A review is made to assess, (1) what would be the maximum achievable critical-current density in the oxide superconductors if nearly ideal pinning sites were introduced? and (2) what types of pinning defects are currently introduced in these superconductors and how effective are these in pinning the vortices? Only the case where the applied field is parallel to the c-axis is considered here

  7. AC losses in high Tc superconductors

    International Nuclear Information System (INIS)

    Campbell, A.M.

    1998-01-01

    Full text: Although in principle the AC losses in high Tc superconductors can be calculated from the critical current density, a number of complications make this difficult. The Jc is very field dependent, there are intergranular and intragranular critical currents, the material is anisotropic and there is usually a large demagnetising factor. Care must be taken in interpreting electrical measurements since the voltage depends on the position of the contacts. In spite of these complications the simple theory of Norris has proved surprisingly successful and arguments will be presented as to why this is the case. Results on a range of tapes will be compared with theory and numerical methods for predicting losses discussed. Finally a theory for coupling losses will be given for a composite conductor with high resistance barriers round the filaments

  8. Superconductor stability 90: A review

    International Nuclear Information System (INIS)

    Dresner, L.

    1990-01-01

    This paper reviews some recent developments in the field of stability of superconductors. The main topics dealt with are hydrodynamic phenomena in cable-in-conduit superconductors, namely, multiple stability, quench pressure, thermal expulsion, and thermal hydraulic quenchback, traveling normal zones in large, composite conductors, such as those intended for SMES, and the stability of vapor-cooled leads made of high-temperature superconductors. 31 refs., 5 figs

  9. Advanced Controllers for Electromechanical Motion Systems

    NARCIS (Netherlands)

    Nguyen, Duy Cuong

    2008-01-01

    The aim of this research is to develop advanced controllers for electromechanical motion systems. In order to increase efficiency and reliability, these control systems are required to achieve high performance and robustness in the face of model uncertainty, measurement noise, and reproducible

  10. Cryocooler applications for high-temperature superconductor magnetic bearings

    International Nuclear Information System (INIS)

    Niemann, R. C.

    1998-01-01

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping

  11. Rigid levitation, flux pinning, thermal depinning, and fluctuation in high-Tc superconductors

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1991-01-01

    Here, the author shows that the strong velocity-independent frictional force on a levitating superconductor and on any type-II superconductor moving in a homogeneous magnetic field is caused by pinning and depinning of the magnetic flux lines in its interior. Levitation may thus be used to investigate the pinning properties of a superconductor, and friction in a superconductor bearing may be minimized by choosing appropriate materials and geometries

  12. Experimental Consequences of Mottness in High-Temperature Copper-Oxide Superconductors

    Science.gov (United States)

    Chakraborty, Shiladitya

    2009-01-01

    It has been more than two decades since the copper-oxide high temperature superconductors were discovered. However, building a satisfactory theoretical framework to study these compounds still remains one of the major challenges in condensed matter physics. In addition to the mechanism of superconductivity, understanding the properties of the…

  13. Comparative study of magnetization in conventional and high Tc superconductors

    International Nuclear Information System (INIS)

    Sarkissian, B.V.B.; Grover, A.K.; Balakrishnan, G.; Paulose, P.L.; Vijayaraghavan, R.

    1989-01-01

    Results of a comparative study of thermomagnetic history effects and anomalous variations in isothermal magnetization hysteresis curves in a High T compound (YBa 2 Cu 3 O 7 ) with two specimens of Nb are presented. They show that the former behaves like any hard type c II superconductor

  14. The disordered Bose condensate in two dimensions: application to high-Tc superconductors

    International Nuclear Information System (INIS)

    Gold, A.

    1992-01-01

    We calculate the dynamical conductivity for a weakly disordered Bose condensate in two dimensions. The disorder is due to neutral impurities. We compare the asymptotic laws (for small and large frequencies) for neutral impurities with the ones for charged impurities. Universal functions for the dynamical transport properties are derived. The plasmon density of states shows a linear increase with energy for intermediate energies and a peak structure at larger energies. Our theoretical results are compared with experimental results (far-infrared, electron-energy-loss and Raman spectroscopy) found in the high-Tc superconductor YBa 2 Cu 3 O 7-δ . The occurrence of a quasi-gap in a disordered Bose condensate is described and discussed in connection with experiments on high-Tc superconductors. (orig.)

  15. Mottness in high-temperature copper-oxide superconductors

    International Nuclear Information System (INIS)

    Phillips, Philip; Choy, T.-P.; Leigh, Robert G

    2009-01-01

    The standard theory of metals, Fermi liquid theory, hinges on the key assumption that although the electrons interact, the low-energy excitation spectrum stands in a one-to-one correspondence with that of a non-interacting system. In the normal state of the copper-oxide high-temperature superconductors, drastic deviations from the Fermi liquid picture are obtained, highlighted by a pseudogap, broad spectral features and T-linear resistivity. A successful theory in this context must confront the highly constraining scaling argument which establishes that all 4-Fermi interactions are irrelevant (except for pairing) at a Fermi surface. This argument lays plain that new low-energy degrees of freedom are necessary. This paper focuses on the series of experiments on copper-oxide superconductors which reveal that the number of low-energy addition states per electron per spin exceeds unity, in direct violation of the key Fermi liquid tenet. These experiments point to new degrees of freedom, not made out of the elemental excitations, as the key mechanism by which Fermi liquid theory breaks down in the cuprates. A recent theoretical advance which permits an explicit integration of the high-energy scale in the standard model for the cuprates reveals the source of the new dynamical degrees of freedom at low energies, a charge 2e bosonic field which has nothing to do with pairing but rather represents the mixing with the high-energy scales. We demonstrate explicitly that at half-filling, this new degree of freedom provides a dynamical mechanism for the generation of the charge gap and antiferromagnetism in the insulating phase. At finite doping, many of the anomalies of the normal state of the cuprates including the pseudogap, T-linear resistivity and the mid-infrared band are reproduced. A possible route to superconductivity is explored

  16. Low Voltage, High-Q SOI MEMS Varactors for RF Applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    A micro electromechanical tunable capacitor with a low control voltage, a wide tuning range and high electrical quality factor is presented with detailed characterizations. A 50μm thick single-crystalline silicon layer was etched using deep reactive ion etching (DRIE) for obtaining high-aspect ra...... is a suitable passive component to be used in band-pass filtering, voltage controlled oscillator or impedance matching applications on the very high frequency(VHF) and ultra high frequency (UHF) bands....

  17. Filtering properties of Thue-Morse nano-photonic crystals containing high-temperature superconductor

    Science.gov (United States)

    Talebzadeh, Robabeh; Bavaghar, Mehrdad

    2018-05-01

    In this paper, we introduced new design of quasi-periodic layered structures by choosing order two of ternary Thue-Morse structure. We considered Superconductor-dielectric photonic crystal with mirror symmetric as (ABSSAB)N(BASSBA)N composed of two kinds of nano-scale dielectric layers (A and B) and high-temperature superconductor layers where N is the number of period. This structure is assumed to be the free space. By using the transfer matrix method and the two fluid model, we theoretically study the transmission spectrum of ternary Thue-Morse superconducting photonic crystals with mirror symmetry and introduce this structure as a narrow optical filter. We showed that transmission peak so-called defect mode appears itself inside the transmission spectrum of suggested structure as same as defective layered structure. Also, we analyzed the influence of various related parameters such as the operating temperature of superconductor layer on position of defect mode. The redshift of defect mode with increasing the operating temperature was observed.

  18. Superconductors in the power grid materials and applications

    CERN Document Server

    2015-01-01

    Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage

  19. Quantum oscillations and key theoretical issues in high temperature superconductors from the perspective of density waves

    International Nuclear Information System (INIS)

    Chakravarty, Sudip

    2011-01-01

    High temperature superconductivity in cuprate superconductors remains an unsolved problem in theoretical physics. The same statement can also be made about a number of other superconductors that have been dubbed novel. What makes these superconductors so elusive is an interesting question in itself. This paper focuses on the recent magnetic oscillation experiments and how they fit into the broader picture. Many aspects of these experiments can be explained by Fermi liquid theory; the key issue is the extent to which this is true. If true, the entire paradigm developed over the past three decades must be reexamined. A critical analysis of this issue has necessitated a broader analysis of questions about distinct ground states of matter, which may be useful in understanding other novel superconductors.

  20. Unconventional superconductivity in heavy fermionic and high-Tc superconductors

    International Nuclear Information System (INIS)

    Volovik, G.E.

    1989-01-01

    Splitting of the superconducting transition and glass spectrum in heavy fermion companies and oxide superconductors are discussed. The multicomponent order parameter leads to splitting of transition due to magnetic field, impurities, orthorhombic distortion, etc... Linear specific heat in oxide superconductors may be explained in terms of the Fermi-surface arising in superconducting state if interband is pairing strong enough

  1. Processing of Mixed Oxide Superconductors

    Science.gov (United States)

    1990-07-01

    rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs

  2. Fermi velocity mismatch effects in the tunneling characteristics of high-Tc superconductors

    International Nuclear Information System (INIS)

    Aponte, J.M.; Nunez-Regueiro, J.E.; Bellorin, A.; Octavio, M.

    1994-01-01

    We present a comparative study of the tunneling characteristics of point contacts in which one electrode was a superconducting single crystal of Bi 2 Sr 2 CaCu 2 O x and the other electrode was either a normal metal (N-HTSC point contact), or a non-superconducting rare earth metallic oxide (REMO-HTSC point contact), or another crystal of the same superconductor (HTSC'-HTSC point contact). We show that the mismatch of the Fermi velocities of the electrodes is in part responsible for the irreproducibility of most of the tunneling conductance curves observed in high temperature superconductors. (orig.)

  3. The refrigeration of high temperature superconductors between 25K and 65K

    International Nuclear Information System (INIS)

    Richardson, R.N.; Scurlock, R.G.; Tavner, A.C.R.

    1996-01-01

    The present state of the art indicates that acceptable j - H characteristics for power applications of the new high Tc superconductors will only be achieved using materials at temperatures below liquid nitrogen temperature. A boiling point of 27.1K and high specific cooling capacity make neon an eminently suitable choice of refrigerant at these temperatures. A cryostat has been constructed which employs a two stage Gifford-McMahon cooler to liquefy neon gas. The cryostat contains up to 5 litres of liquid neon which can be used for open-quote in-situ close-quote experiments or transfer to another cryostat. Another set of cryostats are being used with liquid nitrogen/oxygen mixtures at reduced pressure for temperatures down to 50K. All these cryostats provide a core facility for characterising and operating high T c superconductors at Southampton

  4. 25 CFR 502.8 - Electronic or electromechanical facsimile.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Electronic or electromechanical facsimile. 502.8 Section 502.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR GENERAL PROVISIONS DEFINITIONS OF THIS CHAPTER § 502.8 Electronic or electromechanical facsimile. Electronic or electromechanical...

  5. Thermal Loss in High-Q Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Tunable antennas are very promising for future generations of mobile communications, where antennas are required to cover a wide range operating bands. This letter aims at characterizing the loss mechanism of tunable antennas. Tunable antennas typically exhibit a high Quality factor (Q), which ca...... lead to thermal loss due to the conductivity of the metal. The investigation shows that copper loss is non-negligible for high Q values. In the proposed design the copper loss is 2 dB, for a Q of 260 at 700 MHz....

  6. A high-efficiency electromechanical battery

    Science.gov (United States)

    Post, Richard F.; Fowler, T. K.; Post, Stephen F.

    1993-03-01

    In our society there is a growing need for efficient cost-effective means for storing electrical energy. The electric auto is a prime example. Storage systems for the electric utilities, and for wind or solar power, are other examples. While electrochemical cells could in principle supply these needs, the existing E-C batteries have well-known limitations. This article addresses an alternative, the electromechanical battery (EMB). An EMB is a modular unit consisting of an evacuated housing containing a fiber-composite rotor. The rotor is supported by magnetic bearings and contains an integrally mounted permanent magnet array. This article addresses design issues for EMBs with rotors made up of nested cylinders. Issues addressed include rotational stability, stress distributions, generator/motor power and efficiency, power conversion, and cost. It is concluded that the use of EMBs in electric autos could result in a fivefold reduction (relative to the IC engine) in the primary energy input required for urban driving, with a concomitant major positive impact on our economy and on air pollution.

  7. Study of flux flow in high Tc superconductors

    International Nuclear Information System (INIS)

    Takacs, S.; Gomory, F.

    1989-01-01

    The magnetic field distribution and the hysteresis losses in superconductors with very large viscous forces are calculated for field amplitudes below and above the penetration field. Both the magnetic field and frequency dependence of the losses are changing with respect to the critical state model. The results are qualitatively confirmed by AC susceptibility measurements on YBaCuO superconductors, but the quantitative differences indicate that the flux flow effects are not so strong as expected and supposed by some theories

  8. Symmetry of order-parameters in high-Tc layered superconductors

    International Nuclear Information System (INIS)

    Rajagopal, A.K.; Jha, Sudhanshu S.

    1997-01-01

    It is well known that the anisotropy and wave-vector dependence of the energy-gap function determine many important properties of a superconductor which are relevant for device applications. Apart from a weak dependence on the wave-vector k - > in the direction perpendicular to the reciprocal layer-plane of a high-T c layered superconductor, it is shown that anisotropic superconducting order parameters for intra-layer pairing in the class of such materials with orthorhombic crystal structures, can have either pure s-wave like symmetry or mixed d-wave and anisotropic extended s-wave like symmetries in the reciprocal layer-plane. However, in such materials with tetragonal crystal structures, it is possible to have a pure s-wave like symmetry, which may be either isotropic or anisotropic in the layer k - >-space, or a pure d-wave like symmetry, as far the k - >-dependence in the reciprocal layer plane is concerned. In view of this, some suggestions for analysing experimental data will also be presented. (author)

  9. Application of high temperature superconductors for optimization of regime of the electroenergetic system

    International Nuclear Information System (INIS)

    Manusov, V.Z.; Mikheev, P.A.

    2005-01-01

    Application of the phenomenon of superconductivity in the energetic systems, as in the form of longitudinal engine, also in the transverse appearance (changing of the regime of neutral) is considerate in this article. In the normal regimes of the work of net it is profitable to have less resistance for contraction loss of the capability in the network and decrease of the tension, in emergency state ground return, on the contrary, from the security and safety point of view the work of such resistance will not arrange. Major properties of superconductors are their ability to change electrical parameters (in particular electric resistance) in dependence of the size of current crossing over them, notably nonlinearity of their volt-ampere characteristics. A high temperature superconductor, on the score of economical appropriateness of cooling of superconductor with liquid nitrogen instead of liquid gel is considered

  10. High density high-TC ceramic superconductors by hot pressing

    International Nuclear Information System (INIS)

    Mak, S.; Chaklader, A.C.D.

    1989-01-01

    High density and high T C superconductor specimens, YBa 2 Cu 3 O x , have been produced by hot-pressing. The factors studied are the effect of hot pressing on the density, the oxygen stoichiometry, the crystal structure, and the critical temperature. Hot pressing followed by heat treatment increased the density of the specimen to 93%. The hot pressing itself did not significantly affect the oxygen content in the specimen, and although the crystal structure appeared to be orthorhombic, the specimens were not superconducting above liquid nitrogen temperature. The superconductivity was restored after head treatment in oxygen. The highest critical temperature (T C ) of the hot pressed pellets was 82K, which was slightly lower than the T C that could be obtained with the cold pressed/sintered pellets. (6 refs., 5 figs., tab.)

  11. Microwave impedance of epitaxial high-temperature superconductor films

    International Nuclear Information System (INIS)

    Melkov, G.A.; Malyshev, V.Yu.; Bagada, A.V.

    1995-01-01

    In the 3 cm band dependences of the epitaxial HTS film surface resistance on the magnitude of ac and dc magnetic fields have been measured. YBa 2 Cu 3 O 7-σ films on sapphire were investigated. It was established that alternating magnetic field produces a stronger impact on the surface resistance than dc field. To explain experimental results the assumption is made that a HTS film is not an ideal superconductor and consists of series-connected sections of various types: sections of an ideal superconductor, sections of low and large resistance intragranular Josephson junctions, shunted by the ideal superconductor, and finally, sections of intergranular Josephson junctions few for epitaxial films. In these conditions the dependences of the surface resistance on dc magnetic field are caused by Abrikosov's vortices moving in ideal superconductive sections, and dependences on the amplitude of ac magnetic field are caused by switching of large resistance junctions to a low resistance state

  12. Intertwined Orders in Heavy-Fermion Superconductor CeCoIn_{5}

    Directory of Open Access Journals (Sweden)

    Duk Y. Kim

    2016-12-01

    Full Text Available The appearance of spin-density-wave (SDW magnetic order in the low-temperature and high-field corner of the superconducting phase diagram of CeCoIn_{5} is unique among unconventional superconductors. The nature of this magnetic Q phase is a matter of current debate. Here, we present the thermal conductivity of CeCoIn_{5} in a rotating magnetic field, which reveals the presence of an additional order inside the Q phase that is intimately intertwined with the superconducting d-wave and SDW orders. A discontinuous change of the thermal conductivity within the Q phase, when the magnetic field is rotated about antinodes of the superconducting d-wave order parameter, demands that the additional order must change abruptly, together with the recently observed switching of the SDW. A combination of interactions, where spin-orbit coupling orients the SDW, which then selects the secondary p-wave pair-density-wave component (with an average amplitude of 20% of the primary d-wave order parameter, accounts for the observed behavior.

  13. Measuring condensate fraction in superconductors

    International Nuclear Information System (INIS)

    Chakravarty, Sudip; Kee, Hae-Young

    2000-01-01

    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society

  14. Robust Position Control of Electro-mechanical Systems

    OpenAIRE

    Rong Mei; Mou Chen

    2013-01-01

    In this work, the robust position control scheme is proposed for the electro-mechanical system using the disturbance observer and backstepping control method. To the external unknown load of the electro-mechanical system, the nonlinear disturbance observer is given to estimate the external unknown load. Combining the output of the developed nonlinear disturbance observer with backstepping technology, the robust position control scheme is proposed for the electro-mechanical system. The stabili...

  15. The superconductor

    International Nuclear Information System (INIS)

    Lad, J.K.

    1979-01-01

    Techniques for fabrication of a few important superconductors like Nb, Ti and Nb 3 Sn are described. Copper or bronze or both can be used as a matrix in the superconductor. Current densities obtained for different ratios of copper to superconductor are studied. The specifications of multi-filament Nb 3 Sn superconductors are given. The relative merits of the two superconductors are discussed. The temperature range obtained is approximately 3 0 K and a magnetic field of 9T(tesla) can be achieved. (A.K.)

  16. Inhomogeneous superconductors

    International Nuclear Information System (INIS)

    Tinkham, M.

    1978-01-01

    The coherence length xi and penetration depth lambda set the characteristic length scales in superconductors, typically 100 to 5,000 A. A lattice of flux lines, each carrying a single quantum, can penetrate type II superconductors, i.e., those for which kappa identical with lambda/xi > 1/√2. Inhomogeneities on the scale of the flux lattice spacing are required to pin the lattice to prevent dissipative flux motion. Recent work using voids as pinning centers has demonstrated this principle, but practical materials rely on cold-work, inclusions of second phases, etc., to provide the inhomogeneity. For stability against thermal fluctuations, the superconductor should have the form of many filaments of diameter 10 to 100 μm imbedded in a highly conductive normal metal matrix. Such wire is made by drawing down billets of copper containing rods of the superconductor. An alternative approach is the metallurgical one of Tsuei, which leads to thousands of superconducting filamentary segments in a copper matrix. The superconducting proximity effect causes the whole material to superconduct at low current densities. At high current densities, the range of the proximity effect is reduced so that the effective superconducting volume fraction falls below the percolation threshold, and a finite resistance arises from the copper matrix. But, because of the extremely elongated filaments, this resistance is orders of magnitude lower than that of the normal wire, and low enough to permit the possibility of technical applications

  17. Superconductors: The long road ahead

    International Nuclear Information System (INIS)

    Foner, S.; Orlando, T.P.

    1988-01-01

    Before the discovery of high-temperature superconductors, progress in superconductivity was measured by quite small increases in critical temperature, often of less than one degree. Today, there is no reason to believe that the dramatic leaps in critical temperature inaugurated by superconducting ceramics are over. Researchers may find new high-temperature superconducting materials with less severe technical limitations than the ceramics we know today. And if the day ever comes when a superconductor can be reliably manufactured to operate effectively at room temperature, then superconductors will be incorporated in a broad range of everyday household devices - motors, appliances, even children's toys - with a large consumer market. High-temperature superconductors may also cause us to extensively revise our traditional theories about how superconductivity works. Should it run out that superconductivity in ceramics involves new physical mechanisms, then these mechanisms could lead to applications never considered before. The recent discoveries have already reinvigorated superconductivity research. What was once largely the domain of a relatively small group of scientists has become a genuinely multidisciplinary realm. Now physicists, materials scientists, chemists, metallurgists, ceramists, and solid-state electronics engineers are all focusing on superconductivity. The cross-fertilization of these disciplines should contribute to further discoveries of importance to the practical application of superconductors

  18. An unusual isotope effect in a high-transition-temperature superconductor

    International Nuclear Information System (INIS)

    Gweon, G.-H.; Sasagawa, T.; Zhou, S.Y.; Graf, J.; Takagi, H.; Lee, D.-H.; Lanzara, A.

    2004-01-01

    In conventional superconductors, the electron pairing that allows superconductivity is caused by exchange of virtual phonons, which are quanta of lattice vibration. For high-transition-temperature (high-Tc) superconductors, it is far from clear that phonons are involved in the pairing at all. For example, the negligible change in Tc of optimally doped Bi2Sr2CaCu2O8 (Bi2212) upon oxygen isotope substitution (16O to 18O leads to Tc decreasing from 92 to 91 K) has often been taken to mean that phonons play an insignificant role in this material. Here we provide a detailed comparison of the electron dynamics of Bi2212 samples containing different oxygen isotopes, using angle-resolved photoemission spectroscopy. Our data show definite and strong isotope effects. Surprisingly, the effects mainly appear in broad high-energy humps, commonly referred to as ''incoherent peaks''. As a function of temperature and electron momentum, the magnitude of the isotope effect closely correlates with the superconducting gap--that is, the pair binding energy. We suggest that these results can be explained in a dynamic spin-Peierls picture, where the singlet pairing of electrons and the electron-lattice coupling mutually enhance each other

  19. Critical current density and wire fabrication of high-TC superconductors

    International Nuclear Information System (INIS)

    Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.

    1989-01-01

    In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes

  20. High efficiency β radioisotope energy conversion using reciprocating electromechanical converters with integrated betavoltaics

    Science.gov (United States)

    Duggirala, Rajesh; Li, Hui; Lal, Amit

    2008-04-01

    We demonstrate a 5.1% energy conversion efficiency Ni63 radioisotope power generator by integrating silicon betavoltaic converters with radioisotope actuated reciprocating piezoelectric unimorph cantilever converters. The electromechanical energy converter efficiently utilizes both the kinetic energy and the electrical charge of the 0.94μW β radiation from a 9mCi Ni63 thin film source to generate maximum (1) continuous betavoltaic electrical power output of 22nW and (2) pulsed piezoelectric electrical power output of 750μW at 0.07% duty cycle. The electromechanical converters can be potentially used to realize 100year lifetime power sources for powering periodic sampling remote wireless sensor microsystems.

  1. Quantum critical point in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl

    2009-02-02

    Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.

  2. Oxide glass to high temperature ceramic superconductors - a novel route

    International Nuclear Information System (INIS)

    Chaudhuri, B.K.; Som, K.K.

    1992-01-01

    Recently it has been discovered that many of transition metal oxide (TMO) glasses like Bi-Sr-Ca-Cu-O, Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O etc. can be directly converted to the corresponding high temperature superconducting phases by properly annealing the respective glasses. In this review recent developements in this field are summarised. The structural, electrical, dielectrical, magnetic, optical, and other properties of these new type of (TMO) glass systems have been elucidated comparing them with the corresponding results of already known (TMO) glasses which do not become superconductors on annealing above their glass transition temperatures (T g ). The electrical properties of this novel glass system have been analysed with reference to the various existing theoretical models based on polaron hopping conduction mechanism. The electrical, magnetic, and other properties of the respective superconductors obtained from their corresponding glass phases by annealing above (T g ) and the possibility of drawing wires, ribbons etc. from these glass matrices and then converting them to their high T c superconducting phases have also been discussed. (author). 107 refs., 32 figs., 5 tabs

  3. Modelling and validation of electromechanical shock absorbers

    Science.gov (United States)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  4. Effects of magnetic field on the cuprate high-Tc superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Lake, B.; Aeppli, G.; Christensen, N.B.

    2004-01-01

    This article discusses neutron scattering measurements on the cuprate, high transition temperature superconductor La2-xSrxCuO4 (LSCO) in an applied magnetic field. LSCO is a type-II superconductor and magnetic flux can penetrate the material via the formation of vorticies. Phase coherent...

  5. Effect of texture on grain boundary misorientation distributions in polycrystalline high temperature superconductors

    International Nuclear Information System (INIS)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.; Mason, T.A.

    1996-01-01

    Computer simulations were performed to determine the most probable grain boundary misorientation distribution (GBMD) in model polycrystalline superconductors. GBMDs in polycrystalline superconductors can be expected to dictate the macroscopic transport critical current density, J c . Calculations were performed by simulating model polycrystals and then determining the GBMD. Such distributions were calculated for random materials having cubic, tetragonal, and orthorhombic crystal symmetry. In addition, since most high temperature superconductors are tetragonal or pseudotetragonal, the effect of macroscopic uniaxial and biaxial grain orientation texture on the GBMD was determined for tetragonal materials. It is found that macroscopic texture drastically alters the grain boundary misorientation distribution. The fraction of low angle boundaries increases significantly with uniaxial and biaxial texture. The results of this study are important in correlating the macroscopic transport J c with the measured grain orientation texture as determined by x-ray diffraction copyright 1996 American Institute of Physics

  6. On the application of High-Tc superconductors in power coils and transformers

    NARCIS (Netherlands)

    Chevtchenko, O.A.

    2002-01-01

    In this study, the electro-magnetic properties of high-Tc tapes and coils are investigated. The focus is on Bi-2223/Ag tapes with non-twisted superconducting filaments as these are the only high-Tc superconductors at present available in sufficient length for practical applications. The study is

  7. Circuit electromechanics with single photon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  8. Three-dimensionality of field-induced magnetism in a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Lefmann, K.; Christensen, N.B.

    2005-01-01

    Many physical properties of high-temperature superconductors are two-dimensional phenomena derived from their square-planar CuO(2) building blocks. This is especially true of the magnetism from the copper ions. As mobile charge carriers enter the CuO(2) layers, the antiferromagnetism of the parent...

  9. Josephson plasma resonance in vortex filament state of high temperature superconductors

    International Nuclear Information System (INIS)

    Matsuda, Yuji; Gaifullin, M.B.

    1996-01-01

    High temperature superconductors have the crystalline structure in which two-dimensional CuO 2 planes are piled in layers, consequently, the anisotropy of electroconductivity arises, and this brings about stable and low energy Josephson plasma in superconducting state. Also as to the vortex filament state of high temperature superconductors, the effect of thermal fluctuation due to low dimensionality, short coherence length and high transition temperature becomes conspicuous. In reality, these plasma and vortex filament state are related closely. Light reflection and plasma edge in superconducting state, Josephson plasma resonance in the vortex filament state of BiO 2 Sr 2 CaCu 2 O 8+δ , the plasma vibration in Josephson junction, Josephson plasma in magnetic field, Josephson plasma in the liquid state of vortex filament, Josephson plasma in the solid state of vortex filament, and Josephson plasma in parallel magnetic field are reported. The Josephson plasma resonance is the experimental means for exploring vortex filament state from microscopic standpoint, and its development hereafter is expected. (K.I.)

  10. Electron-$\\gamma$ - perturbed angular correlation studies on high-T$_{C}$ superconductors

    CERN Document Server

    Correia, J G; Marques, J G; Ramos, A R; Lourenço, A A; Amaral, V S; Galindo, V; Senateur, J P; Weiss, F; Wahl, U; Melo, A A; Soares, J C; Sousa, J B

    2000-01-01

    Recent results on the study of high-T$_{c}$ superconductors using the e$^-\\!-\\gamma$ perturbed angular correlation technique are presented. The basic features of the experimental equipment and its installation at the ISOLDE facility are briefly described. Results obtained from $^{197m}$Hg implanted into high quality Y$_{1}$Ba$_{2}$Cu$_{3}$O$_{6+\\delta}$ epitaxy thin films are presented and discussed.

  11. High temperature superconductor bulk materials. Fundamentals - processing - properties control - application aspects

    International Nuclear Information System (INIS)

    Krabbes, G.; Fuchs, G.; Canders, W.R.; May, H.; Palka, R.

    2006-01-01

    This book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. The authors provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. This book contains the following chapters: 1. Fundamentals 2. Growth and melt processing of YBCO 3. Pinning-relevant defects in bulk YBCO 4. Properties of bulk YBCO 5. Trapped fields 6. Improved YBCO based bulk superconductors and functional elements 7. Alternative systems 8. Peak effect 9. Very high trapped fields in YBCO permanent magnets 10. Engineering aspects: Field distribution in bulk HTSC 11. Inherently stable superconducting magnetic bearings 12. Application of bulk HTSCs in electromagnetic energy converters 13. Applications in magnet technologies and power supplies

  12. Two-dimensional Semiconductor-Superconductor Hybrids

    DEFF Research Database (Denmark)

    Suominen, Henri Juhani

    This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...

  13. Electromechanical systems and devices

    CERN Document Server

    Lyshevski, Sergey Edward

    2008-01-01

    ""The book begins with a good, well-written review of some of the basic equations used for electromechanical designs . . . There is very good technical depth to each of the sections in this book, giving the reader the ability to design real systems using the equations and examples from this book . . . aimed at electrical engineering students because it contains homework problems at the end of each chapter and is very instructive for power and electromechanical engineers."" - John J. Shea, in IEEE Electrical Insulation Magazine, March-April 2009, Vol. 25, No. 2

  14. High-frequency applications of high-temperature superconductor thin films

    Science.gov (United States)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  15. High-frequency applications of high-temperature superconductor thin films

    International Nuclear Information System (INIS)

    Klein, N.

    2002-01-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz. (author)

  16. Multiphysics simulation electromechanical system applications and optimization

    CERN Document Server

    Dede, Ercan M; Nomura, Tsuyoshi

    2014-01-01

    This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today's engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, ma

  17. Two-dimensional MoS2 electromechanical actuators

    Science.gov (United States)

    Hung, Nguyen T.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2018-02-01

    We investigate the electromechanical properties of two-dimensional MoS2 monolayers with 1H, 1T, and 1T‧ structures as a function of charge doping by using density functional theory. We find isotropic elastic moduli in the 1H and 1T structures, while the 1T‧ structure exhibits an anisotropic elastic modulus. Moreover, the 1T structure is shown to have a negative Poisson’s ratio, while Poisson’s ratios of the 1H and 1T‧ are positive. By charge doping, the monolayer MoS2 shows a reversible strain and work density per cycle ranging from  -0.68% to 2.67% and from 4.4 to 36.9 MJ m-3, respectively, making them suitable for applications in electromechanical actuators. We also examine the stress generated in the MoS2 monolayers and we find that 1T and 1T‧ MoS2 monolayers have relatively better performance than 1H MoS2 monolayer. We argue that such excellent electromechanical performance originate from the electrical conductivity of the metallic 1T and semimetallic 1T‧ structures and also from their high Young’s modulus of about 150-200 GPa.

  18. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    Science.gov (United States)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  19. Testability issues in Superconductor Electronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Arun, Arun J.

    2004-01-01

    An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor

  20. Studies of nonlinear electrodynamics of high-temperature superconductors

    International Nuclear Information System (INIS)

    Lam, Q.H.

    1991-01-01

    Nonlinear electrodynamics of high-Tc superconductors are studied theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an ac field, H 1 cos(ωt), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a super-posing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field, P nf (H dc ), is experimentally observed in powdered YBa 2 Cu 3 O 7 . For bulk sintered cylindrical samples, a generalized critical state model is presented. The nonlinear electrodynamics are due to flux-pinning. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa 2 Cu 3 O 7 yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability μ n = μ' n - iμ double-prime n . These data, together with P nf (H dc ), are explained quantitatively by the generalized critical state model, yielding a dependence on magnetic field of J c (H) ∼ H 02 local for the intergranular component, a steeper field dependence than for conventional type-II superconductors. Temperature-dependence measurements reveal that, while the intragranular supercurrents disappear at T c ≥ 91.2 K, the intergranular supercurrents disappear at T ≥ 86.6 K

  1. Briefing on superconductor developments

    International Nuclear Information System (INIS)

    Larbalestier, D.

    1987-01-01

    In this paper, the author covers the technology of the new oxide superconductors and how they might relate to the existing superconductors. He discusses old-fashioned superconductors; the material science of superconductors; the new oxide superconductors; and the future of oxide superconductors. 13 figures, 1 table

  2. Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions

    Directory of Open Access Journals (Sweden)

    Stefan Kolenda

    2016-11-01

    Full Text Available Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime.Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction.Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators.

  3. Magic Doping Fractions in High-Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, Seiki; /CRIEPI, Tokyo; Chen, Han-Dong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.; Ando, Yoichi; /CRIEPI, Tokyo

    2010-01-15

    We report hole-doping dependence of the in-plane resistivity {rho}{sub ab} in a cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4}, carefully examined using a series of high-quality single crystals. Our detailed measurements find a tendency towards charge ordering at particular rational hole doping fractions of 1/16, 3/32, 1/8, and 3/16. This observation appears to suggest a specific form of charge order and is most consistent with the recent theoretical prediction of the checkerboard-type ordering of the Cooper pairs at rational doping fractions x = (2m + 1)/2{sup n}, with integers m and n.

  4. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.

    2017-06-21

    Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.

  5. Positron annihilation study on Y-Ba-Cu-O high Tc superconductors

    International Nuclear Information System (INIS)

    Balogh, A.G.; Liszkay, L.; Molnar, B.; Puff, W.

    1987-08-01

    First positron annihilation measurements are reported on high T c superconductor YBa 2 Cu 3 O 7-x . The lifetime and Doppler broadening spectra show a slight but significant change about 240K suggesting a deviation from the normal structure far above 90K where the resistance falls to zero. (author)

  6. Kohn anomalies in superconductors

    International Nuclear Information System (INIS)

    Flatte, M.E.

    1994-01-01

    The detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the photon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La 1.85 Sr 0.15 CuO 4

  7. Air-Coupled Ultrasonic Receivers with High Electromechanical Coupling PMN-32%PT Strip-Like Piezoelectric Elements

    Directory of Open Access Journals (Sweden)

    Rymantas J. Kazys

    2017-10-01

    Full Text Available For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was

  8. Microstructures and critical currents in high-Tc superconductors

    International Nuclear Information System (INIS)

    Suenaga, Masaki

    1998-01-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high T c superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa 2 Cu 3 O 7 if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa 2 Cu 3 O 7 and how effective are these in pinning vortices

  9. Physics and Materials Science of High Temperature Superconductors

    Science.gov (United States)

    1989-08-26

    30 M. Nikolo: Effect of Texture and Density on Grain Coupling of Sintered Y-Ba-Cu-O Superconductors 11:30 - 12:00 A. SzAsz : The Symmetries and High...The Hall coefficient is always positive and obeys the RH (x T- 1 law . The I Hall mobility p2-I2 < I cm2/V.S. At T < Tc, the thermoelectric power equals...461561 80-6550 Prof. A. Szasz PP Dr. Martin Schwarz PP Eotvos University Angewandte Physik Muzeum Krt. 6-8 Hoechst AG H-1088 Budapest Hungary Gebaeude

  10. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    Science.gov (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  11. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    Science.gov (United States)

    Goretta, K.C.; Lanagan, M.T.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Hu, J.; Balachandran, U.; Siegel, R.W.; Shi, D.

    1999-07-27

    A method of preparing a high temperature superconductor is disclosed. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology. 4 figs.

  12. First principles simulation on the K0.8Fe2Se2 high-temperature structural superconductor

    International Nuclear Information System (INIS)

    Guo, Rui; Yang, Shizhong; Khosravi, Ebrahim; Zhao, Guang-Lin; Bagayoko, Diola

    2013-01-01

    Highlights: • The superconductor K 0.8 Fe 2 Se 2 super cell size, shape, and atomic positions are fully optimized using first principles density functional theory method. • Each K atom donates 0.8 |e| with K vacancies in the supercell, each Fe atom donates 0.4 |e|, while each Se atom gains 0.7 |e| ∼ 0.8 |e|. • Fe atoms show magnetic moment fluctuation and possible strong spin-orbital coupling. -- Abstract: Since the synthesis of the first ones in 2008, iron-based high temperature superconductors have been the subject of many studies. This great interest is partly due to their higher, upper magnetic field, smaller Fermi surface around the Γ point, and a larger coherence length. This work is focused on A x Fe 2 Se 2 structural superconductor (FeSe, 11 hierarchy; A = K, Cs) as recently observed. ARPES data show novel, electronic structure and a hole-free Fermi surface which is different from previously observed Fermi surface images. We use ab initio density functional theory method to simulate the electronic structure of the novel superconductor A x Fe 2 Se 2 . We compare this electronic structure with those of other Fe-based superconductors

  13. Fabrication and testing of the Nb3Sn superconductor for High-Field Test Facility (HFTF)

    International Nuclear Information System (INIS)

    Spencer, C.; Adam, E.; Gregory, E.; Marancik, W.; Sanger, P.; Scanlan, R.; Cornish, D.

    1979-01-01

    A 5000 A-12 T fully stable Nb 3 Sn superconductor has to be produced for the insert magnet of the high-field test facility being built at Lawrence Livermore Laboratory. A process is described which permits the fabrication of long lengths of large fully transposed monolithic superconductors containing in excess of 100,000 filaments of Nb 3 Sn. Measurements of critical current as a function of magnetic field and longitudinal strain on prototype samples are reported

  14. Field Dependent Coherence Length in the Superclean, HighSuperconductor CeCoIn5

    International Nuclear Information System (INIS)

    DeBeer-Schmitt, L.; Eskildsen, M. R.; Dewhurst, C. D.; Hoogenboom, B. W.; Petrovic, C.

    2006-01-01

    Using small-angle neutron scattering, we have studied the flux-line lattice (FLL) in the superclean, highsuperconductor CeCoIn 5 . The FLL undergoes a first-order symmetry and reorientation transition at ∼0.55 T at 50 mK. In addition, the FLL form factor in this material is found to be independent of the applied magnetic field, in striking contrast to the exponential decrease usually observed in superconductors. This result is consistent with a strongly field-dependent coherence length, proportional to the vortex separation

  15. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  16. Electron spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Knupfer, M.

    1994-01-01

    In the last two classes of materials have been discovered which distinguish themselves due to a transition into the superconducting state at relatively high temperatures. These are the cuprate superconductors and the alkali metal doped fullerenes. In this work the electronic structure of representatives of these materials, undoped and Ca-doped YBa 2 Cu 4 O 8 and A 3 C 60 (A=K, Rb), has been investigated using electron energy-loss spectroscopy and photoemission spectroscopy. (orig.) [de

  17. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  18. Photothermal measurements of superconductors

    International Nuclear Information System (INIS)

    Kino, G.S.; Wu, X.D.; Kapitulnik, A.; Fishman, I.

    1993-01-01

    The authors have developed a new photothermal technique to investigate electronic phase transitions of high temperature superconductors. The phase shift of the thermal wave yields the anisotropic thermal diffusivity coefficient of the sample. The amplitude of the photothermal signal is sensitive to electronic phase transitions of the second kind. The technique is completely noncontacting and nondestructive, and is well suited to measure small and fragile single-crystal high-T c superconductors. The measurements give good agreement with fluctuation theory near the transition temperature. They have studied diffusion in, and superconducting fluctuations of, single crystals of YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . Both systems show fluctuation effects beyond Gaussian fluctuations. While YBa 2 Cu 3 O 7-δ behaves as a three-dimensional anisotropic superconductor, results on Bi 2 Sr 2 CaCu 2 O 8 indicate strong two-dimensional effects

  19. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1988-08-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA /center dot/ cm/sup /minus/2/ (at 77 K and /approximately/10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA /center dot/ cm/sup /minus/2/ most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of /approximately/7% are forecast for the overall capital cost of the power plant in the best case. An additional /approximately/3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  20. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1987-10-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared to conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA . cm -2 (at 77 K and ∼10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA . cm -2 most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of ∼7% are forecast for the overall capital cost of the power plant in the best case. An additional ∼3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  1. Electromagnetic wave absorption in high-Tc superconductors and its application

    International Nuclear Information System (INIS)

    Porjesz, T.; Khatiashvili, N.; Kovacs, Gy.; Leppavuori, S.; Uusimaki, A.; Kokkomaki, T.; Hagberg, J.

    1995-08-01

    The experimental study of the electromagnetic wave absorption of high-Tc superconductors subjected to small magnetic fields has been extended to a wide frequency range. The results obtained show an almost frequency independent behaviour in the 4 MHz - 20 GHz region. The measurement technique for the high frequency regime was developed in such a way that the sensitivity increased so much that the sample under investigation could be used as a very sensitive magnetic field detector, too. (author). 4 refs, 8 figs, 1 tab

  2. Orbitals, correlation, valencies in high-Tc superconductors

    International Nuclear Information System (INIS)

    Khomskii, D.I.

    1990-09-01

    The survey is given of certain properties of high-Tc superconductors connected with the details of their electronic structure such as the kind of orbitals involved and the degree of correlation. Special attention is paid to the properties of cuprates at high doping level. The problem whether there exists a ''Mott transition'' at high electron or a hole concentration is discussed. We also discuss physical factors (d-p Coulomb interaction, orbital mixing) leading to the partial occupation of copper d x 2 -orbital. In particular we show that in localized picture (x 2 -y 2 ) and z 2 -levels in La 2-x Sr x CuO 4 may cross at x approx. 0.4 which may be responsible for a marked change of many properties at this doping. The possible role of x 2 -electrons in pairing is discussed in connection with some recent experiments. (author). 28 refs, 6 figs, 1 tab

  3. Nickel W14 substrates for high-temperature superconductors

    International Nuclear Information System (INIS)

    Kolb-Telieps, Angelika; Gehrmann, Bodo

    2008-01-01

    High-temperature superconductivity is on the threshold of market launch. Starting from the results of a research project, ThyssenKrupp VDM has successfully developed an industrial-scale production process for nickel W14, which is used as substrate strip in superconductors destined for applications such as generators for wind turbines. The deoxidation of the melt presented a particular challenge. On the one hand, this is required in order to avoid fractures during the hot forming, on the other, the usual deoxidation elements have negative effects on the nanoscale texture and surface roughness needed for the substrate strip. (orig.)

  4. Thermoelectric and thermomagnetic effects in high-temperature superconductors

    International Nuclear Information System (INIS)

    Huebener, R.P.; Ri, H.C.; Gross, R.; Kober, F.

    1992-01-01

    In the mixed state of high-temperature superconductors the dominant part of the Seebeck and Nernst effect is due to the thermal diffusion of quasiparticles and vortices, respectively. The authors' understanding of the Seebeck effect is based on the two-fluid counterflow model of Ginzburg and its extension to the mixed state with the presence of vortices. From the Nernst effect the transport entropy of the vortices is obtained. In this paper summarize the recent thermoelectric and thermomagnetic experiments, paying also attention to the role of the Magnus force (Hall effect) and to the thermal fluctuation effects near T c

  5. Three-terminal devices of high-Tc superconductors: A status report and future challenges

    International Nuclear Information System (INIS)

    Kung, Pang-Jen; Carnegie-Mellon Univ., Pittsburgh, PA

    1992-01-01

    A study has been conducted on the recent progress of the three-terminal devices with transistor-like characteristics fabricated from the high-T c superconducting materials. This study explored the operating principles and characteristics of these devices in relation to the relevant materials and techniques. A comparison of a variety of techniques for superconducting thin film deposition will be given. This study indirates that the feasibility of fabricating hybrid devices composed of semiconductors and superconductors appear to be the key issue to push forward the applications of high-T c superconductors in microelectronics. The junction field-effect transistors with a semiconductor base controlled by the proximity effect are likely to be more manufacturable. The factors that influence the operating reliability of devices and the problems arising from integrating and packaging the devices will also be discussed

  6. Contact spectroscopy of high-temperature superconductors (Review). I - Physical and methodological principles of the contact spectroscopy of high-temperature superconductors. Experimental results for La(2-x)Sr(x)CuO4 and their discussion

    Science.gov (United States)

    Ianson, I. K.

    1991-03-01

    Research in the field of high-temperature superconductors based on methods of tunneling and microcontact spectroscopy is reviewed in a systematic manner. The theoretical principles of the methods are presented, and various types of contacts are described and classified. Attention is given to deviations of the measured volt-ampere characteristics from those predicted by simple theoretical models and those observed for conventional superconductors. Results of measurements of the energy gap and fine structure of volt ampere characteristic derivatives are presented for La(2-x)Sr(x)CuO4.

  7. Prospects of High Temperature Superconductors for fusion magnets and power applications

    International Nuclear Information System (INIS)

    Fietz, Walter H.; Barth, Christian; Drotziger, Sandra; Goldacker, Wilfried; Heller, Reinhard; Schlachter, Sonja I.; Weiss, Klaus-Peter

    2013-01-01

    Highlights: • An overview of HTS application in fusion is given. • BSCCO application for current leads is discussed. • Several approaches to come to a high current HTS cable are shown. • Open issues and benefits of REBCO high current HTS cables are discussed. -- Abstract: During the last few years, progress in the field of second-generation High Temperature Superconductors (HTS) was breathtaking. Industry has taken up production of long length coated REBCO conductors with reduced angular dependency on external magnetic field and excellent critical current density jc. Consequently these REBCO tapes are used more and more in power application. For fusion magnets, high current conductors in the kA range are needed to limit the voltage during fast discharge. Several designs for high current cables using High Temperature Superconductors have been proposed. With the REBCO tape performance at hand, the prospects of fusion magnets based on such high current cables are promising. An operation at 4.5 K offers a comfortable temperature margin, more mechanical stability and the possibility to reach even higher fields compared to existing solutions with Nb 3 Sn which could be interesting with respect to DEMO. After a brief overview of HTS use in power application the paper will give an overview of possible use of HTS material for fusion application. Present high current HTS cable designs are reviewed and the potential using such concepts for future fusion magnets is discussed

  8. Ternary superconductors

    International Nuclear Information System (INIS)

    Giorgi, A.L.

    1987-01-01

    Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors

  9. The influence of measurement and relaxation time on flux jumps in high temperature superconductors

    International Nuclear Information System (INIS)

    Yang Xiaobin; Zhou Youhe; Tu Shandong

    2010-01-01

    The influence of the magnetization and relaxation time on flux jumps in high temperature superconductors (HTSC) under varying magnetic field is studied using the fundamental electromagnetic field equations and the thermal diffusion equation; temperature variety corresponding to flux jump is also discussed. We find that for a low sweep rate of the applied magnetic field, the measurement and relaxation times can reduce flux jump and to constrain the number of flux jumps, even stabilizing the HTSC, since much heat produced by the motion of magnetic flux can transfer into coolant during the measurement and relaxation times. As high temperature superconductors are subjected to a high sweep rate or a strong pulsed magnetic field, magnetization undergoes from stability or oscillation to jump for different pause times. And the period of temperature oscillation is equal to the measurement and relaxation time.

  10. First applications of high temperature superconductors in microelectronic. Subproject: Foundations of a reality-near simulation of superconducting high frequency circuits. Final report

    International Nuclear Information System (INIS)

    Wolff, I.; Konopka, J.; Fritsch, U.; Hofschen, S.; Rittweger, M.; Becks, T.; Schroeder, W.; Ma Jianguo.

    1994-01-01

    The basis of computer aided design of the physical properties of high temperature superconductors in high frequency and microwave areas were not well known and understood at the beginning of this research project. For this reason within in the research project as well new modells for describing the microwave properties of these superconductors have been developed as alos well known numerical analysis techniques as e.g. the boundary integral method, the method of finite differences in time domain and the spectral domain analysis technique have been changed so that they meet the requirements of superconducting high frequency and microwave circuits. Hereby it especially also was considered that the substrate materials used for high temperature superconductors normally have high dielectric constants and big anisotropies so that new analysis techniques had to be developed to consider the influence of these parameters on the components and circuits. The dielectric properties of the substrate materials furthermore have been a subject of measurement activities in which the permittivity tensor of the materials have been determined with high accuracy and ogver a large frequency range. As a result of the performed investigations now improved numerical simulation techniques on a realistic basis are available for the analysis of superconducting high frequency and microwave circuits. (orig.) [de

  11. Method for fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam [Hinsdale, IL; Ma, Beihai [Naperville, IL; Miller, Dean [Darien, IL

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  12. Process for the manufacture of a stabilized filament superconductor with a high proportion of stabilising material

    International Nuclear Information System (INIS)

    Both, R.; Hillmann, H.; Breuer, W.

    1987-01-01

    In order to manufacture superconductors with a high proportion of stabilising material, a compound body is first formed and is formed by extrusion and drawing to reduce its crossection. This compound body is then introduced into a sheath tube to increase the proportion of stabilising material and is formed to its final dimensions by further drawing processes. Tearing of the superconducting filaments is prevented by sufficient stabilising material (e.g. copper here) being introduced in the central area of the compound body. The filament superconductors can be manufactured at a reasonable price with a high proportion of stabilising material. (orig.) [de

  13. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  14. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  15. Critical currents and thermally activated flux motion in high-temperature superconductors

    NARCIS (Netherlands)

    Palstra, T.T.M.; Batlogg, B.; Dover, R.B. van; Schneemeyer, L.F.; Waszczak, J.V.

    1989-01-01

    We have measured the resistance below Tc of single crystals of the high-temperature superconductors Ba2YCu3O7 and Bi2.2Sr2Ca0.8Cu2O8+δ in magnetic fields up to 12 T. The resistive transition of both compounds is dominated by intrinsic dissipation which is thermally activated, resulting in an

  16. ELECTROMECHANICAL TRANSIENT PROCESSES DURING SUPPLY VOLTAGE CHANGING IN THE SYSTEM OF POLYMER INSULATION COVERING OF THE CURRENT-CARRYING CORE OF ULTRA HIGH VOLTAGE CABLES

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-04-01

    Full Text Available Aim. The article is devoted to the analysis of the electromechanical transient processes in a system of three frequency-controlled electric drives based on asynchronous motors that control current-carrying core motion, as well as to the study of the effect of such processes on the modes applying three-layer polymer insulation to the current-carrying core. Technique. The study was conducted based on the concepts of electromechanics, electromagnetic field theory, mathematical physics, mathematical modeling. Results. A mathematical model has been developed to analyze transients in an electromechanical system consisting of three frequency-controlled electric drives providing current-carrying core motion of ultra-high voltage cables in an inclined extrusion line. The coordination of the electromechanical parameters of the system drives has been carried out and the permissible changes in the supply voltage at the limiting mass while moving current-carrying core of ultra-high voltage cables with applied polymer insulation have been estimated. Scientific novelty. For the first time it is determined that with the limiting mass of the current-carrying core, the electromechanical system allows to stabilize the current-carrying core speed with the required accuracy at short-term decreases in the supply voltage by no more than 27 % of its amplitude value. It is also shown that this system is resistant to short-term increases in voltage by 32 % for 0.2 s. Practical significance. Using the developed model, it is possible to calculate the change in the configuration and speed of the slack current-carrying core when applying polymer insulation, depending on the specific mass of the current-carrying core per unit length, its tension at the bottom, the torque of the traction motor and the supply voltage to achieve stable operation of the system and accurate working of the set parameters.

  17. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.

    Science.gov (United States)

    Liang, Jiajie; Huang, Lu; Li, Na; Huang, Yi; Wu, Yingpeng; Fang, Shaoli; Oh, Jiyoung; Kozlov, Mikhail; Ma, Yanfeng; Li, Feifei; Baughman, Ray; Chen, Yongsheng

    2012-05-22

    Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational isomerization of polydiacetylene (PDA) and the outstanding intrinsic features of graphene together for the first time, we design and fabricate an electromechanical bimorph actuator composed of a layer of PDA crystal and a layer of flexible graphene paper through a simple yet versatile solution approach. Under low applied direct current (dc), the graphene-PDA bimorph actuator with strong mechanical strength can generate large actuation motion (curvature is about 0.37 cm(-1) under a current density of 0.74 A/mm(2)) and produce high actuation stress (more than 160 MPa/g under an applied dc of only 0.29 A/mm(2)). When applying alternating current (ac), this actuator can display reversible swing behavior with long cycle life under high frequencies even up to 200 Hz; significantly, while the frequency and the value of applied ac and the state of the actuators reach an appropriate value, the graphene-PDA actuator can produce a strong resonance and the swing amplitude will jump to a peak value. Moreover, this stable graphene-PDA actuator also demonstrates rapidly and partially reversible electrochromatic phenomenon when applying an ac. Two mechanisms-the dominant one, electric-induced deformation, and a secondary one, thermal-induced expansion of PDA-are proposed to contribute to these interesting actuation performances of the graphene-PDA actuators. On the basis of these results, a mini-robot with controllable direction of motion based on the graphene-PDA actuator is designed to illustrate the great potential of our discoveries for practical use. Combining the unique actuation mechanism and many outstanding properties of

  18. Theory of tunneling and photoemission spectroscopy for high-temperature superconductors

    International Nuclear Information System (INIS)

    Kouznetsov, K.; Coffey, L.

    1996-01-01

    A comprehensive analysis is presented of the tunneling conductance and angle-resolved photoemission spectra in high-temperature superconductors. It is shown that unexplained features of the tunneling and photoemission spectra such as broad backgrounds, dips, and asymmetry of the tunneling conductance can arise in a model of spin-fluctuation mediated inelastic tunneling. Effects of directionality in tunneling play an important role in determining the behavior of the tunneling conductance. copyright 1996 The American Physical Society

  19. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  20. Progress of metallic superconductors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji, E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp [Faculty of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-01-15

    Highlights: ► Japanese contributions on the R and D of different metallic superconductors are summarized. ► Nb–Ti wires have been developed for MRI, accelerator, MAGLEV train and other applications. ► Multifilamentary Nb{sub 3}Sn wires with excellent performance have been developed for high-field use. ► Long-length Nb{sub 3}Al wires with promising strain tolerance have been fabricated by a new process. -- Abstract: This article overviews the development of metallic superconductors in Japan covering different kinds of alloys and intermetallic compounds. Metallic superconductors have opened many new application areas in science and technology. Japan has been one of the leading countries in the world, both in the research and development and in large-scale manufacturing of metallic superconductors.

  1. High-temperature superconductors learn from heavy fermions

    International Nuclear Information System (INIS)

    Varma, C.

    1998-01-01

    Physicists have been intrigued by the nature of high-temperature superconductors since they were discovered 12 years ago. Superconducting materials lose their electrical resistance below a transition temperature, T c , and certain copper-oxide compounds remain superconducting at temperatures up to 160 K. Research into these materials has been driven by fundamental, yet intractable, questions about the basic concepts of condensed-matter physics and the mechanisms of superconductivity. A key question is how the electrons come together to form the Cooper pairs responsible for superconductivity. Physicists at Cambridge University have now studied two heavy-fermion compounds experimentally, and have found that the electron pairing is caused by magnetic effects (N Mathur et al. 1998 Nature 394 39). In this article the author describes their research. (UK)

  2. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors

    International Nuclear Information System (INIS)

    Llordes, Anna; Palau, A.; Gazquez, J.; Coll, M.; Vlad, R.; Pomar, A.; Arbiol, Jordi; Guzman, Roger; Ye, S.; Rouco, V.; Sandiumenge, Felip; Ricart, Susagna; Puig, Teresa; Varela del Arco, Maria; Chataigner, D.; Vanacken, J.; Gutierrez, J.; Moschalkov, V.; Deutscher, G.; Magen Dominguez, Cesar; Obradors, Xavier

    2012-01-01

    Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centers in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa 2 Cu 3 O 7 matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.

  3. Detuning effect study of High-Q Mobile Phone Antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert F.

    2015-01-01

    Number of frequency bands that have to be covered by smart phones, are ever increasing. This broadband coverage can be obtained either by using a low-Q antenna or a high-Q tunable antenna. This study investigates high-Q antennas performance when placed in proximity of the user. This study...

  4. Finding new superconductors: the spin-fluctuation gateway to high Tc and possible room temperature superconductivity.

    Science.gov (United States)

    Pines, David

    2013-10-24

    We propose an experiment-based strategy for finding new high transition temperature superconductors that is based on the well-established spin fluctuation magnetic gateway to superconductivity in which the attractive quasiparticle interaction needed for superconductivity comes from their coupling to dynamical spin fluctuations originating in the proximity of the material to an antiferromagnetic state. We show how lessons learned by combining the results of almost three decades of intensive experimental and theoretical study of the cuprates with those found in the decade-long study of a strikingly similar family of unconventional heavy electron superconductors, the 115 materials, can prove helpful in carrying out that search. We conclude that, since Tc in these materials scales approximately with the strength of the interaction, J, between the nearest neighbor local moments in their parent antiferromagnetic state, there may not be a magnetic ceiling that would prevent one from discovering a room temperature superconductor.

  5. Spectroscopic views of high-Tc superconductors

    International Nuclear Information System (INIS)

    Wendin, G.

    1989-01-01

    In this paper progress in the field of photoelectron spectroscopy, electron energy loss spectroscopy, inverse photoemission, and infrared- and optical reflectivity applied to high-T c superconductors in analyzed in terms of correlation effects, transport properties and Fermi liquid behavior. For the CuO 2 based materials, a picture emerges of localized holes in copper 3d levels and itinerant holes in oxygen 2p-like bands. A Fermi liquid picture and a superconducting gap is indicated by angle-resolved photoemission, infrared absorption, and NMR. A Fermi surface is indicated by positron annihilation. Infrared absorption revels strongly frequency and temperature dependent scattering and polaronic behavior for frequencies below 0.1 eV. Infrared absorption indicates a maximum superconducting gas of 2Δ/K B T c = 8 and suggests that ordinary samples may show a range of gaps 2 B T c B = 5

  6. Coherent diffusive transport mediated by Andreev reflections at V=Delta/e in a mesoscopic superconductor/semiconductor/superconductor junction

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Kuhn, Oliver

    1997-01-01

    We present experiments revealing a singularity in the coherent current across a superconductor/semiconductor/superconductor (SSmS) junction at the bias voltage corresponding to the superconducting energy gap V=Delta/e. The SSmS structure consists of highly doped GaAs with superconducting electrodes...

  7. Characterization of high-current, high-temperature superconductor current lead elements

    International Nuclear Information System (INIS)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures

  8. Report on neutron beam utilization and study of high Tc superconductors at NRI

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Vuong Huu [Nuclear Physics Dept., Nuclear Research Inst. (NRI), Dalat (Viet Nam)

    1998-10-01

    Utilization of reactor neutron beams at NRI for research and applications up to November 1996 had been presented at the last Workshop in Jakarta (25-28 Nov., 1996). This paper describes new research and applications carried out at Nuclear Physics Department of NRI after that time. They consist of neutron beam developments, neutron activation cross section measurements for waste disposal assessment and in-vivo prompt gamma neutron activation analysis for Cd determination in organs. After the last Sub-Workshop on Neutron Scattering in Serpong (21-23 Nov., 1996), we were accepted to participate in the Regional Program on Study of High Tc Superconductors with the topic `The mechanism of Pb and Sb dopant role on superconductivity of 2223 phase of Bi-Sr-Ca-Cu-O system`. Indeed, this study has begun at NRI only since August, 1997 due to the problem of materials. The study has been carried out in collaboration with the Hanoi State University (Superconductors Department) where experts and equipment for superconductors research have been considered as the best ones in Vietnam. Primary results in this study are presented in this workshop. (author)

  9. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  10. RF properties of high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Bohn, C.L.; Delayen, J.R.; Dos Santos, D.I.; Lanagan, M.T.; Shepard, K.W.

    1988-01-01

    We have investigated the rf properties of high-T/sub c/ superconductors over a wide range of temperature, frequency, and rf field amplitude. We have tested both bulk polycrystalline samples and thick films on silver substrates. At 150 MHz and 4.2 K, we have measured a surface resistance of 18 μ/sup /OMEGA// at low rf field and 3.6 m/sup /OMEGA// at an rf field of 270 gauss. All samples showed a strong dependence of the surface resistance on rf field; however, no breakdown of the superconducting state has been observed up to the highest field achieved (320 gauss). 9 refs., 4 figs., 1 tab

  11. High field superconductor development and understanding project, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  12. Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Helbo, Bjarne

    2001-01-01

    A simple linear electromechanical model for an electrostatically driven resonating cantilever is derived. The model has been developed in order to determine dynamic quantities such as the capacitive current flowing through the cantilever-driver system at the resonance frequency, and it allows us ...

  13. Design and control of the precise tracking bed based on complex electromechanical design theory

    Science.gov (United States)

    Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken

    2010-05-01

    The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.

  14. Organic superconductors

    International Nuclear Information System (INIS)

    Bulaevskij, L.N.; Shchegolev, I.F.

    1986-01-01

    Main achievements in creating new organic conducting materials - synthetic metals and superconductors, are considered. The processes of superconductivity occurrence in organic materials are discussed. It is shown that conjugated bonds between C and H atoms in organic molecules play an important role in this case. At present ''crystal direction'' in organic superconductor synthesis is mainly developed. Later on, organic superconductor crystals are supposed to be introduced into usual polymers, e.g. polyethylene

  15. Vortex-line fluctuations in model high-temperature superconductors

    International Nuclear Information System (INIS)

    Li, Y.; Teitel, S.

    1993-01-01

    We carry out Monte Carlo simulations of the uniformly frustrated three-dimensional XY model, as a model for vortex-line fluctuations in a high-T c superconductor in an external magnetic field. A density of vortex lines of f=1/25 is considered. We find two sharp phase transitions. The low-T superconducting phase is an ordered vortex-line lattice. The high-T normal phase is a vortex-line liquid, with much entangling, cutting, and loop excitations. An intermediate phase is found, which is characterized as a vortex-line liquid of disentangled, approximately straight, lines. In this phase, the system displays superconducting properties in the direction parallel to the magnetic field, but normal behavior in planes perpendicular to the field. A detailed analysis of the vortex structure function is carried out

  16. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G; Lee, H J; Kim, K B; Won, D Y; Jang, K I; Kwon, S C; Kim, W J; Ji, Y A; Yang, S W; Kim, W K; Park, S D; Lee, M H; Lee, D M; Park, H W; Yu, J K; Lee, I S; Kim, J J; Choi, H S; Chu, Y; Kim, Y S; Kim, D H

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  17. Development of superconductor application technology

    International Nuclear Information System (INIS)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm 2 was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm 2 was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs

  18. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  19. Improving electromechanical output of IPMC by high surface area Pd-Pt electrodes and tailored ionomer membrane thickness

    Directory of Open Access Journals (Sweden)

    Viljar Palmre

    2014-04-01

    Full Text Available In this study, we attempt to improve the electromechanical performance of ionic polymer–metal composites (IPMCs by developing high surface area Pd-Pt electrodes and tailoring the ionomer membrane thickness. With proper electroless plating techniques, a high dispersion of palladium particles is achieved deep in the ionomer membrane, thereby increasing notably the interfacial surface area of electrodes. The membrane thickness is increased using 0.5 and 1 mm thick ionomer films. For comparison, IPMCs with the same ionomer membranes, but conventional Pt electrodes, are also prepared and studied. The electromechanical, mechanoelectrical, electrochemical and mechanical properties of different IPMCs are characterized and discussed. Scanning electron microscopy-energy dispersive X-ray (SEM-EDS is used to investigate the distribution of deposited electrode metals in the cross section of Pd-Pt IPMCs. Our experiments demonstrate that IPMCs assembled with millimeter thick ionomer membranes and newly developed Pd-Pt electrodes are superior in mechanoelectrical transduction, and show significantly higher blocking force compared to conventional type of IPMCs. The blocking forces of more than 0.3 N were measured at 4V DC input, exceeding the force output of typical Nafion® 117-based Pt IPMCs more than two orders of magnitude. The newly designed Pd-Pt IPMCs can be useful in more demanding applications, e.g., in biomimetic underwater robotics, where high stress and drag forces are encountered.

  20. International Discussion Meeting on High-Tc Superconductors

    CERN Document Server

    1988-01-01

    In the past two years conferences on superconductivity have been characterized by the attendance of hundreds of scientists. Consequently, the organizers were forced to schedule numerous parallel sessions and poster presentations with an almost unsurveyable amount of information. It was, therefore, felt that a more informal get-together, providing ample time for a thourough discussion of some topics of current interest in high-temperature superconductivity, was timely and benefitial for leading scientists as well as for newcomers in the field. The present volume contains the majority of papers presented at the International Discussion Meeting on High-Tc Superconductors held at the Mauterndorf Castle in the Austrian Alps from February 7 to 11, 1988. Each subject was introduced in review form by a few invited speakers and then discussed together with the contributed poster presentations. These discussion sessions chaired by selected scientists turned out to be the highlights of the meeting, not only because all ...

  1. Practical superconductor development for electrical power applications

    International Nuclear Information System (INIS)

    Goretta, K.C.

    1991-10-01

    Development of useful high-critical-temperature (high-T c ) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes technical progress of research and development efforts aimed at producing superconducting components based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and Tl-Ba-Ca-Cu oxides systems. Topics discussed are synthesis and heat treatment of high-T c superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, and fabrication and properties of thin films. Collaborations with industry and academia are also documented. 10 figs

  2. HiQ - A high-Q diffractometer for PDF measurements

    International Nuclear Information System (INIS)

    Brunelli, M.; Fischer, H.E.; Gaehler, R.; Chatterji, T.

    2011-01-01

    The local structure of many important functional materials is often different from the average structure, as revealed by diffraction, due to, e.g. doping, mixed site occupancy, or formation of time-dependent local distortions. To get information on both the average and the local structures one needs to perform a joint Rietveld and PDF (Pair Distribution Function) analysis of the total scattering, for which we need data to Q = 30 - 35 Angstroms with Δd/d ∼ 3*10 -3 . Here, we describe how the hot-source diffractometer D4 can be adapted to achieve this capability, and outline one possible design of a dedicated high-Q diffractometer at the ILL (Laue Langevin Institute), using the vacant inclined hot-neutron beam IH2. (authors)

  3. Proceedings of the workshop on 'anomalous electronic states and physical properties in high-temperature superconductors'

    International Nuclear Information System (INIS)

    Arai, Masatoshi; Kajimoto, Ryoichi

    2007-03-01

    A workshop entitled 'Anomalous Electronic States and Physical Properties in High-Temperature Superconductors' was held on November 7-8, 2006 at Institute for Materials Research, Tohoku University. In the workshop, leading scientists in the field of high-T c superconductivity, both experimentalists and theorists, gathered in a hall to report the recent progress of the study, clarify the problems to be solved, and discuss the future prospects. The workshop was jointly organized by Specially Promoted Research of MEXT, Development of the 4D Spaces Access Neutron Spectrometer and Elucidation of the Mechanism of Oxide High-T c Superconductivity' (repr. by M. Arai, JAEA) and by the Inter-university Cooperative Research Program of the Institute for Materials Research, Tohoku University, 'Anomalous Electronic States and Physical Properties in High-Temperature Superconductors' (repr. by T. Tohyama, Kyoto Univ.). This report includes abstracts and materials of the presentations in the workshop. (author)

  4. Modeling high-temperature superconductors and metallic alloys on the Intel iPSC/860

    International Nuclear Information System (INIS)

    Geist, G.A.; Peyton, B.W.; Shelton, W.A.; Stocks, G.M.

    1990-01-01

    Oak Ridge National Laboratory has embarked on several computational grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys form first principles and, in particular, the electronic structure of high-temperature superconductors. The physical basis for high Tc superconductivity is not well understood. The design of materials with higher critical temperatures and the ability to carry higher current densities can be greatly facilitated by the modeling and detailed study of the electronic structure of existing superconductors. This paper describes the progress to data on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification

  5. The Effective Coherence Length in Anisotropic Superconductors

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Nesher, O

    1999-01-01

    If electrons are transmitted from a normal conductor(N) into a superconductor(S), common wisdom has it that the electrons are converted into Cooper pairs within a coherence length from the interface. This is true in conventional superconductors with an isotropic order parameter. We have established experimentally that the situation is rather different in high Tc superconductors having an anisotropic order parameter. We used epitaxial thin film S/N bilayers having different interface orientations in order to inject carriers from S into N along different directions. The distance to which these carriers penetrate were determined through their effect on the Tc of the bilayers. We found that the effective coherence length is 20A only along the a or b directions, while in other directions we find a length of 250dr20A out of plane, and an even larger value for in-plane, off high symmetry directions. These observations can be explained using the Blonder-Tinkham-Klapwijk model adapted to anisotropic superconductivity. Several implications of our results on outstanding problems with high Tc junctions will be discussed

  6. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  7. Hexatic vortex glass in disordered superconductors

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1989-01-01

    It is shown that interaction of the flux-line lattice with randomly arranged pinning centers should destroy the long-range positional order in the lattice, but not the long-range orientational order. A new phase: hexatic vortex glass, is suggested for the mixed state of disordered, type-II superconductors. Relevance to amorphous and high-T c superconductors is discussed

  8. Fabrication and study of hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Jurbergs, D.; Riley, D.R.; Zhao, J.; Zhou, J.P.; Lo, K.; Grassi, J.; Jones, C.

    1994-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the first two classes of composite molecule/superconductor devices are reported. Consequently, light sensors based on organic dye-coated superconductor junctions as well as molecular switches fashioned from organic conductive polymer-coated superconductor microbridges are discussed. Moreover, the initial results related to the study of molecule/superconductor energy and electron transfer phenomena are reported

  9. Spectroscopic Imaging Scanning Tunneling Microscopy Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors

    Science.gov (United States)

    Fujita, Kazuhiro; Schmidt, Andrew R.; Kim, Eun-Ah; Lawler, Michael J.; Lee, Dung Hai; Davis, J. C.; Eisaki, Hiroshi; Uchida, Shin-ichi

    2012-01-01

    One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|=Δ0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). Below optimal doping, this ``nodal'' arc shrinks continuously with decreasing hole density. In both the dSC and PG phases, the only broken symmetries detected in the |E|≤Δ0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E|˜ Δ1 which is associated conventionally with the ``antinodal'' states near k=±(π/a0,0) and k=±(0,π/a0). We find that these states break the expected 90°-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180°-rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E|˜Δ1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The characteristic wavevector Q of the latter is determined, empirically, by the k-space points where Bogoliubov quasiparticle interference terminates, and therefore evolves continuously with doping. The properties of these two classes of |E|˜Δ1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E|˜Δ1 and |E|≤Δ0, and to understand how this impacts the electronic

  10. Impurities and conductivity in a D-wave superconductor

    International Nuclear Information System (INIS)

    Balatsky, A.V.

    1994-01-01

    Impurity scattering in the unitary limit produces low energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor. The authors describe a new quasi-one-dimensional limit of the quasiparticle scattering, which might occur in a superconductor with short coherence length and with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be proportional to the normal state scattering rate and is impurity-dependent. They show that quasi-one-dimensional regime might occur in high-T c superconductors with Zn impurities at low temperatures T approx-lt 10 K

  11. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  12. The importance of mechano-electrical feedback and inertia in cardiac electromechanics.

    Science.gov (United States)

    Costabal, Francisco Sahli; Concha, Felipe A; Hurtado, Daniel E; Kuhl, Ellen

    2017-06-15

    In the past years, a number cardiac electromechanics models have been developed to better understand the excitation-contraction behavior of the heart. However, there is no agreement on whether inertial forces play a role in this system. In this study, we assess the influence of mass in electromechanical simulations, using a fully coupled finite element model. We include the effect of mechano-electrical feedback via stretch activated currents. We compare five different models: electrophysiology, electromechanics, electromechanics with mechano-electrical feedback, electromechanics with mass, and electromechanics with mass and mechano-electrical feedback. We simulate normal conduction to study conduction velocity and spiral waves to study fibrillation. During normal conduction, mass in conjunction with mechano-electrical feedback increased the conduction velocity by 8.12% in comparison to the plain electrophysiology case. During the generation of a spiral wave, mass and mechano-electrical feedback generated secondary wavefronts, which were not present in any other model. These secondary wavefronts were initiated in tensile stretch regions that induced electrical currents. We expect that this study will help the research community to better understand the importance of mechanoelectrical feedback and inertia in cardiac electromechanics.

  13. Current voltage characteristics of composite superconductors with high contact resistance

    International Nuclear Information System (INIS)

    Akhmetov, A.A.; Baev, V.P.

    1984-01-01

    An experimental study has been made of current-voltage characteristics of composite superconductors with contact resistance between superconducting filaments and normal metal with high electrical conductivity. It is shown that stable resistive states exist in such conductors over a wide range of currents. The presence of resistive states is interpreted in terms of the resistive domain concept. The minimum and maximum currents of resistive states are found to be dependent on the electrical resistance of normal metal and magnetic field. (author)

  14. Recent advances in high-temperature superconductor wire fabrication and applications development

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.

    1992-01-01

    In this paper, recent advances in fabrication of high-temperature superconductor wires are summarized and detailed discussion is provided on developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future, include fault-current limiters and short transmission lines

  15. Electromechanics of graphene spirals

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Topi; Koskinen, Pekka, E-mail: pekka.koskinen@iki.fi [NanoScience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  16. Charge transport in junctions between d-wave superconductors

    International Nuclear Information System (INIS)

    Barash, Y.S.; Galaktionov, A.V.; Zaikin, A.D.

    1995-01-01

    We develop a microscopic analysis of superconducting and dissipative currents in junctions between superconductors with d-wave symmetry of the order parameter. We study the proximity effect in such superconductors and show that for certain crystal orientations the superconducting order parameter can be essentially suppressed in the vicinity of a nontransparent specularly reflecting boundary. This effect strongly influences the value and the angular dependence of the dc Josephson current j S . At T∼T c it leads to a crossover between j S ∝T c -T and j S ∝(T c -T) 2 respectively for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel junction. We show that at low temperatures the current-phase relation j S (cphi) for superconductor--normal-metal--superconductor junctions and short weak links between d-wave superconductors is essentially nonharmonic and contains a discontinuity at cphi=0. This leads to further interesting features of such systems which can be used for pairing symmetry tests in high-temperature superconductors (HTSC). We also investigated the low-temperature I-V curves of normal-metal--superconductor and superconductor-superconductor tunnel junctions and demonstrated that depending on the junction type and crystal orientation these curves show zero-bias anomalies I∝V 2 , I∝V 2 ln(1/V), and I∝V 3 caused by the gapless behavior of the order parameter in d-wave superconductors. Many of our results agree well with recent experimental findings for HTSC compounds

  17. A high-order q-difference equation for q-Hahn multiple orthogonal polynomials

    DEFF Research Database (Denmark)

    Arvesú, J.; Esposito, Chiara

    2012-01-01

    A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....

  18. Strongly disordered superconductors

    International Nuclear Information System (INIS)

    Muttalib, K.A.

    1982-01-01

    We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

  19. Assessment of potential advantages of high Tc-superconductors for technical application of superconductivity

    International Nuclear Information System (INIS)

    Schauer, F.; Juengst, K.P.; Komarek, P.; Maurer, W.

    1987-09-01

    A first assessment of the technical and economical consequences of liquid nitrogen cooling of new superconductors is given. For the investigation the applications of superconductivity are classified in two categories: First, systems where superconductors are practically indispensable for achieving the system's objectives; second, superconductor applications in competition with highly developed conventional technologies. Further development of those superconducting systems in the first category for which the cost of cryogenic equipment is a smaller fraction of the total system cost (e.g. fusion reactor or MHD generator) will hardly be affected. However, for systems like particle accelerators, research magnets, and NMR spectroscopy and imaging systems, the cryogenic equipment expenditures are significant and LN 2 cooling leads here to a reduction of investment and operating costs, to simplified handling and maintenance, to better reliability and availability, and will thereby improve the acceptance and further spread of these systems. In the second category each application of superconductivity has to be compared with its conventional counterpart, separately. Here, electonic components, power switches, resistive current limiters, and especially the power transmission cables are those applications which look most promising. For magnet applications the main advantageous arguments are less the cost saving aspect but more the higher reliability, simplicity, N 2 -availability, and ease of handling. (orig.) [de

  20. Visualizing pair formation on the atomic scale in high-Tc superconductors

    International Nuclear Information System (INIS)

    Pasupathy, A.

    2008-01-01

    Full text: Unlike traditional superconductors, the density of states (DOS) of the high-T c superconductor Bi-2212 shows large nanoscale variations that have been detected using scanning tunneling microscopy (STM). Such variations are seen in the low temperature superconducting gap and in features associated with the coupling of pairs to boson modes. In order to understand these variations in the spectra, we perform atomic resolution STM measurements of Bi-2212 as a function of temperature. Using newly developed experimental techniques, we measure the evolution of the DOS from low temperature (T c ) to temperatures where all gaps in the spectrum have disappeared (T>T*). Such measurements show that the pairing gap nucleates in nanoscale regions at temperatures between T c and T*. By normalizing the low temperature DOS (T c ) to the DOS at high temperature, we are able to fit the superconducting DOS to the d-wave BCS form. We find that the experimental spectrum deviations from a simple d-wave fit indicating a strong coupling between electrons and bosonic modes. We will discuss the temperature evolution of these as well as other features in the DOS and correlate such measurements with the inhomogeneity seen in the gap magnitude at low temperature

  1. Structural studies of metal oxides related to High-Tc superconductors

    International Nuclear Information System (INIS)

    Hjorth, M.

    1990-02-01

    The project was started in order to investigate metal oxide structures related in some way to high-T c superconductors, using the crystallographic methods available; and in order to be able to use crystallographic methods in ways that go beyond routine applications in order to contribute to the crystallographic knowledge concerning these oxides. The project goes a step outside the boarders normally defined by using the term ''high-T c superconductors'', thus studying metal oxides from a more general crystallographic viewpoint. The methods used are the expansions of the spherical atom model, and of the thermal probability density function, and combination of X-ray work with high resolution electron microscopy. The use of the expanded diffraction models presents problems such as bad convergence in least squares refinement, physical unreasonable parameters, problems with interpretation of the results and difficulties due to missing or insufficient computer programs. The use of these models is discussed. Dynamical theory is applied when considering electron diffraction results. The theory is presented, focusing on the modifications of the standard theory used for some of the structures considered in the thesis, and in overview on other theoretical topics is given. A presentation is given of the structures which have been considered and of earlier work on related compounds, of the problems and solutions applied to the compound discussed and of the results obtained. The results are discussed. The appendices describe published papers and the work not directly connected to the main topics, e.g. implementation and development of computer programs. (AB) 172 refs

  2. Application of ESCA spectroscopy to the study of electronic structure of high temperature superconductors

    International Nuclear Information System (INIS)

    Dagoury, G.

    1988-01-01

    Characteristics of high T c oxide superconductors are very sensitive to slight variation of chemical composition, ESCA spectroscopy is used for identification of YBaCuO superconductivity. Binding energy of the different electronic levels and structure of valence band are determined [fr

  3. High Q-factor tunable superconducting HF circuit

    CERN Document Server

    Vopilkin, E A; Pavlov, S A; Ponomarev, L I; Ganitsev, A Y; Zhukov, A S; Vladimirov, V V; Letyago, A G; Parshikov, V V

    2001-01-01

    Feasibility of constructing a high Q-factor (Q approx 10 sup 5) mechanically tunable in a wide range of frequencies (12-63 MHz) vibration circuit of HF range was considered. The tunable circuit integrates two single circuits made using YBaCuO films. The circuit frequency is tuned by changing distance X (capacity) between substrates. Potentiality of using substrates of lanthanum aluminate, neodymium gallate and strontium titanate for manufacture of single circuits was considered. Q-factor of the circuit amounted to 68000 at resonance frequency of 6.88 MHz

  4. High Q-factor tunable superconducting HF circuit

    International Nuclear Information System (INIS)

    Vopilkin, E.A.; Parafin, A.E.; Pavlov, S.A.; Ponomarev, L.I.; Ganitsev, A.Yu.; Zhukov, A.S.; Vladimirov, V.V.; Letyago, A.G.; Parshikov, V.V.

    2001-01-01

    Feasibility of constructing a high Q-factor (Q ∼ 10 5 ) mechanically tunable in a wide range of frequencies (12-63 MHz) vibration circuit of HF range was considered. The tunable circuit integrates two single circuits made using YBaCuO films. The circuit frequency is tuned by changing distance X (capacity) between substrates. Potentiality of using substrates of lanthanum aluminate, neodymium gallate and strontium titanate for manufacture of single circuits was considered. Q-factor of the circuit amounted to 68000 at resonance frequency of 6.88 MHz [ru

  5. Nonequilibrium states of high tc YBCO superconductors under tunnel injection of quasiparticles

    International Nuclear Information System (INIS)

    Iguchi, I.; Wang, Q.; Lee, K.; Yoshida, K.

    1995-01-01

    The nonequilibrium states of high Tc superconductors are investigated by means of tunnel injection of quasiparticles using Pb(or Au)/MgO/YBCO tunnel junctions. The effective critical-current reduction due to tunnel injection is observed, whose behaviour is different from simple heating. The observed results suggest that the resultant nonequilibrium states may also differ from those described by conventional nonequilibrium models

  6. Superconductors at the nanoscale. From basic research to applications

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Roger [Forschungszentrum Juelich GmbH (Germany). Peter Gruenberg Inst.; Moshchalkov, Victor [KU Leuven (Belgium). Inst. for Nanoscale Physics and Chemistry; Bending, Simon [Bath Univ. (United Kingdom). School of Physics; Tafuri, Francesco (ed.) [Seconda Univ. di Napoli, Aversa (Italy)

    2017-07-01

    By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. This book contains the following chapters: Tutorial on nanostructured superconductors; Imaging vortices in superconductors: from the atomic scale to macroscopic distances; Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy; STM studies of vortex cores in strongly confined nanoscale superconductors; Type-1.5 superconductivity; Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions; Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films; Artificial pinning sites and their applications; Vortices at microwave frequencies; Physics and operation of superconducting single-photon devices; Josephson and charging effect in mesoscopic superconducting devices; NanoSQUIDs: Basics and recent advances; Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} intrinsic Josephson junction stacks as emitters of terahertz radiation; Interference phenomena in superconductor-ferromagnet hybrids; Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids; Superconductor/ferromagnet hybrids.

  7. Feasibility of introducing ferromagnetic materials to onboard bulk high-Tc superconductors to enhance the performance of present maglev systems

    Science.gov (United States)

    Deng, Zigang; Wang, Jiasu; Zheng, Jun; Zhang, Ya; Wang, Suyu

    2013-02-01

    Performance improvement is a long-term research task for the promotion of practical application of promising high-temperature superconducting (HTS) magnetic levitation (maglev) vehicle technologies. We studied the feasibility to enhance the performance of present HTS Maglev systems by introducing ferromagnetic materials to onboard bulk superconductors. The principle here is to make use of the high magnetic permeability of ferromagnetic materials to alter the flux distribution of the permanent magnet guideway for the enhancement of magnetic field density at the position of the bulk superconductors. Ferromagnetic iron plates were added to the upper surface of bulk superconductors and their geometric and positioning effects on the maglev performance were investigated experimentally. Results show that the guidance performance (stability) was enhanced greatly for a particular setup when compared to the present maglev system which is helpful in the application where large guidance forces are needed such as maglev tracks with high degrees of curves.

  8. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  9. Thermally activated flux creep in strongly layered high-temperature superconductors

    International Nuclear Information System (INIS)

    Chakravarty, S.; Ivlev, B.I.; Ovchinnikov, Y.N.

    1990-01-01

    Thermal activation energies for single vortices and vortex bundles in the presence of a magnetic field parallel to the layers are calculated. The pinning considered is intrinsic and is due to the strongly layered structure of high-temperature superconductors. The magnetic field and the current dependence of the activation energy are studied in detail. The calculation of the activation energy is used to determine the current-voltage characteristic. It may be possible to observe the effects discussed in this paper in a pure enough sample

  10. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  11. Fluxons in thin-film superconductor-insulator superlattices

    DEFF Research Database (Denmark)

    Sakai, S.; Bodin, P.; Pedersen, Niels Falsig

    1993-01-01

    In a system of thin alternating layers of superconductors and insulators the equations describing static and dynamic fluxon solutions are derived. The approach, represented by a useful compact matrix form, is intended to describe systems fabricated for example of niobium or niobium-nitride thin...... films; in the limit of ultrathin superconductor films it may give a model for describing fluxon motion in layered high-Tc superconductors. Numerical examples of current versus voltage curves to be expected in such an experiment are presented. Journal of Applied Physics is copyrighted by The American...

  12. Investigation of thin films, heterostructures and devices of ceramic superconductors by means of high-resolution electron microscopy

    International Nuclear Information System (INIS)

    Jia Chunlin.

    1993-08-01

    In this thesis a systematic study of the microstructure of YBa 2 Cu 3 O 7 thin films is presented by means of high-resolution electron microscopy (HREM). Most of the efforts are focused on the characterization of heterostructures of superconducting YBa 2 Cu 3 O 7 and non-superconducting PrBa 2 Cu 3 O 7 and on YBa 2 Cu 3 O 7 films deposited on step-edge substrates. These specially designed structures exhibit a great potential for the electronic application of high-Tc superconductors and for the investigation of the basic electric properties of the YBa 2 Cu 3 O 7 superconductor. (orig.) [de

  13. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    Science.gov (United States)

    Gao, Zhiwen; Zhou, Youhe

    2015-04-01

    Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  14. Theoretical upper critical field Hc2 for inhomogeneous high temperature superconductors

    International Nuclear Information System (INIS)

    Caixeiro, E.S.; Gonzalez, J.L.; Mello, E.V.L. de

    2004-01-01

    We present the theoretical upper critical field H c2 (T) of the high temperature superconductors (HTSC), calculated through a linearized Ginzburg-Landau equation modified to consider the intrinsic inhomogeneity of the HTSC. The unusual behavior of H c2 (T) for these compounds, and other properties like the Meissner and Nernst effects detected at temperatures much higher than the critical temperature T c of the sample, are explained by the approach

  15. The Effect of Twins on Critical Currents of High Tc Superconductors

    Science.gov (United States)

    1989-01-01

    particles to stick together due to electrostatic forces. To overcome this we have formed a slurry of the material in liquid nitrogen and flash...can use and the liquid convection tends to counteract the separation process. We have-now designed a magnetic track which particles will slide down with...Currents of High Tc Superconductors" - A.M. Campbell and M.F. Ashby The initial work on levitation forces and separation of superconducting powders has

  16. Strain effects in oxide superconductors

    International Nuclear Information System (INIS)

    Wada, H.; Kuroda, T.; Sekine, H.; Yuyama, M.; Itoh, K.

    1991-01-01

    Strain sensitivities of superconducting properties are critical to high magnetic field applications of superconductors, since critical temperature, T c , upper critical field, H c2 , and critical current (density), I c (J c ), are all degraded under strains. Oxide superconductors so far known are all very fragile, thus requiring to be fabricated in the form of composite. In the case of practical metallic superconductors, such as Nb 3 Sn and V 3 Ga, the so-called bronze method has been developed where these superconducting intermetallics are enveloped in a ductile metallic sheath. Recently, a fabrication method similar to the bronze method has been developed for the Bi 2 Sr 2 Ca 2 Cu 3 O x superconductors using Ag tubes as sheath. In the present study mono- and multicore BiPbSrCaCuO tape conductors were prepared by means of this Ag-sheath composite method, and examined in terms of strain sensitivity by measuring their T c and I c (J c ) under bending or tensile strains. (orig.)

  17. Exploiting H infinity sampled-data control theory for high-precision electromechanical servo control design

    NARCIS (Netherlands)

    Oomen, T.A.E.; Wal, van de M.M.J.; Bosgra, O.H.

    2006-01-01

    Optimal design of digital controllers for industrial electromechanical servo systems using an Hinf-criterion is considered. Present industrial practice is to perform the control design in the continuous time domain and to discretize the controller a posteriori. This procedure involves unnecessary

  18. The French electromechanical industry in the nuclear sector

    International Nuclear Information System (INIS)

    Barrau, M. de.

    1981-02-01

    A brief paper recounting the extensive changes brought about in electromechanics further to the implementation of the large French nuclear programme and the experience that its implementation has given to this industry, in particular at ALSTHOM-ATLANTIQUE, the only French manufacturer of high power turbo-generating units rated among the big world manufacturers [fr

  19. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, Ivan A

    2007-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  20. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, I A

    2012-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  1. Weak coupling theory of high temperature superconductors

    International Nuclear Information System (INIS)

    Labbe, J.

    1990-01-01

    Many theories of the high T c superconductors are founded on the hypothesis that the electron-electron correlations are so strong in these materials that, in the absence of doping or internal charge transfer, they should be Mott insulators. The authors consider this hypothesis as unlikely for the following reasons. At first, very strong correlations would arise from a very large repulsive Coulomb energy between electrons within each atom. This would be the case only with very strongly localized atomic orbitals, as for instance the f orbitals in the rare earths, leading to very narrow energy bands. But in the copper oxides, the d orbitals of copper, or the p orbitals of oxygen, are not so strongly localized, and thus the intra-atomic repulsive Coulomb energy has no reason to be much larger than in the simple transitional metals or their other compounds

  2. Mechanical reliability of bulk high Tc superconductors

    International Nuclear Information System (INIS)

    Freiman, S.W.

    1990-01-01

    Most prospective applications for high T c superconductors in bulk form, e.g. magnets, motors, will require appreciable mechanical strength. Work at NIST [National Institute of Standards and Technology] has begun to address issues related to mechanical reliability. For example, recent studies on Ba-Y-Cu-O have shown that the intrinsic crack growth resistance, K IC , of crystals of this material is even smaller than was first reported, less than that of window glass, and is sensitive to moisture. Processing conditions, particularly sintering and annealing atmosphere, have been shown to have a major influence on microstructure and internal stresses in the material. Large internal stresses result from the tetragonal to orthorhombic phase transformation as well as the thermal expansion anisotropy in the grains of the ceramic. Because stress relief is absent, microcracks form which have a profound influence on strength

  3. Review of progress in pulsed laser deposition and using Nd:YAG laser in processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Chen, C.W.; Mukherjee, K.

    1993-01-01

    The current progress in pulsed laser ablation of high-temperature superconductors is reviewed with emphasis on the effect of pulse-width and wavelength, nature of the plasma plume, post-annealing and methods to improve quality of films grown at low temperature. An ion beam assisted millisecond pulsed laser vapor deposition process has been developed to fabricate YBa 2 Cu 3 O x high T. superconductor thin films. Solution to target overheating problem, effects of oxygen ion beam, properties of deposited films, and effect of silver buffer layer on YSZ substrate are presented. A new laser calcining process has been used to produce near single phase high T c superconductors of Bi-Pb-Sr-Ca-Cu-0 system. The total processing time was reduced to about 100 hours which is about half of that for conventional sintering. For this compound both resistance and magnetic susceptibility data showed an onset of superconducting transition at about 110K. A sharp susceptibility drop was observed above 106K. The zero resistance temperature was about 98K. High T c phase was formed via a different kinetic path in laser calcined sample compare with the conventionally processed sample

  4. Theoretical study of the electromechanical efficiency of a loaded tubular dielectric elastomer actuator

    DEFF Research Database (Denmark)

    Rechenbach, Björn; Willatzen, Morten; Lassen, Benny

    2016-01-01

    The electromechanical efficiency of a loaded tubular dielectric elastomer actuator (DEA) is investigated theoretically. In previous studies, the external system, on which the DEA performs mechanical work, is implemented implicitly by prescribing the stroke of the DEA in a closed operation cycle....... Here, a more generic approach, modelling the external system by a frequency-dependent mechanical impedance which exerts a certain force on the DEA depending on its deformation, is chosen. It admits studying the dependence of the electromechanical efficiency of the DEA on the external system. A closed...... operation cycle is realized by exciting the DEA electrically by a sinusoidal voltage around a bias voltage. A detailed parametric study shows that the electromechanical efficiency is highly dependent on the frequency, amplitude, and bias of the excitation voltage and the mechanical impedance of the external...

  5. Electromechanical properties of biomembranes and nerves

    International Nuclear Information System (INIS)

    Heimburg, T; Blicher, A; Mosgaard, L D; Zecchi, K

    2014-01-01

    Lipid membranes are insulators and capacitors, which can be charged by an external electric field. This phenomenon plays an important role in the field of electrophysiology, for instance when describing nerve pulse conduction. Membranes are also made of polar molecules meaning that they contain molecules with permanent electrical dipole moments. Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice versa, mechanical forces on membranes lead to changes in the membrane potential. Associated effects are flexoelectricity, piezoelectricity, and electrostriction. Lipid membranes can melt from an ordered to a disordered state. Due to the change of membrane dimensions associated with lipid membrane melting, electrical properties are linked to the melting transition. Melting of the membrane can induce changes in trans-membrane potential, and application of voltage can lead to a shift of the melting transition. Further, close to transitions membranes are very susceptible to piezoelectric phenomena. We discuss these phenomena in relation with the occurrence of lipid ion channels. Close to melting transitions, lipid membranes display step-wise ion conduction events, which are indistinguishable from protein ion channels. These channels display a voltage-dependent open probability. One finds asymmetric current-voltage relations of the pure membrane very similar to those found for various protein channels. This asymmetry falsely has been considered a criterion to distinguish lipid channels from protein channels. However, we show that the asymmetry can arise from the electromechanical properties of the lipid membrane itself. Finally, we discuss electromechanical behavior in connection with the electromechanical theory of nerve pulse transduction. It has been found experimentally that nerve pulses are related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse travels along the nerve. Due to

  6. Electromechanical properties of biomembranes and nerves

    Science.gov (United States)

    Heimburg, T.; Blicher, A.; Mosgaard, L. D.; Zecchi, K.

    2014-12-01

    Lipid membranes are insulators and capacitors, which can be charged by an external electric field. This phenomenon plays an important role in the field of electrophysiology, for instance when describing nerve pulse conduction. Membranes are also made of polar molecules meaning that they contain molecules with permanent electrical dipole moments. Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice versa, mechanical forces on membranes lead to changes in the membrane potential. Associated effects are flexoelectricity, piezoelectricity, and electrostriction. Lipid membranes can melt from an ordered to a disordered state. Due to the change of membrane dimensions associated with lipid membrane melting, electrical properties are linked to the melting transition. Melting of the membrane can induce changes in trans-membrane potential, and application of voltage can lead to a shift of the melting transition. Further, close to transitions membranes are very susceptible to piezoelectric phenomena. We discuss these phenomena in relation with the occurrence of lipid ion channels. Close to melting transitions, lipid membranes display step-wise ion conduction events, which are indistinguishable from protein ion channels. These channels display a voltage-dependent open probability. One finds asymmetric current-voltage relations of the pure membrane very similar to those found for various protein channels. This asymmetry falsely has been considered a criterion to distinguish lipid channels from protein channels. However, we show that the asymmetry can arise from the electromechanical properties of the lipid membrane itself. Finally, we discuss electromechanical behavior in connection with the electromechanical theory of nerve pulse transduction. It has been found experimentally that nerve pulses are related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse travels along the nerve. Due to

  7. Method for making low-resistivity contacts to high T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Ekin, J.W.; Panson, A.J.; Blankenship, B.A.

    1988-01-01

    A method for making low-resistivity contacts to high T/sub c/ superconductors has been developed, which has achieved contact surface resistivities less than 10 μΩ cm 2 at 76 K and does not require sample heating above ∼150 0 C. This is an upper limit for the contact resistivity obtained at high current densities up to 10 2 --10 3 A/cm 2 across the contact interface. At lower measuring current densities the contact resistivities were lower and the voltage-current curve was nonlinear, having a superconducting transition character. On cooling from 295 to 76 K, the contact resistivity decreased several times, in contrast to indium solder contacts where the resistivity increased on cooling. The contacts showed consistently low resistivity and little degradation when exposed to dry air over a four-month period and when repeatedly cycled between room temperature and 76 K. The contacts are formed by sputter depositing a layer of a noble metal-silver and gold were used-on a clean superconductor surface to protect the surface and serve as a contact pad. External connections to the contact pads have been made using both solder and wire-bonding techniques

  8. Upper critical fields and critical current densities of Fe-based superconductors as compared to those of other technical superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pallecchi, I., E-mail: ilaria.pallecchi@spin.cnr.it [CNR-SPIN, Corso Perrone 24, 16152 Genova (Italy); Tropeano, M. [Columbus Superconductors S.p.A, Via delle Terre Rosse 30, 16133 Genova (Italy); Lamura, G. [CNR-SPIN, Corso Perrone 24, 16152 Genova (Italy); Pani, M. [Dipartimento di Chimica e Chimica Industriale, Universita di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Palombo, M. [Columbus Superconductors S.p.A, Via delle Terre Rosse 30, 16133 Genova (Italy); Dipartimento di Chimica e Chimica Industriale, Universita di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Palenzona, A. [Dipartimento di Chimica e Chimica Industriale, Universita di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Putti, M. [CNR-SPIN, Corso Perrone 24, 16152 Genova (Italy); Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2012-11-20

    Three years since the discovery by the Hosono's group of Fe-based superconductors, an enormous number of compounds, belonging to several different families have been discovered and fundamental properties have been deeply investigated in order to clarify the interplay between magnetisms and superconductivity in these compounds. Indeed, the actual potential of these compounds for practical applications remains still unclear. Fe-based superconductors are midway between high temperature superconductors (HTSCs) and MgB{sub 2}. In Fe-based superconductors the critical current is rather independent of the field, similarly to HTSCs, as a consequence of the exceptionally high upper critical field and strong pinning associated with nm-scale local modulations of the order parameter. They exhibit low anisotropy of the critical current with respect to the crystalline directions, as in the case of MgB{sub 2}, which allows current flow along the c-axis. However, Fe-based superconductor polycrystalline materials currently available still exhibit electromagnetic granularity, like the HTSCs, which suppresses superconducting current flow over long length. Whether the nature of such granularity is extrinsic, as due to spurious phases or cracks between grains or intrinsic, as related to misalignment of adjacent grains, is under debate. These aspects will be reviewed in the light of the recent literature.

  9. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    Science.gov (United States)

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  10. Development of application technique of bulk high-Tc superconductor

    International Nuclear Information System (INIS)

    Hong, Kye Won; Kim, Chan Joong; Kim, Kee Baek; Kwon, Sun Chil; Won, Dong Yun; Lee, Hoh Jin; Lee, Heui Kyoon; Jang, Kun Ik; Yang, Suk Woo

    1995-03-01

    YBCO-Ag composite superconductors were prepared by extrusion using inorganic binder materials. In the case of the undoped 1-2-3 sample with a dia. of 2.5 mm, critical current density (Jc) was 150 A/cm 2 and current density (Ic) was 10 amps. In the case of the sample with a die. of 4.5 mm, meanwhile, Jc and Ic were 50 A/cm 2 and 32 amps, respectively. Influence of BaCeO 3 addition on magnetization characteristics of melt-textured Y-Ba-Cu-O superconductor was investigated. The variation of magnetization behavior due to the addition of BaCeO 3 is discussed on the basis of the related microstructures. 37 figs, 1 tab, 56 refs. (Author)

  11. Electromechanical characterization of superconducting wires and tapes at 77 K

    CERN Document Server

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  12. Flux Trapping Properties of Bulk HIGH-TC Superconductors in Static Field-Cooling Magnetization

    Science.gov (United States)

    Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.

    2013-06-01

    The trapping process and saturation effect of trapped magnetic flux of bulk high-temperature superconductors by static field-cooling magnetization (FCM) are reported in the paper. With a cryogenic Bell Hall sensor attached on the center of the bulk surface, the synchronous magnetic signals were recorded during the whole magnetization process. It enables us to know the flux trapping behavior since the removal of the excitation field, as well as the subsequent flux relaxation phenomenon and the flux dissipation in the quench process of the bulk sample. With the help of flux mapping techniques, the relationship between the trapped flux and the applied field was further investigated; the saturation effect of trapped flux was discussed by comparing the peak trapped field and total magnetic flux of the bulk sample. These studies are useful to understand the basic flux trapping properties of bulk superconductors.

  13. Equivalent Coil Model for Computing Levitation Forces Between Permanent Magnets and High Temperatures Superconductors

    International Nuclear Information System (INIS)

    Cavia Santos, S.; Garcia-Tabares, L.

    1998-05-01

    A new simple theory has been developed for the study of levitation forces between a permanent magnet and a HTc superconductor. This theory is based on the assumption that both, the magnet and the superconductor, can be modelled by an equivalent coil placed on their surface. While the current flowing through the permanent magnet is constant, the equivalent current through the superconductor can be iether corresponding to screen the overall flux or a constant current corresponding to critical current density when the superconductor is saturated. A test facility has been designed and built for measuring levitation forces at variable approaching speeds. Comparison between theoretical and experimental measurements are presented in the report as well as a general description of the test facility. (Author)

  14. High rates of de novo 15q11q13 inversions in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Molina Òscar

    2012-02-01

    Full Text Available Abstract Low-Copy Repeats predispose the 15q11-q13 region to non-allelic homologous recombination. We have already demonstrated that a significant percentage of Prader-Willi syndrome (PWS fathers have an increased susceptibility to generate 15q11q13 deletions in spermatozoa, suggesting the participation of intrachromatid exchanges. This work has been focused on assessing the incidence of de novo 15q11q13 inversions in spermatozoa of control donors and PWS fathers in order to determine the basal rates of inversions and to confirm the intrachromatid mechanism as the main cause of 15q11q13 anomalies. Semen samples from 10 control donors and 16 PWS fathers were processed and analyzed by triple-color FISH. Three differentially labeled BAC-clones were used: one proximal and two distal of the 15q11-q13 region. Signal associations allowed the discrimination between normal and inverted haplotypes, which were confirmed by laser-scanning confocal microscopy. Two types of inversions were detected which correspond to the segments involved in Class I and II PWS deletions. No significant differences were observed in the mean frequencies of inversions between controls and PWS fathers (3.59% ± 0.46 and 9.51% ± 0.87 vs 3.06% ± 0.33 and 10.07% ± 0.74. Individual comparisons showed significant increases of inversions in four PWS fathers (P Results suggest that the incidence of heterozygous inversion carriers in the general population could reach significant values. This situation could have important implications, as they have been described as predisposing haplotypes for genomic disorders. As a whole, results confirm the high instability of the 15q11-q13 region, which is prone to different types of de novo reorganizations by intrachromatid NAHR.

  15. Olson sees how they conduct (High Tc superconductors)

    International Nuclear Information System (INIS)

    Olson, C.

    1989-01-01

    Thanks to Cliff Olson's synchrotron radiation measurements of the surface of several of the new high-temperature superconducting materials, these ceramic-like crystals can now be classified as metals. This means their electronic band structure meets the criteria for a metal or conductor, rather than those of an insulator, or of a semiconductor. Working with graduate assistant Liu, Olson has now measured the energy gap in crystals of a bismuth-strontium-calcium-copper oxide with a 100K or 300K transition temperature. They determined that the superconductivity gap is isotropic, or independent of direction within the layer. This is significant, because the high temperature materials are all anisotropic, layered in flat sheets, a fact that had led to speculations about a very different kind of superconducting coupling in these materials. The superconducting mechanism now turns out to be the same as that in classical superconductors

  16. Models of classical one- and two-dimensional Josephson junction arrays and high-T sub c superconductors

    CERN Document Server

    Filatrella, G

    2002-01-01

    The technology to build reproducible and accurately defined structures consisting of many lumped junctions has become available only recently, therefore extended investigations are relatively new. However, beside the interest of such discrete structures per se, it has been suggested soon after the discovery of high-T sub c superconductivity that granular superconductors might be modelled as superconducting islands surrounded by non-superconducting material and weakly coupled to each other. This program has been vigorously carried on, and models of planar Josephson junction arrays (JJAs) have been successfully used to mimic the magnetic behaviour of granular superconductors. The JJA model has been compared to continuous models of non-granular superconductors. We will show how to derive the height of pinning barriers in the JJA model and compare the results with the continuous model. In particular, the existence of current dependent activation energy has been proved to be a key characteristic to understand flux...

  17. Effect of transparency on the Josephson junction between D-wave superconductors

    International Nuclear Information System (INIS)

    Rashedi, G

    2008-01-01

    In this paper, a dc Josephson junction between two singlet superconductors (d-wave and s-wave) with arbitrary reflection coefficient has been investigated theoretically following the famous paper [Y. Tanaka and S. Kashiwaya 1996 Phys. Rev. B 53, R11957]. For the case of High T c superconductors, the c-axes are parallel to an interface with finite transparency and their ab-planes have a mis-orientation. The effect of transparency and mis-orientation on the currents is studied both analytically and numerically. It is observed that, the current phase relations are totally different from the case of ideal transparent Josephson junctions between d-wave superconductors and two s-wave superconductors. This apparatus can be used to demonstrate d-wave order parameter in High T c superconductors

  18. High magnetic field multipoles generated by superconductor magnetization within a set of nested superconducting correction coils

    International Nuclear Information System (INIS)

    Green, M.A.

    1990-04-01

    Correction elements in colliding beam accelerators such as the SSC can be the source of undesirable higher magnetic field multipoles due to magnetization of the superconductor within the corrector. Quadrupole and sextupole correctors located within the main dipole will produce sextupole and decapole due to magnetization of the superconductor within the correction coils. Lumped nested correction coils can produce a large number of skew and normal magnetization multipoles which may have an adverse effect on a stored beam at injection into a high energy colliding beam machine such as the SSC. 6 refs., 2 figs., 2 tabs

  19. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics

    International Nuclear Information System (INIS)

    Wang, Jin-Feng; Zhang, Shujun; Shrout, Thomas R.; Wang, Chun-Ming

    2009-01-01

    The piezoelectric, dielectric, and electromechanical properties of the (KCe) co-substituted calcium bismuth niobate (CaBi 2 Nb 2 O 9 , CBN) were investigated. The piezoelectric activities of CBN ceramics were significantly enhanced and the dielectric loss tan δ decreased by (KCe) substitution. The Ca 0.9 (KCe) 0.05 Bi 2 Nb 2 O 9 ceramics possess the optimal piezoelectric properties, and the piezoelectric coefficient (d 33 ), Curie temperature (T C ), and electromechanical coupling factors (k p and k t ) were found to be 16 pC/N, 868 C, 8.6%, and 23.8%, respectively. The excellent dielectric and electromechanical spectra, together with the high piezoelectric activities and ultrahigh Curie temperature, make CBN ceramics promising candidates for high temperature piezoelectric applications. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Sharp superconductor-insulator transition in short wires

    International Nuclear Information System (INIS)

    Meidan, Dganit; Oreg, Yuval; Refael, Gil; Smith, Robert A.

    2008-01-01

    Recent experiments on short MoGe nanowires show a sharp superconductor-insulator transition tuned by the normal state resistance of the wire, with a critical resistance of R c ∼ R Q = h/(4e 2 ). These results are at odds with a broad range of theoretical work on Josephson-like systems that predicts a smooth transition, tuned by the value of the resistance that shunts the junction. We develop a self-consistent renormalization group treatment of interacting phase-slips and their dual counterparts, correlated cooper pair tunneling, beyond the dilute approximation. This analysis leads to a very sharp transition with a critical resistance of R Q . The addition of the quasi-particles' resistance at finite temperature leads to a quantitative agreement with the experimental results. This self-consistent renormalization group method should also be applicable to other physical systems that can be mapped onto similar sine-Gordon models, in the previously inaccessible intermediate-coupling regime

  1. Nuclear hyperfine interactions and chemical bonding in high TC superconductors

    International Nuclear Information System (INIS)

    Danon, J.

    1987-01-01

    Nuclear quadrupole resonances of Cu 63 and Fe 57 Moessbauer spectroscopy of the high temperature superconductor YBa 2 Cu 3 O 7-γ e described together with synchrotron radiation studies of the copper oxidation states in this material. The Moessbauer spectra of 57 Fe in the two distinct crystallographic sites of the Cu atoms in YBa 2 Cu 3 O 7-γ are very similar from the quadrupole coupling point of view although exhibiting markedly different values for the isomer shift. The role of oxygen vacancies in the hyperfine interactions is discussed. (author) [pt

  2. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  3. Flux motion and dissipation in high temperature superconductors

    International Nuclear Information System (INIS)

    Tinkham, M.

    1991-01-01

    Two quite different motivations spark the study of flux motion and resistance in the new high-temperature superconductors. Achievement of usefully low resistance at usefully large current densities is the key to most practical applications, but conceptual understanding of the idealized resistive behavior in the O current limit motivates much theoretical work. Some analyses emphasize the pinning of individual flux lines to inhomogeneities in the underlying material; others emphasize the collective aspects of the interacting flux lines, whether liquid, solid, crystalline, or glassy; still others emphasize the concept of percolative Josephson coupling between grains. In this paper an overview is given of these various approaches, their interrelation, and the experiment evidence, including some new results on flux motion in large SNS arrays, treated as a model system

  4. Levitation force and magnetization in bulk and thin film high Tc superconductors

    International Nuclear Information System (INIS)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa 2 Cu 3 O 7-δ superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F z and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T c superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa 2 Cu 3 O 7-δ sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the critical current density in thin films

  5. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans.

    Science.gov (United States)

    Melki, Lea; Costet, Alexandre; Konofagou, Elisa E

    2017-10-01

    Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    Science.gov (United States)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  7. Junction structures based on the high-Tc superconductor YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Gijs, M.A.M.

    1993-01-01

    An overview is given of the investigations of the Josephson effect in junction structures based on the high-T c superconductor YBa 2 Cu 3 O 7-δ , which were carried out at the Philips Research Laboratories in Eindhoven in the 1988-1990 period. The reported results are presented in their international scientific context, without attempting a complete review of the subject. However, the various junction types studied give a good idea of the scientific pursuits of high-T c junction researchers in this period. The following junctions are considered: in the category of 'weak link'-type junctions we have investigated YBa 2 Cu 3 O 7-δ -Ag-Nb point contact junctions, YBa 2 Cu 3 O 7-δ Dayem bridges and YBa 2 Cu 3 O 7-δ -Ag(-Al)-Pb proximity junctions. In these structures we combine a high-T c with a low-T c superconductor. We also fabricated planar 'all high-T c ' YBa 2 Cu 3 O 7-δ -Ag-YBa 2 Cu 3 O 7-δ junctions using a submicron structuring process. Next we have made tunnel junctions to study density of states effects of the high-T c superconductor : YBa 2 Cu 3 O 7-δ -Pb junctions using the degraded YBa 2 Cu 3 O 7-δ -Pb interface as a tunnel barrier, and YBa 2 Cu 3 O 7-δ -Ag-Al/Al 2 O 3 /Pb tunnel junctions based on the superconducting proximity effect. Our junction structures are electrically characterized and mostly studied in microwave and magnetic fields. Results are compared with current theoretical models. (orig.)

  8. Development trends of combined inductance-capacitance electromechanical energy converters

    Directory of Open Access Journals (Sweden)

    Karayan Hamlet

    2018-01-01

    Full Text Available In the article the modern state of completely new direction of electromechanical science such as combined inductive-capacitive electromechanics is considered. The wide spectra of its possible practical applications and prospects for further development are analyzed. A new approach for mathematical description of transients in dualcon jugate dynamic systems is proposed. On the basis of the algorithm differential equations for inductive-capacitive compatible electromechanical energy converters are derived. The generalized Lagrangian theory of combined inductively-capacitive electric machines was developed as a union of generalized Lagrangian models of inductive and capacitive electro-mechanical energy converters developed on the basis of the basic principles of binary-conjugate electrophysics. The author gives equations of electrodynamics and electromechanics of combined inductive-capacitive electric machines in case there are active electrotechnical materials of dual purpose (ferroelectromagnets in the structure of their excitation system. At the same time, the necessary Lagrangian for combined inductive-capacitive forces was built using new technologies of interaction between inductive and capacitive subsystems. The joint solution of these equations completely determines the dynamic behavior and energy characteristics of the generalized model of combined machines of any design and in any modes of interaction of their functional elements

  9. Superconductors with excess quasiparticles

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kopaev, Y.V.

    1981-01-01

    This review presents a systematic kinetic theory of nonequilibrium phenomena in superconductors with excess quasiparticles created by electromagnetic or tunnel injection. The energy distributions of excess quasiparticles and of nonequilibrium phonons, dependence of the order parameter on the power and frequency (or intensity) of the electromagnetic field, magnetic properties of nonequilibrium superconductors, I-V curves of superconductor-insulator-superconductor junctions, and other properties are described in detail. The stability of superconducting states far from thermodynamic equilibrium is investigated and it is shown that characteristic instabilities leading to the formation of nonuniform states of a new type or phase transitions of the first kind are inherent to superconductors with excess quasiparticles. The results are compared with experimental data

  10. Optical properties of high-Tc superconductors

    International Nuclear Information System (INIS)

    Aspnes, D.E.; Kelly, M.K.

    1989-01-01

    The authors summarize the present status of optical spectroscopy of high-T c superconductors. The optical properties of these materials resemble those of the more common transition metal oxides except for being highly anisotropic in the infrared (IR). This large IR anisotrophy and a need to rely solely on reflectance techniques has hindered progress in obtaining accurate IR data and interpreting these data in terms of microscopic mechanisms. However, experimental consistency is now being approached with single-crystal samples, although interpretations of these data remain controversial and an unequivocal demonstration of a superconducting gap structure has not yet been achieved. The mid IR exhibits an absorption band whose systematics are neither well established nor understood. The situation in the visible-near-ultraviolet (V-NUV) is better, partly because of greatly reduced optical anisotropy and the availability of alternative measurement techniques that are not strongly affected by the lower optical quality of sintered material. As polycrystalline, sintered samples can be prepared relatively easily over wide ranges of composition, doping, and chemical substitution, most work on studying the chemical systematics of these materials has been done in this spectral range and some of the structure that appears here has been positively identified

  11. Dynamics of the vortex state in high temperature superconductors

    International Nuclear Information System (INIS)

    Kapitulnik, A.

    1991-01-01

    The large thermal energy available, the strong anisotropy, and short coherence lengths of high temperature superconductors give rise to new phenomena in the mixed state. The author discusses transport and thermodynamic measurements of high-Tc materials and of model systems. In particular, he uses experiments on two dimensional films to compare and isolate two dimensional effects in the cuprates. By using multilayer systems with similar parameters, he identifies decoupling of the superconducting planes in magnetic fields at temperatures much above the irreversibility line. He shows that if the irreversibility line is to be considered a melting transition line, it implies melting of the solid state into a liquid of three dimensional flux lines. He further uses Monte Carlo simulations to study the structure of the vortex state as well as melting

  12. Processing and critical currents of high-Tc superconductor wires

    International Nuclear Information System (INIS)

    Krauth, H.; Heine, K.; Tenbrink, J.

    1991-01-01

    High-Tc superconductors are expected to have a major impact on magnet and energy technology. For technical applications they have to fulfill the requirement of carrying sufficient current at a critical current density of the order of 10 5 A/cm 2 at operating temperature and magnetic field. At 77 K these values have not been achieved yet in bulk material or wires due to weak link problems and flux creep effects. Progress made so far and remaining problems will be discussed in detail concentrating on problems concerning development of technical wires. In Bi-based materials technically interesting critical current densities could be achieved at 4.2 K in fields above 20 T (1,2), rendering possible the use of such material for very high field application. (orig.)

  13. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

    International Nuclear Information System (INIS)

    Shukrinov, Yu.M.; Mahfouzi, F.

    2006-01-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β 2 1/β c , where β c is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T c superconductors

  14. High mechanical Q-factor measurements on silicon bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Christian; Nawrodt, Ronny; Heinert, Daniel; Schroeter, Anja; Neubert, Ralf; Thuerk, Matthias; Vodel, Wolfgang; Seidel, Paul [Institut fuer Festkoerperphysik, Helmholtzweg 5, D-07743 Jena (Germany); Tuennermann, Andreas [Institut fuer Angewandte Physik, Albert-Einstein-Strasse 15, D-07745 Jena (Germany)

    2008-07-01

    The direct observation of gravitational waves is one of the biggest challenges in science. Current detectors are limited by different kinds of noise. One of the fundamental noise sources is thermal noise arising from the optical components. One of the most promising attempts to reduce the thermal noise contribution in future detectors will be the use of high Q-factor materials at cryogenic temperatures. Silicon seems to be the most interesting material due to its excellent optical and thermal properties. We present high Q-factor measurements on bulk samples of high purity silicon in a temperature range from 5 to 300 K. The sample dimensions vary between 76.2 mm x 12..75 mm. The Q-factor exceeds 4.10{sup 8} at 6 K. The influence of the crystal orientation, doping and the sample preparation on the Q-factor is discussed.

  15. The effect of processing parameters during heat treatment of bulk high-T(sub c) superconductors

    Science.gov (United States)

    Cha, Y. S.; Dorris, S. E.; Hull, J. R.; Poeppel, R. B.

    1991-04-01

    Plastic extrusion is a promising method for producing the long lengths of high-Tc superconductor that will be necessary to meet many potential applications. A crucial phase of the extrusion method is removal of organic constituents. Incomplete removal can leave residual carbon at grain boundaries, which can adversely affect the superconducting properties, whereas excessively rapid removal of the organics can cause the extruded superconductor to disintegrate completely. In this paper, we analyze the effects of the following aspects of organics removal, as they apply to the firing of extruded YBa2Cu3O(x) coils: (1) total pressure in the furnace, (2) oxygen flow, (3) heat conduction, and (4) diffusion of volatile components during removal of organics.

  16. Comparative Review on Thin Film Growth of Iron-Based Superconductors

    Directory of Open Access Journals (Sweden)

    Yoshinori Imai

    2017-07-01

    Full Text Available Since the discovery of the novel iron-based superconductors, both theoretical and experimental studies have been performed intensively. Because iron-based superconductors have a smaller anisotropy than high-Tc cuprates and a high superconducting transition temperature, there have been a lot of researchers working on the film fabrication of iron-based superconductors and their application. Accordingly, many novel features have been reported in the films of iron-based superconductors, for example, the fabrication of the epitaxial film with a higher Tc than bulk samples, the extraction of the metastable phase which cannot be obtained by the conventional solid state reaction, and so on. In this paper, we review the progress of research on thin film fabrications of iron-based superconductors, especially the four categories: LnFeAs(O,F (Ln = Lanthanide, AEFe2As2 (AE = Alkaline-earth metal, FeCh (Ch = Chalcogen, and FeSe monolayer. Furthermore, we focus on two important topics in thin films of iron-based superconductors; one is the substrate material for thin film growth on the iron-based superconductors, and the other is the whole phase diagram in FeSe1-xTex which can be obtained only by using film-fabrication technique.

  17. Transport measurements in superconductors: critical current of granular high TC ceramic superconductor samples; Medidas de transporte em supercondutores: corrente critica de supercondutores granulares de alta temperatura critica

    Energy Technology Data Exchange (ETDEWEB)

    Passos, W.A.C., E-mail: wagner.passos@univasf.edu.br [Universidade Federal do Vale do Sao Francisco (IPCM/UNIVASF), Juazeiro do Norte, BA (Brazil). Instituto de Pesquisas em Ciencia dos Materiais; Silva, E.B. [Companhia Energetica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2016-07-01

    This work presents a method to obtain critical current of granular superconductors. We have carried out transport measurements (ρxT curves and VxI curves) in a YBa{sub 2}Cu{sub 3}O{sub 7-δ} sample to determine critical current density of it. Some specimens reveal a 'semiconductor-like' behavior (electrical resistivity decreases with increasing temperatures above critical temperature T{sub c} of material) competing with superconductor behavior. Due to high granular fraction of the sample, these competition is clearly noted in ρxT curves. Measurements carried out from 0 to 8500 Oe of applied field show the same behavior, and the critical current density of the samples is shown. (author)

  18. Dynamic simulation of electromechanical systems: from Maxwell's theory to common-rail diesel injection.

    Science.gov (United States)

    Kurz, S; Becker, U; Maisch, H

    2001-05-01

    This paper describes the state-of-the-art of dynamic simulation of electromechanical systems. Electromechanical systems can be split into electromagnetic and mechanical subsystems, which are described by Maxwell's equations and by Newton's law, respectively. Since such systems contain moving parts, the concepts of Lorentz and Galilean relativity are briefly addressed. The laws of physics are formulated in terms of (partial) differential equations. Numerical methods ultimately aim at linear systems of equations, which can be solved efficiently on digital computers. The various discretization methods for performing this task are discussed. Special emphasis is placed on domain decomposition as a framework for the coupling of different numerical methods such as the finite element method and the boundary element method. The paper concludes with descriptions of some applications of industrial relevance: a high performance injection valve and an electromechanical relay.

  19. Mechanical and electro-mechanical properties of three-dimensional nanoporous graphene-poly(vinylidene fluoride composites

    Directory of Open Access Journals (Sweden)

    G. P. Zheng

    2016-09-01

    Full Text Available Three-dimensional nanoporous graphene monoliths are utilized to prepare graphene-poly(vinylidene fluoride nanocomposites with enhanced mechanical and electro-mechanical properties. Pre-treatment of the polymer (poly(vinylidene fluoride, PVDF with graphene oxides (GOs facilitates the formation of uniform and thin PVDF films with a typical thickness below 100 nm well coated at the graphene nano-sheets. Besides their excellent compressibility, ductility and mechanical strength, the nanoporous graphene-PVDF nanocomposites are found to possess high sensitivity in strain-dependent electrical conductivity. The improved mechanical and electro-mechanical properties are ascribed to the enhanced crystalline β phase in PVDF which possesses piezoelectricity. The mechanical relaxation analyses on the interfaces between graphene and PVDF reveal that the improved mechanical and electro-mechanical properties could result from the interaction between the –C=O groups in the nanoporous graphene and the –CF2 groups in PVDF, which also explains the important role of GOs in the preparation of the graphene-polymer nanocomposites with superior combined mechanical and electro-mechanical properties.

  20. Doped Tl-1212 and Tl-1223 superconductors

    International Nuclear Information System (INIS)

    Eder, M.H.

    2001-09-01

    This work describes the preparation and characterization of thallium-lead-strontium-barium-calcium-(uranium)-copperoxide (Tl-1212, Tl-1223) high-temperature superconductors. The precursors were prepared via nitrate method. After calcination the oxidic powders were mixed with stoichiometric amounts of an Tl 2 O 3 , PbO, Er 2 O 3 and Gd 2 O 3 by milling and afterwards uniaxial compressed. Sintering was carried out in silver foils. X-ray diffractometry and high-resolution microscopy in combination with scanning electron microscopy (including EDAX) were used to study the influence of varying thallium/lead-, strontium/barium-, calcium/rare earth element ratios and the effect of uranium on the phase composition and microstructure of bulk superconductors. Furthermore the influence of the composition on the electrical and magnetical properties was studied. On phase pure Tl-1212 and Tl-1223 superconductors NMR-measurements were done. Small amounts of gadolinium and erbium instead of calcium and excess-uranium have a positive impact on the electrical and magnetical properties of the Tl-1223 superconductors. Higher amounts of these doping elements favor the Tl-1212 phase. Tl-1212 superconductors with varying thallium/lead- strontium/barium- and calcium/gadolinium ratios were prepared phasepure in wide range of doping. Transition temperatures up to 96 K were achieved. It was shown that lead has an oxidation number of +4 and thallium of +3. (author)

  1. Preparation and properties of high-Tc Bi-oxide superconductors

    International Nuclear Information System (INIS)

    Maeda, H.

    1989-01-01

    Bulk superconductors of Pb-doped Bi-oxide system (BSCCO) dominated with the high-Tc phase have the critical transition temperature, Tc of 110 K, and the upper critical fields, H c2 of 140 T at OK and 60 T at 77 K. A highly dense and a highly oriented microstructure is obtained by inserting an intermediate uniaxial pressing process. The critical current density, Jc at 77 K in zero field, Jc (77K,OT) of some 5000 A/cm 2 can be easily obtained by this process, and the field dependence of Jc is also improved. Flexible high-Tc BSCCO ribbons with a Jc (77K,Ot) of 1850 A/cm 2 have been successfully prepared by the combined process of doctor blade casting, cold rolling and sintering. Aq-sheeted multifilamentary wires with 1330 filaments and tapes with 30 filaments have also been successfully fabricated and the 36-filament tape shows a Jc(77K,OT) of 1050 A/cm 2 . (Auth.). 7 refs.; 7 figs

  2. Co-sputtered MoRe as carbon nanotube growth-compatible superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Karl; Blien, Stefan; Stiller, Peter; Vavra, Ondrej; Mayer, Thomas; Huber, Thomas; Meier, Thomas; Kronseder, Matthias; Strunk, Christoph; Huettel, Andreas [Institute for Experimental and Applied Physics, University of Regensburg (Germany)

    2016-07-01

    Molybdenum rhenium alloys exhibit superconducting transition temperatures up to 15 K as well as high critical current densities. In addition, the thin films are stable under typical carbon nanotube CVD growth conditions, i.e., a hydrogen/methane atmosphere at 900 C, and form good contacts in nanotube overgrowth. This makes them predestined for experiments integrating ''ultraclean'' carbon nanotube devices into coplanar radiofrequency circuits, towards quantum nano-electromechanics and information processing. MoRe thin films are deposited via co-sputtering of two separate targets. The resulting thin film composition and its controllability is verified via XPS spectroscopy both before and after undergoing nanotube growth conditions. The effects of the high temperature process on surface oxides, carbon content, superconducting critical temperature, magnetic field, and current are characterized. Selecting an optimized alloy composition, we define coplanar waveguide resonators, demonstrating resonant behaviour after CVD at f ∼ 3.. 4 GHz and up to Q{sub i} ∼ 5000. Modelling device properties via Mattis-Bardeen theory combined with substrate two-level systems leads to good agreement with the data.

  3. Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm

    KAUST Repository

    Wang, Zhihong

    2013-11-04

    We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr 0.52 Ti 0.48)O 3 (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.

  4. Multimodal electromechanical model of piezoelectric transformers by Hamilton's principle.

    Science.gov (United States)

    Nadal, Clement; Pigache, Francois

    2009-11-01

    This work deals with a general energetic approach to establish an accurate electromechanical model of a piezoelectric transformer (PT). Hamilton's principle is used to obtain the equations of motion for free vibrations. The modal characteristics (mass, stiffness, primary and secondary electromechanical conversion factors) are also deduced. Then, to illustrate this general electromechanical method, the variational principle is applied to both homogeneous and nonhomogeneous Rosen-type PT models. A comparison of modal parameters, mechanical displacements, and electrical potentials are presented for both models. Finally, the validity of the electrodynamical model of nonhomogeneous Rosen-type PT is confirmed by a numerical comparison based on a finite elements method and an experimental identification.

  5. High Tc superconductors using solution techniques

    International Nuclear Information System (INIS)

    Barboux, P.; Valente, I.; Henry, M.; Morineau, R.; Tarascon, J.M.; Khan, S.; Shokoohi, F.; Bagley, B.G.

    1989-01-01

    The authors have investigated different solution techniques to synthesize the Cu-based superconductors in the thick film form. Thick films of YBa 2 Cu 3 O 7 have been produced using controlled precipitation techniques. Bi-based and Tl-based materials have been deposited by spraying of ionic solutions. The numerous difficulties encountered during each process are analyzed in order to propose new synthesis procedures such as a new method, based on the precipitation of hydroxides only, which is described as a prospective for lowering the synthesis temperature and shortening the reaction time

  6. Evolution of new superconductors. Past, present and future

    International Nuclear Information System (INIS)

    Akimitsu, Jun

    2011-01-01

    I present here the past and present situations of new superconductors and also the future prospect. Superconductivity has started since Kamerlingh Onnes first observed the zero resistivity. After that, the critical temperature T c was gradually increased. In the early stage of superconductive material investigations, main contribution has been made by B. Matthias and his group. In 1986, a new superconductor La-Ba-Cu-O, which belongs to new category in the superconducting society, has been found by Bednorz and Mueller. After that T c 's have been drastically increased, and finally reached to T c - 164 K in the Hg-compound. Next, I review several new superconductors discovered within 20 years. Finally, I mention my personal perspective to a high-T c superconductor. (author)

  7. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2018-04-01

    A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.

  8. Electromechanical wave imaging for arrhythmias

    International Nuclear Information System (INIS)

    Provost, Jean; Nguyen, Vu Thanh-Hieu; Legrand, Diégo; Okrasinski, Stan; Costet, Alexandre; Konofagou, Elisa E; Gambhir, Alok; Garan, Hasan

    2011-01-01

    Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing. (fast track communication)

  9. Charge redistribution and properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Khomskii, D.I.; Kusmartsev, F.V.

    1992-01-01

    We show that in high-T c superconductors (HTSC) with two groups of electrons (e.g., holes in CuO 2 planes and in a ''reservoir'') there should exist a charge redistribution with the temperature: the hole concentration N h in ''active'' superconducting CuO 2 planes increases below T c . This effect may explain structural changes such as the shift of the apical oxygen atom, anomalous thermal expansion, the shift of nuclear quadrupole resonance lines, the change of the positron lifetime, and the modification of the ion channeling below T c . Some other possible consequences of the charge redistribution (the modification of the temperature dependence of a gap Δ and of the ratio 2Δ 0 /T c , the phenomena at a contact of HTSC with normal metals and semiconductors) are discussed

  10. Effects of q and high beta on tokamak stability

    International Nuclear Information System (INIS)

    Brickhouse, N.S.; Callen, J.D.; Dexter, R.N.

    1984-08-01

    In the Columbia University Torus II tokamak plasmas have been studied with volume averaged toroidal beta values as high as 15%. Experimental equilibria have been compared with a 2D free boundary MHD equilibrium code PSEC. The stability of these equilibria has been computed using PEST, the predictions of which are compatible with an observed instability in Torus II which may be characterized as a high toroidal mode number ballooning fluctuation. In the University of Wisconsin Tokapole II tokamak disruptive instability behavior is investigated, with plasma able to be confined on closed magnetic surfaces in the scrape-off region, as the cylindrical edge safety factor is varied from q approx. 3 to q approx. 0.5. It is observed that at q/sub a/ approx. 3 major disruption activity occurs without current terminations, at q/sub a/ less than or equal to 2 well-confined plasmas are obtained without major disruption, and at q/sub a/ approx. 0.5 only partial reconnection accompanies minor disruptions

  11. Crossover from three - to two-dimensional behavior of the vortex energies in layered XY-models for high Tc superconductors

    International Nuclear Information System (INIS)

    Weber, H.; Jensen, H.J.

    1992-01-01

    We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature regime. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)

  12. Crossover from three- to two-dimensional behavior of the vortex energies in layered XY-models for high Tc superconductors

    International Nuclear Information System (INIS)

    Weber, H.; Tekniska Hoegskolan, Luleaa; Jeldtoft Jensen, H.

    1991-01-01

    We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high T c superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature region. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High T c superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)

  13. Vortex properties in a strongly textured Bi(2212) high Tc superconductor

    International Nuclear Information System (INIS)

    Verhoeven, P.F.M.

    1993-08-01

    The research described in this report was aimed at obtaining more information about the behaviour of vortices in a textured type II Bi 2 Sr 2 CaCu 2 O 8 high Tc superconductor. With the neutron depolarization technique used, it is possible to determine the mean magnetic induction in the sample and the magnetic disorder in the vortex system in one measurement. If the mean induction is directed along one of the main axes, it is possible to determine the local orientation of the vortices. The vortex distribution can in first order approximation be described by the Bean-model. This model claims a constant gradient in the vortex distribution from the edges toward the centre of the superconductor. In order to investigate this gradient, a scan method is used to measure the mean induction as a function of the position in the superconductor. From these measurements a non homogeneous vortex distribution at the edges could be concluded, although it could not be determined whether the gradient of the vortex distribution near the edges is constant. In order to investigate the relaxation of the vortex distribution after a magnetic field pulse, time dependent measurements were carried out. It appeared that the relaxation of the vortex system on short time scale (ms) is not only due to flux creep, but also to a collective expulsion of vortices because of the repulsive force between the vortices which are very closely packed together right after the pulse. Large remanence (>20 Gauss) after a large applied field pulse (>1 T) was observed, perpendicular to the applied field. This perpendicular remanence was investigated as a function of time, as a function of position, as a function of temperature and as a function of the applied field pulse. These large perpendicular fields can be explained if the texture of the sample is taken into account. (orig.)

  14. Workshop on accelerator magnet superconductors. Proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors

  15. Workshop on accelerator magnet superconductors. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors.

  16. 49 CFR 236.340 - Electromechanical interlocking machine; locking between electrical and mechanical levers.

    Science.gov (United States)

    2010-10-01

    ... Electromechanical interlocking machine; locking between electrical and mechanical levers. In electro-mechanical interlocking machine, locking between electric and mechanical levers shall be maintained so that mechanical... 49 Transportation 4 2010-10-01 2010-10-01 false Electromechanical interlocking machine; locking...

  17. Simulation of the vortex motion in the high Tc superconductors

    International Nuclear Information System (INIS)

    Dong Jinming.

    1992-11-01

    1d and 2d simulations of the single vortex dynamics in the presence of random pinning potential and periodical one have been carried out. It is shown that the randomness of the pinning sites distribution does not have considerable effect on the transport properties such as I-V characteristics of the high T c superconductors, which has been widely discussed in the approximation of a periodical pinning potential using analytical method. The randomness effect probably only reduces the vortex diffusing mobility more below the depinning current value, which is more obvious at lower temperature. (author). 12 refs, 4 figs

  18. The development of research on high temperature superconductors in Malaysia

    International Nuclear Information System (INIS)

    Shaari, A.H.; Hashim, M.; Dalimin, M.N.

    1989-01-01

    The background of the recent discovery of high-temperature oxide superconductor is given. This new discovery has driven scientists of different disciplines from many parts of the world into the race. Even those researchers from the developing countries are able to join the band wagon of the frontier research due to the convenience of working at temperatures well above that of liquid nitrogen. In Malaysia, some aspects of preparations and characterization of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O ceramics are studied. The 90 K transition temperature is observed in Y-Ba-Cu-O. (Auth.). 10 figs.; 5 refs

  19. Glass precursor approach to high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The available studies on the synthesis of high T sub c superconductors (HTS) via the glass precursor approach were reviewed. Melts of the Bi-Sr-Ca-Cu-O system as well as those doped with oxides of some other elements (Pb, Al, V, Te, Nb, etc.) could be quenched into glasses which, on further heat treatments under appropriate conditions, crystallized into the superconducting phase(s). The nature of the HTS phase(s) formed depends on the annealing temperature, time, atmosphere, and the cooling rate and also on the glass composition. Long term annealing was needed to obtain a large fraction of the 110 K phase. The high T sub c phase did not crystallize out directly from the glass matrix, but was preceded by the precipitation of other phases. The 110 K HTS was produced at high temperatures by reaction between the phases formed at lower temperatures resulting in multiphase material. The presence of a glass former such as B2O3 was necessary for the Y-Ba-Cu-O melt to form a glass on fast cooling. A discontinuous YBa2Cu3O(7-delta) HTS phase crystallized out on heat treatment of this glass. Attempts to prepare Tl-Ba-Ca-Cu-O system in the glassy state were not successful.

  20. "Fluctuoscopy" of Superconductors

    Science.gov (United States)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  1. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  2. Modeling high-temperature superconductors and metallic alloys on the Intel IPSC/860

    Science.gov (United States)

    Geist, G. A.; Peyton, B. W.; Shelton, W. A.; Stocks, G. M.

    Oak Ridge National Laboratory has embarked on several computational Grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys from first principles and, in particular, the electronic structure of high-temperature superconductors. While the present focus of the project is on superconductivity, the approach is general enough to permit study of other properties of metallic alloys such as strength and magnetic properties. This paper describes the progress to date on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification. Performance of this code on the Intel iPSC/860 is also compared to a CRAY 2, CRAY YMP, and several workstations. Finally, some density of state calculations of two perovskite superconductors are given.

  3. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  4. The Discovery of a Class of High-Temperature Superconductors.

    Science.gov (United States)

    Muller, K. Alex; Bednorz, J. Georg

    1987-01-01

    Describes the new class of oxide superconductors, the importance of these materials, and the concepts that led to its discovery. Summarizes the discovery itself and its early confirmation. Discusses the observation of a superconductive glass state in percolative samples. (TW)

  5. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  6. Ceramic high temperature superconductors for high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.

    1996-12-31

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au). 111 refs.

  7. Ceramic high temperature superconductors for high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J

    1997-12-31

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au). 111 refs.

  8. Ceramic high temperature superconductors for high current applications

    International Nuclear Information System (INIS)

    Christiansen, J.

    1996-01-01

    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au)

  9. Theory of terahertz electric oscillations by supercooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mishonov, Todor M; Mishonov, Mihail T [Department of Theoretical Physics, Faculty of Physics, University of Sofia St Kliment Ohridski, 5 J Bourchier Boulevard, 1164 Sofia (Bulgaria); Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D B-3001 Leuven (Belgium)

    2005-11-15

    We predict that below T{sub c} a regime of negative differential conductivity (NDC) can be reached. The superconductor should be supercooled to Tsuperconductor is created by the excess conductivity of the fluctuation Cooper pairs. We propose NDC of supercooled superconductors to be used as an active medium for generation of electric oscillations. Such generators can be used in the superconducting electronics as a new type THz source of radiation. Oscillations can be modulated by the change of the bias voltage, electrostatic doping by a gate electrode when the superconductor is the channel of a field effect transistor, or by light. When small amplitude oscillations are stabilized near the critical temperature T{sub c} the generator can be used as a bolometer. NDC, which is essential for the applications, is predicted on the basis of analysis of known results for fluctuation conductivity, obtained in previous papers by solving the Boltzmann kinetic equation for the Cooper pairs metastable in the normal phase. The Boltzmann equation for fluctuation Cooper pairs is a result of state-of-the-art application of the microscopic theory of superconductivity. Our theoretical conclusions are based on some approximations like time dependent Ginzburg-Landau theory initially derived for gapless superconductors, but nevertheless can reliably predict the appearance of NDC. NDC is the main ingredient of the proposed technical applications. The maximal frequency at which superconductors can operate as generators is determined by the critical temperature {Dirac_h}/2{pi}{omega}{sub max} {approx} k{sub B}T{sub c}. For high-T{sub c} superconductors this maximal frequency falls well inside the terahertz range. Technical conditions to avoid nucleation of the superconducting phase are briefly discussed. We suggest that nanostructured high-T{sub c} superconductors patterned in a single chip can

  10. Recrystallization of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzoudis, Dimitris [Iowa State Univ., Ames, IA (United States)

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  11. Probe high-Tc Superconductors by neutron scattering

    International Nuclear Information System (INIS)

    Fauque, B.

    2007-10-01

    This research thesis explores two aspects of the phase diagram of high critical temperature superconductors: the evolution of AF correlations and the nature of the pseudo-gap phase. The author presents the problematic associated with these particular semiconductors, describes the neutron diffusion probe used in this study, and presents the three families of semiconductors investigated during this research: Bi 2 Sr 2 CaCu 2 O 8+x , YBa 2 Cu 3 O 6+x and La 2-x Sr x CuO 4 . He reports the results of the investigation of the spin dynamics in the Bi 2 Sr 2 CaCu 2 O 8+x . He reports a detailed investigation of the magnetic cross section associated with different types of non conventional magnetic orders proposed as candidates for the pseudo-gap phase. He reports and comments the results obtained for the pseudo-gap phase for the YBa 2 Cu 3 O 6+x and La 2-x Sr x CuO 4 families. Finally, the author discusses the consequences of the obtained results for the description of the diagram phase of high critical temperature semiconductors

  12. Irradiation effects of high temperature superconductor of lanthanoid oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Koh-ichi; Kohara, Takao [Himeji Inst. of Tech., Hyogo (Japan)

    1996-04-01

    Neutron irradiation effects on excess oxygen were studied by neutron irradiation on La{sub 2}CuO{sub 4} treated with high pressure oxygen. La{sub 2}CuO{sub 4} was prepared by the usual method and annealed for 10 h under the oxygen pressure of 800-2000 atm. at 600degC. The superconducting transition temperature (Tc) is 27-32K before irradiation (La{sub 2}CuO{sub 4+d}, amount of excess oxygen d=0.03-0.12). Neutron irradiation was carried out by two kinds of experiments. Low irradiation dose test at low temperature (LTL: {approx}20-200K, storage in LN{sub 2}) showed Tc decreased more slowly than that of high temperature range. Experiment at high temperature (Hyd:{approx}80deg{yields}, storage at room temperature) showed -10K/10{sup 18}n/cm{sup 2}, the decrease of Tc was three times larger than that of YBCO type superconductor. (S.Y.)

  13. Phase coherent transport in hybrid superconductor-topological insulator devices

    Science.gov (United States)

    Finck, Aaron

    2015-03-01

    Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.

  14. On the applicability of the layered sine-Gordon model for Josephson-coupled high-Tc layered superconductors

    International Nuclear Information System (INIS)

    Nandori, I; Jentschura, U D; Nagy, S; Sailer, K; Vad, K; Meszaros, S

    2007-01-01

    We find a mapping of the layered sine-Gordon model to an equivalent gas of topological excitations and determine the long-range interaction potentials of the topological defects. This enables us to make a detailed comparison to the so-called layered vortex gas, which can be obtained from the layered Ginzburg-Landau model. The layered sine-Gordon model has been proposed in the literature as a candidate field-theoretical model for Josephson-coupled high-T c superconductors, and the implications of our analysis for the applicability of the layered sine-Gordon model to high-T c superconductors are discussed. We are led to the conjecture that the layered sine-Gordon and the layered vortex gas models belong to different universality classes. The determination of the critical temperature of the layered sine-Gordon model is based on a renormalization-group analysis

  15. High-Q plasmonic bottle microresonator

    Science.gov (United States)

    Mohd Nasir, M. Narizee; Ding, Ming; Murugan, G. Senthil; Zervas, Michalis N.

    2014-03-01

    In this paper, we demonstrate a hybrid plasmonic bottle microresonator (PBMR) which supports whispering gallery modes (WGMs) along with surface plasmon waves (SPWs) for high performance optical sensor applications. The BMR was fabricated through "soften-and-compress" technique with a thin gold layer deposited on top of the resonator. A polarization-resolved measurement was set-up in order to fully characterize the fabricated PBMR. Initially, the uncoated BMR with waist diameter of 181 μm, stem diameter of 125 μm and length of 400 μm was fabricated and then gold film was deposited on the surface. Due to surface curvature, the gold film covering half of the BMR had a characteristic meniscus shape and maximum thickness of 30 nm. The meniscus provides appropriately tapered edges which facilitate the adiabatic transformation of BMR WGMs to SPWs and vice versa. This results in low transition losses, which combined with partially-metal-coated resonator, can result in high hybrid-PBMR Q's. The transmission spectra of the hybrid PBMR are dramatically different to the original uncoated BMR. Under TE(TM) excitation, the PBMR showed composite resonances with Q of ~2100(850) and almost identical ~ 3 nm FSR. We have accurately fitted the observed transmission resonances with Lorentzian-shaped curves and showed that the TE and TM excitations are actually composite resonances comprise of two and three partially overlapping resonances with Q's in excess of 2900 and 2500, respectively. To the best of our knowledge these are the highest Qs observed in plasmonic microcavities.

  16. Inter plane coupling and magnetic properties in a high Tc superconductor

    International Nuclear Information System (INIS)

    Malacarne, L.C.; Mendes, R.S.; Veroneze, P.R.

    1997-01-01

    We investigate if besides an increasing in T c , an interaction favoring pair tunneling reproduces some characteristic properties of the superconductors, in the presence of a magnetic field. With this objective, we use a sufficiently simple Hamiltonian which maintains the main qualitative aspects of the inter plane interaction through pairs. We also apply an functional integration method for obtaining the Landau-Ginzburg (L G) equations in presence of magnetic field. From these equations, we verify that the applied model presents the properties expected for a superconductor, e.g. magnetic flux quantization, Meissner effect and possible existence of vortex and vortex lattice

  17. Hybrid crystals of cuprates and iron-based superconductors

    Science.gov (United States)

    Xia, Dai; Cong-Cong, Le; Xian-Xin, Wu; Jiang-Ping, Hu

    2016-07-01

    We propose two possible new compounds, Ba2CuO2Fe2As2 and K2CuO2Fe2Se2, which hybridize the building blocks of two high temperature superconductors, cuprates and iron-based superconductors. These compounds consist of square CuO2 layers and antifluorite-type Fe2 X 2 (X = As, Se) layers separated by Ba/K. The calculations of binding energies and phonon spectra indicate that they are dynamically stable, which ensures that they may be experimentally synthesized. The Fermi surfaces and electronic structures of the two compounds inherit the characteristics of both cuprates and iron-based superconductors. These compounds can be superconductors with intriguing physical properties to help to determine the pairing mechanisms of high T c superconductivity. Project supported by the National Basic Research Program of China (Grant No. 2015CB921300), the National Natural Science Foundation of China (Grant Nos. 1190020 and 11334012), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07000000).

  18. High-Q microwave photonic filter with a tuned modulator.

    Science.gov (United States)

    Capmany, J; Mora, J; Ortega, B; Pastor, D

    2005-09-01

    We propose the use of tuned electro-optic or electroabsorption external modulators to implement high-quality (high-Q) factor, single-bandpass photonic filters for microwave signals. Using this approach, we experimentally demonstrate a transversal finite impulse response with a Q factor of 237. This is to our knowledge the highest value ever reported for a passive finite impulse-response microwave photonic filter.

  19. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  20. Towards ferromagnet/superconductor junctions on graphene

    International Nuclear Information System (INIS)

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  1. Towards ferromagnet/superconductor junctions on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  2. Oxygen diffusion in high-Tc superconductors

    International Nuclear Information System (INIS)

    Rothman, S.J.; Routbort, J.L.

    1992-07-01

    The cuprate superconductors are fascinating not only because of their technical promise, but also because of their structures, especially the anisotropy of the crystal lattice. There are some structural similarities among these compounds, but also significant differences. Measurements of the oxygen tracer diffusion coefficients have been carried out as a function of temperature, oxygen partial pressure, crystal orientation, and doping in the La-Sr-Cu-0, Y-Ba-Cu-0, and Bi-Sr-Ca-Cu-0 systems. These measurements have revealed a variety of defect mechanisms operating in these compounds; the exact nature of the mechanism depends on the details of the structure

  3. PREFACE: Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors

    Science.gov (United States)

    Granados, Xavier; Sánchez, Àlvar; López-López, Josep

    2012-10-01

    The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.

  4. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  5. Extended abstracts of the 12th JAERI workshop on high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hojou, Kiichi; Okayasu, Satoru; Sasase, Masato [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishida, Takekazu [Osaka Prefectual Univ., Sakai (JP)] (eds.)

    2001-03-01

    This workshop was held on December 7-8, 2000 at JAERI (Tokai). The research group at JAERI shares a responsibility for material modification of high-Tc superconductors by irradiation in 'the multi-core project II of the high temperature superconducting material research' organized by STA (Science and Technology Agency) of Japan. This report contains the extended abstracts of workshop presentations covering basic theories, various experimental results and material improvement studies of the superconductivity by high energy ion irradiation. The twelve presentations of the workshop were devoted to a mini symposium where the direct observations of vortices were discussed in view of the various sophisticated techniques. (author)

  6. Extended abstracts of the 12th JAERI workshop on high-Tc superconductors

    International Nuclear Information System (INIS)

    Hojou, Kiichi; Okayasu, Satoru; Sasase, Masato

    2001-03-01

    This workshop was held on December 7-8, 2000 at JAERI (Tokai). The research group at JAERI shares a responsibility for material modification of high-Tc superconductors by irradiation in 'the multi-core project II of the high temperature superconducting material research' organized by STA (Science and Technology Agency) of Japan. This report contains the extended abstracts of workshop presentations covering basic theories, various experimental results and material improvement studies of the superconductivity by high energy ion irradiation. The twelve presentations of the workshop were devoted to a mini symposium where the direct observations of vortices were discussed in view of the various sophisticated techniques. (author)

  7. Photographing magnetic fields in superconductors

    International Nuclear Information System (INIS)

    Harrison, R.B.; Wright, L.S.

    Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed

  8. Exploring FeSe-based superconductors by liquid ammonia method

    International Nuclear Information System (INIS)

    Ying Tian-Ping; Wang Gang; Jin Shi-Feng; Shen Shi-Jie; Zhang Han; Zhou Ting-Ting; Lai Xiao-Fang; Wang Wan-Yan; Chen Xiao-Long

    2013-01-01

    Our recent progress on the preparation of a series of new FeSe-based superconductors and the clarification of SC phases in potassium-intercalated iron selenides are reviewed here. By the liquid ammonia method, metals Li, Na, Ca, Sr, Ba, Eu, and Yb are intercalated in between FeSe layers and form superconductors with transition temperatures of 30 K∼46 K, which cannot be obtained by high-temperature routes. In the potassium-intercalated iron selenides, we demonstrate that at least two SC phases exist, K x Fe 2 Se 2 (NH 3 ) y (x ≈ 0.3 and 0.6), determined mainly by the concentration of potassium. NH 3 has little, if any, effect on superconductivity, but plays an important role in stabilizing the structures. All these results provide a new starting point for studying the intrinsic properties of this family of superconductors, especially for their particular electronic structures. (topical review - iron-based high temperature superconductors)

  9. Superconductors go organic

    International Nuclear Information System (INIS)

    Singleton, John; Mielke, Charles

    2002-01-01

    Superconductors made from organic molecules are revealing fascinating new physics and could offer huge technological potential as well. Solid-state physicists are simple people. They believe that basic research is best carried out on chemically simple materials. Traditionally they have focused on inorganic elements, alloys, and other straightforward compounds. This approach has provided some notable successes. For example, any physicist over 35 will remember the huge fuss surrounding the discovery of high-temperature cuprate superconductors in 1986, which led to the infamous 'Woodstock of physics' meeting the following year. Just before the cuprates were discovered, however, an alternative view had begun to emerge. Physical chemists such as Klaus Bechgaard, Peter Day, Gunzi Saito, Viktor Schegolev and Jack Williams were suggesting that the 'simple-materials-are-best' assumption was misplaced. They argued that some of the most exciting studies in solid-state physics can - and should - be attempted on crystalline organic materials. Although chemically complex, such materials are beautifully simple in other ways, and they can, for example, provide much more information about basic phenomena like superconductivity and magnetism than supposedly simple materials. Physicists eventually embraced these materials with enthusiasm, and the number of papers on crystalline organic metals overtook those on the high-temperature cuprate superconductors three years ago. The gap has widened ever since, and the fact that God and a billion years of evolution have produced a processor based on three-dimensional arrays of molecules, rather than silicon or gallium-arsenide chips, is taken as a good omen by those working in the field. (U.K.)

  10. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  11. The increase in Tc for MgB2 superconductor under high pressure

    International Nuclear Information System (INIS)

    Liu, Z-X; Jin, C-Q; You, J-Y; Li, S-C; Zhu, J-L; Yu, R-C; Li, F-Y; Su, S-K

    2002-01-01

    We report in situ high-pressure studies up to 1.0 GPa on MgB 2 superconductor which had been synthesized at high pressure. The as-prepared sample is of high quality as regards having a sharp superconducting transition (T c ) at 39 K. The in situ high-pressure measurements were carried out using a Be-Cu piston-cylinder-type instrument with a mixed oil as the pressure-transmitting medium, which provides a quasi-hydrostatic pressure environment at low temperature. The superconducting transitions were measured using the electrical conductance method. It is found that T c increases with pressure in the initial pressure range, leading to a parabolic-like T c -P evolution

  12. Theory of Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.

  13. Maximising electro-mechanical response by minimising grain-scale strain heterogeneity in phase-change actuator ceramics

    DEFF Research Database (Denmark)

    Oddershede, Jette; Hossain, Mohammad Jahangir; Daniels, John E.

    2016-01-01

    Phase-change actuator ceramics directly couple electrical and mechanical energies through an electric-field-induced phase transformation. These materials are promising for the replacement of the most common electro-mechanical ceramic, lead zirconate titanate, which has environmental concerns. Here......, we show that by compositional modification, we reduce the grain-scale heterogeneity of the electro-mechanical response by 40%. In the materials investigated, this leads to an increase in the achievable electric-field-induced strain of the bulk ceramic of 45%. Compositions of (100-x)Bi0.5Na0.5TiO3-(x...... heterogeneity can be achieved by precise control of the lattice distortions and orientation distributions of the induced phases. The current results can be used to guide the design of next generation high-strain electro-mechanical ceramic actuator materials....

  14. The defect structure of ceramic high Tc superconductors

    International Nuclear Information System (INIS)

    Van Tendeloo, G.; Amelinckx, S.; Zandbergen, H.W.; Verwerft, M.

    1989-01-01

    In this paper an overview is given of electron microscopy studies on the different ceramic superconductors: YBa 2 Cu 3 O 7 , Bi(Tl)-Sr(Ba)- Ca-Cu-O and Pb 2 Sr 2 Y 0.5 Ca 0.5 Cu 3 O x . Planar defects in these materials play an important role in the superconducting properties. Their structural characteristics are discussed

  15. Engineering design of a high-temperature superconductor current lead

    International Nuclear Information System (INIS)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Daugherty, M.A.; Buckles, W.E.

    1993-01-01

    As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria

  16. Resistive current limiter with high-temperature superconductors. Final report

    International Nuclear Information System (INIS)

    Schubert, M.

    1995-12-01

    Fundamental results of the possibility of using high temperature superconductors (HTSC) in resistive fault current limiters are discussed. Measurement of the homogeneity of BSCCO-powder-in-tube materials were made. In addition, investigations of the transition from superconducting to normalconducting state under AC-current conditions were carried out. Based on these results, simulations of HTSC-materials on ceramic substrate were made and recent results are presented. Important results of the investigations are: 1. Current-limiting without external trigger only possible when the critical current density of HTSC exceeds 10 4 A/cm 2 . 2. Inhomogeneities sometimes cause problems with local destruction. This can be solved by parallel-elements or external trigger. 3. Fast current-limiting causes overvoltages which can be reduced by using parallel-elements. (orig.) [de

  17. Engineering design of a high-temperature superconductor current lead

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Daugherty, M. A.; Buckles, W. E.

    As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria.

  18. Reproducible, large-scale production of thallium-based high-temperature superconductors

    International Nuclear Information System (INIS)

    Gay, R.L.; Stelman, D.; Newcomb, J.C.; Grantham, L.F.; Schnittgrund, G.D.

    1990-01-01

    This paper reports on the development of a large scale spray-calcination technique generic to the preparation of ceramic high-temperature superconductor (HTSC) powders. Among the advantages of the technique is that of producing uniformly mixed metal oxides on a fine scale. Production of both yttrium and thallium-based HTSCs has been demonstrated using this technique. In the spray calciner, solutions of the desired composition are atomized as a fine mist into a hot gas. Evaporation and calcination are instantaneous, yielding an extremely fine, uniform oxide powder. The calciner is 76 cm in diameter and can produce metal oxide powder at relatively large rates (approximately 100 g/h) without contamination

  19. Electron refrigeration in hybrid structures with spin-split superconductors

    Science.gov (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  20. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    Science.gov (United States)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    Iron-based superconductors, discovered just a few years ago, are members of a diverse family of pnictides and chalcogenides which may potentially contain hundreds of superconducting compounds. The unconventional, multiband superconductivity in these materials most likely emerges from the quintessential magnetic Fe ions. Along with many similarities to the high-Tc cuprates, the proximity of antiferromagnetism to superconductivity in these semi-metallic materials has attracted much attention. The massive effort aimed at understanding superconductivity in the high-Tc cuprates has stimulated the development of numerous state-of-the-art experimental techniques, improved crystal growth methods and a variety of new theoretical insights. These tools and models were already available and readily applied to the new iron-based superconductors for which lots of high quality new results are being reported literally every day. The current special section represents only a snapshot of these extensive studies performed in the second half of 2009, less than two years after the discovery of 26 K superconductivity in the LaFeAsO compound. The range of various experiments is impressive and this issue is mostly focused on the electromagnetic properties of these iron-based materials. The electromagnetic response is sensitive to the microscopic electronic behavior and therefore can be used to probe the mechanism of superconductivity. On the other hand, it is the electromagnetic response that determines many possible applications of these superconductors, particularly given their extremely high upper critical fields. At this point it is already quite clear that the iron-based superconductors cannot unambiguously fit into any known type of superconductor class and have been placed in one of their own. The metallic ground state of the parent compounds is different from the insulating state of the cuprates and generally exhibits a lower electromagnetic anisotropy. However, similar to the